15 research outputs found

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation λ corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to √L. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation λ corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to √L. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    Interconnect modeling and optimization in deep sub-micron technologies

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references.Interconnect will be a major bottleneck for deep sub-micron technologies in the years to come. This dissertation addresses the communication aspect from a power consumption and transmission speed perspective. A model for the energy consumption associated with data transmission through deep sub-micron technology buses is derived. The capacitive and inductive coupling between the bus lines as well as the distributed nature of the wires is taken into account. The model is used to estimate the power consumption of the bus as a function of the Transition Activity Matrix, a quantity generalizing the transition activity factors of the individual lines. An information theoretic framework has been developed to study the relation between speed (number of operations per time unit) and energy consumption per operation in the case of synchronous digital systems. The theory provides us with the fundamental minimum energy per input information bit that is required to process or communicate information at a certain rate. The minimum energy is a function of the information rate, and it is, in theory, asymptotically achievable using coding. This energy-information theory combined with the bus energy model result in the derivation of the fundamental performance limits of coding for low power in deep sub-micron buses. Although linear, block linear and differential coding schemes are favorable candidates for error correction, it is shown that they only increase power consumption in buses. Their resulting power consumption is related to structural properties of their generator matrices. In some cases the power is calculated exactly and in other cases bounds are derived.(cont.) Both provide intuition about how to re-structure a given linear (block linear, etc.) code so that the energy is minimized within the set of all equivalent codes. A large class of nonlinear coding schemes is examined that leads to significant power reduction. This class contains all encoding schemes that have the form of connected Finite State Machines. The deep sub-micron bus energy model is used to evaluate their power reduction properties. Mathematical analysis of this class of coding schemes has led to the derivation of two coding optimization algorithms. Both algorithms derive efficient coding schemes taking into account statistical properties of the data and the particular structure of the bus. This coding design approach is generally applicable to any discrete channel with transition costs. For power reduction, a charge recycling technique appropriate for deep sub-micron buses is developed. A detailed mathematical analysis provides the theoretical limits of power reduction. It is shown that for large buses power can be reduced by a factor of two. An efficient modular circuit implementation is presented that demonstrates the practicality of the technique and its significant net power reduction. Coding for speed on the bus is introduced. This novel idea is based on the fact that coupling between the lines in a deep sub-micron bus implies that different transitions require different amounts of time to complete. By allowing only "fast" transitions to take place, we can increase the clock frequency of the bus. The combinatorial capacity of such a constrained bus ...by Paul Peter P. Sotiriadis.Ph.D

    Signal Processing for Compressed Sensing Multiuser Detection

    Get PDF
    The era of human based communication was longly believed to be the main driver for the development of communication systems. Already nowadays we observe that other types of communication impact the discussions of how future communication system will look like. One emerging technology in this direction is machine to machine (M2M) communication. M2M addresses the communication between autonomous entities without human interaction in mind. A very challenging aspect is the fact that M2M strongly differ from what communication system were designed for. Compared to human based communication, M2M is often characterized by small and sporadic uplink transmissions with limited data-rate constraints. While current communication systems can cope with several 100 transmissions, M2M envisions a massive number of devices that simultaneously communicate to a central base-station. Therefore, future communication systems need to be equipped with novel technologies facilitating the aggregation of massive M2M. The key design challenge lies in the efficient design of medium access technologies that allows for efficient communication with small data packets. Further, novel physical layer aspects have to be considered in order to reliable detect the massive uplink communication. Within this thesis physical layer concepts are introduced for a novel medium access technology tailored to the demands of sporadic M2M. This concept combines advances from the field of sporadic signal processing and communications. The main idea is to exploit the sporadic structure of the M2M traffic to design physical layer algorithms utilizing this side information. This concept considers that the base-station has to jointly detect the activity and the data of the M2M nodes. The whole framework of joint activity and data detection in sporadic M2M is known as Compressed Sensing Multiuser Detection (CS-MUD). This thesis introduces new physical layer concepts for CS-MUD. One important aspect is the question of how the activity detection impacts the data detection. It is shown that activity errors have a fundamentally different impact on the underlying communication system than data errors have. To address this impact, this thesis introduces new algorithms that aim at controlling or even avoiding the activity errors in a system. It is shown that a separate activity and data detection is a possible approach to control activity errors in M2M. This becomes possible by considering the activity detection task in a Bayesian framework based on soft activity information. This concept allows maintaining a constant and predictable activity error rate in a system. Beyond separate activity and data detection, the joint activity and data detection problem is addressed. Here a novel detector based on message passing is introduced. The main driver for this concept is the extrinsic information exchange between different entities being part of a graphical representation of the whole estimation problem. It can be shown that this detector is superior to state-of-the-art concepts for CS-MUD. Besides analyzing the concepts introduced simulatively, this thesis also shows an implementation of CS-MUD on a hardware demonstrator platform using the algorithms developed within this thesis. This implementation validates that the advantages of CS-MUD via over-the-air transmissions and measurements under practical constraints

    Topics in Programming Languages, a Philosophical Analysis through the case of Prolog

    Get PDF
    [EN]Programming languages seldom find proper anchorage in philosophy of logic, language and science. is more, philosophy of language seems to be restricted to natural languages and linguistics, and even philosophy of logic is rarely framed into programming languages topics. The logic programming paradigm and Prolog are, thus, the most adequate paradigm and programming language to work on this subject, combining natural language processing and linguistics, logic programming and constriction methodology on both algorithms and procedures, on an overall philosophizing declarative status. Not only this, but the dimension of the Fifth Generation Computer system related to strong Al wherein Prolog took a major role. and its historical frame in the very crucial dialectic between procedural and declarative paradigms, structuralist and empiricist biases, serves, in exemplar form, to treat straight ahead philosophy of logic, language and science in the contemporaneous age as well. In recounting Prolog's philosophical, mechanical and algorithmic harbingers, the opportunity is open to various routes. We herein shall exemplify some: - the mechanical-computational background explored by Pascal, Leibniz, Boole, Jacquard, Babbage, Konrad Zuse, until reaching to the ACE (Alan Turing) and EDVAC (von Neumann), offering the backbone in computer architecture, and the work of Turing, Church, Gödel, Kleene, von Neumann, Shannon, and others on computability, in parallel lines, throughly studied in detail, permit us to interpret ahead the evolving realm of programming languages. The proper line from lambda-calculus, to the Algol-family, the declarative and procedural split with the C language and Prolog, and the ensuing branching and programming languages explosion and further delimitation, are thereupon inspected as to relate them with the proper syntax, semantics and philosophical élan of logic programming and Prolog

    Geosynchronous synthetic aperture radar : design and applications

    Get PDF
    Synthetic Aperture Radar (SAR) imaging from geosynchronous orbit has significant potential advantages over conventional low-Earth orbit (LEO) radars, but also challenges to overcome. This thesis investigates both active and passive geosynchronous SAR configurations, presenting their different features and advantages. Following a system design trade-off that involved phase uncertainties, link budget, frequency and integration time, an L band bi-static configuration with 8-hour integration time that reuses the signal from a non-cooperative transmitter has been presented as a suitable solution. Cranfield Space Research Centre looked into this configuration and proposed the GeoSAR concept, an L band bi-static SAR based on the concept by Prati et al. (1998). It flies along a circular ground track orbit, reuses the signal coming from a noncooperative transmitter in GEO and achieves a spatial resolution of about 100 m. The present research contributes to the GeoSAR concept exploring the implications due to the 8-hour integration time and providing insights about its performance and its possible fields of application. Targets such as canopies change their backscattered phase on timescales of seconds due to their motion. On longer time scales, changes in dielectric properties of targets, Earth tides and perturbations in the structure of the atmosphere contribute to generate phase fluctuations in the collected signals. These phenomena bring temporal decorrelation and cause a reduction in SAR coherent integration gain. They have to be compensated for if useful images are to be provided. A SAR azimuth simulator has been developed to study the influence of temporal decorrelation on GeoSAR point spread function. The analysis shows that ionospheric delay is the major source of decorrelation; other effects, such as tropospheric delay and Earth tides, have to be dealt with but appear to be easier to handle. Two different options for GeoSAR interferometry have been discussed. The system is well suited to differential interferometry, due to the short perpendicular baseline induced by the geometry. A GeoSAR has advantages over a Low Earth Orbit (LEO) SAR system to monitor processes with significant variability over daily or shorter timescales (e.g. soil moisture variation). This potential justifies further study of the concept.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Geosynchronous synthetic aperture radar : design and applications

    Get PDF
    Synthetic Aperture Radar (SAR) imaging from geosynchronous orbit has significant potential advantages over conventional low-Earth orbit (LEO) radars, but also challenges to overcome. This thesis investigates both active and passive geosynchronous SAR configurations, presenting their different features and advantages. Following a system design trade-off that involved phase uncertainties, link budget, frequency and integration time, an L band bi-static configuration with 8-hour integration time that reuses the signal from a non-cooperative transmitter has been presented as a suitable solution. Cranfield Space Research Centre looked into this configuration and proposed the GeoSAR concept, an L band bi-static SAR based on the concept by Prati et al. (1998). It flies along a circular ground track orbit, reuses the signal coming from a noncooperative transmitter in GEO and achieves a spatial resolution of about 100 m. The present research contributes to the GeoSAR concept exploring the implications due to the 8-hour integration time and providing insights about its performance and its possible fields of application. Targets such as canopies change their backscattered phase on timescales of seconds due to their motion. On longer time scales, changes in dielectric properties of targets, Earth tides and perturbations in the structure of the atmosphere contribute to generate phase fluctuations in the collected signals. These phenomena bring temporal decorrelation and cause a reduction in SAR coherent integration gain. They have to be compensated for if useful images are to be provided. A SAR azimuth simulator has been developed to study the influence of temporal decorrelation on GeoSAR point spread function. The analysis shows that ionospheric delay is the major source of decorrelation; other effects, such as tropospheric delay and Earth tides, have to be dealt with but appear to be easier to handle. Two different options for GeoSAR interferometry have been discussed. The system is well suited to differential interferometry, due to the short perpendicular baseline induced by the geometry. A GeoSAR has advantages over a Low Earth Orbit (LEO) SAR system to monitor processes with significant variability over daily or shorter timescales (e.g. soil moisture variation). This potential justifies further study of the concept.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Simulated Annealing

    Get PDF
    The book contains 15 chapters presenting recent contributions of top researchers working with Simulated Annealing (SA). Although it represents a small sample of the research activity on SA, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. In fact, one of the salient features is that the book is highly multidisciplinary in terms of application areas since it assembles experts from the fields of Biology, Telecommunications, Geology, Electronics and Medicine

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore