13 research outputs found

    Characterizing downwards closed, strongly first order, relativizable dependencies

    Full text link
    In Team Semantics, a dependency notion is strongly first order if every sentence of the logic obtained by adding the corresponding atoms to First Order Logic is equivalent to some first order sentence. In this work it is shown that all nontrivial dependency atoms that are strongly first order, downwards closed, and relativizable (in the sense that the relativizations of the corresponding atoms with respect to some unary predicate are expressible in terms of them) are definable in terms of constancy atoms. Additionally, it is shown that any strongly first order dependency is safe for any family of downwards closed dependencies, in the sense that every sentence of the logic obtained by adding to First Order Logic both the strongly first order dependency and the downwards closed dependencies is equivalent to some sentence of the logic obtained by adding only the downwards closed dependencies

    Safe Dependency Atoms and Possibility Operators in Team Semantics

    Get PDF
    I consider the question of which dependencies are safe for a Team Semantics-based logic FO(D), in the sense that they do not increase its expressive power over sentences when added to it. I show that some dependencies, like totality, non-constancy and non-emptiness, are safe for all logics FO(D), and that other dependencies, like constancy, are not safe for FO(D) for some choices of D despite being strongly first order. I furthermore show that the possibility operator, which holds in a team if and only if its argument holds in some nonempty subteam, can be added to any logic FO(D) without increasing its expressive power over sentences.Comment: In Proceedings GandALF 2018, arXiv:1809.0241

    On elementary logics for quantitative dependencies

    Get PDF
    We define and study logics in the framework of probabilistic team semantics and over metafinite structures. Our work is paralleled by the recent development of novel axiomatizable and tractable logics in team semantics that are closed under the Boolean negation. Our logics employ new probabilistic atoms that resemble so-called extended atoms from the team semantics literature. We also define counterparts of our logics over metafinite structures and show that all of our logics can be translated into functional fixed point logic implying a polynomial time upper bound for data complexity with respect to BSS-computations.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    On the Complexity of Team Logic and Its Two-Variable Fragment

    Get PDF
    We study the logic FO(~), the extension of first-order logic with team semantics by unrestricted Boolean negation. It was recently shown to be axiomatizable, but otherwise has not yet received much attention in questions of computational complexity. In this paper, we consider its two-variable fragment FO^2(~) and prove that its satisfiability problem is decidable, and in fact complete for the recently introduced non-elementary class TOWER(poly). Moreover, we classify the complexity of model checking of FO(~) with respect to the number of variables and the quantifier rank, and prove a dichotomy between PSPACE- and ATIME-ALT(exp, poly)-complete fragments. For the lower bounds, we propose a translation from modal team logic MTL to FO^2(~) that extends the well-known standard translation from modal logic ML to FO^2. For the upper bounds, we translate FO(~) to fragments of second-order logic with PSPACE-complete and ATIME-ALT(exp, poly)-complete model checking, respectively

    On the Complexity of Team Logic and its Two-Variable Fragment

    Full text link
    We study the logic FO(~), the extension of first-order logic with team semantics by unrestricted Boolean negation. It was recently shown axiomatizable, but otherwise has not yet received much attention in questions of computational complexity. In this paper, we consider its two-variable fragment FO2(~) and prove that its satisfiability problem is decidable, and in fact complete for the recently introduced non-elementary class TOWER(poly). Moreover, we classify the complexity of model checking of FO(~) with respect to the number of variables and the quantifier rank, and prove a dichotomy between PSPACE- and ATIME-ALT(exp, poly)-completeness. To achieve the lower bounds, we propose a translation from modal team logic MTL to FO2(~) that extends the well-known standard translation from modal logic ML to FO2. For the upper bounds, we translate to a fragment of second-order logic

    Polyteam semantics

    Get PDF
    Team semantics is the mathematical framework of modern logics of dependence and independence in which formulae are interpreted by sets of assignments (teams) instead of single assignments as in first-order logic. In order to deepen the fruitful interplay between team semantics and database dependency theory, we define Polyteam Semantics in which formulae are evaluated over a family of teams. We begin by defining a novel polyteam variant of dependence atoms and give a finite axiomatization for the associated implication problem. We relate polyteam semantics to team semantics and investigate in which cases logics over the former can be simulated by logics over the latter. We also characterize the expressive power of poly-dependence logic by properties of polyteams that are downwards closed and definable in existential second-order logic (ESO). The analogous result is shown to hold for poly-independence logic and all ESO-definable properties. We also relate poly-inclusion logic to greatest fixed point logic.Peer reviewe

    Workshop on Logics of Dependence and Independence (LoDE 2020V)

    Get PDF

    Compactness in Team Semantics

    Get PDF
    We provide two proofs of the compactness theorem for extensions of first-order logic based on team semantics. First, we build upon L\"uck's ultraproduct construction for team semantics and prove a suitable version of {\L}o\'s' Theorem. Second, we show that by working with suitably saturated models, we can generalize the proof of Kontinen and Yang to sets of formulas with arbitrarily many variables
    corecore