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We define and study logics in the framework of probabilistic team semantics and 
over metafinite structures. Our work is paralleled by the recent development of 
novel axiomatizable and tractable logics in team semantics that are closed under the 
Boolean negation. Our logics employ new probabilistic atoms that resemble so-called 
extended atoms from the team semantics literature. We also define counterparts of 
our logics over metafinite structures and show that all of our logics can be translated 
into functional fixed point logic implying a polynomial time upper bound for data 
complexity with respect to BSS-computations.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Team semantics is a semantical framework originally introduced by Hodges [17] and Väänänen with 
the introduction of dependence logic [22]. Soon after the introduction of dependence logic, the focus in 
(first-order) team semantics turned to independence logic and inclusion logic that were introduced in [11,7]. 
During the past decade research on logics in team semantics has flourished with interesting connections to 
many fields such as database theory [13], statistics [2], and temporal hyperproperties [20].

In team semantics formulas are evaluated over sets of assignments (called teams) rather than single 
assignments as in first-order logic. This feature has the effect that knowing the expressive power of a logic 
for sentences does not immediately give a characterization for the expressive power of the open formulas 
of the logic. For example, while it follows from the earlier results of [16,6,23] that dependence logic and 
independence logic are both equivalent to existential second-order logic (ESO) on the level of sentences, the 
open formulas of dependence logic are strictly less expressive compared to independence logic: The latter 
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characterizes all ESO-definable team properties [7], whereas the former only downward closed ESO-definable 
properties [18].

A salient feature of (most) logics in team semantics is that their expressive power exceeds that of first-
order logic. Only recently a team-based logic FOT was defined whose expressive power coincides with 
first-order logic both on the level of sentences and open formulas. Previously it had been observed e.g., 
that the extensions of FO by constancy atoms or the Boolean negation ∼ are both equivalent to FO over 
sentences but strictly less expressive than FO for open formulas when the team is represented by a relation 
[8,21]. The logic FOT utilizes a weaker version of disjunction and the existential quantifier in order not to 
go beyond the expressivity of FO (see [5] for a systematic study of this phenomenon). We will follow the 
same strategy when defining our new logics in the probabilistic setting.

In this paper our focus is on probabilistic team semantics that extends the area of team semantics from 
qualitative to quantitative dependencies such as probabilistic independence. A probabilistic team is a set 
of assignments with an additional function that maps each assignment to some numerical value. Usually, 
the function is a probability distribution, but it can also be thought of as a frequency distribution. We 
allow the values to be any non-negative real numbers. The systematic study of logics in probabilistic team 
semantics was initiated by the works [3,4] and they have already found applications, e.g., in the study of 
the implication problem of conditional independence [12] and the foundations of quantum mechanics [1]. In 
the literature, the probabilistic team semantics setting has only been considered on finite base structures. 
As infinite base structures pose some technical problems, we also restrict ourselves to finite base structures, 
and therefore only consider finite teams.

By the results of [4,14] probabilistic independence logic is equivalent to a sublogic of ESO interpreted 
over so-called R-structures (ESOR). In this paper our goal is to initiate a study of tractable probabilistic 
logics and to find their analogues over metafinite structures. We note that the tractability frontier of the 
previously defined logics in probabilistic team semantics has been recently charted in [15]. We introduce 
a new logic called FOPT(≤δ,⊥⊥δ

c), in which the disjunction and the quantifiers are similar to the ones in 
FOT and the atoms compare the probabilities of events defined by quantifier-free formulas. In fact, the logic 
FOPT(≤δ,⊥⊥δ

c) can be seen as a generalization of FOT for probabilistic team semantics. In addition to the 
qualitative atoms expressible in FOT, certain previously studied probabilistic atoms, i.e. marginal identity 
and probabilistic conditional independence, are also expressible in FOPT(≤δ,⊥⊥δ

c).
We also define two other team-based logics: FOPT(≤δ) which is a fragment of FOPT(≤δ,⊥⊥δ

c), and 
FOPT(≤δ

c) in which every formula of FOPT(≤δ,⊥⊥δ
c) is expressible. The logic FOPT(≤δ

c) features a new 
type of atom, conditional probability inequality, that can be used to compare conditional probabilities. With 
this atom, we can express both kinds of extended atoms from FOPT(≤δ,⊥⊥δ

c), i.e. the extended probabilistic 
inclusion and the extended probabilistic conditional independence. We also take a look at FOPT(≤δ

c) from 
a complexity theoretic point of view and show that its satisfiability and validity problems are r.e.-complete 
and co-r.e.-complete, respectively.

In the second part of the article we consider logics over two-sorted (metafinite) structures which, in addi-
tion to a finite structure, come with an infinite second sort and functions that bridge the two sorts. Metafinite 
structures have been introduced in [9] as a way to handle objects that consist of both structures and numbers. 
These types of objects arise naturally, e.g., complexity theory, database theory, and optimization theory. We 
define a logic, FOR≥0(×, SUM), which is an extension of first-order logic on metafinite structures with a nu-
merical second sort that has access to multiplication and aggregate sums over non-negative reals. We show 
that FOPT(≤δ,⊥⊥δ

c) can be translated into FOR≥0(×, SUM), and identify a fragment of FOR≥0(×, SUM)
which is equi-expressive with FOPT(≤δ). We also give a translation from FOR≥0(×, SUM) to functional 
fixed point logic FFPR over metafinite structures and thus obtain a polynomial time upper bound for the 
data complexity of our new logics in the BSS-model.
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2. Preliminaries

First-order variables are denoted by x, y, z and tuples of first-order variables by x̄, ̄y, ̄z. The set of variables 
that appear in the tuple x̄ is denoted by Var(x̄), and by |x̄|, we denote the length of the tuple x̄. A vocabulary 
τ is a finite set of relation, function, and constant symbols, denoted by R, f , and c, respectively. Each relation 
symbol R and function symbol f has a prescribed arity which we denote by ar(R) and ar(f).

A vocabulary τ is called relational if it only contains relation symbols, and functional if it only con-
tains function symbols. We sometimes assume that the vocabulary we are considering is relational. This 
assumption can be made without loss of generality since each function can be expressed by a relation that 
describes its graph. For some proofs, it is useful to allow the vocabulary to contain constants, and therefore 
we sometimes assume that the vocabulary solely consists of relation and constant symbols.

2.1. Team semantics and the logics FOT and FOT↓

Let τ be a finite vocabulary that only contains relation and constant symbols. We assume that {=} ⊆ τ .4
Let D be a finite set of variables and A a finite τ -structure. An assignment of a structure A for the set D
is a function s : D → A. A team X of A over the set D is a finite set of assignments s : D → A.5 The set 
D is also called the domain of X, or Dom(X) for short. For a variable x and a ∈ A, we denote by s(a/x), 
the modified assignment s(a/x) : D ∪ {x} → A such that s(a/x)(y) = a if y = x, and s(a/x)(y) = s(y)
otherwise. The modified team X(a/x) is defined as the set X(a/x) := {s(a/x) | s ∈ X}.

We consider two team-based logics, FOT and FOT↓, which were introduced in [19]. The expressive power 
of FOT coincides with first-order logic, and FOT↓ captures downward closed first-order team properties [19]. 
The logics that we introduce in section 3 can be seen as generalizations of these two logics.

First-order τ -terms and atomic formulas are defined in the usual way. We let δ be a quantifier- and 
disjunction-free6 first-order formula, i.e. δ ::= λ | ¬δ | (δ ∧ δ) for any first-order atomic formula λ of the 
vocabulary τ . Let x be a first-order variable, and let x̄ and ȳ be tuples of variables with |x̄| = |ȳ|. The 
syntax for the logic FOT over a vocabulary τ is then as follows:

φ ::= λ | x̄ ⊆ ȳ | ∼̇φ | (φ ∧ φ) | (φ \\/φ) | ∃1xφ | ∀1xφ,

and for the logic FOT↓ as follows:

φ ::= δ | (φ ∧ φ) | (φ \\/φ) | ∃1xφ | ∀1xφ.

The semantics for the two logics is defined as follows:

• A |=X δ iff A |=s δ for all s ∈ X.
• A |=X x̄ ⊆ ȳ iff for all s ∈ X, there exists s′ ∈ X such that s(x̄) = s′(ȳ).
• A |=X ∼̇φ iff A �|=X φ or X = ∅.
• A |=X φ ∧ ψ iff A |=X φ and A |=X ψ.

4 We regard equality as a part of the vocabulary rather than a logical constant for two reasons: (1) in Section 6, we will consider 
metafinite structures where the infinite structure has inequality ≤ instead of equality, and (2) in Section 8, we will consider 
metafinite structures where all the relations from the finite structure have been replaced with their characteristic functions, and 
having the characteristic function for equality simplifies things.
5 Note that unlike in our version of probabilistic team semantics, here X is not required to be maximal; it can be any finite set 

of assignments.
6 We have ruled out disjunction at the quantifier-free first-order level for notational convenience. We could define disjunction using 

negation and disjunction as in first-order logic, i.e. δ0 ∨ δ1 := ¬(¬δ0 ∧¬δ1) but we want to refrain from using the symbol ∨ in this 
meaning because in team semantics it is customary to use it for the so-called tensor disjunction. We do not want to use \\/ in this 
way either: although for single assignments the meaning of ¬(¬δ0 ∧¬δ1) and δ0 \\/ δ1 are the same, e.g., A |=X ¬(¬x = y∧¬x �= y)
is true for any X, whereas A |=X x = y \\/ x �= y might not be if X is not a singleton.
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• A |=X φ \\/ψ iff A |=X φ or A |=X ψ.
• A |=X ∃1xφ iff A |=X(a/x) φ for some a ∈ A.
• A |=X ∀1xφ iff A |=X(a/x) φ for all a ∈ A.

Both logics have the so-called empty team property: if X is empty, then A |=X φ for any φ ∈ FOT[τ ]
or φ ∈ FOT↓[τ ]. Note that even though FOT does not contain the negation symbol ¬, the formula ¬δ is 
expressible in FOT using ⊆, ∼̇, and \\/ , as shown in [19].

2.2. Probabilistic team semantics

Let τ , D, A, and X be as above, with the exception that we assume that X is maximal, i.e. it contains 
all assignments s : D → A. A probabilistic team X is a function X : X → R≥0, where R≥0 is the set of 
non-negative real numbers. The value X(s) is also called the weight of assignment s. We define the support
of X as follows:

supp(X) := {s ∈ X | X(s) �= 0},

and say that the team X is nonempty if supp(X) �= ∅. Note that even when D = ∅, the probabilistic team 
X may still be nonempty: if D = ∅, then X is the singleton containing the empty assignment whose weight 
can be nonzero.

Functions X : X → R≥0 such that 
∑

s∈X X(s) = 1 are called probability distributions. They are an 
important special case of probabilistic teams and originally probabilistic teams were required to be prob-
ability distributions (hence the name probabilistic team). If X is a probability distribution, we also write 
X : X → [0, 1]. Note that from every nonempty probabilistic team X : X → R≥0 team we obtain a probability 
distribution distr(X) : X → [0, 1] by setting

distr(X)(s) = 1∑
t∈X X(t) ·X(s)

for all s : D → A. It does not matter whether we evaluate formulas using the original team or the team that 
has been scaled in order to obtain a probability distribution (see Proposition 3.1).

By X(a/x), we denote the probabilistic team such that

X(a/x)(s) =
∑
t∈X,

t(a/x)=s

X(t)

for all s : D ∪ {x} → A. Note that if x is a fresh variable (i.e. x /∈ D), then for all s ∈ X,

X(a/x)(s(b/x)) =
{
X(s), when b = a

0, when b �= a.

3. Logics in probabilistic team semantics

3.1. The logics FOPT(≤δ,⊥⊥δ
c) and FOPT(≤δ)

First-order τ -terms and atomic formulas are defined in the usual way. Let δ be a quantifier- and 
disjunction-free first-order formula as before. The syntax for the logic FOPT(≤δ,⊥⊥δ

c) over a vocabulary 
τ is then as follows:
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φ ::= δ | δ ≤ δ | δ ⊥⊥δ δ | ∼̇φ | (φ ∧ φ) | (φ \\/φ) | ∃1xφ | ∀1xφ.

Atoms of the form δ ≤ δ and δ ⊥⊥δ δ are called extended probabilistic inclusion and extended probabilistic 
conditional independence atoms, respectively. For better readability, we sometimes use extra parentheses 
around these atoms, e.g. we write ∀1x(δ1 ⊥⊥δ0 δ2) instead of ∀1xδ1 ⊥⊥δ0 δ2. The fragment of FOPT(≤δ,⊥⊥δ

c)
without extended probabilistic conditional independence atoms is denoted by FOPT(≤δ).

The semantics for first-order formulas δ and connectives ∼̇, ∧, \\/ is defined as in FOT using supp(X) as 
the team. The definitions for the quantifiers are analogous to FOT, except that we use the probabilistic 
version X(a/x) of the modified team. We have the following semantics for the new atoms:

• A |=X δ0 ≤ δ1 iff 
∑

s∈S0
X(s) ≤

∑
s∈S1

X(s), where Si = {s ∈ X | A |=s δi} for i = 0, 1.
• A |=X δ1 ⊥⊥δ0 δ2 iff

∑
s∈S0∩S1

X(s) ·
∑

s∈S0∩S2

X(s) =
∑
s∈S0

X(s) ·
∑

s∈S0∩S1∩S2

X(s),

where Si = {s ∈ X | A |=s δi} for i = 0, 1, 2.

Note that if X is an empty probabilistic team, then A |=X φ for any φ ∈ FOPT(≤δ,⊥⊥δ
c)[τ ]. The following 

proposition can also be verified using a simple induction:

Proposition 3.1. Let X : X → R≥0 be a nonempty probabilistic team. Then for any formula φ ∈
FOPT(≤δ,⊥⊥δ

c)[τ ] and any τ -structure A

A |=distr(X) φ ⇐⇒ A |=X φ.

Proposition 3.1 and its proof is similar to one from [12] which considers team-based logics with several 
different atoms, including marginal identity and probabilistic conditional independence (see also subsection 
4.2).

Next, we present a few notions that are needed to formulate the so-called locality property. For a formula 
φ, we denote by Var(φ) the set of the free variables of φ. Let V be a set of variables. We write s � V for the 
restriction of the assignment s to V . The restriction of a team X to V is defined as X � V = {s � V | s ∈ X}. 
The restriction of a probabilistic team X to V is defined as X � V : X � V → R≥0 where

(X � V )(s) =
∑

s′�V =s,
s′∈X

X(s′).

Proposition 3.2 (Locality). Let φ be any FOPT(≤δ,⊥⊥δ
c)[τ ]-formula. Then for any set of variables V , any 

τ -structure A, and any probabilistic team X : X → R≥0 such that Var(φ) ⊆ V ⊆ D,

A |=X φ ⇐⇒ A |=X�V φ.

Proof. By induction. If φ = δ, the claim immediately holds since A |=s δ ⇐⇒ A |=s�V δ for all s ∈ X. The 
cases φ = θ0 ∧ θ1 and φ = θ0 \\/ θ1 directly follow from the induction hypothesis.

For the cases φ = δ0 ≤ δ1 and φ = δ1 ⊥⊥δ0 δ2, we notice that

∑
s′∈S�V

(X � V )(s′) =
∑

s′∈S�V

⎛
⎜⎜⎝ ∑

s�V =s′,

X(s)

⎞
⎟⎟⎠ =

∑
s∈S

X(s),
s∈X
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where S = {s ∈ X | A |=s δ} and S � V = {s′ ∈ X � V | A |=s′ δ} for any δ. Then

A |=X δ0 ≤ δ1 ⇐⇒
∑
s∈S0

X(s) ≤
∑
s∈S1

X(s), where Si = {s ∈ X | A |=s δi} for i = 0, 1

⇐⇒
∑

s′∈S0�V
(X � V )(s′) ≤

∑
s′∈S1�V

(X � V )(s′),

where Si � V = {s′ ∈ X � V | A |=s′ δi} for i = 0, 1

⇐⇒ A |=X�V δ0 ≤ δ1.

The proof is similar for the case φ = δ1 ⊥⊥δ0 δ2.
If φ = ∼̇ θ, then

A |=X ∼̇ θ ⇐⇒ A �|=X θ or supp(X) = ∅

⇐⇒ A �|=X�V θ or supp(X � V ) = ∅ (by the induction hypothesis)

⇐⇒ A |=X�V ∼̇ θ.

If φ = Qxθ where Q ∈ {∃1, ∀1}, then

A |=X Qxθ ⇐⇒ A |=X(a/x) θ for some/all a ∈ A

⇐⇒ A |=X(a/x)�(V ∪{x}) θ for some/all a ∈ A (by the induction hypothesis)

⇐⇒ A |=(X�V )(a/x) θ for some/all a ∈ A (since X(a/x) � (V ∪ {x}) = (X � V )(a/x))

⇐⇒ A |=X�V Qxθ. �
The next proposition shows that the quantifier-induced modifications of probabilistic teams can also be 

viewed as substitution of quantified variables with suitable constants. We use this proposition in the proofs 
of Proposition 3.4 and Theorem 7.1. Let φ be a formula and let ā = (a1, . . . , an) be a tuple of elements 
from A. We denote by φ(ā/x̄) the formula obtained from φ by substituting the free occurrences of variables 
x̄ with constant symbols c̄ whose interpretations are the elements ā, i.e., for all i = 1, . . . , n, the constant 
symbol ci is interpreted as the element ai. When using the notation φ(ā/x̄), we assume that the vocabulary 
of the model we are considering is complemented with the constant symbols c̄ that are interpreted as the 
elements ā.

Proposition 3.3. Let φ be any FOPT(≤δ,⊥⊥δ
c)[τ ]-formula. Then for any τ -structure A, any probabilistic team 

X, any tuple of variables x̄, and any sequence ā ∈ A|x̄|

A |=X(ā/x̄) φ ⇐⇒ A |=X φ(ā/x̄).

Proof. If φ = δ, then

A |=X(ā/x̄) δ ⇐⇒ for all s : D ∪ Var(x̄) → A, if s ∈ supp(X(ā/x̄)), then A |=s δ

⇐⇒ for all s : D ∪ Var(x̄) → A, if s ∈ supp(X(ā/x̄)), then A |=s δ(ā/x̄)

(if s ∈ supp(X(ā/x̄)), then s(x̄) = ā)

⇐⇒ A |=X(ā/x̄) δ(ā/x̄)

⇐⇒ A |=X δ(ā/x̄) (by locality since X(ā/x̄) � (D\Var(x̄)) = X � (D\Var(x̄))).
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For the cases φ = δ0 ≤ δ1 and φ = δ1 ⊥⊥δ0 δ2, we notice that
∑
s∈S

X(ā/x̄)(s) =
∑
s′∈S′

X(ā/x̄)(s′),

where S = {s : D ∪ Var(x̄) → A | A |=s δ} and S′ = {s′ : D ∪ Var(x̄) → A | A |=s′ δ(ā/x̄)} for any δ. For 
this, first note that if s(x̄) �= ā, then X(ā/x̄)(s) = 0. Therefore, only those assignments s for which s(x̄) = ā

may contribute to the sums. For those assignments s, clearly A |=s δ ⇐⇒ A |=s δ(ā/x̄), and therefore ∑
s∈S X(ā/x̄)(s) =

∑
s′∈S′ X(ā/x̄)(s′). With this, it is straightforward to check that the claim holds for the 

cases φ = δ0 ≤ δ1 and φ = δ1 ⊥⊥δ0 δ2.
If φ = ∼̇ θ, then

A |=X(ā/x̄) ∼̇ θ ⇐⇒ A �|=X(ā/x̄) θ or supp(X(ā/x̄)) = ∅

⇐⇒ A �|=X θ(ā/x̄) or supp(X) = ∅ (by the induction hypothesis)

⇐⇒ A |=X ∼̇ θ(ā/x̄).

The proofs for the cases φ = θ0 ∧ θ1 and φ = θ0 \\/ θ1 directly follow from the induction hypothesis.
If φ = Qyθ where Q ∈ {∃1, ∀1}, then

A |=X(ā/x̄) Qyθ ⇐⇒ A |=X(āb/x̄y) θ for some/all b ∈ A

⇐⇒ A |=X θ(āb/x̄y) for some/all b ∈ A (by the induction hypothesis)

⇐⇒ A |=X(b/y) θ(ā/x̄) for some/all b ∈ A (by the induction hypothesis)

⇐⇒ A |=X Qyθ(ā/x̄). �
The next proposition shows that we can rename quantified variables in the formulas. This is used in the 

proofs of Theorems 5.1 and 7.1, where we assume that certain variables have no bounded occurrences in 
the formulas. We introduce a notation that is analogous to φ(ā/x̄): we write φ(ȳ/x̄) for the formula where, 
instead of the constant symbols, we substitute x̄ with the variables ȳ.

Proposition 3.4. Let θ be any FOPT(≤δ,⊥⊥δ
c)[τ ]-formula with free variables from {v1, . . . , vk}. Suppose that 

x does not appear in θ. Then for any τ -structure A, any probabilistic team X over {v1, . . . , vk}, any Q ∈
{∃1, ∀1}, and any w ∈ {v1, . . . , vk}

A |=X Qwθ ⇐⇒ A |=X Qxθ(x/w).

Proof. Let Xx/w : Xx/w → A be the probabilistic team such that Xx/w = {s′ | s ∈ X} is the team over 
({v1, . . . , vk}\{w}) ∪ {x} where s′(vi) = s(vi) when vi �= w, s′(x) = s(w), and Xx/w(s′) = X(s). Thus the 
probabilistic team Xx/w is otherwise the same as the team X but the variable w is replaced with x. Now we 
have

A |=X Qw̄θ ⇐⇒ A |=X(a/w) θ for some/all a ∈ A

⇐⇒ A |=X(a/w)x/w
θ(x/w) for some/all a ∈ A

⇐⇒ A |=Xx/w(a/x) θ(x/w) for some/all a ∈ A

⇐⇒ A |=Xx/w
θ(x/w)(a/x) for some/all a ∈ A (by Proposition 3.3)

⇐⇒ A |=X θ(x/w)(a/x) for some/all a ∈ A (by locality since

Xx/w� (Var(v̄)\{w}) = X� (Var(v̄)\{w}) )
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⇐⇒ A |=X(a/x) θ(x/w) for some/all a ∈ A (by Proposition 3.3)

⇐⇒ A |=X Qxθ(x/w). �
3.2. The logic FOPT(≤δ

c)

Next, we introduce a logic similar to FOPT(≤δ,⊥⊥δ
c). The difference is that, instead of the extended 

probabilistic inclusion and extended probabilistic conditional independence atoms, we have atoms of the 
form (δ0|δ1) ≤ (δ2|δ3), where each δi is as quantifier- and disjunction-free first-order formula. We call these 
conditional probability inequality atoms. The syntax for the logic FOPT(≤δ

c) over a vocabulary τ is as follows:

φ ::= δ | (δ|δ) ≤ (δ|δ) | ∼̇φ | (φ ∧ φ) | (φ \\/φ) | ∃1xφ | ∀1xφ.

The semantics for the atom (δ0|δ1) ≤ (δ2|δ3) is defined as follows:

A |=X (δ0|δ1) ≤ (δ2|δ3) ⇐⇒
∑

s∈S0∩S1

X(s) ·
∑
s∈S3

X(s) ≤
∑

s∈S2∩S3

X(s) ·
∑
s∈S1

X(s)

where Si = {s ∈ X | A |=s δi} for i = 0, 1, 2, 3. Extended probabilistic inclusion and extended probabilistic 
conditional independence can be expressed in FOPT(≤δ

c). Suppose that δ0, δ1, δ2 are formulas with free 
variables from x̄ = (x1, . . . , xn). It is easy to check that

δ0 ≤ δ1 ≡ (δ0|x1 = x1) ≤ (δ1|x1 = x1)

and

δ1 ⊥⊥δ0 δ2 ≡ (δ1|δ0) ≈ (δ1|δ0 ∧ δ2),

where (δ1|δ0) ≈ (δ1|δ0 ∧ δ2) is an abbreviation for the formula (δ1|δ0) ≤ (δ1|δ0 ∧ δ2) ∧ (δ1|δ0 ∧ δ2) ≤ (δ1|δ0).
Note that FOPT(≤δ

c) is local since the proof of Proposition 3.2 can easily be extended to cover atoms 
of the form (δ0|δ1) ≤ (δ2|δ3). Moreover, proofs for Propositions 3.1, 3.3, and 3.4 can also be extended for 
FOPT(≤δ

c).

4. Comparison of logics in team semantics

4.1. Expressibility of inclusion atoms in FOPT(≤δ)

The following proposition shows that FOT-formulas can be translated into FOPT(≤δ) by demonstrating 
how inclusion atoms can be expressed with ¬, ∼̇, and \\/ .

Proposition 4.1. Let φ be any FOT[τ ]-formula. Then there exists an FOPT(≤δ)[τ ]-formula ψφ such that for 
any τ -structure A, and any probabilistic team X

A |=supp(X) φ ⇐⇒ A |=X ψφ.

Proof. Notice that only inclusion atoms, i.e. atoms of the form v̄0 ⊆ v̄1 need to be translated. For each 
formula φ, we let ψφ be the same as φ, except that each inclusion atom θ appearing in φ is substituted with 
the formula ψθ as described below. Provided that we can successfully translate each θ, it is easy to check 
that the claim holds. If θ = v̄0 ⊆ v̄1, then we let ψθ := ∀1x̄(¬v̄0 = x̄ \\/ ∼̇ ¬v̄1 = x̄). We show that the claim 
holds for θ and ψθ.
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If supp(X) = ∅, then both X and supp(X) satisfy every formula. Thus, without loss of generality, we 
may assume that supp(X) �= ∅. Now

A |=supp(X) v̄0 ⊆ v̄1 ⇐⇒ for all s ∈ supp(X), there exists s′ ∈ supp(X) such that s(v̄0) = s′(v̄1)

⇐⇒ for all ā ∈ A|v̄0|, if there is s ∈ supp(X) such that s(v̄0) = ā,

then there exists s′ ∈ supp(X) such that s′(v̄1) = ā

⇐⇒ for all ā ∈ A|v̄0|, s(v̄0) �= ā for all s ∈ supp(X)

or there exists s′ ∈ supp(X) such that s′(v̄1) = ā

⇐⇒ for all ā ∈ A|v̄0|, A |=X (¬v̄0 = x̄)(ā/x̄) or A �|=X (¬v̄1 = x̄)(ā/x̄)

⇐⇒ for all ā ∈ A|v̄0|, A |=X (¬v̄0 = x̄ \\/ ∼̇ ¬v̄1 = x̄)(ā/x̄) (since supp(X) �= ∅)

⇐⇒ for all ā ∈ A|v̄0|, A |=X(ā/x̄) ¬v̄0 = x̄ \\/ ∼̇ ¬v̄1 = x̄ (by Proposition 3.3)

⇐⇒ A |=X ∀1x̄(¬v̄0 = x̄ \\/ ∼̇ ¬v̄1 = x̄). �
4.2. Expressibility of marginal identity and probabilistic conditional independence atoms in FOPT(≤δ,⊥⊥δ

c)

The logics in probabilistic team semantics often include the marginal identity atom v̄0 ≈ v̄1 and the 
probabilistic conditional independence atom v̄1 ⊥⊥v̄0 v̄2 where v̄0, ̄v1 and v̄2 are tuples of variables, instead of 
formulas. (See e.g. [12].) In the case of the marginal identity atom, we additionally require that the tuples 
v̄0 and v̄1 are of the same length. Let x̄ be a tuple of variables and ā ∈ A|x̄|, and define

|Xx̄=ā| :=
∑
s∈X,
s(x̄)=ā

X(s).

The semantics for the marginal identity atom and the probabilistic conditional independence atom is as 
follows:

• A |=X v̄0 ≈ v̄1 iff |Xv̄0=ā| = |Xv̄1=ā| for all ā ∈ A|v̄0|.
• A |=X v̄1 ⊥⊥v̄0 v̄2 iff for all s : Var(v̄0v̄1v̄2) → A,

|Xv̄0v̄1=s(v̄0v̄1)| · |Xv̄0v̄2=s(v̄0v̄2)| = |Xv̄0=s(v̄0)| · |Xv̄0v̄1v̄2=s(v̄0v̄1v̄2)|.

Note that we do not require that the tuples v̄0, v̄1, v̄2 are disjoint.
We show that the atoms of the form δ0 ≤ δ1 and δ1 ⊥⊥δ0 δ2 extend these in the sense that, when the weak 

universal quantifier ∀1 is available, v̄0 ≈ v̄1 and v̄1 ⊥⊥v̄0 v̄2 are also expressible. For probabilistic conditional 
independence, the equivalent formula of FOPT(≤δ,⊥⊥δ

c) is straightforward:

v̄1 ⊥⊥v̄0 v̄2 ≡ ∀1x̄ȳz̄(v̄1 = ȳ ⊥⊥v̄0=x̄ v̄2 = z̄).

For the marginal identity atom, it feels natural to first define a new kind of formula δ0 ≈ δ1 := δ0 ≤ δ1∧δ1 ≤
δ0, and use that to obtain that

v̄0 ≈ v̄1 ≡ ∀1x̄(v̄0 = x̄ ≈ v̄1 = x̄).

However, there is also a shorter formula for the marginal identity atom:

v̄0 ≈ v̄1 ≡ ∀1x̄(v̄0 = x̄ ≤ v̄1 = x̄).
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To see that this formula suffices, note that since A is finite,

|Xv̄0=ā| ≤ |Xv̄1=ā| for all ā ∈ A|v̄0|

implies that

|Xv̄0=ā| = |Xv̄1=ā| for all ā ∈ A|v̄0|.

Because of this, marginal identity atoms were originally (in [3]) called probabilistic inclusion atoms and 
denoted by v̄0 ≤ v̄1. Instead of defining the formula δ0 ≈ δ1 as we have done above, we could also treat it 
as a new kind of atomic formula. Then the atoms of the form δ0 ≤ δ1 and δ0 ≈ δ1 can be seen as extended 
probabilistic inclusion and extended marginal identity atoms, respectively. However, even though the truth 
definitions for v̄0 ≤ v̄1 and v̄0 ≈ v̄1 are equivalent, this is not the case for δ0 ≤ δ1 and δ0 ≈ δ1.

5. Translation from FOPT(≤δ
c) to real arithmetic

In this section, we show that the satisfiability and validity problems for FOPT(≤δ
c) are r.e.-complete and 

co-r.e.-complete, respectively. Note that the definitions of our logics assume that the structure A is finite, so 
the satisfiability and validity for FOPT(≤δ

c) are only considered over finite structures. The main ingredient 
of the proof is constructing a translation from FOPT(≤δ

c) to real arithmetic.
We say that a τ -formula φ ∈ FOPT(≤δ

c) is satisfiable in a τ -structure A if there exists a nonempty 
probabilistic team X of A such that A |=X φ. Analogously, φ is valid in A if A |=X φ for all probabilistic 
teams X of A over Var(φ). A τ -formula φ ∈ FOPT(≤δ

c) is satisfiable if there exists a τ -structure A such that 
φ is satisfiable in A. A τ -formula φ ∈ FOPT(≤δ

c) is valid if φ is valid in A for all a τ -structures A.

Theorem 5.1. Let τ be a finite relational vocabulary, and A a finite τ -structure.

(i) For each τ -formula φ from FOPT(≤δ) there exists a first-order sentence ψ over vocabulary {+, ≤, 0}
such that φ is satisfiable in A iff (R, +, ≤, 0) |= ψ.

(ii) For each τ -formula φ from FOPT(≤δ,⊥⊥δ
c) or FOPT(≤δ

c) there exists a first-order sentence ψ over 
vocabulary {+, ×, ≤, 0, 1} such that φ is satisfiable in A iff (R, +, ×, ≤, 0, 1) |= ψ.

Proof. Without loss of generality, we may assume that A = {1, . . . , n}. Let v̄ = (v1, . . . , vm) be a tuple that 
consists of the first-order variables that appear free in φ. Since FOPT(≤δ), FOPT(≤δ,⊥⊥δ

c), and FOPT(≤δ
c)

are local, it suffices to consider teams over {v1, . . . , vm}. Moreover, by Proposition 3.4, it suffices to only 
consider formulas φ(v̄) in which there are no bound occurrences of the variables v̄. For the tuple v̄, we will 
need a fresh first-order variable sv̄=ā for each ā ∈ Am. Each variable sv̄=ā will correspond to the weight of 
the assignment that interprets variables v̄ as elements ā. By s̄, we denote the tuple (sv̄=1̄, . . . , sv̄=n̄) that 
contains all these variables. Now we let

ψ := ∃sv̄=1̄ . . . sv̄=n̄

(∧
ā

0 ≤ sv̄=ā ∧ ¬0 =
∑
ā

sv̄=ā ∧ φ∗(s̄)
)
,

where φ∗(s̄) is defined inductively as follows:

- If φ(v̄) = δ, then φ∗(s̄) :=
∧

s∈S s = 0, where S = {s ∈ {sv̄=1̄, . . . , sv̄=n̄} | A �|=s δ}.
- If φ(v̄) = δ0(v̄) ≤ δ1(v̄), then for Si = {s | A |=s δi}, i = 0, 1,

φ∗(s̄) :=
∑

s ≤
∑

s.

s∈S0 s∈S1
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- If φ(v̄) = (δ0(v̄) | δ1(v̄)) ≤ (δ2(v̄) | δ3(v̄)), then for Si = {s | A |=s δi}, i = 0, 1, 2, 3,

φ∗(s̄) :=
∑

s∈S0∩S1

s×
∑
s∈S3

s ≤
∑

s∈S2∩S3

s×
∑
s∈S1

s.

- If φ(v̄) is ∼̇ θ0(v̄), θ0(v̄) ∧ θ1(v̄) or θ0(v̄) \\/ θ1(v̄), then φ∗(s̄) is defined as ¬θ∗0(s̄), θ∗0(s̄) ∧ θ∗1(s̄) or θ∗0(s̄) ∨
θ∗1(s̄), respectively.

- If φ(v̄) = ∃xθ0(v̄, x), then

φ∗(s̄) := ∃tv̄x=1̄1 . . . tv̄x=n̄n

(∨
b

∧
ā

(tv̄x=āb = sv̄=ā ∧
∧
c �=b

tv̄x=āc = 0) ∧ θ∗0(t̄)
)
.

- If φ(v̄) = ∀xθ0(v̄, x), then

φ∗(s̄) :=
∧
b

(
∃tv̄x=1̄1 . . . tv̄x=n̄n

(∧
ā

(tv̄x=āb = sv̄=ā ∧
∧
c �=b

tv̄x=āc = 0) ∧ θ∗0(t̄)
))

. �

Theorem 5.2. The satisfiability problem for FOPT(≤δ
c) is r.e.-complete.

Proof. Inclusion: Suppose that φ ∈ FOPT(≤δ
c)[τ ] is satisfiable. Let A be any finite τ -structure. By Theo-

rem 5.1, we can construct a sentence ψA,φ such that φ is satisfiable in A iff (R, +, ×, ≤, 0, 1) |= ψA,φ. Note 
that the sentence ψA,φ is computable since A |=s δ is decidable when structure A, assignment s, and formula 
δ are given. Since truth in real arithmetic is decidable, given a structure A, we can also decide whether φ
is satisfiable in A. Thus we can verify that φ is satisfiable by going through all finite τ -structures until we 
find a structure A such that φ is satisfiable in A.

Hardness: Denote by SATfin(FO) the finite satisfiability problem for FO. Notice that every first-order 
sentence is also expressible in FOPT(≤δ

c), and therefore SATfin(FO) is reducible to the satisfiability problem 
for FOPT(≤δ

c). By Trahtenbrot’s Theorem, SATfin(FO) is r.e.-hard, and thus the satisfiability problem for 
FOPT(≤δ

c) is also r.e.-hard. �
The validity problem for FOPT(≤δ

c) is co-r.e.-complete because its complement is reducible to the satisfi-
ability problem, and vice versa. Note that these reductions rely on the fact that FOPT(≤δ

c) has the Boolean 
negation ∼̇ for which A |=X ∼̇φ if and only if A �|=X φ. In team semantic setting, the negation ¬ behaves 
differently, e.g., A �|=X x = y does not necessarily imply A |=X ¬x = y since supp(X) may contain both 
assignment s for with s(x) = s(y) and assignment s′ for with s′(x) �= s′(y).

6. Counterparts of logics in probabilistic team semantics over metafinite structures

In this section, we introduce the logic FOR≥0(×, SUM) and its fragment FOR≥0(SUM∗). Later, in Sec-
tion 7, we will show that FOPT(≤δ,⊥⊥δ

c) can be translated into FOR≥0(×, SUM), but there is no full 
translation from FOR≥0(×, SUM) to FOPT(≤δ,⊥⊥δ

c). However, we will also see that FOR≥0(SUM∗) is equi-
expressive with the logic FOPT(≤δ).

6.1. The logic FOR≥0(×, SUM)

Let τ0, τ1, and σ be vocabularies such that σ is functional, and τ0 ∩ σ = τ1 ∩ σ = ∅. A two-sorted 
structure of vocabulary τ0 ∪ τ1 ∪ σ is a tuple A = (A0, A1, F ) where Ai is a τi-structure of domain Ai for 
i = 0, 1, and F is a set that contains functions fA : Aar(f)

0 → A1 for each function symbol f ∈ σ. In this 
paper, we always assume that the structure A0 is finite, and both σ and F are finite. For simplicity, τ0 can 
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only contain relation and constant symbols. Note that A1 is not assumed to be finite, on the contrary, we 
consider metafinite structures where A1 = R≥0 or A1 = R.

Let {=} ⊆ τ0, τ1 = {≤}, and σ = {f}. Consider structures A = (A0, A1, F ) where A0 is a finite 
τ0-structure, A1 = (R≥0, ≤), and F = {fA} for some fA : A0 → R≥0. These structures are called R≥0-
structures.

First-order τ0-terms and atomic formulas are constructed in the usual way. In addition to the usual 
τ0-terms, there are numerical τ0 ∪ σ-terms i which are as follows:

i ::= f(ȳ) | i× i | SUMx̄(i, γ),

where x̄ and ȳ are tuples of variables, |ȳ| = ar(f), and γ is a quantifier-free first-order formula. If |x̄| = 0, 
we denote SUMx̄(i, γ) = SUM∅(i, γ). The syntax for the logic FOR≥0(×, SUM) over a vocabulary τ0∪ τ1∪σ

is then as follows:

φ ::= λ | i ≤ i | ¬φ | (φ ∧ φ) | (φ ∨ φ) | ∃xφ | ∀xφ,

where x is a first-order variable.
We now present the semantics for FOR≥0(×, SUM). Let A be an R≥0-structure of a vocabulary τ0∪τ1∪σ. 

The interpretations of τ0-terms are defined in the usual way. Note that first-order terms only range over A0; 
they cannot take values from R≥0. For the numerical terms we have the interpretations [f(x̄)]As := fA(s(x̄)),

[i× j]As := [i]As · [j]As ,

and

[SUMx̄(i, γ)]As :=
∑
ā∈B

[i]As(ā/x̄),

where B = {ā ∈ A
|x̄|
0 | A0 |=s γ(ā/x̄)}. The semantics for ≤ is defined in the obvious way, i.e.

A |=s i ≤ j ⇐⇒ [i]As ≤ [j]As .

For atomic τ0-formulas and connectives ¬, ∧, ∨, ∃x, and ∀x, we define semantics as in first-order logic.

6.2. The fragment FOR≥0(SUM∗)

We denote by FOR≥0(SUM∗) the fragment of FOR≥0(×, SUM) with the following syntax:

φ ::= λ | ¬φ | SUMx̄(f(ȳ), γ) ≤ SUMx̄(f(ȳ), γ) | (φ ∧ φ) | (φ ∨ φ) | ∃xφ | ∀xφ

where λ and γ are as before, and x̄ and ȳ are tuples of distinct variables such that Var(x̄) ⊆ Var(ȳ) and 
|ȳ| = ar(f). Note that despite the restricted syntax of the fragment, we can still refer to fA(s(ȳ)) (and also 
the constant 0). For this, we notice that the set A|∅|

0 = A0
0 is the singleton containing only the empty tuple, 

and therefore

[SUM∅(f(ȳ), γ)]As =
{
fA(s(ȳ)), when A |=s γ

0, when A �|=s γ.

Additionally, we introduce a useful abbreviation
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i = j :=i ≤ j ∧ j ≤ i,

and write f(ū) = 0 for the formula

SUM∅(f(ū), u1 = u1) = SUM∅(f(ū),¬u1 = u1),

where ū = (u1, . . . , uk). Note that [SUM∅(f(ū), u1 = u1)]As = fA(s(ū)) and [SUM∅(f(ū), ¬u1 = u1)]As = 0, 
and thus

A |=s f(ū) = 0 ⇐⇒ fA(s(ū)) = 0

as one would expect.

7. Translations and the equi-expressivity result

In this section we show that FOPT(≤δ
c) can be translated to FOR≥0(×, SUM), and that FOPT(≤δ) and 

FOR≥0(SUM∗) are equi-expressive. The main idea is to use a function fX in the metafinite structure to 
express the weights given by the probabilistic team X.

7.1. Translation from FOPT(≤δ
c) to FOR≥0(×, SUM)

Theorem 7.1. Let φ(v1, . . . , vk) be any FOPT(≤δ
c)[τ0]-formula and f a k-ary function symbol. Then there 

exists an FOR≥0(×, SUM)[τ0∪{≤} ∪{f}]-sentence ψφ(f) such that for any R≥0-structure A = (A0, A1, {fX})
and any probabilistic team X over {v1, . . . , vk}

A0 |=X φ(v̄) ⇐⇒ A |= ψφ(f),

where fX : Ak
0 → R≥0 is a function such that fX(s(v̄)) = X(s) for all s ∈ X.

Proof. We show by induction that for any subformula θ(v̄, ̄x) of φ(v̄), there exists an FOR≥0(×, SUM)[τ0∪{≤
} ∪ {f}]-formula ψθ(f, ̄x) such that for any R≥0-structure A = (A0, A1, {fX}), any probabilistic team X
over {v1, . . . , vk}, and any sequence ā ∈ A

|x̄|
0

A0 |=X(ā/x̄) θ(v̄, x̄) ⇐⇒ A |= ψθ(f, x̄)(ā/x̄),

where fX : Ak
0 → R≥0 is a function defined as above. Note that by Proposition 3.4, it suffices to only consider 

formulas φ(v̄) in which there are no bound occurrences of the variables v̄. We will also use Proposition 3.3, 
so that we can evaluate the formulas in the original team X instead of the modified team X(ā/x̄).

(1) Suppose that θ(v̄, ̄x) = δ(v̄, ̄x). Then let ψθ(f, ̄x) := ∀ū(f(ū) = 0 ∨ δ(ū/v̄, ̄x)). Now

A0 |=X(ā/x̄) δ(v̄, x̄) ⇐⇒ A0 |=X δ(v̄, x̄)(ā/x̄) (by Proposition 3.3)

⇐⇒ for all s ∈ X, if s ∈ supp(X), then A0 |=s δ(v̄, x̄)(ā/x̄)

⇐⇒ for all b̄ ∈ Ak
0 , fX(b̄) = 0 or A0 |= δ(b̄/v̄, x̄)(ā/x̄)

⇐⇒ A |= ∀ū(f(ū) = 0 ∨ δ(ū/v̄, x̄))(ā/x̄).
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(2) Suppose that θ(v̄, ̄x) = (δ0|δ1) ≤ (δ2|δ3). Then let

ψθ(f, x̄) :=SUMū(f(ū), (δ0 ∧ δ1)(ū/v̄, x̄)) × SUMū(f(ū), δ3(ū/v̄, x̄)) ≤

SUMū(f(ū), (δ2 ∧ δ3)(ū/v̄, x̄)) × SUMū(f(ū), δ1(ū/v̄, x̄)).

Now

A0 |=X(ā/x̄) (δ0|δ1) ≤ (δ2|δ3) ⇐⇒ A0 |=X ((δ0|δ1) ≤ (δ2|δ3))(ā/x̄) (by Proposition 3.3)

⇐⇒
∑

s∈S0∩S1

X(s) ·
∑
s∈S3

X(s) ≤
∑

s∈S2∩S3

X(s) ·
∑
s∈S1

X(s),

where Si = {s ∈ X | A0 |=s δi(ā/x̄)} for i = 0, 1, 2, 3

⇐⇒
∑

b̄∈B0∩B1

fX(b̄) ·
∑
b̄∈B3

fX(b̄) ≤
∑

b̄∈B2∩B3

fX(b̄) ·
∑
b̄∈B1

fX(b̄),

where Bi = {b̄ ∈ Ak
0 | A0 |= δi(b̄/v̄, ā/x̄)} for i = 0, 1, 2, 3

⇐⇒ A |= ψθ(f, x̄)(ā/x̄).

(3) Suppose that θ(v̄, ̄x) = ∼̇ θ0(v̄, ̄x), θ(v̄, ̄x) = θ0(v̄, ̄x) ∧ θ1(v̄, ̄x) or θ(v̄, ̄x) = θ0(v̄, ̄x) \\/ θ1(v̄, ̄x). Then let 
ψθ(f, ̄x) := ¬ψθ0(f, ̄x) ∨∀ūf(ū) = 0, ψθ(f, ̄x) := ψθ0(f, ̄x) ∧ψθ1(f, ̄x) or ψθ(f, ̄x) := ψθ0(f, ̄x) ∨ψθ1(f, ̄x), 
respectively. The claims directly follow from Proposition 3.3 and the induction hypothesis.

(4) Suppose that θ(v̄, ̄x) = Q1yθ0(v̄, ̄xy) where Q ∈ {∃, ∀}. Then let ψθ(f, ̄x) := Qyψθ0(f, ̄xy). Now

A0 |=X(ā/x̄) Q
1yθ0(v̄, x̄y) ⇐⇒ A0 |=X(āb/x̄y) θ0(v̄, x̄y) for some/all b ∈ A0

⇐⇒ A |=ψθ0(f, x̄y)(āb/x̄y) for some/all b∈A0 (by the induction hypothesis)

⇐⇒ A |= Qyψθ0(f, x̄y)(ā/x̄). �
The next theorem shows that the converse does not hold in full generality. We will show that the scaling 

property of FOPT(≤δ
c), i.e. Proposition 3.1, fails for FOR≥0(×, SUM).

Theorem 7.2. Let f be a k-ary function symbol. There exists a sentence ψ ∈ FOR≥0(×, SUM)[τ0 ∪ {≤
} ∪ {f}] for which there is no formula φψ(v1, . . . , vk) ∈ FOPT(≤δ

c)[τ0] such that for any R≥0-structure 
A = (A0, A1, {fX}) and any nonempty probabilistic team X over {v1, . . . , vk}

A0 |=X φψ ⇐⇒ A |= ψ,

where fX : Ak
0 → R≥0 is a function such that fX(s(v̄)) = X(s) for all s ∈ X.

Proof. Let x, y1, · · · , yk be variables such that k = ar(f), ȳ = (y1, · · · , yk), and x /∈ Var(ȳ). Define

i0 := SUMȳ(f(ȳ), y1 = y1) and i1 := SUMx(i0, x = x).

Let ψ := i0 × i0 ≤ i1. We show that ψ is as wanted. For a contradiction, suppose that there is an equivalent 
formula φψ. We notice that

[i0 × i0]As = [SUMȳ(f(ȳ), y1 = y1) × SUMȳ(f(ȳ), y1 = y1)]As
= [SUMȳ(f(ȳ), y1 = y1)]As · [SUMȳ(f(ȳ), y1 = y1)]As
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=
∑
b̄∈Ak

0

fX(b̄) ·
∑
b̄∈Ak

0

fX(b̄)

=
∑
s

X(s) ·
∑
s

X(s),

and

[i1]As = [SUMx(i0, x = x)]As =
∑
a∈A0

[i0]As(a/x) =
∑
a∈A0

∑
b̄∈Ak

0

fX(b̄) = |A0| ·
∑
s

X(s).

Now A |= ψ if and only if 
∑

s X(s) ·
∑

s X(s) ≤ |A0| ·
∑

s X(s). Since X is nonempty, we have 
∑

s X(s) > 0, 
and therefore A |= ψ iff 

∑
s X(s) ≤ |A0|. Let X and A0 be such that 

∑
s X(s) > |A0|. Then A �|= ψ, which 

implies that A0 �|=X φψ. By Proposition 3.1, we have A0 �|=distr(X) φψ. Let A′ = (A0, A1, {fdistr(X)}). Then 
also A′ �|= ψ. But now 

∑
s distr(X)(s) = 1 ≤ |A0|, which is a contradiction. �

7.2. Equi-expressivity of FOPT(≤δ) and FOR≥0(SUM∗)

In this subsection, we show that the logics FOPT(≤δ) and FOR≥0(SUM∗) are equi-expressive on 
R≥0-structures. Since FOPT(≤δ

c) subsumes FOPT(≤δ), the first part, the translation from FOPT(≤δ) to 
FOR≥0(SUM∗), almost already follows from the result of the previous subsection; we just have to show that 
extended probabilistic inclusion atoms can be translated.

Theorem 7.3. Let φ(v1, . . . , vk) be any FOPT(≤δ)[τ0]-formula and f a k-ary function symbol. Then there 
exists an FOR≥0(SUM∗)[τ0∪{≤} ∪{f}]-sentence ψφ(f) such that for any R≥0-structure A = (A0, A1, {fX})
and any probabilistic team X over {v1, . . . , vk}

A0 |=X φ(v̄) ⇐⇒ A |= ψφ(f),

where fX : Ak
0 → R≥0 is a function such that fX(s(v̄)) = X(s) for all s ∈ X.

Proof. It suffices to complement the proof of Theorem 7.1 with the case θ(v̄, ̄x) = δ0(v̄, ̄x) ≤ δ1(v̄, ̄x) since the 
translations of all subformulas, except for the conditional probability inequality, are FOR≥0(SUM∗)[τ0 ∪ {≤
} ∪ {f}]-sentences.

Suppose that θ(v̄, ̄x) = δ0(v̄, ̄x) ≤ δ1(v̄, ̄x). Then let

ψθ(f, x̄) := SUMū(f(ū), δ0(ū/v̄, x̄)) ≤ SUMū(f(ū), δ1(ū/v̄, x̄)).

Now

A0 |=X(ā/x̄) δ0 ≤ δ1 ⇐⇒ A0 |=X (δ0 ≤ δ1)(ā/x̄)

⇐⇒
∑
s∈S0

X(s) ≤
∑
s∈S1

X(s), where Si = {s ∈ X | A0 |=s δi(ā/x̄)} for i = 0, 1

⇐⇒
∑
b̄∈B0

fX(b̄) ≤
∑
b̄∈B1

fX(b̄), where Bi = {b̄ ∈ Ak
0 | A0 |= δi(b̄/v̄, ā/x̄)} for i = 0, 1

⇐⇒ A |= (SUMū(f(ū), δ0(ū/v̄, x̄)) ≤ SUMū(f(ū), δ1(ū/v̄, x̄)))(ā/x̄). �
For the second part, the translation from FOR≥0(SUM∗) to FOPT(≤δ), we need the following lemma 

which shows that it suffices to only consider certain kinds of aggregate sums:
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Lemma 7.4. Every aggregate sum term of the logic FOR≥0(SUM∗) can be expressed by a term of the form

SUMū(f(ū), δ(ū, x̄)),

where ū = (u1, . . . , uk), and δ is a disjunction-free and quantifier-free formula, i.e. δ ::= λ | ¬δ | δ ∧ δ.

Proof. Consider an aggregate sum of the form SUMū0(f(ū0x̄0), γ(ū0, ̄x)), where x̄0 are among x̄, and γ may 
contain disjunctions. The sum can be expressed by the term

SUMū0ū1(f(ū0ū1), (γ∗(ū0, x̄) ∧ ū1 = x̄0)),

where γ∗ is the formula obtained from γ by expressing each disjunction with negation and conjunction in 
the usual way, i.e. for example, formula γ0 ∨ γ1 is expressed as ¬(¬γ0 ∧ ¬γ1). To see this, notice that

[SUMū0(f(ū0x̄0), γ(ū0, x̄))]As =
∑

ā0∈B0

fA(s(ā0/ū0)(ū0x̄0)),

where B0 = {ā0 ∈ A
|ū0|
0 | A0 |=s γ(ā0/ū0)}, and

[SUMū0ū1(f(ū0ū1), γ∗ ∧ ū1 = x̄0)]As =
∑

ā0ā1∈B01

fA(s(ā0ā1/ū0ū1)(ū0ū1)),

where B01 = {ā0ā1 ∈ A
|ū0ū1|
0 | A0 |=s (γ∗ ∧ ū1 = x̄0)(ā0ā1/ū0ū1)}. We then have

B01 = {ā0s(x̄0) ∈ A
|ū0ū1|
0 | A0 |=s γ(ā0/ū0)},

from which it follows that

[SUMū0ū1(f(ū0ū1), γ∗ ∧ ū1 = x̄0)]As =
∑

ā0ā1∈B01

fA(s(ā0ā1/ū0ū1)(ū0ū1))

=
∑

ā0s(x̄0)∈B01

fA(s(ā0s(x̄0)/ū0ū1)(ū0ū1))

=
∑

ā0∈B0

fA(s(ā0/ū0)(ū0x̄0))

= [SUMū0(f(ū0x̄0), γ)]As . �
Next, we give a translation from FOR≥0(SUM∗) to FOPT(≤δ). This is similar to the translation of 

Theorem 7.1, but simpler, since now we assume that the team X is nonempty. The assumption is necessary: 
if the team was empty, all formulas would be satisfied in the team side.

Theorem 7.5. Let ψ(f) be any FOR≥0(SUM∗)[τ0 ∪ {≤} ∪ {f}]-sentence, where f is a k-ary function sym-
bol. Then there exists an FOPT(≤δ)[τ0]-formula φψ(v1, . . . , vk) such that for any R≥0-structure A =
(A0, A1, {fX}) and any nonempty probabilistic team X over {v1, . . . , vk}

A0 |=X φψ(v̄) ⇐⇒ A |= ψ(f),

where fX : Ak
0 → R≥0 is a function such that fX(s(v̄)) = X(s) for all s ∈ X.
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Proof. Without loss of generality, we may assume that ψ(f) is in prenex normal form, i.e.

ψ(f) = Q1x1 . . . Qnxnθ(f, x̄),

where Qi ∈ {∃, ∀}, 1 ≤ i ≤ n, and θ is quantifier free.
We then let φψ(v̄) := Q1

1x1 . . . Q
1
nxnφθ(v̄, ̄x), where φθ(v̄, ̄x) is defined inductively as follows:

(1) Suppose that θ(x̄) = λ(x̄), where λ is a first-order atomic formula of vocabulary τ0. Then let φθ(v̄, ̄x) :=
λ(x̄). The claim follows from Proposition 3.3 and the fact that f does not appear in λ.

(2) By Lemma 7.4, it suffices to consider the case θ(f, ̄x) = SUMū(f(ū), δ0(ū, ̄x)) ≤ SUMū(f(ū), δ1(ū, ̄x)), 
where δi for i = 0, 1 is a disjunction-free and quantifier-free formula. Then let φθ(v̄, ̄x) := δ0(v̄/ū, ̄x) ≤
δ1(v̄/ū, ̄x). This is similar to the proof of Theorem 7.3, and therefore the proof is not shown here again.

(3) Suppose that θ(f, ̄x) = ¬θ0(f, ̄x), θ(x̄) = θ0(x̄) ∧ θ0(x̄) or θ(x̄) = θ0(x̄) ∨ θ0(x̄). Then let φθ(v̄, ̄x) :=
∼̇φθ0(v̄, ̄x), φθ(v̄, ̄x) := φθ0(v̄, ̄x) ∧ φθ1(v̄, ̄x) or φθ(v̄, ̄x) := φθ0(v̄, ̄x) \\/φθ1(v̄, ̄x), respectively. The claims 
directly follow from the induction hypothesis and the fact that X(ā/x̄) is nonempty.

Now

A0 |=X Q1
1x1 . . . Q

1
nxnφθ(v̄, x̄) ⇐⇒ Q1a1, . . . , Qnan ∈ A0, A0 |=X(ā/x̄) φθ(v̄, x̄)

⇐⇒ Q1a1, . . . , Qnan ∈ A0, A |= θ(ā/x̄)

⇐⇒ A |= Q1x1 . . . Qnxnθ(x̄). �
By combining Theorems 7.3 and 7.5, we obtain that FOPT(≤δ) and FOR≥0(SUM∗) are equi-expressive 

on R≥0-structures.

8. Translation from FOR≥0
(×, SUM) to FFPR

In this section, we present a translation from FOR≥0(×, SUM) to a fragment of FFPR. The logic FFPR

was introduced in [10] as a logic for PTIME over reals (w.r.t. ordered structures). It is a fixed point logic 
with constants for every real number. In the fragment that we consider, the constants are restricted to 0 
and 1, and therefore the data complexity of the fragment corresponds to the class P0

R, i.e., the class of 
languages over R decidable in polynomial time by a BSS-machine with restriction to machine constants 0 
and 1. The translation gives us an upper bound for the data complexity of FOR≥0(×, SUM). We summarize 
those definitions from [10] which are needed for the translation; for further details on FFPR, see [10].

A two-sorted structure A = (A0, A1, F ) is called an R-structure if

A1 = R := (R,+,−,×, /, sign,=, <, 0, 1).

We also denote τR = {+, −, ×, /, sign, =, <, 0, 1}. In the following, we restrict to functional R-structures or 
R-algebras. These are R-structures (A0, R, F ) such that structure A0 is a plain set A0, i.e. τ0 = ∅.

We consider a fragment of the functional fixed-point logic for R-algebras, or FFPR. First-order τ0-terms 
are defined in the usual way. Note that since τ0 = ∅, we only have variables as first-order terms. The syntax 
of the fragment over a vocabulary τ0 ∪ τR ∪ σ = τR ∪ σ is the set of numerical terms, defined as follows:

i ::= c | f(x̄) | i + i | i− i | i× i | i/i | sgn(i) | max
x̄

i(ȳ) | fp[Z(z̄) ← i(Z, z̄)](ȳ)

where c ∈ {0, 1}, f and Z are function symbols such that f ∈ σ and Z /∈ σ, x̄, ̄y, ̄z are tuples of distinct 
variables with |x̄| = ar(f), Var(x̄) ⊆ Var(ȳ), and |ȳ| = |z̄| = ar(Z).
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First-order terms are interpreted in the usual way. Intended interpretations for most of the numerical 
terms are clear. The problem of division by 0 is handled by letting [i/j]As := 0 when [j]As = 0. We give 
interpretations for the non-obvious ones: sgn(i), maxx̄ i(ȳ), and fp[Z(z̄) ← i(Z, ̄z)](ȳ). We let

[sgn(i)]As :=

⎧⎪⎪⎨
⎪⎪⎩

1, when [i]As > 0
0, when [i]As = 0
−1, when [i]As < 0,

and

[max
x̄

i(ȳ)]As := max{[i(ȳ)]As(ā/x̄) | ā ∈ A
|x̄|
0 }.

Because of the terms of the form fp[Z(z̄) ← i(Z, ̄z)](ȳ), we also allow partially defined functions Z that map 
tuples from A0 to R. We define a partial R-algebra as an R ∪ {undef}-algebra obtained by extending the 
basic operations on R as follows: if [j]As = undef, then

[i + j]As = [i− j]As = undef, [sign(j)]As = undef,

and

[i× j]As = [i/j]As =
{

0, when [i]As = 0
undef, when [i]As �= 0.

Additionally, [maxx̄ i(ȳ)]As = undef, when [i(ȳ)]As(ā/x̄) = undef for some ā ∈ A
|x̄|
0 .

Let i(Z, ̄z) be a numerical term of vocabulary τR ∪ {Z}. We write [i(Z, ̄z)]A,Z
s for the interpretation of 

the term i(Z, ̄z) in the structure obtained from A by adding a suitable partial function Z : Aar(Z)
0 → R. The 

term i(Z, ̄z) induces an operator FA
i that updates partially defined functions Z as follows:

FA
i Z(s(z̄)) =

{
[i(Z, z̄)]A,Z

s , when Z(s(z̄)) = undef
Z(s(z̄)), otherwise.

This defines a sequence of partial functions Zj : Aar(Z)
0 → R such that

Z0(ā) = undef for all ā ∈ A
ar(Z)
0

Zj+1 = FA
i Zj .

Note that Zj+1 = Zj for some j ≤ |A0|ar(Z), and after this j, any further iterations do not update the 
function. We call this Zj the fixed point of FA

i . We let

[fp[Z(z̄) ← i(Z, z̄)](ȳ)]As = Z∞(s(ȳ))

where Z∞ is the fixed point of FA
i Z.

A function E : A0 → R that is a bijection from A0 to {0, . . . , |A0| − 1} is called a ranking. We say that a 
structure A is ranked if the set F contains a ranking. A given ranking E induces a ranking Ek of k-tuples 
for any k > 0. The ranking Ek is definable, and we will use the abbreviation x for Ek(x̄) where x̄ is a k-tuple 
of first-order variables.

Let τ0 be a finite relational vocabulary, and A0 a finite τ0-structure. We define the structure A∗
0 as 

the plain set A0, and construct the R-algebra A∗ = (A∗
0, R, F ) of vocabulary τR ∪ σ by adding to σ
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characteristic functions χR for all relation symbols R ∈ τ0. Let φ be a first-order formula of vocabulary τ0. 
Then the characteristic function of φ, denoted by χ[φ], is definable in FFPR[τR ∪ σ]. Moreover, if i, j are 
numerical τR ∪ σ-terms, then functions χ[i = j] and χ[i ≤ j] are also definable in FFPR[τR ∪ σ]. (See [10]
or the proof of Theorem 8.1 below.)

The next theorem shows that FOR≥0(×, SUM)[τ0 ∪ {≤} ∪ {f}]-formulas can be viewed as functions of 
FFPR. Note that the corresponding FFPR-term will be over τR∪σ, a different vocabulary since in R-algebras 
A∗ each relation RA ⊆ A

ar(R)
0 is replaced with its characteristic function χR : Aar(R)

0 → R.

Theorem 8.1. Let φ be any FOR≥0(×, SUM)[τ0∪{≤} ∪{f}]-formula, and let σ be a vocabulary that contains 
function symbols E and f , as well as χR for all relation symbols R ∈ τ0. Then there exists an FFPR[τR∪σ]-
term iφ such that for any R≥0-structure A = (A0, A1, {fA}) and any assignment s

A |=s φ ⇐⇒ [iφ]A
∗

s = 1

where A∗ = (A∗
0, R, F ) is an R-algebra such that structure A∗

0 is the plain set A0, and F contains a ranking 
E, the function fA, and the characteristic functions χR for all relations R ∈ τ0.

Proof. We begin by showing how to translate any numerical FOR≥0(×, SUM)-term i of vocabulary τ0 ∪ {≤
} ∪ {f}. We denote by i∗ the translation which is a numerical FFPR-term of vocabulary τR ∪ σ.

(1) If i = f(x̄), then i∗ := f(x̄).
(2) If i = i0 × i1, then i∗ := i∗0 × i∗1.
(3) If i = SUMx̄(i0(ȳ), γ(ȳ)) where Var(x̄) ⊆ Var(ȳ), then

i∗ := max
x̄

fp[Z(ȳ) ← j(Z, ȳ)](ȳ),

where

j(Z, ȳ) =χ[x = 0] × i∗0(ȳ) × χ[γ(ȳ)] + max
ū

(χ[x = u + 1] × (Z(ȳ(ū/x̄)) + i∗0(ȳ) × χ[γ(ȳ)])) .

(In the above, ȳ(ū/x̄) denotes the tuple obtained from ȳ by replacing x̄ with ū.)

We continue by defining the corresponding FFPR[τR ∪ σ]-terms for formulas φ.

(4) Let φ = λ, where λ is a first-order atomic formula of vocabulary τ0. Then λ = R(x̄) for some R ∈ τ0. 
Now, we let iλ := χR(x̄). (Note that R may be the equality relation, so this also covers the case 
λ = x0 = x1.)

(5) If φ = i0 ≤ i1, then

iφ := χ[i∗0 = i∗1 ∨ i∗0 < i∗1]

= χ[i∗0 = i∗1] + χ[i∗0 < i∗1] − χ[i∗0 = i∗1] × χ[i∗0 < i∗1]

where

χ[i∗0 = i∗1] = 1 − [sign(i∗0 − i∗1)]2 and χ[i∗0 < i∗1] = ([sign(i∗1 − i∗0)]2 + sign(i∗1 − i∗0))/2.

(6) If φ = ¬θ0, then iφ := 1 − iθ0 .
(7) If φ = θ0 ∧ θ1, then iφ := iθ0 × iθ1 .
(8) If φ = θ0 ∨ θ1, then iφ := iθ0 + iθ1 − iθ0 × iθ1 .
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(9) If φ = ∃xθ0, then iφ := maxx iθ0 .
(10) If φ = ∀xθ0, then iφ := 1 − maxx(1 − iθ0). �

The theorem shows that each formula of FOR≥0(×, SUM) has a corresponding characteristic function in 
FFPR, and therefore the data complexity of FOR≥0(×, SUM) is in polynomial time with respect to BSS-
computations.

9. Conclusion

We have defined new tractable logics for the framework of probabilistic team semantics that generalize the 
recently defined logic FOT that is expressively complete for first-order team properties. Our logics employ 
new probabilistic atoms that resemble so-called extended atoms from the team semantics literature. We 
also defined counterparts of our logics over metafinite structures and showed that all of our logics can be 
translated into functional fixed point logic giving a deterministic polynomial-time upper bound for data 
complexity with respect to BSS-computations.

The following questions remain open:

• What is the exact data complexity of our logics in the BSS-model?
• Is it possible to axiomatize (fragments) of our new logics?

Note that since the validity problem for FOPT(≤δ
c) is undecidable (see Section 5), the logic cannot be fully 

axiomatized but, e.g., the axiomatizability of mere probabilistic independence atoms has been studied in 
several works (see [2] for references).
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