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Abstract 

This thesis explores various coding aspects of multiple access communications, 
mainly for spread spectrum multiaccess(SSMA) communications and collabora- 
tive coding multiaccess(CCMA) communications. Both the SSMA and CCMA 
techniques permit efficient simultaneous transmission by several users sharing 
a common channel, without subdivision in time or frequency. The general prin- 
ciple behind these two multiaccess schemes is that one can find sets of signals 
(codes) which can be combined together to form a composite signal; on recep- 
tion, the individual signals in the set can each be recovered from the composite 
signal. For the CCMA scheme, the isolation between users is based on the code 
structure; for the SSMA scheme, on the other hand, the isolation between users 
is based on the autocorrelation functions(ACFs) and crosscorrelation functions 
(CCFs) of the code sequences. It is clear that, in either case, the code design 
is the key to the system design. 

For the CCMA system with a multiaccess binary adder channel, a class of 
superimposed codes is analyzed. It is proved that every constant weight code 
of weight w and maximal correlation A corresponds to a subclass of disjunctive 
codes of order T< w/A. Results related to the decomposition of the disjunctive 
codes in the noiseless and noisy cases are derived. Decoding algorithms for both 
the noiseless and the noisy cases are proposed. 

For the CCMA system operating over a multiaccess Q-ary adder channel, a 
class of cyclic uniquely decodable codes is proposed and analyzed by employing 
cyclic codes with symbols from an arbitrary finite integer rings. A very low 
complexity decoding procedure is presented. 

For a synchronous SSMA system, a new approach employing orthogonal com- 
plementary sets is presented; the properties of such orthogonal complementary 
sets are studied in detail. Recursive formulas for constructing orthogonal com- 
plementary sets are given. Methods for synthesizing new orthogonal comple- 
mentary sets from known ones with the same dimensions are also discussed. 

For an asynchronous SSMA system, several new spreading codes are presented 
and studied: 
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1. A new class of polyphase codes with two-valued periodic ACF and CCF 

properties is derived. It is proved that, for a given prime length L>3, 
the out-of-phase ACFs and CCFs of the codes are constant and equal to 
/. In addition, all codes of the same length are mutually orthogonal. 

2. Maximal length sequences (m-sequences) over Gaussian integers, suit- 
able for use with QAM modulation, are considered. Two sub-classes of 
m-sequences with quasi-perfect periodic autocorrelations are obtained. 
The CCFs between the decimated m-sequences are studied. By apply- 
ing a simple operation, it is shown that some m-sequences over rational 
and Gaussian integers can be transformed into perfect sequences with 
impulsive ACFs. 

3. Frank codes and Chu codes have perfect periodic ACFs and optimum pe- 
riodic CCFs. In addition, it is shown that they also have very favourable 

nonperiodic ACFs; some new results concerning the behaviour of the non- 
periodic ACFs are derived. Further, it is proved that the sets of combined 
Frank/Chu codes, which contain a larger number of codes than either of 
the two constituent sets, also have very good periodic CCFs. Based on 
Frank codes and Chu codes, two interesting classes of real-valued codes 
with good correlation properties are defined. It is shown that these codes 
have periodic complementary properties and good periodic and nonperi- 
odic ACF/CCFs. 

Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid 
coding scheme provides a very flexible and powerful multiple accessing capa- 
bility and allows simple and efficient decoding. Given an SSMA system with 
K users and a CCMA system with N users, where at most T users are active 
at any time, then the hybrid system will have K K. N users with at most T"K 
users active at any time. The hybrid CCMA/SSMA coding scheme is supe- 
rior to the individual CCMA system or SSMA system in terms of information 
rate, number of users, decoding complexity and external interference rejection 
capability. 
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Chapter 1 

Introduction 

1.1 Outline of the Thesis 

This thesis deals with the code design and analysis for spread spectrum multi- 
access(SSMA) communications and collaborative coding multiaccess(CCMA) 
communications. The general idea behind these two multiaccess schemes is 
that one can find sets of signals (codes) which can be mixed together to form a 
composite signal but then the individual signals in the set can each be recovered 
from the composite signal. Obviously, in order to permit efficient simultaneous 
transmission by several users sharing a common channel, without subdivision in 
time or frequency, to obtain unique decodability, to facilitate system synchro- 
nization and to enhance the robustness to unwanted signals, code set design is 
the key element of both SSMA and CCMA systems. 

The thesis opens with a brief introduction to multiple access communications. 
Three bodies of research on multiple-access channels, i. e. multiple-access in- 
formation theory, collision resolution, and spread spectrum, each proceeding in 

virtual isolation from the others and each using totally different models, are re- 
viewed. In particular, an overview of the coding aspects of CCMA and CDMA 
techniques is given. The chapter concludes with an outline of the original work 
contained within the thesis. 

Chapters 2 and 3 give detailed accounts of the research undertaken in the area of 
CCMA. Chapter 2 investigates coding for the multiaccess binary adder channel. 
By giving some basic concepts concerning the superposition mechanism and 
superimposed codes, the relationship between the constant weight codes and 
disjunctive codes is analyzed. Then some important results related to the 
decomposition of the disjunctive codes in the noiseless and noisy cases are 
derived. Several efficient decoding algorithms for noiseless and noisy channel 
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are developed. In Chapter 3, coding for the multiaccess Q-ary adder channel 
is considered by employing cyclic codes with symbols taken from an arbitrary 
finite integer ring. The code construction is based on the factorization of x' -1 
over the unit ring of an appropriate extension of a finite integer ring. A very low 
complexity decoding procedure is presented and it is shown that the maximum 
achievable sum rate is 1. 

Chapter 4 deals with the design of orthogonal complementary sets of sequences 
for use in synchronous SSMA systems. After definition of the concepts of 
complementarity, uncorrelatedness and orthogonality, recursive formulas for 
constructing orthogonal complementary sets are proposed; methods for syn- 
thesizing new orthogonal complementary sets from known ones with the same 
dimensions are discussed. Conjectures relating to maximally orthogonal com- 
plementary sets are also given. Finally an application of orthogonal comple- 
mentary sets to synchronous SSMA systems is described. 

The work of Chapters 5,6 and 7 contributes to the code sequences used in 
asynchronous SSMA systems. In Chapter 5, a new class of code sequences is 
proposed. The proposed sequences have two-valued auto- and crosscorrelation 
functions (ACFs and CCFs) and any two sequences in this class are mutually 
orthogonal. In Chapter 6, a generalized class of maximal length sequences or 
m-sequences is defined over Gaussian integers. It is shown that there exist 
two sub-classes of sequences whose ACFs are quasi-perfect and which can be 
transformed to a perfect form by suitable operations. Chapter 7 is concerned 
with two classes of perfect codes, i. e. Frank codes and Chu codes. Apart 
from their periodic correlations, it is shown that they also have very favourable 
nonperiodic correlation properties. Some new results concerning the behaviour 
of the nonperiodic ACFs are obtained. It is also proved that sets of combined 
Frank/Chu codes, which contain a larger number of codes than either of the 
two constituent sets, also have very good periodic correlation properties, and 
hence can be used in asynchronous SSMA to provide more users. Based on 
Frank codes and Chu codes, two interesting classes of real-valued codes with 
good correlation properties are defined. It is shown that these codes have 

periodic complementary properties. From calculated ACF/CCF results, it is 
demonstrated that they also have good periodic and nonperiodic ACF/CCFs. 

Chapter 8 presents a new hybrid CCMA/SSMA coding scheme. This scheme 
effectively comprises concatenated CCMA and SSMA systems. The hybrid 
system provides a very flexible and powerful multiple accessing method. Given 
an SSMA system with K users and, a CCMA system with N users, where at 
most T users are active at any time, then the hybrid system will have K-N 
users with at most T"K users active at any time. The hybrid system is supe- 
rior to the individual CCMA system or SSMA system in terms of information 
rate, number of active users, synchronization ability and external interference 
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rejection capability. 

Finally, Chapter 9 concludes the work contained within this thesis and details 

possible areas for further research. Several appendices are included that de- 

scribe work which, whilst necessary for a complete description of the research. 
would detract from the flow of the thesis if included in the main body. 

1.2 Single and Multiple Access Communica- 
tions 

The task of the communication system designer is to provide a cost-efectiv, e 
system for transmitting information from senders to recipients at the rate and 
level of accuracy that the users require. 

-------------- 

Source 

--------------- 

Source 
encoder decoder 

source Estimated 

codeword source 
Codeword 

Channel Channel 
encoder decoded 

channel Received 
I Codeword word 

Modulator 

--- ---- 

Demodulato 

------- 

Noise 

Figure 1.1: Single Access Communication System 

The classical model of a single access communication system has a single trans- 

mitter sending information to a receiver through a single access channel (SAC) 

which in some way corrupts the transmitted information, as shown in Fig. I. I. 
The source encoder is designed to represent the source data more compactly 
(i. e. to remove redundancy for rate). The channel encoder performs all the dig- 
ital operations needed to prepare the source data for modulation, for example, 
error control coding (i. e. to add redundancy for accuracy), and binary-to- 

nonbinarv conversion. The function of the modulator is to match the channel 
encoder output to the transmission channel. Because the channel is subject to 

various types of noise, distortion and interference, the channel output differs 
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from the channel input. The aim of demodulator, channel decoder and source 
decoder is to restore the original information at the receiver. 

The most important and widely-used model of a multi-user communication 
is the multiple access communication channel (MAC) model (Gallager. 1985: 
Farrell, 1981; Wolf, 1981), as shown in Fig. 1.2. There are multiple transmitters 

and a single receiver. The received signal is corrupted both by noise and by 

mutual interference between the transmitters. Each of the transmitters is fed 
by an information source and each information source generates a sequence 
of messages, successive messages arriving at random instants of time. For a 
single access channel, one normally assumes an infinite reservoir of data to he 
transmitted. For multiaccess channels, most transmitters have nothing to send 
most of the time, with only a few being active. The problem is then to share 
the channel between the active users and this is often the central technical 

concern in multiaccess communication. 

ul 
'0 X ULM 

........ __... _ source] U2 
lencoderjl 

2 

iY 

U 
source encoder T 

Figure 1.2: Multiple Access Communication System 

This type of model is appropriate for the uplink of a satellite network, for a 
radio network where there is one central repeater and for the traffic to the 

central node on a multidrop telephone line. It is also adequate in most respects 
for studying networks where a common channel allows all nodes to hear all 
other nodes. Common examples are a cable connecting many nodes and a fully 

connected radio network. 

Gallager (Gallager, 1955) points out that there are at least three bodies of 
research on multiple-access channels, each proceeding in virtual isolation from 
the others and each using totally different models. A classification of the three 
areas is shown in Fig. 1.3. The three areas can be described as multiple-access 
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information theory, collision resolution and spread spectrum. 
The major issues that one has to deal with in multiple-access communica- 
tion systems are interference between users, noise and the random (or bursty) 

arrivals of messages. The multiple-access information theory approach appro- 
priately models the noise and interference of MACs but ignores the random 
arrival of messages. The collision resolution approach focuses on the random 
arrival of messages and on the transmission delays which are due to the inter- 
ference between users, but generally ignores all other aspects of the underlying 
communication process. The traditional spread spectrum approach treats ev- 
erybody else's transmissions as "jamming by the enemy", i. e. the interference 
from other users is treated as additional (potentially intelligent) noise. 

MULTIPLE"ACCESS COMMUNICATION 

Theo 
Spread Spectrum 

2-user T user 
LALOGHA 

CCMA 

Figure 1.3: Classification of Multiaccess Communication Schemes 

1.3 Information Theory Approach 

The multiple access information theoretic approach was initiated in 1961 by 
Shannon in his fundamental paper (Shannon, 1961) and established in 1971 

with a coding theorem developed by Ahlswede (Ahlswede, 1971) and Liao (Liao, 
1972). This work has also been generalized in many ways and has given rise 
to a distinct area of research (Gamal & Cover, 1980; Meulen van der, 1977; 
Csiszar & Körner, 1981). 

The coding theorems of information theory treat the question of how much data 
can be reliably communicated from one point, or set of points, to another point, 
or set of points. The main objective of the coding theorem is to characterize 
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the capacity region of a MAC for certain communication situations, that is 
to determine a set of simultaneously achievable rates which allow each user 
to communicate with the receiver with arbitrarily small error probability in 
the decoder output sequences. The highest rate at which reliable data can 
be transmitted over a channel is called the capacity of the channel. The set 
of rates at which simultaneous reliable transmission is possible is called the 
capacity region of a MAC, CMAC. 

R2 (bRs/channel use) 

1 

Capacity Region 

Time Sharing Limit 

------- ----- 

0.5 1.0 1.5 RI 

(bits/channel use) 

Figure 1.4: Capacity Region of 2-user MAC 

The capacity regions for the 2-user and 3-user discrete memoryless(DM) MAC 

with independent sources have been determined by (Ahlswede, 1971). van der 
Meulen (Meulen van der, 1971) put forward a limiting expression and simple 
inner and outer bounds on the sets of simultaneously achievable rates. Liao 
(Liao, 1972) studied the general T-user DM-MAC with independent sources. 
He determined a set of rates which allow each transmitter to communicate with 
the receiver with an arbitrarily small probability of error and showed that, for 

any set of rates outside the capacity region, the probability of error cannot be 

made arbitrarily small. In the case of 2-user adder MAC with binary inputs, 
the capacity region is shown in Fig. 1.4 (Ahlswede, 1971; Liao, 1972). The basic 

assumption is that the encoders are to operate independently of each other. It 

was also assumed that the encoders utilized block codes and that the encoders 
produced codewords that were in block and bit synchronism. Besides this, it 

was assumed that the decoder was in block and bit synchronism with the en- 
coders. Slepian and Wolf (Slepian & Wolf, 1973) later generalized this result by 

considering a third source that could be encoded jointly by both transmitters. 
The information capacity of a Gaussian MAC has been determined by Wyner 
(Wyner, 1974), Cover (Cover, 1975), Gamal et al (Gamal & Cover, 1980). 

While the theoretical development of coding theorems for multiaccess is reason- 
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ably advanced, very little has been done with respect to general techniques for 

multiaccess collaborative coding (Gallager, 1985). Here a brief overview of the 
coding aspects of Collaborative Coding Multiple Access (CCMA) techniques is 
given. 

The block code constructions for noiseless synchronous MAC model have fol- 
lowed three main approaches. The first one focused on achieving the bounds 

promised by multiple access information theory for the 2-user binary input 

adder MAC. Code constructions which belong to this class are given in (Kasami 

et al., 1975a; Kasami & Lin, 1976; Kasami et al., 1983; Weldon Jr., 1978; 
Khachatrian, 1982; Khachatrian, 1983; Braak & Tilborg, 1985; Lin & Wei, 
1986). The search for codes in this case is complicated by the fact that at 
least one of the two codes must be nonlinear to achieve a nontrivial rate point 
anywhere near the boundary of the capacity region of the MAC. The second 
approach with the same philosophy is to construct codes for the T-user noiseless 
binary input adder MAC with the goal of achieving channel capacity asymptot- 
ically as T goes to infinity. In this case, each user usually gets two codewords 
and it is assumed that all T users are always active. Code constructions for this 
class of codes are given in (Chang & Weldon Jr., 1979; Ferguson, 1982; Chang, 
1984; Wilson, 1988). As pointed out by (Gallager, 1985), what is needed is a 
coding technology that is applicable to a large set of transmitters of which a 
small, but variable, subset simultaneously use the channel; therefore, the third 

approach aims at the code construction for aT active users out of N multiple 
access system. In this case, the primary goal of code construction is not to 
achieve channel capacity. (although this is of course always an enticing goal); 
the reason is that codes with highest possible sum rate may not be suitable for 

practical use if their decoders have a prohibitively high complexity. Therefore 

unique decodability and simple decoding algorithms are of great interest in this 

approach. Examples of this approach are given in (Mathys, 1990; da Rocha Jr., 
1993b; da Rocha Jr., 1993a; da Rocha Jr. et al., 1993; Fan et al., 1994c; Fan 

et al., 1995). 

A code is said to be uniquely decodable if and only if all the received composite 
codewords, which result from the users' codeword transmissions, are distinct. 
A simple coding scheme for a 2-user uniquely decodable block length of N= 
2 is constructed by Kasami and Lin (Kasami et at., 1975a; Kasami & Lin, 
1976), where user 1 has the codewords C1 = (00,11) and user 2 the codewords 
C2 = (00,01,10). It is clear that (Cl, C2) is a uniquely decodable code pair, in 

which all the received composite codewords are unique. Thus the decoder can 
unscramble the two messages without ambiguity. The overall rate sum achieved 
by this scheme is Raum = R1 + R2 = 1.293 bits per channel use, which is higher 
than time-sharing. It is seen that, from Fig. 1.4, the maximum value R,.,,, of 
the 2-user binary adder MAC is 1.5 bits per channel use. This simple coding 
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scheme is extended later to block length L (Kasami & Lin, 1976). The rates are 
(R1, R2) = (1/L, [log2(2L - 1)]/L), and the rate sum decreases with increase 
in L, tending to unity. Thus L=2 is both the simplest and the most efficient 
case. Obviously the T-user coding scheme will be much more complicated than 
that of the 2-user coding scheme. 

For any T-user uniquely decodable coding scheme, the received vector can, 
in principle, be decoded by a look-up table using an exhaustive searching 
nearest-neighbour decoding algorithm, since there is a one-to-one correspon- 
dence between each received vector and the only possible set of T transmitted 
codewords. Thus, in noiseless conditions the decoder is capable of decoding 
every possible received vector, without ambiguity, into the T codewords that 
were transmitted by the T encoders. However, as the number of users and 
the length of codewords increase, the scheme obviously becomes impractical 
because of the prohibitively high complexity. Therefore it is very important to 
study other algorithms with low decoding complexity, such as the algorithms 
given by (Chang & Weldon Jr., 1979; Mathys, 1990; da Rocha Jr., 1993a; 
da Rocha Jr. et al., 1993; Fan et al., 1994c; Fan et al., 1995). 

1.4 Spread Spectrum Approach 

Spread spectrum is a means of transmission in which the signal occupies a 
bandwidth in excess of the minimum necessary to send the information; the 
band spread is accomplished by means of a code which is independent of the 
data, and the synchronized reception using a reference code at the receiver 
is used for despreading and subsequent data recovery. The large redundancy 
inherent in spread spectrum signals is required to overcome the severe levels 
of interference that are encountered in the transmission of digital information 
over some radio and satellite channels. 
There are primarily two spread spectrum techniques, Direct Sequence (DS) 

spread spectrum and Frequency Hopping (FH) spread spectrum. The goal of 
both of these techniques is to take the power to be transmitted and spread it 

over a very wide bandwidth so that the power per unit bandwidth (watts per 
hertz) is small. FH spread spectrum occupies the large bandwidth provided for 
the spread spectrum systems by periodically changing the carrier frequency of 
the transmitted signal; the changing is called "hopping". DS spread spectrum 
achieves a spreading of the spectrum by using the data signal to modulate the 
very wide band spread spectrum sequence. This thesis will only deal with DS 

spread spectrum. 

The multiple access system considered operates by spreading the bandwidth 
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of a user's signal over a wide range of frequencies prior to transmission. The 
multiple access capability achieved is termed Code Division Multiple Access 
(CDMA). As the data signals have been spectrally spread, this technique is 
also known as Spread Spectrum Multiple Access (SSMA) (Pickholtz et al., 
1982; Dixon, 1984; Simon et al., 1985; Taylor & Omura, 1991; Scholtz, 1982; 
Schilling et al., 1991). 

In comparison, let us consider the two most common multiplexing techniques: 
Frequency Division Multiple Access (FDMA) and Time Division Multiple Ac- 
cess (TDMA). In FDMA, all users transmit simultaneously, but use disjoint 
frequency subbands. Obviously the width of the subband, which corresponds 
to only a portion of its total system capacity for each user, is restricted. The 
need to allow "guard bands" between subbands also reduces system efficiency. 
In TDMA, all users occupy the complete system bandwidth, but transmit se- 
quentially in uniquely defined time slots. When users are allowed to transmit 
simultaneously in time and occupy the complete system bandwidth as well, 
some other means of separating the signals at the receiver must be available; 
the above mentioned CCMA and SSMA techniques provide this necessary ca- 
pability. In a perfectly linear, perfectly synchronous system, the number of 
orthogonal users for all three systems is the same, since this number only de- 

pends upon the dimensionality of the overall signal space. The differences 
between the three multiple access techniques become apparent when various 
real-world constraints are imposed upon the ideal situation described above. 

1. SSMA does not require an external synchronization network, which is an 
essential feature of TDMA. That is to say, the SSMA system normally 
operates asynchronously, or the transition times of a user's data symbols 
do not have to coincide with those of the other users. 

2. SSMA offers a gradual degradation in performance as the number of users 
is increased. It is therefore relatively easy to add new users to the system. 

3. SSMA offers an external interference rejection capability (e. g. multipath 
rejection or resistance to deliberate jamming). 

4. SSMA can be used in a frequency band that has existing narrowband 
users. Therefore, this means of communication represents an effective 
and efficient mode of frequency band utilization and sharing. 

In DS SSMA, each user is given its own code, which is approximately uncorre- 
lated (i. e., has low cross correlation) with the codes of the other users. While 
the code design problem in DS CDMA is very crucial in determining system 
performance, the power control strategy (referred to as "near-far problem" due 
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to different received powers from the geographically separated users) is also 
very important. However we will only focus on the code design problem in this 
thesis. 

The asynchronous binary-phased DS SSMA system is shown in Fig. 1.5. The 

received signal is given by 

KE 

? PClk(t 
- Tk)hk(t - Tk)cos(W t+ Ok) + n(t) 

k=1 

where 
bi(t)= binary message(±l) of the ith user with bit duration T; 
ap(t)= spreading code waveform of the ith user, assuming that there are K 

active users; 
2P, w,, Ok = amplitude, frequency and phase of the ith user, ¢k = 9k - wCTk: 

Ti= random time delay of the ith user distributed in [0, T]; 
n(t)= narrow-band interference and wideband channel noise. 

Threshold 
Delay 

b (týý ý/ Zt 
bt(t) 

2Pat(t)cos(w5+e1) at(t)costw. -q) 

T 

®ý (t IJ-2(t) It 
2Pait)cos(mct+82) n(t) a2(t)cosyo. + ) 

bk(t) 

(''c +Bk) ak(t)cosiw, +4t) 

blot) 
Zk 

Figure 1.5: Asynchronous Binary-phased DS SSMA System 

Assuming that the receiver is correctly synchronized to the ith signal, we can 
set ¢; to zero without losing any generality. If the received signal r(t) is the 
input to a correlation receiver matched to the ith user's transmitted signal. the 
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output Z; is given by 

Z; =2 btoT+ 2 

k=1 
k#i 

[bk, 
-1Pk, i(Tk) + bk, 

opk, i(Tk)] coscbk+no(t)(1.2) 

where no(t) = fö n(t)a; (t)coswtdt, and the double frequency terms have been 
ignored. The bk, 

_1, 
bk, o are consecutive data bits and pk, i, pk, i are the continuous- 

time partial crosscorrelation functions (CCFs) defined by 

%r T 

Pk, i(T) =J ak(t - r)ai(t)dt, pk, i(T) =J ak(t - T)ai(t)dt (1.3) 

0T 

which can also be represented as discrete CCFs (Pursley, 1977; Pursley & 
Sarwate, 1977; Pursley & Roefs, 1977). In Eqn 1.2, the first, second and the 
last terms represent respectively the expected message, co-channel interference 
due to the existence of the other K -1 user signals, and channel noise. Thus in 

order to reduce the error probability, the co-channel interference (or the CCFs 
between any two spreading codes) must be minimized. 

The design of the spreading codes is the key to enhancing the robustness against 
unwanted signals. If the CCFs of the sequences used in a DS SSMA system are 
not small, then the superimposed CCF components will be a source of system 
"self noise" which will eventually cause a limit on the number of simultaneous 
users. Moreover, every receiver has a unique reference code, compared with 
other users who have different codes. The code sequence thus becomes the 
user's address. When codes are properly chosen to have low cross-correlation 
properties, minimum interference occurs between users. More than one signal 
can be unambiguously transmitted in the same bandwidth and at the same 
time; therefore selective addressing and code-division multiplexing are imple- 

mented by the coded modulation format. 

For an ideal DS SSMA system, a set of completely uncorrelated sequences (CCF 
is zero everywhere) with ideal impulsive autocorrelation functions (ACFs) (which 
are zero everywhere except at zero time shift) should be used. However such 
sequences are impossible to find, although it is possible to find completely un- 
correlated sequences with good ACFs (Darnell, 1989; Darnell, 1993b; Miller 
& Darnell, 1990; Miller, 1990), or to find good sequences with perfect ACFs 
and very low CCFs (Chu, 1972; Frank & Zadoff, 1962). In fact, for any set of 
sequences of size K and length L, there exist some fundamental restrictions on 
the values of ACF, CCF, K and L, as discussed below. 
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We now consider a set of K complex-valued sequences 
f (ask)) :1<k: 5 K} 

where (aýk) ) represents the code-sequence assigned to the k-th user in the DS 
SSMA system. The aperiodic CCF Ck,; and periodic CCF Rk,; for the complex- 
valued sequences (aýk) ) and (ar')) of period L are defined by 

L-T-1 L-1 

<L (1.4) Ck, 
1(r) a. 

7(k) 
[a(') Rk, (r) a3 [a1+71 *0<r 

j=0 j=0 

When k=i, the above definition becomes that of the ACF. 

It is desirable to minimize the peak crosscorrelation magnitude and the out- 
of-phase autocorrelation magnitude, i. e. to minimize the maximum nontrivial 
value of Rmax, Cmax" 

The results of Welch (Welch, 1974), Sidelnikov (Sidelnikov, 1971) and Sarwate 
(Sarwate, 1979) provide lower bounds on the minimum possible value of the 

parameter Rmax and are commonly used to judge the merits of a particular 
sequence design. For large values of family size K and sequence length L the 

above lower bounds imply 

Rmax>_L 
If-1 

,N 
VL- (1.5) 

LK -1 

There are also some similar bounds on the maximum nontrivial value of aperi- 
odic correlation value Ck,; (Welch, 1974; Sarwate & Pursley, 1980; Mow, 1994). 

For synchronous DS SSMA, the basic requirement for the sequence design is 
that all the sequences used should be mutually orthogonal or nearly orthogonal. 

In this thesis, we will concentrate on the design and analysis of orthogonal com- 
plementary codes and complex codes with two-valued or optimal ACFs/CCFs. 

1.5 Collision Resolution Approach 

The beginning of the collision resolution approach to multiaccess communi- 
cation came in 1970 with Abramson's ALOHA network (Abramson, 1970). 
The idea here was that whenever a message (or packet) arrived at a trans- 
mitter, it would simply be transmitted, ignoring all other transmitters in the 
network. If another transmitter was transmitting in an overlapping interval, 
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interference would prevent the message from being correctly received, the cyclic 
redundancy check (CRC) would not check, no acknowledgment would be sent, 
and the transmitter would try again later; the later time would be pseudoran- 
domly chosen to avoid the certainty of another collision which would occur if 
both transmitters waited the same time. Over the years, this basic strategy has 
been improved, generalized, and analyzed in many ways (Massey, 1985; Massey 
& Mathys, 1985; Abramson, 1985; Massey, 1986; Bertsekas & Gallager, 1992). 

The collision resolution approach will not be discussed in any detail elsewhere 
in this thesis, but is briefly discussed here for completeness. 

Collision resolution research has always focused on the bursty arrival of mes- 
sages and the interference between transmitters, but has generally ignored any 
noise. More generally, this approach ignores the underlying communication 
process, assuming only that a message transmission is correctly received in the 
absence of collision and incorrectly received when a collision occur. 

The simplest form of collision resolution strategy using the assumptions above 
is slotted ALOHA. Slotted ALOHA is a variation of pure ALOHA (Abramson, 
1970). In slotted ALOHA, whenever a packet arrives at one of the transmit- 
ters, that packet is transmitted in the next slot. Whenever a collision occurs 
in a slot, each packet involved in the collision is said to be backlogged and 
remains backlogged until it is successfully transmitted. Each such backlogged 

packet is transmitted in each subsequent slot with some fixed probability p>0, 
independent of past slots and of other packets. 

In many multiaccess systems such as local networks, each transmitter can hear 

whether or not the other transmitters are sending. In such a situation, a trans- 

mitter can start to send a packet in the middle of a data slot if no other 
transmitters are currently sending. Not only does this allow idle slots to be 

shortened, but it can also reduce the number of collisions. Carrier sense mul- 
tiple access (CSMA) techniques were first developed by Kleinrock and Tobagi 
(Kleinrock & Tobagi, 1975). The terminology "carrier sense" does not neces- 
sarily imply the use of a carrier, but simply the ability to quickly detect use of 
the channel. 

1.6 Original Aspects of the Research Pro- 

gramme 

The major original contributions to knowledge resulting from the research pro- 
gramme described in this thesis are as follows: 

13 



1. For the CCMA system with a multiaccess binary adder channel, a class 
of superimposed codes are analyzed. The relationship between constant 
weight codes and disjunctive codes is analyzed. Some important results 
related to the decomposition of the disjunctive codes in the noiseless and 
noisy cases are derived. Several efficient decoding algorithms for both the 
noiseless and the noisy channel are developed. 

2. For the CCMA system with a multiaccess Q-ary adder channel, a class of 
cyclic uniquely decodable codes is proposed and analyzed by employing 
cyclic codes with symbols from an arbitrary finite integer ring. A very 
low complexity decoding procedure is presented. 

3. For the synchronous SSMA system, a new approach employing orthogonal 
complementary sets is presented. The properties of such orthogonal com- 
plementary sets are studied in detail. Recursive formulas for constructing 
orthogonal complementary sets are presented. Methods for synthesizing 
new orthogonal complementary sets from known ones with the same di- 
mensions are also discussed. 

4. For the asynchronous SSMA system, several new spreading codes are 
presented and studied: 

(a) A new class of polyphase codes with two-valued periodic auto- and 
crosscorrelation properties is proposed. It is proved that, for a given 
prime length L>3, the out-of-phase ACFs and CCFs of the codes 
are constant and equal to vrL-. In addition, all codes of the same 
length are mutually orthogonal. 

(b) Maximal length codes over Gaussian integers that can be used with 
QAM modulation are considered. Two sub-classes of m-sequences 
with quasi-perfect periodic autocorrelations are obtained. The CCFs 
between the decimated m-sequences are studied. By applying a 
simple operation, multi-level and complex perfect sequences are ob- 
tained from some m-sequences over rational and Gaussian integers. 

(c) Frank codes and Chu codes have perfect periodic ACFs and optimum 
periodic CCFs. It is also shown that they also have very favourable 

nonperiodic ACFs; some new results concerning the behaviour of the 

nonperiodic ACFs are derived. Further it is proved that the sets of 
combined Frank/Chu codes, which contain a larger number of codes 
than either of the two constituent sets, also have very good periodic 
CCFs. Based on the Frank codes and Chu codes, two interesting 

classes of real-valued codes with good correlation properties are de- 
fined. It is shown that these codes have periodic complementary 
properties and good periodic and nonperiodic ACF/CCFs. 
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5. Finally, a hybrid CCMA/SSMA coding scheme is proposed. The new hy- 
brid coding scheme provides a very flexible and powerful multiple access- 
ing capability and a simple, efficient decoding method. Given an SSMA 

system with K users, a CCMA system with N users where at most T 

users active at any time, then the hybrid system will have K"N users with 
at most T T. K users are active at any time. The hybrid CCMA/SSMA 

coding scheme is superior to the individual CCMA system or SSMA sys- 
tem in terms of information rate, number of users, decoding complexity 
and external interference rejection capability. 
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Chapter 2 

Codes for the Multiaccess 
Binary Adder Channel 

2.1 Introduction 

For multiaccess channels, most transmitters have nothing to send most of the 
time, and only a few are busy. Therefore the central technical problem in 
multiaccess communication is how to share the channel between the busy users, 
or how to assign codes to a set of N users where it is expected that no more 
than T of the users will be transmitting at any one time and where T«N. In 

a dynamic assignment strategy we would require only T codes. Then, as one 
user becomes inactive, its code can be reassigned to the next user requiring to 
transmit. However assignments should be made by a central reservation centre 
or by other means. A static assignment strategy is one where each of the N 

users is given its own code; thus we would require N distinct codes. In this 
case, it is essential to construct a set of N codes, any T of which can co-exist 
with each other during transmission over a given channel. This chapter and 
next chapter will study the static coding strategy only. 

There are many channel models associated with the multiaccess coding (Far- 

rell, 1981; Wolf, 1981; Gallager, 1985; Mathys, 1990). We restrict ourselves 
to memoryless discrete-time MACs with discrete input and output alphabets. 
Fig. 2.1 shows a classification of such MAC's according to the input combining 
function in the noiseless case (Mathys, 1990). 

By far the most popular channel is the real adder channel, also known as erasure 
MAC or simply as the adder channel. The channel output symbol value is the 
arithmetic sum of the input symbol values, in the absence of noise. Code design 
for the noiseless and the noisy versions of this channel has been considered by 
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various authors (Chang & Weldon Jr., 1979; Chang, 1984; Braak & Tilborg, 
1985; Farrell, 1981; Ferguson, 1982; Kasami et al., 1975b; Kasami & Lin, 1976; 
Kasami et al., 1983; Khachatrian, 1982; Khachatrian, 1983; Khachatrian, 1988; 
Lin & Wei, 1986; Weldon Jr., 1978; Wilson, 1988; Deaett & Wolf. 1978). 

DISCRETE INPUTIUUTPUT MULTIACCESS CHANNELS 
(noiseless, discrete-time) 

Real adder Collision { XOR ! AND OR Switching 
channel channel' channel channel channel channel 

f 1I Y= Xi 
Y=11 Xi If only user Y= ( Xi Y U11 Xi Y= V X. Y- X11 X2 

i transmits 
i, over reais Y_c -3 over GF(2}i 0 over GF(2 V: Io9ical OR XQý. 1 

01)< (collision) 
X" C0 1) 1 Xi {0,1 } Xi f {Q, 1 } X' (0, I) 

Figure 2.1: Classification of Multiaccess Channel Models 

The collision channel is related to the collision resolution approach and is based 

on the assumption that whenever two or more users transmit simultaneously, 
the receiver can only detect that a collision took place. Channel discussions 

and code constructions for this channel are discussed in (Massey, 1985; Massey 

ýý Mathys, 1985; Massey, 1986; Callager, 1985). 

The OR channel, or pulse on-off channel, is used by various researchers in 
different communication situations. The output of the channel is zero if and 
only if all its inputs are zero, and one otherwise. Code design for this channel 
is treated in (Chang & Wolf, 1981; Wolf, 1981; Sommer, 1968; Cohen et al.. 
1971: Viterbi, 1978; Gyorfi, 1981; Laval & Abdul-Jabbar, 1988; Abdul-Jabbar 
S. Laval, 1988; Ericson, 1987). 

The XOR channel, or modulo 2 addition channel, is discussed in (Wolf, 1975; 
Farrell, 1981). 

The AND channel, or binary multiplying channel, is considered in (Farrell. 
1981; Meulen van der, 1977; Schalkwijk, 1982; Schalkwijk. 1983). 
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The switching channel is in some senses similar to the binary input real adder 
channel but exhibits a quite different behaviour in terms of its capacity region; 
its detailed description and related codes can be found in (Khachatrian, 1989; 
Vanroose & van der Meuten, 1987; Vanroose, 1988). 

In this chapter, superimposed codes for the multiaccess binary adder channel 
are considered. The idea of superimposed codes was introduced in 1964 by 
Kautz-Singleton (Kautz & Singleton, 1964). The application they had in mind 
was information retrieval and the superposition mechanism assumed was a 
Boolean sum. The concept is, however, also useful in communications over the 

multiple access OR channel. Many generalizations and results concerning the 

multiple access OR channel have been obtained (Laval & Abdul-Jabbar, 19SS; 
Abdul-Jabbar &; Laval, 1988; Ericson, 1987). Chien-Frazer introduced the con- 
cept of superimposed codes by assuming modulo-2 addition (XOR Channel) 

as the superposition mechanism (Chien k Frazer, 1966), which was also recoti- 
sidered by Ericson-Levenshtein more recently (Ericson & Levenshtein, 1993). 
Ericson-Györfi studied the same problem in Euclidean n-space Rn in which 
all the inputs and the output of the channel are real-valued vectors (Ericson 
Györfi, 1988). In this thesis we will further investigate the superimposed codes. 
The superposition mechanism used here is real addition, but with binary inputs 
(Fan et al., 1995). 

ýuserl 

X Noise {user2 2e L in g: 
o Adder f(A) 
o Channel f(A) 

f(A)=Ex;, IAI, T«N 
t tl 

X 
 , EA 

Figure 2.2: Multiaccess Binary Adder Channel 

The rnultiaccess IN-user binary adder channel (N-BAC) is shown in Fig. 2.2, 
where the summed output is the set of output codewords which results from 
the componentwise sum of codewords from a given superimposed code. The 
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superimposed codes are binary codes and are characterized by three parameters: 
the block length n, the order T and the size N. Identifying T out of N (T «N) 
users sharing a multiaccess adder channel can be done as follows: assign to 
each user one codeword from the superimposed code and the all-zero vector of 
length n. Those users who want to identify themselves (active users) send their 
respective codewords from the superimposed code. All others send the zero 
vector. It is assumed that both block and bit synchronization are maintained. 
The code guarantees unique identification of all active users as long as the 
number of active users does not exceed T. The decoder receives a sum vector, 
which is the superposition of the transmitted codewords, and it attempts to 
partition it into its component codewords. 

In the following sections, some basic concepts concerning the superposition 
mechanism and superimposed codes are first given. Then the relationship be- 
tween the constant weight codes and disjunctive codes is analyzed and some 
important results related to the decomposition of the disjunctive codes in the 
noiseless and noisy cases are derived. Lastly, several decoding algorithms for 
the noiseless channel and the noisy channel are developed. 

2.2 Constant Weight Codes and Disjunctive 
Codes 

Before proceeding, some definitions are required. 

Definition 1 The correlation between two binary {0,1} vectors xt and xk of 
length n is the number of positions where both vectors have one (i. e., the number 
of overlaps between two vectors) 

n 

'\ (xe, xk) _E Xii " Xk l (2.1) 

j=O 

where the -TI� xkj are the j-th binary symbols of x, and xk respectively. 

Given a binary code C, the maximum correlation .A is defined as 

max A (XI) xk) (2.2) 
xi, xk EC, 1 #k 
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Definition 2 Consider a set A= {XI, x2, ... , IT} consisting of T binary vec- 
tors of length n. The superposition of these vectors is a T-ary vector z= 
f (A) = (z1, z2, ... q Zn) of length n, where 

T 

zj =Ex; j j=1,2, .., n. (2.3) 
i=l 

This superposition concept corresponds to the binary adder channel that op- 
erates on a set A of binary vectors and produces an output of a T-ary vector z 
equal to the ordinary sum of the input set. 

Definition 3 The weight of a T-ary vector z=f(A)=(zl, z2) ... , zn) is defined 

as Wt(f(A)) = >in1 Iz21. Let xi = {x; i, xi2, ... , x; n} be a binary vector. The 
weight of the difference vector f (A) - x; is defined as 

n 

Wt (f (A) - x; ) = lzi - x; j1, (2.4) 

; _j 

where'-' is normal subtraction. 

Definition 4A binary vector x; = (x, 1, xi2, ... , x;,, ) is said to be included in 
a T-ary vector z= (zl) z21 ... , z�) if and only if z1- x; 2 > 0, j=1,2,. . ., n. 

Definition 5 The binary code C with codeword length n and size N is a dis- 
junctive code of order T if each subset ACC of size JAI <T has the property 
that z=f(A) includes only those codewords in C which are also in A. The set of 
all disjunctive codes with parameters n, T and N is denoted by D(n, T, N). 

The class of disjunctive codes is a subset of the class of superimposed codes. 

Definition 6A constant weight(CW) code is a binary code in which all code- 
words have the same weight. For a CW code with weight w, the correlation is 
related to the Hamming distance dH by 

d11(xl, xk) = 2w - 2A (xe, xk) . 
(2.5) 
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Denoting the minimum distance and maximum correlation by dH and A respec- 
tively, then 

dH=2w-2A. (2.6) 

The set of all CW codes with length n, weight w, maximum correlation A, and 
size N is denoted by CW (n, w, A, N). 

2.3 Decomposition and Error Correction of 
the Codes 

Theorem 1A binary constant weight code C with parameters (n, w, \, N) is 

also a disjunctive code D(n, T, N), where T satisfies 

T<. (2.7) 

Proof: Let A C_ C, A= {xl, x2i ... , XT}, and xc EC be an arbitrary codeword 
not in A. Suppose f (A) includes x,, then zj - xj > 0, j=1,2,... , n. Because 
the code C has a maximum correlation A for all pairs of codewords, which 
means that each of the codewords x; EA will overlap with x, at most A 
times, therefore there are at most AT positions in xc which will overlap with 
all xi, x2i ... i XT. But from the conditions that the weight of xc is a constant 
w and AT <w (or T< w/A), it is obvious that there exist at least w- AT 

positions that do not overlap with any of the codewords x; E A. In other 
words, there exist some positions j such that zi - xi < 0, which implies xc 
cannot be included in z=f (A) if T< w/A. From definition 5, it can thus be 

concluded that a binary constant code C with parameters (n, w, A, N) is also a 
disjunctive code D(n, T, N). 

In practice, the order T of a disjunctive code D(n, T, N) should -be an integer. 
In order to use Theorem 1, we can set 

rwi -1 <w (2.8) 

where lxi denotes the lowest integer greater than or equal to x. This relation 
is useful because it transforms the problem of designing disjunctive codes into 

problem of designing constant weight codes which have been fully studied in 
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the past (Best et al., 1966; MacWilliams & Sloane, 1977). It should be pointed 
out that the constant weight codes only correspond to a subset of disjunctive 
codes. There might be some good disjunctive codes that are not constant 
weight codes. 

Theorem 2 If the binary code C is a disjunctive code D(n, T, N) constructed 
from CW(n, w,. \, N), then for each subset A C_ C of size JAI <_ T, the equation 
Wt (f (A) - xi) = (JAI - 1) w holds when x; E A. But for all other codewords 
xcEC\A, we have Wt(z-xc)>(IAI-1)w. 

Proof: If the binary code C is a constant weight code CW (n, w, A, N) then for 
ACC, it is simple to show that the weight of z=f (A) is equal to 

n 
Wt (z) = lxij = lAlw. (2.9) 

{ilx, EA} j=1 

Because Wt (x; ) = w, if x, EA( f(A) includes x= ) then 

n 

Wt(f(A)-xi)=L. Iza-Stil =IAIw-w=(IAI -1)w (2.10) 
j=l 

which verifies the first part of the theorem. 

If xc EC\A then f (A) does not include x, It has been shown in the proof of 
Theorem 1 that there exist at least w- AT positions that do not overlap with 
any of the codewords x; E A, i. e. xz - xj <0 for some j. Let S denote the set 
of positions of nonzero elements in x, which overlap with the other x; EA and 
S denote the set of positions of the nonzero elements xj which do not overlap 
with any of x; E A. Because (w - AT) >0 and I AI < T, we have 

Wt(f(A)-xc) = EjESIZJ - XljI + E1E3Izi-xcjI 
> (IAIw - aIAI) + (w - AIAI) (2.11) = (IAI-1)w+2(w-AIAI) 

> (IAI -1) w, 
which concludes the theorem. 

Theorem 3 Let C be a binary disjunctive code D(n, T, N) constructed from 
CW(n, w, A, N), then for each subset A C_ C of size JAI <T the receiver is able 
to distinguish how many codewords have been sent at transmitters if the weight 
of the error pattern e= (el, e2,. . ., e�) satisfies Wt (e) = I: ý 

1 
IeiI < w/2. 
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Proof: From Theorem 1, if JAI =m<T, Wt (f (A)) = mw; if JAI =m+1<T 

, then Wt (f (A)) = (m + 1) w. Let S= Wt (f (A)) = Wt (f (A) + e), then 

Wt (f (A)) - Wt(e) <S< Wt (f (A)) + Wt(e), (2.12) 

or 

(Aiw - Wt(e) < S: 5 lAiw + Wt(e). (2.13) 

Now if Wt(e) < w/2, the number of codewords transmitted can be obtained 
by 

-W w 
Zi (S-2 

JAI 
W +1 (S- L ]w) >2 

(2.14) 

where Lxi denotes the highest integer less than or equal to x, thus proving the 
theorem. 

Theorem 4 Let C be a binary disjunctive code D(n, T, N) constructed from 
CW(n, w, A, N), then for each subset ACC of size I AI <T the receiver is able 
to correct any error pattern e= (el, e21 

_.. 
, e,, ) whose weight satisfies 1Vt (e) = 

En ji Iej I<w- AIAI. 

Proof: Suppose the received vector is f (A) =f (A) + e. For each subset 
ACC of size JAI < T, if the channel is noiseless, then Wt (i (A) - x; 

) 
= 

(JAI - 1) w, x; E A. If the channel is noisy and the weight of the error pattern 
satisfies Wt(e) <w- ,XI AI ; letting x; E A, then 

Wt (f (A)-x; ) 
= Wt (f (A)+e-x; ) 

= EESIzj+eJ-x1JI+EJEg(zi+ei-xtjI (2.15) 
< (IAJw-w)+Wt(e) 

< (IAI - 1) w+ (w -. JAI) 

But for all other codewords xc EC\A and Wt(e) <w- AJAJ, we have 

Wt (f (A)-x, ) 
= Wt(f(A)+e-xc) 

- EiESIZi+ej -xcil+EjE. Izi+eJ -xcjI 
> (JAiw - AIAI) + (w - )JAI) - Wt(e) (2.16) 

_ (IAI - 1) w+2 (w -, \JAI) - Wt(e) 
> (IAI -1) w+ (w - AJAI). 
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Therefore the correct codewords x; EC can be distinguished from the code- 
words xc EC\A. 

It should be noted that the error-correcting ability of the disjunctive code 
constructed from a constant weight code is not constant, but is a function 

of size JAI. It can be seen from the condition, Wt(e) <w- )tIAI, that the 
maximum and minimum error weights that can be corrected are respectively 
Wt,,, ax(e) =w-A= dH/2 (when IAA = 1) and Wtmin(e) =w- AITI(when 
JAI = T), where dH = 2w - 2A is the minimum Hamming distance of the 
constant weight code. It is clear that in order to use Theorem 4, the size of A 

should be known in advance. Although the JAI can be obtained from Eqn. 2.14, 
Theorem 3 can however only guarantee the correctness of the IAI computed by 
Eqn. 2.14 if Wt (e) = Ej 

1 
Iej < w/2. This analysis directly leads to the 

following Theorem 5: 

Theorem 5 Let C be a binary disjunctive code D(n, T, N) constructed from 
CW(n, w, ), N), then for each subset ACC of size JAI <T the receiver is able 
to distinguish how many codewords have been sent at the transmitter and, at 
the same time, can recover every codeword if the weight of the error pattern e 
satisfies 

n 

Wt(e)=Elejl<min{w-AIAI, 
2). 

(2.17) 
j=l 

An effective method for constructing good constant weight codes (and thereby 
disjunctive codes) is to use a concatenated code in which the inner code is a con- 
stant weight code. The KS code, which was first defined by WH Kautz and RS 
Singleton (Kautz & Singleton, 1964), is based on a maximum distance separa- 
ble (MDS) outer code (e. g. Reed-Solomon code) and an orthogonal weight-one 
inner code CW(q, 1,0, q). Let C be a RS code over GF(q) with length w and 
minimum distance d. The dimension will be k=w-d -}-1. We now represent 
the inner CW(q, 1,0, q) code by mapping each symbol in GF(q) to a binary 

vector of length q and weight one: 

0 -- k 1000... 0, 
1 -º 0100... 0, 

(q -1) -º 0000 ... i. 
We therefore obtain a constant weight code CW(qw, w, A, qa+l) which corre- 
sponds to a disjunctive code D (wq, 
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Example: Let C be the RS(n, k, d) = RS(6,2,5) with generator matrix 

_r106543 G L0 1234 5]' 2.18 

With this RS code, a disjunctive code with parameters 

D (6 x 7,16 6 
51 - 

1,76-s+l) =D (42,5,49) (2.19) 

and Hamming distance dH = 2w - 2A =2x6-2x1= 10 can be constructed. 
Any RS codeword x= = (x; l, xi2, ... , x; 6) , x; j E GF(7) can be calculated by 
multiplying the generator matrix by an information vector m= (ml, m2), m1 E 
GF(7). For example, if in E {(1,2), (2,2), (3,2), (6,6)}, then the codeword set 
A, IAI < 5, and the superposition of A, will be as follows: 

A= {mG ImE {(1,2), (2,2), (3,2), (6,6)} } 
= {(123456), (222222), (321065), (666666)} 

000000 000000 000100 000000 
100000 000000 001000 000000 
010000 111111 010000 000000 (2.20) 

= 001000 
, 000000 , 

100000 
, 000000 

000100 000000 000000 000000 
000010 000000 000001 000000 
000001 000000 000010 111111 

00 0100 
10 1000 
13 1111 

z= f (A) =10 1000 (2.21) 
00 0100 
00 0011 
11 1122 

2.4 Decoding Algorithms for the Noiseles s N- 
BAC 

The aim of the decoder of a superimposed code is to reproduce the transmitted 
codewords of all the active users using the received vector. For the noiseless 
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N-BAC, the task is just to map from the received superimposed T-ary vector 
f (A) formed by the noiseless N-BAC into a set of codewords A from the given 
superimposed code C. That is 

f (A) --* 
A. 

Decoding Algorithm 1 

(2.22) 

According to Theorem 2, if the binary code C is a binary disjunctive code 
D(n, T, N) constructed from CW (n, w, A, N), then for each subset ACC of 
size JAI <_ T, Wt (f (A) - x; ) = (JAI - 1) w if and only if x; E A. Therefore 
an obvious way of decoding is an exhaustive search, i. e., for all codewords in 
xi E C, compute the Wt (f (A) - x; ), and then output all the codewords which 
satisfy Wt((f (A) - x; ) = (JAI - 1) w. That is, 

A= {x; ECIWt(f(A)-x; )=(JAI - 1)w}, (2.23) 

where IAI is obtained from Eqn. 2.14. 

Decoding Algorithm 2 

The exhaustive search decoder has a decoding complexity which is indepen- 
dent of the transmitted set of codewords and is equal to N. If we make use 
of the structure of the specific disjunctive code, the number of codewords x; 
used in the test Wt ((f (A) - x; ) = (I AI - 1) w, can be reduced greatly, thereby 
reducing decoding complexity. In the case of the KS code, it is simple to find 
the transmitted elements (symbols) from GF(q) in the received vector. In the 
above example, from the first and second columns of the received superposition 
vector z=f (A), it can readily be seen that the first and second positions of 
the transmitted RS codewords must be in the set 11,2,3,6} and {2,6} respec- 
tively. This means that the possible information vectors m= (ml, m2) of the 
corresponding codewords are: 

mE {(1,2), (1,6), (2,2), (2,6), (3,2), (3,6), (6,2), (6,6)} . 
(2.24) 

Obviously, if we use the corresponding codeword set C as a candidate set in 
the decoding process, i. e. 

A= {x; 
ECI Wt (f (A) - x; ) = (JAI -1) w} , 

(2.25) 
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the results will be the same as with Algorithm 1. However, because 161 « ICI, 
the decoding complexity has been reduced greatly. For the example given 
above, ICI = 49, but ICI = 8. 

Based on the fact that the size of IAI is constant for a given received vector 
f (A) and can be calculated beforehand, the decoding complexity can be further 

reduced by counting the number of the decoded codewords. If the number of 
decoded codewords is equal to JAI, then there is no need to try the rest of the 
candidate codewords. 

Therefore, the simplified algorithm can be summarized as follows: 

1. Compute the size of JAI using Eqn. 2.14. 

2. Generate a relatively small candidate codeword set C by making use of 
the specific code structure. 

3. Select a candidate codeword xEC and test whether it satisfies the 
following condition: 

Wt (f (A) -x; ) = (JAI - 1) w. (2.26) 

If it does, increase the decoded codeword counter by one. 

4. If the counter is equal to JAI then exit; otherwise go to step 3. 

2.5 Decoding Algorithms for the Noisy Case 

As is shown in Fig. 2.2, the received vector in the noisy case is given by 
f (A) =f (A) + e. Based on Theorem 5, if C is a binary disjunctive code 
D(n, T, N) constructed from CW(n, w, A, N) and the weight of the error pat- 
tern e satisfies Wt (e) = Fý 

11e11 < Werr = min {w - AJAI, 
Z}, 

JAI < T, then 
the codewords transmitted can be correctly recovered. Therefore, we have the 
following decoding algorithm: 

Decoding Algorithm 3 

A= jxiEC I Wt (f (A) -xi) < (JAI -1) w+ wert} " 
(2.27) 

In order to reduce the decoding complexity, the same idea can be employed as 
in Algorithm 2; that is, to produce a relatively small set of candidate codewords 
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C by making use of the structure of the specific disjunctive code and the known 
information JAI. For the KS code, however, the size of the candidate set C and 
the process of producing candidate codewords will be slightly different, which 
will not be addressed here for simplicity. After generating the candidate set C, 
the decoding process is similar, i. e.: 

Decoding Algorithm 4 

A={x; EC1 Wt(1(A)-x+) <(IAI-1)w+wef,. 
}, (2.28) 

where the decoding process should be stopped if the decoded codeword counter 
is equal to IAI 

. 
Finally it should be stressed that the error pattern e is not necessarily an integer 
vector; it can also be any real value vector as long as Wt (e) < min {w - )I A1,2 }. 
In other words, the proposed algorithms 3-4 are also soft-decision decoding al- 
gorithms which will give better error performance than hard-decision decoding. 

2.6 Concluding Remarks 

We have investigated in this chapter superimposed codes for N-BAC. The 
superposition mechanism used here is normal addition. The N-BAC system 
consists of a set of N users sharing a multiaccess binary adder channel. It 
has been proved that if the number of active users JAI 

_< 
T«N, we can 

decompose the received word into its component codewords for the noiseless 
N-BAC. In the noisy case, the number of active users and the codewords can 
also be correctly recovered provided that the weight of the error pattern satis- 
fies Wt (e) =E1 le1l < min {w 

- AIAI, 2 }. The correctness of the decoding 

algorithms proposed has been tested by computer simulation. 

In this study, each user is given only one codeword, which is simply used to 
identify the active users. However, if each user has available a set of codewords, 
information can be transmitted over the channel. 
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Chapter 3 

Codes for the Multiaccess 
Q-ary Adder Channel 

3.1 Introduction 

In the previous chapter, it was mentioned that one central technical problem 
in multiaccess communication is how to share the channel between the busy 

users, or how to assign codes to a set of N users where it is expected that no 
more than T«N of the users will be transmitting at any one time. However, 
in some practical situations, it is possible that all the N users or less are active 
simultaneously. It is therefore also required to construct a set of N codes, any 
T<N of which can co-exist with each other for transmissions over a given 
channel. 

By assuming that all N users are always simultaneously active (i. e. N= T), 
Chang and other researchers have constructed various codes for the T-user 

noiseless binary input adder MAC with the goal of achieving channel capacity 
asymptotically as T goes to infinity (Chang & Weldon Jr., 1979; Ferguson, 
1982; Chang, 1984; Wilson, 1988). It is clear that the assumption is not rea- 
sonable. In a practical multiaccess communication system, the accessing time 
and transmitting duration of any user typically take random values. Hence, 

at any time, the number of active users in the system is variable; in this case, 
most of previously defined uniquely decodable CCMA codes are not absolutely 
decodable. For example, in a 3-user adder channel CCMA scheme proposed 
by Chang and Weldon (Chang & Weldon Jr., 1979), the codes used by the 3 

users are Cl = {00,11}, C2 = {00,10}, C3 = {01,10} respectively. It can 
be seen that each of the eight possible composite codewords - resulting from 

symbol-wise addition on the channel - is unique, and can therefore be unam- 
biguously decoded into its constituent codewords, provided that all the three 
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users are simultaneously active. Let us now consider the 2-active user cases: if 
users 1 and 2 are active, the possible composite codewords are {00,10,11,21}; 
if users 1 and 3 are active, the composite codewords are 101,10,21,12}. If "10" 
and "21", which are common elements in these two composite codeword sets, 
are received, it would be impossible for the receiver to identify both the active 
users unambiguously (Ni & Honary, 1993). 

Mathys has introduced another interesting class of codes for the synchronous 
noiseless'discrete-time real adder channel (with gains and offset), without feed- 
back, with N real or binary inputs (Mathys, 1990). Mathys' codes are uniquely 
decodable and have a sum rate that approaches 1 if the decoder is informed of 
which T or less users are active. The sum rate will be reduced to a value of at 
most 1/2 if the decoder has to identify the subset of active users. 

In this chapter, we will study a CCMA coding scheme with N users; any T 
(T < N) users can be simultaneously active at any time. The channel model 
used is the N-user noiseless Q-ary Adder Channel (N-QAC) which is similar to 
that of Fig. 2.2 except that the channel output symbol value is the arithmetic 
sum of the Q-ary input symbol values, in the absence of noise. 

The CCMA code proposed here is a cyclic code over the integer ring ZQ. It 
is shown that the class of codes can be identified uniquely. The maximum 
achievable sum rate is 1 when all users are active simultaneously. A remark- 
able advantage of this coding scheme is that it can be decoded by a very low 
complexity decoding algorithm (Fan et al., 1994c). 

3.2 Factorization of xn -1 over the Integer 
Ring ZQ 

In this section a brief summary of the theory needed to factor x" -1 and sub- 
sequently to construct cyclic codes over the integer ring ZQ is given, following 
Shankar (Shankar, 1979). 

Let Q be an arbitrary integer, with prime factorization Q= Ei_1 pik`, where 
the pi are distinct primes and the k; are non-negative integers. Let Z,, k; [y] 
denote the ring of polynomials in the variable y over Zpjk; and let Di(y) be a 
monic p; -ary polynomial of degree r, irreducible over GF(pi), i=1,2,. - -, 

1. 
Let R; = GR(piki, r) = Zp, k; [y] /ýf(y) denote the Galois ring, i. e., the set of 
residue classes of polynomials in y over Zpk;, modulo the polynomial C(y). 
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Suppose that f (x) = E= 
1 a; x' and let 

RQ(f (x)) =E RQ (ai)x', (3.1) 

i=l 

where RQ(a; ) is the non-negative remainder when the integer a; is divided by 
the integer Q. For i=1,2, ... , 1, let m; be the smallest integer such that 

Rp, k; (m; ) =1 and Rpk; (mi) = 0, for j#i, 1<j<1. (3.2) 

Then the polynomial 

, D(y) = RQ(mlýl(y) + m2(D2(y) + ... + mO*I(y)) (3.3) 

is monic and irreducible over ZQ and over GF(p; ), i=1,2,.. ., 
1. Let S(Q, r) = 

ZQ [y] /4ý (y). Now let R; and S* denote the group of units of R; and S(Q, r), 
respectively, let K; denote GF(pr) and finally let K; denote the multiplicative 
group of GF(p; ). Let n be a divisor of the GCD((pi -1), (p2 -1), ... , 

(pý -1)) 
and let Hl,,, denote the cyclic subgroup of order n of S*, generated by f, f is a 
generator of the cyclic subgroup. It follows that Hf,,, contains all the roots of 
x" -1 over S*. Shankar therefore proved the following result (Shankar, 1979): 

Theorem 6 The polynomial x" -1 can be factored over S* as 

. x" -1= (x - f)(x - f2) 
... 

(x - f") (3.4) 

if and only if /= RP; (f) has order n in IC;, where n is coprime to p;, i. e. 
(n, pi) = 1, i=1,2.... 

, 
1. 

Summarizing: the following are the main steps in the factorization of x" -1 
over ZQ. 

a) Choose Oi(y) to be a monic p; -ary polynomial of degree r, irreducible over 
GF(p; ). Find m;, i=1,2,. 

.., 
l as indicated above. Then 

4ý(y) = RQ(mlýl(y) + m2ý2(y) + ... + mtý1(y)) 

is monic and irreducible over ZQ. 
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b) Let ßt be an element of order n in R;, formed as Z,, k; [y] /Iýj(y), i= 
1,2,..., 1. Then 

f= RQ(mißi + m2ß2 + ... + mtßt) (3.5) 

generates the cyclic subgroup Hf, 1, of the unit group of ZQ [y] /(D(y). 

c) The factors of xn - 1, irreducible over Zq, are defined by the cyclotomic 
cosets formed with the roots fill <i< 1, of x" - 1. 

Table 3.1 gives some examples of factorization of x" -1 over ZQ. 

Table 3.1: Examples of Factorization of x" -1 over Zo 
Factorization of x" -1 ZQ 

x -1=(x+1)2(X2 +x+1) Z2 
x6-1=(x+1)3(x+2)3 Z3 

x7-1 = (x 
-i- 1)(x3 +x -i- 1)(x3 + x2 + 1) Z2 

x7 -1 = (x - 1)(x3 + 2x2 +x+ 3)(x3 + 3x2 -}- 2x + 3) Z4 

x8-1 =(X+ 1)(x+2) (X2 -1)(x2+x+2)(x2+2x+2) Z3 
x8 -1= (x + 1)(x + 8)(x2 + 1)(x2 + 4x + 8)(x2 + 5x + 8) Z9 
x12- 1= (x+1)(x+2)(x-}'3)(x+4)(x2+x+1)(x2+2x+4) 

(x 2+ 3x+4)(x2+4x+1) Z5 

x15-1=(x+3)(x5+ 3x2+ 2x+3)(x5+x4+3x3+x+3) 
(x5+x4+3x3+x2+2x+ 3)(x5+2x4+x3+3) 
(x'+2x4+ 3x3+x2+3x+3)(x5+3x4+x2+3x+3) Z4 

x26- 1= (x+1)(x+2)(x3-f- 2x+ 1)(x3+ 2x+2)(x3+x2+2) 
(x3+x2+x+2)(x3+ x2+2x+1)(x3+2x2+1) 

(x 3+2x2+x+1)(x3-I-2x2+2x+2) Z3 

3.3 Cyclic Codes over ZQ for the N-QAC Chan- 

nel 

In order to design the required codes and the corresponding decoding algorithm, 
we need to use the following Euclidean theorem and the Chinese Remainder 
theorem (Berlekamp, 1968). 
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Theorem 7 (Euclidean Theorem) Given any polynomials a(x) and b(x), there 
exist polynomials A(x) and B(x) such that 

a(x)A(x) + b(x)B(x) = (a(x), b(x)) (3.6) 

where (a(x), b(x)) is the monic common factor of a(x) and b(x) with greatest 
degree. If (a(x), b(x)) = 1, then a(x) and b(x) have no factors in common. 

Theorem 8 (Chinese Remainder Theorem) Given irreducible polynomials gi(x), 
g2(x), """, gT(x) and arbitrary polynomials MI(X), m2(x), """, mT(x), then the 
simultaneous congruences, h(x) = mi(x) mod gi i (x), have a unique solution 
for h(x) mod 11T, 

=1 g (x). 

A blocklength n cyclic code over ZQ is an ideal in the ring of polynomials 
with coefficients in ZQ, reduced modulo x" - 1, and is generated by a monic 
polynomial g(x) which is a factor of x" - 1. Let gl(x), 92(x),... gN(x) be a set 
of N irreducible polynomials which are factors of x"' -1 over ZQ, i. e., 

N 

x"-1=jjgý'(x), (3.7) 

where ýN 
1 deg [gý' (x)] =n and the k;, 1 <_ i<N, are positive integers. Since 

hi(x) = (xn - 1)/g; ' (x) has no factors in common with g; ' (x), the Euclidean 

algorithm can be used to find a polynomial ßi(x) such that ßi(x)hi(x) 
1 mod g; ' (x), 1<i<N. 

Let mi(x) denote the message polynomial for user i. Let hi(x) be the generator 
polynomial of the cyclic code allocated to user i. The codewords of user i 

are generated in the usual manner as an error-correcting code (Berlekamp, 
1968; MacWilliams & Sloane, 1977). However, before being transmitted, each 
codeword is multiplied by , ß; (x) and reduced modulo x" - 1. As is shown in 
the next section, the operations of encoding and multiplying by ßi(x) can be 
done simultaneously. 

We now prove the unique decodability of the codes proposed. 

Theorem 9 Let ci(x) = mi(x)h; (x)ß; (x) be a Q-ary cyclic code with message 
polynomial mi(x) and generator polynomial h; (x). Then the T-tuple (ci(x), c2(x), 
""", cT(x)), 1 <_ T <_ N, is uniquely decodable over the synchronous noiseless 
T-user Q-ary adder channel and has a maximum sum rate of 1 achieved when 
T=N. 
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Proof: Consider the following sum r(x), where addition is defined over the 
additive group of ZQ 

T 

r(x) _ m; (x)h; (x), ß; (x), 1<T<N. (3.8) 

By the Chinese Remainder theorem for polynomials, it can be shown that the 
sum r(x) is uniquely determined by M1 (X), m2(x), """, mr(x). In fact, since 
ß, (x)hj(x) is a multiple of gi'(x) if j 56 i, and Pi(x)hi(x) =1 mod g; '(x), it 
follows that r(x) - mf(x) mod gf' (x) for all i. If r'(x) also satisfies r'(x) 
m; (x) mod g; ' (x) for all i, then r'(x) - r(x) must be divisible by g; ' (x), 1<i< 
T; since both r(x) and r'(x) are polynomials of degree less than n, it follows 
that r'(x) = r(x) mod x" - 1. Hence the sum r(x) is uniquely determined by 
the arbitrary polynomials mi(x), 1<i<T, if deg [mi(x)] < deg [g; '(x)], i. e., 
mi(x) = r(x) mod gk`(x), 1<i: 5 T. Further, when considered as a real sum 
of polynomials, r(x) is also uniquely determined by Ml (X), m2(x), """, MT(X)- 

Since each code ci(x) has deg[gi' (x)] information symbols and max >; deg[gk' (x)] 

= n, it follows that the maximum sum rate is 1 when all users (T = N) are 
active. 

3.4 Encoding and Decoding Algorithms 

Based on the above analysis, a class of CCMA codes for the N-QAC over the 
integer ring ZQ can be constructed. The encoding and decoding algorithms are 
as follows: 

Encoding Algorithm 

1. Given an integer ring ZQ, choose a code length n as described in Sec- 
= tion 3.2 and factor x" -1 into irreducible polynomials over ZQ, x' -1 

fl gý`(x)" 

2. Assign each user a cyclic code with the generator polynomial hi(x) _ 
(xn-1)/g; ý' (x). Compute the polynomials ß; (x) which satisfy, Pi(x)hi(x) 
1 mod g; ' (x), 1<i<N. 

3. For a given message polynomial m; (x) 5L 0, the transmitted codewords 
c; (x) of each user are generated by computing c; (x) = h; (x)Q; (x)m; (x) mod 
(x" - 1). In order to avoid ambiguity between zero messages(mi(x) = 0) 
and the case where user i is not active, the message set is restricted to 
those m; (x) 54 0 in the encoding algorithm. 

34 



Decoding Algorithm 

The received n-tuples are polynomials, denoted by r'(x), which result from the 
componentwise real addition of the codewords of the active users. The first 
step in decoding is to reduce the coefficients of r'(x) modulo Q. The result 
of this step is the polynomial r(x). Once the polynomial r(x) = FT 

1 c; (x) is 
obtained, the decoding algorithm is very simple and is given by the equation 

m; (x) = r(x) mod g=' (x), 1: 5 i: 5 N. (3.9) 

It should be noted that the above analysis and encoding/decoding algorithms 
are valid if x" -1 has repeated irreducible factors. Although the maximum 
number of users will be reduced if there are some repeated irreducible factors 
in x' -1, the maximum achievable sum rate remains the same. 

Example 1: Construct a 3-user QAC system over Z4 with code length n=7. 
Employing the technique described above, the following factorization results: 

3 

x7 -1= 
rIgi(x) = (x - 1)(x3 + 2x2 +x+ 3)(x3 + 3x2 + 2x + 3). (3.10) 
i-1 

Let g, (x) =x-1,82(x) = x3 + 2x2 +x+3 and g3(x) = x3 + 3x2 + 2x + 3. 
Using the Euclidean algorithm, the following are obtained: 

hi(x) = x6+x5+x4+x3+x2+x+1, ß1(x)=3; (3.11) 

h2(x) = x4 + x2 +x+3, /32(x) = 1; (3.12) 
h3(x) = x4 + 3x3 + 3x2 + 3, ß3(x) = x3 + 2x2 + 2. (3.13) 

Suppose the three users are all active, ml (x) = 3, rn2(x) = 2x + 3, m3(x) =x 
then the transmitted codewords are: 

si(x) = i(x) 
5i(x)Qi(x)s z 

(3.14) 
= x+x+x+x+x+x+1 mod(xz _ 1), 

c2(x) = m2(x)h2(x)02(x) (3.15) 
= 2x5 + 3x4 + 2x3 + x2 +x+1 mod(x7 - 1), 

C3 (X) = m3(x)h3(x)/33(x) (3.16) 

= x6+x4-F3x-}-1 mod(x7-1) 
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At the receiver, the received sum codeword is 

r'(x) = 2x6 + 3x5 + 5x4 + 3x3 + 2x2 + 5x +3 (3.17) 

which, after reduction modulo 4 at receiver, becomes 

3 

r(x) _ c; (x) = 2x6 + 3x5 + x4 + 3x3 + 2x2 +x+3. (3.18) 

The messages can be easily restored as: ml(x) =3= r(x) mod gl(x), m2(x) _ 
2x +3= r(x) mod g2(x), m3(x) =x= r(x) mod g3(x). 

If only users 2 and 3 are active (ml (x) = 0), then by the same process we will 
have ml (x) = 0. 

Example 2: Let us consider another example with repeated irreducible 
factors in x" - 1. Construct a 2-user QAC system over Z2 with code length 

n=6. From Table 3.1, we have x6 -1= (x + 1)2(1 +x+ x2)2 over Z2. Let 

91 (x) = (1 + x), 92 (x) = (1 -I- x+ x2), then 

hi (x) = (x2+X+1)2, ßl(X)=1; (3.19) 
h2(x) = (x x-1)2, Q2(x) = x2. (3.20) 

Suppose ml(x) = x, m2(x) = x3 +x+1, then the transmitted codewords are: 

cl(x) = ml(x)hl(x)fßl(x) = x5 + x3 +x mod(xs - 1), (3.21) 

c2(x) = m2(x)h2(x)/32(x) = x4 + x3 + x2 +x mod(xs - 1). (3.22) 

The received sum codeword is r'(x) = E? 
1 c; (x) = x5 + x4 + 2x3 + x2 + 2x 

which, after reduction modulo 2 at receiver, becomes r(x) = x5 + x4 + x2. The 
decoded messages are: rnl(x) =x= r(x) mod gi(x), r"n2(x) = x3 +x+1= 
r(x) mod gz(x). 

3.5 Concluding Remarks 

Uniquely decodable cyclic codes over the integer ring ZQ for the N-QAC have 
been discussed in this chapter. The codes are attractive in practice because 
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the decoder can correctly identify any number of active users (0 <T<N, T 
is unknown in advance to the decoder), and correctly recover their respective 
messages. A very low complexity decoding algorithm is given and it is shown 
that the maximum achievable sum rate is 1. 
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Chapter 4 

Codes for Synchronous SSMA 
Systems 

4.1 Introduction 

The SSMA technique is one of the important aspects of spread spectrum com- 
munications, as stated in Chapter 1. This chapter deals with the design of 
orthogonal complementary sets of sequences for use in synchronous SSMA sys- 
tems. After the definition of the concepts of complementarity, uncorrelatedness 
and orthogonality, recursive formulas for constructing orthogonal complemen- 
tary sets are proposed; methods for synthesizing new orthogonal complemen- 
tary sets from known ones with the same dimensions are discussed. Then 

conjectures relating to maximally orthogonal complementary sets are given. Fi- 

nally an application of orthogonal complementary sets to a synchronous SSMA 

system is described. 

Complementary sequences (CS) are basically characterized by the property that 
their autocorrelation vector sum is zero everywhere, except at zero shift. Such 

sequences were originally considered by Golay in connection with his study of 
infrared spectrometry (Golay, 1961). Following Golay's work, the mathemati- 
cal properties of CS and their relation to other types of codes, computer search 
for expected CSs , the existence problem for certain lengths, and the appli- 
cations of CS were further investigated by various researchers (Welti, 1960; 
Turyn, 1963; Kruskal, 1961; Taki et al., 1969; Griffin, 1977; Andres & Stanton, 
1977; Schweitzer, 1971; Turyn, 1974; Eliahou et al., 1990). For their research 
into acoustic surface-wave devices, Tseng and Liu studied generalized binary 

complementary sets of sequences with uncorrelated properties (Tseng & Liu, 
1972). Another type of generalized complex-valued complementary code(or 
multiphase/polyphase code) was considered by Frank (Frank, 1980) and other 
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workers (Sivaswamy, 1978; Popovic, 1991b); this has found applications in the 
areas of radar and Loran-C etc.. Darnell and Budisin extended consideration 
of binary complementary sets to multilevel complementary sets which have fur- 
ther interesting properties, distinct from those of binary sets (Darnell & Kemp, 
1989; Budisin, 1990a; Budisin, 1990b). 

In more recent years, complementary pairs of sequences with orthogonal prop- 
erties, as defined later in this chapter, have been studied for application in 
spread spectrum systems and in code division multiple access(CDMA) commu- 
nications (Gutleber, 1982; Wen & Guangguo, 1987; Fan et al., 1993a; Fan et al., 
1993b; Fan et al., 1994a). The properties of orthogonal complementary pairs 
of sequences have been considered in detail (Fan et al., 1993b). In this chapter, 
the properties of orthogonal binary complementary sets of sequences(OCSS) 
are studied (Fan et al., 1994a). 

4.2 Complementarity, Uncorrelatedness and 
Orthogonality 

Definition 7 If {S;, i=1,2, 
... , P} is a set of sequences, each of length M, 

where Si = (st, l, s;, 2) ... , si, M) , si, l E {+1, -1}, then the aperiodic autocorrela- 
tion function of Si is defined as 

M-k 

Cs�s1 (lc) 1,2,... , P. (4.1) 
r-1 

Definition 8A set of sequences {S;, i=1,2, ... , P} each of length M is said 
to be a complementary set if and only if the P autocorrelation functions sum to 
zero at every shift, except the zero shift; that is 

P 
Csi, si(k) 

i=1 

(4.2) 

Definition 9 Two complementary sets {S;, i=1,2,... , P}, {Ri, i=1,2, 

... ) P }, each with equal numbers of sequences P and equal sequence lengths 
M, are termed uncorrelated complementary sets of sequences(UCSS) if the ape- 
riodic crosscorrelation values for corresponding sequences in each set sum to 
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zero at all corresponding time shifts; that is 

P 

cs., Ri(k) = 0, Vk. (4.3) 

Definition 10 A class of mutually uncorrelated complementary sets is said to 
comprise maximally uncorrelated complementary sets of sequences(MUCSS) if 
the number of mutually uncorrelated complementary sets N is maximum for a 
given number of sequences P and length M. 

Definition 11 Two complementary sets {S;, i=1,2, ... , P}, {Ri 
,i=1,2, 

..., P }, each with equal number of sequences P and equal sequence lengths 
M, are defined as orthogonal complementary sets of sequences(OCSS) if the 
aperiodic crosscorrelation values for corresponding sequences in each set sum 
to zero at in-phase time shifts; that is 

P 
E Csi, Ri (0) = 0. (4.4) 
i=l 

Definition 12 A class of mutually orthogonal complementary sets is said to 

comprise maximally orthogonal complementary sets of sequences(MOCSS) if 
the number of mutually orthogonal complementary sets N is maximum for a 
given number of sequences P and length M. 

It is obvious that the number of sets in a MOCSS will be larger than the num- 
ber in the MUCSS with the same P and M. In fact, Schweitzer has proved 
that the maximum number of sets N in any MUCSS with parameters P and 
M is equal to P (Schweitzer, 1971). Taki and his colleagues proved the same 
result for Golay pairs(P=2) (Taki et al., 1969). For orthogonal complemen- 
tary pairs of sequences (OCPS, or orthogonal Golay pairs), it has been shown 
that the maximum number of orthogonal Golay pairs of length 2k, 10.2k, 26 
2k; 2 (10.2k) (26.2') is at least equal to 21`+1,4.2k 4.2k, 16.2k+' respectively 
(Fan et at., 1993b). In the following sections, generalized forms of CS will be 

considered. 
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4.3 Synthesis of Orthogonal Complementary 
Sets 

Theorem 10 Given a class of OCSS, SP 1, which has N sets of CS each with 
P sequences and equal sequence lengths M, other OCSS RPM with the same 
parameters N, P and M can be obtained by negating any number of sets in Sp M. 

Proof: If S` E SpýM is a complementary set, -S' is also a complementary set 
(Tseng & Liu, 1972). Because S`, Sj E SP M, i0j, are orthogonal, then 

PMPM 
f- 

.9i 
E E(SA. 

m)( SP, m) _-E SP,, M PM = O9 (4.5) 

p=1 m=1 p=1 m=1 

which means Sp, -SS are also mutually orthogonal. Similarly -Si, -Sp are 
mutually orthogonal. Thus, the theorem is proved. 

4,4, if we negate the 1st, 2nd and 3rd sets, For example, given a class of OCSS S8 

another OCSS of the same dimension can be obtained. 

8 S 
4 ,4 --'ý-, ---fir -- -, ---'ý 

- --, -+ ++, -F --, -+}+ 

+- 

_ R 8 +_-- 
4 ,4 

-+++, -+ --, -+++, -+-- 

-+--, -+++, -+ --, -+++ 

Theorem 11 Let SP, M be a class of OCSS; other OCSS RPM with the same 
parameters N, P and M can be obtained by 1) negating any number of sequences 
in all sets of Sp M, 2) reversing any number of sequences in all sets of SPM, 
3) interchanging any number of sequences in all sets of SPM, 

. and 4) negating 
alternate elements in all sequences and all sets of SP M. 
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The proof of this theorem is similar to that of Theorem 10 and is omitted here 
for brevity. As an example, let S4,3 be an OCSS of length M=3, as shown 
below; if we negate the first sequence and reverse the last sequence of all sets, 
the result is still an OCSS. 

---, ---f, -+-, +-- 

s 
4'3 

--+, ++-, -+-, +++ 

-+ +-+, ---, --+ 

+++, -+-, --+, +-- 
g_ R 

++-, +++ 
4,3 ++-, ++-, -+-, +++ 

+-+, ++'+, --+, -++ 
+ --, +--F, ---, + 

Theorem 12 Given a class of OCSS, SPM, then 

RpU, 
M - 

['SPM, Sp, 
M, ..., , 

SpM, (4.6) 

U times 

is also a class of OCSS which has N sets each with PU sequences and equal 
lengths M. 

Proof: According to Definition 8, the PU autocorrelation functions will sum to 

zero at every shift (except the zero shift) in R ULM because the P autocorrela- 
tion functions sum to zero at every shift (except the zero shift) in SP M; that 
is to say, every set in j,? ULM is a complementary set. Note the fact that the 
orthogonality does not change in Eqn 4.6 and hence R ULM is a class of OCSS. 

The following is an illustrative example where M=2, P=2, N=4, U=3. 

S4 2-+, 
++ R4 2 -+, ++, -+, ++ 
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Theorem 13 Given a class of OCSS, SPM, then 

R_ (4.7) 
2P, M 

[ 

SPMSPM 1 

is also a class of OCSS which has 2N sets, each with 2P sequences and equal 
lengths M. 

Proof: From Theorem 12 it is clear that every set in [Sp 
M, Sp M] is a comple- 

mentary set and, therefore, every set in [SSM, -SpNM] is also a complementary 
set (Tseng & Liu, 1972). 

We now prove that all the complementary sets in RI NM are also mutually 
orthogonal. First, all the complementary sets in [SP 

1, SPM] or [S M, -Sp M] 
are mutually orthogonal, according to Theorem 12 and Theorem 11. Secondly, 
for R` E [SP 

M, SP M] and R' E [SpM, 
-S, Aq], we have 

PMPM 
E E(4, 

m) 
(sp, 

m) 
+ (sp, 

m)(-sp, m) =0 
(4.8) 

p=1 m=1 p=1 m=1 

In other words, each complementary set in [SPM, 
-Sp M] is mutually orthog- 

onal to every set in [SPM, 
SPM]. Therefore R2PM is a class of OCSS. 

For example, given a class of OCSS S2,2 of sequence length M=2, we can 
construct a larger class of OCSS S4,2 of same sequence length, i. e., 

S¢g_ S - ýý --, --ý , -- 
2,2 

--' -+ 
4,2 

--, i--, -i i, - 

- --, i--s ++ 

Theorem 14 Given a class of OCSS, S"M = [XM, YM], if xy E XMYM is a 
concatenation of sequence x and sequence y, then 

R2 2N =[ 
XMYM 

ýX (M)Y )I 
(4.9) 

is also a class of OCSS which has 2N sets each with 2 sequences and equal 
lengths 2M. 
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Proof: Let [x, y] be a complementary set in SZ M, then by direct calculation it 
is simple to show that [xy, -xy], [xy, -yx] E S2 2M are complementary sets. 
Using the same method as in Theorem 13, all the complementary sets in S2 NW 

are also mutually orthogonal. 

As an example, given a class of mutually orthogonal pairs of CS of length 
1, s,,, _[_;; ; 11 

], as a starting point, if the Theorem 14 is applied 3 times 

successively, the resulting OCSSs will be as follows: 

4- --ý ++ 8_ S S - --, - -- 
2,2 

--, --i- 
2,4 

-- +-, -- -'} 

-+--, -+++ 

016 - z, 8 - 

--+-+++-, 

---+++-+f 
-+--+---, 
--+----+, 

---+--+-' 

--+-+++-, 

---+++-+, 

--+-----F, 

---+--+-, 
-+---+++, 

+++-++-+ 

++-+---+ 
+----+-- 
+++---+- 
+-++-+++ 
--+----+ 
-+++-+-- 
---+--+- 
-+---+++ 
--+-+++- 
-++++-++ 
---+++-+ 
-+--+--- 

Theorem 15 If SPM is a class of OCSS, then R4J2M is also a class of OCSS 

with 4N sets each of 2P sequences and length 2M, where 

SPMSPM, 
-(SPM) SPM 

04 IN N 
R2P 

2M = 
PXi 

, NI 'SP 
(- _ 

, M) 
N 

(4.10) 
, (-SPM)SPM, 

'SPM`SPM 

'SP, M(-SPM), 
SPM'SPm 

-SSM)SSM denote the matrix whose ij-th entry is the concatenation of the 
ij-th sequence of -SPM and the ij-th sequence of S5M. 
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Proof: If S' E SPM is complementary set with P sequences, Si, """, SP, then 
for any set [S'S, (-S`)S'] E SZp2M, we have 

2M, Tl=0 
2CSi gi 

(T) + Csi si (M -, r), T, =T=1, ... ,M-1 (4.11) Csisi, s, s, (T') = CS, Si (T), !! 
Tý =M, --., 2M-1, 

s 
T'-M 

2M, TI 0 
2C 

Sp, ýri(T)-ýisi gi(MýT), Tý=T=1, ""., M-1 

4.12 
-Ci 

si 
(T)ý 

!P 
TI ý M, ..., 2M - 1, 

() 

!P 
TTO -M 

Thus 

P 
Z Cs 

s s 
(T/` , yr_S 

)si 
(r, ) 

_ (_S )s (J 1 

( 
,/ öPýl T/ 0 

(4.13) 

p p. p p D D' P l 
' 

P=1 P=1 

It follows that each set [S'S`, (-S')S'] E S24 P2M is a complementary set. Sim- 
ilarly any [S'S', S'(-S')], [(-S')S', S'S'] and [S'(-S`), S'S'] E S2p2M, are all 
complementary sets. 
Now considering orthogonality: because any S`, Sj E SPM (or -SpM) j, 

are orthogonal, R`, R' E [SpMSPNM, 
-(SpM)SpM] ,i0j, are also orthogo- 

nal. Furthermore, R' = [S'S`, (-S`)S'] 
, RR = [S'S', S'(-S')] E SSPZM are 

orthogonal because 

PMs 
Sj 

ij Fp=1 Em=1 
Pam p, m 

+ EP=1 Em=1 SP, 
+nsP, +n 

(4.14) 
LPM Si _Sj 

PM(ij 
p=1 

ým=1 
P, n+ 

(P, 
m) 

+ ýp=1 ým=11-SP, 
m)SP+m = 

For all other cases, the results are similar. Therefore, N2P2M is a class of OCSS 

of length 2M. 

As an illustrative example, given an OCSS S2,2 of length M=2, a new OCSS 
R41 4 of sequence length 2M=4 can be obtained as follows: 
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S2,2- 
-- 

++ 
R44- 

-- --, +-+-� ++--� -++- 
-+-+� ++-1+- +--+, --++ 
-- --, -+-+� ++--� +--+ 
-+-+, ----, +--+, ++-- 
----� +-+-� --++� +--+ 
-+--F, ++++, -++-, ++-- 
----, -+-+' --++, -++- 
-+-+' ----, -++-, --++ 
++--� -++-� -- --, -} - +- 
+--+I --++, -+-+, ++++ 
++--� +--+� -- --, -+-+ 
+--+� ++--� -+-+� -- -- 
--++, +--+' ----, +-+- 
-++-, ++--, -+-+, ++++ 
---F+- -++-, ----, -+-+ 
-++-� --++� -+--1-, -- -- 

Theorem 16 Suppose that S2T, f1 is a class of OCSS of sequence length MI 
and g= (917 92) is a Golay pair of length M2. Then R2., M1M2 is also a class of 
OCSS of length Ml " M2, where 

R2T, M1M2 .. 
[Rl Rz ... R2T-i, R2T] (4.15) 

k= with R2 
k_1 = S2k_1 ®'22 ý"''2k ®2 Z, RN =S k-1® 

'2Z- S2k ® 92 

1, """, T; gj is the reverse of sequence gg and 0 denotes the Kronecker product. 

Proof: Using the same technique as Turyn, it has been proved that any set in 
R2T, M, M2 is a complementary set(Turyn, 1974; Eliahou et al., 1990). By noting 
the fact that S"T, MI is a class of OCSS, it can be shown by comprehensive 
verification that all the sets in R2T. M1M, are mutually orthogonal. Obviously, 
by selecting other Golay pairs of length M2, a larger OCSS can be synthesized. 

For example, S4,3 below is a class of OCSS of sequence length Ml =3 and 
g= (++- -+) and g' = (+-, --) are two uncorrelated Golay pairs of length 

of M2 = 2; by employing the above theorem twice, a new class of OCSS R4" 
length M1M2 =6 can be synthesized as shown below: 

S8 _ 
--+, -- -r, +-+, +++ 

,3 --+F ++-1 -"F-1 +++ 

-+ I 
ý- ýý ---ý --+ 
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R16 _ 4,6 

-----ýý - ---i, -+-+--, +-++-- 
-----F-, +++-ý--, -- --ýý -ýý ----ý- 

-- ý- + +-, -ý - -1- -, - -ý -+ ++, -ý -+ +++ 

--- -ý, -----ý-, --+++-, -- ----I- 

4.4 Some Conjectures 

In addition, we conjecture that the following statements are true: 

Conjecture 1 Let SPM be an arbitrary MOCSS of sequence length M, then 
the parameters satisfy the following relation, 

N<P. M. (4.16) 

Conjecture 2 If SpM is a MOCSS of sequence length M, then the OCSS 
R2PM of length M, given by Eqn 4.7, is also a MOCSS. 

Conjecture 3 Given a class of MOCSS SPM of sequence length M, then the 
R 4N 

p2M of length 2M, given by Eqn 4.10, is also a class of MOCSS. 

Conjecture 4 Given a Class of MOCSS SzT', M1 of sequence length Ml and a 
class of MOCSS G2 M2 of sequence length M2i then an MOCSS can be synthe- 

NIN2 

sized by using Theorem 16, R2T, M, Kf2, with sequence length Ml " M2. 

4.5 Applications to Synchronous SSMA 

In many multiaccess systems, such as local area networks(LANs), each trans- 
mitter can hear whether or not the other transmitters are sending. Here a 
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Figure 4.1: Synchronous SSMA System Model Employing OCSS 

relatively new approach to eliminate system "self-noise" by using orthogonal 
complementary sets is proposed. The basic concept is to force the system to 

work in a quasi-synchronous mode by means of "carrier sensing". When the 

system works in such a quasi-synchronous mode, the interferences from other 
users' signals will be minimized by the use of orthogonal complementary sets 
which have zero CCF value at zero time shift. 

The basic system model of synchronous SSMA based on the use of sets of com- 
plementary sequences is shown in Fig. 4.1. In the system shown, the individual 

transmitters can transmit data independently of the other transmitters. How- 

ever, before transmitting, the user should listen to the channel; if the channel is 
idle, the transmission will start at once; if the channel is engaged, the channel 
signal should be received and processed to abstract the timing signal and the 
transmission started in a synchronized manner. Thus all relative time delays 
in Fig. 4.1 are integer multiples of the sequence period or the bit interval of 
duration T. 

It should he noted that the purpose of carrier sensing in ALOHA CSMIA is 
to avoid collision, while the purpose of "carrier sensing" in quasi-synchronous 
SSNIA is to allow synchronous collisions in order to eliminate co-channel inter- 
ference. 
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Based on Theorem 10, if we negate any number of sets in an OCSS S M, the 
result RPM is also an OCSS. Therefore, let each user be assigned an orthogonal 
complementary set a; E Sp M; information can be sent by a complementary set 
a; for a "0"(-1), or -a; for a "1"(+l). For example, if we use the following 
OCSS S2" as a spreading code, then we can build a 16-user synchronous SSMA 

system: 

a1 = [x1, y1] = [--+-+++-, ++-++++-] 
a2 = [x2, y2] = [-++++-+'ý, +---+-++] 

a3 = [x3, y3] = [---+++-+, +++-++-+] 

a4 = [041 Y41 = +--+---, ++++---] 

a5 = [-T5, Y51 = [--+----+, ++-+---+] 

a6 = [x6, y6] = ++++--, +----+--] 
a7 = [x7, y7] = --+--+-, +++---+-) 
a8 = [x8, y8] = +--+++, +-++-+++] 

as = [xs, ys] _ -+-+++-, --+----+) 
alo = [xlo, ylo] = ++++-++, -+++-+--] 
all = [x11, y11] = --+++-+, ---+--+-] 
a12 = [x12, y121 = +--+---, -+--+++] 
a13 = [x13, y13] = [---i-----+-++++-] 

a14 = [x14, y14] = ++++--, -++++-++] 
a15 = [x15, y15] = --+--+-, ---+++-+] 
a16 = [z16, y16] [-+---+++, 

-+--+---]" = 

The receiver for each user is a correlation receiver matched to the user's code 
sequence, consisting in principle of a multiplier, to which is fed a local replica 
of the i-th user's complementary set, followed by an integrator which takes the 
integral over each bit period. The output of the integrator is then sampled 
every T seconds. The objective of the threshold detector is to compare the 

received samples with the optimum preset threshold value of zero. A data bit 
"1" is generated if the detector input Z; exceeds zero, and a data bit "0" is 

output otherwise. 

For the Gaussian white noise(GWN) channel, it is proved that the input of the 
detector Z, is given by (Fan et al., 1993a) 

Z; =2 Tb; o+ no(t) (4.17) 

where b;, 0, P, T are defined in Chapter 1, Section 1.4. 

Obviously, because of the orthogonal properties of OCSS, the interference due 
to the co-channel effects of other user signals have been eliminated. The per- 
formance of the synchronous SSMA system is, therefore, the same as that of 
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the single-user, phase-coded, communication system, i. e. 

Pe = 
2erfc No 

(4.18) 

where erfc(. ) is the complementary error function and Eb = PT is the energy 
per data bit. 
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Figure 4.2: Generalized Sliding Correlator Synchronization 

For synchronization, in order to make use of the summed impulsive ACF prop- 
erty, a generalized sliding correlator is proposed, as shown in Fig. 4.2. In this 

circuit, there are P=2 shift registers, each of length NI, which are used for 

storing a pair of complementary sequences. The first sequence in the received 
pair passes to the upper correlator while the second goes to the lower correlator. 
The locally generated sequences x; (t), ye(t) are available with synchronous de- 
lay stepped in increments of 1/2 chip to ensure correlation. The output phase 
k of the local sequence generator is initially set to k=0 and a partial corre- 
lation is performed by examining m chips. If the integrator output falls below 

the threshold and therefore is deemed too small, k is set to k=1 and the 

procedure is repeated. If the summed output of the two correlators exceeds 
the threshold, then we have found the correct value of phase k of both local 

sequence generators. 
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4.6 Concluding Remarks 

The concept of uncorrelated sets of CS has been extended to orthogonal sets of 
CS. It has been shown that the number of sets in an OCSS is much larger than 
the number of UCSS with the same parameters P and M. Recursive formulae 
for constructing orthogonal complementary sets are presented and examples 
are given. Methods for synthesizing new OCSS from known ones with the 
same dimensions are developed. It is conjectured that the maximum number 
of orthogonal sets of CS is bounded by N= PM. Some of the MOCSS can be 

synthesized by using the formulae presented in this thesis. Lastly an application 
of OCSS to synchronous SSMA is given. 
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Chapter 5 

Codes for Asynchronous SSMA 
Systems-I 

5.1 Introduction 

Sets of sequences with good correlation properties have found application in 
radar, ranging and tracking, system identification, spread-spectrum communi- 
cations and SSMA communications. The asynchronous SSMA communication 
system with PSK or QAM modulation provides multiple users with simultane- 
ous access to the full communication channel bandwidth by assigning unique 
code sequences to each transmitter-receiver pair. Therefore, a large family of 
reliably distinguishable code sequences is required in an asynchronous SSMA 

system. Family size and maximum nontrivial correlation parameter C,,,.., are 
commonly used to evaluate sequence designs. A large family size is required in 

order to support a large number of simultaneous users. Small values of Cmax 

are required to permit unambiguous message synchronization and to minimize 
interference due to competing, simultaneous traffic across the channel. 

To date, many very good sequences have been constructed. These sequences 
can be roughly classified into the following broad categories: 

Binary Sequences with Optimal ACFs : M-sequences, quadratic residue 
sequences, Hall sequences, Twin prime sequences, Finite projective ge- 
ometry sequences (Golomb, 1967; Everett, 1966), etc.. The ACF of these 
sequences is -1(un-nomalized) everywhere except at zero shift. 

Binary Sequences with Good ACFs/CCFs : Gold sequences, Kasami se- 
quences Gold-like and dual BCH sequences (Sarwate & Pursley, 1980); 
bent function sequences (Olsen et al., 1982; Lempel & Cohn, 1982); GMW 
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sequences (Scholtz & Welch, 1984); No sequences (No & Kumar, 1989); 
Boztas-Kumar sequences (Boztas & Kumar, 1994), etc.. 

Real-valued Sequences with Good ACFs/CCFs : Visme sequences 
(de Visme, 1971); Bomer-Antweiler sequences (Bomer & Antweiler, 1991); 
Trajectory derived sequences (Darnell, 1993a); Frank-Chu like sequences 
(Fan & Darnell, 1994d), etc.. 

Perfect Sequences : Ternary sequences (Chang, 1967; Hoholdt & Justesen, 
1983; Shedd & Sarwate, 1979); multi-level m-sequences (Darnell et al., 
1994); generalized bent sequences (Chung, 1972); Frank/Chu/Milewski 
sequences (Frank & Zadoff, 1962; Chu, 1972; Milewski, 1983; Zhang & 
Golomb, 1993; Fan et al., 1994b); Nonpolyphase complex sequences (Dar- 

nell et al., 1994); perfect array (Bömer & Antweiler, 1992), etc.. All these 
sequences have impulsive ACFs. 

Polyphase Sequences with Two-valued ACFs/CCFs : Character 

sequences (Scholtz & Welch, 1978); Alltop sequences (Alltop, 1980); Luke 

sequences (Like, 92); triple product sequences (Fan et al., 1994d), etc.. 

Polyphase Sequences with Good ACFs/CCFs : Quadriphase sequences 
(Krone & Sarwate, 1984; Boztas et al., 1992; Novosad, 1993); Blake 

sequences (Blake & Mark, 1982); Helleseth sequences (Helleseth, 1976); 
Sidelnikov sequences (Sidelnikov, 1971); Kumar sequences (Kumar et al., 
1985; Kumar & Moreno, 1991), etc.. 

Nonpolyphase Complex Sequences with Optimal ACFs/CCFs : Max- 
imal length sequences over Gaussian integers (Fan & Darnell, 1994c; Dar- 

nell et al., 1994), etc.. 

In this chapter, and in the following two chapters, we will present some new 
constructions of polyphase and nonpolyphase sequences. 
In this chapter, a new class of polyphase sequences with near-optimal two- 

valued ACFs and CCFs is proposed. It is proved that, for a given prime length 
L>3, the out-of-phase ACFs and CCFs of the sequences are constant and 
equal to \I-L-. An interesting and useful property of these sequences is that all 
the sequences of the same length L are mutually orthogonal. It is shown that 
the correlation values asymptotically reach the Sarwate bound. 
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5.2 Sequences with Two-valued ACFs and 
CCFs 

Based upon the structure of Chu sequences (Chu, 1972) and Luke sequences 
(Luke, 92), the intuitive extension described below can be formulated. 

Definition 13 For any integers r, n and prime L>3, where 0<n, r<L, a 
new class of polyphase sequences, a(t) = (a(), a, ..., a(r) I), is defined as 

a(rý _ n(n+1)(n+2)/6+rn a= ei21rv/L 
n>> (5.1) 

where a is a primitive L-th root of unity and v is any integer relatively prime 
to L. 

Obviously there exist L sequences each of length L for any prime L>3. 

We now show that the above sequences have the following ACF/CCF proper- 
ties: 

Theorem 17 

T, r#0. (5.2) 

0. 
r s(5.3) 

Proof: The squared absolute value of the periodic CCF R,., 3(r) between se- 
quence a(') and sequence a(s) is defined as 

L-1 L-1 
I11ý, 

e1Týý2 = a(r)an+T a(m>*atm+-r 

n=0 m=0 

(5.4) 
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Substituting Eqn 5.1 into Eqn 5.4, we obtain 

IRr, 
s(r)12 = [: L-11 

an(n+1)(n+2)/6+rn-(n+t)(n+T+1)(n+-r+2)/6-3(n+T) n=O 

EL 
0a 

m(m+l)(*n+2)/6-rm+(n++T)('m+, r+1)('m+T+2)/6+a(m+T) 

L-1 
-T(2+6n+3n2+3T+3nr+T2)/6-(a-r)n-srr _ ýn=O a 

L-1 
aT(2+6m+3m2+3T+3mr+T2)/6+(a-r)m+9T ým=0 

aT `6(m-n)+3(m2-n2)+3r(m-n)]/6+(a-r)(m-n) - 
EL EL-1 

-O m=O 

= En=0 Em 
0 a(m-n)[T(Ttm}nt2)/2+(s-r)) 

When r=0, it is obvious that 

L-1 L-1 Z_ 
Rrý'(T)I2 = a(--n)(8-r) _L 

T_ - 
ýý s- rý 

U, T=U, s r. 
n=0 m=0 

When r 54 0, we introduce the following change of variables: 

n=m+1,1=0,1, """, L-1. 

Then the IR,., 3(T)l2 can be rewritten as 

IRrýd\TýI2 
= 

j1=0 1 EEML-=1 a-I[T(T+2m+I+2)I2+(s-r)) 

j: L-1 -il(, r+1+2)/2-I(s-r) EL-1 -'rlm =L l-0 Lim=O 

where 

L-1 
-rlm = 

{L, 0,1 0, (T, L) = 1; 
1=0. 

m=O 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

It should be noted that for r=0,1, """, L-1, L must be a prime number in 
order to satisfy (T, L) = 1. 
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5.3 Periodic Correlation Performance of the 
Sequences 

Let us now consider the asymptotic periodic correlation performance of the 
sequences. Sarwate (Sarwate, 1979) has shown that for a family of M uniform 
sequences, each of period L, the maximum magnitudes of the sidelobes 0a, 0" 

of periodic auto- and crosscorrelations respectively are lower bounded by 

02 L-1 02 
L +L(M-1) L 

-1 (5.10) 

For the proposed sequences, M=L, Oa = Oc = /, the Sarwate-bound yields 

(ý)2 L-1( 
+ 

L)2 
_ 1-}- 

1>1 (5.11) 
L L(L -1) LL 

which approaches the bound for large L. Therefore 

Theorem 18 The proposed polyphase sequences are asymptotically optimal. 

An Example: 

As a simple example, let L=7; one obtains 7 distinct sequences 

a(0) = (1, a, a4, a3, a6, 1, 1) 
a(1) = (1, a2, a6, a6, a3, a5, a6) 

a(2) = (1, a3, a, a2, 1, a3, a5) 
a(3) = (1, a4, a3, a5, a4, a, a4) 

a(4) = (1, a5, a5, a, a, a6, a3) 

a(5) = (1, a6, 1, a4, a5, a4, a2) 

a(6) = (1, 1, a2, 1, a2, a2, a) 

where a= ei21r/7. Their auto- and crosscorrelation functions are given by 

IRT, r(T)1 = (7,2.6,2.6,2.6,2.6,2.6,2.6) 
(R7,3(T)i = (0,2.6,2.6,2.6,2.6,2.6,2.6) 

where r 54 s. 
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5.4 
. 
Nonperiodic Correlation Performance of 
the Sequences 

From the periodic/nonperiodic correlation definition in Chapter 1, we have 
Rk, {(T) = Ck, {(T) + Ck, {(T - L) and Rk, {(-T) = [R{, k(T)]* (note that C{, k(T) = 
[Ck,; (-T)]*); the Rk,; is called the even CCF. Similarly we have the odd CCF 
Rk,,: Rk,; (T) = Ck,, (T) - Ck,; (T - L), where R;, 

k(T) _ [R^ k, j (- 7')] *. In the 
application of asynchronous SSMA, the odd correlation function represents the 
output of the correlator in the case where the data symbol changes during the 
integration of the correlation operation, whilst the even correlation function 

represents the output in the case where the data symbol remains constant 
over two consecutive symbols (Pursley, 1977; Sarwate & Pursley, 1980). Since 
the even and odd correlation functions appear with equal probability, both 
functions are of equal importance. It is clear that the nonperiodic correlations 
C; (7-), Ck,; (T) play an important role in reducing the maximal nontrivial even 
and odd correlation values. 

Although many sequences have been found, little has been published concerning 
their nonperiodic correlation functions. This is because, generally speaking, 
the nonperiodic correlation is much more difficult to analyse than the periodic 
correlation. 

For the sequences proposed above, a brief computer study for small length L has 
been carried out with attention being given to the maximum absolute value of 
nonperiodic correlation between pairs of sequences, as shown in Table 5.1. For 

comparison, similar results for Scholtz-Welch sequences with the same lengths 

are also given in Table 5.2. Scholtz-Welch sequences are constructed by em- 
ploying characters of the group of units in the integer ring ZL. It can be seen 
that for L>5, the maximum nontrivial nonperiodic correlation values of the 

proposed sequences are lower than those of Scholtz-Welch sequences. Therefore 
the nonperiodic performance of the proposed sequences is better than that of 
Scholtz-Welch sequences. 

In order to compare the periodic ACFs/CCFs and nonperiodic ACFs/CCFs of 
the new sequences, Figs. 5.1- 5.8 give a picture of the relative magnitudes of 
the two kinds of correlation for the length L= 401. It is seen that the two 
correlations have roughly the same peak magnitude. 
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Table 5.1: Aperiodic ACFs/CCFs of New Sequences 
L IR,. (0)I max,.,, IR,. (T)I min,.,, max,. IR,,, (T)I max,.,,,,. IR,,, (T)I 
5 5 1.62 1.54 3.24 
7 7 2.98 1.97 3.21 
11 11 4.48 2.73 4.48 
13 13 5.09 2.98 5.18 
17 17 4.90 4.19 6.36 
19 19 6.67 3.82 6.67 
23 23 6.69 4.24 7.44 
29 29 8.24 5.05 8.24 
31 31 8.30 5.42 8.48 
37 37 10.03 5.59 10.15 
41 41 9.90 6.77 10.98 
43 43 9.35 7.35 9.54 
47 47 10.26 7.44 10.58 
53 53 10.88 8.19 10.88 

Table 5.2: Aperiodic ACFs/CCFs of Scholtz-Welch Sequences 
L JRr(0)l min, maxi IRr(r)l min,.,, maxr JRr,, (r)l max,., 3, T I R,,, 3(T)I 
5 4 1 2.24 2.24 
7 6 2 2.65 3.46 
11 10 1.62 3.32 5.02 
13 12 2.73 3.61 6.03 
17 16 2.86 4.12 7.21 
19 18 2.35 4.36 6.36 
23 22 3.23 4.80 8.30 
29 28 3.12 5.39 10.16 
31 30 3.62 5.57 10.59 
37 36 4.00 6.37 12.44 
41 40 3.95 6.40 13.20 
43 42 4.82 6.77 13.15 
47 46 5.00 6.86 14.48 
53 52 5.32 7.66 14.40 
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Figure 5.3: Nonperiodic ACF of Sequence a(ss) 
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Figure 5.4: Nonperiodic CCF between a(°) and a(1 
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Figure 5.6: Nonperiodic CCF between a(') and a(ss) 
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Figure 5.8: Periodic CCF bt. a(0), a(1) 

5.5 Concluding Remarks 

A new class of polyphase sequences with nearly minimal periodic correlation 
magnitudes has been proposed in this chapter. For any given prime length 
L>3, there are L polyphase sequences. It is proved that the out-of-phase 
periodic ACFs and CCFs of the sequences are constant and equal to VrL-. 
In addition, sequences of the same length are mutually orthogonal and the 

periodic correlation values asymptotically reach the Sarwate bound. It is also 
shown that the nonperiodic and periodic ACFs/CCFs of the new sequences 
have nearly the same peak magnitude. For L>5, the maximum nontrivial 
correlation parameter Cmax of the new sequences is lower than that of Scholtz- 
Welch sequences. 
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Chapter 6 

Codes for Asynchronous SS MA 
Systems-II 

6.1 Introduction 

In a p-ary PSK modulation format, the symbols can be represented by the 
complex p-th roots of unity, with the binary case (p = 2) being used most 
often in practice. Accordingly, the design of constant magnitude polyphase 
sequences has been extensively considered, e. g. (Frank & Zadoff, 1962; Chu, 
1972; Milewski, 1983; Zhang & Golomb, 1993; Scholtz & Welch, 1978; Alltop, 
1980; Like, 92; Kumar & Moreno, 1991; Fan et al., 1994b; Fan et al., 1994d). 
However, there is relatively little work on sequence design applicable to QAM 

signal formats. By introducing a two-dimensional modular distance, termed 
the Mannheim distance, Huber showed how block codes over Gaussian integers 

can be used for coding over a QAM signal space (Huber, 1994). Egri and 
Horrigan constructed a finite multiplicative group of complex integers and gave 
an application of the group to differential detection of 16 QAM signals (Egri 
& Horrigan, 1994). 

In this chapter, we consider maximal length sequences (m-sequences) over 
Gaussian integers that can be used with QAM modulation; here the sequence 
symbols are also required to be complex numbers, but their magnitudes are 
not all constant. First, some general properties of m-sequences over Gaussian 
integers are discussed. Then two sub-classes of m-sequences with quasi-perfect 
periodic autocorrelations are obtained (Fan & Darnell, 1994c). The CCFs be- 
tween decimated m-sequences over Gaussian integers are also studied. Finally, 
by applying a simple operation, some m-sequences over rational and Gaussian 
integers are transformed into perfect sequences with impulsive ACFs (Darnell 

et al., 1994). 
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6.2 Gaussian Prime Residue Classes and Ga- 
lois Fields 

Gaussian integers are those complex numbers which have integer real and imag- 
inary parts. Let G be the set of all Gaussian integers. If ry = gl + ig2 E G, 
where i2 = -1, then -y* = gl - ig2 is the complex conjugate of y. The norm of 
a Gaussian integer ry = gl +ig2 is defined by N(-r) = gl -ýgz = 'y-y. There are 
four unities, i. e., elements of G which have norm 1, namely ±1, ±i. The ele- 
ments ±'y, ±iry are called the associates of ry. A Gaussian prime is a Gaussian 
integer which is not 0 or a unity and is not divisible by any number except the 
unities and their associates. Thus 1+i and its associates, the rational primes 
p with p=3 (mod 4) and their associates, and the factor 7r = gl + ig2 of the 
rational primes p= gi + g2 = (gl + ig2)(g1 - i92) = 7r . 7r* with p =_ 1 (mod 4) 
are all Gaussian primes. The fundamental theorem of number theory for the 
Gaussian integers takes the following form: any integer ry, not 0 or a unity, can 
be expressed uniquely as a product of Gaussian primes, apart from the order of 
the primes, the presence of unities, and ambiguities between associated primes 
(Hardy & Wright, 1979). 

Let G, 1 be the residue class of G modulo 7r; then the modulo function G --> 
G, r is defined as 

1 
µ(9)=9 modr=y=y - 

ý. 7t'r*J 
"7r; 9EG, - EG. ir. 

(6.1) 

Note that [g] _ [gl + ig2] _ [gi] + i[92] denotes rounding of the complex num- 
ber g. For example, for Gaussian primes 2+i obtained from rational prime 
5-1 (mod 4), and 3i, obtained from rational prime 3=3 (mod 4), the corre- 
sponding Gaussian residue classes are given by G2+; _ {0,1, i, -1, -i}, G3i = 
{0,1,1-+, -i, 1-i, -1, -1- i, i, -1+i}. 

Theorem 19 (Hardy & Wright, 1979) For Gaussian primes r, obtained from 
rational primes p=1 (mod 4), the modulo function p defines a bijective map- 
ping from GF(p) into a two-dimensional signal space p: GF(p) --> G,, 

µ(k)=kmod7r=-y=k-(k""* lJ" 7r, p 
(6.2) 

(vlr') + 7' " (uir) mod p, (6.3) 
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where u, v fulfill 1=u" it+v " lr*, which can be calculated by using the extended 
Euclidean algorithm for Gaussian integers (Huber, 1994). 

Theorem 20 (Hardy 1 Wright, 1979) For Gaussian primes r, obtained from 
p=3 (mod 4), it can be shown that there is an isomorphism between GF(p2) 
and Gip where 

Gip ={ k+i 1I k, l E {-p 
2 

1, 
""", -1,0,1, """, 

p 
2 

1}1 
. 

(6.4) 
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Figure 6.1: Signal Constellation for it =2+i, 3+ 2i, 3i, 7i (p = 5,13,3,7) 

In Figure 6.1, the sets G,, obtained from the primes is = 3i, 2+i, i7,3 + 2i 
(p = 3,5,7,13) are displayed as points in the complex plane. With coding for 

communication over G,, channels in mind, these two-dimensional visualisations 
of G, 1 in communication terms are called signal constellations (Huber, 1994). 
In Table 6.1- 6.4, the exponent tables of corresponding fields are given. 
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Table 6.1: Exponent Table of Field G3i 
s a,, 1 13 CY° 1 1s &1 1SI as 

0 1 2 -i 4 -1 6 i 
1 1+i 3 1-i 5 -1-i 7 -1+i 

Table 6.2: Exponent Table of Field G2+; 
S a° S a3 S as S a' 

011i2 -1 3 -i 

Table 6.3: Exponent Table of Field G7; 
S as S as S a' S a' 

0 1 12 -i 24 -1 36 i 
1 1+2i 13 2-i 25 -1-2i 37 -2+i 
2 -3-3i 14 -3+3i 26 3+3i 38 3-3i 
3 3-2i 15 -2-3i 27 -3+2i 39 2+3i 
4 -3i 16 -3 28 3i 40 3 
5 -1-3i 17 -3+i 29 1+3i 41 3-i 
6 -2+2i 18 2+2i 30 2-2i 42 -2-2i 
7 1-2i 19 -2-i 31 -1+2i 43 2+i 
8 -2 20 2i 32 2 44 -2i 
9 -2+3i 21 3+2i 33 2-3i 45 -3-2i 
10 -1-i 22 -1+i 34 1+i 46 1-i 
11 1-3i 23 -3-i 35 -1+31 47 3+i 

Table 6.4: Exponent Table of Field G3+2; 
S a' S a° Isl a" s a° 

0 1 3 -i 6 -1 9 i 
1 1+i 4 1-i 7 -1-i 10 -1+i 
2 2i 5 2 8 -2i 11 -2 

Although GF(p) (or GF(p2)) and G,, are mathematically equivalent, the two 
dimensional elements in G. can be designed to match the signal constellation 
in QAM modulation directly; therefore significant signal design advantages can 
be obtained. 
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6.3 Properties of M-Sequences over Gaussian 
Integers 

Definition 14 Let h(x) = xn + h,, 
_lx"-1 +""" -I- hlx + ho, h; E G, , denote a 

primitive polynomial of degree n over G,. An m-sequence a= jai} is defined 
over G, r by 

an-i =- hn-lan-i-1 - ... - hlai+l - hoai. (6.5) 

Here the subtraction and addition are carried out modulo Gaussian prime ir. 
From this it follows that the sequence a can be generated, in a similar way to 
a conventional p-ary m-sequence, by an n-stage linear Feedback Shift Register 
(FSR) which has a feedback tap of weight h; connected to the ith stage when 
h; 0. 

From the relationship between GF(p) (or GF(p2)) and G,, it can be shown 
that the above sequence has the following properties which are similar to those 
of an m-sequence over GF(p) (or GF(p2)) (MacWilliams & Sloane, 1976): 

1. The period of a is L= p" -1 (or per - 1). 

2. There are exactly L nonzero sequences generated by h(x), and they are 
simply the L different phases of a. 

3. A shift-and-add property: Va + Tea = Tka, where T denotes an opera- 
tor which shifts sequence cyclically to the left by one symbol; i, j, k are 
distinct integers and 0<i, j, k<L. 

4. Each non-zero n-tuple appears exactly once in each period. 

5. The number of occurrences of each non-zero element in each period is 
p"'1 (or p2(n-1)); the number of zeros is p"-1 -1 

(or p2(%_1) - 1). 

6. Sampling a= {a; } with each f in turn, (f, L) = 1,1 <f <_ L-1, will 
produce all m-sequences of period L over G. and no others. The number 
of different m-sequences of period L is T( L), where , D(") is Euler's totient 
function. 

In addition, we have the following particular properties of m-sequences over 
Gaussian integers: 

66 



1. Each period of sequence can be partitioned into four subsequences (their 

order may vary), i. e. a= (a, -ice, -a, ia), a= (ao, """, aj_1). Thus 
L-1 ö Eak=0. 

2. Each period of the periodic autocorrelation function can be partitioned 
into four parts (their order may vary), i. e. R= (ß, iß, -ß, -i, ß), /3 = 
(R(0), """, R(4 - 1)), R(l) = Ek=ö akak+1, where the subscript addition 
is performed modulo L. 

3. If p-1 (mod 4), 9 -- d (mod p), then /3 has d nonzero elements at 
positions k(p + 1), k=0,1, """, d-1, and 4-d zero elements at the 
remaining positions. 

4. If p-3 (mod 4), 4=d (mod p2), then ß has d=[ d'] nonzero 

elements at positions k 
4d, 

k=0,1, """, d -1, and 4-d zero elements at 
the remaining positions. 

Table 6.5: Examples of Primitive Polynomials f (x) over G1 
Primitive Polynomial f (x) over G, is Length L 
f(x)=x +x -i 2 +i 24 
f(x)=x3+ix2-}-x-i 2+i 124 
f(X) =x4-x3-ix2-x-i 2+i 624 
f(X) = x2+ x- (1 + i) 3i 80 
f(x)=x3-+2-x-(l+i) 3i 728 
f(x)=x2-}-x+2 3+2i 168 
f(x)=xZ+x-(1+2i) 4+i 288 
f (X) = x2 +x- (2 + i) 7i 2400 
f (x) = x2 +x- (3 -}- 2i) 11i 14640 

In Table 6.5, some examples of primitive polynomials over G, are obtained 
with the help of computer calculation. 

6.4 Complex M-Sequences with Good ACFs 
and CCFs 

Note the fact that when p=5=1 (mod 4), "4 1=1 (mod 5), and when p= 
3-3 (mod 4), 32 

4=' =2 (mod 32), [v%2ý = 1; hence, from above discussion, 
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two sub-classes of maximal length sequences with the following quasi-perfect 
autocorrelation functions can be obtained (Fan & Darnell, 1994c). 

Theorem 21 Let 7r =2+i (p = 5) and it = 3i (p = 3), then 

P, 1=0, 
i P, 1= L/4, 

R(1) _ -P, 1= L/2, (6.6) 

-i P 1= 3L/4, 
0, otherwise. 

or 

ýR(1)1 =jP, 
1- 0 (mod 4 ), (6.7) 

l 0, otherwise. 

whereP=4x5"'1 when ir=2+i andP=4x (32)"`-1 x3 when ir=3i. 

Example 1: Given a primitive polynomial h(x) = x2 +x-i over G2+;, let 
the initial state be 1,0; then the corresponding periodic output symbols from 
the shift register and their periodic autocorrelation function are: 

a= (0,1, -1, -1, i, -1,0, -i, i, i, 1, i, 0, -i, 1,1, -i, 1,0, i, -i, -i, -1, -i). 
R= (20,0,0,0,0,0,20i, 0,0,0,0,0, -20,0,0,0,0,0, -20i, 0,0,0,0,0). 

For primitive polynomial h(x) = x2 +x- (1 + i) over G36 let the initial state 
be 1,0; then the corresponding periodic output symbols from the shift register 
and their periodic autocorrelation function are: 

a=( 0,1, -1, -1+i, i, 1-i, 1-i, 1+i, 1-i, -1,0, -1-i, 1+i, -1,1 - i, 1,1, i, 1,1+i, 
0, -i, f, 1+i, 1, -1-i, -I-i, 1-i, -I-i, i, 0, 

0, i, -i, -1 - i, -1,1 + i, 1+i, -1 + i, 1+i, -i, 0,1 - i, -1 + i, -i, 1 + i, i, i, -1, i, -1 +i). 

R= (108,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, o, 108i, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

- 108,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, - 1081,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ). 

We now investigate the CCFs between decimated m-sequences of the same 
length L. A pair of m-sequences over Gaussian integers is called a preferred 
pair of m-sequences if and only if their crosscorrelation function is a constant 
zero. A connected set of m-sequences is a collection of m-sequences which has 
the property that each pair in the collection is a preferred pair. A largest 
possible connected set is called a maximal connected set and the size of such a 
set is denoted by ML. 
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A computer study shows that the size of maximal connected set is only 2 for 
any m-sequences of length L over G2+;, G3;. 

Example 2: For primitive polynomial f (x) = x2 + X_ i over G2+;, there are 
O( L) 2=4 m-sequences of length L= 52 -1 = 24, which means the sampling 
sequences obtained by the sampling f; E {1,5,7, i1,13,17,19,23}, (f;, L) = 1, 
can be partitioned into 4 equivalent classes: {1,5}, {7,11}, {13,17}, 119,23}. 

a[1] : {0,1, -1, -1, i, -1,0, -i, i, i, 1, i, 0, -1,1,1, -i, 1,0, i, -i, -i, -1, -i} 
a[7] : 11, i, 1, -1, -1,0, i, -1, i, -i, -i, 0, -1, -i, -1,1,1,0, -i, 1, -i, i, i, 0} 
a[13] : {1,1, -1, -i, -1,0, -i, -i, i, -1, i, 0, -1, -1,1, i, 1,0, i, i, -i, 1, -i, 0} 
a[19] : {1, -i, 1,1, -1,0, i, 1, i, i, -i, 0, -1, i, -1, -1,1,0, -i, -1, -i, -i, i, 0} 

Their ACFs and CCFs are: 
Rl : {20,0,0,0,0,0, 20i, 0,0,0,0,0, -20,0,0,0,0,0, -20i, 0,0,0,0,0} 
R7 : {20,0,0,0,0,0, -20i, 0,0,0,0,0, -20,0,0,0,0,0,20i, 0,0,0,0,0} 
R13 : {20,0,0,0,0,0, 20i, 0,0,0,0,0, -20,0,0,0,0,0, -20i, 0,0,0,0,0} 
R19 : {20,0,0,0,0,0, -20i, 0,0,0,0,0, -20,0,0,0,0,0,20i, 0,0,0,0,0} 

R1,7 : {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 
R1,13 : {8 - 8i, -Si, 0, -8,8 - 8i, 4i, 8+ 8i, 8,0, -8i, 8+ 8i, -4, 

-8 + 8i, 8i, 0,8, -8 + 8i, -4i, -8 - Si, -8,0,8i, -8 - 8i, 4} 
Ri, ls : {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 
R7,13 : 10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 
R7,19 : {4, -8 - 8i, 8i, 0, -8, -8 - 8i, -4i, -8 + 8i, 8,0,8i, -8 + 8i, 

-4,8+8i, -8i, 0,8,8+8i, 4i, 8-8i, -8,0, -8i, 8- 8i} 
R13,19 : {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

The maximal connected sets are: {1,7}, {1,19}, {7,13}, {13,19}. Obviously 
the size of maximal connected sets are all 2. 

Similarly it can be shown that for primitive polynomial f (x) = x2 +x- (1 + i) 

over G3i, there are On = 22 = 16 m-sequences of length L= 92 -1= 80. 
The sampling sequences obtained by sampler f;, can be partitioned into 16 
equivalent classes: {1,9}, {3,27}, {7,63}, {11,19}, {13,37}, {17,73}, {21, 
29}, {23,471, {31,39}, {33,57}, {41,49}, {43,67}, {51,59}, {53,77}, 
{61,69}, {71,79}. The equivalent sampler set 11,3,7,11,13,17,21,23, 
31,33,41,43,51,53,61,71} is divided into two subsets: A={1,13,17, 
21,33,41,53,61} and B={3,7,11,23,31,43,51,71}. Sequences within 
one subset are correlated with each other, R; j 0, i, jEA or B; also 
each sequence in one set is uncorrelated with all the sequences in another set, 
Ri j=0, iEA, jEB. Thus the size of the maximal connected set is Mso = 2, 
e. g. {1,3}, {1,7}, {13,7}, {13,11}, -"". 
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6.5 Perfect Sequences over Rational and Gaus- 

sian Integers 

The sequence synthesis technique proposed in this section derives new perfect 
sequences with zero out-of-phase ACF from previously known multi-level and 
complex m-sequences with quasi-perfect ACFs properties (Darnell et al., 1994). 

In their basic form, p-level m-sequences comprise the rational integers 0,1,2, """, 
(p- 1), where p is a prime. To derive a practical bipolar sequence from such an 
m-sequence, a level transformation is necessary. Examples of two appropriate 
level transformations are given in (Darnell, 1993b), i. e. integer and sinusoidal; 
both these transformations yield bipolar signals with useful periodic ACF prop- 
erties. For p>2, the transformed sequences will be of even length (p"` - 1), 

where n is the number of stages in the equivalent p-level FSR generator; they 

will also have an inverse-repeat (IR) format in which the last (p" - 1)/2 digits 

of the transformed sequence period are the simple inverse of the first (p %- 1)/2 
digits. For p=3 and 5, the integer level transformation gives bipolar IR se- 
quences A= {aj} of length L= 2N with quasi-perfect periodic ACFs of the 
form: 

P, 1=0 
OA(l)= -P, 1=N, 

1 0, otherwise. 
(6.8) 

where P is a positive real number which is dependent upon p, n and the level 

transformation employed. 

In last section, two sub-classes of complex m-sequences of length L= 4N 

with the following quasi-perfect autocorrelation function have been obtained 
by letting ir =2+i and 7r = 3i, which correspond to p=5 and p=3 
respectively. 

P, 1=0 
L-i iP, 1=N 

OA(1) _ akak+1 _ -P, 1= 2N (6.9) 

k=O -i P, 1=3N 
0, otherwise. 

To allow the synthesis of sequences with ideal periodic ACFs from the m- 
sequences introduced above, it is necessary to use the following results for ACF 

combination. 
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Theorem 22 If two component multi-level sequences A= {a1} of period L= 
2N and B= {(-1)J} of period 2 are combined using digit-by-digit multiplica- 
tion, the periodic ACF of the resulting composite sequence C, Oc(l), is given 
by 

eC(l)-{ BeA(i), 1=1m d2 

where OA(l) is the periodic ACF of sequence A. 

Proof: 

2N-1 2N-1 

eß(1) _ cjcj+r => (-1)1 ai(-1). i+ßa1+! = 
j=O j=O 

_ (-1)'BA(l) 
{8 

9A(l), l=1 mod 2 

(6.10) 

2N-1 
E 
j=0 

(6.12) 

If sequence A is chosen as a transformed p-level m-sequence with quasi-perfect 
ACF, and the length of this sequence A is exactly divisible by 2 to give an odd 
integer N, then due to the IR format of A, the digit-by-digit multiplication pro- 
cess yields a multi-level perfect sequence Cof period N: C' _ (co, cl, """, cN_1). 

Theorem 23 If the two component complex sequences A= {a1} of period 
L= 4N and sequence B= {(i)J} of period 4 are combined using digit-by-digit 
multiplication, the periodic ACF of the resulting composite sequence C is given 
by 

OA(l), 1= 0 mod 4 
eß(1) - 

-iOA(l), I=1 mod 4 (6.13) 
-OA(l), 1= 2 mod 4 
iOA(1), 1=3mod4 

where Oc(l) and OA(l) are the periodic ACFs of sequences A and C respectively. 

Proof: 
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4N-1 2N-1 

Oc(l) => c3ci+1 _> (i)ia1(. 
j-o j=0 

8A(1), 

- (-i)leA(1) _ 
-OA(l), 

ZOA(t),, 

2N-1 

i)j+la, 
+, => (-i)'aiaj*+, (6.14) 

"7=o 
1=0mod4 
1=1 mod 4 (6.15) 
1=2mod4 
1=3mod4 

Similarly, if the complex sequence A is a quasi-perfect sequence of period L= 
4N, where N is an odd number, then the sequence C synthesised has a perfect 
ACF. Let C' = (co, cl, """, cN_1), then C' is a perfect sequence of period N. 

It should be noted that if the ACF of a quasi-perfect sequence is of the form 

OA(1) = 
0, others 

-P, 
z P, 
0, 

(6.16) 

then the sequence B should be chosen as B={ (-i)j } and the ACF of sequence 
C is given by Oc(l) = (i)'OA(1). 

Examples of the application of the above method will now be presented. Firstly, 

consider the ternary m-sequence obtained using the integer level transformation 
where the original m-sequence elements 0,1 and 2 are transformed to the bipolar 

elements 0, +1 and -1 respectively (Darnell, 1993b); the values p=3, n=3 
and p" -1= 26 are chosen. Here 26 is exactly divisible by 2 to give 13, and 
thus the digit-by-digit combination technique can be used as follows: 

A= 0,1, -1,1,1, -1) 

B= (1, -1,1-1,1, -1,1, -1,1, -1,1, -1,1, -1,1-1,1, -1,1, -1,1, -1,1, -1,1, -1) 

C' _ 

9c, = (9,0,0,0,0,0,0,0,0,0,0,0,0) 

Secondly, consider a complex m-sequence of length L= 53 -1 = 124 generated 
by primitive polynomial h(x) = x3 + ixe +x-i over G2+;. If the initial state 
of the FSR is 1,0,0, a new perfect sequence C' can then be derived as follows: 

P, 1=0 
L-i -i P, 1=N 
E 

aka*k+l = -P, 1= 21 
k=O i P, 1= 31 

1=2N 
1=3N 
otherwise 
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0,0, i, 1, -1,1,1,1, ill, 1, -1,1,1,1,0, -i, -1, -i, i, 0, i, 0, -i, i, -1,1, -i, o, 1, i, 
0,0, -1, i, -i, i, i, -1, -1, i, -1, -i, -1,1,1,0,1,1,1, -1,0, -1,0,1, -1, -1,1,1,0, i, -1, 
0,0, -i, -1,1, -1, -1, -i, -i, -1, -i, 1, -i, -1, -1,0, i, i, i, -1,0, -1,0,1, -1,1, -1,1,0, -1, -1) 

1,1,0, -1, -1,1, -i, 0, {, 0, i, 
0,0, -1, -1, i, 1, i, -i, 1,1, -1,1,1,1,1,0, -1, -i, 1, -i, 0,1,0,1,1, -1,1,1,0,1, -1, 
0,0, -1, -1,1,1,1, -i, 1,1, -1,1,1,1,1,0, -1, -i, 1, -i, 0,1,0,1,1, -l, 1,1,0,1, -1, 
0,0, -1, -1, i, 1, i, -i, 1,1, -1,1,1,1,1,0, -1, -i, 1, -1,0,1,0,1,1, -1,1,1,0,1, -1) 

C, = (0,0, -1, -1, i, i, i, -i, 1,1, -1,1,1,1, i, 0, -1, -i, 1, -i, 0, i, 0, i, 1, -1, i, i, 0,1, -1) 

6C, = (25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

6.6 Concluding Remarks 

The basic theory and simple examples of the generation of m-sequences over 
Gaussian integers have been presented in this chapter. Two subclasses of m- 
sequences with quasi-perfect correlation properties are obtained. A simple 
transformation method is used to generate new perfect sequences from cer- 
tain m-sequences over rational and Gaussian integers. Nonpolyphase complex 
sequences presented in this chapter have the potential for direct mapping to 
QAM-type constellations. They also have the practical advantage that they 
are directly generated in bipolar form; this is in contrast to the more common, 
real-valued, p-level m-sequences, comprising all-positive integers, which require 
the application of an appropriate bipolar level transformation before they can 
yield useful ACF/CCF properties (Darnell, 1993b). 
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Chapter 7 

Codes for Asynchronous SSMA 
Systems-III 

7.1 Introduction 

This chapter studies two important classes of perfect sequences, Frank se- 
quences and Chu sequences (Heimiller, 1961; Frank & Zadoff, 1962; Heimiller, 
1962; Frank, 1963; Suehiro & Hatori, 1988; Chu, 1972; Frank, 1973; Ipatov, 
1979; Lewis & Kretschmer, 1982; Kretschmer Jr. & Gerlach, 1991; Zhang & 
Golomb, 1993; Popovic, 1992). Frank sequences and Chu sequences are two 

classes of sequences with perfect periodic ACFs and optimum CCFs. 

Barker was the first to study sequences with good nonperiodic correlations 
(Barker, 1953). Golomb and Scholtz extended Barker's work from the bi- 

nary to the polyphase case and found a larger family of generalized Barker 

sequences which satisfy the original Barker constraint on nonperiodic autocor- 
relation (Golomb & Scholtz, 1965). In the early 1960's, Frank showed that 
Frank sequences also have very good nonperiodic ACFs for small q. Specif- 
ically, it appears that the maximum out-of-phase nonperiodic ACF value is 
0(q) for Frank sequences of length q2 (Zhang & Golomb, 1993). Antweiler and 
Römer found that, by computer search, the merit factor and peak-to-side-peak 
ratios of Frank sequences and Chu sequences grow linearly with the square 
root of the length L of the sequences; also, the parameters of Frank sequences 
are better than those of Chu sequences (Antweiler & Römer, 1990; Popovic, 
1991a). However, this conclusion cannot be generalized by merely using ex- 
haustive computer search. In a recent paper, Zhang and Golomb proved the 
important result that the maximum out-of-phase nonperiodic ACF of Golomb 

sequences (which are equivalent to Chu sequences when L is odd and r=1; 
this chapter will adopt Golomb's definition due to its simplicity) is bounded by 
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L/4.348 as L tends to infinity (Zhang & Golomb, 1993). Mow and Li also 
obtained this result independently (Mow & Li, 1992). Subsequently Fan et. al. 
(Fan et al., 1994e) proved that there exist other Golomb sequences of length L 
whose maximum out-of-phase value is bounded by L/2.174. In this thesis, 
many interesting and important new analytical results are derived (Fan et al., 
1994e; Fan & Darnell, 1994a; Gabidulin et al., 1994). 

Although the correlation properties of Frank and Chu seqsuences are very good, 
it is noted that the number of Frank sequences and Chu sequences available for 

a given length L is relatively small. As mentioned earlier, in order to permit 
unambiguous message synchronization, to minimize co-channel interference, 

and to support a large number of simultaneous users, large families of sequences 
with good ACFs and small CCF values, are required in an asynchronous SSMA 

system. To meet this requirement, sets of combined Frank/Chu sequences, 
which contain a larger number of sequences than either of the two constituent 
sets, are considered (Fan et al., 1994b). It is shown analytically that the CCFs 

are similar to those of the original sets with one exception, whilst the ACFs 

remain perfectly impulsive. 

Based on Frank and Chu sequences, two classes of real-valued sequences with 
good periodic autocorrelation and crosscorrelation properties are also proposed 
(Fan & Darnell, 1994d). It is proved that these sequences have a periodic com- 
plementary property. For each of these complementary pairs, there is an un- 
correlated mate. The sequences are also shown to have many other symmetric 
properties. It is conjectured that, for a given length L, the out-of-phase ACFs 

and CCFs of the proposed real-valued sequences are bounded by O(cV-L-). 

In the following sections, we will first briefly review the periodic properties of 
Frank and Chu sequences and their generalizations; next the asymptotic nonpe- 
riodic ACFs of Frank and Chu sequences are investigated in detail; then com- 
bined Frank/Chu sequences are studied; lastly derived real-valued sequences 
are presented. 

7.2 Periodic Correlations of Frank/Chu Se- 

quences 

Frank sequences F= If('), """, f (0, """, f (7-1) } are a class of polyphase se- 
quences of length L=Z, in which the qth roots of unity are the elements of 
the sequence f ifl = (for fir), ... ' fi' 

ýi) 
, i. e. 

fýr, 
-fjq+k=eýq*rkj, =1 0 <k, J< q; (r, 4) (7. i) 
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where 0<n< q2 -1 and q is any integer. 

For Chu sequences C= {c('), """, cý'ý, """, c(L-1)}, the elements of the sequence 
cý' _ (co'), clrý, """, CL-1) of length L are given by 

c, (, ') = ez'"+1)", 0<n<L; (r, L) = 1. (7.2) 

It has been shown that the periodic ACFs and CCFs of Frank sequences and 
Chu sequences are given respectively by (Frank & Zadoff, 1962; Chu, 1972; 
Suehiro & Hatori, 1988; Popovic, 1992): 

L-1 

0, r 54 0 mod L), 
(7.3) Rf(r)(T )=Z 

"I 
nr)"I 

n+T -I 

n=0 

Lýn_0 
fnr)f 

+ 

= ý, fL-, VT, r 54 s, (r - s, q) = 1, q is odd, 

(7.4) 

L-1 
L, r=0 (mod L), (7.5) Rc(r) (T) =E oý)cn+T - 

n=0 
0, r0 (mod L), 

(_ L-1 (r) r(a) ýn-0 Cn+T 

= /, Vr, r#s, (r - s, L) = 1, L is odd. 

(7.6) 

In 1988, Suehiro and Hatori presented a new general class of Frank sequences 
with the same ideal periodic ACFs and optimum periodic CCFs (Suehiro & 
Hatori, 1988): 

s(r = bkr, fj9+k 
- 

bk )e`w' kj, 0<k, ý<q; (r, q) =1 (7.7) 

where bk'), 0<k<q, are arbitrary complex numbers with absolute values of 
1. Later, Gabidulin proposed another similar generalization (Gabidulin, 1993). 

In 1992, Popovic derived another general class of Chu sequences which also 
has ideal periodic ACFs and optimum periodic CCFs (Popovic, 1992; Popovic, 
1994b; Popovic, 1994a): 

snf) = bn 
mod mc(n) = bn 

mod merf 
(n+1)nß 0<n<L; (r, L) = 1. (7.8) 
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where b('*), 0 <_ k<m, are also arbitrary complex numbers with absolute 
values of 1. 

Obviously the generalized Frank and Chu sequences can be considered as mod- 
ulated sequences obtained by modulating one of the corresponding original 
Frank and Chu sequences with complex numbers (information) of absolute 
value 1. Because of the fact that the ACF/CCF properties are not changed by 
this modulation process, both generalized Frank and Chu sequences are called 
modulatable sequences. 

7.3 Nonperiodic 
Sequences 

For Frank sequences, we have 

Lemma 1 

C(r)(u4 + v) = 

q2, 

Correlations of Frank/Chu 

o, 
i2+ß u{1 

-e q 

i2aru 
eq 

eq 

Cq -S 

` 2(1-COS27rrv u 1) 
a 

_ 
Zerr u 

!1 

(e ýq 
-1)(e 

-9 
-1) 

2(1-COs 9ruv 

ýý 9 -1)(6 9 -1) 
f 

u=v=0; 

1 <u<q-1, v=0; 

O<u<q-1, v=1; 

0<u<q-1, v=q-1; 

u=0, u=q-1, 
2<v<q-2; 

1<u<q-2, 

2<v<q-2. 

The proof of this lemma is given in Appendix B. 1. 

Furthermore for any Chu sequence with (r, L) = 1, it can be proved that 

Lemma 2 

C(r) (T) sin G T2 
C 

sin LT 

(7.9) 

(7.10) 
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The proof of this is given in Appendix B. 2. Lemma 2 reveals that C(r) is a 
real function. 

Based on the above results, it can be proved that Frank and Chu sequences 
have the following symmetric properties: 

Lemma 3 

Chu sequences: 

Ckf) = CkL-r)* (7.11) 

I CG. r)(r)I =I CCr)(L - r)1< T, 0 <, r: 5 (L + 1)/2 (7.12) 
Q(T) 

= CCL r)(T) (7.13) 

Frank sequences: 

f(r) (9-r)- (7.14) k+j9 = 
. 
fk+j9 

ýCF(r)I _ ICFr)(L - r)i < T, 0< rr < (L + 1)/2 (7.15) 

ICFr)(uq + v)l _ ICF)(u4 + (q - v))) (7.16) 

cFF)(T) = CF9 r)*(T) (7.17) 

The proof of this lemma is given in Appendix B. 3. 

Let the time shift be r= uq + v, 0<u, v <_ q-1. Due to Lemma 1 and 
Lemma 3, the problem of finding the nonperiodic ACF of Frank sequences 
reduces to that of finding 

Icc)(r)I = ICF)(uq+v)I, 0<u, v, r <LJ, (r, q) = 1. (7.18) 

For the case of r=1, we have 

Theorem 24 

2 
I CF, (uq + v)1 1 -cosIr 9 

(7.19) 
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The proof is given in Appendix B. 4. The case of r=q-1 can be deduced 
immediately from Lemma 3. 

The asymptotic maximum out-of-phase autocorrelation value of sequence a is 
defined as 

B= max I C(T) I=I C(Ir(L)) I, T=1,2, ..., L-1, (7.20) 

where the I,,, (L) is the value of T(0 <T< L) which maximizes IC(T)l. 

Theorem 25 As q goes to infinity, the asymptotic nonperiodic ACF of a Frank 

sequence with r=1 is given by 1 

BFI _ I.. (L)=uq+2, u=0, q-1. (7.21) 

Proof: From the symmetric properties of Frank sequences and the proof of 
Theorem 24, the maxima of the out-of-phase nonperiodic ACF amplitude occur 
atu=O, q-1, v=q/2, and 

I CF(uq + v)I C 
1_ý0, 

Y-ý1-2 'q '2+24 
9 

ý4 
720 1q 

ý8+... ) (7.22) 

_ 
jr2- +5 

igýq4 

which leads to the asymptotic result that, as q goes to infinity, 

BF(l) =l im 
2-ý, __ 

ý2 q (7.23) 

3q -T 
ir 

Let us now examine the nonperiodic ACF of Frank sequences of odd length L 

andr=ý 212 

It is simple to show that for any odd integer q, (2 !, q) = 1. Therefore Frank 

sequences with r9 exist for every odd length q2. In this case we have 
the following important result: 

1From (Antweiler & Bömer, 1990; Popovic, 1991a; Zhang & Golomb, 1993), it appeared 
that this was an unsolved problem. We became aware of the prior work for r=1 by Turyn 
(Turyn, 1967) after the initial preparation of this thesis. Turyn's proof is slightly different 
from that given here. 
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Theorem 26 

ICF I)(uq 
+ v)1 <2 (7.24) 

1- cos 9 

Similarly we have 

Theorem 27 As q goes to infinity, the asymptotic nonperiodic ACF of a Frank 

sequence with r= is bounded by 

1 =4k+1" BFL' L-1 
< 2ý Im(L) = uq -}- 2, u='q= 4k -}- 3. 

(7.25) 
ý'q 

It would appear that the exact asymptotic value should be BFL' 11 
= 2.; how- 

ever, the proof would appear extremely complicated. In comparison, the fol- 
lowing results indicate the worst case which occurs at r=2 for the nonperiodic 
ACF of Frank sequences of odd length L. 

Theorem 28 

1-cos7r(1+ 
ICF2)(uq + v)l < 

J2(l+cos! E) 
2r 

° (7.26) 
1 -cos q 

2- 

B2)-2L 
2,1,,, 

(L) = uq + v, v=u= 
L21. (7.27) 

Due to Lemma 2 and Lemma 3, the problem of finding the nonperiodic ACFs 
of Chu sequences reduces to that of finding Cyr) (r) in the range of 1 <_ r< 
L21 and 1<r< L2-1. Based on Lemma 2, we have the following asymptotic 
bounds: 

Theorem 29 

BC(") (b) = 0.48\ L, I,,, (L) _ 
(Lb 

r 

1)so' 
r>2, 

r 
0<b<0.37, (7.28) 

rr- 

where b=f (r, k), k-L mod r, so =b and zo = 1.1655. 
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The proof is given in Appendix B. 7. 

Theorem 30 

BC(") _ sin 
(7rb) 

, Im(L) = 
Lb- 1, 

r>2,0.5 >b>0.37. (7.29) 

The proof is given in Appendix B. 8. 

Example: For any given integer r >_ 2, (r, L) = 1, L can be represented 
as L= ar -F k, where a is an integer and k< [2]. If 2<r 20, then 
b=f (r, L) =f (r, k) can be obtained by using Euclid's algorithm as given in 
Table 7.1. Table 7.2 lists the bounds BJ') =c given by Theorems 29- 30. From 

the calculation of actual BC() for large L, it is seen that the bounds obtained 
are quite tight. 

Table 7.1: Illustration of b=f (r, L), (r, L) = 1, L= ar+k, r< 20, k< Lr/2J 

k 
2 3 4 5 6 7 8 9 10 11 

r 
12 13 14 15 16 17 18 19 20 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 -2 -3 .4 -5 -6 -7 -8 -9 
3 -2 3 -3 4 .4 5 -5 6 -6 7 
4 -2 3 -3 4 -4 5 
5 -2 5 -5 3 -3 7 -7 4 
6 -2 3 -3 
7 -2 7 5 -5 -8 3 
8 -2 -7 
9 -2 9 

Table 7.2: Illustration of c, B(") = L/c, (r, L) = 1, r5 20, k< Lr/2J 

k 
234567 

r 
89 10 11 12 13 14 15 16 17 18 19 20 

1 3.1 3.6 4.2 4.7 5.1 5.5 5.9 6.2 6.6 6.9 7.2 7.5 7.8 8.1 8.3 8.6 8.8 9.1 9.3 
2 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 
3 3.9 3.4 3.8 3.5 3.8 3.5 3.7 3.5 3.7 3.5 
4 4.4 4.0 4.3 4.0 4.3 4.1 
5 4.9.3.3 3.4 4.5 4.8 3.3 3.3 4.5 
6 5.3 5.0 5.2 
7 5.7 3.2 3.8 4.0 3.2 5.4 
8 6.1 3.4 
9 6.4 3.2 

Note: The bound in boldface is computed by Eqn 7.29. 

When r=1, which is excluded from above derivation, we have the following 
result which is the same as in (Zhang & Golomb, 1993), but the derivation is 
simpler. 
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Theorem 31 

BC's = L/4.34, Im(L) = L/2.68. (7.30) 

The proof is given in Appendix B. 9. In addition, the following result (Fan 

et al., 1994e) is proved in Appendix B. 10. 

Theorem 32 If L is odd and r= j1, then 

BCC) = L/2.17,1,,, (L) = L/1.34. (7.31) 

Furthermore, the maximum out-of-phase aperiodic ACF is bounded by f for 

all odd shifts in the range 0<r< L21 and even shifts in the range <T< 
L-1, as L tends to infinity. 

Similar to Frank sequences, the worst case of Chu sequences occurs at r=2: 

Corollary 1 

L 
B(2) =, Im(L) = 

L± 1, 
L= 2k + 1. (7.32) 

7.4 Combined Frank/Chu Sequences and their 
Characteristics 

In order to obtain a larger set of sequences, we define the following combined 
sets of Frank/Chu sequences, 

Definition 15 The combined Frank/Chu sequences can be synthesised by the 

union of the sets of Frank sequences and Chu sequences of the same length: 

FC ={ f('), ... , f(s) , ... , f(8')ß ... I f(9-1). 

c(*), ... , c(*-), ... , c(L-1) }, 
(7.33) 

where L= q2, (s, q) = 1, (s', q) = 1, (s - s', q) = 1, and (r, L) = 1, (r', L) _ 
1, (r-r', L)=1. 
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Obviously the ACFs of the sequences in the set are exactly the same as those 
of the original Frank sequences and Chu sequences. The CCF is equal to if 
both the sequences to be correlated are Frank sequences or both the sequences 
are Chu sequences. When one sequence is a Frank sequence and the other is a 
Chu sequence, we have. 

Theorem 33 The CCF between Frank sequence f (s) and Chu sequence c(') of 
the same length L= qz is given by 

JR, c,. >, f(. )(T)l = vfL-, r 94 s(mod q); (7.34) 

IRe(a+h9), f(. )(T)I = I9(h, s)I, v= vo = 
J1 r=s mod q; (7.35) 

where0<h<q, r =uq+v, and 

g(h, s) =qE Ö-1 a(°+hq)k(k+i)/2q-su(k+vo) ,. ý 

qk a(a+hq)k(k+1)/2q-a(u+1)(k+vo). gii 

(7.36) 

Proof: Let n=jq+k and r= uq + v, 0<j, k, u, v<q -1, then the integer 
n +, r can be expressed as 

n+T=(j+u+E)q+(k+v-eq) (7.37) 

where e=0, if k+v<q-1, and c=1, if k+v >_ q-1. Let a= ei2"/Q 
then f (') =f 

(s) 
- ask e(*) = of(n+i)nls4. Thus 7q+k .t) 

'Rý*ý, /ý'ý(T) = Lin=O c fns) 

= 
Z-g2-1 (r) *(s) 

Ldn=O C, jq+kf(j+u+E)q+(k+v-cq) 

_ Ek=ö Eq_ö ar(1q+k)(jq+k+l)/2qa-s(j+u+E)(k+v-Ea) (7.38) 

= Lk=0 , rk(k+1)/2q-s(u+c)(k+v-cq) 1: 1-1 ajr()q+2k+1)/2-ja(k+v-cq) =0 

_ 
Eq-1 ark(k+l)/2q-a(u+c)(k+v) Eq-1 aj(t'+rk+t-sk-sv) k=0 3=0 
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The last equality is valid because atcq = 1, c is any integer, and a22r9/2 = 
e"r'i' = (-1)n22 = (-1)ni = arjq/2. Let 1=+ rk +z- sic - sv, the above 
inner sum is equal to zero, if 10 0, and is equal to q, if 1=0. The equation 
1= 0(mod q) has a unique solution ko = ,, -, (1+9)/2 if r0 s(mod q). That is 

r-s 

4-1 av-r(1+9)/2 
aj(+rk}ak-av) = 

0, k 54 ko = r_a (7.39) 
r 1+q 2 

j=O Qf k= k0 = 
"- 

r_a 

Therefore, if r0 s(mod q), we have 

JR, (r), f(. )(T)l = larko(ko+1)/24-s(u+E)(ko+v)qI =q= 'rL-. (7.40) 
In the case of r= s(mod q), the CCFs between Frank sequences and Chu 

sequences are given by 

R 
. +hq), f(s)(T) = En=O 

fl 
)f*+T 

l n=0 n 

= Lek-1 a(a+hq)k(k+1)/2q-a(u+c)(k+v) rq-1 Ctja(zi-? -v) 
Lý3=O 

where h=0,1, ---, q-1 and 

q-1 

a's(-q+ v)={ 

j=o 

0, v34 vo=4+i -- 
4ý v= v0 2 qil 

(7.41) 

(7.42) 

Hence 

R 
*+hq), f(a)(T) = 

+1 0, v vo = 

q Ek -1 a(a+hq)k(k+l)/2q-au(k+�o) + 
Aml a('+hq)k(k+l)/29-a(u+1)(k+vo) V= V0 = q-' 2 qE k 17-1 

2 

(7.43) 

As an example, the combined Frank/Chu sequences of length 25 are given below 

FC ={f (l), f(2), f(3), f (4); c(1), c(2), c(3), c(4) }. (7.44) 

The CCFs between any two sequences, R, (r), c(a)(T), Ri(, ), f(a)(Tr) and R, (,. ), f(. )(r) (r #s mod 5), are constant and equal to 5. For the case of r=s mod 5, the 
CCFs, R, (. ), f(. )(-r), are listed in Table 7.3. 
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Table 7.3: CCFs of Combined Frank/Chu Seauences(L=25. r=s mod 5) 
01 23 24 

R(1) 000 24 00004.4 00001.8 00001.8 00004.4 00 
R (2) (2) r 000 21 00003.8 00008.2 00008.2 00003.8 00 
R(, ) f(, )r 000 18 00006.2 0000 11.0 000 11.0 0006.2 00 

Rc(4) (4) r 000 14 0000 12.0 0008.8 00008.8 0000 12.0 0 

7.5 Derived Real-valued Sequences and their 
Characteristics 

Definition 16 For any integers L, r and n, where 0 <_ n<L, (r, L) = 1, L is 

an odd integer (the case of even L is omitted here for simplicity), the first class 
of real-valued sequences, a'''' = (aor), alr), ..., aLrý 1) and b'''' = (bö*), bi'), """, birý 1), 
is defined as 

a(") = cos 
7crn(n + 1) 

and b(r) = sin 
irrn(n + 1). (7.45) 

Definition 17 For any integers L, r, j and k, where 0 <_ n<L, 0k< 

q, (r, q) =1 and L= q2, the second class of real-valued sequences, a( _ 
(a0 ý, 

alr), ..., a(r) 1) and b(r) _ (b('), b(r) -1 bir)1), is defined as 

a(') = ajv+k = cos 
Zrgkj 

, and b, (, ') = a(v+k = sin 
27rrkj (7.46) 

The above real-valued sequences have the following properties: 

Lemma 4 

arir) = a(L-r). (7.47) 

Ra(r)(T) = Ra(,. )(L - T) 0<T< (L + 1)/2. (7.48) 

Ra(r)a(, )(T) = Ra(*)a(. )(L - T) 0<T< (L + 1)/2. (7.49) 

Ra(r)b(a)(T) _ R. (r)b(. )(L - T) 0<T< (L + 1)/2. (7.50) 
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The above symmetric properties also hold if a(r) is replaced with b(r). 

Proof: For simplicity, we only prove the first two relations. 

(1). Due to the fact that if (r, L)=1, then (L-r, L)=1; for the second class of 
real-valued sequences, we have 

a(L r) _ cos 2" 2q rk= cos 
[2irqlcj 

- 
2"gktJ 

(7.51) 
LINZ 

=anr) 
9 

Similarly, the relation is true for the first class of real-valued sequences. 

(2). Note the fact that Ra(r)(Tr) = Ra(r)(-T), then 

Ra(r) (L - r) = Ra(r) (-r - L) 

L-1 
- 

ýn=O anan+(r-L) 

rr(n+r-L)(n+r-L+1) L-1 
COS xrn n+l cos - 

ýn=0 
LL 

(7.52) 

- 
j: 

n=0 COS arnL cos 
[+'T+1) 

- 7rr(2n + 2r -L+ 1), 

= LnCOS ern n+l COS irr(n+r)(n+r+1) 
L 

= Ra(r) (T) 

where (2n + 2rr -L+ 1) is an even number because L is odd. 

For the remainder of the relations, the proof is similar. 

Definition 18 A pair of sequences {a, b} of length L is said to be a periodic 
complementary pair if and only if their periodic autocorrelation functions sum 
to zero at every shift, except the zero shift; that is 

L-1 L-1 
L', r=0, > lla(T) + 14(T) =Z (6nftný. T +E bnbn+r ={0, 

r= 54 0.7.53) 
n-0 n=0 
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Definition 19 Two complementary pairs, {a, b} and {a', b'}, are termed un- 
correlated mates if their periodic crosscorrelation values for corresponding se- 
quences in each pair sum to zero at all corresponding time shifts; that is 

L-1 L-1 
Raa'(T) + Rbb' (T) =E anan+r +E bnbn+, r =0 (7.54) 

n=0 n=0 

The concept of binary complementary sequences was originally introduced by 
Golay (Golay, 1961). Here this concept is extended to include periodic com- 
plementary sequences. For the real-valued sequences defined above, it can be 
proved that 

Theorem 34 1a( ), b(r)I is a pair of periodic complementary sequences, i. e. 

RQýT)+Rb(T)_ ( 
O, r=00, (7.55) 

Proof: 

al-r) 
+ Rb(T) = Ln=O anan+r + En 

=p 
bnbn+T 

EL-1 COS am n+l COS ar(n+r)(n+T+1) 
-}- u n=C LL 

L-1 
S- am n+l sin ýr(n+r)(n+r+l) 

(7.56) 
ýn=O 

LL 

li-1 9rr(271Tý'T2+T) 
_ 

L, r=0, 

_ ýn_o COS L- 1O, TLO. 

Furthermore, for every periodic complementary pair ja(), b(t)}, there is an 
uncorrelated mate {b(), -a(r) 1; that is 

Theorem 35 

Rnb(T) + Rb(-a)(T) =0 (7.57) 
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Proof: 

Rab(T) + Rb(-a)(T) = j: 
+ºL_-1 0 anbn+T - j: 

nL--1 
bnan+T 

O 

L-1 
COS 7rrn n+l Sin rr(n+, r) 

____ 
l) 

_ - 
ýn-0 

LL 
(7.58) 

L-1 
sin am n+l COS irr(n+T)(n+r+l) ýn-0 

LL 

L-1 irr(2nr+T2+T) 

_ EL-1 sin L=0 

In order to evaluate the practical usefulness of the real-valued sequences, many 
ACFs/CCFs for different sequence lengths were calculated. Specific examples 
are shown in Figs. ( 7.1- 7.32). 

For the first class of real-valued sequences of length L= 1001, the periodic 
ACFs (PACFs) of P), P), bbl) and b(2) are shown in Figs. ( 7.1- 7.4); the 
periodic CCFs (PCCFs) between ail) and P), bbl) and b(Z), a(1) and b(1), a(1) 
and b(2), are shown in Figs. ( 7.5- 7.8). It is seen that the maximum periodic out- 
of-phase ACF is bounded by 15.9 and the maximum periodic CCF is bounded 
by 29.8. Figs. ( 7.9- 7.16) show the same periodic ACFs and CCFs for the 

second class of real-valued sequences of length L= 312 = 961. The maximum 
periodic out-of-phase ACF is bounded by 15.5 and the maximum periodic CCF 
is bounded by 30.9. An interesting phenomenon is that the maximum CCF 
between a('') and b(t) has the same magnitude as the maximum out-of-phase 
ACF of a(r) or b(T). Obviously, the periodic ACFs/CCFs of the real-valued 
sequences discussed here are favourable. 

Although it is extremely difficult to obtain the closed analytical form of the 
periodic ACFs/CCFs for the above real-valued sequences, based on our com- 
prehensive computer simulations it can be conjectured that: 

Conjecture 5 For the real-valued sequences of length L, the maximum out-of- 
phase periodic ACF is asymptotic to O(civrL-). 

Conjecture 6 For the real-valued sequences of length L, the maximum mag- 
nitude of periodic CCF is asymptotic to O(c2VL-), c2 < 2c1. 

As is shown in Figs. ( 7.17- 7.32), their nonperiodic ACFs/CCFs (NACFs/NCCFs 
) are very similar to those of the original Frank and Chu sequences. The best 
NACF occurs when r=1 and the worst NACF occurs when r=2. However 
their NCCFs are normally good. 
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7.6 Concluding Remarks 

In conclusion, we have considered the asymptotic maximum out-of-phase ACFs 

of Frank and Chu sequences of length L and order r. For Chu sequences, it 
is shown that the B& is bounded by L/4.34, if r=1; or 0.48 b/rL, if 

r>2, b/r < 0.37 ; or L/ir sin irb/r, if r>2, b/r > 0.37. For Frank sequences, 
it is shown that the BF, BF 1, are asymptotic to q/a as q tends to infinity; when 
L is odd, BF' 1, BF , are bounded by 2V21. In comparison, Chu sequences ex- 
ist for every integer length L>1, rather than solely at lengths which are perfect 
squares, as is the case with Frank sequences. However, Frank sequences have 

more symmetrical structures and more favourable nonperiodic ACFs. Specifi- 

cally, we have Bclý/BFI = 1.507, BC '/BF' 
= 1.065, Bc2)/BF2ý = 1.571. 

For the combined Frank/Chu sequences, it is proved that Rf(r), c, )(T) _ 
when r# s(mod q). Although there exist some time shifts where the CCF 

values are relatively large (when r= s(rnod q)), in this case, the CCFs are zero 
for all other time shifts, including the ones around zero time shift position. It 

should be noted that the methods presented here can also apply to general- 
ized Frank sequences (Suehiro & Hatori, 1988) and generalized Chu sequences 
(Popovic, 1992). 

Based on Frank and Chu sequences, two classes of real-valued sequences and a 
class of combined Frank/Chu sequences have been obtained. It is shown that 
the two classes of real-valued sequences have useful symmetrical properties. 
By defining periodic complementarity, it is proved that the proposed sequences 
form two classes of periodic complementary sequences and that every com- 
plementary pair has an uncorrelated mate. From the calculated ACF/CCF 

results, it is demonstrated that they also have good periodic and nonperiodic 
ACF/CCFs. It is conjectured that the maximum out-of-phase ACF and max- 
imum CCF are asymptotically bounded by O(VL-). 
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Chapter 8 

Hybrid CCMA/SSMA Coding 
Scheme 

8.1 Introduction 

Gallager argues that there is a need for a more combined approach to multiple- 
access communication, focused on coding and decoding techniques. In particu- 
lar, he points out that what is needed is a coding technology that is applicable 
for a large set of transmitters of which a small, but variable, subset is active 
simultaneously (Mathys, 1990; Gallager, 1985). 

Mathys has proposed a coding scheme which aims to fill the gaps between the 
information theory and collision resolution approaches (Mathys, 1990). His idea 
comes mainly from the following observation: in many multiuser communica- 
tion situations, interference from other users can be tolerated up to a certain 
level by using collaborative coding multiple-access; if too many users are active 
at the same time, however, collisions will occur and one has to start retrans- 
mitting messages according to some collision resolution scheme. In this sense, 
he regards his code construction as a building block of a hybrid multiple-access 
communication system which employs both collaborative coding and collision 
resolution. Similar attempts that point in the same direction are described in 
(Massey & Mathys, 1985; Bar-David et al., 1987). 

This chapter will focus on multiaccess information theory and spread spec- 
trum techniques. The general idea behind such multiple access communication 
schemes is that one can find sets of signals which can be mixed together to form 
a composite signal, with the individual signals in the set being recoverable from 
the composite signal at the receiver. Normally, the mixing is assumed to be 
the result of linear addition of the signals and the recovery is assumed to be 
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accomplished by linear filtering. For the CCMA system, the isolation between 

users is based on the code structure. On the other hand, in the SSMA system, 
the isolation between users is based on the good ACF/CCF properties of the 
sequences used. 

Both the CCMA technique and the SSMA technique permit efficient simulta- 
neous transmission by several users sharing a common channel, without sub- 
division in time or frequency. In an SSMA system, all transmitters share the 
same overall transmission bandwidth, with isolation being achieved by an ap- 
propriate choice of sequences for the terminals. The advantage of SSMA is that 
it appears to offer promise of reliable operation over dispersive radio paths and 
can provide resistance against high levels of interference and jamming. In addi- 
tion, unlike most of the CCMA schemes, SSMA systems do not require all the 
users to be active simultaneously. However, the number of sequences available 
with a given sequence family is limited; the partial correlations of the bearer 

sequences used in SSMA are not ideal and are a source of system "self-noise" 

which eventually causes a limit on the number of simultaneous users. 

The CCMA technique appears to be more attractive in practice because of its 
higher combined information rate and larger number of permitted users. How- 

ever, there are difficulties in symbol and block synchronization among all the 
users in the system. In fact, most of the previous studies are based on the 
assumption of a noiseless synchronized adder channel with all the users in the 
system being always simultaneously active. In addition, when the number of 
users and the length of the codes increase, in general, it will be extremely diffi- 

cult to decode (decompose) the sum codeword into its component codewords. 

In this chapter, a new hybrid CCMA/SSMA coding scheme is proposed (Fan 
& Darnell, 1994b). It is expected that this hybrid scheme will provide a more 
powerful multiple-access capability and a better performance by exploiting the 
individual merits and reducing the individual disadvantages of CCMA and 
SSMA. The emphasis of the coding scheme is on finding a simple and effi- 
cient multiaccess procedure applicable to a large set of transmitters, of which 
a variable subset is active simultaneously. Further, the complexity of the im- 

plementation should be very low. 

8.2 Hybrid CCMA/SSMA System Model 

The system model of the hybrid CCMA/SSMA scheme is shown in Fig. 8.1. 
This can be considered as a concatenated multiple access communication scheme. 
Suppose each sub-CCMA system has N users, the SSMA system has K spread- 
ing sequences and each sequence is modulated by a sum codeword from a sub- 
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CCMA adder channel output; then the system can accommodate NK users. 
If the Q-ary CCMA ring codes proposed in Chapter 3 are employed, then any 
number of T< NK users can be active at any time. If each CCMA has N 

users, where at most T users are active at any time, then the hybrid system will 
have A'K users, with at most TK users active at any time. Further, because 

each sub-CCMA is separated by SSMA spreading codes, then each sub-CCMA 
can employ the same CCMA codes, which are distinguishable at the receiver 
due to the low CCFs between spreading codes. 

P Source Noiseless Real Noise Sink 
Adder Channel Channel 

u,,, 
-ý Encoder 1} 

{. 
F- 

der 1l 
U1.1 

u1, 
N 1, N 

n uK, 

oder-NI o. 
U K, " 

COMA 4 SSMA CCMA l 

Figure 8.1: Hybrid CCMA/SSNIA System Model 

It will be demonstrated that the hybrid system provides a very flexible and 
powerful multiple accessing method. 

Now let us consider a scheme using niodulatable Frank or Chu sequences as 
spreading code sequences and the Q-ary ring codes presented in Chapter 3, or 
any other known codes, as CCMA codes. 

As indicated previously in Chapter 7, the generalized Frank and Chu sequences 
can be considered as modulated sequences obtained by modulating one of the 

corresponding original Frank or Chu sequences with complex numbers (infor- 

mation data) of absolute value 1. Let q be a prime number; then there are 

96 



(q - 1) original Frank or Chu sequences of length L= q2. Each of the original 
sequences is now assigned to (q - 1) groups of users. Each group of CCMA 

users shares an SSMA transmitter. Each transmitter modulates the assigned 
original sequence with the sum codeword which is the output of the CCMA 

adder channel. However, before modulation, the sum codeword z(") must be 
transformed into a complex number of absolute value 1. Suppose the element 
zk') of the sum codeword is a Q-ary number, we can use the following mapping: 

(8.1) bk'ý) = eýQ kr, zkrý E ZQ 

where 
4» denotes the k-th element of the sum code z(r) in the r-th CCMA 

channel output (user-group r). Because the information zi is carried by the 

phase of the complex number b(r), this mapping can be considered as phase 
modulation. 

At the receiver, each SSMA receiver possesses a filter matched to the assigned 
original Frank sequence. Another device is also needed to recover the phase 
information z(? ) = (zurr, """, zgr2l) from the sampled complex vector Mr) 

(borg, """, bq'21). At each CCMA receiver, the corresponding algorithm is used 
to decode the sum codeword into the individual users' information signals. 

8.3 Principle and Examples 

Because each SSMA receiver receives not only the signal transmitted by its 
corresponding transmitter but also signals transmitted by other transmitters, 
co-channel interference must be taken into account. In asynchronous SSMA, 
noncorresponding signals are added to the corresponding signal asynchronously. 

Firstly let us consider the following modulatable Frank sequences with prime 
q, 

s(r) = b(kr)fj(v+k = bkr, ei'rki 0<k, j<q; (r, 9') =1 (8.2) 
n 

where Ibk')l = 1,0 <k<q, carries the information to be communicated. 

Let s('') be the corresponding modulated sequence and s(a) be a noncorrespond- 
ing modulated sequence. For any integer n= jq+k and r= uq+v, 1<j, k <_ 

q -1, the integer n+T can be represented as n +, r = (j -{- u+ c)q -I- (k +v- eq), 
where e=0, if k+v <_ q-1, and e= 1, if k+v >_ q-1. If the noncorre- 
sponding modulated sequence s(8) is input to the filter matched to the original 
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Frank sequence f (' ), then the discrete output of the matched filter is given by 
(note: for original Frank sequence, Mk") 

= 1) 

Rr a ,u+v 
q2-1 S(s) (*)* 

rq)= 
Ljn=O 

. 19+kf(j9+k)i-(u9+v) 

1: 4-1 9-1 b(s)S(a) (r)* 
k=0 

L#j=0 
k j9+kf(j+u+c)9+(k+v-E9) 

-k_0 b(a)a-r(u}c)(ký v-a9) Fq 1 kj(s-r)-jr(v-cq) 
(8.3) 

k 3=0 

Ek=0 bk)a r(u+c)(k+v) 
uq=1 aj(k(a-r)-rv) 

10 

The inner sum in Eqn 8.3 is equal to 0, if k(s - r) - rv 54 0, and is equal to 

q= 'rL-, if k(s - r) - rv = 0. Since q is a prime, s-rh0 mod q, thus the 
equation k(s - r) - rv =0 has a unique solution ko =äf. Hence 

gbko+va-r(u+e)(ko+v) (8.4) 

If the corresponding modulated sequence s(r) is input to the filter matched to 
f (r), then from Eqn 8.3, 

Rr, 
r(uq 

+ v) = Ek 
0 

bkr)a-r(t +)(k+v) El-1 «-irv 
-0 

_q 

Ek_0 bk, a ruk, v=0 t 
0, vq0 

(8.5) 

Now it is assumed that all the transmitters are synchronous, i. e. r= uq+v = 0. 
With this assumption, 

q-1 

R,,, (0) = qbö'), R�,. (0) =qE bk) (8.6) 
k=0 

In this synchronous SSMA, assume that the received signal is the noncorre- 
sponding modulated sequence s(3); if we sample the product sequences(') "f (r)* 
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at k, q+k, 2q + k, """, (q - 1)q +k positions, then by summing these samples 
together we obtain the decoded output: 

W) 
= q-1 s(a) 

(r)* q-1 b(d)aajka-rjk Ljj_0 
jq+kfjq+k - 

Ej=0 
k 

= b(s) 1: i1 a'k(a r) = 
9bo), k=0 

(8.7) { 
0, k#0 

where qbö') represents the co-channel interference due to the existence of the 
noncorresponding received sequence s("). Thus, all co-channel interference from 

any other users gathers into the first element in the output sequence. In order 
to correctly recover the desired information, the first element of b('') should not 
carry information. 

If the received signal is a corresponding modulated sequence s(O, we have the 
r) which is contaminated by bö')): desired information (excluding bo , 

q-1 
bk*) - bkr) ajk(r r) = gbkr) 

j=0 
(8.8) 

Therefore, for Frank sequences of length L= q2, if each transmitter uses q-1 
elements of be), except for the first element bor), to carry information, the 
information can be conveyed without co-channel interference. 

Similarly, for any modulatable Chu sequence P) of length L= q2, where q is 

a prime, we have 

ýr) 
= bn 

mod qC(r) = bn 
mod qe L r(n+1)nß 0<n<L; (r, L) = 1. (8.9) 

where lbiT I=1,0 <k<m, carries information; let n= jq + k, then 

lkr) 
= 

"ý=0 
S(s)ý 

)* 
= 

Eý-O bks)as 
nl na_r n 91 n 

_ b(a)a°zq (k2 +k) ý'`, _0 a7(a-*)(k+2) 
[ý (8.10) 

- 
gbko)a'2qr(kö+ko), k= ko - 2-1 
0, k#ko= 1221 
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q-1 
bk*) 

_ b( )a'zq (k2+k) 
aji*-*)ik+ 

)= 
qbk*) 

j=0 
(8.11) 

It is clear that if each transmitter uses q-1 elements of b(r), except for the 
element bi(, , to carry information, the information can be carried without 

k 
co-channel interference. 

In this hybrid CCMA/SSMA scheme, in order to match the CCMA code and 
the SSMA spreading code, the block length of the CCMA codes should be 

equal to the number of information symbols carried by the modulatable code 
sequences. 

Example 1: Given a 2-user binary adder channel CCMA system: user 1 has 
two codewords Cl = {00,11} and user 2 has 3 codewords C2 = 100,10,01}; 
the code lengths are all n=2 and the overall rate sum achieved is Raum = 
0.5 + 0.792 = 1.293. Now let q=3, bkr' = e'3"Zk, where zkri means the k-th 

element of sum code z(r) in the r-th CCMA channel output, r=1,2. There are 
two original Frank sequences available and each is assigned to a CCMA user 
group. In other words, each of the original Frank sequences is modulated by a 
2-user CCMA adder channel output. 

It is assumed that the channel output of CCMA-1 is z(1) = (1,2) and the 
channel output of CCMA-2 is z(2 = (0,1). Let the unwanted first information 

element be bor) = 1, r=1,2; the modulated sequences are therefore given by 

S= (1 ee1eee3e1eee e) (8.12) `l)) 
; 3r 

f321 

.331 ,2 i2-2 
!)33 

2f 32 3ý 

` i2v i2 i2ýrý i2a rp 
'S 

`2) = 
(17 1, c371, e-3 

27 
e-3 e37 17 e37 e3 e32 

(8.13) 

At each SSMA receiver, the received sequence is S(I)+S(2) . For receiver 1, the 
demodulated signal is bill = (6,3e 3'ý 

, 3e 3'ý Z), where 

l(l) _ 
3b(i) + 3bo1), k=0 (8.14) 
3bk ,k0 

For receiver 2, the demodulated signal is b(2) _ (6,3,3ef), where 

b(2) _ 
3bo1) + 3bo2), k=0 (8.15) k 3bka)k 0 
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Now the phase information of the last two elements of bbl) and b(2) is passed to 
each of the CCMA decoders. From the following look-up decoding Table 8.1, 
it can be seen that each of the 6 possible composite codewords, resulting from 
symbol-wise addition in the channel, is distinct and can therefore be unam- 
biguously decoded into its constituent codewords. Thus the received compos- 
ite codeword z(1) = (1,2) (or z(2) = (0,1)) can be simply decoded into its 
constituent codewords: 11,01 (or 00,01). 

Table 8.1: Look-up Decoding Table for the 2-user CCMA system 

User 1: Cl 
C, +C2 00 11 
User 2: 00 00 11 

10 10 21 
C2 01 01 12 

Example 2: Given an 8-user Q-ary adder channel CCMA system with code 
length 12: assign each user a cyclic code with generator hi (x) = (x12-1)/gki (x), 
where g2ý' (x) is an irreducible factor of x12 -1 over Z5, i. e. 

x12-1 = (x+1)(x+2)(x-F3)(x+4)(x2+x+1) 
(8.16) (x2 + 2x + 4)(x2 + 3x + 4)(x2 + 4x + 1), overZ5 

If we use modulatable Chu sequences of length L= 132, then each original Chu 
sequence can carry q-1= 12 information symbols which match the elements 
of the composite codeword of CCMA channel output. In a manner similar to 
Example 1, we can build a hybrid CCMA/SSMA system with 8x (13 -1) = 96 
users; any number of users less than or equal to 96 can be active simultaneously 
at any time! The encoding and decoding algorithms of both CCMA and SSMA 
are simple, as described above and in Chapter 3. 

8.4 Concluding Remarks 

In this chapter, a novel hybrid CCMA/SSMA coding scheme is proposed. For 
traditional SSMA, it is quite difficult to synthesize a large family of sequences 
with optimal correlation properties. For example, both Frank and Chu se- 
quences and their generalizations have ideal ACFs and optimal CCFs; however 
for any given prime q, there are only q-1 sequences of length L= q2 that can 
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be obtained. Although there are some known large families of sequences (e. g. 
Gold Sequences etc. ), because of their relatively high CCF values, the num- 
ber of active users is not very large due to the fact that excessive co-channel 
interference cannot be tolerated in practical systems. The CCMA technique 
has the advantages of higher combined information rate and a larger number 
of permitted users, but its decoding complexity is prohibitively high for large 

number of users and most of the existing CCMA schemes are based on the 
assumptions of a noiseless synchronized channel and all users in the system 
always being simultaneously active. The new hybrid coding scheme provides a 
powerful multiple-access capability and a simple, efficient decoding method. In 
this coding scheme, only a small number of CCMA codes and spreading code 
sequences are needed to construct a large multiple-access system with many 
users. If the topology of the multi-access communications network is appropri- 
ate, then this hybrid CCMA/SSMA scheme becomes an attrative option. 
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Chapter 9 

Conclusions and 
Recommendations for Further 
Work 

The major research reported in this thesis has been carried out in order to 
investigate various multiple-access coding schemes to improve the efficiency 
of CCMA and SSMA communication system designs. These investigations 
involved the following main areas: multiple access channels, multiple access 
techniques, error-correcting codes, superimposed codes, cyclic multiaccess ring 
codes, orthogonal complementary sequences, real and complex sequences with 
optimal or near optimal correlations and hybrid CCMA/SSMA multiple-access 
coding. 

This chapter summarises the work undertaken during the period of the research. 
Overall conclusions and a review of the original results obtained are given. 
Extensions and suggestions which the author feels to be worthy of further 

study are also described. 

9.1 Conclusions 

This research programme can be divided into three parts. The first part is 
concerned with CCMA coding (Chapters 2 and 3); the second part investi- 
gates the SSMA coding (Chapters 4,5,6 and 7); the third part studies the 
hybrid CCMA/SSMA coding (Chapter 8). Most of the results obtained in this 
thesis have been published in academic journals, edited books or conference 
proceedings. Appendix A is a list of papers which have either been published 
or submitted for publication, where the majority of the material in the first 
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part (Publications - After 1992) are the direct results of the work carried out 
by the author during the course of this research programme. 

The first part of this research is contained in two chapters. Chapter 2 inves- 
tigated the CCMA coding technique for the multiaccess binary adder channel 
and Chapter 3 considered CCMA coding for the multiaccess Q-ary adder chan- 
nel. In both cases, a static assignment strategy has been used, i. e. each of the 
N users is given its own code and any T of the N distinct users can co-exist 
with each other for transmission over a given channel. 
For the CCMA system with a multiaccess binary adder channel, a class of su- 
perimposed codes has been analysed. The superposition mechanism used is 

normal addition. By studying the relationship between the constant weight 
codes and disjunctive codes, some important results related to the decomposi- 
tion of the disjunctive codes in the noiseless and noisy cases have been derived. 
It has been proved that if the number of active users IAI <T«N, we can 
decompose the composite received word into its component codewords in noise- 
less N-BAC. In the noisy case, the number of active users and the codewords 
can also be correctly recovered provided that the weight of the error pattern 
satisfies Wt (e) ýejI < min {w -) IA1,2 }. Several efficient decoding 

algorithms for both the noiseless and the noisy channel are developed. In this 
chapter, each user is given only one codeword; the code guarantees unique 
identification of all active users as long as the number of active users does not 
exceed T. However if each user has available a set of codewords, information 

can also be transmitted. 

For the CCMA system with a multiaccess Q-ary adder channel, a class of cyclic 
uniquely decodable codes with symbols from an arbitrary finite integer ring has 
been proposed. The codes discussed can be used in the CCMA system with N 

users; any number of T<N (not T« N) users can be simultaneously active 
at any time, and the channel output symbol value is the arithmetic sum of 
the Q-ary input symbol values, in the absence of noise. The code construction 
is based on the factorization of x" -1 over the unit ring of an appropriate 
extension of a finite integer ring. It has been shown that the class of codes 
can be identified uniquely. The maximum achievable sum rate is 1 when all 
users are active simultaneously. A remarkable advantage of this coding scheme 
is that it can be decoded by a very low complexity decoding algorithm. The 
decoder can easily identify all T active users (T is unknown in advance to the 
decoder), and correctly recover their respective messages. 

The second part of the research is included in the subsequent 4 chapters. Chap- 
ter 4 deals with the design of orthogonal complementary codes for use in syn- 
chronous SSMA systems. Chapters 5,6 and 7 describe research into the code 
sequences used in asynchronous SSMA system. There are three basic require- 
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ments that all SSMA code sequences should meet: (1) a large family size of 
sequences due to the need to support a large number of simultaneous users; 
(2) small out-of-phase ACFs to allow unambiguous message synchronization; 
(3) small CCFs in order to minimize co-channel interference due to compet- 
ing, simultaneous traffic components across the channel. The work of this part 
has contributed to various aspects of coding in the binary, real non-binary and 
complex domains. 

For the synchronous SSMA system, a new approach employing orthogonal com- 
plementary sets has been presented in Chapter 4. In this chapter, the earlier 
concept of uncorrelated sets of complementary sequences has been extended 'to 
orthogonal sets of complementary sequences. It has been shown that the num- 
ber of sets in an OCSS is much larger than the number of UCSS with the same 
parameters P and M. By clarifying the concepts of complementarity, uncor- 
relatedness and orthogonality, recursive formulas for constructing orthogonal 
complementary sets have been proposed; methods for synthesizing new orthog- 
onal complementary sets from known ones with same dimensions have been 
discussed. Conjectures relating to maximally orthogonal complementary sets 
were also given. Lastly an application of orthogonal complementary sets to 
synchronous SSMA systems was described. 

In Chapter 5, a new class of polyphase sequences with nearly minimal periodic 
auto- and crosscorrelation magnitudes has been presented. For any given prime 
length L>3, there are L polyphase sequences. It is proved that the out-of- 
phase periodic ACFs and CCFs of the sequences are constant and equal to VfL-. 
Also, sequences of the same length are mutually orthogonal and the periodic 
correlation values asymptotically reach the Sarwate bound. In addition, it is 
shown that the nonperiodic and periodic ACFs/CCFs of the new sequences 
have nearly the same peak magnitude. For L>7, the maximum nontrivial 
correlation parameter Cmaz of the new sequences is lower than that of Scholtz- 
Welch sequences. 

In Chapter 6, maximal length sequences over Gaussian integers have been con- 
sidered. The sequence symbols considered are required to be complex numbers, 
but their magnitudes are not all constant (note that in polyphase or PSK se- 
quences, all symbols are on the unit circle in the complex plane). In this 
chapter, general properties of m-sequences over Gaussian integers have been 
discussed. Two sub-classes of m-sequences with quasi-perfect periodic ACFs 
have been obtained. The CCFs between the decimated m-sequences over Gaus- 
sian integers have also been studied. By applying a simple operation, it is shown 
that some m-sequences over rational and Gaussian integers can be transformed 
into perfect sequences with impulsive ACFs. The nonpolyphase complex se- 
quences presented in this chapter have the potential for direct mapping to 
QAM-type constellations. 
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Chapter 7 is concerned with two classes of perfect codes, i. e. Frank codes 
and Chu codes. Apart from their periodic correlations, it is shown that they 
also have very favourable nonperiodic correlation properties. Some new results 
concerning the behaviour of the nonperiodic ACFs have been obtained. For 
Chu sequences, it is shown that the B& is bounded by L/4.34 if r=1, and 
0.48 b/rL, if r>2, b/r < 0.37 ; or L/ir sin ab/r, if r>2, b/r > 0.37. 
For Frank sequences, it is shown that the BF, BF 1, are asymptotic to q/7r as 

L-1 L+1 
q tends to infinity; when L is odd, BF2 ,B .2 are bounded by 2V2T. It has 
been shown that Frank sequences have more symmetric structures and more 
favorable nonperiodic ACFs. It has also been proved that sets of combined 
Frank/Chu codes, which contain a larger number of codes than either of the 
two constituent sets, also have very good periodic correlation properties, and 
hence can be used in asynchronous SSMA to provide more users. Based on 
Frank codes and Chu codes, two interesting classes of real-valued codes with 
good correlation properties are defined. It is shown that these codes have 
periodic complementary properties. From the calculated ACF/CCF results, 
it has been demonstrated that they also have good periodic and nonperiodic 
ACF/CCFs. 

The third part of the research is presented in Chapter 8. This part aims to 
link CCMA and SSMA. It has been focused on the coding and decoding tech- 
niques that are applicable for a large set of transmitters of which a variable 
subset is active simultaneously. The main advantages of SSMA are that it 

offers promise of reliable operation over dispersive radio paths and provides 
resistance against high levels of interference and jamming. However, due to 
the co-channel interference and the difficulty of obtaining a large number of 
good sequences, the achievable number of users is limited. The CCMA tech- 
nique appears to be more attractive in practice because of its higher combined 
information rate and larger number of permitted users. However, most of the 
good codes have a very high decoding complexity and are based on the assump- 
tion of a noiseless synchronized adder channel with all the users in the system 
always simultaneously active. It is aimed that the hybrid scheme should pro- 
vide a more powerful multiple-access capability and a better performance by 

exploiting their individual merits and reducing their individual disadvantages. 

Chapter 8 proposes a novel hybrid CCMA/SSMA coding scheme. This hybrid 
scheme is a cascaded CCMA-SSMA scheme. The new hybrid coding scheme 
provides a very flexible and powerful multiple accessing capability and is com- 
patible with a simple, efficient decoding method. Given an SSMA system with 
K users, a CCMA system with N users where at most T users active at any 
time, then the hybrid system will have K"N users with at most T"K users are 
active at any time. In this coding scheme, only a small number of CCMA codes 
and spreading code sequences are needed to construct a large multiple-access 
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system with many users. The hybrid CCMA/SSMA coding scheme is obviously 
superior to the individual CCMA system or SSMA system in terms of infor- 
mation rate, number of users, decoding complexity and external interference 
rejection capability. 

9.2 Further Work 

During the course of this research, some problems and conjectures which need 
further investigation have become apparent. The following are some recom- 
mended areas which the author feels to be worthy of further attention. 

It has been shown in Chapter 2 that the size of the candidate CCMA code- 
word set can be reduced greatly by making use of the structure of the specific 
disjunctive code; however when T, N become large, the decoding complexity 
is still very high. Due to the regular structure of the constant weight codes, 
the large redundancy of the scheme (T « N) and the summation information 
due to the adder channel, it appears possible that more efficient decoding al- 
gorithms can be found. In the noisy case, neural network techniques might be 
employed in the decoding process with advantage. 

In the work of Chapter 3, the construction of the multiaccess ring code is based 
on the factorization of x"` -1 over the integer ring ZQ, Q=2,; 

_1 pt'. For the 
case of (n, p; ) = 1, i=1, """ , 

1, Shankar has proved that x" -1 be factored 
uniquely. However, if (n, p; ) 01 then the factorization method is unknown and 
is not guaranteed to be unique. For example, x4 -1 = (x2 + 1)(x + 1)(x -1) = 
(x + 3)2(x2 + 2x + 3) over Z4, where each of the factors is irreducible over 
Z4. In order to provide more choices for code design, it is desirable to find a 
systematic way of factorizing x" -1 over ZQ, even if (n, p; ) # 1. 

In SSMA communications, a large number of simultaneous users is normally re- 
quired. Therefore, it is interesting to consider the maximum number of spread- 
ing sequences achievable. For the orthogonal complementary sets of sequences 
presented in Chapter 4, it has been shown that the number of orthogonal sets 
is much larger than the number of uncorrelated sets. The maximum number of 
orthogonal sets for a given length Al and the number of sequences P in a set 
is unknown. It has been conjectured that the maximum number of orthogonal 
sets of CS is bounded by N= PM. By many exhaustive computer searches for 
small sequence lengths, this conjecture has been shown to be true. However it 
has not yet been proved analytically. 

As far as the author is aware, there is no previous work on sequence design 
over Gaussian integers. In practice, it is of great interest to find such sequences 
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which are applicable to QAM types of signal formats. Chapter 6 is an attempt 
to fill this gap. By examining comprehensively, with the help of a computer, 
m-sequences over Gaussian integers, several useful results have been obtained. 
However, due to limited time, some of the results have not been proved ana- 
lytically (for example, the weight distribution of the ACF). 

For Chu sequences, two general bounds on the nonperiodic ACF have been 
established. Although several specific results for Frank sequences have been 
derived, the general behaviour of the nonperiodic ACF of Frank sequences 
remains an open problem. 
For the real-valued sequences presented in Chapter 7, it has been shown that the 
sequences have very good ACFs and CCFs. Specifically, it has been conjectured 
that their out-of-phase ACF and periodic CCFs are asymptotic to O(c'A). It 
would be useful to prove this conjecture. 

In the context of the hybrid CCMA/SSMA coding scheme, it appears neces- 
sary to develop a complete, operational hybrid CCMA/SSMA communication 
system and to compare its performance with that of individual CCMA and 
SSMA systems for a range of practical channel conditions. 
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Appendix B 

Proof of Various Lemmas, 
Theorems and Inequality 

B. 1 Proof 1 

Lemma 1: 

GAF uq + v) = 

42, u=v=0; 

0,1<u<q-1, v=0; 

.2 trr u{1 

-e' q 0<u<q-1, v=1; 
2Tru 

`9 0<u<q-1, v=q-1; 

lass 

u=O, u=q-1, 
2<v<q-2; 

2(1 
_cos21rrv 

LL 1) 

- 2mrv girr u+1 1-u<q- `f 
(e q9 -1). 

2(1-cos 27rr"° ) 

-, 2<v<q-2. 
.i 

27rru 

(B. 1) 

Proof: For any integer n=jq+k and r= uq + v, 1<j, k<q-1, the 
integer n +, r can be represented as 

n+T = (j+u+E)q+(k+v 
-cq) 

(B. 2) 
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where=O, if k+v<q -1, and c= 1, if k+v> q-1. Thus 

CFr)(u4 + v) _E0 uq-v-l acv+ka* ýj9+k)+(u9+v) 

F 92-u4-V-1 
a a*. n=0 7qý-k (. 7+u+c)9+(k+v-c9) 

E_ q2-u9-v-1 ä-jv-k(u+c)-v(u+c)a(je+ue+c2)q 
n=0 

_ r`92-u9-v-1 a-jv-k(u+e)-v(u+c) En=0 

n=0 
+ ýn4q l+... + Eng(9u-2)9 +1 

ný(qq uv 
E 

1)q 

E 9-1 a-k(u+a)-v(u+e) E9-0-2 a-Jv + 
k =O 1 (B. 3) 

a ýk=0 a 
(9-u-1)v 9-v-1 -k(u+e)-v(u+c) 

9-v-1 ku-uv aw(u+')-1 ýýk=O a 
a-°-1 

E 9-q- a-k(u+1)-v(u+1) a°("+1)-11 
k- v a-1-1 1 

(u+1)v 9-v-1 -ku-uv a ýk_o a 

aauv_11(a-4u1 
"i" p 

v(b+) 
1) + av(u+i) a-ý 

1 

o. uv o, -uv-2 2-ov(u}1)-a-v(u}1) 
a-v-1) a-u-I 

+ 
(a-v-1 a-u- -1 

By replacing a with e`ý4r in above equation, we have 

j/ 
2(1-C0321rrv u}1 

C(9(uq + v) - iZazY _i_*r u+l ýE q -1)(E 9 -1ý 
(B. 4) 

2(1-cos --ruv 

irre aru 
ýE-e ý99 -1) , 

The rest of the lemma can be proved in a similar way. 
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B. 2 Proof 2 

Lemma 2: 

c(r) 
in "T2 

(T) _- tr (B. 5) 
sin LT 

Proof: Let a= e'' i. Since a'T 54 1, the following derivation is true, 

C(r) LET k k-I 
_ 

(k+r)(k+r-I) 
_ 

r-1 %L-, r -rrk cI 
! T) = 

ýk=1 ar 2qr=ar2 k=1 a 

-r 
r r-1 

!T 1-oý-rr(L-r) -r 
r 11-«rr2 

(B. 6) = CY CY 
1-a-rr =a 1-a-rr 

o, -rr2/2_, rr2/2 
_ 

Bin L T2 

arr2-a-rr2 BinLT7 

B. 3 Proof 3 

Lemma 3: 

Chu sequences: 

C(, k 
-) = CkL-r)` (B. 7) 

I CC(')(T)l =I Ccr)(L - 7-)1 :5T, 0<r< (L + 1)/2 (B. 8) 
CCr, (T) = CCL_r)(T) (B. 9) 

Frank sequences: 

r {c9-rý. (B. lo) . 
fk+j9 - Jk+79 

CFrý(T)I =I CF)(L 
- T)I 5T, 0< T< (L + 1)/2 (B. 11) 

CF, (uq + v)I I CF)(uq + (q 
- v))I (B. 12) 

CF"rý(T) = CF9-rý*(T (B. 13) 

Proof: The proofs of Eqns B. 8 and B. 11 are trivial and the proof of Eqns B. 9 
and B. 12 can be found in (Zhang & Golomb, 1993). We now prove the rest of 
the Lemma. 
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(1) Proof of Eqn B. 9: From Lemma 2, it is evident that 

(L_r) sin'( 
LT 

TZ sin L T2 
( CC (T 

sin aLrT sin r -T 
= CC 

lTý 
(B. 14) 

LL 

(2) Proof of Eqn B. 13: From Lemma 1, 

r v)) = 
2(1-cos 2wr° u+1 ) 

CF( )(uq + (q - v)/ = Z*ru 
_ 

2wr u1 
q -1) 

2(1-COQ wruv) (8.15) 

ýe 9v -1)ße qu -1) 
-i 2 7r 

srv ýr) 

_ -e it CF (uq -}- v). 

It is obvious that 

I CF, ((u + 1)q - v)I =I CF)(uq + (q 
- v))I =I CF)(uq + v)I. (B. 16) 

(3) Proof of Eqn B. 13: From Lemma 1, 

2(1-COs 2, rrv u1 2(1-cos 21rruv) 

cý9 r)(uq + v)) =I- 
(eý9 -1)ýe 

2, r 
q -1) 

(e q -1)(e 9 -1) (B. 17) 

= CFfý*(uq + v). 

Thus 

ICF(q-r)(uq + v)I =I CF)*(uq + v))I =I CF)(uq + v)I. (B. 18) 

B. 4 Proof 4 

Theorem 24: 

F0S2 
I cFl)(uq ý' v)9 (B. 19) 
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Proof: From Lemma 1, it follows that 

CFI)(uq + v) =A-B= JAIeargA - IBle8''gB (B. 20) 

where A= 2(1-cos 2v u 
+l)) 

and B= 2(1-`°'2="-) 
�+, _-il= 

We now =(e-, 9-1)(e 
q -1) (e 9 -1)(e q -1) 

compute their arguments and magnitudes. 

arg A= arg + arg 2w(1 , ea -1 e-' v -1 
arg (e-'ýätl - 1) - arg (ei2 9+' 

- 1) (B. 21) 

l2 9 l2 q 

Similarly, 

arg B= -(2 - 
q) 

- (2 -q (B. 22) 

By using *the following inequality (the proof is given in Appendix B. 6), 

Z-COS2gv 1-COS2ru 

<_ (B. 23) 1-cos 2q° 1-cos 2q 

we have 

9(1-cos *°" (1-cos 1O)(1-cos ="tl ) 
IBI 

)2 

4(1-cos 9°)(1-cos q°) - (1-cos Q)(1-cos ä°) 

2"u" 
<2 

`B. 
24) 

1-cos -gý 

1-cos 9- 1-cost 

and 

2n u+1 v L_ COS 
JAJ : zq 2 

zý 
(B. 25) 

1- cos q1- cos 9 
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Due to the fact that 

FJAJ 

<21, A<2 arg A- arg B=ý, (B. 26) Z- COS 9 1- COS q 

if q>3, as can be seen from Fig. 1, we have 

2 
ICF(l)(uq + v)I < 

Vi-- 

COS 2ýr 
9 

which concludes our proof. 

Figure B. 1: Illustration of CFr)(uq + v) =A-B 

B. 5 Proof 5 

Theorem 26: 

JCF)(u4-f'v)1 2 
1-cos 

9 

Proof: Based on Lemma 1, 

(B. 27) 

(B. 28) 

2-1) 
CF' (uq+v) =A- B=lAleargA - IBla'gB (B. 29) 
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where 

arg A= arg 2w 
1 
q_1 u+ arg 1 

-i 9 -i 

=- arg (e'ýý�(i-) - 1) 
e 

arg (e tý(u+i)(1-4) 
_ 1) (B. 30) 

(1 - q)) - (z -zl (1 - q))ý _ -(ý -2 

)). (B. 31) 7rv 
argB = -(2 -2 (1 - q)) 

(r - 
ir(u2 1) (1- 1 

Note that cos ü(1 - 9) _ (-l)'cos q; hence we have 

IBI - 
(1 - (-1)u� cos9")2 (B. 32) (1 - (-1)" cos Q)(1 - (-1)u cos q 

zu-) 

Four cases need to be considered: 

1-cos 7rUV 1-cosD 
1. v even, u even. By using a similar inequality, 

1-COS g< -cos g, we 

obtain 

IBI C 
(1-COS äL)1-COS -Q°' 

(1-Cos 
q 

)(1-cos 
Q 

(B. 33) 

I 
1-cos "-ö° 

<2 
1-cos 4 1-cos 4 

1-cos =" 
2. v even, u odd. Because l+cos < 1,0 <u 17-1, then 

-- 9 

IBI 

fiV 

(1 

CCOS 

Q)(1+Ca 
q Iý 

< 
1-cos "Q° 2 
1-cos a 1-cos q 

1-cos "-" 
3. v odd, u even. Because 

l+co$ x<1,0 <v<, then 
q 

(B. 34) 

IBI 
\ 

ýý1+COS 

ýq ýý1 

CCOS 

9'ý 

(B. 35) 
1-cos --<2 
1-cos V 1-cos q 
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4. v odd, u odd. Due to the fact that 1- cos <1+ cos q, 1- cos 9< 
1+ cos q0<v, u<, the following inequality holds: 

22 2 IBI ý 
F-22 

-} cos q)2 
1 -} cos q<2 

(B. 36) 

It is now clear from above discussion that 

IBI :5 1- COS(B. 
37) 

9 

JAJ 
1 -cos 

(B. 38) 
9 

arg A- arg B=2 (1- 1) 
<2. (B. 39) 

q 

By analogy with the proof of Theorem 24, it can be shown that 

I CFr)(uq + v)I < IA12 + IB12 :21- 
cos 2" (B. 40) 

q 

B. 6 Proof 6 

Inequality Eqn B. 231: 

I- COS 2t. 1- COS 2'" 
9<4 

I-COS 2q" 1-COS 2Q (B. 41) 

ý"v 
Proof: Let f (u, v) = 

11--cos 

cos IV . 
Since cos 

[2rv 
(ý± u)cos 

2Q°, k90,1, 

""", v-1, it follows that f (u, v) has the following properties: 
'This proof is due to Professor W. K. Hayman (University of York) and Dr. J. Gunson 

(University, of Birmingham). 
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(1). Periodicity: f (s + u, v) =f (u, v), which requires us only consider the 
range 0<u< Lqj. 

(2). Symmetry: f (t - u, v) =f (u, v); thus, we need only show 0<u<L. J. 

(3). Monotonicity in the interval 0<u< L2H. This is due to the fact that 
. 2avsin I df 

duv - q(1-cos !)ý0,0 
<u< l2v] J. 

Thus it suffices to prove the inequality for 0<u<Li. 

Suppose that 0< zu, then e ! Ln nB decreases with increasing 0 for 0<0< 
2ü. 

In 
fact 

d sin Bu 
_u 

sin B cos Bu-sin Ou cos B 
dO Zn-g- sin B 

(u tan 0-tan Bu) cos B cos Cu 
sire 0 

Also 

(B. 42) 

Z sect 6(29 - sin 20) d tan 49 sect 6- tan 6 

äe e 02 -- 02 >0 (B. 43) 

tan Bu "0 d sin Bu Thus Bu > taB 
,0< 6u <21, or (u tan 0- tan Bu) < 0, so that de sin0 <0 

for 0<0<Zu. 

Now because 0<u<-0 or 9< Zu, letting 0=q, we have 

sin ýq" sin q 

sin q- sin 9 
(B. 44) 

which is equivalent to the inequality Eqn B. 23 by noting the relation 1-cos 2x = 
2 sin 2 X. 

B. 7 Proof 7 

Theorem 29: 

B(T) (b) = 0.48 
r 

L, I,,, (L) _ 
(Lb - 1)soý 

r>2,0 
r 

0.37, (B. 45) 
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where b=f (r, k), k =- L mod r, so =6 and zo = 1.1655. 

Proof: Because rT and L are integers, 2 <_ r<L-1,1 <r<L-1, we can 
represent rr as 

rr=mL+s -L<s<L; 0<m<L-1, (B. 46) 

where in, s are integers and are functions of r if L and r are given. Thus, 
,r= 

Lm a and t 

rr 2_ 
(m + s) Lm +s_ 

MT + sm + s2 
. 

(B. 47) 
LLrr Lr 

Because rl(Lm + s), it follows that 

(irmm+s 

Cýr) T- 

Isuii 
+d+ it sln +IB. 

4ö ) 
Isin(arm+7rA)I IIsin( )l 

Furthermore, for any given integer r>2, (r, L) = 1, L can be represented as 
L= ar + k, where a is an integer and 1 <_ k<r-1. By using Eqn B. 46, we 
have 

rT = m(ar + k) +s= mar + mk + s. (B. 49) 

This means that mk +s should be divisible by r, i. e. mk+ s=0 mod r.. Note 
that (k, r) =1 because (L, r) = 1; there always exists an integer b=f (r, k) 

such that bk 1 mod r according to Euclid's algorithm. Therefore m can be 

rewritten as 

m. -bs mod r (B. 50) 

and thus 

ýrý T_ 

I(7r'r + zrQ 
I= Isuii ýr2 (b + i) 

I. 

B. 51 c ()I Isin (7ri) Isin (ri) I 
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In order to maximize Eqn B. 51, let z= 'ý*' (b + L) and evaluate the derivative 
of IC(')(r)I with respect to z, i. e., 

d Isinzl 
dz dz -0. (B. 52) 

sin 2 L ý6+1ýLýI 

It is easy to check that an unrestricted maximum is reached at the point zo 
which is a root of the equation 

F(, 
-T rTz 22 

irrz - 
tan z= tan (B. 53) irr 

L (b L2( b -F lI L) 

When L -º oo, the right hand side of above equation will tend to 2z, that is 

tan z= 2z, (B. 54) 

whose minimal positive root is equal to zo = 1.1655. The corresponding maxi- 
mum is 

Bhf) (b) = max, limL. 
yoo 

ICcr) (T) 

= max.. liMLýx> sin z 

sin **_ (B. 55) 

_ 
6L2 s; n zo 

= 0.48 L, ar zo 

and 

Im(L) - 
Lm +s- (Lb - 1)so 

rr 
(B. 56) 

where so =6. Note that so > 1, we have *>;? = 0.37. 
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B. 8 Proof 8 

Theorem 30: 

L 
BC) = sin ( 

rb) 
, I,, (L) = 

Lbr 1, 
r>2,0.5 >b>0.37. (B. 57) 

Proof: According to Eqn B. 51, when L --+ oo and 0<T< 1/2, 

Iýr6sý sin T Isin 2 
OC 

Isin yl - IsinL 

or 

(B. 58) 

'r 
rs 

2<2 
(B. 59) 

which means f< 
2- . 

From T2 we have s=1. Hence 

Brý (b) = max l im Ic 
Cr) (7_)l 

Isin Tbl 
,0<b<2, 

(B. 60) 

Im(L) - 
Lm +s- (Lb -1)so 

- 
Lb -1 (B. 61) 

rrr 

Furthermore it can be shown that 

0.48 
jL>L Isin=bl 

(B. 62) 
r- in r 

where the equality holds when f=0.37. 
Therefore 

B('ý) = max 0.48 
T 

L, 
L 

sin'b = 0.48 L, < 0.37 (B. 63) T 7rl rl rr 

When !>0.37, Eqn B. 45 is not true; the bound is thus given by 

BC T) =LIsin- 
b 

I, 
b 

>0.37. 
7rr 

which concludes the theorem. 

(B. 64) 
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B. 9 Proof 9 

Theorem 31: 

ýlý = L/4.34, Im(L) = L/2.68. (B. 63) 

Proof: Let z= LZ in Eqn B. 5, consider the derivative of ICCI)(rr)l with respect 
to z, i. e., 

IC (T d )I d Isinzl 
dz dzlsinL ZI 

=0 (B. 66) 

Similarly a maximum is reached at the point which is a root of the equation, 

Tz _ 
tanz 

2 

=rL tan dL (B. 67) 
L 

When L --º oo, the minimal positive root is equal to zo = 1.1655 and 

BCIý (b) = max, limL,, 
I CC(l) (r)I = max2 limj, 

-, Isinin 
zj 

=I L 

/L!! z_ 
FýL-34 

Im(L)_ 
Lzo_. L 

B. 10 Proof 10 

Theorem 32: 

If L is odd and r= L21, then 

(B. 6S) 

(B. 69) 

BCL' 1) 
= L/2.1i, 1, (L) = L/1.34. (B. 70) 
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Furthermore, the maximum out-of-phase aperiodic ACF is bounded by 
for all odd shifts in the range 0<r< L21 and even shifts in the range 
L <T<L-1. 

Proof: When r= L21, it can be shown that 

cýLZlý T1 -1- 
CoSZL 

.1 C1-1 
--1ýTCOS 

BL 

When r is even, let 

Z- Co, 2Lz 
f (T) _ 1T r is even. (B. 72) Z- CoS L 

we now evaluate the derivative f'(T) at r=h When T=h, we have 
z L= hL and 'ýL =h. Since A, L are positive constants and 

246 
cos xN 1- 

2- 
720 

(B. 73) 
sin xNx-s Y20 

as L goes to infinity, f `( h) =0 implies that 

ý2 ý4 
E-4 Ii 2 -}- 72 =0 (B. 74) 

The two positive roots are: K, = ý6-, K2 = 2Z3. 
Since f(/ I i) >f( ;L), 

we have 

B(LZ I) - 

/2L(1 
- cos /) LB 

75 Cf (F77-, ) 
61r 2.17( 

) 

4 
(B. 76) Im(L) 

r7Lý- 

13 
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If 7 is odd, then 

L12 Fl 
cos 2 

(B. 77) 
cos L 1} cos L VVV 1 

Therefore the maximum out-of-phase aperiodic ACF is bounded by \ for all 
odd shifts in the range of 1<r< L21 

In the range of L121 <T< L-1, the results are the same except that the parity 
of r is changed. 

The first half of the theorem can be proved by a simpler method. Because the 
length L can be represented as 

L-1( 
L=2( 

2 
)--1=2r+l, B. 78) 

we have k=1 and hence b=1. Based on Eqn B. 45, we have 

B(L' ) (b) < 0.48 Lll L= 
al 

7' 
(B. 79) 

2 

and 

Ln(L) = 
(Lb - 1)so 

=+ 
rv1.3 

(B. SO) 
4 
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