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Abstract

Interconnect will be a major bottleneck for deep sub-micron technologies in the years to

come. This dissertation addresses the communication aspect from a power consumption

and transmission speed perspective.

A model for the energy consumption associated with data transmission through deep

sub-micron technology buses is derived. The capacitive and inductive coupling between the

bus lines as well as the distributed nature of the wires is taken into account. The model is

used to estimate the power consumption of the bus as a function of the Transition Activity

Matrix, a quantity generalizing the transition activity factors of the individual lines.

An information theoretic framework has been developed to study the relation between

speed (number of operations per time unit) and energy consumption per operation in the

case of synchronous digital systems. The theory provides us with the fundamental minimum

energy per input information bit that is required to process or communicate information

at a certain rate. The minimum energy is a function of the information rate, and it is, in

theory, asymptotically achievable using coding. This energy-information theory combined

with the bus energy model result in the derivation of the fundamental performance limits

of coding for low power in deep sub-micron buses.

Although linear, block linear and differential coding schemes are favorable candidates

for error correction, it is shown that they only increase power consumption in buses. Their

resulting power consumption is related to structural properties of their generator matrices.

In some cases the power is calculated exactly and in other cases bounds are derived. Both

provide intuition about how to re-structure a given linear (block linear, etc.) code so that

the energy is minimized within the set of all equivalent codes.

A large class of nonlinear coding schemes is examined that leads to significant power

reduction. This class contains all encoding schemes that have the form of connected Finite

State Machines. The deep sub-micron bus energy model is used to evaluate their power

reduction properties. Mathematical analysis of this class of coding schemes has led to the

derivation of two coding optimization algorithms. Both algorithms derive efficient coding

schemes taking into account statistical properties of the data and the particular structure

of the bus. This coding design approach is generally applicable to any discrete channel with

transition costs.

For power reduction, a charge recycling technique appropriate for deep sub-micron buses

is developed. A detailed mathematical analysis provides the theoretical limits of power

reduction. It is shown that for large buses power can be reduced by a factor of two. An
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efficient modular circuit implementation is presented that demonstrates the practicality of
the technique and its significant net power reduction.

Coding for speed on the bus is introduced. This novel idea is based on the fact that
coupling between the lines in a deep sub-micron bus implies that different transitions require
different amounts of time to complete. By allowing only "fast" transitions to take place, we
can increase the clock frequency of the bus. The combinatorial capacity of such a constrained
bus is the theoretical maximum rate that data can be transmitted. While this rate is less
than that of the original bus, we can clock the constrained bus faster. It turns out that
the net data transmission speed can be significantly higher than that of the original bus,
in some cases 120% higher. A methodology to estimate the amount of time each transition
requires is introduced. The results are compared to HSPICE and MATLAB simulations and
are shown to be conservative. Using these estimates the transitions are classified according
to how fast they are completed. The fundamental theoretical limits of Coding For Speed
are derived. The increase of the effective speed of the bus is estimated as a function of the
number of lines and the coupling between them.

Finally, a class of practical coding schemes for speed, termed Differential RLL(1, o<)
schemes, is presented. They have low complexity and they can increase the data transmis-
sion rate significantly.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Associate Professor
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Chapter 1

Introduction

1 Interconnect: A Major Bottleneck

We have experienced a tremendous advance in computer performance during the last three

decades. Performance has doubled every eighteen months as G. Moore's law predicted [1].

To continue progressing at the same rate we will need to resolve some major technological

problems. In the years to come transistors are expected to become even smaller and faster.

The difficulty will be to inter-connect them efficiently. This is the opposite situation from a

few years ago, when the performance of the circuit was completely determined by the quality

of the transistors.

The set of wires in the circuit responsible for communication, clock distribution and power

distribution is called the interconnect. Interconnect will be a major source of design problems

for the next two decades [2, 3]. Increased speed of microprocessor's core implies that the

communication rate of data and instructions must be increased as well. This is not trivial,

especially in the global interconnect networks that are responsible for carrying information

between distant locations on the circuit. The properties of the wires do not scale with

technology in a favorable way [4]. Even in current technologies, signals require several clock

cycles to travel across advanced microprocessor chips.
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The speed of light becomes a limiting factor as the clock frequency and the size of chips

are increasing. Clock distribution is an issue for the same reasons. Higher speeds mean

less interconnect budget [5]. Finally, larger circuits and faster clocks set more demanding

specifications for power distribution.

The interconnect problem is so severe and so general that Semiconductor Industry As-

sociation [6] has devoted a lot of resources to address it. To overcome the interconnect

bottleneck, several technological advances will be needed.

This thesis concentrates on the communication aspect of interconnect. On-chip and inter-

chip communications are realized by circuit devices called buses. A bus consists of parallel,

aligned, similar wires that in most cases are on the same metal layer. Drivers and receivers

are connected at the two ends of the wires, and in some cases there are intermediate repeaters

as well. Transmitting data and instructions through long and wide buses requires a lot of

energy and many clock cycles [3, 7, 8]. Also, in some widely used classes of circuits [9], the

communication power may exceed half of the total power consumption.

In modern deep sub-micron (DSM) technologies, the communication problem has become

severe and complex. A reason for this is the increased coupling between the lines of buses

[8, 4, 10]. This is because of the smaller distances between the lines as well as the higher

aspect ratio (height/width) necessary to maintain a linear resistance of reasonable size.

Another complication is the distributed behavior of thin and long lines. Both issues are

expected to become even more dominant in the future technologies [8, 5].

It it interesting that neither of these two problems, coupling nor distributed phenomena,

occurred in earlier technologies. This means that early approaches to estimate power and de-

lay in buses may not be appropriate for current DSM technologies. Furthermore, techniques

invented to reduce power consumption do not perform well in modern technologies.

The present thesis intends to fill this gap by presenting new tools for estimating and

analyzing the energy and delay in buses, and by introducing methodologies that can reduce

the power consumption, increase the speed and reduce the latency of communication. Both,

practical techniques and ultimate achievable performance limits are covered.
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2 Contributions and Outline of the Thesis

The thesis addresses two major issues of on-chip and inter-chip parallel communication.

Chapters 2 to 6 deal with energy consumption associated with information communication.

Chapters 7 and 8 deal with the speed of communication.

Chapter 2 In Chapter 2 we study the energy consumption associated with data trans-

mission through DSM technology buses. The capacitive and inductive coupling between the

bus lines as well as the distributed nature of the wires is taken into account. It is formally

proven that under some reasonable assumptions on the timing and the drivers the energy

depends only on the admittance matrix of the capacitive part of the bus [11]. The analysis

results in an energy model. The model is used to reveal the differences in energy behavior

between buses with strong inter-line coupling (modern DSM technologies) and that of buses

without coupling (older technologies). Finally, the expected power consumption of the bus

is evaluated as a function of the Transition Activity Matrix, a quantity generalizing the tran-

sition activity factors of the individual lines. The bus energy model is used in Chapters 3-6

to provide a basis for applications of coding and charge recycling techniques.

Chapter 3: Information processing and communication are the purposes of all computers.

It is desirable to perform these operations fast and with energy efficiency. It is also well known

that speed and power consumption increase together [12].

In Chapter 3 we study the relation between speed, i.e. number of operations per second,

and energy consumption per operation from an information theoretic point of view. We

develop a theoretical framework that relates these two quantities in the case of synchronous

digital circuits. Given such a circuit, the theory provides us with the fundamentally minimum

energy per input information bit that is required to process information at a certain rate.

The minimum energy is a function of the processing rate, and it is, in theory, asymptotically

achievable using coding. The mathematical framework in Chapter 3 applies directly to

combinational circuits. An immediate extension of the theory allows the treatment of finite

state machines. Application to "non-circuit" devices is possible when they have discrete

states and input, and an energy cost that at every time k depends on a fixed, finite number

of previous states [13, 15].
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The development of this mathematical framework was motivated by the energy consumption

of DSM buses and the question of how much we can reduce it using coding. The energy

model of Chapter 2 is used throughout the chapter to motivate the theory and to derive the

limits of performance of coding for low power. A reader that would prefer a more practical

perspective of the material, specifically for DSM buses, is referred to [14].

Chapter 4 The theory in Chapter 3 provides us with the tools to calculate the minimum

energy required to communicate through buses. It gives us the fundamental limits of the

performance of coding schemes and tells us that these limits are asymptotically achievable.

The question now is how to approach these limits with practical coding schemes. It is true

that linear coding schemes are simply structured and very popular in many communication

applications where the objective is the reduction of error probability. Chapter 4 deals with

linear, block linear and differential coding schemes in DSM buses from an energy perspective.

It is shown that these favorable candidates never reduce the power consumption. In Chapter

4 we relate the resulting power consumption using such coding schemes with the structure

of their generator matrices. In some cases the energy is calculated exactly and in other cases

we provide bounds. Both provide intuition about how to re-structure a given linear (block

linear, etc.) code so that the energy is minimized within the set of all equivalent codes.

Although these classes of codes do not reduce power consumption, they may be used for

error correction in the bus. In this case we would like to achieve the best error correction

performance with the minimum additional power consumption [16]. The results of Chapter

4 provide us with guidelines on how to do this.

Chapter 5 In contrast to Chapter 4, where linear coding schemes are studied and

proven inappropriate for power reduction, in Chapter 5 we examine a large class of nonlinear

schemes. This class contains all encoding schemes that have the form of connected Finite

State Machines. Their states are the vectors transmitted through the expanded bus, and

the data is their input. We term this class Transition Pattern Coding (TPC) schemes since

the design of the machines is determined by the energies required for the transitions of the

bus [17]. This class of schemes does not introduce latency in the system, in the sense that

the data vector can be transmitted during the cycle it arrives at the encoder.
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Chapter 5 provides a detailed mathematical analysis of the energy consumption of the en-

coded bus and two optimization algorithms that derive the appropriate coding schemes given

the transition energies of the bus. Furthermore, the case of bus partitioning is studied in

detail as an approach to reduce the complexity of the encoding and decoding. We note that

the TPC schemes and the TPC algorithm can be applied to other discrete channels and

Finite State Machine optimizations respectively. The application to DSM buses is a special

case. Finally, it is true that most of the schemes in the literature are particular examples of

TPC schemes. The advantage of the TPC approach is that the design of the schemes takes

into account the particular energy behavior of the bus and statistics of the data [19].

Chapter 6 : Another efficient and practical approach to reduce power consumption in

buses is charge recycling. The idea is to use the charge of lines transitioning from Vdd to

0 in order to pre-charge lines transitioning from 0 to Vdd. Charge recycling can be thought

as a special case of adiabatic circuit techniques. In Chapter 6 we discuss a charge recycling

scheme that is appropriate for DSM buses [20]. A detailed mathematical analysis provides

the theoretical limits of power reduction. It is shown that for large buses the power reduction

can be up to 50%. Power is reduced further when charge recycling is combined with Bus

Invert coding [14]. Finally, an efficient modular circuit implementation is also discussed that

demonstrates the practicality of the technique and its significant net power reduction.

Chapter 7 : A recent work [21] has demonstrated how coding can be used to increase

significantly the throughput of DSM buses. This new idea is based on the fact that coupling

between the lines in the bus implies that different transitions require different amounts

of time to complete. By allowing only "fast" transitions to take place, we can increase

the clock frequency of the bus. A bus with restricted transitions is a constrained discrete

channel when seen from a communication perspective. The combinatorial capacity of such

a channel is the theoretical maximum rate that data can be transmitted. While this rate is

less than the number of lines in the bus, we can clock the bus faster. It turns out that the net

data transmission speed can be significantly higher than that of the uncoded bus, in some

cases 120% higher. Chapter 7 presents a methodology to estimate the amount of time each

transition requires. The results are compared to HSPICE and MATLAB simulations and
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are proven to be conservative. Using these estimates we classify the transitions according

to how fast they are completed. Finally, a simple coding example at the end of the chapter

introduces the idea of Coding For Speed.

Chapter 8 In Chapter 8 we present the theoretical limits of Coding For Speed. We

estimate how much we can increase the throughput of buses as a function of their size and

the coupling between their lines. For narrow buses, the limits are calculated numerically.

For wide buses the limits are upper and lower bounded using an enumeration technique

[22]. Finally, a class of practical coding schemes for speed, termed Differential RLL(1, oc)

schemes, is presented in the chapter. They have very low complexity, since their encoder and

decoder are combinational circuits, and can increase the data transmission rate significantly.
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Chapter 2

A Bus Energy Model

For Deep Sub-Micron Technologies

1 Introduction

On-chip and inter-chip communication is responsible for a significant amount of power dissi-

pated in modern digital circuits [1],[2]. Buses are the circuit units realizing this communica-

tion. Reliable estimation of the power that buses draw from the power supply is important.

Peak and average power are crucial parameters of their design as well as the design of the

supporting circuits. In addition, a model of their energy requirements is necessary for the

efficient evaluation of the digital circuit as a whole and the evaluation of power reduction

techniques; for example, charge recycling [3]-[7], coding for low power [8]-[11] and low-swing

interconnect [12]-[14].

Until recently a very simple model for buses has been used for theoretical energy es-

timation. The bus lines were replaced by lumped grounded capacitors of equal sizes, and

no inter-line coupling was present. This model is inadequate for deep sub-micron (DSM)

technology buses. Technology scaling has introduced new elements that are not captured by

this "traditional" energy model. In modern deep sub-micron technologies, the bus lines are

distributed and heavily capacitively and inductive coupled to each other [15]-[23].
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The coupled dynamics of the lines result in dependencies between the energy drawn from

the power supply by the drivers. The coupling due to inter-line parasitics becomes stronger

with technology scaling, and in most cases it is more significant than the coupling between

individual lines and ground.

This chapter presents a compact energy model for DSM buses based on a detailed dis-

tributed circuit model of the bus. The model will be used extensively in the following chap-

ters. In particular we will use it to estimate the efficiency of coding and other techniques for

power reduction as well as to estimate the fundamental limits of power reduction.

2 Deep Sub-Micron Technology Bus Model

In general, a bus may consist of one or more sets of parallel lines with repeaters between

them. Here we examine the simple case of one set of parallel lines driven by CMOS inverters

Bus Drivers

x =

elementary seg

Ax

Repeaters
ment or

Receivers

x= L
P

Figure 1: DSM bus

and loaded by the input capacitors of the next stage as in Figure 1. The energy for the

general case is the sum of the energies of all stages.

2.1 The Lines

For the DSM bus of Figure 1 we will use the distributed line model of Figure 2. The lines here

are assumed distributed, lossy, capacitively and inductively coupled. This is an established
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4 .Ax

v3 3 (x
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33

\ 1 1 rAx Ax

727 % IL' Ax (Ic I A L
12 2 Ax 13 1IL c 1Ax

r2 c c2 Ax

2(x,'t)

r3AX IcL C2 A

X, t
LIc3A x

L~ ~~x -A
x x+ Ax

Figure 2: Elementary segments of DSM bus lines

model for DSM bus lines. It has been used in the past for delay estimation as well as signal

integrity evaluation [26]-[29].

The lines are laid along the x axis and have physical length LP. All the major parasitic

elements between lines and ground (shielding or substrate) are included. The densities of the

different quantities are, ri(x) for the serial resistance of the zPh line, ci,i(x) for the capacitance

between the zth line and ground, ciJ(x) for the capacitance between lines i and j. Also, pi,i(x)

is the density of the self inductance of the ith line and pgj(x) is the density of the mutual

inductance between lines i and j. The densities may depend on x. Finally, possible lumped

parasitics can be included as limiting cases of distributed ones.

The current Ii(x, t) is running through the Pth line at the point x £ [0, Lp] and time t> 0.

Let I = [1 1, I2,. ,I4 ]T be the current vector. Similarly, Vi(x, t) is the voltage of that point

with respect to ground and let V = [V1, V2, - - -, V]' be the voltage vector. The line model

of Figure 2 satisfies the system of partial differential equations:

DI DV(, t) = C(X)-(x, t)
09X at
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and

V ( t) = M(x)1 (, t) + R(x)I(x, t)
Ox at (2)

The three n x n matrices R, M, C correspond to the distributed resistance, inductance and

capacitance respectively. They have the following forms:

R(x) = diag[r1(x), r2 (x), - - - , r(x)] (3)

(diagonal matrix with elements : r,(x), r 2 (X), - - - , r(x) ).

M(x) = [pi~j(X)]Q_

and

C(x) = CL(x)+ CI'(x)

The diagonal matrix

CL (L) = diag[cf I(x), - C )

corresponds to the parasitic capacitances between the lines and the ground. The matrices

CI < j correspond to the inter-line capacitance densities c-j(x). The matrix CiL(X) may

have nonzero elements only in the entries (i, i),(i, J),(J, i),(j, j) and it is of the form,

Cf k(x) = cft(x)

0

0

0

0

0

1

-1

0

- 0 - - 0

-- -1 --- 0

-- 1 --- 0

o ---o

(7)

As defined, C(x) is the distributed capacitance conductance matrix of the lines.

So far, the electrical characterization of the bus lines has been given. More details can

be found in the literature, for example in [15, 19, 22].
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2.2 Timing Issues

Independently of the particular application, the data is expected to travel through the bus

within some time period T. Without loss of generality, we can examine the bus during the

time interval [0, T]. At t = 0 the bus is driven with the new data and at t = T the data is

sampled at the other end. It is reasonable to assume that by the time the data is sampled,

the voltages along the lines have settled to their final values. In other words, if V/ is the

data being transmitted through the ith line ( VIf is0 or Vdd ), then after time T we have

that,

Vi(x, T) = V/ (8)

for all x E [0, Lp] and i = 1, 2, - , n (superscript f stands for final). This assumption also

implies that when the transition of the bus starts at time t = 0, the voltages along the lines

correspond to their previous binary values, i.e.

vi(x,0) = V (9)

for all x E [0, Lp] and i= 1, 2,-- , n (superscript i stands for initial). Relations (9) and

(8) are the initial and final conditions of the system of P.D.E.s given by (1) and (2). For

convenience we define the vectors of initial and final voltages as, V = [Vi, ,-... ., 1I] and

Vf= [Vf, Vf-..-, 4 respectively. Our assumption can be written as

V(x, 0) = Vi(10)

and

V(x, T) = Vf (11)

for all x E [0, Lfl.

The dynamics of the bus lines along with their initial and final conditions are given by

(1),(2),(10) and (11). We also need boundary conditions for the P.D.E.s. These will be

provided by circuit models for the drivers and the loads of the lines.
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Vd

dHI
R.

(0)(L, t) I

R.

S. =

s = i vi(o, t)V (LP, t
dr

R t)-C 
C

x=0 x=L0

Driver i Line i Receiver i

Figure 3: Driver-line-receiver

2.3 Drivers and Loads

In Figure 3 we see the ith line connected to its driver and load. The driver (CMOS inverter)

has been modelled as a switch connecting the line either to the power supply or the ground

through resistors [25] 1. The resistors R7(t) and Rf(t) corresponding to the PMOS and

NMOS of the inverter, are not necessarily the on resistors of the transistors in their linear

regions. Their values can be arbitrary functions of time as long as the timing assumptions

of Section 2.2 remain valid. The resistors simply express the current flow through the

MOSFETs. The switch si connects to R (t), (si = 1) or Rf(t), (si = 0) depending on

the binary value to be transmitted, i.e. depending on whether it is Vjf= Vdd orV/ = 0.

Therefore it is V/ = sVdd. The capacitance Cf' is the parasitic capacitance at the output of

the ih driver. We define the diagonal matrix,

= diag[Cf, Cf, ,f] (12)

'This model does not account for the short-circuit currents of the drivers which have to be evaluated

independently using information of the waveforms in the inputs of the drivers.
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The load at the end of the line (input of the receiver circuit) is represented by the capacitor

C[. We set,

::-= diag[C§, 0j, -'', Cn] (13)

In Figure 3, V(0, t) and Vi(LP, t) are the boundary voltages of the line. The currents i(0, t)

and Ii(Lp, t) are the driving and loading currents of the line. The current drawn from Vdd is

denoted by If'(t). This current is responsible for the power drawn from Vdd by the ith driver.

The current is zero when si = 0. Even more, since VY/Vdd = si we can write,

I(t) = $ i(0, t) + Cfa v(t)}(14)

for all i= 1,2, ,n.

3 Transition Energy

The energy drawn from Vdd by the Pth driver during the transition period [0, T] is given by

0j= jT Vdfdt t(15)

The time integral is evaluated in Appendix A and the energy EJ is given by the expression,

E, = VjeTCt(Vf -- Vi) (16)

The vector ej has a one in the ith position and zero everywhere else. The matrix C, which

we call the total capacitance conductance matrix, is given by the sum,

LP

Ct = Cd+ Cr + J C(x)dx (17)

with Cd and CT defined by (12) and (13) respectively and the matrix function C(x) given by

(5). Note that the inductance of the lines does not appear in the energy expression. This is

because of our timing assumption; that is, the voltages along the lines have settled to their

final values by the end of the clock period.

We define 5, i $ j, to be the total capacitance between lines i and j, (6i, = jj), and

Ci,i to be the total capacitance between line i and ground (including the capacitances of the
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driver and the receiver). It is7

LP

= cffdx (18)

LP

ao = C1 + CF+jcrLdx (19)

We conclude that C = C j]i is the conductance matrix of the lumped capacitive network

C1 14

CL 3C24

a 1 Ci6 2 (21 C 3 23

, 1 2, 2 C3, 31 4,41

Figure 4: Equivalent capacitive network (n = 4)

in Figure 4 (n = 4 for simplicity). Even more, it is

t E~k =1 I ,k iZ k i(20)

-a, if i /j

By expanding the right part of (16), we have that the energy drawn from Vdd during the

transition is

Eii = VfefCt(Vfi)

= V|(V| - V)cii + Y3 V(V|j - V

= V|(Vf - Vi) >3 - >3 v/(v - vjj)a, (21)
=1 j,j#i
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We notice that this is exactly the energy that would be drawn from the power supply by the

ith driver during the transition if the lines of the bus and the parasitic capacitances of the

drivers and the receivers were replaced by the network of Figure 4. The equivalent circuit

C1 4

C1, 3 C2, 4

(1) c, 2 (2) E2, 3 (3) C2, 3 (4)

Ci, %c2,1 213,63c4,41

Vd d

Figure 5: Energy-equivalent lumped DSM bus model (*Drivers without parasitic capaci-

tances)

is shown in Figure 5 where the parasitic capacitances of the drivers have been removed.

We call the capacitive network of Figure 5, the lumped energy-equivalent DSM bus model.

Notice that the energy E drawn from Vdd by the ith driver may be negative!

For example suppose that 1,2 is nonzero, that the 1 t line remains connected to Vdd during

the transition i.e. V = V- i= Vdd and that all other lines transit from zero to Vdd i.e.

V>=Y=-=V = 0 and Vf-=V== - - - V = Vdd. Then, current will flow from the

1st line back to the power supply (Figure 5).

Although individual drivers may return energy to the power supply, the total energy

drawn from it during the transition, E = 1 Ej is always nonnegative (Appendix

B). Using Equation (16), the total energy E can be written in the form,

E = (Vf)TCt(Vf - Vi) (22)
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Finally, the model of Figure 5 can be directly generalized to capture energy losses due to

coupling between bus and non-bus lines (or lumped nodes). Suppose that the bus has n

lines as before and some of them are capacitively (and possibly inductively) coupled to m

other non-bus lines (or lumped nodes). We can expand the model of Figure 5 by adding m

more nodes. Under assumptions on the transitions of the voltages of the additional lines (or

nodes) similar to that of Section 2.2 we can define the expanded vectors of initial and final

voltages V and VI respectively. They both have n + m coordinates the first n of which

correspond to bus lines. The matrix C' must be expanded appropriately. Then the energy

drawn during the transition from the power supply by the bus drivers is

E = >3 C --V) (23)
i1

Note that here ei has n + n coordinates.

4 Simplified Energy-Equivalent Model

Traditionally, the bus lines are laid parallel and coplanar. In this case most of the elec-

tric field is trapped between the adjacent lines and the ground. This implies that the ca-

pacitance between non-adjacent lines is practically negligible relatively to the capacitance

between adjacent lines or the capacitance between the lines and ground. Therefore an ap-

proximate energy-equivalent bus model can ignore the parasitics between non-adjacent lines

[15, 19, 22, 25]. In this case the triplet, drivers-lines-receivers behaves energy-wise as the

1) C,2 (2) C2, 3 (3)

al, 1 1  C2 2 1  E 3 3 1 * *4n

Figure 6: Energy-wise approximate DSM bus model

network of Figure 6, and the matrix C' is reduced to the tri-diagonal matrix: C' =
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o1,1 + o1,2 -1,2 0 ... 0 0

- c1,2 E1, 2 +c 2 ,2-+C 2 ,3  -2,3 0 0

0 E2,3 E2, 3 + a3,3 + a3,4 ... 0 0

0 0 0 En-2,n-i + Cn-1dn- + n-1,n -m--1,n

0 0 0 .. - -- _1,n Cn-,n + Cnn

This model can be further simplified if we assume that all grounded capacitors (except

perhaps the boundary ones due to fringing effects) have the same values, and that all the

inter-line capacitances are also of the same value. Say, 22 = 2 3,3 =- - - Ci-,n-1 = CL

(subscript L for line capacitance) and a1,2 = a2,3 = = = C (subscript I for inter-

line). Finally, C1,1 = En,n = CL + CF (subscript F for fringing). (Note that by definition, CL

includes the capacitances of the driver and receiver). In this case the approximate model is

(1) C1 (2) C

CL + CF CL CL 1  CL+CF

Figure 7: Simple energy-wise approximate DSM bus model

as in Figure 7 and C' becomes Cta (a for approximate) as in (24),

1+ A+ -A 0 --- 0

-A 1 + 2A -A ... 0

Cta 0 -A 1+2A --- 0 CL, (24)

0 0 0 --. 1+A-+

where we have set,

A = , C= (25)
CL CL
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The parameters A and C depend on the technology as well as the specific geometry, metal

layer and shielding of the bus. In general, ( is between zero and A. The parameter A tends to

increase with technology scaling. For standard 0.18pm technologies and minimum distance

between the wires, A is between 3 and 6 depending on the metal layer. It is expected to be

even larger in 0.13gm. For wide buses the CF (or 'C') terms can be ignored, since they do

not contribute significantly to the total energy consumption.

5 Spice Simulations

(V', V, V')--+(VpV ,V)

000 001 010 011 100 101 110 ill.1

Table 1: Normalized energy drawn from Vdd

A = 5.06 (simulation: upper/ model: lower)

during the transitions of a 3-line DSM bus with

To verify the simplified model of Figure 7, a three line bus along with its drivers has

been designed and simulated using HSPICE. In the design 0.18pm technology was used and

the wires had minimal distance to each other and length of 2mm. The technology file gave

A = 5.06 (for metal layer 1). The normalized energies measured using HSPICE simulation, as

34

, I---W- - -- -

000 0 6.02 11.3 6.97 6.02 12.0 6.97 3.14

0 6.07 11.1 7.07 6.07 12.1 7.07 3.00

001 0 0 16.0 6.00 6.03 6.02 12.0 1.91

___ 0 0 16.2 6.07 6.07 6.07 12.1 2.00

010 0 11.1 0 0.96 11.1 21.4 0.96 2.10

___ 0 11.1 0 1.00 11.1 22.3 1.00 2.00

011 0 5.06 5.06 0 11.1 16.1 6.02 0.96

0 5.07 5.07 0 11.1 16.2 6.07 1.00

100 0 6.02 16.1 12.0 0 6.02 6.00 1.92

0 6.07 16.2 12.1 0 6.07 6.07 2.00

101 0 0 20.6 11.0 0 0 11.0 0.96

0 0 21.3 11.1 0 0 11.1 1.00

110 0 11.1 5.06 6.03 5.06 16.1 0 0.96

S 0 11.1 5.07 6.07 5.07 16.2 0 1.00

0 5.07 10.1 5.06 5.07 10.1 5.06 0

0 1_ 5.071 10.1 5.071 5.071 10.1 5.071 0



well as the theoretical ones calculated using the expression E = VfCa(Vf - Vi) (with ( = 0)

are shown in Table 1. For every transition, the upper number is the HSPJCE measurement

and the lower one is the calculated value. The variations are within 5.2% and are mostly

due to numerical errors in the energy integration.

6 Deep Sub-Micron vs. Standard Bus Energy Model

In this section the simple DSM bus model of Figure 7 is compared energy-wise to the standard

bus model in Figure 8. The standard model has been used and is being used extensively

for energy estimation. Although it is convenient for theoretical analysis, it gives misleading

results for sub-micron technology buses.

(1) (2) (3) (n)

I I I I
CS 1  C 1  C 1  ''' Cs' 1

Figure 8: The standard model used for comparison

6.1 Energy Comparison

In Table 2 we see the behavioral differences between the DSM and the standard energy

models. It shows the energy drawn from Vdd during the different transitions as it was

estimated by the two models (Figures 7 and 8) for the case of a three line bus n = 3 with

A = 3. For a fair comparison of the two models, the capacitances of the standard bus were

set to C, = CL + 2C, and C' = CL + C. The supply voltage Vd and the line-to-ground

capacitance CL have been normalized to one, and it was assumed that C = 0. The upper

numbers correspond to the DSM model and the lower ones to the standard model. There

is difference not only in the average energy, but most importantly in the pattern of energy

consumption. Some transitions are relatively more expensive according to one model than
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[VV;Vf]

-Hrn

Table 2: Normalized transition energy drawn from Vd estimated using the DSM (A =

3)(upper) and the standard (lower) model

the other one. These large differences are due to the interaction between the lines that is

captured only by the DSM model. To illustrate this, let i be an intermediate line of the bus.

Replacing C' by C" in (16) we get:

Ei= VfeC ta(Vf -VI)

= V<[-A, 1 + 2A,-A] V -fV CL (26)

Depending on the values of , V_1, Li, VJ, XVj, 1Q4, XV, the energy Ej can take the values:

-2A, -A, 0, A, 2A, 1, 1 + A, 1 + 2A, 1+ 3A or 1+ 4A (times VCL). On the contrary, for

the standard model it is, Ei = Vi§Cs(V - Vi) which gives the possible values, 0 and 1+ 2A

(times VCL). Figure 9 shows the histograms of the energies calculated with the standard

and DSM models for the cases of n = 3 and n = 8 and with A = 3.
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000 0 4 7 5 4 8 5 3

0 4 7 11 4 8 11 15

001 0 0 10 4 4 4 8 2

0 0 7 7 4 4 11 11

010 0 7 0 1 7 14 1 2

0 4 0 4 4 8 4 8

011 0 3 3 0 7 10 4 1

100 0 4 10 8 0 4 4 2

0 4 7 11 0 4 7 11

101 0 0 13 7 0 0 7 1

0 0 7 7 0 0 7 7

110 0 7 3 4 3 10 0 1

0 4 0 4 0 4 0 4

0 3 6 3 3 6 3 0

0 0 0 0 0 0 0 0

E 00001 001 010 Oi 100 101 110 ill
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Figure 9: Energy histograms based on the standard and DSM (A = 3)energy models

7 Energy Distribution and Statistical Energy Behavior

of Deep Sub-Micron Buses

The purpose of this section is twofold. First the energy formula (22) is utilized to reveal

how the energy drawn from Vd is distributed in a bus, i.e. how much energy is (re)stored in

the capacitors and how much is dissipated on the resistors. Second, the statistical average

energy consumption of the bus is evaluated when the bus is driven by sequences of random

data. This is done with the definition of the transition activity matrix, a generalization of

the transition activities of individual lines.
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7.1 Distribution of the Energy Drawn from Vdd

Let V1, V2 , - - - , Vn be the voltages along the lines. The energy E, stored in all the capacitances

in the drivers, bus and receivers can be calculated using the lumped bus model of Figure 4.

It is

Ec= ziiV4+ zai (V K2

i=1 i<

or in vector form (using Equation (20)),

ECi= -VTCV (27)

where V"= [V, V2 , - V-T.

In the beginning of the transition, t = 0, the lines have their initial voltages, V =

[Vi, Vi, - -- , 1iT and so the stored energy is

E-= -(V)CtV (28)
2

At the end of the transition period, t = T, the lines have their final voltages V -

[1r, Vf - , V/7] and so the stored energy is

Ef -- !(Vf)TCtVf(29)
c3=2

The difference of the two values, AEc = Ej -- E, is the energy transferred from the power

supply to the capacitors. Through energy conservation

E = E + AEc (30)

where E, is the energy dissipated in the drivers and the distributed resistance of the lines.

From (22),(28),(29) and (30) we have

E,= E-A-Ec = E - (E> -E)
* 1 !(Vi)TCtVi

Vf)T C(V -- V) -(Vf)TCt Vf + 2 C

= $(Vf)TCtVf + 1 (vi)Tctvi - (Vf)TCtVi (31)
2 2

The matrix C' is symmetric and so the following identity holds,

1 .1
(Vf)TCtVi = -(Vf)TCtVi + -(Vi)TCtVJ

2 2
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Therefore from (31), the dissipated energy (transformed into heat) is,

1
Er = - -(V -Vi)TCt(Vf - Vi) (32)

2

The right side of Equation (32) is a positive definite quadratic form since Ctis a positive

definite matrix (assuming no ch is zero). It is also a generalization of the classic expression

E = cv 2 /2 and can replace (22) when long term average energy has to be estimated. To see

this suppose the bus is driven by a finite sequence of data corresponding to the sequence

of voltage vectors V(0), V(1), ..-. , V(m). There are m transitions and by (22) the average

energy drawn from Vdd per transition is:

E M ± V T(k)C' (V(k) - V(k - 1)) (33)
k=1

From (32) the average energy dissipated on the resistors per transition is:

1 ft (V(k) -- V(k - 1))T TC (V(k) - V(k - 1))
ET = M-2(34)

k=1

By expanding (33) and (34) we get

VT(O)CtV(O) -VT(m)CtV(m)
Er = E+ 2(35)

and so E and E, become asymptotically equal as m -> oc.

7.2 Expected Energy - The Transition Activity Matrix

The standard model has given rise to the transition activities of the lines. Let l(1), li(2),

be a sequence of bits transmitted through the ith line. For the kt" transition we have,

V'(k) = Vddli(k) and V/7(k) = Vddli(k + 1). Then, according to the standard model (Figure

7 with C = = 0), the energy drawn from the power supply by the driver of the ithline

is

Ei(k) = li(k + 1) [4j(k +1) - 4(k)] V2,d)CL (36)

If the random data sequence {(k)}k is stationary with the wide sense, its autocorrelation

function is defined as,

R(r) = E [i(k)4i(k + r)] (37)
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where E stands for expectation. Then, the expected energy per transition drawn by the it"

driver can be expressed as,

E [Ei(k)] [Ri(0) - Ri(1)] VCL (38)

The factor,

ai= Ri(0) - Ri(1) (39)

is called the transition activity of the ith line. So,

E [Ei(k)] = aVj CL (40)

According to the standard model (Figure 7 with C = CF = 0), the expected energy per

cycle drawn by the whole bus is

E [Ei(k)] = ai VIJC L (41)

In the standard model, the energy drawn by a line is independent of the data transmitted

on the other lines. This is not true for the DSM bus model. Transition activity on a line

influences the adjacent lines as well.

Again, let {l(k)}k, be the random bit sequences on the lines i= 1, 2... , n respectively.

Here we assume the sequences are jointly wide sense stationary. Let

R (r) = E [li(k)l (k + r)] (42)

be the cross-correlation of the sequences i and j. We can define the sequence of random

vectors L(k) = [11(k), 12 (k), - - , 1(k)]f and its autocorrelation matrix,

R(r) = [Rij(r)]"> 1 = S [L(k)LT(k + r)] (43)

The voltages of the lines follow their binary values, V(k) = VdL(k). For the kt transition

we have that,

E(k) = VT(k + 1)C t[V(k + 1) - V(k)]

= tr {VT (k +1i)Ct[V(k + 1) - V(k)]}

= trf{Ct [V(k+1)VT (k +1) -V(k)VT (k +1)]}, (44)
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where tr(X) is the trace of matrix X. In (44) we used the identity [31],

tr(XY) = tr(YX) (45)

From Equations (43) and (44) we get,

9 [E(k)] = Vdtr {Ct [R(O) - R(1)]} (46)

The similarity between (41) and (46) becomes clear if we rewrite (41) as

E [E(k)] =VI% tr {I- Ct [R(O) - R(1)] }

where I is the identity matrix. Identity (45) along with the symmetry of C' and the fact

that tr(A) = tr(AT) imply that,

tr {CtR(1)} = tr {RT(1) (Ct)T = tr {CtRT(1)} (47)

Equation (47) allows us to write (46) in the following symmetric form

E [E(k)] = Vd tr Ct R(o) - R(1) +R T (1) (48)

We define the transition activity matrix A as

A = R(0) - (1)±RT()(49)
2

the elements of which are

aj= Rj(O) - [R1(1) + R,(1)] /2

= S[li(k)l(k)] -S [4j(k)1 5(k + 1) +l1(k)li(k + 1)] (50)
2

The transition activity matrix A is symmetric by its definition. This was because both the

cross-activities ai 1 and ajj express the interaction between the lines i and j. The transition

activity matrix is also positive definite [31] (for non degenerate statistics). To see this, we

use the stationarity of {L(k)}k to write A as

A = s [(L(k +1) - L(k)) (L(k +1) - L(k))T]
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The definition of the transition activity matrix is in agreement with the standard definition

of transition activities of the lines. From (39) and (50) it is, ai = a . Finally, expression

(48) is written as

. [E(k)] = V tr {C t A} (51)

A simpler form for the expected energy can be found if we replace C' in (51) by its approx-

imation Ct". In this case we have,

S [E(k)] V4,tr {C taA}
n-1 n-1

(k + A + ()(a 1,1 + an,n) + (1 + 2A) Z ai - 2AEai+i} V]JCL.
i=2 i=1

The above expression can be further simplified if we make the approximation A,

S[E(k)] = i(+ 2A) al - 2A a },i VYCL

7.3 Example: Uniformly Distributed, ID Data

A common assumption in energy estimation is that the data sequences are sequences of

specially and temporally independent random bits with uniform distribution. In other words,

that the random bits 1(1), 12(1), ,In(1), 11(2), 12(2), .. ,(2), ... are independent random

variables s.t. P (l(k) = 0) = Pr(l(k)= 1) = 1/2 for all i and k. Then,

E8[li (k)l (k r)]={1/2 if i =y and r = 0

1/4 otherwise

The transition activity matrix is A = 4 and the expected energy is

SE(k)]=-+n 1 A +-VCL (52)
4 2 2

8 Conclusions

A DSM bus energy model has been introduced and studied. Closed form expressions for the

transition energy of this model have been derived. The deterministic and statistical energy

behavior of the DSM model have been discussed and compared to that of the simplistic

standard bus model. The transition activity matrix has been introduced as a generalization

of the transition activities of the lines.
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9 Appendix A

To prove equation (16) we start by replacing (14) into (15),

EiT = j(ott)+C)}t

=, V- i0fTvC 0  d t
Iz, ~~I 0a a

i (0,t)dt+ V C (Vi - (53)

Now we evaluate the time integral of 1i(0, t) using equation (1). Integration of both sides of

(1) on x over [0, Lp] gives:

1(0, t) = I(Lp, t) + C(x) tV(X, t) dx (54)

From Figure 3, i(Lp, t) = Ct't, or written in vector form, I(Lp, t) = Cr8V(Lp,t). By

replacing the last one into (54) and integrating over the time period we get

TI(0,t) = TC,&V(Lt) dt+ fT C(x) Vjt)dx dt

= Cr(Vf -- Vi)+ /(LPC(x) av(x, t) dx dt (55)

The matrix function C(x) av(t,t) is Lebesgue integrable [30] within [0, Lp] x [0, T]. This allows

the use of Fubini's theorem [30] and the change of the integration order in the double integral

of (55). It is:

jT(fLPC(x)av(,t)dx) dt = jL(TC(x)V V(xt)dt dx
LP T &V (x, t) dt d

o 0(x) ( jOt )d

= j C(x)(Vf - V')dx
0LP

-(LC(x)dx) (V t - UV) (56)

Expressions (55) and (56) give,

TI(0,t)dt = CT + j C(x)dx] (VI -V ) (57)
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Since it is I(0, t) = e[I(0, t), where ej has a one in the ith position and zero everywhere else,

and since Cd is diagonal, Equations (53) and (57) imply that,

E = JT I(Ot)dt +v|Cd(v -V|)
0I

= Vef Cr+ jLC(x)dxl (V -Vi) +VfCd(V - Vi)

= WeT [Cd + Cr+ 1 LPC(x)dxl (V -V0)
0

We have set C'fP= + r+ j C(x)dx and therefore it is,

Ei =VfeC(Vf - Vi) (58)

10 Appendix B

Here we show that for any transition of the bus, the total energy E = = fE is nonnegative.

Matrix C', whose elements are given by (20) can written as

1

= C2,2  0T e +jT+ee
C = ,20 *+ (ee[ - eeT - ese[ ± eye4 ) a ,1.0 I.

Starting from Equation (22) and using the above expression, the transition energy is written

as:

E = Vf Ct(Vf - V')

= i |(V|f - Vi) i,i + Vf(V| -- Vi)+ W(W| - 0V V (W -0V3 V(Vf- V7,,)

ii<j

= > Vj(V/ - vja ,V -+ (V/ -Vf [wi - ) - (Vi - Vi a)]
i=l i<j

It is easy to verify that V(V - V) >0 and (V -V) [(Vf--V) - (V - Vi)] >0 for

all values of V and Vf. Therefore E> 0.
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Chapter 3

Power Reduction Using Coding,

The Fundamental

Information Theoretic Limits

1 Introduction

We consider a computation device, D, that can be modelled as a finite state machine with an

internal state St, an input It and an output Ot at time t = 1, 2, 3,.. .. For practical reasons

we can assume that St, It and Ot are vectors of bits. Given a sequence of input vectors

11, 12, .. ., T and an initial state So, the device has some computation cost (such as time,

energy, aging etc.) at each time t = 1, 2,..., T. We assume that the cost of computation is

known as a function of the input sequence and the initial state.

In the above example the input can be regarded as "uncoded", in the sense that all input

sequences of vectors are possible. Suppose now that we can expand the device by adding

redundancy in the input port, the internal states and the output port. This would result to

a new device D' that may have higher operating cost. The fundamental question is: Can we

encode the input and decode the output sequences of the new device D' so that it behaves

like the original device D while operating at a cost lower than that of D ?
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Naturally, the existence of such a coding scheme implies that the original input and

output sequences can be mapped injectively into low cost sequences of the new device.

Note that this general framework of computation devices accounts for communication

models as well. In this case the device reproduces the input to its output. In the classical

information theory, the cost is always the probability of error, and coding is applied to reduce

it. This scenario has a well established history.

On-chip (or inter-chip) communication, through channels called buses, is another com-

munication paradigm where the major cost is the energy consumption. In this Chapter we

use the energy model of the buses that have been studied extensively in Chapter 2 in order

to illustrate our theory. This approach allows for a natural introduction of the concepts

and a smooth development of the results. The theory applies to any combinational circuit

as well and can be expanded directly to include any computation device modelled as a finite

state machine with cost. The most general case though, requires an enormous amount of

technicalities.

In the case of buses we also refer to the input vector at time t as the state. It is convenient

to use both names input and state for one object, the vector that is transmitted. The reason is

that although the bus does not have memory as a computation device (unlike a general finite

state machine), it does have memory (and so state) when it comes to energy consumption.

We write St for input vector of the bus at time t, where St = (sI, s , s%. 3 . , s ) and

S, ... , s are the bits transmitted through lines 1, 2,..., n respectively at time t. Although

the bits take the values 0 or 1, they will in some cases be treated as real and not as binary

numbers. The energy cost of the transition from state St to state St+1 is given by (see

Chapter 2 or Ref. [19])

S(St -> St+,) = Eo (St+ - St)3(St+1 - St)' (1)
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where V' is the transpose of vector V and

1+2A -A 0 0 --- 0 0 0

-A 1+2A -A 0 --- 0 0 0

0 -A 1+ 2A -A 0 --- 0 0

B3= . . .. (2)

0 0 0 0 -I-A1+2A -A

0 0 0 0 ... 0 -A 1+2A

The parameter A is non-negative and depends on the physical properties of the lines such

as geometry, size and distances between them as well as the type of technology used to

manufacture the bus. The constant EO also depends on the technology and the physical

design of the bus. For the obsolete Long Channel (LC) technologies, A is practically zero,

and B reduces to a scalar matrix. For modern Deep Sub-micron technologies (DSM) A can be

as high as 8 (for example in 0.13gm technologies). The total energy dissipation corresponding

to a sequence Si, S2, S3,. .. , Sr is given by Z[- 1 E(St -> St+). We can also consider the

transition to Si from the initial state So that has cost equal to S(SO -> Si). Based on the

above discussion, we can restate our coding problem for the case of buses.

The Coding Problem for Buses: Is it possible to reduce the expected energy per transmitted

bit by adding more lines in the bus? If so, what are the achievable limits and the affiliated

coding schemes?

The key element here is that we add extra lines in the bus while the data stream trans-

mitted remains unchanged. By doing this we pay an extra area cost on the microchip, but

we also get a communication channel of higher capacity. Therefore the question stated above

can be reformed as : what is the relation between additional capacity on the channel and

energy reduction ?

Note that redundancy of the channel's (bus) capacity can result not only by bus expansion

but also by data rate reduction. From an application point of view, this is a completely

different problem. From a theoretical point of view, the question is exactly the same as

before: what is the best relation between the rate information being transmitted and the

rate energy being consumed?
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There are some places in microprocessor architecture, where redundancy exists because

of highly "temporally" or/end "spatially" correlated data. A particular example is address

buses where the amount of information transmitted each time is less than a bit while the

size of the bus may be 8, 16 or 32. In such cases, from an information theoretic perspective,

there is a tremendous amount of intrinsic redundancy that can be exploited to reduce energy

consumption. How much energy reduction is possible?

Note that when A 0 the cost function of the general bus with n lines decomposes into

the sum __(s _ - S)2. This means that a bus with n lines imposes a relation between

energy and bit rate identical to that of a bus with only one line. This relation has been

studied in [12]. Related work involving theoretical and practical aspects of the problem of

estimating energy consumption and coding design for energy reduction when A = 0 has been

presented in [2, 5,11, 13, 16, 17, 18,715, 6, 14, 20, 21, 22].

In the case of DSM technologies (A> 0), unlike the case of LC technologies (A = 0), the

above cost function includes terms depending on the relation between bit values transmitted

on different lines. This makes the treatment of the above coding problem in the DSM case

a challenging task. The problem is addressed in the present chapter.

In Section 2, we consider the above coding problem. Using a differential coding scheme

where the codewords are carefully chosen to have low Hamming weights with high proba-

bilities, we compute a general upper-bound on the minimum possible average energy con-

sumption in a DSM bus. When A = 0, our bound is given by an explicit simple formula and

coincides with that of [12]. In this section we also define the expected energy consumption

per bit and the utilization of the bus by a stationary process.

In Section 3, we provide a non-constructive coding scheme based on the typical sequences

of certain ergodic stationary Markov processes. These schemes lead to more powerful ex-

istence results and higher reductions than those of Section 2. In contrast, it is harder to

compute these reductions numerically, except for small numbers of lines. These improve-

ments motivate us to consider the category of stationary processes whose states correspond

to the states of the bus.

We prove that for every stationary process there is a stationary ergodic Markov process of

the same entropy rate (bus utilization) and less or equal energy per bit. As a consequence,
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it is shown that the minimum possible energy per bit at a given utilization of the bus is

asymptotically achievable using a code whose codewords are (finite) typical sequences of an

ergodic Markov process.

In Section 4, we study the properties of the minimum energy per bit as a function of the

bus utilization and establish its continuity. We formulate the computation of this function

as a convex numerical optimization problem with a unique answer and give an explicit form

for general cost functions using standard optimization techniques.

Conclusions and final remarks are given in Section 6.

2 The Entropy Bound on Achievable Energy Reduc-

tions

In this section, we consider the bus model described in the previous section. Recall that the

energy cost S(St -> S±t+) of the transition St -> St+j is given by expression (1) where the

n x n matrix B is given by (2). The constant EO depends on the technology, and n is equal to

the number of lines in the bus [19]. For convenience we set Eo = 1 throughout this chapter.

Finally, recall that the total energy required to transmit a sequence c = (Si, S2, S3,.. , SL)

is:
L-1

E(c) = ZE(st -> St+) (3)
t=0

where St is the input vector (and state) of the bus at t > 1 and So is the initial state of the

bus at t= 0.

Let 9 = {0, 1}' be the set of all binary vectors of length n. For all t, the state (and

input) St of the bus at time t is in Q. For any S E Q, let w(S) denote the Hamming

weight of S. We will also use the notation of S D U for the binary sum of any two vectors

S, U E Q. Recall that in the calculation of the transition energy E(St -> St+) through the

use of expression (1) we regard St and St+1 as real and not binary vectors.

In order to establish achievable upper-bounds on minimum possible average energy con-

sumed per transmitted bit, we first have to establish some technical results. We start with

the following fundamental Definitions and Lemma.
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Definition 2.1 We define a code C of length L as a set of sequences c of L successive

bus input vectors U 1, a2 ,... , -L where uo E Q. The probability that the codeword c E C is

transmitted is denoted by Pr(c).

Definition 2.2 The entropy per use of the bus of a code C is defined as,

R (C) :=-IE Pr(c) log Pr(c) (4)

CEC

where log is the binary logarithm. The definition extends to the uncoded case where L =1

and C is the set of all vectors in Q, each transmitted with probability 1/2'.

Transmitting a codeword means that we transmit a certain sequence of L successive

elements of {0, }' through the bus, so we use the bus L times.

Definition 2.3 The expected energy consumption per use of the bus, when applying the code

C, is defined as

Sav(C) = Pr(c)SF(c) + Pr(c) Pr(c')E(OrL-0 c1) (5)
L ~L

CeEC cc' EC

where UL and a'1 are the last and first entries (vectors) of the codewords c and c' respectively,

Note that the second term is due to the energy loss on the transition between the last

state of c and the first state of c'. We also agree that the energy of codewords with only

one entry is zero, that is, E(a) = 0 for every a E Q. So for codes of length one, L = 1, the

expected energy per use of the bus becomes, E,(C) = ZQWEC Pr(c-) Pr(w)8(a -+ w).

In the analysis that follows we are mostly interested in the case where the length of

the code becomes arbitrarily large. In this case the second term becomes zero and can be

ignored. In particular, if we set 8 max = maxc,w 9 F( - cv), there exists a constant e(C)

such that e(C) <_ Emax and

1 e(C)
Sav(C) = Pr(c)(c) + L (6)

CEC

Note also that on average, we transmit H(C) information bits per L bus uses. If no code

was used, with L uses of the bus we can transmit nL information bits. A definition follows

naturally.
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Definition 2.4 We define the utilization, a, of the bus by the code C to be the ratio of the

expected number of information bits transmitted per use of the bus over the number of actual

bits transmitted per use of the bus. It is

0 H(C)IL(7a = (7)
n

Furthermore, we define the expected energy consumption per information bit transmitted

through the bus, when using code C, as

E4(C) - v"(C) (8)
H(C)/L

In general we use the term utilization of the bus to denote the ratio of a given information

rate (expected number of bits transmitted per bus use) over the number of lines n of the

bus.

The expression (8) equals the ratio of the expected energy cost per bus use over the

expected number of information bits transmitted per bus use.

In the case of the uncoded bus, the input vectors are uniformly distributed in the set

Q = {0, 1f and so the individual bits transmitted are independent random variables with

probability 1/2. It can be verified directly using expression (1), with Eo = 1, that the

expected energy per use of the bus (per transition) is:

(St -+ S±t) = n (1 + 2A) (9)2

Throughout the chapter, overline will denote expectation with respect to all random

variables involved in the expression.

Definition 2.5 The expected energy per information bit in the case of the uncoded bus will

be denoted by E, that is:

EU = ( 2)(10)
2

Lemma 2.1 Let X denote a random vector in 9 = {0,1} whose components are i.i.d

uniformly distributed in {0, 1}. Let S be a constant vector in Q and let S(X -> S e X)

denote the expected value of the random variable E(X -> S e X). Then

S(X -> SpT X) = 2w(S)E. (11)

where G is the binary addition and w(S) is the Hamming weight of vector S.
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Proof: Let S = (sl,s2,...,sn), X = (xlx2,..., xn) and Y = S2X = (Y1,y2,...,Yn).

According to (1) we have to compute the expectation of S(X -- Y) = (Y - X)B(Y - X)'.

Matrix B being given by (2) results in

n n-1

S(X -> Y) = (1+ 2A) (y-xi)2 - 2A (y -xi)(yi+1 -xi+1) (12)
i=1 i=1

Since we deal with the components of Y - X as real numbers, we have (y - xi) = (-I)i si,

hence (y,_ - X) 2 = si and (y - xi) (yi+i - xi+) 1 = (-1)(i+xi±)sisi+. Replacing them in (12)

we have

n n-i

E(X -> S e X) = 2,, si - 2A Z(-1)(xi+xi+1)sisi+1.

i=1 i=1

The result follows by taking expectations of both sides and using the identity w(S) = Ensi.

D

Definition 2.6 We define a pair (a, /3), where a denotes the utilization of the bus and 3

the expected energy per bit, to be achievable if and only if there exists an infinite sequence of

codes with strictly increasing lengths that utilize the bus arbitrarily close to a number a1 > a

and have expected energy consumption per bit that gets arbitrarily close to a number 01 <; 3.

Definition 2.7 We define the limiting expected energy consumption per bit, E, at utiliza-

tion, a c [0,1], of the bus, to be the function

E(a) = inf {3 The pair (a, 0) is achievable}. (13)

The same symbol, e, has been used for both the limiting expected energy per bit as

well as the expected energy per bit of a given code S(C). The argument will determine

which quantity we refer to. Let Emax maxa,,EQ S(o- -> w), then for any a E [0, 1], the pair

(a, Smax) is always achievable, thus the quantity E4(a) is well defined.

According to its definition, E4(a) is (asymptotically) the minimum possible energy we

have to spend per bit transmitted through the bus, when the information rate is a n bits per

bus use (transition).

Our first result establishes an upper-bound on E4(a).
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Theorem 2.1 Let h- 1 (-) : [0,1] -> [0, 1] denote the inverse of the binary entropy function

h(-) when restricted to the domain [0,f]. Then for any utilization a and for any bus of size

n

Eb(a)<2-1(zE.(14)a

Proof: Let U be an information source of independent vectors U e Q. Let the components

of the vector U = (ui, u2 ,.. . ),un) be i.i.d. with the probability p to be one. Let v = p/(l1-p)

denote the ratio of the expected number of ones to the expected number of zeros, and w(U)

denote the weight w(U) = u. Then the probability distribution of U is

p(U) = pw(U) (1 - P)n-w(U) - vW(U)/(l+ v)n

and so its entropy is:

H(U)VW(10L g v(U)(15)
EQ(1 + V)nl (1 + v)UEQ

(1 v) n V(U) log(1 + V) - EW (U)v/m(U) log V. (16)

EQ UEQ

Since p(U) is a probability distribution, we have

Vw(U+) - (1+ u)

UEQ

and, deriving the above with respect to v,

1: w(U)vu() - nv(1 + v)"- (17)
UEQ

so

R(U) = n (log(1 + v) - IV

Letting p = h-1(a) results to entropy rate, 71(U) = a n. Our coding scheme is described

next.

First the initial state of the bus So is assumed to be uniformly distributed in Q with

i.i.d. components and independent of the outcomes of source U. Let E > 0 be given, then

at each time t, as many as a n - c bits can be mapped in average into outcomes of U. Such
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an encoding scheme exists by the Shannon source coding theorem. Subsequently, if Ut is the

outcome of the source at time I and SI is the state of bus at time t - 1, then we set the

state of bus at time t to be St = S G- Ut.

Because the original state of the bus is uniformly distributed, it can be seen that at each

time t, the state of the bus is also uniformly distributed in Q. This means that we can apply

Lemma 2.1 and observe that the expected energy at time t assuming that input Ut is chosen

is given by

Es S (St -- Se Ut) = 2w(Ut)S, (18)

where the subscript indicates that the expectation is taken over with respect to St. Recall

that p(Ut) = Wu)/(1+ )" and so, taking expectation over S and U in the above gives:

S(St- Ste3Ut) = 2s,,ZW(U)P(u) (19)
uEQ

= 2n~S = 2nh 1 (a) (20)
+v U

where we have used expression (17). Thus the expected energy per bit of the bus, at uti-

lization arbitrarily close to a, is arbitrarily close to 2-
1 

(a) E. This means that the pair

a, 2h (a) E is achievable. We conclude that 86(a) 2-1(a) Sul

The bound of Theorem 2.1 is depicted in Figure 1. The ratio t4(a)/ES is plotted on the

vertical axis. As we can see, we can obtain significant reduction in energy consumption if

we transmit data at a rate less than the maximum.

We next show that when the number of lines n is large it is in fact possible to achieve the

above limit using uniform input distribution and by using low Hamming weight codewords.

To this end, we recall the following lemma of [8].

Lemma 2.2 Let 0< v <;. Then for any n it is:

[ jnh(v)!nrh(v)

where h(-) is the binary entropy function.

Proof: We refer the reader to Corollary 9, Chapter 10, Section 11 of [8] (page 310). E
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Figure 1: The Entropy Bound

Suppose that 0 < a < 1 is given. Now let v = h-'(ci) and consider the set Q, of all

elements in Q = {0, 1}' having Hamming weight less than or equal to nv. By the above

Lemma, the cardinality |Ql of Q, satisfies :

2nh(v) nhv

V8--v I -v)< |QI < 2nhv

/8nv(1 - v

For large n, it can be observed from the above that log( Q,)/n ~ h(v) = a. The approxi-

mation approaches the exact value as n - oo. We now state a second coding scheme.

Theorem 2.2 The bound of Theorem 2.1 can be approached using a uniform input distri-

bution and differential encoding.

Proof: Let the initial state of the bus So be uniformly distributed in Q. Also, let U be an
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information source producing i.i.d. outcomes that are uniformly distributed in the set Q

that was defined above. The entropy rate of the source is of course log([Q',). Now suppose

that the state of the bus at time t - 1 is S_1. If Ut is the outcome of U at time t we set,

St = St_1 P Ut. Since So is uniformly distributed in Q it can be seen that at each time t the

state of the bus is also uniformly distributed in Q. This means that we can apply Lemma

2.1 and so the expected energy at time t is given by :

Est(St -* St D Ut) = 2w(Ut)E., (21)

where the subscript indicates that the expectation is taken over with respect to S. Taking

expectation over St and U in the above gives:

L(St - Ste Ut) < 2nvES = 2nh- 1 (a)SE (22)

Note that as n approaches infinity, and because of Lemma 2.2, the entropy rate log( Q ) of

the source U asymptotically becomes equal to an. Thus, as n - oc the utilization approaches

a while the expected energy per bit remains less than or equal to 2nhfa-) -e_ 2h- (a)SE

For A = 0 (the LC case) the bound of Theorem 2.1 was also established by Ramprasad,

Shanbhag and Hajj [13]. Our result though, accounts for A > 0 as well, that is, for the case

of modern technologies where there is energy coupling between different lines of the bus, the

DSM case.

3 Coding Theorems From Stationary Ergodic Processes

The simple bound that was established in the previous section assumed a basic differential

encoding. In that case the state of the bus at each time t depended only on the state at

time t - 1. This introduced the natural question : Is it possible to achieve more energy

reduction using encoders with higher order memory ? We answer the question affirmatively

by presenting an example. The example also motivates a systematic study of the problem.

Moreover, the method developed here applies to other computational models as well.

To proceed it is important to simplify the notation. From now on we will identify the

vector elements (0, 0, . . . ,0), (1, 0,.. .), 0),....,(1,1, . .. , 1) of Q (and states of the bus) with

60

III



the numbers 0, 1,.. , 2' - 1 respectively. In this notation, E(i -+ j) is the energy required

for the transition from state i to state j of the bus.

Theorem 3.1 Let M be a Markov source with the 2 states, 0, 1,... ., 2' -1. Let v > 0 and

suppose that the probability of transition from state i to state j is given by

exp(-vS(i -> j))
Pr(j i) = Z _1  . (23)

Ek=O exp(-vE(i ->k))

Let p(i), i = 0,1,..., 2n -1 and (M) denote the steady state distribution and entropy rate

of M respectively. Then the limiting expected energy per bit, 8
b, at utilization 7H(M)/n of

the bus, satisfies the inequality :

2n(M) ' pj)2log (i1exp(-VS(i -)1
AS( ) -<j 1 - ( M)1(24)

n -V XM

Proof: First note that by definition the Markov process M is irreducible and aperiodic,

therefore, the stationary distribution p(i) exists and is unique. Also note that the transition

energy, expression (1), is symmetric with respect to the starting end ending states, that is,

S(i -> j) = S(j -> i) for all i, j. This allows us to write p(i) explicitly as

E n1exp(-vE(i -> k))
p~i ==_1 _ (25)

p~i) = zU exp(-vS(j -> k)).

In the cases where the energy cost function is not symmetric, p(i) can be computed using

standard methods. We endow the process M with the steady state distribution. The

stationary Markov process M is irreducible, aperiodic and therefore ergodic. By Shannon-

McMillan-Breiman Theorem, for every c-> 0, there exists LO > 0 such that for every L > LO,

there exists a set

T(L)={( ,..., ), i = 1,2,...,T(L)}(26)

of typical sequences, of bus states oj, of length L such that

2L(N(ME) <T(L)l 2L(7("M)c) (27)

and

- log Pr(ai C. of
-(M) -< -lgro<' { < (M)+ +C(28)

L
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for every i = 1,2,...,T(L)1. We take the set of typical sequences T(L) as our bus code,

that is C(L) = T(L), and we choose the elements of C(L) with equal probability. Then the

utilization of the bus using code C(L) is :

1(M) _ c 7(M) c
Ti<T ' < +7-.

(29)

Now, writing Pr(-1,... , ) p(c4)]Ht- 2 Pr(G4 a ot-) and replacing it into (28) we get

that :

log p(o4)
(M) -c + L

L log p (9i
L log Pr(o- | I _i )<; (M ) + c +1 L 1k kML

k=2

Replacing expression (23) into the above inequalities we get :

logp(a)..L 2n-1 2n-1

(M) -1+ L >3v(§-a+ i)log( exp(-VE(j
k=2 j=0 k=O

where we have set, Pi(j)
N',j) and N'(j) is the number of occurrences of state j in the

sequence 4 ,a , . By summing up the above inequalities over i = 1, 2,..4T(L) and

dividing the sum by IT(L) we obtain

IT(L)I

+ (L) <

9T(L)) L-

k=2

1
+T()I

|T(L)| 12 n-I2- I

3'(J)log(>3exp(-vE(j - k)))
i=1 j=O k=0

1 T(L)| log-p(o4)
- (M)|++ (L)Z L

Using Equation (6), the first summand in the middle term of the above inequality can be

written as

IT(L)I(L + 8 ( _ >

L _i= 7(L) \Zk=2 l 'T

where 0 < e(C) Emax. Therefore we have:

1 log p(a',)
L)|= L

Sav (C(L))
e(C)
L
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- k))) (31)

log p(01)
71(M)Hc11)



av (C (L)) - V e(C)± 1 JT(L)I 2n-1 2n-1ay(CL)) ve(C T(L)| S 5k'Qi)log(5 exp(-vS(j - k)))
L=1 i =0 k=0

| T(L)| .gpui

|T(L)| _L

The above result holds for every L > LO. Also S(C(L)) < Emax < c0. Letting L -- +c and by

using strong typicality, [4], we have k'(i) -+ p(j) with probability one. Moreover v(C) - 0.

Thus for sufficiently large L, we have

2"-1 2n-1

H(M) - 2c < vSav(C(L)) + > p(j) log( exp(-vE(j -k))) < j(M) + 2e (32)
j=0 k=O

with probability one. Since c is arbitrary, we can see from the above that an expected

energy consumption arbitrary close to -[N(M) - zl p(j) log(2,I_1 exp(-vE'(j -k)))]

is achievable at utilizations arbitrary close to a = h(M)/n. Thus

, (M)2n - 1p1(J) log(21 exp(-vE(j --+ k)))
=0 k=0

is an achievable pair for every v > 0 since elements of the code-book with arbitrarily small

probability do not affect the energy consumption. 0

The bound of Theorem 3.1 is referred to as the exponential bound throughout this chapter.

We have plotted the results of Theorem 3.1 in Figures 2, 3 and 4 for small values of n and

with the vertical axis labelled by 4S(a)/ES.
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Exponential Bounds for n=2

Entropy Bound

0.9 - Lambda=0
Lambda=1

- Lambda=5
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0 .3 - - .-.-.-

r

0.24

0.2-

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bus Utilization

Figure 2: The Exponential Bound for n = 2 and A = 0, 1, 5. For A 0 the exponential and

entropy bounds coincide.
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Exponential Bounds for n=4
1 .- I-.-.-

Entropy Bound

0.9 - Lambda=
-- Lambda=1

- Lambda=5
0.8-

u
-D 0.4-

E 0.3 -.-
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c 06I.... ... .. ..
_0

0 01 02 03 04 05 06 07 08 09

Bus Utilization

Figure 3: The Exponential Bound for rt = 4 and A= 0,1, 5. For A= 0 the exponential and

entropy bounds coincide.
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Exponential Bounds for n=8

-....- Entropy Bound
-- Lambda=00.9 -- L-b--. ............................................ I.

-.--- Lambda=1
- Lambda=5

a .0 .7 -. . - -...-.. .-. .-.. .- ..-. .-.. . -

0.8

cc

()

0 . 4 - .- ...-- -. ...-..-- -. . ..- -.. . .- --.. . .- ..- - . ...-

a)

0.2-0.

0.1 - -.- -.--.--.-.-.-

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bus Utilization

Figure 4: The Exponential Bound for n = 8 and A = 0, 1, 5. For A = 0 the exponential and

entropy bounds coincide.
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The bound is hard to compute for higher values of n as there are too many states of the

Markov Chain M. This makes the computation of the steady state distribution numerically

difficult for n > 8. For comparison, we also plotted the bound of Theorem 2.1. We see in

figures 2, 3 and 4 that the bound of Theorem 3.1 is always better than the bound of Theorem

2.1 for all the plotted values. Moreover, it is seen in the figures, and it is easy to prove, that

for A = 0, the exponential bound and the entropy bound coincide.

Motivated by the above result, it is natural to ask if we can use other stationary er-

godic processes, invoke the Shannon-McMillan-Breiman (reference [4]) Theorem and obtain

stronger results. This motivates our studies in the next Lemma.

Construction I: Let X denote a stationary ergodic stochastic process whose outcomes are

elements of Q = {0, 1}'. We consider the set XL consisting of sequences (c-1, a 2 ,..-. , a-L-l, 0L)

of L successive outcomes of the stationary ergodic stochastic process X. It is of course

XL C QL. Given 6> 0 we also consider the subset TL(X) of XL that contains all c-typical

sequences. That is, all (11, -2 , . .- , - UL) such that

H(X) - 6 ;< log Pr(o-,J2, . . ,oL-1, U L) X .

These two sets of sequences define respectively two codes X(L) = XL and C(L) = TL of

length L. The codeword (11, U 2 ,..., oL) in each code is chosen with probability equal to

c(L) Pr(ai, a 2 , . - , -). The scalar c(L) is 1 for X(L) and an appropriate normalization

constant for C(L). As L - oc, we know from the Shannon-McMillan-Breiman Theorem

that Pr(TL(X)) -> 1 and c(L) -1. This implies the following Lemma.

Lemma 3.1 Let a stationary ergodic process X be given. As L - o, the expected energy

per bit E(C(L)) of the code C(L) consisting of the E-typical sequences TL(X) becomes equal

to the expected energy per bit S4(X(L)) of the code X(L) containing all length L sequences

O1, 0 2 ,.-, oL-1,7UL of successive outcomes of the stationary stochastic process X. The same

is true for the utilizations of the two codes.

Proof: Let Emax = maxwEzn E(o -* w). As L --+ oo the set of all the codewords in X(L)

that are not in C(L) has an arbitrary small probability 6. This means that they contribute

at most 6 t
max to the expected energy per bus transition. This contribution can be made as
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small as desired. Since c(L) -> 1 as L --+ cc the utilization afforded by C(L) and X(L) get

arbitrary close to each other as L -- > oc. Combining these two observations yields the result.

Definition 3.1 Let X be a stationary (not necessarily ergodic) process in Q. The utilization,

expected energy consumption and the expected energy consumption per bit of process X are

defined respectively as

a = 7(X)/n, (33)

v(X) ZZ Pr(Xi =(, X 2 =w)S(O ->w) (34)
a-EQ WEQ

and

E 4(X)
4(F) = 1(X) (35)

R (X)

The following two definitions are analogous to that based on sequences of codes.

Definition 3.2 We define a pair (a, /), where a denotes the utilization of the bus and /

the expected energy per bit, to be achievable by a class X of stationary processes in Q, if and

only if there exists an infinite sequence of processes X in X (not necessarily distinct) such

that, HJ(Xi) -> a n for some a1 > a and 4b(Xi) ---> 01 for some 01 </.

Definition 3.3 We define the limiting expected energy consumption per bit, 4F, at utilization

a E [0,1] of a class X of stationary processes, to be the function

E4(a, X) = inf {/3 The pair (a, /) is achievable by the class of processes X}. (36)

We are now in the position to prove the following important Theorem.

Theorem 3.2 Let X be a stationary (not necessarily ergodic) process in Q, of utilization

a and expected energy per bit, S4(X). There exists an ergodic Markov process, the typical

sequences of which can form a sequence of codes that achieves the pair (a, E(X)).
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Proof: Let X be a stationary stochastic process with outcomes X1, X 2 , X 3 ,-... at time t =

1, 2, 3, ... respectively and with probability distribution Pr (X, X 2 ,... , X) for k= 1, 2,...

We can assume that Pr(Xi = a) > 0 for every a E Q, otherwise we can remove a from the

set of states of X. Let M be the stationary Markov process with stationary distribution

p(a) = Pr(Xi = a) and transition probabilities Pr(w a ) = Pr(X2 =W IX = a). We first

observe that

'H(X) = lim K(XkI Xk_1, Xk-2,.. . , X 1) (X 2 X 1) = (M). (37)
k-oo

Suppose for the moment that M is an ergodic process. Let Ec> 0 and M(L) be the set of

all c-typical sequences of length L of the process M. We can conclude from an application

of Shannon-McMillan-Breiman that M(L) has at least 2L(^'(M) codewords (for L suffi-

ciently large). Therefore, choosing c sufficiently small, the utilization of the bus by the code

M(L) can be as close to 11(M)/n as desired. Note that 1(M)/n > 1(X)/n. Moreover,

the ergodicity of M along with Lemma 3.1 imply that the expected energy consumption

Sa(M(L)), of the code M(L), approaches the expected energy consumption Eav(M) of the

process M as L -+ oc. By the definition of process M it is also true that Ea(M) = Eav(X)

where

Sav(X) = Pr(X(0) = a, X(1) = w)S(a - +w).

Thus, using typical sequences of the ergodic Markov process M we can construct a family

of codes M(L) with lim inf L,,, H(M(L)) > 11(X) and limL,, a(M(L)) = Sav(X). This

concludes the theorem in the case that process M is ergodic.

It remains to treat the case when the process M is not ergodic. Consider the matrix P

with i, j-th element Pp = Pr(X(2) = j IX(1) = i), that is the transition probability matrix

of the Markov process M. Then we claim that some of the elements of P are zeroes. If

not, P is an irreducible matrix and M is an aperiodic irreducible Markov chain and hence

is ergodic. Consider q to be the row matrix whose i-th element is Pr(X(1) = i). Then,

qP = P and all the elements of q are positive. (This is true because we have assumed that

process X visits all of its states and so process M is irreducible). For every 0 8 < 1, we

set P6 = (1 - 6)P + 6lTq, where 1 is a row matrix with all of its elements being 1. We also

have qP6 = q for every 6 > 0.
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We now consider the Markov source M 6 whose stationary distribution is q and whose

state transition matrix is P6 . For every 6 > 0, the matrix P6 has only positive elements

and thus M 6 is a stationary irreducible ergodic Markov process. By the continuity of the

entropy, the entropy of MA6 can be made arbitrary close to the entropy of M. Because P6

can get as close to P as desired the expected energy consumption for typical sequences of

MA6 approaches that of X. Thus, as 6 - 0, we can get arbitrary close to a superior or at

least equivalent trade-off between energy and utilization than that of the stationary process

X. EZ

The above result motivates us to ask the following question : Given a (utilization, ex-

pected energy consumption per bit) pair, (a, 13), achievable by a sequence of codes (Definition

2.6), is it possible to construct a sequence of codes, using only typical sequences of ergodic

Markov sources, that achieves (a,#0) ?

Our goal is to answer this question affirmatively. To this end, we start by introducing

the following construction that is in some way the inverse of that used before. Here we start

with a given code and construct a stationary process of at least as high utilization and the

same expected energy consumption with that of the code.

Construction II: Let C denote a code of length L and utilization a. We construct a

stationary stochastic process X(C) from C. To this end, we will first construct an interim

stochastic process Y: YI, Y2, Y3.. . by describing the joint distribution of the indexed random

variables Y1, Y2, Y3.

Let YI, Y2 , Y 3 , . .. denote the sequence of random vectors of length L with Y -

(Y(k-1)L+1, Y(k-1)L+2, .. , kLY) for k = 1, 2, . .. We define the random vectors Y1 , Y2 , Y 3 ,...

to be mutually independent and such that for every c E QL it is

Pr(Yk = C) = Pr(c) if c E C

0 otherwise

These define the interim stochastic process Y completely. Now for 1 = 1, 2,... we define a

sequence of distributions (on the random variables X 1, X 2 ,.. .)by letting

1L-I

Pr ((X1i=hi7,X 2 =x2,...XI= x1) --I Pr((YXY 2 i - 2 ,...,Y+i=xI)).

i=O
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Note that the RHS of the expression is a shift-and-average operation. This sequence of

distributions is consistent in the sense that

Pr ((X = (A1,X2 = X2 , X3 = x3,..,.Xi_ = X1 ) =

... : Pr ((X1 = X1, X2 = X2, X3 = X3, .,X =X1))

xIEQ

A Theorem of Kolmogorov (page 21 of [23]) implies the existence of a random process

X (C) : X 1 , X 2, X 3 , ... characterized by the family of the above distributions. Next we prove

that the process X(C) is stationary. To this end, we first observe that the process Y is

cyclo-stationary with period L in the sense that

Pr (Yi, Y2 ,7Y3 ,-. .. ,Y) = Pr(Y1+mL, Y2+mL, Y3+mL,.. .,Yl+mL)

for all l = 1,2,... and m =0,1...If L = 1 then Y = (Yk) for all k = 1,2,... and so

processes Y and X are stationary processes. Suppose now that L > 1 and J > 1 1 > 1 are

given. Then :

Pr(X+j S 4,5.rYXj=xyi)=Pr(Xj=xi,. . .,Xj== xj, Xl+j = yi, . ., X j = yi)
1,,,2,---,j

L-

X iO2,...,Xj i=O
L-1

-LPr(Yai = xi,.., Ya = xj, Yaj = yi, Y2+j4 = Y2, .,Yagi =YI)
i=0 Xl,X2,-..,Xj

L-1

L EPr(Y±.+i = Y1, Y±+ 7 = Ya = y).
i=0

As i runs in the set 0,1, 2... , L - 1, the value i + j mod(L) also runs in the same set.

Combining this observation and the cyclo-stationarity of the process Y, we conclude that

IL -1 IL -1

LiPr (Yai = y1,Y 2+ji - Y2,... ., Yl± 4 i = YI) = L5 Pr(Yai = yi,.. ,Ye+i =y)
i=O i=0

= Pr (X 1 = Yi X 2 = Y2, X 3 = Y3,... , Xe = yO)

Thus the process X(C) is stationary.

Lemma 3.2 The entropy rate H(X(C)) of the random process X(C) is greater than or equal

to the entropy 'H(C) = -- Z1Cec Pr(c) log Pr(c) of the code C.
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Proof: By the definition of the process X(C), it is

Pr(X,X2, . ... , XI) = Pr(Yi+i, Y2+i, ... -I Y+),

i=O

Since the entropy function is concave we can deduce that, for every 1 = 1, 2,..., it is

'H(X1, X2, 7 .,XI) > Y+,I2i -,F~)

i=0

Dividing by I and letting 1 - o we obtain 7(X) > 71(Y). But

H1(Y) im N(Y1 7Y2,.Yk)
k-+oo k

- ur (Y, Y2 ,...,Yk)
k-*oo kL

lm k - ( (r-1)L+1, Y(r-1)L+2, -.-.- ,rL)k k k

r=1

1
-H(Y,Y 2 ... ,YL
L

where we have used the cyclo-stationarity of Y and the independence of the random vectors

Yi, Y2 , Y3 ,. ... By Definition 2.2 it is

H(Yl,...,YL) = H(C).
L

This concludes the proof. H

Lemma 3.3 The expected energy consumption Eav(X) of the process X(C) equals the ex-

pected energy consumption Sav(C) of the code C.

Proof: The energy consumption of a sequence -1, -2 ,... , a1 of elements in Q is, (Definition

3.1),

i-i

(0-1, 0~2, . . ,o ai M 0i+ 1)-

The expected energy consumption of the stationary process X(C) is given by:

Ea(X) S=E(9---> w)

- I. E(ui,o-2 ,...Lo-)

l- oo i -
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where the expectation S(O-, a 2 ,-..., a) is taken with respect to the probability distribution

Pr(XI=a1,...,Xi = a). However,

L-1

Pr(Xi, X 2 ,.. . , X1) = E LPr(Yl+i, Y2+i, . ,+),
i=O

thus

L-1

,(ai2,.,1a) =4E > £(aia 2,...,a)Pr(Yi+j=ai-...-,Y 1+i1= al).
t=Oalt

Now, forZi=0,1,2,...,L -1, we set 1i = L -i+1 andP1' = L[fl -i. We can write

E(O, 2,U..., a1) = S(a-1,a2, .E.(. , a) )+ &(a, , +I, . -.. , O) + 8(ali, a+i, . -. , a)

where we agree that the expected energy of any trivial 1-element sequence is zero, i.e. E(a)

0 for every o £ Q. Then we have

E(a, -+ 1, -. a1 ) < 8(a, a2 , . . . , a) <E(a, i+ 1, . . . , -i) + 3 LEmax. (38)

where Emax = maxaGQ OE(- -- w). We conclude that

L-E

i=O a1 at

(E(a , . .. , a1) + 3 LEmax) Pr(Y+i = o1,.-- , +j -al)
t=O a, ia

< 7(1a,2 ... , aj) Pr(Y,+i = a1 ,...I, Y+i = ai)1 + 3LEmax. (39)
L Y aEt a12  '. .

However,

Pr(Y = aU,.. .Y+ = a-,) = Pr(YL+l = al.. . -. ,YL., = aT)

= Pr ((Y 2 , Y 3 ,...,_Y ) = (Oi,

Since the random vectors Y 2 , Y 3 ,..., Y[±1 are independent, we can write

Pr(Y+i = U. .. ,i Y+i = a-,) =

Pr(Y2 = (a-4, . . . , i+L-1)) - Pr(Y 3 = (Ol,+L, . . . , a7+2L-1)) . .- Pr(Y (-L+l, . . . , a)
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In addition we can write :

(01i,...4, -i) = E(01i,-..., 1+L-1) + S(91+L-1 - 01+L) +

+(c71+L, -- +2L-1) + E(o1i+2L-1 0 +2L) +

+...+ 'E(0-1i-L+1, -.-.- ( li

The expected energy of the code C is by its definition 2.3,

Eav(C) = L > E(01i,... Oi4+L-1) Pr(Y2 = (0 1 ,. -- j+L-1)) +

+LPr(Y2 = (01i,--, 01+L-1))-

.,l--- 2L -1

-Pr (Y 3 = (0oj+L, - - - , O7i+2L-1)) E(01+L-1 - 0 2+L)

Using the cyclo-stationarity of Y and the expressions above, we can arrive at

*710,...,I0-) Pr(Y+i = oi,.. -- ,1+j = -ji) = L (LIJ - £1 av(C) e(

where e(C) is as in Equation (6). Finally, replacing the above into inequality (39), we get

t(o-1,0-2 ,-..,i)<1 - Eav(C)+ 3LEmax. (40)

Similarly we can show the inequality

L(L{] - I a(C) -- Emax<S (g1, 0-2 ,1,) (41)

Combining Inequalities (40) and (41) and dividing by I we have

( L7 -J 1) Sav(C) - 'ax< 2 <;Sav(C) + 3LEmx (42)

Letting 1 -> oo, we arrive at

Eav (C) =4Eav (X) (43)

Theorem 3.3 Suppose that the pair (a, 0), of utilization and expected energy per bit, is

achievable according to definition 2.3. Then, there exists a family of codes, of strictly increas-

ing lengths and constructed from typical sequences of Stationary Markov Ergodic processes,

that achieves (a, 13).
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Proof: By assumption, there exists a sequence of codes C1, C2, C3 ,... of strictly increasing

length which utilize the bus arbitrarily close to a number greater or equal to a and their

expected energy consumptions per bit E4(C), i = 1, 2, ... gets arbitrary close to a number

smaller or equal to 13.

We apply Construction II and get a sequence of stationary processes XiX = (C1 ), i

1, 2 . .. By Lemma 3.2, the value K(Xi)/n is greater or equal to the utilization of bus using

the code C1. By Lemma 3.3, the expected energy consumption Ea(Xi) equals 'Eav(Ci). Thus

as i --+ 0o, E(Xi) approaches a number smaller or equal to E(C). By Theorem 3.2, there

exist stationary ergodic Markov processes Mi, i = 1, 2,... whose typical sequences utilize

the bus at least as well as N(Xi)/n and have expected energy consumption per bit less or

equal to E4(Xi). Combining these observations we conclude the proof. E

Corollary 3.1 For every a C (0,1], the limiting expected energy consumption per bit 4b(a)

equals 4b(a, Me), where Me is the set of all stationary ergodic Markov processes in Q.

Proof: The proof follows from Theorems 3.3, Lemma 3.1 and the definition of e(a). H

We can now prove the following important Theorem.

Theorem 3.4 For every a E (0,1], the limiting expected energy consumption per bit S(a)

equals 4b(a, M), where M is the set of all stationary Markov processes in Q.

Proof: The set of stationary Markov processes, M, has the set of ergodic Markov stationary

processes, Me, as a subset and is a subset of the set of stationary processes.

Thus stationary Markov processes must do at least as well as stationary ergodic Markov

processes and at most as well as stationary processes when considering the trade-off between

utilization and expected energy consumption per bit.

However, we have already proven in Theorem 3.2 that stationary ergodic Markov sources

achieve any trade-off achievable by stationary processes. This means that Stationary Markov

processes provide the same trade-off between utilization and energy consumption as that of

the stationary processes and stationary ergodic Markov processes. We now apply Corollary

3.1. El
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4 Computation of The Function S(a)

Theorem 3.4 provides us with the computational arsenal to compute S(a) by restricting our

attention to the class of stationary ergodic Markov sources. To be able to use this arsenal,

we will need to study the function S(a) in more detail. We start with the following lemma.

Lemma 4.1 For every a E (0, 1] there exists a sequence of codes C1 , C2, C3 ,... whose bus

utilizations tend to a and whose expected energies per bit tend to 4b(a)

Proof: By definition of the limiting expected energy per bit, function s(a), there exists a

sequence of achievable pairs (ai, /
3 ) such that lim infi, a > a and /% - E(a) as i -+ oc.

Since a, i = 1, 2,... belong to a compact set, there exists a subsequence of achievable pairs

(di, ij) such that &i -> d and fh -+ S(a) for some & > a. By an application of a Cantor's

diagonalization argument and the definition of achievable pairs we conclude that there exists

a sequence of codes Ci, C 2, C3 ,... of strictly increasing lengths, whose bus utilizations tend

to & and whose expected energies per bit tend to E(a).

Consider the following zero padding construction: Suppose that a code C of length L,

utilization a and expected energy per bit S(C) is given. Then by expanding its codewords

by 1 zero states of value zero, we obtain a new code C' of length L+ ±1, utilization a- and

energy per bit S(C) with Ll [S(C) - n--] <4E(CI) < Ll1 [4(C) + tz].

By applying this zero padding technique to all the codes in the sequence Cl, C2 , 3 , ,

we can construct a new sequence of codes C1, C2 , C3 ,... whose utilization tends to a and their

energy per bit tends to E(a). 0

Lemma 4.2 The function S(a) is continuous and non-decreasing for 0 < a < 1.

Proof: The non-decreasing property of S6(a) follows directly its definition 2.7. We define

the function

Ea(a) = naS(a),

and claim that it is continuous. To prove the claim, let a1 , a2 C (0, 1] and v e (0, 1)

be given. By the definition of achievability and Lemma 4.1 there exist two sequences of
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codes, C1, C2 , C3 ,... and C*, C*, C*,..., of strictly increasing lengths, whose utilizations tend

to a, and a2 respectively and whose expected energy per bit tend to e4(ai) and E(a 2 )

respectively. This means that E4v(Ci) tends to na 1 4E(a 1 ) =Eda,() and Eav(CQ) tends to

na 2 4(a 2 ) = Eav(a 2 ). We now use time sharing between Ci and Ct with shares of v and

1 - v by first using Ci and then CZ to obtain a code vCJ @ (1 - v)C7. The sequence of codes

vCh @ (1 - v)C* have utilizations that tend to Val ± (1 - V)a 2 and expected energies per bit

E4(vC sE (1 - v)C$) that tend to "Il(aI)(liVf 2 8b(2 2 ). Thus
(va1+(1-V)a2)

E(vai + (1 - v)a2 ) < a 4(a) + (1 - )a 2 4(a 2)

(val + (1 - v)a2 )

This gives the convexity of E, ,(a) = na4S(a). This convexity implies the continuity of

£ave(a) and in turn the continuity of E(a) = Eal) L

For a C (0, 1] let M*(a) denote the set of all stationary Markov processes M whose

states are elements of Q and have entropy rate 'H(M) > an.

Lemma 4.3 For every a E (0, 1] it is :

4(a) MEW cx) (M). (44)

Proof: Theorem 3.4 implies that

E(a) < inf E(M),
MEM*(a)

as the infimum is taken over a smaller set. Now let E6> 0 be given. Applying Theorem 3.4

and the definition of achievability we observe that

inf E(M) E4(a + C).
MEM* (C')

This is true since all stationary Markov processes that are candidates for achieving the pair

(a + 6, 4E(a + e)) must have entropy rate higher than an. Since e> 0 is arbitrary and E(-)

is continuous, we conclude that

inf E(M) E(a),
MEM*(a)

and the Lemma is proven. 0
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Every pair, (P, q), of a 2' x 2' = IQ Ix QI transition matrix P and a lx 2 state probability

row vector q, satisfying qP = q, defines a stationary Markov process M. Conversely, every

stationary Markov process M defines, in the obvious way, a pair, (P, q), of a transition

probability matrix P and a row probability vector q such that qP = q. The expected energy

consumption per bit and the entropy rate of M can be computed using the elements of P

and q.

From now on we will mix the notation by identifying the process M with the pair (P, q).

Moreover, we introduce the notation H1(P, q) for R (M), E,(P, q) for Ea(M) and 4b(P, q)

for E4(M). Note that the function

E4(M) 4E(P7, q) = av(P, q)

R((P, q)

is continuous with respect to the elements of the pair (P, q).

Finally, we can interpret the set M*(a) as the set of all pairs (P, q) with K(P, q) > an.

This leads to the following result.

Lemma 4.4 For every a E (0,1] we have:

4b(a) = min 4(P, q) (45)
(P,q)EM*(a)

Proof: The function E4(P, q) is continuous in the pair (P, q) and the constraints of the

problem define a compact set. We thus conclude that infimum is achieved. H

Now we can state and prove the following Theorem that will be important in the calcu-

lation of the limiting energy per bit.

Theorem 4.1 For every a e (0, 1] it is

Em(a) = min (PIq)(46)
(P,q):'H(P,q)=an an

Proof: To prove the Theorem we will construct a minimizing pair (P, q) for expression (45)

in Lemma 4.4 such that N(P, q) = an. Once this is established, the result follows.

To this end, suppose that (Ps, q,) is a minimizing pair for (45) with 7(P., q) > an. For

O c [0,1] we define the pair

(PO, q,) = (P, q) + (1 O-)(I, q)

= (OP +(1-90)Iq*)
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where I is the 2' x 2" identity matrix. The new pair satisfies the equality qPo = q,. Also,

we have:

Eav(Poq*) = Ev(P+ (1--0)I, q)

= Oav(P*, q) + (1 - 0)Sav(I, q)

= OMav(P*,q*)+0

The concavity of the function H(-, q,) implies that :

H(Po, q*) = 7(OP* + (0I- 0)I, q)

> 07(P*, q,) + (1 -- )7(I, q)

= OH(P,, q) + 0.

Finally,

Eb(P6,q*) Sav(Po, q)
7t(Po, q*)

OSav(P*, q) = E(P, q)
OR£(Pb qq)

Since H(Po, q) = -R(1, q*) = 0, there exists some 0' such that 7(Po6 , q) = an. We conclude

that (Pot, q) is also a minimizing pair of (45) with R(Po0 , q) = an. E

In light of Theorem 4.1, the computation of b(a) has been reduced to a constraint

minimization problem that can be solved using standard numerical methods such as the

application of Lagrange multipliers.

In the following we will prove that for every a E (0, 1) there is a stationary Markov

process that achieves the minimum in the aforementioned problems. We will derive formulas

for the limiting expected energy as a function of the utilization.

Let (P, q) be a pair of a stochastic matrix and its probability eigenvector. The pair defines

the matrix II =[w=7r,] 1with 'rij, = qjPi,. For every i, j the entries rij satisfy the following

relations,

7ri > 0 (47)

7ri = 1 (48)
ij
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and

71ijj = k S(49)

The last equality holds because E 7 ij = E gjPj = qi = E qp ,i -- 7E k,i and can be

written also as E (Tij - spi) = 0. The entropy of the matrix H1is defined as:

( -i log( ) (50)
ij >Ik 7i,k

and of course equals R (P, q). ( We agree that 0 log = 0 and a zero row of matrix H

contributes zero to the entropy). Now, independently of the pair (P, q), we define H to be

the set of all 2n x 2" matrices H satisfying the constraints (47), (48) and (49). We also define

]R+ be the subset of H consisting of only the positive matrices. We have the lemma:

Lemma 4.5 The mapping H -1 P = [, fromUH+ to the subset of positive stochas-

tic matrices, is bijective.

Proof: Suppose that the positive stochastic matrix P is the image of an element H' = [17' pj]i

of ][+. Then, there exists a unique positive vector q' = [q'j] such that w'ijj = q' P 1. It is

straight forward to verify that q'i L= c l:ikE, . To show that the mapping H H P is injective

it suffices to show that there is only one positive vector q for which [qP Jj belongs to 11+.

For vector q, Property (49) implies that,

qi Pij = qPi,k = q (51)
i k

Therefore q must be a positive left eigenvector of P. The matrix P is positive and by Perron's

theorem, q is unique up to a positive factor. The vector q is uniquely defined because of

Property (48) which implies, Lj q = ij qjPjj= 1.

To show the mapping is onto, we start with a positive stochastic matrix P and set

7ij = vPij, where v is the unique (left) probability eigenvector of P. Then it is X ij = 1

and Ek 7 ,i = Ek vkPk,i - vi = E v Pj = E i. Therefore H belongs to 1+.-L

In the following we will write H = (P, q) to denote that Kij = qjPjj. Note that for a
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matrix H E H with a zero row, there is a set of pairs (P, q) such that t = (P, q). All of

these pairs have the same vector q, the entries of which correspond to zero rows of fl, must

be zero.

Lemma 4.6 The set H is convex. The entropy function R is concave in H and strictly

concave in the subset 1+.

Proof: Conditions (47), (48) and (49) directly imply the convexity of the set H. Now let

H' and H 2 be in H and a be a constant such that 0 < a < 1. Set H = alI1 + (1 - a)H 2. The

log-sum inequality states that

a 7rl ( -a) rF .
a7r Y-log (ai + (1 - a)7r2log ( air% >

v'Zk / (I- a)Ekwk/

a 7r + ( -a) 7r2> (a F1 +( \ (-aa)7r2+)log-

with equality if and only if
a 7r (1 - a)r7r2

a k 7r k- (1-a)Zkwi k
Therefore we have:

() = - ( (-g a7r + (1 -a)r
( a~r', + a l~ k 4 , + (1 - a ) E k 7i,

>-aZ w log( -(1-- a) >: rr2log(zt )

= aN(FJ) + (1 - a)N(H2)

and so -(H) > all(H') + (1--a)N(H2 ). Suppose now that H' and H2 have positive elements,

and therefore belong to H+. In this case, the equality above holds if and only if P = P2

where P' i [Zj and r = 1,2. Applying Lemma 4.5 we conclude that H(H)

aN(H') + (1 - a)N(J12 ) if and only if f1' = fl2 .H

The expected energy and expected energy per bit corresponding to the elements of the

set H are defined analogously to those of previous sections. This is done by letting, Ea,(r) =

>Q, re~S(i - j) and E(H) -- Ea()/H1(H). Note also that if (P, q) = H then 9,(P, q) =

E.,(H) and E(P, q) = 4S(H). It is straight-forward to verify that

E4(a) min E(H) (52)
Hf-t,7(H)>an
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If (P, q) is an optimal point for E4(a) = min(,q)EM* (a) b(P, q) then the minimizing H in

(52) is achieved by H = [qPj]jj- Conversely, if H E H achieves the minimum in (52) and

(P, q) = H then (P, q) is the minimizing of E(a) = min(P,q)EM* (a) 4b(P, q).

Lemma 4.7 Every solution H of E4(a) = minEHc1-L,7-(r)>an b(H) belongs to f+.

Proof: Let H be a solution of (52). We show first that if for some state k , it is E 7
kJ > 0,

then it must be lFk,j > 0 for all j. Suppose that this is not the case and let r be such that

7k,r = 0. For 6 E (0, 1) we set H6 = (1- 26)H +Jeke + 6eeT where e is the vector with one

in the i-th coordinate and zeros everywhere else. It is easy to verify that , Hs c H for every

6. If 7T 6 denotes the i, j element of H6 , then N(Hs) = -- L i7r log (j t ). For every i, j

we have:

7r. log ( 5 t)

((1 - 26)ji, + 6 (6 i,k6 j,r + i,r 6 j,k)
.. = [(1 - 2 6 )jry + 6 (ikj,r + i,ri,k)] - log (1 - 26) E i,v + 6 (6i, + 6i,r)

where 6 ij is 1 if i = j and zero otherwise. From the above expression we can conclude that

for every i,j it is

7Fw$ log (L 't) riy log( + ci, 6 log 6 +0(6)

with cj being a non-negative constant (it is c = 0, 1 or 2). Now, according to our assump-

tions it is 7k,r= 0 while Ej 7Trw > 0. This implies that

kr. log ( '; = 0 + Ck,r 6log 6+ 0(6)

with Ck,r = 2 or Ck,r = 1 depending on whether k = r or not. We conclude that there exists

a positive constant c ;> 1 such that for sufficiently small 6 it is,

H (H6) = H((H) - c6log 6 + 0(6)

Also, because Sav(H) depends linearly on H, there is a constant c2 such that,

Sav( 6 ) = av (H)+ C2 6
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Note that R(R) is positive since R(R) > an. Also, 8a,(f) is positive since the transition

energy E(o- -+ w) is zero only when a =L. Therefore, setting C3 = C2/ave(H) and C4 =

ci/R() > 0 we have,

Fav(xJ6s) Sav (H) 1+0C36

H(T1s) 'H(11) 1 - c461og6+O(6)

with C4 > 0. This means that there exists an arbitrary small 6 for which E(s) < Eb() and

H((H6) >1(1) = an. A contradiction ! Note that a state k with E> jk,J > 0 always exists.

Hence there exists a row of U with only positive entries. This means that all column-sums

of 1- are positive and because of property (49), all row-sums are positive as well. Using the

argument above we conclude that R is a positive matrix. D

The above lemmas lead to the following theorem.

Theorem 4.2 Problem (52) has a unique solution U. The solution is positive, HI E ][+ and

with R(H) = an. For no a C (0,1) the solution equals the matrix £2 =22n

Proof: From Lemma 4.7 we know that every solution of Problem (52) is positive. Linear-

ity of the expected energy function Fa,(I) and strict concavity of 71(U) in fl+ imply the

uniqueness of the solution. The same properties also imply that 1(H) = an. This can be

shown in a way similar to that of Theorem 4.1. Finally it is H(Q) = n which gives H $ Q

since an < n . ]

The theorem has the following immediate consequences.

Corollary 4.1 The minimizing pair (P, q) in (45) (exists and) is unique. Furthermore, the

transition probability matrix P and the probability eigenvector q are positive.

Corollary 4.2 The Problem (53) below has a unique solution. Its solution is positive and

identical to that of Problem (52).

1
E4(a) = min -av-(J). (53)

nEn,-(n)=an na
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Lemma 4.8 The (unique) solution of Problems (52) and (53) is a regular point of the set of

(active) constraints of problem (53), which are :Z wEi,= 1 , 13,4 w = >k lk,i for every

i and H((f) = an.

Proof: The gradients of the constraints are given in matrix form below,

1 -1 1 ---
B ( E= i

.k,r

0 -.. 0 -1 0 -.- 0

(-0---- 0 - 1 0 . - 0

Ai -rkI ... 1 0 1 .-- 1A, = a~z~ ~ ]krkKr

J k,r 0 . . . 0 __1 0 .. 0

0 ... 0 -1 0-.- 0

where the nonzero elements of matrices Ai are in the i-th row and the i-th column. And

finally,

F (H) 1( k,r

[Ok,r kr - [log Vk,v -Ik,r

The set {Aj}j is linearly independent and B is orthogonal to every A under the inner

product < X, Y >= tr(X Y'). We conclude that any non trivial linear dependence between

the matrices A3, B and C can be written as C = bB + Ek rkAk. Element-wise this is

equivalent to cij = b + ri - rj or Pij = exp (b + ri - ri), with P [z.41 Since for

every state i it is Zj P=y =1 we conclude that ri = r1 for all i, j and therefore P =

This implies H = [-L]i,j = Q as the only irregular point of the constraints. The proof follows

from an application of Theorem 4.2. H

The fact that the optimal H satisfies 71(H) = an and H c- I+ combined with the smoothness

of the constraints within 1I+ gives the following result:
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Corollary 4.3 The solution of Problem (53) is a stationary point of its Lagrangian

L = vE7rij+ZAi(7ri, -- i) 7rw,- 7isln(9d) +1 rij (i-j) (54)
j ij ij (ikJ k ij

Proof: From Lemma 4.8, the solution H of the problem is a regular point of its constraints.

Therefore there exists a set of real numbers v, Ai, A for which O = 0 for all i, j. (Proposition

3.1.1, page 255 of [3]). E

Lemma 4.9 Every stationary point H of the Lagrangian L in the subset fl+ is of the form,

= [z2~je42271k-)](55)

where g = (go,91, g2n-1)' is the unique (up to a constant) positive eigenvector of the

matrix W(,) = [e- |( ')] ~ and -y is a real number.

Proof: The partial derivative of the Lagrangian with respect to the variable 7ru is:

OC = v + Ai - A5 - p ln +S(i --+j) (56)
(97rij ( , i,k

We are interested in the solutions of the set of equations tc 0 , i.e.

(7+)A-Aj - pLn n-S(i --+3j)=0 (57)

First we examine the case p = 0 and show that it is not feasible. Suppose that p = 0. Then

Equations (57) imply that : &(i -- J) = -v - Ai + A5 for every i, j. Since the energy cost

function, Equation (1) is symmetric, that is S(i -> j) = S(j - i), we must have Ai = A

for every i, j. Therefore, £(i -> A) = -v, i.e. the cost function is constant. But this is

impossible since from Equation (1) we have that E(i -> i) = 0 and E(i -j) # 0 for every

i $ j (matrix B given by expression (2) is positive definite). Therefore p $ 0, and the system

of Equations (57) imply that :

=e V±Ai-Aj+Ei) (58)
YRk 7ri,k e A(8
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Since all the parameters v, A and a are real we can do the transformation f=e/
gi = e-i/4 and 'y -1/p, and have f > 0 and gi > 0 for every i. Then, expression (58)

becomes

= f 2 ±-7& ) (59)
LkFi,k g

Summing over j we get gi f E e-7S-)g or written in matrix form, g = fWg

with g = (go, 91, . . . , 92n-1)' and W = [e-78-(i )1. The matrix f W is always positive and

therefore g must be its unique (up to a factor) positive eigenvector (Theorem 4.4, page 16 of

[10]). To this end f must be the inverse of the maximal eigenvalue Amax of W. Recall that

the energy cost function is symmetric, i.e. S(i -+ j) = E(S -+ i) for every i, j. Therefore we

also have that g' f g'W or more explicitly

g=f giCe-Y(J)(60)

We define the probability vector, q = (ga" 92 , 92n<)/ M 2 and using Equation (60) we

show that it is a left eigenvector of P,

>qPj = >1 I2g
Igi

2

Applying Lemma 4.5 we get that U = (F, q). This means that every stationary point U of

the Lagrangian must have entries Wrjj of the form,

rg i gj fe-Yo~-j).9 9j

This concludes the proof of the theorem. H

Note that for every 7 the matrix W is positive and so it has a unique positive maximal

eigenvalue. The matrix W is also analytic in 'y. Therefore its eigenvalue and the correspond-

ing normalized eigenvector are both analytic functions of -y (Theorem 1, page 396 of [7]).

Even more, the stationary point U of the Lagrangian, parameterized on -y, approaches the

identity matrix as-y approaches +oc. This is because only transitions from every state to
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itself have zero cost. Also, H approaches Q as y approaches zero. We conclude that for every

a E (0, 1) there exists a -y that solves the equation H(H) = an. It can be shown, although it

is very involved, that for every a E (0, 1), there exists a unique y for which the corresponding

I is the solution of the Problem (53). This -y is non-negative. In addition, (1) is strictly

decreasing function of 7 for -y> 0.

Theorem 4.3 For every a E (0,1) there exists a unique positive -y for which the matrix H

defined by Equation (55) satisfies H(r1) = an and is the unique solution of Problems (52)

and (53). As a function of 7 the entropy H(H) is strictly decreasing for 7y> 0.

Theorem 4.3 is the tool to evaluate the limiting expected energy per transmitted bit,
E4(a). Figures 5, 6, and 7 present the normalized value E(ae)/S, named the Optimal Bound,

as a function of the bus utilization a, for A = 5 and n = 2,4, 8. For comparison, we have

included the exponential and the entropy bounds.
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Entropy, Exponential and Optimal Bounds for n=2, Lambda=5

- Entropy Bound
--Exponential Bound

Optimal
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Figure 5: Comparison of the Entropy, Exponential and Optimal Bounds for n = 2 and A = 5.
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Entropy, Exponential and Optimal Bounds for n=4, Lambda=5
1 -- - ---- --- -

- Entropy Bound
- - Exponential Bound

0.9 Optimal -

- 0.7 --

0 .6 -- - - - - -- - - - - ..- ---.-

70.
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z
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bus Utilization

Figure 6: Comparison of the Entropy, Exponential and Optimal Bounds for n = 4 and A 5.
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Entropy, Exponential and Optimal Bounds for n=8, Lambda=5

1 -.-.-- -.-
-- Entropy Bound
- - Exponential Bound
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Figure 7: Comparison of the Entropy, Exponential and Optimal Bounds for m = 8 and iN = 5.
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5 A Comment

Note that the presented analysis has been based on the fact that the structure of the bus

is given. Given the structure, we asked what is the best way to operate it in order to

communicate data at some rate with the minimum possible energy per bit. This is what

the last three graphs presented. Now, choosing the best bus structure, within some limits,

is a different problem. If for example we were allowed to change the structure of the bus,

then we could remove some lines, say n - k out of n and split the rest to decrease the

interline coupling while keeping the total width fixed. This is illustrated in Example 3 of

Chapter 8. Assuming i.i.d. and uniformly distributed data and using the energy expression

(52) of Chapter 2, we get the following graph. (This is a specific example using special

data distribution and based on rough and rather optimistic approximations. It should not be

used for general comparisons). The stars "*" correspond to buses with k lines, maximum

utilization and therefore relative utilization equal to k/n.

Optimal Bounds and Wire splitting for n=8, Lambda=5

0.9 - ---.-.- -

. 0 .7 - . .-. ...-. . .- . . .-.

0.6 -

0 .5 - . . .-. . . ..- . . . -.. .. .- . .

CL

E 0 . 2 - . .-.. . . -. ...- . .- -. .. ...- . .

0 . 1 - -. . - -. -- -. . -. -.-. - -.-.-.-. .-.- -.- - - - -. .-.- - -- - - - --

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

Bus Utilization

Figure 8: Optimal Bounds and Wire Splitting for n = 8 and A = 5.

We conclude that the right amount of redundancy is needed for maximum energy reduc-

tion in buses when the bus width is fixed.
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6 Conclusions and Final Remarks

We have considered the problem of reduction of energy consumption (or other computation

cost functions) in a computation module as a coding and information theory problem. It has

been shown that redundancy in the capacity of the computation module can be exploited,

using coding techniques, to achieve significant reductions in the energy consumption (or other

computation cost). Redundancy can be introduced by adding extra ports in the module and

by coding the input and output sequences. Using tools of information theory, we have derived

the maximum possible cost reductions in an explicit analytical format.

Although, for the ease of presentation, we presented the results using a specific cost

function, it is noted that the methods we established here apply to any non-negative cost

function for which the cost of a sequence of computations is the sum of the costs of individual

steps.
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Chapter 4

Linear, Block Linear and Convolutional

Coding For Power Reduction

1 Introduction

In very recent deep-sub-micron technologies where lines are very close together and strong,

undesirable interference takes place, the reliability issue in microprocessors has become crit-

ical [1]. Buses are particularly sensitive to interference because of their infrastructure. Error

correction mechanisms have started to appear in bus designs [3], most of them employing

very simple schemes.

The theory of error-correction codes has been well developed during the last fifty years,

(see for example [4]). From a theoretical perspective, error-correction coding for buses is not

a new problem. What is new and very interesting is the connection between error-correction

and power-reduction coding as well as their co-design. This is a challenging and important

problem in an age where performance and reliability are the ultimate goals.
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In this chapter we study in detail the energy "behavior" of differential, convolutional,

linear and block linear codes applied to the deep sub-micron bus energy model introduced

in Chapter 2. It is shown that these codes can only increase the power consumption of

buses. Even though power reduction is not possible, power minimization is very important

since these codes are very useful for error correction. In the following paragraphs we relate

the resulting power consumption using such coding schemes with the structure of their

generator matrices. In some cases the energy is calculated exactly, and in other cases we

provide bounds. Both provide intuition about how to re-structure a given linear (block linear

etc) code so that the energy is minimized within the set of all equivalent codes.

2 Definitions and Preliminary Results

For the bus, we assume the energy model of Figure 7 in Chapter 2 where the fringing

capacitors CF are taken equal to the interline capacitors Cr. Recall from expression (32)

of Chapter 2 that the energy dissipated during the transition of the bus from logical state

St = (s, s, s, ... , n) in {0, I}I at time t to logical state St+1 = (K + tia2 s+, 8+1,. -s7)

in {0, 1} at time t + 1 is give by

-(St St+1) = Eo(St+1 - St) B (St+ - St)H

where

1I+ 2A -A 0 0 0 0 0

-A 1+ 2A -A 0 0 0 0

0 -A 1+2A -A 0 --- 0 0

B3=

0 0 0 0 ---- A 1+2A -A

0 0 0 0 0 -A 1 +2A

EO = CL V/2 and A = C/CL exactly as in Equation (25) of Chapter 2. The ratio A
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is nonnegative, and n is equal to the number of lines in the bus. Since EO is a normalization

factor, for notational simplicity we assume that EO = 1 throughout this chapter. Finally,

the total energy dissipation corresponding to a sequence c = (S1, S2 , S 3 , -.. , ST) is given by

E(c) = ZU_- 8(St --> St+1)-

Throughout the chapter we mix the algebra of the fields, Z2 with addition e, and, R

with addition +. Priority is given to the binary addition T over the real addition +. In this

sense we have that for binary constants a, a1 , a2 and b, b1, b2 it is:

a - b = (1)b a ±Db (2)

and

(a - bi)(a2 - b2) = (-1)6162 (a, E bi)(a 2 D b2 )

= (-1)b1ib2 (a D bi)(a 2 c b2 ) (3)

Let f(cz, /,---) be a function of the random variables a, /,---. We denote by f(a, 13, -- )

the expected value of f(a,, - - -) with respect only to random variable / and by f (a, /3...)

the expected value of the expression over all random variables involved. Note that if a, b

are independent random variables, uniformly distributed in Z2 then a @ b is also uniformly

distributed. Even more, a, a p b and a D b, b are pairs of independent variables. In this sense

(2) implies that:

a - b = (-1)b - a ® b= 0 (4)

and

(a - b) 2 = asG)b = 1/2 (5)

Moreover, if the variables a1 , a 2 , bl, b2 are independent and uniformly distributed in Z2 then

from equation (3) and we get:

11
(a, - bi)(a2 - b2) = (-I) bib2 .-(ai bi) -(a2 D b2) = 0 - - = 0 (6)

2 2
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Lemma 2.1 Let x and z be two independent random variables uniformly distributed in Z.

The expected energy for the transition x -+ z is:

E(x -> z) =n(1+2A)/2 (7)

Proof: From the expression for the transition energy (1), equation (5) and equation (6) we

have that:

n -

S(x z) = (1 + 2A)Z(zi - X) 2 - 2A (z - x)(zi+1- +1)
i=1 i=1
n n-I

(I + 2A) E (Z - X,)2 - 2A (zi - X) (zi+1 - xi+i)

j=1 =

(1 +2A)1:2--2AEO

i=1=1

1 + 2A

2

Definition 2.1 We define S, to be the expected energy per transmitted bit when a sequence

of i.i.d. and uniformly distributed in Z bit-vectors is transmitted through the bus.

The previous Lemma implies that:

1 +2A
2

We stress that S, was calculated with the assumption that the data was i.i.d. and uni-

formly distributed and therefore the bit rate through the bus was the maximum possible.

Therefore S can be used as a reference value for evaluating the efficiency of energy reduction

coding schemes.

For a vector x = (xi, x 2, - -,Xn) in Z we denote its Hamming weight by w(x). The

following Lemma was proven in Chapter 2 (Lemma 2.1). For convenience we repeat its

proof.

98



Lemma 2.2 Let x be a random vector uniformly distributed in Z2. Then for every constant

(or random but independent of x) vector s it is:

E(x - x s) = 2 w(s) Es( (8)

Proof: Let x = (XI, X2,-- , x), s = (S1, 32,- , sn). Using the expression of the transition

energy (1) and equations (2) and (3) we have:

n n-1

E(x -xeJs) = (I + 2A) (z G si - Xi) 2 - 2A (xiE si - xi) (Xi+ Es+j - xj+1)
i=1 i=1
n n-1

= (1 + 2N) >3si - 2 3(-1)xixi+ si si+1
i=1 i=1

and taking the expectation over x,

n n-1

(x -xes)=(1+2A) si-2A 0=2w(s)E 0
i=1 i=1

Now, let C be a [n, k, d] linear code (see for example [5] or [4] for the definition of the

triple [n, k, d]) on Z2 and let the full rank k x n matrix G be a generator of it, that is:

C = {vG: v C :Zj (9)

Note that the mapping v t- vG from Z" to C is bijective. So, if v is a random variable

uniformly distributed in Z then the random variable w = vG is uniformly distributed in C

as well. In this case, the coordinates of w have some straight forward, although very useful

properties that relate to the columns of the matrix G = [Yi, 92, , g]. They are summarized

in the following Lemma.

Lemma 2.3 If v is a random variable uniformly distributed in Z then the random variable

w = vG is uniformly distributed in C and its coordinates, w = (w1,w 2,--,wn) have the

properties:

1. wi is identically zero if gi = 0 and uniformly distributed in Z2 if 9i $ 0.

2. wi and wj coincide if and only if gi = gj.
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3. wi and wj are independent if and only if gi $)g.

Now let {iI, Z2,-- , i4} and {Ji, j2, Jg} be two subsets of {1, 2, , n}. We define the two

random variables a = Wi 1 w 2 E -P-.-(D w, and b = wh PWJ2 P P -WJ and the two column

vectors ga = gi, ® g 2 ® - e -(gand Yb Pg YgD 2  . . . gp,. It is of course

a =wwilE~ 2 P...P-EDwi,

= (vg)(D(vgi 2 )P...P(vg~i)

= Vga

where vgi, is the inner product of vectors v and gi, in Z. Similarly we have that b vg 6 .

Lemma 2.3 has the immediate generalization:

Lemma 2.4 With the setting of Lemma 2.3 and the previous definitions we have for the

random variable (r.v.) a and b that:

1. The r.v. a is identically zero if ga = 0 and uniformly distributed in Z2 gif.a 0

2. The r.v.s a and b coincide if and only if ga = Yb

3. The r.v.s a and b are independent if and only if ga # b9-

The Lemma has the following consequences:

1/2 if ga #0 (10)

0 otherwise

and

1/2 if ga#0,Y9b#0,ga=b

ab= 1/4 if ga$ 0, 9b$0,Ya$9

0 otherwise
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Even more,

( E) b 1 i a b(12)
0 otherwise

The random vector w has been defined as w = u G where u is uniformly distributed in

Z. In this case we will say that that matrix G generates w. Let F be an invertible k x k

matrix. Since mapping u -> uG is bijective in Zk, the random vector i = uF-1 is also

uniformly distributed in Zk. Therefore the matrix FG is another generator of w.

We will call a random variable wi active if it is not zero with probability one. With the

setting of Lemma 2.3 and Lemma 2.4 we have the following.

Lemma 2.5 The active random variables w, wi ,- 7 - , wiq are independent if and only if the

columns g , I9i 2 7 . ..- ,9i of matrix G are linearly independent. If the columns are linearly

inde pendent then the vector (w , w , --- , two) is uniformly distributed in Z7.

Proof: Set Gq = {hi, g,i2 )-- , giq] and let q' = rank(G). The proof comes directly from the

fact (see for example [2]) that there exist an invertible k x k matrix F and a permutation

q x q matrix P such that:

FP *
0 0

where I is the q' x q' identity matrix and* is a q' x (q - q') matrix. El
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3 Linear Differential Coding

In this section we study the efficiency of linear differential coding for energy reduction in

DSM buses. The structure of the encoder is shown below. The input vectors u(r) are

u(i) -G X( )DSM BUS
u() G

x( r- 1)

Figure 1: Differential Coding

assumed to be uniformly distributed in Z' and independent to each other. The vectors x(r)

that are transmitted through the bus belong to Z'. The coding schemes has rate k/n and

the variables satisfy the relation:

x(r) = x(r - 1) eu(r)Gx, r(0) ESTo (13)

Where STO is the set containing the initial state of the bus. The expected energy per

transmitted bit is given by:

S = F(x(r -- 1) ->x(r - 1) ev(r)) (14)

Throughout the chapter we assume that the matrix G is of full rank. Even more, for

convenience we set v(r) = u(r) G, and we note that the random vector v(r) is uniformly

distributed within the code

C = {uG, U E Zk} (15)

and independent of x(r - 1). So, the expected energy per transmitted bit can be calculated

by taking the expectations over x(r - 1) and v(r) independently of each other, i.e.:

EL = - I(x(r - 1) -> s(r -1) GDv)xr(16)
k
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Finally, the value of E6 depends not only on the particular generator matrix G but on the

initial condition as well. To motivate the analysis of the coding scheme we examine first the

simplest case.

3.1 Linear Differential Coding with Initial State Uniformly Dis-

tributed in Z

In this section we analyze the case where x(O) is uniformly distributed in Z and independent

of the input sequence u(1), u(2),--- . The expected energy per bit of the scheme is given by

the following Theorem.

Theorem 3.1 The expected energy per transmitted bit using the linear differential coding

scheme with initial state (0) uniformly distributed in Z and independent of the input se-

quence is

Lb - E LS(17)
k

with p being the number of non-zero columns of matrix G. Since >k it is Lb >S.

Proof: The recursive relation (13) implies that for every r, the vector x(r - 1) is also

uniformly distributed in Zn and independent of u(r). This allows as to use the result of

Lemma 2.2 and write

E (x(r - 1) --> x(r - 1) @ v(r)) = 2 w(v(r)) E. (18)

Therefore, the expected energy per bit, Equation (14), takes the form:

1 i( -1) 2S
bS ((r -1) x(r(- ) tV) -= w(v(r)) (19)

k k

The issue here is to calculate the expected weight of of the codewords in C = {u G, u EZ k

This can be done easily using the McWilliams identity [4] which states that for every 0 $ 1

it is

Ai0 = 2 k B(1 + 0)(1 - )i (20)
i=1 i=1
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where Ai and Bi are the numbers of codewords in C and C' respectively that have weight i.

Taking the derivative of both sides in (20) we get

n -n

Aj0'-'- = 2 1k > [(n - i) B, (1 + 0)"-'-1(1 - 0) - i B (1 + 0)-(1 - )- 11
i=1 =

Finally taking the limit as 0 - 1 we have
n

viA. = 2k-1 (nIBo - B 1 ) (21)
i=1

Note that for every code BO= 1 and that B 1 is the number of codewords in C' of weight 1.

This means that exactly B 1 columns of G are zero and so G has exactly T = n - B 1 non-zero

columns. So

n T

lia = - (22)

The proof is concluded by observing that

w(v(r)) = AZA.

The interesting point here is that the expected energy per bit is determined only by the

active lines, i.e. the number of non-zero columns of G and no other structural characteristics

of it.

Although this kind of coding does not reduce the power consumption on the bus, the

relation (17) allows us to estimate the power overhead when the above coding scheme is used

for error correction.

3.2 Linear Differential Coding with Initial State Distributed in C

In this section, the initial state x(0) is assumed arbitrarily distributed within the code C. In

this case the expected energy per bit is given by the following Theorem.

Theorem 3.2 The expected energy per transmitted bit 8
b, using the linear differential coding

scheme with initial state x(0), that is arbitrarily distributed within the code C and independent

of the input sequence, can be expressed as:

Eb = P A EF + (23)
k 2k
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where p is the number of non-zero columns of matrix G and f is the number of indices

i = 1,2, --. , n - 1 for which gi = g±i+ # 0. ItZisp-ftk and ft >0, therefore it is always

The proof of the Theorem will be a consequence of the following Lemma.

Lemma 3.1 Let x and z be two independent random vectors uniformly distributed in C =

{uG, u E Z}. Then, with p and ft defined as in Theorem 3.2 above , it is:

E(x -* z) ''Z (p -- f) ES ± + /2 (24)

Proof: Let x = (X1 , x2 ,- , n) and z (zi, z2 , -,z). From expression (1) of the transition

energy and equation (3) we have:

n n-1

E(x -+ z) = (1+ 2A) >(zji - )2 - 2A >(zj - xi)(zi+1 - xi+1)
i=1 i=1

n n-1

(1 + 2A) zi E x - 2A >3(-1)i+xi1 (zi e xi)(zi+i e xi+i)
i1 i=i
n n-1

(1 + 2A) 1: wi - 2A 1 (-N3 1)xi *i1 wi w+1
i=1 i=i

where we have set wi = xi D zi. Since w and x are statistically independent for every i, j,

we have:

n n-i

E(x->z) = (1+2A)3W w - 2A> (-1)xiexi+1 x Wi Wi+1 " (25)
i=1 i=1

It is convenient to define the following "characteristic indices" of the columns i, 92, ---.,9

of G:

1 i f g=i0 1i ig
di = and di = { :;:::: (26)

0 if g =01 0 if i 9 i+1

then using expressions (5), (12) and (11) we can write

Tw di x-T ( W A+

ww = 2 , (-1)Xiexi+1 = di, W-di+1"'= 1) di d+ 1  (27)
2 4
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Equations (27) imply that

IDxi w di d(8WiWi+1 = (28)2

Finally note that by their definition, g and A can be expressed as:

n n-1

p =yd and ft=Zdidi (29)
i=1 i=1

Therefore we have:

n-1

S(x ->*z) = = (1 + 2A) A d (30)
i=1 i= 1

S p-(ES -1/2)fA

(g-ft)4Ef+/2

This concludes the proof of the Lemma. H

Proof of Theorem 3.2: We only need to note that the initial state x(0) takes values in C

and it is independent of the input sequence, therefore, the relation x(r) = x(r - 1) e u(r) G

implies that the vectors x(r - 1) and x(r) are independent and uniformly distributedin C

for every r. From the above Lemma we have S = E+ . Moreover since the mappingk 2k'

U - a G is injective, the matrix G must have at least k distinct columns. Hence it must be

p- > k and sobSE. '

Again, there is no energy reduction by applying the coding scheme. We observe though

that the expected energy per bit here is less than or equal to the expected energy per bit

when x(0) is uniformly distributed in Z (expression (17)). This motivates us to get a better

look at how the relation of adjacent columns of G influences the expected energy.

Let I = {1 < i < n : gi # 0}. Since p is the number of non-zero columns in the generator

matrix G, the set I has exactly p elements. Now, there exist some non-negative integers

q, ZI, 22, - -.- , jq and r1, r2,.-. , r so that the elements of I written in increasing order are:

ii 1 --- ii1+ ri < i2 , i 2 + 1, - - - , i2 + r 2 < -.-.-< iq, 2q + 1-.-.- ,Z)q + rq
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and also

=921+1 = '= gii+ri

Yi 2 -1 # 9i2 = gi 2+1 = =i2+r2

i3-1 # gi3 = Yir+1 = 9i3+r3

iq--1 # Yiq = 9 q+1 = Ytq+rq

By definition of di's and d''s we have:

p = di = (1 +r 1 ) + (1 +r 2 ) + + (1 + rq)
i=1

n-1

and ji= di d' =r1+r2+-- + rq

Suppose now that we replace the code C with an equivalent code Cp having generating matrix

GP = G P, where P is a permutation matrix. Although the two codes have exactly the same

error correction properties, they may have different expected energy per bit. This is because

the energy depends on the adjacency properties of the non-zero columns of matrix GP. We

have the following Lemma.

Lemma 3.2 The code C has the minimum expected energy per bit among all equivalent codes

Cp if and only if for the set of indices of non-zero columns of G,

I = {1i< n : gi f}

Ii,i 1 + 1,-', ii+ ri < i2 1 Z2 + 17,' r2 <+rT2  <qiq +1, iq'+'rq}

with,

gi 1 = gi1+1 = g . i1+r1 ) gi2 = gi2+=1 ' ''= i2+r2 I ' i q*iq+i ' "' giq+rq

the columns gi1, gi, -giq are distinct (and # 0). In this case, the minimum energy per bit

bS* is:

E*= +A
- S
k 2k

and q equals the number of distinct, non-zero columns of matrix G.

(31)
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Proof: A permutation of the columns of G does not change M but it may change f. Because

of expression (30), we have E(x -> z) Sz-= Sp - A ft. We see that the energy is minimized

when f is maximized. This is achieved if and only if the conditions of the Lemma hold i.e.,

when identical columns are consecutive. E

3.3 Linear Differential Coding with Arbitrary Initial State

The most general case of the initial state is examined here. The only assumption is that

x(0) is independent of the input sequence u(1), u(2),... . We have the Theorem:

Theorem 3.3 If the initial state x(0) is arbitrarily distributed in Z' and independent of the

input sequence, then the expected energy per transmitted bit t
b, using the linear differential

coding scheme, is

A8n-1
s + + -21 + (-1) +()++1(0±) d d(32)

k 2k ki=1

where p, f, d and cd are as defined in Theorem 3.2.

The proof is similar to that of Theorem 3.2. It is based on the following Lemma that is

a modification of Lemma 3.1.

Lemma 3.3 Let x and z be two independent random vectors uniformly distributed in C

{uCG u c Z} and a (a-, -2 ,-- ,,) is a given vector in Z'. Then, with p, t, d and d

defined as in Lemma 3.1 we have:

n-i

E(x(Da -+z EDo-) ,z = (p-- f),Eu + /2 + A [1 - (-1)'i+J41 ] did (33)
i=1

Proof: Setting again wi = xi D zi, Z = 1, 2,-. , n, from expression (1) of the transition

energy and equation (3) we have:

S(x ea ->- z @ a) = (1 +2A) (ziE ai -eaq),-) 2 
-

i=1

n-1

2A (zi ( a-i - xi a-T)(zi+ 1 e oi+1 - 1 i+1 ± aG±i+)
i= 1
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n n-i

= (1+ 2A) zi e x - 2A ( xioi+xi+EOi+i (zi exi)(zi+( exi+1 )
i=1 i=1
n n-1

= (1 + 2A) w wi - 2A >3 (-i)X2+ai+Xii+ai i wwi+1
i=1 i=i

n n-1

=A 1±2A)>wi - 2A (-1)Z> pai+ai2. . (_1 +)Xi±Xi+ wiWi+1
i=1 i=1

Taking the expectation

E(x ecu- -> z eao-) 'z

over x and w and using equations (27) and (28) we have:

n n-1

= (1 + 2A) >3w - N2A >3(-1)ia+i . (_ i xii wwi+1

i=1

(1+ 2A)>3i -A n-1) d+1 di dl
i=1 i=i

1+2N n n-1 n-i n-1

= 1+22[di- A did' + A did'- A (-)+21 di d'
- 2 z

_= i=i i=1 i=i

1EV (Eu-)y+ A [1d- (-1)aa+ 1 ]
i=1

n-1

= (p-2)E-+i/2+FA3 -[1(-1)ia+1]di dl E
i=1 -

Proof of Theorem 3.3: The recursion x(r) x(r - 1) e u(r)G implies that x(r) =

x(O) e [u(1) ± u(2) (D-.-(- e u(r)] G. Therefore x(r) can be written as x(r) =x(0) e r and

x(r - 1) can be written as x(r) = x(0) + Dx- 1 with cr and X'-1 being independent and

uniformly distributed in C. Since the expected energy per bit is :

Eb= &E(x(r - 1) --> x(r)) x(r-1)x(r)- E - ()-r (0))rXr

an application of Lemma 3.3 completes the proof. F
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4 Further Definitions and Properties of Transitional

Energy

In order to derive the energy properties of convolutional and block linear coding in the follow

sections, we need some more properties of the transition energy.

Definition 4.1 Let G and H be two k x n matrices with columns 91,92,-.-- , g. and hi, h2 , -...-hn

respectively. We define the relative index I(G, H) of the two matrices to be the number of

distinct, non-common and non-zero columns between them. Formally it is :

{Oy1,92,-- ,9n} - {, hih 2, -- ,h }+ {O,h i ,h 2 ,'' -I- ,hn} - {Ogi,92, 9}

I(0, H) =2 2

The results of this section are given by the following Theorems.

Theorem 4.1 Let u be a random variable, uniformly distributed in Z .and let x uG

z = uH for some binary k x n matrices G and H. Then

E(x ->+ z) rz ;> Eu - I (G, H) (34)

Note that I(G, H) = I(H, G) and so the same lower bound is given by the Theorem for

both 8(x -> z) and S(z -+ x) X,. Also note that I(G, H) is a lower bound of the number,

call it , of indices i = 1, 2, - - -, n for which gi # hi. The bound given by the Theorem is

intuitively justified since in a sense we expect that E(x -> z) X'z,> . In the following

sections we may allow some violation of notation and write I(x, z) instead of I(G, H) when

it is clear that x and z satisfy x = uG and z = uH respectively.

Definition 4.2 Let G be a k x n matrix with columns 91, 92,. -,g and H be a m x n matrix

with columns h1 , h 2 , - , h. We define the relative index 1(G, H) of the two matrices to be

the one half of the number of their non-zero columns, that is :

H {91, 92,--- , fn}-{0} +If{hi, h2,-7-,h} - {O}0
I(GH ) = 2
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Theorem 4.2 Let u and v be independent random variables, uniformly distributed in Z

and Z'" respectively. Let x = uG and z = uH for some binary k x n and m x n matrices G

and H. Then:

E (x - z) :z ;> S -I(G, H) (35)

Proof of Theorem 4.2: We can define the concatenated random vector ii= [u, vl that is

uniformly distributed in Z4+" and the matrices

G -0
G=[ ] and H = (36)

0 H

Then we have x = 'O and z = fiii and we can apply Theorem 4.1 directly. Observe that,

I(0, H) 1= (G, H) El

In order to prove Theorem 4.1 we need a sequence of Lemmas examining in detail the

"interaction" between adjacent lines in the bus. We start by examining the product (y-

hi)(yi+1 - xi+ 1) that is involved in the energy required for the transition from x to y.

Lemma 4.1 Let u be a random variable, uniformly distributed in Z and xc= uG, y =

uH for some binary k x n matrices G and H with columns 9i, g2 , - -- ,gn and h1, h2 , - - -, h

respectively. Then for every i = 1, 2, - n - 1 the expression

Ai = (yi - Xi)(yi+i - Xi+1) XY (37)

takes the values:

(y1yjyi+

4 =t-}andciif iand(38)
cci+ 1

4 Xi # i+1 + = Y

yi yi+1

1 Xi = yi+1
At = 4- if g g and X+ (39)

1 iLi+ = y
1xi # xi+1
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1
A -- if

2

1
A =-if

1
I if
2

I
{
I

yi

Ixt
Yi

A/i

Yi

A/i

'It

xi

Yi+1

S and Xi =
an id- = A/ii}

X i+1

xi+1

= yi+1
Xi /0

and

= i+1

A = 0 otherwise

where we write xi = xj

xi+1, yi, yi+1 and 0.

if and only gi = gj, similarly for the rest of the relations between xi.,

Proof: We can write (Equation (3)), that:

(yi - xi)(yi+l - xi+) = (A/i e xi)(yi+i ( )Xi+)(-)"''l (44)

We know from Lemma 2.4 that two linear combinations (in Z2) of the random variables

1, 1 2 ,-- , xn, yi, Y2,-.- , yn are either statistically independent or identical.

We observe from (44) that if the random variable xi P x+ 1 is not (identically) zero and

it is independent of xi D yj and x+1 G yij+ then the expected value of the right part of (44)

is zero since (-1)xiPDX+i = 0.

In the following first three cases we examine Ai when x. ® m i+1 is non-zero and dependent

on xE E yj or xj+1  /yi+. In the fourth and fifth cases we examine Ai when x Dxj+1 = 0.

Case 1 : x i+1 = x D yj and x i+1- # ®+1 (yi+1. Taking the expectation on

Equation (44) we have that:

Ai = (x i x(i+)(-I)xiex+1 -j S+1 (Xi+ 1i
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(40)

(41)

(42)

(43)
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Therefore we have A1 = -1/4 if xi S Dx+1 # 0 and yi+ P x 1+1 = 0, which is the case of

Equation (38), and A 1 = 0 otherwise.

Case 2 x: Ex @ i +1# ED yj and x Ei @x+ 1 = j+1 ED i+. Now Equation (44) implies

that:

A1 = y ± cED (ic E xi i+i)(-1)Xexi+i1 (46)

Again, we have A1 = -1/4 if xi E x+1 # 0 and y E( @ci $ 0, which is the case of Equation

(39) and A2 = 0 otherwise.

Case 3 : xE ci+1 =cx iEB yj and cx i Dc+1 1 = i+1 ED yi+±. Then Equation (44) gives:

Ai = (®i e Xi+ 1)(-)xiexi+l (47)

and so we have A1 =-1/2 if x ED c+1±1 / 0, that is the case of Equation (40), and A1 = 0

otherwise.

Now we calculate the expected value of (44) when x E x+ 1 = 0. We have to distinguish

between the following two cases:

Case 4 :x D Dj+ 1 = 0 and y E x yi+ E 11. Then from (44) we get:

Ai = (yi E i) - (yi+1 E 1±i+) (48)

hence it is A1 = 1/4 if y E ci / 0 and y+i ED c+1 1 f 0, i.e. the case of Equation (41), and

A1 = 0 otherwise.

Case 5 :i 1 EG c+ 1 = 0 and y ED x 1 = yI+i E i+1 . Then from (44) we have:

Ai = (yi E ci) (49)

and so, A1 = 1/2 if yij E xi $ 0, which is the case of Equation (42), and A1 = 0 otherwise.

This completes the proof of the Lemma. ]
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r i

Y 1  Yi-1 I i Yi+1i

X, X, 1  Xi -Xii
L -

Figure 2: Energy accumulation with i

Now suppose that the bus has only the lines 1, 2,-- i and we add line i + 1 as it is

illustrated below:

Then the expected energy during the transition x -+ y increases by the amount of Q4 defined

by the expression:

8i = (1 + 2A) (yi+i - X+1) 2 - 2A(yi - '&)(yi+1 - x+±) (50)

Note that (1 + 2A) (yi+i - X,+1 )2 - 2A(yi - Tj)(yj+1 -- xi+) > 0 for all possible values of

Xi,Xi+l,yi,yi+l and so it is 8i ;> 0. The following Lemma provides a better lower bound for

e8.

Lemma 4.2 With the setting of Lemma 4.1 we have that for every i 1, 2, n - 1 the

expected additional energy for the i + 1 line is bounded as:

2'>E + (51)
2

where

If= 1 if i+1 {0, Xi,yYi+1} (52)
0 otherwise

and

-If= 1 if Yi+1 {0,xi, YiXi+1} (53)

0 otherwise

Proof: If If = 1Y =0 then relation (51) is true because 8 >0. Now suppose that It = 0

and -1 = 1. The relation 17 = 1 implies first that yi+1 # T i+1 and so (yi+1 - X,+1) 2 = 1/2
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and second that yi+1 # yj which gives (yi - xi)(yi+l - xi+1) < 1/4 because of Lemma 4.1.

Therefore we have that E),> 1+2A -f as desired. The same argument holds for the4 2

case Ifl=1and I7= 0. Suppose now that If = I7= 1. Then it must be yi+i # x+1

which implies (Yi+i - xi) 2  1/2 and also xj+ 1  xi and yi+i # y which imply that

(yj - xi)(yi+l - xi+) < 0 by Lemma 4.1. Combining the two results we have 0 > 1+2A

and the Lemma has been proved. H

Proof of Theorem 4.1: For i =1,2,-- , we define the partial vectors x' = (XI, cX2, .Xi) , r)

and y' = (yi, Y2,... , yi) as well as the partial relative index :

P = I ([gi, 9 2, , gi], [hi, I 2 , - - , hi])

The energy function &(x + y') is defined to be the energy 8([x, 0,-- , 0] -> [yi, 0,..- , 0])

where n - i zeros have been added at the end of each of the vectors xt and y'. Therefore it

is

i i-1

8(xt ---> y) = (1+ 2A)Z(yr - xr)2 - 2AZ(y,
T=1 r=1

The recursive relation follows immediately,

Xr)(yr+1 - r+1) (54)

E(i+1 -> yi+l) = E(i -> yi) + (1 + 2A) (yi+, - X,+1)2 - 2A(yz - xc)(yi+1 -xi+,)

= E(c -yi)+ (55)

As we have mentioned above, we don't distinguish between a random variable xi and the

vector in matrix G or H generating it. Now we apply induction. For i = 1 we have,

S(x' -> yl) = (1 + 2A) (y1 - i)2

> (1 + 2A) - {0, x1} - {0, Y1}1 + 1{0, Y1} - {0, x1}|
4

1 + 2A {0,x1} - {O,yi}I+ {O,yi} - {0, xi}|
2 2

= s -.IP
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Now, suppose that for some i < n, it is, E(xi -yi) ;> >E -P . Using Lemma 4.2 and

Equation (55) we have that

E(Xi+1 _- yi+l) = S(xz _ Yi) + e
C' ~If + I

It is straight forward to verify that I + (Iff + I2)/2 ;> IP+1. This completes the induction

step. Since it is, I" = I(G, H), the Lemma is proved. E

Now we have the necessary tools to proceed in the analysis of more complex coding

schemes for energy reduction.
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5 Linear Convolutional Coding

In this section we study the energy properties of linear convolutional coding applied in DSM

buses. The structure of the encoder is shown below. As before, the input vectors u(r)

u() - G xDSM BUS
U( ) -No IG iP

MM-
4(r-1) -M

Figure 3: Convolutional Coding

are assumed to be uniformly distributed in Zk and independent of each other. The vectors

x(r) that are transmitted through the bus belong to Z'. The coding schemes has rate k/n,

equivalently, matrix G is of full rank. The variables satisfy the relation:

x(r) = x(r - 1) M (Pu(r)G (56)

For the initial state x(O) of the bus we make the assumption that it is either zero or uni-

formly distributed in Z'. The expected energy per transmitted bit is defined as usual

Eb = E (x(r - 1) -> x(r))/k and the main result of this section is given by the Theorem:

Theorem 5.1 The expected energy per transmitted bit E4, using the linear convolutional

coding scheme presented above, is equal to or greater than E.

Proof: Starting from the recursive relation (56), for every r > 1 we have that:

x(r) = u(r)GEu(r - 1)GM E- - -EDu(1)GM'-' @ x(O)Mr (57)

x(r - 1) = u(r - 1)G & u(r - 2)GM E ... D u(1)GMT 2 x(O)Mr- 1 (58)
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If we define the composite random vector v = [u(r), u(r - 1), , u(1), x(0)] and the two

matrices,

G

GM

GM 2

Mr

and B = (59)

0

G

GM

GMr- 2

M -i

then x(r) and x(r-1) can be written as x(r) v A and x(r-1) = vB respectively. Theorem

4.1 applies directly and gives:

(60)

Note that matrix G is of full rank and so it has at least k non-zero distinct columns. Therefore

matrices A and B differ in at least k non-zero columns, i.e. I(A, B) > k. This along with

equation (60) proves the Theorem. H

6 Linear Coding

x( r) = u )-G
u(r) IG

DSM BUS

Figure 4: Linear Coding

Linear coding with x(r) = u(r)G is obviously a special case of the convolutional coding

with M = 0 or the differential coding with x(0) c {u G, u c Z2}. Therefore we can apply

Theorem 3.2 directly and have that:

9b = P -P e 1+20
k 2k
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E (x(r - 1) -> x(r)) ;> S - I(A, B)



where p is the number of non-zero columns of matrix G and f is the number of indices

i= 1,2,,n - 1 for which gi = gi-7-0. Since p -- ftp> k andf>t0>it is alwaysS > 9E.

The result of Lemma 3.2, on the optimality of a code C, among its class of equivalent

codes, applies directly to the case of linear coding. This means that given a generator matrix

G, we can find a permutation matrix P so that the code {uGP, u E Z} is optimal in the

above sense and the expected energy per bit is given by expression (31).

7 Block Linear Coding

Here we study the energy performance of block linear coding in DSM buses. The structure of

the encoder is shown below with q = 0,1. The bus has n parallel lines as before and the

[u(1 + qm), u(2 + qm), . .,.u(m + qm)] [x(1 + qm), x(2 + qm),..,x m+ qm)]

DSM BUS

Figure 5: Linear Coding

code is of rate k/n. The data is an i.i.d. sequence {u(r)}, of vectors uniformly distributed

in Z . Blocks [u(1), u(2), - , u(m)] of m successive input vectors are encoded into blocks of

m bus vectors, [x(1), x(2),... , x(m)], with x(r) E Z' for every r, in a linear fashion:

[x(1), x(2),. - -,x(m)] = [u(), u(2),- , u(m)] G (62)

The matrix G has dimensions mk x mn. The expected cost per transmitted bit using this

block coding is:

mk
r=1

We have the following Theorem :

Theorem 7.1 The expected energy per transmitted bit using linear block coding is equal to

or greater than that of the uncoded bus, i.e.: EtB > .
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So, as in the previous coding schemes, the linear block coding cannot reduce the power

dissipation in DSM buses. For the proof of the Theorem we need to relate the expected

energy to the rank of matrix G . This is done using Theorems 4.1 and 4.2 from Section 4.

Proof of Theorem 7.1 : The estimation of the expected energy using the block coding

scheme

[x(1), x(2),... , x(m)] = [u(1), u(2), .- , u(m)] G

requires us to examine the columns of matrix G. We decompose the generator matrix

as G = [G1, G 2,- , G'] where each sub-matrix G is of size km x n. Then if we set v =

[u(1), u(2),"'--, u(m)] we can write (1) = vG, (2) =vC2 ,--, x(m) =vGm. Note that v is

uniformly distributed in Z' and so Theorem 4.1 can be applied to give for i = 1, 2,.-- , n-i,

(x(i) -> x(i + 1)) > u -I(GG+1) (64)

Using similar reasoning and Theorem 4.2 we can conclude also that:

S(x(m) -> x(m + 1)) F. - I(G', G) (65)

We can write G = [g, g--, g], with g being a column vector and for every i = 1,2, .- , m.

We define the set of non-zero columns of G,

Si =f{gi, gi, --- ,gi} -10}

Note that by definition, for every i = 1, 2, . , rn - 1, the index I(G, G+1), which equals the

number of distinct, non-common and non-zero columns of G and G+1, is:

( 1)-si+1 _S +i +Si - gi+

2

From inequality (64) the expected cost of the sequence of transitions x(1) --> x(2) - -

x(m) is given by:

rn-

8(x(1) -> x(2) - > - -> x(m)) = > S(x(i) -> x(i + 1))
i=z1

|- Si+1 -_ g + I i _ Si+1l
> U >32 (66)

i=1
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Regarding the transition x(m) - x(m + 1) we observe that by definition it is:

_is1j+ ISfl
I(GG1)- 2

and from (65) we have:

E(X(m) -> X(m + 1)) > eu - +(67)
2

Combining inequalities (66) and (67) we conclude that:

SU r-1 m~ T-1

E(x(1) ->x(2) --.--- x(m + 1)) > rn-S'l + +_l + Sr|+ i - Si+1

>C -|SIU S2 U ... U sI

Using definition (63) we have that

B - 1S (x(i) -> x(i + 1))

> SU l I1U S2 U ... U Srtm

nk

Now, note that IS'US 2 U. ..- USrn is the number of distinct non-zero columns of the generating

matrix G. Since G has full row rank, equal to mk, we conclude that SI US 2 U... US m > nmk

and so EtB S> which proves the Theorem. F

8 Conclusions

The presented analysis suggests that differential, convolutional, linear and block linear coding

are not appropriate for power reduction. If we need to use a differential or linear coding for

error correction then Lemma 3.2 provides the conditions for the code to be optimal among

its class of equivalent codes. A variation of 3.2 can provide the optimality conditions of the

case of block linear codes.

121



III

References

[1] V. Agarwal, M. Hrishikesh, S. Keckler, D. Burger, "Clock rate versus IPC: the end of

the road for conventional microarchitectures", Proceedings of the 27th Int. Symp. on

Computer Architecture, 2000, pp. 248-259.

[2] M. Artin, Algebra, Prentice Hall, 1991.

[3] E. Fujiwara, T. Rao, Error-control coding for computer systems, Prentice Hall, 1989.

[4] F. MacWilliams and N. Sloane, The theory of error correcting codes, Elsevier/North-

Holland, 1978.

[5] L. Vermani, Elements of algebraic coding theory, London, New York Chapman &

Hall, 1996.

122



Chapter 5

Transition Pattern Coding (TPC)

For Power reduction

1. Introduction

In Chapter 2 we introduced an energy model for buses that captures the parasitic elements appear-

ing in modem deep sub-micron technologies. In Chapter 3 we developed theoretical tools that

revealed the fundamental information theoretic limits of the maximum possible energy reduction

achievable using coding. Combining the energy bus model and the theoretical tools we were able

to calculate exactly the limits of coding in the case of buses.

The results of Chapter 3 (those for example in Figures 5,6 and 7) demonstrate significant

energy reduction for relatively small reduction of the information rate. In establishing these limits

we did not assume any kind of constraints in the encoder and decoder with respect to memory,

complexity, self energy consumption or latency that they may introduce. All these issues are

important for a practical system. The encoder and decoder must have the minimum possible com-

plexity, minimum memory (except in some special sub-circuits that are tolerant to latency) and

occupy the minimum possible area inthe chip.
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From a traditional communication perspective, the first choice for simple coding would be the

obvious one; try linear or differential coding. We analyzed this in Chapter 4 and showed that no

energy reduction is possible with such schemes. Therefore, the coding schemes needed should be

non-linear and, for most practical purposes, they should have memory of order one. This class of

coding schemes is the topic of the present Chapter 5. We have termed this class of schemes, the

Transition Pattern Coding schemes (TPC). The name is motivated by the fact that what is trans-

mitted through the bus at time t depends only on what was transmitted at time t-1, and the new

data vector arrived at the encoder at time t. In other words, the TPC schemes are Finite State

Machines (FSMs) whose purpose is to minimize the energy that is lost on each particular transi-

tion. The constraint that no future values of the data vectors are available in the encoder implies

that these schemes cannot achieve the fundamental limits developed in Chapter 3.

To illustrate the gap between the energy reduction of the class of TPC schemes and the class

of all coding schemes, we state without proof that the best energy reduction achievable by TPC

schemes is given by the Entropy Bound of Figure 1 in Chapter 3, while the best of general

schemes is given by Theorem 4.3 of the same Chapter (for some special cases, by the Figures 5,6

and 7).

From a practical point of view, the class of TPC schemes contains almost all coding schemes

that have been proposed in the literature, for example those in [8]-[17] as well as more recent

schemes appropriate for deep sub-micron buses like that in [21].

In the present chapter we present a complete mathematical treatment of TPC schemes. We

start by providing a formal definition and parametrization of them. Then we derive closed formu-

las for the energy reduction they achieve. A novel algorithm, called the TPC algorithm, is pre-

sented that approximates the energy-wise optimal TPC scheme given the input statistics and bus

energy behavior. In other words, given the statistical properties of the input data and the bus struc-

ture, we can derive the most appropriate TPC scheme. A simplified version of the algorithm is

also provided that achieves very good results for buses with seven or more lines. Finally, in the

last section of the Chapter, the issue of complexity is addressed by partitioning of the bus into

blocks and encoding them independently. A detailed analysis of the energy lost in the boundaries

of the individual blocks, because of the coupling between their boundary lines, is presented.
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It is interesting to mention that there is no practical limit on energy reduction achieved using

TPC schemes. This depends directly on the data statistics and bus structure. For example, in Sec-

tion 5.3 of the present Chapter, possible energy reduction of up to 80% is demonstrated. This is

the great advantage of the approach here compared to other known "fixed" coding schemes! The

design methodology presented here is data-distribution and bus-structure driven. Moreover the

coding scheme design, using the TPC algorithm, also demonstrates an interesting behavior with

respect to the coupling between the lines, captured by parameter X. For stronger capacitive cou-

pling between neighboring lines, i.e. higher values of parameter X, we get schemes with better

energy reduction performance! This is in contrast to other proposed coding schemes whose per-

formance deteriorates with X. A comparison is presented in Section 4.3.

Finally, it is stressed that the TPC theory is independent of any energy model. The TPC meth-

odology is general and can be used as an energy reduction approach to any communication chan-

nel that has the following properties: it is memory-less regarding the data transmission and it has

memory of order one regarding the energy consumption.

2. Notation and Comments

Although Transition Pattern Coding has been evolved in an independent methodology, its birth

was triggered by the need to design energy reduction schemes for the new deep sub-micron tech-

nology, buses. As it was discussed in detail in Chapter 2, the problem with the modern technolo-

gies is the strong coupling between neighboring lines in the bus.

We use the bus of Figure 7 in Chapter 1 as our guide to demonstrate the theory and the philos-

ophy behind the TPC approach. The bus has n lines, and we assume that the fringing capacitance

CF is negligible and allow for different values of X . As an energy measure we use the energy

drawn from the power supply that is given by expression (22) in Chapter 2 and shown below for

convenience.

E = (/ew) T.Cta .(JewJ-_Jld)()
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The vectors iViw, Ild are the old and the new vectors of the values of the lines in the bus:

, d =

,ld

id

id
ln

IfI ew-

ifew

2

,1ew
n

and take the values 0 or Vdd. The matrix Cta is given by:

Cta =

1+2.

--4

0

0
0

-x
1 +2X

0
0

0
-x

1 +2X

0
0

0

0
0

1+22

-x

0

0
0

-x
1+2.

-CL (2)

where CL is the line-to-ground capacitance. Recall that 2 is non-negative and for 0.13gm tech-

nologies it can be as high as eight. As an example application of formula (1), Table 1 shows the

energy drawn from Vdd during the transition [Vj, 4i] -> [V§ ,] for a two line bus.

Trans. Energy [Jf

CLLdd 00 01 10 11

[ ,2] 0 0  0 1+k 1+2k 2

01 0 0 1+2k.1

10 0 1+2k.0 1

11 0 . . 0

Table 1: Energy drawn from Vdd for the example bus with two lines.
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3. Transition Pattern Coding Schemes

In this section we describe a general class of bus coding schemes. Although many of the tech-

niques proposed in the literature belong to this class, our unifying approach is new and results in

exact closed form answers for the energy dissipation and power savings with respect to uncoded

data transmission.

In Figure 1 we see the class of Transition Pattern Coding Schemes. They are time invariant

and have the property that the data, input vector D(k) = [ d1I(k), d2 (k), ..., dm(k)] is, encoded,

transmitted, and decoded "instantaneously", in the sense that the data is available at the output of

the receiver during the same clock cycle k it is fed into the encoder.

.....................................- E xtended

L(k) Bus

F(L (k - ), DL(k)) -L.
m + a

m + a m + a

L(k - 1)

cEncoder
CLK

Extended

Bus

L(k) )k

m am~a G(L (k - 1), L (k))

L(k- 1)

CLK D (k) = D (k)

Decoder

Figure 1: The Transition Pattern Coding Schemes
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Note that the "original" data bus with m lines has been expanded to a bus of m+a lines. The out-

put of the decoder, state vector ofthe bus, L(k) = [1 1 (k), 12 (k),..., lm + a(k)] T contains the logi-

cal values of these m+a lines, i.e. L(k) c {0, 1I }m+ a. The following relation is true for every k:

L(k) = F(L(k-lI), D(k)) (3)

The vector L(k) depends on both the input vector as well as the previous state L(k - 1) of the

bus. Note that the information of the previous state is important since the energy dissipation in the

bus is due to the transition L (k - 1) -+ L (k). The name "Transition Pattern Coding" comes from

the fact that the encoder must minimize the expected cost per transition. Because of this form of

energy cost, the state L(k) need not depend on earlier states L(k - 2), L(k - 3). Relation (3)

m + a
implies that the vector L (k) may be restricted in a subset W = {wI, w 2, --.., WM of-0l}

It may be the case that W = 0, 1}m+a. The M elements of W are the codewords of the coding

scheme.

Now, at the other end of the bus the decoder uses the value of the current and the previous

states of the bus to reconstruct the data vector. This information is sufficient, and no other earlier

states are required. The decoder implies the relation:

D(k) = G(L(k), L(k- 1)) (4)

For every k it must be D(k) = D(k). Combining the operations of the encoder and the decoder

the previous expression translates into the requirement that: for every w c W and every

d e {0, l}m it is:

G(w,F(w,d)) = d. (5)

Therefore, for every fixed w E W the mapping, d -- F(w, d) must be injective. Moreover, for

every w the set

X = {F(w, d) : de {0,1}m} (6)

containing all the possible values of L(k) when the last state was L(k- 1) = w, must have
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exactly 2m elements. This is because m bits of information must be transmitted each time. The

M
function F gives rise to the transition matrix T = [t.] with elements:

t = if w1 e }(7)
0 otherwise

The matrix T has exactly 2n 1's in every one of its rows. It defines the possible transitions in the

bus, i.e. given a state L(k - 1) it gives the states L(k) that can follow. It ignores though the way

the data is mapped into these transitions. Finally, we define the transition graph Gr which carries

the same information as the transition matrix,

GT = {(w, F(w, d)) : w e W, d 0e {, 1}"} (8)

Relation (5) defines (the restriction of) the function G on the vertices of the transition graph.

The values of G in the set W x W - G T are immaterial and can be chosen in a convenient way to

simplify the hardware implementation of the function. If the transition graph G has more than

one strongly connected component ([34]) then the coding scheme is degenerate in the sense that

some of the codewords are not utilized. To avoid this degeneracy from now on we assume that

GT is strongly connected. Strong connectivity of Gr is equivalent to the irreducibility of the tran-

sition matrix T ([34]), a property that will be used later.

3.1 A Motivational Example

A simple TPC scheme is presented where m = 2 bits are transmitted each time, the bus has been

expanded to m + a = 3 lines and the set of codewords contains M = 6 elements

W = {w 1 , w2 , ...- W6 } where,

w1 = 000 w2 = 001 W3 = 010

w4 = 101 w5 = 110 w 6 = 111
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The coding function F is given by the following diagram:

Data to be sent

D(k)

00

01w
w 1 10 w2

W6
10 w

00

01 4

w4  10 6w1 2
Wi

New
Codeword

-' L(k)

00

01w2
w2 10 6

11 w

00

01 w5
w 5  10 6

1W
3

-W I

Figure 2: Graph representation of F

For example, if L(k- 1) = 001 (w2) and D(k) = 11 then L(k) = 101 (w4 ). The transition

matrix resulting from F with columns and rows number according to states w 1, w 2 ,..., w6 is:

1
1
1

1
1

1

1
1
0
1
0

1

0
0
1
0
1

0

0
1

0
1
0
0

11

01

11
0 1

1 1

11_

To indicate the correspondence between the input data and the 2" ones of each row of T we may

use the following symbolic matrix that contains all the information of the function F:

(00)
(10)

(10)
(11)

(11)
(01)

(01)
(00)

0
(10)

0

(11)

0
0

(00)
0

(10)

0
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0
(11)

0
(00)

0
0

(11)
0

(11)
0

(00)
(10)

(10)
(01)
(01)
(01)
(01)
(00)

Old
Codeword

L(k-1)

00 w

01
3 10 6

11 
w

00 w

01 w
10

1W
2



In this example, TPC favors transition patterns in which the voltages of neighboring bus lines

change values in the same direction. This reduces the effective capacitance between adjacent

wires. For a typical 0.18gm technology and minimum distance between the wires, 5. In this

case, the coding schemes results in a theoretical energy reduction of about 22%, even though the

number of the bus lines has been increased. The savings occur because the scheme encodes the

information D(k) into transitions among codewords that have an average energy cost less than

that of the transitions in the original data.

In the following sections we address the three theoretical important issues of TPC: i) Exact

calculation of the energy consumption. ii) Design of coding schemes. iii) Complexity reduction.

3.2 Statistical Measures of Energy

A transition of the bus from state L(k- 1) to state L(k) requires a certain amount of energy

E(L (k - 1), L (k)) to be drawn from the power supply. Using formula (1) we can express it as:

E(L(k-1),L(k)) = L(k).Cia.[L(k)-L(k-1)] T  (9)

(The bits of the vectors L(k) are regarded to be zero or one in the field of real numbers and not in

the Boolean algebra). If w1 , w 2 ,..., sM are the codewords of the coding scheme, we define the

energy cost matrix of the scheme as:

E = [E(w, w)]. 1  (10)

To quantify the energy behavior of the coding schemes we need to introduce a statistical energy

measure that is both physically meaningful and can lead to relatively simple algebraic expres-

sions. It seems appropriate to define the time average expected energy per transition of the bus,

Ea as the limit of the average expected energy consumption over N consecutive transitions when

N goes to infinity:

N
Ea = lim - . YE(L(k - 1), L(k)) (11)

N->ooN
k = I
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Throughout the Chapter, the over line means statistical expectation with respect to all random

variables involved in the expression; here is it with respect to L(k - 1) and L(k). In (11), the

quantity:

N

- E(L (k - I1), L (k))

k= 1

is the average expected energy drawn from Vdd during the first N transitions. The limit as N -> <x

provides the time averaging.

3.3 Energy Consumption Using TPC

Estimation of the energy properties of TPC schemes requires some assumptions on the statistics

of the input data {D(k) = (dI (k), d 2(k), ... , dm(k)) }k. The analysis will be presented for the

case where the data forms an i.i.d and uniformly distributed sequence in { 0, 1 }m. The resultfor

the case that the data sequence is not uniformly distributed is similar and will be stated without

proof

Supposefor now that {D(k) }k is i.i.d. and uniformly distributed. Then the stochastic process

L(k) (Figure 1) is first order homogeneous Markov [36] and the conditional probability for the

transition w -+ W1 is given by

-if Wj G Xi

Pr(L(k) = wI I L(k- 1) = w) = { 2"' (12)

0 otherwise

The transition probability matrix P of the states of the coding scheme is defined as:

P= [P i,j=I = [Pr(L(k) = w I L(k- 1) = w.)]M(13)

From equations (12) we conclude that

P = T/2 m (14)
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The probability (row) vector of the state L (k) is:

p(k) = [P,(L(k)= w) , ... ,Pr(L(k)= wM)] (15)

If p (0) is the probability distribution of the initial state L (0) of the bus, then using the Chapman-

Kolmogorov formula [36], that is: p(k) = p(r) - Pk-r,k ! r, we have

p(k) = p(0).Pk (16)

We use expression (16) to evaluate the time average expected energy of the general coding

scheme of Figure 1. We start by calculating the expected value of E(L(k - 1), L(k)). Let p(k)

be the i-th entrance of the probability vector p(k) and P be the (ij) element of the transition

probability matrix P. Then

M

E(L(k-1), L(k)) = , P,(L(k) = w ,L(k-1) = w) -E(wi, w)

i,j= I

M

= X P,(L(k) = w| L(k- 1) = wi)- (P,(L(k- 1)) = wi) E(wi,w 1 )
i,j= I

M

= X Pij -pi(k - 1)-E(wi, w)
i,j= 1

Let A * B = [a, < b 1, ] <,be the Hadamardproduc [37] of two matrices A, B of the same

dimensions. and let 1 be the (column) vector with all its coordinates equal to one. Then we can

write:

E(L(k- 1), L(k)) = p(k- 1)-(P.9 E) -1 (17)

and using (16),

k-I
E(L(k-1),L(k)) =p(O)-P (PeE) - 1 (18)

To continue on the evaluation of the time average expected energy it is necessary to recall our

assumption on the strong connectivity of the transition graph GT. As mentioned before the strong
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connectivity of GT is equivalent to the irreducibility of the transition matrix T and because of

(14), to the irreducibility of the transition probability matrix P, [37]. Moreover, the matrix P is

row stochastic by its definition. All these allow us to use the following modified version of the

Perron-Frobineous theorem. (corollary 8.4.6 in [37]).

Theorem 1 (Perron-Frobineous)

An irreducible row stochastic matrix P is similar to a matrix of the following block diagonal form:

A [Al ] (19)
0 Y

where Y is in Jordan form with eigenvalues of modulus less than one and A is the following

diagonal matrix:

2iti 4ci 2(q -1)mi>

A1 = diag 1, e q7 , eq, ... , e q (20)

The constant q is the number of eigenvalues of matrix P of modulus one. The number q is always

equal or greater than one.

Therefore, there exists a non singular matrix A and a matrix A as in the theorem such that:

P = A -A-A- (21)

Moreover, from expression (18) it is

E(L (k - 1), L (k)) = p(0) - A- A -- .A -' - (P*eE) - 1 (22)

and hence:

N N k-I

E(L(k- 1),L(k)) = p()-A - -Y l 0 A-1-(PerE)r1t(23)
Nk= IN k = 1 0 1k
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Since the spectral radius of Y is less than one, we have 1r ->0 as r -- <x. Also, for every

integer r it holds that ([38]):

N m 1Iif r is a multiple of q
him -I eq = (24)

N-->oN k0 otherwise

We can conclude from (23) that:

N

lim 1  TE(L (k - 1), L(k))=p(0) -A - e - e A-1 - (P E)-1 (25)

k = I

Since P is a row stochastic matrix, its right eigenvector corresponding to the eigenvalue one is 1.

T T
Therefore we can write that, A - el-el -B = 1 - bo . Where b0 is the left eigenvector of matrix P

T T T
corresponding to eigenvalue one, that is b0 - P = b0 , and satisfies b0 - 1 = 1. Therefore equa-

tion (25) becomes,

N

lim - E(L (k - 1), L (k))= p(0) - A - eT - e *-A -1 - (P*eE) -1N oN _______

k= I

T (26)
= p(O) - 1 - b (PeE) -1_

=bo -(P*eE) -I

where we have used, p(0) - 1 = 1. So, for the case of i.i.d. and uniform input sequence the time

average expected energy is,

Ea = b 0 -(Pe E) -1 -b 0 -(T*E)1 (27)
2m

Now, recall that the transition matrix T has a one in the (ij) position if and only if the transi-

tion wi -> wi is allowed. There are exactly 2m' ones in every row of the matrix T. In the case of

uniformly distributed input data the time average expected energy is not related to the particular

way that the data is mapped into the transitions of the bus.
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Now suppose that the data is an i. i. d. but non-uniform sequence. Let pP be the probability that

D(k) = i, i = 1, 2, ... , 2"'. (the obvious identification is used throughout the chapter between

the binary vectors (0, ... , 0,0), (0, ... ,0, 1),...,(1, ..., 1, 1) and the integers 1, 2, ... , 2m. This

is needed in order to use the matrix algebra). Then, every row of the transition matrix P contains

zeros and the numbers p1, p2, ... , pf1n. The analysis presented above is still valid if in the place

of T we use 2"' -P. We have:

Ea = b.(P.9 E) -1 (28)

3.4 Energy Estimation; Examples

Here we apply the derived formulas on the example of Section 3.1. Assume again a two-line and a

three-line bus with lambda equal to five. For simplicity we set CL = 1 and Vdd =I Using for-

mula (1) we calculate the transition energies for the 2-line bus:

New State

00 01 10 11

00 0 6 6 2

01 0 0 11 1
10 0 11 0 1

11 0 5 5 0

Table 2: Transition Energy of the 2-lines example bus.

In the example of Section 3.1 two bits of information are transmitted each time. Without using

coding and assuming the data is i.i.d. and uniform the expected energy per transmission would be:

0 6 6 2 0.25

Ea= [0.25, 0.25, 0.25, 0.25] 0 0 11 1 . 0.25 = 3 (29)
0 11 0 1 0.25

0 5 5 0 0.25

Suppose now we use the coding scheme presented in Figure 2. For the 3-line bus the energy of

the transitions is given below in Table 3:
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New State

000 0 6 11 7 6 12 7 3
001 0 0 16 6 6 6 12 2
010 0 11 0 1 11 22 1 2
011 0 5 5 0 11 16 6 1
100 0 6 16 12 0 6 6 2
101 0 0 21 11 0 0 11 1
110 0 11 5 6 5 16 0 1
111 0 5 10 5 5 10 5 0

Table 3: Transition Energy of the 3-lines example bus.

The codewords used in the example where w, = 000, w2 = 001, w3 = 010, w4 = 101,

W5 = 110, w6 = 111 . The energy cost matrix of the scheme, defined by equation (10), is:

0
0
0
0
0
0

6

0

11

0

11

5S

11

16

0
21

5

10

12

6

22

0
16
10

7

12

1
11

0
5

3
2
2

1
1

0

(30)

The probability transition matrix is:

0.25

0.25

0.25

0.25

0.25

0.25

0.25
0.25

0
0.25

0
0.25

0
0

0.25
0

0.25
0

0

0.25

0
0.25

0
0

0.25

0
0.25

0
0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25]

(31)

The left eigenvector b0 of P corresponding to the eigenvalue one and satisfying the equation

b 1 = 1 is:

Tbo= [0.250, 0.187, 0.062, 0.062, 0.187, 0.250] (32)
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So, the time average expected energy of the coding scheme, given by expression (27) is:

E T
Ea = bo -(P.9 E)1 = 2.3437

Moreover, the energy reduction is: OO (O3-2.343 % 21.88 %

Now suppose that the data is not uniformly distributed, but for every time k the random vector

D(k) has the probability distribution:

U: 00 01 10 11

P,.(D(k) = u) : 0.1 0.3 0.4 0.2

Table 4: Distribution of the Input vectors

Then the transition probability matrix P of the coding scheme becomes (see Figure 2):

0.1 0.3 0 0 0.2 0.4

0.4 0.1 0 0.2 0 0.3
P 0.4 0 0.1 0 0.2 0.3 (33)

0.2 0.4 0 0.1 0 0.3

0.2 0 0.4 0 0.1 0.3

0.3 0.2 0 0 0.4 0.1

The left eigenvector bT of P corresponding to eigenvalue one and satisfying the equation

T T
b0 -1 =1 is b0 = [0.251, 0.160, 0.087, 0.036, 0.196, 0.271]. The time average expected

T
energy of the coding scheme, given by expression (28) is: Ea = b- (P * E)- 1 = 2.736. If the

data was transmitted uncoded through a 2-line bus the time average expected energy would be:

0 6 6 2]0.1

Ea = [0.1,0.3, 0.4, 0.2] 0 0 11 1 . 0.3 = 3.94 (34)
0 11 0 1 0.4

[0 5 5 0_ 0.2

and so the energy reduction is: 100 -( 3 .94 - 2
4

7 3 l% = 30.6 %
3.94
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4. Two Algorithms for Deriving Efficient Coding Schemes

Suppose the original bus has m lines and that at each time moment, k, the input D(k) takes a

value (0...00), (0...01), (0...10),..., (1...l1) with probability pdpf,d...,p,. respectively.

Suppose that we expand the bus by a additional lines, so we have m + a bits to encode the data.

Throughout this section we assume that all vectors in {0, 11}m+a are possible states of the

expanded bus, in other words it is, M = 2m+a and W = {0, 1 }mI+ a. Without loss of generality

we can set w, = (0...00), w2 = (0...0),---, W2m+a = (1...11). The transition energy cost

matrix E is defined as in equation (10).

Definition.

Given the numbers m, a and the distribution pd = [4,pd , ... ,p, we define the set

( dm, a,pd) of all 2m + a x 2m + a stochastic matrices P such that: Each row of P has 2m entries

with (all) the numbers pd, d, ... I and the rest 2m+a - 2m of the entries are zeros.

Example: Let m = 2, a = 1 and pd = [2, 1, 2, 5]/10. The following three matrices are mem-

bers of the set II(m, a, pd)

52001002 52001002 52001002

52010002 25000102 25000102

50220010 10520020 10520020

P - 1 5 1 0 2 0 0 0 2 P2 2 0 1 5 0 0 0 2 P3 2 0 1 5 0 0 0 2 (35)
10 5 1 0 0 2 0 0 2 10 2 0 0 0 5 1 0 2 10 2 0 0 0 5 1 0 2
52002100 12002500 02002501

50100022 20100052 20100052

_52010002 _20020015_ _20020015

Following the discussion in the previous sections, the design of an efficient TPC scheme given the

parameters m, a,pd is equivalent to choosing a "good" matrix P from the set I(m, a,pd). Note

that P leads directly to the calculation of the time average expected energy using expression (28),

Tthat is Ea = b0 (P * E)- 1 with b0 the left probability eigenvector of P.
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4.1 Approximately Optimal Coding (AOC)

Motivated by expression (28) where the matrix P is involved in the point-wise product with the

energy cost matrix E, we may attempt to achieve a low value of Ea by simply choosing P so that

each entry of the matrix P * E is minimal. In other words, minimize the quantity 1 T- (P * E) - 1

instead of b .(PeE) - 1.

Example: Lets apply this idea to derive a scheme that encodes a 2-bit sequence with probability

distribution pd = [2, 1, 2, 51/10 into a 3-line bus. Lets assume a bus with X = 5 . Using expres-

sion (1) and definition (10) it is:

0 6 11 7 6 12 7 3
0 0 16 6 6 6 12 2

0 11 0 1 11 22 1 2

E= 05 5 0 11 16 6 1

0 6 16 12 0 6 6 2
0 0 21 11 0 0 11 1

0 11 5 6 5 16 0 1

0 5 10 5 5 10 5 0

We examine the first row, [0, 6, 11, 7, 6, 12, 7, 3] of the matrix E. An optimal choice for the first

row of the stochastic matrix P would be [5, 1, 0, 0, 2, 0, 0, 2]/10. Note that the maximal entry

of the probability vector, pd = [2, 1, 2, 5]/10 was matched with the minimal element of the first

row of E. The second maximal element of pd was matched with the second minimal element of

the first row of E etc. In general this procedure requires only sorting the elements of the rows and

it guarantees the minimality of the of the matrix P * E and moreover the minimality of the vector

(P * E) 1. In our example, a stochastic matrix in 1-I(m, a, pd) that minimizes the quantity

(P e E) -1 is:
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51002002
520 10002

502200 10
* 5 1 0 2 0 0 0 2 (36)

10 5 1 0 0 2 0 0 2

52002100
50 100022
51020002

The product (P * E) -1 becomes:

24

10

3

(P* E) 1 - 1 7 (37)
10 10

0
7

15

Using matrix P* we can calculate the time average expected energy of the coding scheme. The

left probability eigenvector of P* is (b *)T = [0.5, 0.111, 0, 0.064, 0.125, 0, 0, 0.2] and the time

average expected energy is: Ea = b0o -.(P* * E) - 1 = 1.781 . Note the fact that vector b0 has

only five non-zero elements. This means that the stochastic matrix P* we chose corresponds to

TPC schemes with only the five codewords: (000), (001), (011), (100) and (111). Note also

that since the input vectors (00) and (10) have both probability 0.2, the assignment of the inputs

to the transitions is not unique. For example, the transitions from state 1 to states 5, 8 can be

assigned to inputs (00), (10) respectively or to (10), (00). Below we see a transition diagram

based on P* with a specific input assignment.
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(11) (000)
(01) (001)

(000) (00) (100)
(10) (111)

(11) (000)
(00) (001)

(001) (01) (011)
(10) (111)

(11) (000)
(01) (001)

(011) (1 ) (011)
(00) (111)

(11) (000)
(01) (001)

(100) (10) (100)
(00) (111)

(11) (000)
(01) (001)

(111) (00) (011)
<(10o)

Figure 3: Example transition diagram

We know from the example of Section 3. that without coding, the expected energy consumption

when transmitting the data though a 2-line bus is as in equation (34):

0 6 6 2 0.1

Ea = [0.1, 0.3, 0.4, 0.2] - 0 0 11 1 . 0.3 = 1. 9
0 11 0 1 0.4

_0 5 5 0_ 0.2

(38)

The energy reduction using this simple minimization is:

100 (1.9- 1.7 8 1j%= 6.26 %
1.9

which is insignificant. This very low energy reduction (it might be negative is other cases) is

because we ignored the steady state probability vector b0 during the optimization process. Using

the TPC algorithm that is presented in the next section the energy reduction for the particular

example is 26.5%.

Although Approximately Optimal Coding may not be efficient for small m, it gives very good

results for m 7. In addition, it is a low complexity procedure.
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The efficiency of approximate optimal coding for m 7 will be demonstrated by examples in

the following section. The efficiency is due to the tendency of the eigenvector b0 of P to become

(more) uniform for large m and m + a.

4.2 Transition Pattern Coding (TPC) Algorithm

The objective of the TPC algorithm is to find a TPC scheme with as low time average expected

energy as possible. In other words, to find a good approximation of the solution of the minimiza-

tion problem:

Min

Pe 17(m, a,pd)
bT. (P.9 E) -1.

We always assume implicitly that b0 is the left probability eigenvector of P. In the case that P is

not strongly connected we keep the largest component of it and reduce the set of codewords

appropriately. The TPC algorithm is presented below.

k:= 0,4:= 0, P*: [0]

Repeat

P*
old :=P

k:= k+1

P* = argmin

Pe H(m, a, pd)
(E +1 -T).qp

S=[(E + 1-. T)9p*]- 1

Until P* = Po*

Figure 4: The Transition Pattern Coding algorithm
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The algorithm operates "backwards" and the variable k counts the backward steps. At each step

the value of the vector 1 = (, *2,.. -,M)T and the stochastic matrix P*, that belongs to

H(m, a, pd), are renewed. To keep track of the steps we think of 4 as 4(k) and P* as P*(k). For

each k, the value of j(k) is the expected energy cost of a (forward) random path of length k

starting from state i and evolving with transition probability matrices P*(k),

P*(k-1)P*(1)

(k) ((2) (0) 4(0)

P*(k) P*(2) P*(1)

1 1

Figure 5: Expected costs of forward paths using the stochastic

matrices derived by the optimization process.

To see this we start with k = 0. Since zero steps have been encountered starting from state i, it is

of course j( 0 ) = 0. For k = 1 the stochastic matrix P*(1) is chosen within 1-H(m, a,pd) so

that starting from state i the expected cost of one step path starting from any state is minimal.

Since 4(0) = 0, the choice of P*(1) minimizes the quantity E 9 P. Also, the expected costs of

one step starting from different states are given by the vector 4((1) = ( E * P) - 1. On the k-th

iteration of the algorithm the matrix P*(k) is chosen to minimize (E + 1 T) 0 P and moreover

to minimize [ (E + 1. -T) 0 p*] - 1. The minimizations of the M rows of (E + 1 -4T) 0 P are

independent to each other. The i-th row:
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eT- [ (E+1 -4T) 9 P*(k)] -1 = ef-(E 9P*(k)) -1+e, - [ (1. -T(k-1)) e P*(k)] -1

=, - E * P*(k)) - 1+ eT- P*(k).-4T(k- 1)
M (40)

p p(k) - (E(ij) + E(k- 1))

j=1

is the sum of the expected costs of the steps going from the k-th to (k-J)-th state, plus the expected

cost of a path of length k - 1 starting from the (k-])-th state. The algorithm stops the first time the

calculated transition probability matrix equals the previous one.

Example: Let m = 2, a = 1 and pd = [2, 1, 2, 5]/10 as in the example in the beginning of

Section 4. Again we assume a bus with X = 5. The TPC algorithm terminates in three steps. For

k = 1, 2, 3 it gives the stochastic matrices P*, P* !Y3* shown in (35). These stochastic matrices

result to time average expected energies: 1.7854, 1.3981, 1.3962 respectively. For k = 4 it is

P* = P*.

Example: Now assume that m = 8 , a = 1 and a bus with X = 5. The algorithm is run for the

following three distributions on the left of Figure 6. That is: uniform, triangular and truncated

gaussian. The energy savings resulting using the stochastic matrices P*(k), k = 1, 2, ... of the

algorithm are shown on the right. The first step, k = 1 corresponds to A OC and as we see gives a

performance very close to the that of the final stochastic matrix. As it was mentioned before, this

is the generally the case for m 7. For the three input distributions, the algorithm requires 7, 10

and 11 iterations to stop.
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Input Distribution

(111

4 E-3 --

(000..0)

4 E-3 ---

(000..0)

1O E-3- -----

(000.0)

30

20

10,

[..1

1..1

)04

-":

) 0J

0 --

40-

60

40

20

(111..1)

Iterations of the algorithm

- Z -, - - - -- -

----- ------ --- -------- --- - -----------------

<2 3 4 5 6 7

- -- - - -- - -- - -- - -- -

-- - -- -

0-- - ---- -

~12 3 4 5 6 7 8 9 10
-r---

t---------- -------------- --- L iL T-- ---------- -- L-4--------
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Figure 6: Energy savings corresponding to the stochastic matrix derived in each iteration

of the TPC algorithm for different input distributions.

4.3 Results of the TPC Algorithm

The transition pattern coding algorithm has been used to derive coding schemes for many combi-

nations of values of the quadruple (m, a, k, Input distribution) assuming the bus model as in

Section 2. In Figure 7 we see the energy reductions (with respect to the uncoded bus) of coding

schemes derived when m = 2, 4, 8 , a = 1, 2 e [0, 10] and with three input distributions: uni-

form, triangular and truncated Gaussian of normalized variance: a/D = 0.5. Each star "*" in

the graphs depicts the energy reduction of a coding scheme with a particular quadruple

(m, a, k, Input distribution). The energy reduction can be arbitrarily high and depends

strongly on the distribution of the data. For example the graph on the right upper corner shows

reduction up to 80%.
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Figure 7: Energy reduction for m = 2, 4, 8, a = 1, K = 0, ... , 10

and different input distributions

In the previous figure we saw results attributed to coding schemes with a = 1 , i.e. with only

one additional line. It is true that in most of the cases more additional lines result to higher energy

reduction. This of course is not for free. Larger a means more additional chip area for the bus.
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In the following figures we see the energy reductions of schemes resulting from the TPC algo-

rithm when m = 4, a = 1,2, 3, X c [0, 10] and uniform input distribution. The savings are

compared with that of Bus Invert [8].

5 0 --- --
a=3

m=4

20-

1 0 1 - - - - - - -
0 5 10

Figure 8: Energy Savings of TPC and Bus Invert for uniformly distributed input data

4.4 Copying With Complexity
A way to reduce complexity is to split the input data into groups and then encode each group inde-

pendently of the others. The approach is shown below.

L(k) Bus

Encoder - Decoder

CTCI
Encoder . Decoder

2 2
D (k) ( C D D(k)

T I

C

Encoder Decoder
n ._n

Figure 9: Partitioned Coding Scheme: A juxtaposition of simpler blocks
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The energy dissipation in the partitioned coding scheme equals the sum of the energy dissipa-

tions of the individual blocks plus the energy losses due to the interactions at the boundaries of

adjacent blocks. These interactions take place between the last line of the 1st block and the first

line of the 2nd block, the last line of the 2nd block and the first line of the 3rd etc. The calculation

of the expected energy dissipation caused by the interactions is presented in the next section.

4.5 The Interaction Energy

The energy loss caused by the interaction of two consecutive blocks corresponds to the X 's of

Table 1 when V1, V2 are the values of the touching boundary lines of the two blocks. For simplic-

ity, all coding blocks are assumed similar with parameters m,a, WM and functions F and G as

defined in Section 3. Let L(k) and L'(k) be the codewords of two consecutive coding blocks B

and B' at time k. Suppose B is above B' (for example, in Figure 9 B and B' could the 1-st. and

2-nd block respectively). Let l(k) be the last (bottom) bit of L(k) and l'(k) be the first (top) bit

of L'(k). So l(k) and l'(k) correspond to adjacent lines in the bus. From Table I we extract

Table 5 that presents the interaction energy at time k caused by the inter-line capacitance. Call this

(normalized) energy cost J(k).

J(k) [1(k + 1), 1'(k + 1)]

00 01 10 11

[l(k),l'(k)] 00 0 X X 0

01 0 0 2k 0

10 0 2X 0 0

11 0 A 0

Table 5: Energy drawn from the power supply because

of the interaction of adjacent lines l(k) and 1'(k).

Since the purpose of partitioning the bus is to reduce the complexity of the encoders/decoders

as well as the calculation of the total energy of the scheme, it is necessary to make the following

simplification. We will assume that the data streams fed into the individual encoders of the parti-
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tioned scheme are statistically identical and independent to each other, not necessarily i.i.d.

sequences though. This approximation is not far from reality. Many data sources produce

sequences of data where bits of similar significance tend to have high statistical correlation. On

the contrary, bits that have very different significance tend to be more independent.

Following our assumption, the random variables 1(k) and '(k) are independent (because the data

streams to different blocks are independent) and the expected value of J(k) is given by Table 5,

J(k) =

X-Pr(l(k) = 0, l'(k) = 0, (k+ 1) = 0, 1'(k+ 1) = 1) +

X -Pr(l(k) = 0, '(k) = 0, l(k+ 1) = 1, t(k + 1) = 0) +

2k-Pr(l(k) = 0,l(k) = 1, (k + 1) = 1, l(k + 1) = 0) + (41)

2X Pr(l(k) = 1, '(k) = 0, l(k+ 1) = 0, t(k + 1) = 1) +

k Pr(l(k) = 1,l'(k) = 1, l(k+ 1) = 0,l'(k + 1) = 1) +

X . Pr(l(k) = 1,1P(k) = 1, l(k + 1) = 1, l'(k + 1) = 0)

By grouping the half of the 4rh term with each of the 1st and the 5th terms and the half of the 3rd

with each of the 2nd and the 6th terms and taking into account that the two bit sequences {1(k) }k

and {'(k) }k are independent (to each other), (41) can be rewritten as:

J(k) =

X P,( l( k+ 1 ) =0 )- P,(rl(k) = 0, 1'( k+ 1 ) =1) +

X Pr(l'(k+ 1) = 1) - Pr(l(k) = 1, l(k + 1) = 0) + (42)

X-P X'(k +1)=0)-Pr('(k) =0,I(k +1)=1) +

X- Pr(l(k+ 1) = 1) - Pr(l'(k) = 1, '(k+ 1) = 0)

To evaluate the different probabilities it is necessary to define the following sets of codewords W.

Let W0,, and W1, be the sets of the codewords whose first bit is 0 and 1 respectively. Similarly

let W, 0 and W, be the sets of the codewords whose last bit is 0 and I respectively. Then, for

any a, Pin {0, 1} it is:
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Pr(l(k) = a, l(k+ 1) =I) = Y, Pr(L(k) =v , L(k+1)W)
v E W..,w , cW.

(43)

= X Pr(L(k+ 1) = w L(k) = V)P,.(L(k) =v)
v E Wa, w e W~p

Similarly it is,

Pr(l'(k) =OL,1l'(k+1) =P) = S P,(L'(k+ 1) = w I L'(k) = v) -P,(L'(k) =v) (44)
vs W., w e W ,

To get a compact expression for J(k) we need a few more definitions. For a = 0, 1 and

h = {1 if weW*= }

0 if we Wa

Then (43) and (44) can be written as

h= I if w e wa
0 if wg Wa*

M

Pr(l(k) = o, l(k+1)=)= PiJpi(k) -ha -hp

41j=1

and

M

Pr(l'(k) 0,(k+1) Pfl S j-pi(k)-h' h

iC=1

respectively. We also have that

Pr(l(k+1)=) =

Pr('(k+ 1) = ) =

M

pi(k+ 1) -h'a
i = 1

M

26p,(k + 1) -h a*
i = I

Finally we define the four diagonal matrices
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H*a = diag(h,, h2a --- , h*)

Ho, =diag(h1 , h2 *, ha)

Example: For the TPC scheme presented in Figure 2 we have the six codewords w, = 000,

W2 =001,W3 = 010,w 4 = 101, w5 =

w*o - {wi,w 3 ,w

W,= {W2, W3, W

110 and w6  I -IiTherefore it is:

51 WO {W1,W2, W3}

61 w1 W4 ,W51 W6 }

and so,

1 0
0

1

0

1

0
-1

oj

0]
1

1
0

0

0O 0j

H* =

0

1

0

1

0

0

0
0

1

1

0O

From the definitions of Ha , H, and expressions (45) - (48) we get:

Pr(l(k) = Otl(k + 1)=) p(k)-H*a -P -H*p.-1

Pr(l'(k)=CL'(k+ 1) =f) =p(k)-Ha* -P -H ,.1

(50)

(51)

(52)Pr(l(k+ 1) = () = p(k+1) -Hct.1

Pr(l'(k + 1) =a p(k + 1) -HO,, .1 (53)

Combining equations (50)-(53) and using (16) (the Chapman- Kolmogorov formula [36]) we get

expression (54) for the expected value of the interaction energy between the adjacent lines 1 and
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1' at the k-th transition.

JRk) =k-[P(O).- p -IH,_,].- [P(O).- pk-HO*'- P - H1,- ]

+ X-[P(O) - P k+I -H z,-_I].- [P(O).- p - H, I - P - H o-1]

k+I - (54)
+X-[p(O)- -k+ HO.1]-[p(O)-P-k.H*-P-H,.-1]

+ -[P(O) -P -k+I H, 1][P(O) P -Hl, -P -H*-

Since we are interested in estimating the interaction energy over long periods of time it is neces-

sary to introduce a new energy measure. We define the time average expected interaction energy

(TAEI) as:

N

Eai= limL -XJ(k) (55)
N - N

k= 1

To calculate the time average expected interaction energy between consecutive blocks of the par-

titioned coding scheme of Figure 9 the decomposition of the transition probability matrix

P = A - A -B from theorem 1 is used. Again, A = [1,aa, ... ,aI] consists of the (right)

eigenvectors of P (appropriately ordered) and B = [bo, b1 , ... , bM T is the inverse ofA. Then,

2ii
k Tq-1 2-Crk T

P = 1bo+ e k-ar*br+A- - . B (56)
r =_0 I-

From theorem 1 we have that " --> 0 as k ->oo and so the 1st term of (54) becomes,

q -- 2"'rk
k±1 IT qq.2iTr

p(0) -Pk H 0 - 1 = b -H,0 -1+ e p(0) - ar -br -H,0-1+ el(k) (57)

r I

and

p(O) -P' -H * P -H *1--

q-1 2 rk (58)
=b 0 HO* -'P - H,1+ e *p(0) - a,-b.-HO* - P - H, I+sE2(k)

r =
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where c, £2 -> 0 as k -> o. The rest of the terms in (55) can be expressed similarly. After

lengthy algebraic manipulations it turns out that,

Eai=A-bo T. [Hl*.P.Ho* + H*I-P-H*0] -1

q-14 ((59)
- 4 - ,sin 2 (0) -ar2-(br.H0-1)- Ir(br-Ho,.1)

r =I1

Where br is the complex conjugate of the eigenvector br and q is the number of eigenvalues P of

modulus one (Theorem 1). As it has been mentioned before, the case of q = 1 corresponds to

TPC's with connected transition graphs. This is always desirable in practice and so from now on

we assume that q = I . Then, formula (59) simplifies to the very compact one:

Eai = X-bo. [Hl*,.P.Ho* + H, 1 .P-H*0 ].1 (60)

Example: Following our example of the TPC scheme in Figure 2 and assuming uniformly distrib-

uted data we have the probability transition matrix P of expression (31) with the maximal eigen-

vector b0 given by (32). Then for X = 5, if we replace (49) into expression (60) we get:

Eai = X.b 0oT[Hl,.P-H0* + H, 1.P-HI*0]

-T

0.250 0 0 1 1 0 0 1 1 1 0

0.187 0 1 1 0 1 0 1 1

=5 0.062 0 1 0 1 0 1 1. 1 +

0.062 1 4 1 1 0 1 0 1 0

0.187 1 1 0 1 0 1 1 0

0.250 0 1 1 1 0 0 1 1_ _0 0-(61)

0 0 110011 1 0 1

1 110101 0 1

+ 0 10 10 1 11 1 =2.1875
1 4 11ioi 0 1

0 1 0 1 0 1 1 1 1

_0 1- _1 1 0 0 1 1_ _0 0_ 1_
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4.6 Total Energy Consumption of the Partitioned Coding Scheme

Having formulas for the time average expected energy of the individual coding blocks and also

formulas the time average expected interaction energy between the blocks, the total time average

expected energy consumption (TTAEE) (defined similarly) of the whole coding scheme in

Figure 9 is given by (62).

ET = n -Ea + (n - 1) -Eai (62)

where n is the number of blocks. And for the case q 1 we have,

ET = n-bo (TeP).1+X .(n-lI).bo [H 1 -P.IHo+ +H*1 P.H 0 ].1 (63)

Note that this energy is normalized with respect to Vdd and CL , so the actual energy consumed is

dd x CL x ET. Figure 10 presents the energy saving of the TPC given by the algorithm for some

combinations of the parameters, number of blocks n, data lines m, bus lines m+a, lambda X.
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5. Conclusions

The purpose of this work is to provide a mathematical framework for designing coding schemes

for low power. Given a specific bus structure and estimating or measuring the distribution of the

data, the two proposed algorithms provide coding schemes that in theory can result in significant

energy reduction. For practical application of a specific scheme, or a set of TPC schemes, further

work will be required to estimate the complexity and the energy overhead of the encoder and

decoder. Both complexity and overhead depend strongly on the particular technology as well as

the specific circuit implementation that will be used. Another issue that has to be addressed is that

coding schemes are non-catastrophic, or the encoder/decoder have a periodic resetting mecha-

nism.
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Chapter 6

A Charge Recycling Technique

For Power Reduction

In Deep Sub-Micron Buses

1. Introduction
In this Chapter we study charge recycling as a technique for power reduction in deep sub-micron

buses. The basic idea of charge recycling is illustrated through the following example.

Suppose we have a power supply of voltage Vdd and two capacitors of the same size C, both

of which have one of their terminals connected to ground. Suppose also that, initially, capacitor #1

is charged to Vdd and capacitor #2 is completely discharged. We call this combination state A.

Now assume we want to end up with state B that is when the charges have been reversed, i.e.

when capacitor #2 is charged to Vdd and capacitor #1 is completely discharged. There are at least

two ways of going from state A to state B. One is, by brute force, to discharge capacitor #1 and

then charge capacitor #2 using the power supply. This implies an energy loss of CVd. This is

because we loose CVd/2 by discharging #1 and CVd/2 more by charging #2 directly from the

source.
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An alternative way of changing state is first to connect the two capacitors together. This

implies an energy loss of CV2/4 and that the two capacitors are finally charged at Vd/ 2 .

Then, we discharge #1 completely, and so loose CVd/8, and also charge #2 from the source,

which results to an additional CV2d/8 of energy loss. The total energy loss for the second strat-

egy is only CVd/2,that is, the half of the energy loss when we change the state by brute force.

This simple example is the basic principle of charge recycling and adiabatic charging. The dis-

tinction between the terms in practice is that adiabatic charging is mostly associated with the use

of inductors while charge recycling is not.

Charge recycling strategies have been proposed as approaches to reduce the power dissipation

in buses [3]-[5]. All of them have used a bus model where there is no coupling between the lines.

As it was discussed in Chapter 2, the issue with the modern deep sub-micron technologies is that

they introduce strong coupling between neighboring lines. This is especially true in buses. There-

fore a charge recycling approach is needed that is appropriate for deep sub-micron technologies.

The purpose of the present chapter is to discuss such a Charge Recycling Technique (CRT),

present the mathematical limits of the possible energy reduction and suggest an efficient circuit

design for the necessary control network.

In theory this technique can result in up to 50% power reduction. It is even more powerful

when combined with Bus Invert coding [6]. The specific circuit, the CRT driver, that implements

the CRT, is a modular design that can be parallelized in order to operate with buses of arbitrary

size. For the HSPICE simulations the circuit was used on a 4-line and an 8-line bus resulting in a

net energy saving (taking into account the energy consumption of the circuit itself) of up to 32%.

Application of the technique on large buses of 32 or 64 lines or capacitively heavy interconnect

networks in Field Programmable Gate Arrays (FPGAs) are expected to result to even higher net

energy savings [11].
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2. Bus and Drivers Models
We use the bus model of Figure 7 in Chapter 1 to demonstrate the Charge Recycling Technique

(CRT). We assume it has n lines, and the fringing capacitance CF is negligible. For convenience

it is shown below along with the drivers of the lines.

V V V
1  2V 2 nV3  V

C C CC C

Figure 1: Deep sub-micron bus energy model with drivers

CL is the capacitance between each line and the ground, and C is the capacitance between adja-

cent lines. Again we use the technology parameter lambda, X = C1/CL. Recall that for .18g

technology, k can be up to 5 and for .13 g technology it can be up to 9. Also recall from Chapter

2 that under some mild assumptions, the model of Figure 1 has the same energy behavior as its

distributed version. To simplify the theoretical analysis we set Vdd = 1 . All energies calculated

under this assumption must be multiplied by the factor gg to give the real energy value. The

drivers are modeled as in Figure 2, [8].

P N
The resistors Ri (t) and R1 (t) correspond to the PMOS and NMOS transistors of the drivers.

Their values can be almost arbitrary functions of time. The switches si and si are complementary

and their status corresponds to the desirable values of the lines. The parasitic capacitances of the

drivers outputs can be lumped into CL -
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i-th driver:

Ig( t)

Vdd

IR (t)
line i

S. IN
RW It

Figure 2: Bus Driver Model

3. The Charge Recycling Technique (CRT)

In this section we present the two steps of the charge Recycling Technique (CRT). Let T be the

clock cycle period of the bus. New data is transmitted through every T seconds. We divide the

time interval [0, T] into the sub-intervals In t and In t2 , the two steps of CRT. The two steps are

related in time as in Figure 3.

Lines have settled to
their intermediate values

1St
Step

0 Int T/2 Int 2

Lines have settled to
their final values

2nd
Step

I t

T

Figure 3: Timing of CRT

Suppose now that during the clock cycle the bus transitions from its current values,

x = [xI, x 2, ... Xn] , to its new values, y = [YIY2' ... Y]T (the values xi, y correspond to

line i). Since we have done the normalization, Vdd = 1 , all entries x, and y, belong to {0, 1}.

T
The voltages of the lines as functions of time t~ c [ 0, T] are denoted by V = V1, V2, ... ,V, ]
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At t = 0 and t = T it is V(0) = x and V(T) = y respectively. The CRT is presented in

Figure 4 with the modified driving circuit. We agree that switch wi takes the value 0 if the node i

is connected to the output of driver i, and the value 1, if the node i is connected to the common

node q. During Int, the lines that change logical values (during the transition x -> y) are con-

nected to common node q and not to their drivers. The lines retaining their logical values remain

connected to their drivers. (This is a difference to the strategy in [5]. If there is coupling between

the lines, then, keeping the ones retaining their values connected to their drivers during the recy-

cling phase or not results in different energy patterns.). During Int2 all lines are connected to their

drivers.

(q) V0

t t
14 40 14 40 14

W2  3

12(t) I3(t)

V 1  2LV 2 1 3V 3

LC, C C

F CI-CLI

0 1

n

I (t)

nV

CL
CLI

Figure 4: CRT - Network connections
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3.1 First Step (Int 1)

For every line i = 1, ... , n we set, di = x ®Dyj . We also define the vector d = x@y where

d = [d 1 , d2 , ... , d,] and the diagonal matrix:

D = diag(d1 , d, ... , d,) (1)

During the transition, line i changes value if and only if di = 1 . According to the CRT, during

the time interval Int = (0, T/2 ] the lines with changing values are connected to node q and the

rest remain connected to their drivers. Therefore the i-th switch must have the value:

Wi = di = XiED y

and the network must be configured appropriately. For example lets assume that n= 4,

T T T
x = [1,0, 0, 1] andy = [1, 1, 0, 0] . Then d = [0, 1, 0, 1] and during In t the network is

configured as in Figure 5.

(q) V

Vdd

R P RN

0 110 11 f 0 I1 0 11l

1 V1  2 V2  3 V3  4 V4

C, c C,

Figure 5: Example (n=4)

166



During Intl the dynamics of the network satisfies the set of differential equations (see Figure 4),

I1 = CL 1Vl + C- - 2)

Ik = CI-(Vk-Vk- 1)+CLV' 1+ CI -(Vk k+1), 1 < k<n (2)

In =CL n+ Cr-(V- ni-n)

If we define the currents vector I = [I ,25 ---. IIn] and the n x n capacitance conductance

matrix of the network shown in Figure 4, that is:

1+2k -k 0 ... 0

-X 1+22X -4 0
CT 0 -X : : CL (3)

: : : 1+2k -?

0 0 ... - 1+2.

then, equations (2) can be written in the compact form:

CT V = 1 (4)

Now note that for i = 1,..., n the current I(t) is drawn from the driver if di = 0 and from

the node q ifdi = 1 .The charge conservation at node q implies that I I(t) = 0 or in vec-
i:d = 1

tor form:

T
d I = 0 (5)

Replacing (4) into (5) we the identity, dT CT V- = 0. Integrating it over the time interval

Intl = (0, T/2 ] of step 1 gives:

d.-CT-(V(D)-V(O)) = 0 (6)

where V(0) = X = I ,x 2,---,xI] are the initial conditions of the lines and

V() = [V 1 (2), V2 (), -...-, V(j] are the intermediate ones.

167



Here we make the assumption that the time length T/2 is sufficient for the voltages of the net-

work to settle. This assumption is reasonable for the current technology and is always used in the

analysis of charge redistribution (and adiabatic) techniques. So for i = 1, ..., n the voltage V()

is either x ifdi = 0 or z= Vq(1) if d. = 1. The value z is of course the same for all lines that

change logical value. Algebraically we have that V(T) = (1 - d) - x,+ d - z, or in vector form

that:

V(T) = (I-D)-x+z-d (7)

where I is the n x n identity matrix. The matrix D and the vector d are as defined before. From

(6), (7) and V(O) = x we get:

(d .Cr-d)-z = d -CT-D -x (8)

Now note that matrix CT is positive definite. This implies that the quantity (d . CT- d) is

positive if and only if (d # 0) or equivalently, if and only if at least one line changes value during

the transition x -> y. If there is no change during the transition then the energy dissipated during

the transition is zero. For now we assume that at least one line changes value. Then from (8) we

get,

Z = '(T) d - CT - D - x
z=VT() d C D(9)

d -.C.-d

3.2 Energy Dissipation on Step 1

Here we evaluate the energy that is drawn from Vdd on the first step of CRT. The current I vd(t)

drawn from Vdd during (Int 1 ) is the sum of the currents drawn by the lines that do not change

logical value during the transition and remain connected to Vdd through their drivers, i.e the lines

i = 1, ... ,n for which x = y = 1. So,
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Vd:dxt)=I x
and y, = I

n

i= 1x (

Ii ()

- di) -I(t)

which can also be written in matrix form as:

I Vdd(t) = (I-D) (t) (10)

(Symbol I is used for both the current vector and the identity matrix. Is should be clear what I

represents each time). Using equation (4) and (10) we have that,

(11)IVdd (t) = x -(I-D) - CT"V

Because of the normalization Vdd = 1 the energy drawn from Vdd during step 1 is:

T/2

EI= Ivd(t)dt

0

By replacing (11) in the integral we have ET = x (I- D) -CT (V( ) V(0)). Finally we use

(7) to get:

T
E 1 =.x -(I-D) -CT (z d-Dx) (12)

And by replacing z from (9) into (12) we have

T
El1 (X, Y) =x D)C d TC- -T D -x 

\, d -Cr - d ,

if d 0 andEl = 0 ifd = 0.
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3.3 Second Step (Int 2)
During the second step of the CRT, the time interval In t2 = (T/2, T], every line is connected to

its driver (with the new value yi). So for all i = 1,..., n it is wi = 0 . For the example with

n = 4,x = [1, 0, 0, 1] andy = [1, 1, 0, 0] , the network is configured as in Figure 6. Equa-

tion (4) holds during the second step as well.

(q) VO

S I I I

0 16 0 1 6 0 14 0 1a
Vd ( :)dI (t =-(t I4(t)

V V 2  3 V 3  4

_Ci C C>

CLFr 6:L 2: Eml

Figure 6: Step 2: Example (n=4)
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3.4 Energy Dissipation on Step 2

During Int 2 the current drawn from Vdd equals the sum of the currents I(t) of the lines con-

nected to Vdd (through their drivers). So,

n

Vdd () = S I(t)= 5y -Ii(t)
i:yj=1 i=1

or in vector form,

Replacing (4) into (14) we get,

I VeldT (14)

S(t) = T CT- V (15)

The energy drawn from Vdd on step 2 is E2 =

T

S Vdd(t)dt. Replacement of (15) into the integral
T/2

gives,

TE=y CT(V(T)-V(D)

Finally, V( T) = y, (7) and (9) imply,

E 2 (x,y) = T -CT' {Y(I-D)-x@dTCrDj-}
Sd -CT.-d
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4. Energy Properties of CRT

The total energy E(x, y) drawn from Vdd during the transition x -> y is of course

E(x, y) = EI (x, y) + E 2 (x, y). Using the identity (I- D) -x = (I- D) -y and expressions (13)

and (17) we get,

E(x,y) = y T- C(y-x)+yT -D - CT(D -x-z - d) (18)

where z is given by (9). The first term of the right part of (18) equals the energy drawn from Vdd

by the bus during the transition x -+ y when no charge recycling is applied [7]. The other terms

correspond to the energy difference (savings) due to CRT.

[] with CRT E] without CRT

(Y11Y21Y3)

000 001 010 011 100 101 110 111

000 0 6 11 7 6 12 7 3
0 6 11 7 6 12 7 3

001 0 0 10 6 3 6 6.3 2
0 0 16 6 6 6 12 2

010 0 5.1 0 1 5.1 11 1 2
0 11 0 1 11 22 1 2

011 0 5 5 0 5.3 10 3 1

0 5 5 0 11 16 6 1
100 0 3 10 6.3 0 6 6 2

0 6 16 12 0 6 6 2
101 0 0 10 5.1 0 0 5 1

0 0 21 11 0 0 11 1
110 0 5.3 5 3 5 10 0 1

0 11 5 6 5 16 0 1
111 0 5 10 5 5 10 5 0

0 5 10 5 5 10 5 0

Table 1: Transition energies with and without the CRT
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For a better intuition on how CRT influences the bus energy transition patterns, table 1 presents

the case of a three line bus n = 3 when X = 5. Five is a representative value of X for the case of

.18 g technologies (with minimal distance between the wires). For simplicity we set

CL = Vdd = 1-

For each transition (x1, x 2, X3 ) - (Y1, Y2, Y3 ) the shadowed value (below) is the energy cost

T
without CRT, equal to y - CT' (y - x). The numbers on the white background (above) are the

energies with CRT, i.e. to the values given by (18). The energy with CRT is always smaller. Also,

the highest percentage of energy reduction occurs in the most expensive transitions 010 -> 101

and 101 -> 010 where adjacent lines transit in the opposite direction and the interline capaci-

tances are charged by 2 x Vdd .

5. Energy Reduction
The result for the transition energy, formula (18), allows us to estimate numerically the expected

energy drawn by the bus when the CRT is used. We do this for the case of uniformly distributed

i.i.d. data.

100% M A 0

80% EM Z 5
JO = 10

60%o

400%

20%

n 2 4 8 16 32 64 128 256

Figure 7: Energy with CRT / Energy without CRT
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In Figure 7 we see the expected energy using CRT as a percentage of the expected energy without

CRT for the cases of n = 2,4,8,16,32,64,128,256 and A = 0, 5, 10. The figure suggests that for

the number of lines n = 32, 64, 128, 256 the energy drawn from Vdd can be reduced to one half

using CRT. Also, the results are independent of the capacitance to ground CL, and they slightly

improve when A increases. In general A tends to increase with technology scaling.

6. CRT and Bus-Invert

In the previous sections we showed how CRT reduces energy consumption. In Figure 8 we

present an architecture where CRT is combined with Bus-Invert coding [6].

n n+1 lines Extended Bus
inputs n+l lines

IkBus)
2 (k) Charge

u 2(k) Invert : Recycling

Coding Xn(k) Driving
u (k)Network

un(k)c(k)

Figure 8: Combination of CRT with Bus Invert coding

The Bus Invert coding works in the following way. Let u(k) = [u(k), u2 (k), ... , u(k)] be

the new input vector and x(k) = [xI(k), x2 (k), ... , x(k)] be the new vector of the values of

the lines. If the vector u(k) (Dx(k - 1) contains more than n/2 ones then we set x(k) = u(k)

and c(k) = 1, otherwise we set x(k) = u(k) and c(k) = 0. The combined performance of

CRT and Bus Invert is shown in Figure 9. We see a small improvement compared to the results of

Figure 7. For buses with 16 lines or more the energy saving is more than 50%.
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100% =0

80% ---- = -

60% - 10

40%

20%

0%
n =2 4 8 16 32 64 128 256

Figure 9: Energy with CRT and Bus Invert / Energy without them

7. A Circuit for CRT Drivers

To verify CRT we designed a circuit that implements the conceptual network of Figure 4. Our cir-

cuit implementation consisted of the bus and the CRT drivers of the lines. The CRT driver detects

the transition of the line and connects it either to the common node (q) or to its regular driver

(chain of inverters). The proposed CRT driver was designed and laid out in .18 g technology and

its schematic is shown in Figure 10. Using this driver we tested CRT for a 4-line and an 8-line

bus. The CRT driver operates as follows. The switches wI, w2, ... in Figure 4 are realized here by

the pair of transmission gates. The charge recycling phase begins when CLK becomes 1. A nega-

tive spike appears at the output of the XNOR gate if the input xi changes value. This sets the latch

and connects the line to the common node q through the transmission gate. The charge recycling

phase ends when CLK becomes 0. This resets the latch, isolates the line from the common node

(q) and connects it to the buffer chain. If the input xi does not make a transition, the latch remains

reset during the whole clock cycle and the line remains connected to the buffer chain. The same

circuit can be used unchanged for buses with arbitrary number of lines. For further details on the

circuit implementation and layout the reader is referred to [10].
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line i

I
line i+]

I CI

GL common node (q) CL

-11

Wi -- -wi wi

wi

clk

clk

+ i-cI I-wi+I

i+ 1 Wi+

elk

elk

xi+

Figure 10: Efficient CRT - Driver

8. Simulation and Results

CRT drivers of Figure 10 were used to drive the lines of a four and an eight line bus,

n = 4,n 8. A netlist was extracted from the layout of the drivers for the simulation with

HSPICE. The lines were modeled as in Figure 1 and for the capacitor CL we used the values

50fF,I 00fF, 150fF and 200fF. Note that these values could represent not only the line capaci-

tors but all the loads as well. This is particularly the case of reconfigurable interconnect networks

(e.g. in FPGAs) where long buses are loaded by the parasitic capacitances of several mosfets

resulting to total capacitive loads of the size of a few picofarads [11]. The clock frequency in the

simulations was set to 100Mhz and the buses were fed with uniformly distributed i.i.d. sequences

of data. In Figure 11 we see the average energy per cycle of the four line bus (left) and the eight

line bus (right). The curves in the graphs showing higher energy consumption correspond to the

standard buses. The curves showing lower consumption correspond to buses with CRT drivers.
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In Figure 12 we see the average energy using CRT as a percentage of the average energy without

CRT for the 4-line and 8-line buses. Again, the ratios are parametrized to CL. The flat lines corre-

spond to the minimum possible ratios resulting from the theoretical analysis and shown in

Figure 7.

9
pJ 4 line bus- -

7 - --

5S ------ - ----

without CRT__
3 1

with CRT

40 80 120 160 200
CL in fF

pJ 8 line bus
7.

without CRT
--

3 _ with CRT

1 -------

40 80 120 160 200
CL in fF

Figure 11: Average energy per cycle of a 4 and 8 line buses with and without CRT

As it should be expected, for higher capacitive loads we get higher percentages of energy saving.

This is because the average energy per cycle of the additional circuitry of the drivers is relatively

independent of the loads. For larger loads this additional energy becomes less significant.

4 line bus
-- ----- -- -- - - ----

theoretical bound,

80 120 160 20

CL in fF

100

90 8 line bus
%/ -- -- - ---

80 -

70

60
6 theoretical bound

50'
0 40 80 120 160 200

CL in IF

Figure 12: Normalized energy using CRT (HSPICE simulation)
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Of course, as with any other charge recycling scheme, the CRT drivers should also replace any

intermediate buffer stage of the bus. Finally, it is interesting to look at the waveforms of the indi-

vidual lines during the two steps of the CRT. Figure 13 shows the waveforms of the line voltages

of the 4-line bus. In this particular case, one line experiences a 0 --+ 1 transition and the rest three

lines make a 0 -> 1 transition. Since all lines transit they are all connected first to the common

node q. The final voltage at node q during the charge redistribution period is of course z (equation

(9)) and correspond to the converging point of the waveforms at time T/2 = 5ns. It is interest-

ing to note that for an individual transition the maximum energy saving with CRT occurs when all

lines transition and adjacent lines transition in opposite directions. This generalizes to the fact that

CRT preforms very well when the sequences of the transitions of adjacent lines are negatively

correlated.

2- ------ - - ------- -- ---
clock

1. 5
line voltages

to approaching
line voltages their final values

1 during charge
shaning

0.5

0 -"-_-_-

0 2 4 6 8 10
time (ns)

Figure 13: Line voltage waveforms during the two steps of CRT

9. Conclusions
The Charge Recycling Technique (CRT), proposed and analyzed, is appropriate for deep sub-

micron buses. The theoretical evaluation of its performance showed up to 50% possible energy

reduction. When combined with Bus Invert coding it becomes even more efficient. The line driver

designed to implement CRT was used with an 8-line bus demonstrating net energy savings of up

to 32%. Larger buses of 32 or 64 lines are expected to have higher energy savings.
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Chapter 7

Coding For Increasing

The Throughput and Speed

of Deep Sub-Micron Buses

1. INTRODUCTION

Coding for speed is a new idea introduced in a recent paper [1]. The purpose of it, is to increase

the data transmission rate through deep sub-micron buses. It is stressed that coding for speed is

not related to data compression, which is widely used to shorten the data size. On the contrary,

coding for speed expands data by adding redundancy! Nothing prevents of course from combin-

ing the two techniques. Why in buses? Why now? It is not surprising that coding for speed was

introduced so recently. It was triggered by the modeling of modem technology buses and a new

angle for studying their transient behavior.

Buses are formed by parallel lines that synchronously carry bits of data. As it was discussed in

detail in Chapter 2, in older, obsolete technologies, these lines where modeled as grounded capac-

itors with no coupling between them. The drivers of the lines were responsible for charging and

discharging the parasitic capacitors between zero and Vdd (the voltage of the power supply), in a

way that corresponds to the transmitted data. The situation is shown below:
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Vi- I V, Vi1+ I

CLLCTiCI

Figure 1: Older buses

In most designs the drivers are symmetric, in the sense that they have the same strength when

charging and when discharging the capacitors. Since there is no inter-line coupling, all transitions

[..., VJ71 o y ld, yold, .. ] - [..., V7% V7w'Ve, Ve4, ... ] of the lines require the same amount of

time to get completed (except when there is no transition at all!). In the modem deep sub-micron

technologies the lines are neither lumped nor decoupled. But lets ignore for the moment their dis-

tributed behavior and concentrate on their coupling. The situation looks like that of Figure 2.

V-_I V V

C C C1  C

CLILCLCI

Figure 2: Deep sub-micron Buses (lumped approximation)

It is clear that the capacitive coupling influences directly the time needed for a transition of the

lines to get completed. Moreover, what is important here that was not in the case of Figure 1, is

that relative transitions of the lines strongly determine the completion time. For example we can

think of the case [..., 0, 0, 0, ... ]j - [..., 1, 1, 1, ... ] vs. [..., 1, 0, 1, ... ] -+> .. 0, 1, 0, ... ] .
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In the first, the driver of the i-th line charges only CL, while in the second transition, it charges

CL + 4 C, because of the Miller effect.

In the work in [1], each line was studied individually, and the time required for the particular

line to complete its transition was estimated as a function of the transitions of all lines in the bus.

In this way, a transition time function was assigned to each of the lines. The transition time func-

tion of the whole bus was defined by taking the maximum of the values of the time functions of

individual lines.

Different transitions have different completion times. The variation may be large. In the previ-

ous example, the time needed to charge CL + 4 C, is approximately 21 times larger than that

needed to charge CL when Cl/CL = 5 (see the next sections for details). Although this is an

extreme case, the message is clear: "Not all transitions are equally fast". This motivated us to first

classify the transitions according to their delays. Then to remove some of the "slow" transitions.

What we get in this case, is a constrained channel! (there is rich literature in information theory

community on this topic).

Of course, the question that is raised is what is the advantage of keeping only the "fast" transi-

tions. By throwing out some of the "slow" ones we directly decrease the number of bits we can

transmit every time we use the bus. This is true, but at the same time we can run the bus faster. We

can reduce the period of its synchronizing clock. Obviously, there are two opposite forces here. It

turns out that the net result can be very significant. Net result in speed increase by a factor of more

than 2 is possible (it will be shown in Chapter 8).

In this Chapter we discuss the details of the estimation of the transition completion times, and

the classification of the transitions into their delay classes. We also provide a simple motivating

coding example to establish the idea of Coding For Speed [1]. In Chapter 8, we continue with fun-

damental bounds and practical coding schemes.
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2. DELAY ESTIMATION FOR BUSSES

In this section we present an electrical model for deep sub-micron busses. Based on this model we

approximate the delay function loosely introduced above.

2.1 Coupled Bus Lines and Drivers

Figure 3 shows a model for the drivers and busses in sub-micron technologies. The lines are

assumed capacitively coupled (distributed R-C, it can be shown that inductance does not influ-

ence the 1-st. order Pade approximation that we use here). CL is the parasitic capacitance per unit

length between each line and ground, and c1 is the interwire capacitance per unit length between

adjacent lines. r is the distributed series resistance of the lines per unit length. The drivers are

modeled as voltage sources ui with series resistances rd.

Vdd Driver 2 Line 2

U2 r r-Ax ,'r-Ax ,'rAx

cL.Ax CL.AX

~ crAx cI Ax

Vdd Driver 1
1 Line I

u rc r-Ax r-Ax r-Ax

L-Ax cLx

- I I
F Ax

Figure 3: Lines and Drivers
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2.2 Elmore Delay of Coupled Lines and Multiple sources

A commonly used approximate measure of the propagation delay of a step excitation through a

linear system is the Elmore delay [10]. For a system H(s) driven by a step input u(t) and produc-

ing an output y(t) the delay T is formally defined as the solution of the equation,

J(t-T). dt = 0 (1)
dt

0

For the definition to be physically meaningful y(t) has to be increasing and its limit for t ->O

must exist. Elmore delay is used as a delay metric even in cases where the monotonicity condition

doesn't hold. Assuming that y(oo) exists and it is different than y(0), equation (1) implies that,

T=- t - dt (2)
y(c)-y(0) t dt

0

or in the Laplace domain,

T = -1 d[ Y(s)](3)
y(o) -y(O) ds S

Normalizing the supply voltage, Vdd = 1 , equation (3) becomes,

T = -[y(o) -y(O)] d [sY(s)] (4)
dssO

In the case of the data bus there is more than one source exciting the network simultaneously.

Moreover, since the data is random, the pattern of the driving voltages can be arbitrary. This intro-

duces the need for a more generalized definition of the delay. To simplify the situation we assume

that the source voltages in Figure 3 are steps of the form,

u for t<c0

Uk(t) = (5)

UN for t>0

oN1 T

where uk, uk e {0, 1} for all k = 1,..., m. Now let V(x, t) [V 1 (x, t),...,Vm(x, t)] be the

voltages of the lines at time t and distance x E [0, L] from the drivers. L is the physical length of
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the lines. Then for the voltages at the ends of the lines we have that, Vk(L, 0) = u% and in the

limit as t ->Xo, Vk(L,oo) = N

Since the lines of the bus are electrically coupled, the delay at every line is a function of the

0 oT N N NT
initial and the final conditions u0 = [u 1, ... , urn] and u [u,, ..., ur] respectively. We

define the delay function of the k-th line as:

Tk:{0,}1 M x{0,1} -4[0, o) (6)

such that

oN N o d(7)
Tk(u ,u ) = -(Uk - u%)-.-[sV(Ls)] 

ds0

2.3 Calculation of the Delay Functions

As mentioned before, the lines of the bus are assumed distributed with uniformly distributed par-

asitic series resistance per unit length r, capacitance to ground per unit length CL and interwire

parasitic capacitance per unit length c1 .

Now let I(x, t) = [I,(x, t),...,IM(x, t)] be the currents running through the lines at time t

and at distance x e [0, L] from the drivers. The equivalent network of the bus in Figure 3 satis-

fies the following system of partial differential equations:

axvV(x~t)+±RI(x,() = 0
(8)

DI(xt)+C dV(x t) = 0
ax t

for all t 0 and x e [0, L]. The capacitance matrix C corresponding to the capacitive coupling

in the network (Figure 3) is:
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I + X -X 0 ... 0

-X 1+2k -k : 0

C 0 -C : : cL (9)
: : : 1+2k -K

0 0 ... -X 1 + X

where K = cl/cL . The m x m resistance matrix R is R = diag(r, r, ... , r). The network of the

lines satisfies the Initial Condition:

V(x, 0+) = u0  (10)

T
for all x e (0, L), with uO = [u1, ... , um] . It also satisfies the Boundary Conditions:

V(O,t)+Rd' -I(0,t) =u N (11)

and

I(L, t) = 0 (12)

for all t > 0. The m x m resistance matrix Rd is R =diag(r, 1 2 ), where r is the out-

put resistance of the i-th driver.

Now let V(x, s) and I(x, s) be the Laplace transforms of V(x, t) and I(x, t) with respect to

the time variable. Then, from (8) we have,

(13)
ax _I-_ -Cs 0 _+ _1C -V(x, 0+ )_

We set

H(s) = 0 -R (14)
-CS 0

and use (13), (10) and (14) to get,

7] = H(s).[v-+[(15)
a x _I. .I] _C1 5 )
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In the Laplace domain the boundary conditions (11) and (12) become:

1 N
V(O, s)+ Rd 1(0, s) = - - u (16)

S

and

I(L, s) = 0 (17)

Let eH(s) . L be the 2m x 2m matrix exponential associated with equation (15). From the defi-

nition of the exponential we have,

*,k
eH(s)L L

k=0

** L2k O - k

L . RC 0 s +k=0k)! 0 CR

00 L2k+ 1 0~ _ -] ~ -kSk

k (2k+ 1)! -Cs 0j _0 CR

We can decompose the exponential into m x m blocks as,

eH(s)-L -Fc(s)f(s) (19)

L(s) 6(s)

where a, , y, 6 are analytic matrix functions of the form,

2
a(s) = I+ L-RCs+O(s2

2

3
P(s) = -LR L RCRs+O(s2)

3! (20)

y(s) = -LCs+O(s2)

L 2
8(s) = I+-CRs + O(s)

2

Equations (15) form a system of first order linear differential equations with constant coeffi-

cients, so their solution ([2]) evaluated at x = L is given by,
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V(L, s) H(s) -L (,S) -

= eH){4:;+ H(s)1-

(21)

-H(s)1 
0

_C - uO

Note that for s 0 the matrix H(s) is invertible and we have that,

(H(s)) = [0 -s- C (22)

_-R- 0

Now using (14) and (19), equation (21) simplifies to,

(L, s)- V(0, s)_ -U 0 -U0

-- Ks + s0(23)
LI(L, s)j_ _ 6 I(, s)j

From (16), (17) and (23) we have equation (24)

I R, (O0,Us)(24)

(s) 6J (0_I(0, s) _ sY(S) -UO"
which implies that,

V(Os) -I1 FN l Rd(6yRd)1y N o= .U + --- (U U )(25)

Replacing (25) into (23) we get,

V(L,s) = {u+ [a + (aRd-P)(8b-yRd) y](u -U)o}(26)

which through (20) implies,

k[s(L,s)] = -(Rd+. R LC(UNUo) (27)
ds s02
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We define the total resistance and capacitance matrices of the circuit as,

R TER + E-R
2 (28)

CT L-C

Then from (7), (27) and (28), it is,

okU0 UN UN_ uo eT .R NUo (9

Tk(u",uk ) -k ek-R-TC-(u -u 29)

where, eTis the row vector with 1 in the i-th coordinate and 0 everywhere else. Equation (29) can

also be written in the vector form,

oN N o N o
T(u , u) = diag(u -uo)RT-CT-(u -u_ )(30)

If we make the assumption that the output resistances of all the drivers are the same and inde-

pendent of their logical outputs, i.e. rd = rd for every i = 1, ..., m, then (30) is simplified to,

T(uo, uN) diag(uN o)'CT (UN - (rT1)

L
where r T = rd +- r. Finally, note that in this case, the sum of the delays in the bus is given by

2

the quadratic form:

N N T T NX Tk U 0 ,U )N=(u N-U )0.CT.(u - U )r 7 (32)
k = I

Remark:

Recall that the function (29), of the delay of the k-th line, is the result of a 1-st. order Pade approx-

imation (Elmore delay measure). It is straight forward to use Equation (26) and get higher order

and more accurate approximations of the delay. It can be seen that a second order approximation

of the delay would involve the transitions of four (and not two) near by lines. For the purpose of

introducing the notion of coding for speed, the Elmore approximation is sufficient and provides us

with a relatively accurate classification of the transitions. If we want to exploit all the power of

coding for speed, the best would be to measure the performance of the bus we are going to

encode.
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3. A RELATION BETWEEN DELAY AND ENERGY

From Equation (32) of Chapter 2 we know that the energy dissipated into heat during the transi-

tion u0 -uNis:

E OuN) =1 N 0 T N
ER(U ,.U ) (u- u ) -.CT.(u - u ) (33)2

Comparing (32) with (33), we get the following relation between the dissipated energy and the

sum of the delays,

m

Tk(uo, u N) = 2 - rT -ER(uO,uN) (34)

k = 1

Equation (34) can be written as,

1 o N ER(uo, uN)-- T(ju , u ) = 2.rR0- m N(35)

k = I

and so,

Average Delay per Line =

2-rT -Average Dissipated Energy per Line
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4. PROPERTIES OF THE DELAY FUNCTIONS

Following the assumption about the resistances of the drivers, equation (31) can be written more

explicitly as,

oN (I + X)A - A A k= 2

Tk(u 0, N) [) lXK 1  A 2  k=61

rr -CL (I + 2X)A- XAk(Ak-I+ Ak+1),1l<k<m

([ +X)A-XAA_-1 , k=m

where Ak is the change of the binary voltage of the k-th line, i.e.:

Ak = U - U(37)

No
and CL = L - CL is the total capacitance between a line and the ground. Since Uk UG 0, 1 it

is of course Ake {--1, 0,l}1.

Table 1 presents the delay of the k-th line as a function of Akl, Ak and Ak ,1 where

k = 2, 3, ...,m - 1. We use the upward arrow Tpto denote that A =, the downward arrow

to denote that Ai = -1, and "-" when A = 0. The possible normalized delay values of an

intermediate line are, 0, 1, 1 + XI, 1 + 2X, 1 + 3X and 1 + 4X. Each of these values corresponds

to a set of transitions [U4_1,u%,U4+ 1] - U N N N
k k [Uk-1, Uk, Uk+ 1]

For the boundary lines 1 and m that have only one neighboring line we have Table 2. (lines 1,2

can be replaced by m, rn-I respectively). Note that Table 2 does not hold when the boundary lines

have additional coupling to ground because of fringing effects or shielding of the bus. Here the

possible values of the normalized delays are, 0, 1, 1 + X, and I + 2X. Each of these values cor-

NN N N
responds to a set of transitions [u7, u2] -> [u, u 2 ], (or [u7, u7, -] -> [ur, Ur _]
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Tk(u ", UN

rT-CL

Lines & Transitions

k-i k k+1 Delay of line k

Tk

Akl A Ak~l rTCL

- - - 0
- - 0

- - 4, 0

I - - 0

4, - 0

I - 4, 0

S 1 7V 1

0

-, 4, 4 1+

- 'V 11+2

I I - 1 +2.

4, 4, - 1+2.

- I - 1+22.

- 4, - 1+22.

I I 4. 1+22.

4, I 1+22.
I 4, 4 1+22.

4, , 1+22.

- 1 4, 1+32.

- 4- I 1+32.

I 4, - 1+32.

ff I - 1+32.

I 4& I 1+4X

4, I 4 1+4X
Table 1: The Delay Function of Intermediate Lines
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o N

T(u, u )

rT-CL

Lines
1ins2 Delay of line 1

A1  
A2

rTCL

- - 0

- 0
- 4- 0

4? 4 1

-r - l +x

4- - 1±+x

7 ' 1+2%
4- 1 1+2k

Table 2: The Delay Function of the Boundary Lines

We define the delay function Td on the set of the transitions of the bus as follows:

A N

Td(uu, u ') = max Tk(Vu, iuIV(38)
k =L1,2, ... , M

We also define the partition of the transitions set, DO0 , DO, DI, D2 , D 3 and D 4 , called the delay

classes, to be the fibres of the delay function:

DO = {all (u ,uN) such that Td(u",uN )0

Dr = {all (u0, uN) such that Td(u , uN)N= 1 + r%}, r = 0, 1, 2, 3, 4

For example, if the bus has only 3 lines, i.e. u0, u E {f0, 1 }3 we have the delay pattern of

Table 3.
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Delay N

Class of U

Uo -UN 000 001 010 Ol 100 101 110 111

000 DOO BD D2 DI D1DiD Di Do

001 D 1DOO D3 D2 Di DI D2  Di

010 D2 D3 DOO Di D3  D4 Di D

oil Di D2 DI DOO D2 D3 DI D1
0

U

100 D D3 D2 DOO Di D2 D

101 D1  D D4 D3 D1  DOO D3 D2

110 DI D2 D DI D2 D3 DOO Di

III] Do Di D D Di D2 Di DOO

Table 3: Delay Classes in {0, 1} 3

5. A SAFE DELAY ESTIMATE

There is an issue with Elmore approximation that needs to be discussed. In Table 1 we see that

whenever a line does not transition, its delay is zero. This might not always be true in reality. Con-

sider a bus with 16 lines and suppose that X is so large that the coupling to ground is relatively

negligible. Also, suppose that all lines but line 8 change from 0 to 1, while line 8 maintains a log-

ical value 0. It is clear that because of the coupling, the voltage of line 8 will exceed 50% Vdd if

the drivers have a very steep input. So, the delay of line 8 cannot be assumed zero. It will take

some time until its voltage drops below 50% Vdd. The situation where lines 8 and 9 maintain a

logical 0 is similar. A safe approach to the above issue is to modify expression (36) as:

Tk(u",uN) <(JA I 2A A

r- CL

with A0 = Am+i =0. The modified delays are shownin Table 4.

(40)
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IAk +KI2Ak-Ak-IAk+1

Lines & Transitions Normalized, Safe
k - i k k+ 1 Upper Bound of the

Ak I Ak Ak+I Delay of line k

- - - 0

- - -p 2

- 2K- - 1 0

- 4,+
I - - 22+

1 +
-, , - 1+

T T +2

- II+2k

- 4 41 1+2k

I I 1+2k

I I -I1±2X

- I 1+2k
- 4- - 1 +23

I 1 - 1+2kI 1 1I1+2A

1I 1T II1+2A
- - 1+3K

T I T 1+4

1 4 1 1+4X

Table 4: Normalized, Safe delay estimate of line k (Intermediate Lines)
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Note that the safe upper bound of the delay of individual lines, given by Equation (40) and shown

in Table 4, may change the estimated delay of the whole transition only from 1 + X to 2X and

only when a transition pattern ... T T -T T ... or ... - {I... appears.

Finally, we define the safe delay function Tk on the set of the transitions of the bus using

expression (40) instead of (36), that is:

Tff(u , UN) = max (Ak +X2Ak-Akl-Ak +I)rT.CL (41)
k = 1, 2, ... , M

We can use the safe delay function (41) instead of (38) to define the delay classes D00 , DO, D1 ,

D 2 , D 3 and D 4 as:

D 0 0 = {all (u", uN) such thatT(u,uN=0

0 N (42)

D, = all (u0 , uN) such that (UUN) =1+rK ,r = 0,1,2,3,4
r-TCL

6. COMPARISON WITH SPICE AND MATLAB SIMULATIONS

In order to verify the results of Table 1 we used a bus with 8 lines and CMOS inverters for drivers

in .18 gm technology. The signals to the drivers were steps. To compensate for larger buses the

boundary lines (1 and 8) had total capacitance to ground equal to CL + C. Finally, the parameter

K = C1 /CL was equal to seven. For the simulation we picked a few of the slowest representa-

tives of each class. We also measured the delay of class D0 separately, which we call d6. In the

Figure 4, the stars correspond to the ratios of de/d6, where de are the delays of the different tran-

sitions simulated. The integers 0,1,2,3,4 on the x-axis are the numbers of the classes to which the

transitions belong. The point (0, 1) corresponds to class Do0 .
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In Figure 4 the solid line connects the point (0, 1), (corresponding to Do) to the point

(4, 22.5) corresponding to the worst case delay among all transitions. The important issue here is

that allpoints lie below the solid line. This means that if Xep is the slope of the solid line, then

we have that

Tclass r I1 + r Xexp '(43)

while

Tciass 4 =1+4.kXp .(44)

Where Tciass r is the maximum experimental delay within class r. The importance of this obser-

vation will become clear in the next section where we discuss the coding for speed. Briefly, the

idea is that the higher the ratio:

7 class 4/Tclass r, r 1, 2, 3 (45)

is, the better! This ratio will determine the increase in the bus speed.

The value of keX is 5.4 which is less than the design parameter k =7 (the dashed line in

the graph has slope k). This is expected because of the non-linear behavior of the real (CMOS)

drivers. This difference should not cause a problem since as we saw, we can easily measure Kexp

and replace it directly into the affine formula of the delay. Finally, the same relations are valid

when the input to the drivers is saturated ramp. Again, Kexp has to be re-estimated.
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Figure 4: Measurements of the ratios delde (HSPICE)0
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Figure 5 is similar to Figure 4, but this time we used MATLAB to simulate the waveforms of all

216 transitions of the 8-line bus. In addition, to classify the transitions of the bus we used the safe

rule of Table 4. In this case the experimentally measure Xe was 5.5, instead of 5.4 found using

HSPICE.

25:

1SF.5

10 

5

0
0 1 2 3

I

4

Delay Classes

Figure 5: Measurements of the ratios de/d6 (Matlab)
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7. CODING FOR SPEED

In the traditional operation of data busses, the clock period T is sufficiently large so that all the

transitions in the bus have enough time to be completed. In other words it must be that,

T nil- (1 + 4K) (46)

where rj is a technology parameter. The analysis above suggests that we could use a smaller T>,

i.e. speed up the bus, if we could avoid time-expensive transitions. For example if only transitions

of the classes DO0 , DO, D1., D2 were allowed, then inequality (46) could be replaced by inequal-

ity (47).

Tc -. (1 +2k) (47)

This means that for large values of K the speed of the bus can almost double. Of course, by not

allowing some transitions we automatically reduce the rate of information through the bus.

Here is a concrete example. Suppose for simplicity that the bus has m = 4 lines and let TR2

be the set of all transitions that have (normalized) delay 0, 1 , 1 ± K or 1 + 2k. By definition, it is

TR2 = DO0 uDOuD1 UD2 . TR2 is shown in Table 5 where the dots stand for the allowed

transitions and the x's for the forbidden ones.

Although TR2 does not have any regular pattern, all the possible transitions are allowed

among the states 0, 1, 3, 6, 7, 8, 9, 12, 14 and 15. If the set of states is reduced to

{0, 1, 3, 6, 7, 8, 9, 12, 14, 151 then the worst case delay is only 1 + 2k. In this case, the number

of bits that can be transmitted each time is decreased from four to log2 (10) which is about 3.3

1 +4k
bits. Also the speed has been increased by a factor of 12. This ratio is about 1.85 for K = 3.

1 +2k

On the other hand, the number of bits per transition has been decreased by a factor of

4- ~ 1.21 .So the net result is about 1.85/1.21 = 1.53 times the initial data rate. The encoder
3.3

and decoder needed for this example are trivial static maps.

201



Now, if the set of states is further reduced to {0, 1, 6, 7, 8, 9, 14, 15 }, then exactly 3 bits per

transition (an integer number of bits) are possible. This makes the encoding - decoding scheme

trivial and the net result is about 1.4 times the initial data rate. That is, a four line bus behaves as

a 5 (5.6) line bus!

N
U

0 1 2 3 14 5 6 7 8 9 A B C D E F

2 .X.. .X.X. . .X. .XX.3. . X . XX . . . . X . .

2. X. . . . X X X

3 XX. XXX . . X.

4 . . . . . .X X X X . .

5 .X X . .X .X X X X . X .

0
U 8. . . . .XX . . . . X X . X . .

79 . . X . X X . . . . X X . . . .B... .XXX.. . . .X.

9 . . X . X X . . . . X. .

A .X .X X X X .X X X..

B . . . .X X X X .X X . .

C. .X. . . . . . .XX.

D . X X.. X. . . XX..X.
E . . . . . X . . . . . . . X . .

F . .T . . . . .

Table 5: TR2 for 4-bit bus

8. CONCLUSIONS

The functions of the delays of the signals in the lines of general busses were estimated. The prop-

erties of these functions were studied and the interaction patterns among the lines causing delay

were revealed. This allowed a classification of the transitions according to the time they need to

get completed. Finally, the idea of coding for speed was introduced.
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Chapter 8

Coding For Speed:

The Fundamental Limits and

The Differential RLL(1,oo) Scheme

1. INTRODUCTION

In Chapter 7 we studied the timing properties of deep sub-micron buses. We saw that different

transitions of the bus require different amount of time to get completed. With a simple example

we demonstrated how we can exploit this property to accelerate the transmission of data.

In the present Chapter we expand the idea of coding for speed into both theoretical and practi-

cal directions. We observe that by allowing only fast transitions in the bus, we transform it into a

constrained discrete channel in the information theoretic sense. Shannon was one of the first to

discuss the capacity of constrained noiseless channels in his landmark paper [1]. He introduced

the method of the transfer matrix and showed that channel's capacity is equal to the logarithm of

the spectral radius of the transfer matrix.
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Here we use the transfer matrix method to study the information theoretic limits of the possible

increase in the data transmission rate of the bus. The analysis is based on the delay estimation

method of Chapter 7. We present examples of calculations of the capacity of small buses and

employ mathematical tricks to estimate the capacities of larger buses. These techniques are non

constructive and they do not provide any specific coding strategy.

Constrained channels are standard canonical models for magnetic and optical recording sys-

tems [2]-[5]. There is a rich literature of proposed coding schemes that approach the capacity of

these channels, for example [2]-[5] and the well established, state splitting algorithm [7]. We used

the state splitting algorithm to develop coding schemes for buses. The results were too complex to

be practical. This is true more generally, the coding schemes developed for magnetic and optical

systems are not good candidates for buses because of the following two reasons. First, the existing

theory treats mostly serial binary channels. Moreover, the constraints in magnetic recording are

usually of very short length resulting in a relatively small number of states. This is not the case of

constrained buses, here, the number of states is generally large. Second and most important is that

the coding in buses must take place within a few, if not less than one clock cycle of the micropro-

cessor and the circuit implementing it must have the minimum possible size and consume very

limited power. This is definitely not the case for optical and magnetic recording where large spe-

cialized circuits do the job. Therefore there is a gap of orders of magnitudes in the available

resources.

For practical applications we introduce, what we call the Differential Run Length Limited

codes. These codes are in some sense two dimensional. Their "spatial" dimension lies on the par-

allel transmission of bits through the lines of the bus. Run length limited codewords are used in

the spatial dimension and simple binary differentiation takes place temporally. The result is a low

complexity coding that can significantly increase the transmission speed.

206



2. BUSES, CONSTRAINTS AND CAPACITY

Lets consider a bus with n lines as that in Chapter 7 and let S, { {0, 1}fl be the set of all n-bit

binary vectors. As we saw in Chapter 7, the time needed for a vector y = (y 1 , y 2 , ... I, y) to prop-

agate through the bus depends on y as well as on the vector x = (xP, x2, -...- xn) transmitted just

before. The propagation time of y is a function of the transition (x, y) and can be approximated

by Equations (38) or (41) of Chapter 7. Furthermore, we saw that the set S, x S, of the 22n tran-

sitions can be partitioned into the six delay classes, DOO, D 0 , DO , D 2 ,D 3 and D 4 . Where the

delay classes are defined according to the expressions (39) or (42) of Chapter 7. Recall also from

Chapter 7 that we can find two positive parameters A and T, using either analytical or experi-

mental methods, for which we have that: the required completion time of the transitions in D0 0 is

zero, and the completion time of the transitions in Dr, r = 0, 1, ..., 4 is always less than or equal

to (1 + rA) - T,. Moreover, the highest completion time among the transitions in D4 is equal to

(1 + 4A) - T.

Now lets define the subsets, M 1 , M 2 and M 3 , of the set of all transitions S, x S of the bus,

as:

M1 = DoouD uD

M2 = D0 0 u D u D1 u D 2  (1)

M3 = Do0 uDujD uD2 uD3

Clearly, if we constrain the bus, in the sense that every transition must belong to one of the sets,

then we can decrease its clock period by the acceleration factors:

01_- 1+4A 0 =I+4A 03 +4A (2)
1+A - I+2A 3 I +3A

As in the coding example of Chapter 7, the question now is: How many bits per use of the bus

can be transmitted when only transitions of one of the sets M 1, M2 or M4 are allowed?
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Obviously, if we can transmit (r bits on average, per use of the bus, when using set M, then we

can, at least in theory, accelerate the data transmission by a factor of Orr/ln. We call the ratio

0pr/n, the utilization ar of the bus using the transitions set M. The formal definition of the

"average" number of bits per use of the bus Pr is:

.r = limsup 1 ' # of sequences of lenght k

k -> k g2k whose transitions belong to Mr

The quantity Pr is the combinatorial capacity [1] of the constrained bus viewed as constrained

channel. The utilization of the bus is:

= l l # of sequences of lenght k
a4 - -limsup -10og2 (4)

n k - k whose transitions belong to Mr

3. COUNTING SEQUENCES, THE TRANSFER MATRIX

In this section we discuss the calculation of the utilizations a1 , a2 , a 3 of the bus. We use the

transfer matrix of the constrained bus (channel), a device introduced by Shannon in [1]. For nota-

tional convenience we identify the vectors (0, 0,1.,0), (1, 0, ... , 0),(0, 1,.. 0),.., (1, 1, ., 1)

with the corresponding numbers 0, 1, ... , 2" - 1.

The transfer matrix Mr of the bus, when the transitions are constrained in the set Mr is the 0-

1, 2" x 2" matrix with entries:

1 if (x,y)e EMr

(Mr) = Y(5)
0 otherwise

Note that Mr is the adjacency matrix of the directed graph [8] corresponding to the set of tran-

sitions Mr. Therefore, the number of k-long sequences whose transitions belong to Mr is given

by the sum of all entries of (Mr)k (see for example [9]). So we have:
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arp - 10g2 1 -.(Mr) -_
nka k - -

where 1 = (1, 1, ... , I) T. Since the matrix M, is non negative, it is very easy to verify [10] that:

1 FT k 1limsup - log2 1 -.(M) -1 = log2 {P(Mr)} (6)
k ->co k

where p(M,) is the maximal positive eigenvalue (and so the spectral radius) of matrix Mr. This

gives the compact expression for the utilizations:

log2 { P (Mr) 1(7)
n

Formula (7) is practically useful only for small n. Using MATLAB on a PC it was possible to cal-

culate ar r = 1,2, 3 for n up to 12. In Section 4. we discuss how to approximate ar by deriv-

ing bounds of the spectral radius of matrix Mr.

3.1 Example 1

Consider a bus as that in Figure 1, where the lines are assumed distributed but depicted as lumped

for convenience. Lets assume that A = ? = 5.

1 1  2 C1  3 n

I CL ICL ICL I CL

Figure 1: Deep sub-micron bus.

Using the safe classification of the transitions, Equations (41) & (42) or Table 4 of Chapter 7, for

n = 4, we get the transfer matrices (dots stand for ones and holes stand for zeros):
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012 ----------

0
1
2

15

15

Figure 2: Transfer matrix M, for n = 4 and safe classification of the transitions

0 12
0
1
2

15

------- - - 15

Figure 3: Transfer matrix M 2 for n = 4 and safe classification of the transitions
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* S U U S S S S S S *U S S

* S S S S S S U S S

* . S S S S S S
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* 5 5 5 5 U 5 6 S * S U S S

* S U U * 0 5 5 0 5 5 S S S

* S U S S S S S S U S U

* U U 5 0 0 5 U

* U U U U S 5 0 3 U

* S S U S U U S U S S S S

* S U S U U U S S S

* U S S S U S S S S U S U S
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0
1
2

15

0 1 2 - - 15

Figure 4: Transfer matrix M 3 for n = 4 and safe classification of the transitions

The spectral radius of the matrices M , M 2 and M 3 presented in the figures are: 7.5205, 12.6063

and 15.2062 respectively. Therefore, the corresponding utilizations are:

al = 0.7277 a 2 = 0.9140 a3 = 0.9816

For A = 5 the acceleration factors given by Equations (2) are:

ol = 3.5 02 = 1.909 03 = 1.3125

And so, the theoretical possible increases in the speed of the bus are:

01a 1 = 2.547 02 a2 = 1.7448 03a 3 = 1.2884

Therefore, at least from a theoretical perspective, increase of the data rate through the bus by a

factor of more than 2.5 is possible! Moreover, recall that the classification of the transitions is rel-

atively rough. Looking carefully in Figure 5 of Chapter 7, we see that some of the transitions in

D2 should belong to D, allowing for even higher transmission rates.
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Now, is it interesting to see how the utilization factors of MI, IM 2 and M3 change when we intro-

duce boundary coupling to the bus. The situation is shown in Figure 5.

C1,1 C, 2 C1  3 n C1

ICL TCL I CL I CL

Figure 5: Isolated deep sub-micron bus.

Modem design methodology suggests the insertion of ground or power supply lines in the bus in

order to isolate the bus lines from the environment and reduce the injected noise. For the bus of

Figure 5 and n = 4, the corresponding transfer matrices are shown in the figures below.

0 12 -

0
1
2

15

----------------- 15

Figure 6: Transfer matrix M, for n = 4, safe classification

of the transitions and isolated bus
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0 1 2 -= - -- - - -- - -- i5
0 . a a a a a * a * * a a a a a

1 .; . . . . . a a a a a a

2 a a a a a . . a a

*5 - .a a a . a a a a

Figure 7: Transfer matrix M2 for n = 4, safe classification

of the transitions and isolated bus

0 12
0
1
2

15

15

Figure 8: Transfer matrix M 3 for n = 4, safe classification

of the transitions and isolated bus
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The spectral radius of the matrices MI, M2 and M3 are: 4.4106, 11.7037 and 15.2062 respectiv-

elly. Therefore the corresponding utilizations are:

al = 0.5352 a2 = 0.8872 a3 = 0.9816

The acceleration factors are as in Equation (9). The speed of the data transmission can be

increased by the factors:

01a = 1.8732 0 2a2 = 1.6937 0 3a3 = 1.2884

3.2 Example 2

For an 8-line bus of the Figure 1 and A = 5, the corresponding utilizations are:

a1 = 0.6403 a2 = 0.8882 a3 = 0.9743

The acceleration factors are as in Equation (9). Therefore, in this case, the theoretically possi-

ble increases in the speed of the bus are:

0a 1 = 2.2410 02a2 = 1.6956 0 3a3 = 1.2788

If the 8-line bus has boundary lines as in Figure 5, the utilizations and speed increases are

changed accordingly to:

a1 = 0.5408 a2 = 0.8751 a3 = 0.9743

and

0a 1 = 1.8928 02a2 = 1.6706 03a3 = 1.2788.

Figure 9 presents the transfer matrix M2 for this case. It has an impressive fractal like structure.
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nz= 29986

Figure 9: Transfer matrix M 2 for n = 8 , safe classification

of the transitions and isolated bus
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3.3 Utilization factors of small buses

For small buses of sizes n = 2, 3, ... , 8 the utilization factors can be calculated directly from the

spectral radius of the transfer matrices MI, M2 and M3 . In Table 1 and Table 2 below we see the

values of the utilization factors for non-isolated and isolated buses. The safe classification of the

transitions was used (Equations (41) & (42) or Table 4 of Chapter 7).

Size of the bus:

Utilizations n=2 n = 3 n =4 n = 5 n =6 n =7 n=8

a 0.9163 0.7820 0.7277 0.6909 0.6684 0.6523 0.6403

a2  1.0000 0.9300 0.9140 0.9035 0.8965 0.8918 0.8882

a3  1.0000 0.9861 0.9816 0.9787 0.9768 0.9754 0.9743

Table 1: Utilization factors of buses with n = 2, 3, ..., 8 lines

Size of the isolated bus:

Utilizations n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n=8

a 1  0.5000 0.5283 0.5352 0.5323 0.5344 0.5381 0.5408

a2  0.9163 0.8941 0.8872 0.8821 0.8790 0.8767 0.8751

a3  1.0000 0.9861 0.9816 0.9787 0.9768 0.9754 0.9743

Table 2: Utilization factors of isolated buses with n = 2, 3, ..., 8 lines

3.4 Example 3

Assuming A = 5 ,the acceleration factors, Equation (9), are: 01 = 3.5, 02=1.909,903 = 1.3125

The speed increase for buses with n = 2, 3, ... , 8 lines is given below using Table 2.

SpeedIncr. n=2 n = 3 n=4 n =5 n =6 n=7 n=8

01a1  1.7500 1.8490 1.8732 1.8630 1.8704 1.8834 1.8928

02a2  1.7492 1.7068 1.6937 1.6839 1.6780 1.6736 1.6706

03a3  1.3120 1.2938 1.2879 1.2841 1.2816 1.2797 1.2783

Table 3: Speed Increase factors of isolated buses with n = 2, 3, ... , 8 lines
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Size of the isolated bus:
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Now we compare the results of coding with another approach that can speed up the communica-

tion. We reduce the lines of the bus and split the remaining ones uniformly. For simplicity we

assume the width of the wires is the same with the distance between them. The situation is shown

in Figure 10 (left).

n k

WDR S

I I Fl'~DR
| |
I IA

-4 -I*

Figure 10: Keeping k out of the n lines and splitting them uniformly

If we keep k out of the n lines while maintaining the same total width w of the bus, then the dis-

tance between lines becomes s = (2n + 1 - k) -d and the new lambda can be approximated by:
k + 1

Ak = A - d = A - k+1
s 2n+ 1 -k

Then the relative speed increase (factor) is given by the approximate expression:

Sk(n) = k
n

1 +4A
1 + 4 Ak

For each n , it is k = 1, 2, ... , n - 1 with a particular value of k maximizing Sk . We define,

S(n) = max Sk(n)
k

For A = 5 , the above formula implies Table 4:
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Size of the isolated bus:

Speed Incr. n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

S(n) 1.0000 1.0769 1.0988 1.1455 1.1667 1.1892 1.2080

Table 4: Speed Increase factors of isolated buses with n = 2, 3, ... , 8 lines using line splitting

Comparing Table 3 with Table 4 we see that coding is a lot more effective. Also note that modem

bus designs usually have partitioned structures like that of Figure 11 with n small, for example

n = 2, 3, 4 (Isolating lines may connect to Vdd instead of Ground). For these cases, coding is

extremely more effective. Finally, non-uniform distribution of the lines can improve slightly both

the encoded and split bus (because of boundary effects).

n n

Figure 11: Partitioned Bus

4. UTILIZATION FACTORS OF LARGE BUSES

Calculating the spectral radius of a 264 x 264 matrix, that does not have any convenient structure,

is not trivial if not impossible. In order to calculate the utilizations of large buses we need to know

the spectral radius of Mr. If this is not an option we need to derive some bounds on it. Here, this

is done by employing a simple trick: we can establish some rough upper and lower bounds of

;kmax(M,) if we know how many ones the matrix Mr has. The following two lemmas are in

order.
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Lemma 1

Let A = [aij] be an M x M symmetric matrix. Then, its maximal eigenvalue Kmax(A) satisfies

the inequality:

Kmax(A) Y taij (14)

i,j= I

Proof: For every vector x with lxi| = 1 it is Kmax(A) xTAx. We can choose x equal to

(1I,.. ) T/(,,M).

Lemma 2

Let A = [a,] be an M x M symmetric 0-1 matrix with zeros in its diagonal. If A has N entries

equal to one, then for its maximal eigenvalue Kmax(A) we have:

max(A) 2N(M-1) 15)
max M

Proof: Let K2 , K 3 ,..., KM be the rest of the eigenvalues of matrix A. We have the equalities

tr(A) = 0 and tr(A2 ) = N which along with the identities tr(A) = Xmax + K2 + +... +M

2) 2 2 2 2 2 2=
tr(A )=Xmax +X2 +... +K X give, Kmax + X 2 + ... +XM = 0 and Kmax + 2 + ... +XM=N.

We need to find the maximum Kmax under the previous two equality constraints and the inequali-

ties Kmax X2 , K3 ,... -KM -max * The maximum value Kmax can take is the RHS of (15). El

Combining (14) and (15) we have that for every M x M, 0-1 matrix A with only ones in its

diagonal and a total number of ones, N, its maximal eigenvalue is bounded as:

N/M Xmax(A)lIJ+ iN (16)

Equation (16) applies directly to the transfer matrices M 1 , M 2 and M 3 .-What we need now is to

compute the number of ones they have.
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4.1 Counting the Transitions

Lets consider a bus of n lines as that of Figure 1. We want to count how many of the transition

pairs (x, y) in Sn XSn,, Sn = {0, 1}n belong to M,1 , M 2 and M3 respectively. Instead of writing

(x, y)) E Mr it will be more convenient to think of the transition "vertically" as:

( 1 1 2 --Y27n '

P Y21 --.. I nK:2 ~ JeMr (17)
Now note that (17) is true if and only if:

Y1 1 21 Y3 -21 Y31 Y4 n -21Yn -1I Yn M(3

X2 Xj K X ,~ @X.., Xi e Mr(3) (18)
-XIX1 X' 2 X3, X4) Xn-21 Xn-11 Xn)

Where we use the notation Mr(3) for the set Mr when n = 3 while keeping the symbol Mr for

arbitrary size n. The equivalence between (17) and (18) is true because the classification of the

transition was based on the delay functions of Equations (36) or (41) of Chapter 7 which "exam-

ine" the transition of every line along with the transitions of only its successor and predecessor

line. Note that (18) needs to be modified for the case of isolated buses as that of Figure 5.

Now we define the subsets HII, H2 and H3 of{0, 11
2 x2 x{0,11}2 X 2 as:

Hr I Frl Y2)LY2X3<if and only if 2Y3]e Mr(3) (19)
L.VI.X2) X21,X 3 ,_ Kij%2, X3

Therefore, relation (18), and so relation (17), is true if and only if,

jj + 1 -Yj+ 11j+2 c-H(20)

f ajn j+ \X o 0 j+2 o

for all j = 1, 2, ... , n -- 2 . We can think of (20) as the outcome of a constrained source [1], [7].
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F1P72 - (27 3 (Y3, 4 In - 1,9Xn (1

Xl X2 V21 X3 V3) X4) In - 1-7Xn)

Similarly to expression (5) we can define the 16 x 16 transfer matrices associated to the sets Hr

and the propagation (21) as:

(Hr)z, W= I9 if [Z, W] e Hr (22)
0 otherwise

where Z = and W = belong to {0, 1}2 X 2. Then, as in Section 3. [9], the num-
X1, X2 X27 3/

ber of possible sequences (21) for n > 2 is:

hrfl =1T n-2 (3h,.(n)I(H,) 1.(23)

where 1 = (1, 1, ... , 1)T is the all ones vector. With the convention, Z = X+2x2 + 4y 8y2

and W = x 2 +2x 3 + 4Y2 + 8y 3 ,we see the matrices H, H 2 and H 3 in Figure 12, Figure 13 and

Figure 14 respectively. The dots stand for ones and the holes stand for zeros. For all three of them

we used the safe classification of the transitions (Equations (41) & (42) or Table 4 of Chapter 7).
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0
1
2

15

012 - - = 1
. S -

-

S 6 0

Figure 12: Transfer matrix H1 based on safe classification of the transitions

0 12
0
1
2

15

15

Figure 13: Transfer matrix H2 based on safe classification of the transitions
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0
1
2

15

0 12 15

Figure 14: Transfer matrix H 3 based on safe classification of the transitions

Equations (23) give:

h,(n) = 13.991 2.7321n - 2 + e1 (n)

h2(n) = 14.975 - 3.594n -2 + 0.472- 1.104n -2 + e2(n) (24)

h3 (n) = 15.907 -3.901n - 2 + e3 (n)

with all errors ler(n) < 1 . In Equation (16) we replace N by h,(n) and M by 2". This results to

the bounds:

hr(nf)/2" k ax(M,) 1 + 2hr(fn) (25)

By replacing (25) into the definition of utilization, Equation (7) where Xmax(Mr) = p(M,), we

finally get:

log2 {h,.(n)}- 1 ar -log 2 {1+ 2hr(n)}
n n

(26)
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Asymptotically, as n becomes large, we have:

0.450 a, 0.725

0.846 a2  0.923

0.964 < a3 <0.982

The graphs of the bounds in (26) are shown below in Figure 15.

0
4-)
0

0
4-a

N

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

- - - - --- ---- - --- -

--- - ------- --------- -- ---- -

-------- ------ - ----------

-- - - --------- - ----- - - -

--- ----------

---------------

10 20 30 40 50 60

Size of bus

Figure 15: Bounds on the utilization factors of M1 , M2 and M 3 based on safe

classification of the transitions and non-isolated buses.
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5. DIFFERENTIAL RLL(1,oo) CODING FOR SPEED

The theory developed in the previous sections provided important estimates and bounds on the

theoretical limits of speed increase of the bus but it didn't give directions for deriving practical

coding schemes. Here we introduce a class of schemes, which we named differential RLL(1, oo),

schemes, that have low complexity and provide significant increase in the transmission rate of the

data. Their main advantage is that the encoder and decoder are essentially combinatorial circuits.

Moreover, it can be shown that they can reduce the power consumption of the bus as well. The

structure of the schemes is shown in Figure 16.

F-------------------------------------------

Static

u(k) function

EcdF

I Encoder
L

w(k)

n

x(k)

z-l
x(k- 1)

------------------- I

x(k)

x(k - 1)

w(k)

n

Static
function u(k)
- 'u(k

Encoder I

Figure 16: Differential RLL(1, oo) coding schemes for bus speed increase
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At time k = 1, 2, ... , the n-bit vector x(k) is transmitted through the n-line bus. Both isolated

and not isolated buses (Figure 1 and Figure 5) are appropriate for differential RLL(1, c) coding.

The vector x(k) satisfies the relation:

x(k) = w(k)ODx(k-1) (28)

where (D stands for vector exclusive or. The vector w(k) equals F(u(k)). The function F(.)

maps the input data u(k) at time k, to the codeword w(k). The factor by which we can accelerate

the bus, Equations (2), depends on the properties of the transitions (x(k - 1), x(k)) that result by

the encoding.

Here we make a simple observation. If the vector w(k) = (w 1(k), w2 (k), ... , w (k)) does not

have any two successive ones, that is, w (k) -wj 1 (k) = 0 for every j = 1, 2,...,n -I, then

because of Table 1 or Table 4 of Chapter 7, we see that no line will experience normalized delay

of more than (1 + 2X) during the transition (x(k - 1), x(k)). Therefore, the transition

(x(k - 1), x(k)) belongs to M 2 . But, the rule, "no successive ones" defines the Run Length Lim-

ited codes (1, oo) [11]. Lets call C, the set of the RLL(1, cc) codewords in {0, 1if, we have

CCM 2 -

We know that if the transitions belong to M 2 , then we can accelerate the bus by the factor 021

Equation (2). The question now is: what is the resulting utilization of the bus when w(k) e C for

every k ?. It is well known [9] (and very easy to show) that:

Cl = F (29)

where Fm is the m-th term of the Fibonacci sequence,

Fm= 1{(+j 1- }(30)
,F 2 2

Therefore, the utilization of the bus by the differential RLL(1, oc) coding scheme is given by

the ratio:
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1
aRLL = -log 2 (Fn+1 )n

(31)

Asymptotically, as n becomes large, the utilization approaches iog2(1 t/ 5>0.6942. This
2

means that for A = 5, and so acceleration factor 02 = 1.91, and large buses, the net result is

1.326, i.e. 32% increase of the speed. In Figure 17.

c'

N

1

0.9

0.8.

0.7

0.6

0.5

0.4 -

0.3

0.2

0.1 -

0
2 10 20 30

Size of bus

40 50 60

Figure 17: Utilization factor of the differential RLL(1, oo) coding scheme.

6. CONCLUSIONS

The idea of coding for increasing the communication speed through deep sub-micron buses was

studied in the chapter from a more theoretical point view. The analysis was based on the classifi-

cation of the transitions that was introduced in Chapter 7. The results were very promising and it

was really surprising that the speed can be increased in some cases by more than 100% simply by
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removing some slow transitions. It is true that a more accurate classification of the transitions

based on a more detailed delay estimation or measurement would result in even better possible

performances. Also, the bounds that were developed in Section 4.1 can be tighten if one takes into

account the particular structure of matrices M,1 , M2 and M 3 . Throughout the Chapters 7 and 8

we studied only "synchronous" buses, in the sense that the clocking of the bus is fixed. It is possi-

ble to achieve much higher speeds if we allow for "asynchronous" buses, that is, if we give to

every transition the amount of time it needs to get completed and no more. (a "ready" signal

would be needed). This case is modeled exactly as a Shannon's constrained noiseless channel [1].

The theory in [6] directly provides answers for the asynchronous problem.

Finally, the coding example using differential RLL(1, oo) coding is promising for practical

applications, especially in modem bus designs were the bus is partitioned within small blocks of

2-4 lines (fabrics).
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Chapter 9

Conclusions and Future Directions

1 Conclusions

This thesis addresses two major issues of parallel communication in digital circuits, the power

consumption and the communication speed.

The energy consumption associated with data transmission through DSM technology

buses has been studied taking into account the capacitive and inductive coupling between

the bus lines as well as the distributed nature of the wires. This has resulted in a new bus

energy model as well as expressions for the expected power consumption. The concept of

the Transition Activity Matrix has been introduced.

A theoretical framework has been developed to study the ultimate relation between pro-

cessing or communication rate and energy per information bit in the case of synchronous dig-

ital systems. Given such a system, the theory provides us with the fundamentally minimum

energy, per input information bit, that is required to process or communicate information

at a certain rate. The minimum energy was proven to be asymptotically achievable using

coding. The framework applies directly to combinational circuits. An immediate extension

of the theory allows the treatment of finite state machines as well. Combining these results

with the bus energy model introduced in the thesis, we derive the ultimate performance

limits of coding for power reduction in DSM buses.
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III

The application of linear, block linear and differential coding schemes on DSM buses

has been studied from an energy perspective. The resulting power consumption has been

evaluated exactly in some cases and bounded in some others. It has been shown that these

schemes never reduce power consumption. Also, conditions have been found for linear codes

to be energy-optimal within the set of all equivalent codes. These conditions can be applied

for optimally re-structuring existing linear coding schemes used for error-correction. The

results provide guidelines for energy-optimizing the other two coding classes as well.

The class of Finite State Machine encoders has been studied as an approach for power

reduction in buses. The deep sub-micron bus energy model has been used to evaluate

their power reduction properties. Two algorithms have been developed that derive very

efficient coding schemes, called Transition Pattern Coding schemes. Both algorithms take

into account statistics of the data and the particular structure of the bus. This coding design

approach is generally applicable to any discrete channel with transition costs.

A charge recycling scheme appropriate for DSM buses has been mathematically analyzed

and the theoretical limits of power reduction have been derived. It is shown that for large

buses the power reduction can be up to 50%. Power is reduced further when charge recycling

is combined with Bus Invert coding. An efficient modular circuit implementation is also

discussed that demonstrates the practicality of the technique and its significant net power

reduction.

The new concept of Coding For Speed in DSM buses has been introduced. It is based

on a new approach for estimating the transitions delays. Keeping only "fast" transitions

and clocking the bus faster can result in net speed increase of more than 120%. The theo-

retical limits of Coding For Speed have been derived for narrow buses and upper and lower

bounded for wide buses. A class of practical coding schemes for speed, termed Differen-

tial RLL(1, oc) schemes, has been introduced. These schemes have low complexity while

achieving a significant increase in communication throughput.
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2 Future Directions

Applications : The present work provides many opportunities for practical implemen-

tations. Chapter 3 provides the limits of performance of coding for power reduction. It is

desirable to build circuits that approach these limits. Towards this direction we can use the

TPC algorithm of Chapter 5. It is important to design the encoder and decoder so that

they consume as little power as possible. Although the theory provides us the guidelines and

performance limits, the final result will depend strongly on the efficiency of the hardware

implementation. Coding for speed is much more flexible in terms of circuit implementation.

The complexity of the encoder/decoder is not critical in general. The results in net speed

increase can be remarkable even with simple schemes like the Differential RLL(1, cx). A 35%

increase can be easily achievable. Higher performances will most probably require a more

complicated coding scheme that has the form of a finite state machine. Another practical

challenge in coding for speed is the comparison between the original and the encoded buses in

terms of clock speed. How do we measure how much faster the encoded one can be clocked?

In some sense we need to "compare" the distortion in the signals in the buses. Finally, the

theoretical bounds on power reduction using charge recycling show that there is a lot of room

for circuit improvements. New techniques can be introduced as well.

Theory There are many theoretical directions as well. One of the most challenging one is

to establish a measure of the complexity of circuit implementations of encoders/decoders and

incorporate it into a total performance criterion. This is more meaningful in coding for power

reduction. Chapter 3 provides the basis towards an Energy-Information theory. It would

be interesting to expand this framework in the case of networks of computation and/or

communication devices. Another direction could be the treatment of devices introducing

random errors. Regarding the coding for speed, it would be important to derive new classes

of efficient coding schemes with low complexity. As it was presented in Chapter 8, there is

a lot of room for advances between the practically useful Differential RLL(1, cO) schemes

and the ultimate limits.
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