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Preface

Logics of dependence and independence are novel non-classical logics aiming at char-
acterizing dependence and independence notions in philosophy and in social and phys-
ical sciences. This field of research has grown rapidly in recent years. This family of
logics has found applications in fields like database theory, linguistics, social choice,
quantum physics along with other fields. This workshop brings together researchers
from all these relevant areas and provide a snapshot of the state of the art of logics of

dependence and independence.
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Knowability as continuous dependence

Alexandru Baltag

An empirical variable is one whose exact value may never be known, and
instead only inexact approximations can be observed. Examples are in natural
sciences, economics etc (where the inexact observations are some form of mea-
surements), but also in the semantics of questions in natural language (where the
inexact observations are partial answers). This leads to a topological conception of
empirical variables, as maps from the state space into a topological space. Here,
the exact value of the variable is represented by the output of the map, while the
open neighborhoods of this value represent the knowable approximations of the
exact answer.

A central tenet in empirical sciences is establishing functional correlations
between variables, with a view towards (1) establishing causality, but also (2) pre-
dicting the (approximate) value of a hard-to-measure variable Y when given (ap-
proximate) value(s) of easier-to-measure variable X. In interrogative terms, this is
related to inquisitive implication: every partial answer to question Y is entailed by
some partial answer to X. In this talk, I argue that knowability of a dependency
amounts to the continuity of the given functional correlation. I give a learning-
theoretic justification of this claim, connecting with Kevin Kelly’s notion of grad-
ual learnability, then I give some concrete examples. Next, I present a complete
and decidable axiomatization of the minimal logic of continuous dependence, and
briefly sketch the ideas behind the proofs.

Further, I discuss the distinction between knowing the dependence between X
and Y, and knowing-how to determine Y (with any desired accuracy) from X: the
later is a stronger notion of knowability, that requires the ability to find the accuracy
that is needed for X -measurements (to determine Y with the given accuracy). |
formalize this distinction in terms of continuity versus uniform continuity, and go
on to propose an axiomatization of strongly known dependence, in the framework
of uniformity spaces (-Andre Weil’s qualitative generalization of metric spaces).

Time-permitting, I may also briefly describe an alternative setting that seems
better fit for computing applications, where inexact observations correspond to ap-
proximate computations. Knowability is then given by Scott continuity (of the
dependence between variables taking values in Scott domains). I show how this
setting fits within the topological framework, and how the corresponding complete
axiomatization requires an additional axiom.

This talk is based on ongoing joint work with Johan van Benthem.
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Dependency: the question-based view

Ivano Ciardelli

Most literature on the logic dependency construes dependency as a relation
between variables. I discuss an alternative perspective, stemming from inquisitive
logic, which construes dependency instead as a relation between questions.

I will point out some interesting consequences of the alternative perspective.
For instance, even in a context with just two variables x and y, there are many
questions one can ask about those variables, and thus many dependencies that can
be recognized beyond the standard “value of = determines value of y”. Another
example: the fact that questions can be syntactically composed and decomposed
allows them to be manipulated in inferences in a meaningful way; thus, we can,
e.g., formally prove a dependency of )’ on @ in natural deduction by assuming )
and deriving Q)'.

I will make the general ideas concrete in the context of an extension of first-
order predicate logic with questions and dependencies. If time permits, I will sur-
vey some recent results by Gianluca Grilletti and myself on the expressive limita-
tions of this logic. Finally, I will highlight some important open problems in the
area.
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Strongly first order dependencies in team semantics

Pietro Galliani

In this talk I will introduce and discuss the problem of finding which depen-
dency conditions between variables may be added to the language of First Order
Logic without increasing its expressive power. This may be seen as an attempt to
explore the boundary between First Order Logic and Higher Order Logic “from
below” as well as to study expressively weak logics based on Team Semantics.
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Embedding causal team languages into
dependence logic

Fausto Barbero and Pietro Galliani

Causal team semantics has been recently introduced ([1, 2]) as a semantic
framework in which contingent dependencies (such as those that are studied in
team semantics, see e.g. [7]) can be studied together with causal dependen-
cies. The notions of causal dependence that are considered in this context are
those that were defined in the field of causal inference ([6, 5, 4]) in terms of
interventionist counterfactuals.

The syntax of the causal languages from [1, 2] borrows a few elements from
the literature on causal inference. Hence, it is a natural question how these lan-
guages relate to earlier formalisms based on team semantics, and how the models
on which they are interpreted (causal teams) relate to the usual teams. We will
see that (under an assumption called recursivity, that will be specified below)
there is a systematical way of translating the causal languages into fragments
of logics based on team semantics (over first-order structures of an appropriate
signature). In particular, the basic counterfactual languages CO(c) translate
into the existential fragment of first-order logic, while the languages COD(o)
and CO, (o) (enriched, respectively, with dependence atoms and inquisitive dis-
junction) both translate into the existential fragment of dependence logic. As
an application of the embeddings, we show the decidability of the satisfiability
problem these languages, over signatures with a finite number of variables.

Notation. We use capital letters X, Y, Z... for variables, and small letters x, y, z...
for constants (called values). Boldface letters X, resp. x, denote finite sets or
sequences of variables, resp. of values.

Formal definitions and results in the field of causal inference often need
to be formulated in relation to a signature, which describes which variables
are taken into consideration and over what sets their values are allowed to
vary. More precisely, a signature o is a pair (Dom,Ran), where Dom is a
nonempty set of variables and Ran is a function that associates to each variable
X € Dom a nonempty set Ran(X) of values (the range of X). Note that we write
Ran(X) := Ran(X;) X Ran(X,,) when X = (X,...,X,).

An assignment of signature o~ will be a mapping s : Dom — |Jxepom Ran(X)
such that s(X) € Ran(X) for each X € Dom. A team T of signature o will be any
set of such assignments. A graph, in this note, will be a pair (V, E), where V is
a set of variables and £ C V X V. Given such a graph G, we denote as PAg the
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set of parents of V in G (i.e. the set of variables X such that (X,V) € E). We
may omit the superscript.

Causal teams. A causal team enriches a team by isolating a set of functions
which describe the causal mechanisms that link the variables. A graph is used
to keep track of the domains of these functions.

Definition 0.1. A causal team T of signature o = (Dom, Ran) with endogenous
variables End(T) C Dom is a triple T = (T~,Gr,Fr), with

1. T~ is a team of signature o= (team component of T ).

2. Gr = (Dom, E) is an irreflexive graph over Dom (graph component of T)
such that (X,Y) e E = Y ¢ End(T).

3. Fr is a function {(V;, fv.) | Vi € End(T)} (function component of T) that
assigns to each endogenous variable a function fy : Ran(PAy) — Ran(V).

which satisfies: (*) for all se T~, and all Y € V, s(Y) = fy(s(PAy)).

A causal team is said to be recursive if its graph is acyclic. For simplicity
of exposition, we will always restrict attention to recursive causal teams.

Causal languages. We will consider the following languages (parametrized
by a signature o = (Dom, Ran)), as introduced in [1]:

e CO(0):Y=y|Y#y|lara|laVa|lada|X=x«a
¢ COD(0):Y=y|Y#y| =XsV) YAy |yVylady | X=xO>y
¢ COLO): Y=y |Y#Yy|YAy YV lyUylady | X=xO>y¢

where {X, Y} C Dom, y € Ran(Y), x € Ran(X), @ € CO(0). X = X is an abbreviation
for a (finite) conjunction X; = x; A ... X, = x,.

We point out that COD(0") can be seen as a generalization of propositional
dependence logic over propositional letters py,..., p,... provided Dom contains
corresponding variables Py,..., P,,... with Ran(P;) = {0,1}. Then, the formula
pi can be identified with P; = 1, =p; with P; = 0, and so on.

Interventions on recursive causal teams. The interventionist counter-
factual operator O— is given a meaning in terms of interventions on a causal
team. The causal team Tx-y produced after the intervention do(X = X) on
T = (T~,Gr,¥r) describes what would happen if we subtracted the variables
X to their current causal mechanisms (i.e. the corresponding functions from
Fr) and forced them to take the constant values x. In such event, the values
of variables that are descendants of X in Gy need to be recomputed using the
functions from Fr. We illustrate the idea with an example (see [1, 2] for the
formal definition).

We consider a causal team T with Dom = {U, X, Y, W, Z}, function component
FX)=UFY)=X+1,FW)=X+2,F(Z) = U +2 W and team and graph
component as in the picture below; we apply to T the intervention do(X = 1).
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Fry., is Fr restricted to End(Tx=1) := End(T) \ {X}; and Gr,_, is obtained by

removing from Gr all arrows that point to X (in this case, the arrow (U, X)).
More generally, the intervention do(X = x) can be defined whenever X = x is

consistent, i.e. it does not contain two conjuncts X = x and X = x” with x # x".

Semantic clauses. We say that § = (§7,Gys,¥Fs) is a causal subteam of
T=T,Gr,7),S <T,if ST CT~,Gs = Gy and Fsg = Fr. We use the improper
notation {s} for the causal subteam of T of team component {s} whenever T is
clear from the context.

Satisfaction of a formula by a team, T [ ¢, is defined inductively as:

e TEY=y (resp. Y #y) iff, for all s€ T~, s(Y) =y (resp. s(Y) #y).

o T E=(X;Y) iff for all 5,5 € T™, s(X) = s'(X) implies s(¥) = s'(Y).

e TEYAxy it TEY and T E x.

o TEyVyiff there are T\, T, < T st. T/ UT,; =T, Ti Ey and Tz k x.
e TEYyLyiff TEYOr TEy.

o TEX=x0- y iff X =x is inconsistent or Tx—x F x.

o TEa>yiff T* E y, where T® is the (unique) causal subteam of T with
team component {s € T~ | {s} F a}.

The languages CO(0) are flat (see [7]), while COD(0) and CO. (o) are just
causally downward closed (i.e., if S is a causal subteam of T and ¢ € COD(0) U
COL(0), T E ¢ entails S E ¢). We remark that the laguages CO(0) are closed
under dual negation, defined inductively: (X = x)? =X #x, X # x)? := X = x,
WA =g vx WV T = G AXD, @D 0T =g AxY, o x) = g ooy

Lemma 0.2 ([2]). Let T be a causal team and ¢ € CO. Then T £ ¢¢ iff, for all
seT™, {s} Fa.

The translation. We want to compare the above languages with first-order
languages, possibly extended with dependence atoms (dependence logic, [7]) or
with U. We assume the reader is familiar with these languages, and we only
review the clause for 3:
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e M, T E Axy if and only if for some F : T — M we have T[F/x] E ¢, where
T[F/x] ={s(F(s)/x)|s€T}.

Definition 0.3. To each causal team T = (T, Gr, Fr) of signature o = (Dom, Ran)
and endogenous variables End(T), we associate a first-order structure My =
(|MT|,(CMT)CE\MTI’(f‘I/WT)VEEnd(T))a defined as My = (lMTl»(CMT)CEIMT\s(f\Z/WT)VEEnd(T))
where [Mr| = Uyepom Ran(V) and f‘Z/wT(C) = { Z)T;L‘;)EZC)E Ran(V) Z;;g;ﬁ?PAV) .
Notice that the team component of T is not involved in the definition of
Mry; therefore, a causal subteam S of T will have the same associated model
Mg = My. Notice also that, for any consistent X = x, Mr,__ is a reduct of Mr.
We will show that, for an appropriate translation #r of COD U CO,, formulas
into formulas of predicate logics, we have: T E ¢ — My, T™ E tr(p).
More generally, for every graph G € Gy we define, recursively on the syntax of
@, a translation tr(p, G). The idea is that, for each intervention do(X = x), the
formula (¢, Gry_,) will encode the fact that ¢ holds in the modified causal team
Tx-x. For each G C Gr, we define a (first-order) formula

EqG):= [\ V= fuPAy).
VeEnd(G)

where End(G) is the set of vertices V of G of indegree > 0. By this definition,
Eq(Gr) asserts that the system of equations V = F(V)(PAy) (V € End(T)) asso-
ciated to T holds; and Eq(Gr,_,) will similarly describe the reduced system of
equations that is obtained after applying the intervention do(X = x) to T.

The (relativized) translation is defined by induction on the syntax of ¢:

e irn,G)=nifnis X =x, X # x or =X, Y).

o tr(Yox,G) = (tr(y,G) o tr(y,G)) for o = A,V or U

o irX =x0> ¢,G) := AXADx(X = x A Eq(Gx=x) A tr({, Gx=x))
(where Dy is the set of descendants of X, listed in an appropriate order)

o tr(@>yx,G) = r(68%,G) v tr(y, G).

The embedding result.

Theorem 0.4. Let T = (T~,G,F) be a recursive causal team. Then:
TEe & Mr,T" E tr(¢,G).

Corollary 0.5. a) CO embeds into the existential fragment of FO.
b, ¢) COD and CO., embed into the existential fragment of dependence logic.

Statements a) and b) immediately follow from theorem 0.4. Statement c) is
obtained by first applying the translation and then eliminating LI using a well-
known equivalence: ¢ LIy = APAQ=(PA =(Q)AP =0 > ) AP # Q0 — x))
(where P = Q — ¢ abbreviates P # QVy and P # Q — y abbreviates P = QVy).
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Corollary 0.6. Let Dom be a finite set of causal variables, and let ¢ be any
COD or CO, formula over the variables of Dom. Then it is decidable whether
¢ is satisfiable in some causal team over Dom.

Proof sketch. If ¢ is satisfied by some nonempty causal team T then, by Theo-
rem 0.4 and downward closure, for every s € T~ it holds that My, {s} E Eq(Gr) A
tr(p, Gr), and conversely if M, {s} E Eq(G7) A tr(¢,Gr) then the team obtained
from T by replacing T~ with {s} satisfies ¢ (and, by the definition of Eq(Gr), {s}
is also compatible with the causal graph Gr). Therefore, AZ(Eq(Gt) A tr(p, G1))
is a sentence of existential dependence logic that is satisfiable if and only if there
is a causal team with graph Gr that satisfies ¢. Therefore, \/ g, AZ(Eq(G7) A
tr(p, Gr)), where G ranges over all acyclic graphs with the variables in Dom as
nodes, is an existential dependence logic sentence that is satisfiable if and only if
¢ is satisfiable by some causal team of domain Dom. Each such sentence is equiv-
alent to the first-order sentence (“flattening”) that is obtained by removing all
dependence atoms. This procedure is clearly computable, therefore our problem
is reduced to satisfiability in existential first-order logic, which is decidable (e.g.,
by the results in [3]). For CO.(c), remove all U from (e, Gr) as was done in 0.5.
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Separation Logic and Logics with Team Semantics

Erich Gradel, Darion Haase and Richard Wilke
RWTH Aachen University, Germany

Separation logic is a successful logical system for formal reasoning about programs that
mutate their data structures. It goes back to work by Reynolds, O’Hearn, Pym and others
[18, 10, 14] and builds on Hoare logic [8], a system for proving specifications of form
{precondition}code{postcondition} about how a piece of code changes the properties of the
states of a computation. Traditional Hoare logic works very well for programs with simple
fixed data types, but reasoning about programs with mutable data structures becomes
complicated and problematic, and this is the main issue that is addressed by separation
logic. Actually, separation logic is part of a larger family of logics with bunched implications
[13, 16, 15], but to get the point of this paper across, which is the connection with team
semantics, we consider a stripped down presentation of separation logic, as used for instance
in [6, 17], viewing separation logic as an extension of first-order logic for reasoning about
heaps (modelled as partial functions h: A — A*) whose expressive power arises from two
non-standard logical connectives: the separating conjunction, and the magic wand. With
these new connectives one can write concise specifications of recursive data structures such
as doubly linked lists, trees with linked leaves and parent pointers, and so on, and reason in
the style of Hoare logic about the semantics of programs with such data structures [18].

More precisely, we define for any k > 1 the separation logic SL* as the extension of
first-order logic by two new atomic formulae emp and x — ¥, and the new connectives x and
—. A formula 9(Z) € SL¥ of vocabulary 7 is interpreted over a triple (2, b, s), consisting of
a T-structure 2, a finite partial function h: A — A* on the universe of 2, called a heap, and
an assignment s: free(y)) — A mapping the free variables of ¢ to elements of 2. The atom
emp expresses that the heap is empty, and z — 7 is true in (2, b, s) if the heap h consist
of the single item s(x) — s(y1),...,s(yx). Using the traditional first-order connectives and
quantifiers, together with the separating conjunction and the magic wand, one then builds
powerful statements describing dynamic transformations of data structures. The separating
conjunction 1 x ¢ asserts that there is a disjoint split of the heap h into two disjoint heaps
satisfying v and ¢, respectively, and the separating implication or magic wand 1 — @ states
that ¢ is true for any extension h U §’ of the given heap h by a heap h’ that satisfies 1.

Since separation logic is an extension of first-order logic, the fundamental algorithmic
problems such as (finite) satisfiability, validity, or entailment are, of course, undecidable. For
both theoretical and practical purposes it is interesting to classify fragments of separation
logic for which such problems become decidable, and to determine their complexity, and on
the other side to identify those fragments that are expressively complete, and thus as difficult
to handle as full separation logic. Such work has been done for instance in [3, 4, 5, 6].

Team semantics, on the other side, is the mathematical basis of modern logics for reasoning
about dependence, independence, and imperfect information. It originates in the work of
Wilfrid Hodges [9], and relies on the idea to evaluate logical formulae ¢(x1,...,2,) not for
single assignments s: {x1,...,2,} — A from the free variables to elements of a structure 2,
but for sets of such assignments. These sets, which may have arbitrary size, are now called
teams. Together with the fundamental idea of Vadnédnen [19] to treat dependencies not as
annotations of quantifiers (as in IF-logic), but as atomic properties of teams, this has lead to
a lively interdisciplinary research area, involving not just first-order logics, but also logics on
the propositional and modal level, see e.g. [1]. Team semantics admits reasoning about large
sets of data, modelled by second-order objects such as sets of assignments, with a first-order
syntax that does not explicitly refer to higher-order variables. In the presence of appropriate
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atomic team properties, such as dependence, inclusion and exclusion, or independence, team
semantics can boost the expressiveness of first-order formalisms to the full power of existential
second-order logic or, in the presence of further propositional operators such as different
variants of implication or negation, even to full second-order logic (SO). There are several
reasons for this high expressive power of logics of dependence and independence. One of
them is the second-order nature of atomic dependencies in teams. For instance, saying that
z depends on y in the team X means that there exists a function which, for all assignments
s € X, maps s(y) to s(z). A further reason is that in the context of teams, disjunctions
and existential quantification are really second-order operations. Note, however, that only
the combination of dependence atoms and disjunction/existential quantification leads to
the expressive power of (existential) SO. We write 2 =x ¢ to denote that ¢ is true in the
structure 2 for the team X. In this extended abstract we assume that the reader is familiar
with the basic definitions of team semantics, and results are given without proofs. Detailed
definitions and complete proofs will be given in the full version of this paper.

Connections and differences. Separation logic and team semantics have been introduced
with quite different motivations, and are investigated by research communities with rather
different backgrounds and objectives. Nevertheless, there are obvious similarities between
these formalisms. First of all, both separation logic and logics with team semantics involve
the manipulation of second-order objects, such as heaps and teams, by first-order syntax
without reference to second-order variables. Moreover, these semantical objects are closely
related; it is for instance obvious that a heap, i.e. a partial function h: A — AF, can be
seen as a team with variables x,y1, ..., yx satisfying the atom that ¥ depends on x. Even
more strikingly, the separating conjunction of separation logic is (essentially) the same as
the team-semantical disjunction; moreover several notions of implications have been studied
for team semantics, so it seems natural to interpret also the magic wand in this context.
Based on such similarities, the possible connections between separation logic and team
semantics have been raised as a question at several occasions, and lead to informal discussions
between these research communities. The objective of this paper is to make this connection
precise, and to study its potential but also its obstacles and limitations. We remark that
the point of connecting separation logic with team semantics is not just expressive power.
Actually, both separation logic and the logics with team semantics that we need here can
readily be embedded into second-order logic (SO), and it is not difficult to see that they
indeed essentially have the full power of SO. But going through second-order logic does not
provide informative and compositional translations between these frameworks, and would
thus produce only very limited insights. Rather we aim for a natural set of team-semantical
operators that admit us to construct a faithful, complete and compositional representation
of separation logic into a suitable logic with team semantics.

At least when we consider logics of dependence and independence in their standard format,
there are also important differences to the framework of separation logic. This standard
format is based on a collection of atomic dependencies on teams, typically dependence,
inclusion, exclusion and/or independence, together with the usual first-order literals, and
extends these by conjunction, disjunction, existential and universal quantifiers. In particular,
these logics are not closed under negation, which is the first essential difference to separation
logic. In fact, in logics of dependence and independence, negation is applied only to first-order
atoms, not to dependencies or to compound formulae. Although one can define, for any
formula ¢, a kind of negation ¢, its meaning is not the same as the classical negation and,
in particular, the law of the excluded middle (tertium non datur) does not hold, not even
for atomic formulae. A second relevant issue is the empty team property of these logics:
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every formula whatsoever is satisfied by the empty team. This is a source of some technical
difficulties in translations from separation logic to logics with team semantics, and excludes
in particular the representation of the empty heap by the empty team.

Team logic for separation logic. To make translations from separation logic into team
semantics possible, we consider the syntactic extension of separation logic by the dual
connectives to the separating conjunction and the magic wand, the separating disjunction
1 o i and the septraction 1 —o ¢, so that we can write all formulae of separation logic in
negation normal form. This is a conservative extension that does not change the expressive
power of the logic. We then discuss which of the ingredients of logics with team semantics
are needed for achieving the expressive power of separation logic, and in particular, how the
standard framework should be extended so that all of separation logic can be translated in
a natural way. Of specific importance for the the translation that we propose are the non-
emptiness atom NE, the uniform quantifiers 3! and V!, classical and dependent disjunctions
and the intuitionistic implication. Although these operators are not part of what we call the
standard framework of logics of dependence and independence, they have been studied quite
thoroughly in team semantics, for instance in [2, 7, 12, 20].
Nonemptiness: A =x NE if X # @.
Finiteness: 2 |=x Fin(z) if X () is finite.
Equiextension: 2 =x Z7 if X(7) = X (7).
Classical disjunction: 2 =x o U9 if A =x ¢ or A j=x .
Uniform quantification: These are the usual quantifiers of FO, lifted to the team level:
A Ex F'zp if A Ex(ps{ay @ for some a € A, and
A E=x V'ap if A Expp(ay @ forall a € A

Dependent disjunction: 20 =x ¢ Yz % if there is a disjoint decomposition X = X; U Xy

satisfying 2 =x, ¢ and A =x, v such that for all 5,8’ € X, if s € X; and s(T) = §'(T)

then also s’ € Xj.
Intuitionistic implication: 2 Ex ¢ — ¥ if, for all teams Y C X with 2 =y ¢, also A =y .

We remark that in dependence logic, i.e. first-order logic with dependence atoms dep(T;7)
some of these connectives are expressible. The addition of NE, classical and dependent
disjunctions, and the uniform quantifiers produces an expressively modest extension of
dependence logic that remains inside the existential fragment of second-order logic. The
further addition of the intuitionistic implication ¢ — 1t changes this, but it is needed for
expressing the magic wand and the separating disjunction, which are universal second-order
connectives. We note that the finiteness atom (which is necessary when we consider finite
heaps that take values in an infinite structure) is easily expressible through dependence,
equiextension, and intuitionistic implication, by means of Dedekind-finiteness. To summarize,
the specific logic with team semantics that we are going to use for a compositional translation
of separation logic is defined as follows.

» Definition 1. Team logic for separation logic, abbreviated TLfSL, is the extension of
dependence logic by NE, U, V!, and the intuitionistic implication —. Note that 3%, dependent
disjunction, equiextension, and the finiteness atoms are definable in it, and will also be used.

From heaps to teams. We next discuss how the semantic objects for separation logic,
i.e. triples (2, b, s) consisting of a structure 2, a heap b, and an assignment s, should be
represented by the semantic objects in team semantics, i.e. pairs (8, X) consisting of a
structure B and a team X. We will then want to provide translations, mapping any formula

11
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¢ € SL (in negation normal form) to a formula ¢* € TLfSL such that, whenever (B, X)
represents (2, b, s), we have that 2, b =, ¢ if, and only if, B =x o*.

We start with the natural idea to view a heap h: A—g, A* as a team over the variables
T, Y1, .., Yk, and to represent a triple (2, h, s) by a pair (2, Y} ), leaving the structure 2
unchanged and expanding the team representing the heap by the values representing the
assignment s, to obtain an expanded team Yj ;.

» Definition 2. For a heap h: A—;,A* and an assignment s: {z1,...,2m} — A, the team
Yy s consists of all assignmentst: {z,y1,...ye} U {#1,...,2m} — A such that t(x) € dom(h),
t(y) = h(t(x)) and t(z;) = s(z;). Notice that the team Yy s fulfils the dependence atom
dep(z;y1,- .-, yx) and the constancy atoms dep(z1), ..., dep(zm).

Although Yy s is a natural representation of the pair (h,s), this idea is too simple to
work well. Any pair (h, s) where the heap is empty is represented by the empty team, so all
information about the assignment s is lost. Moreover, the standard logics of dependence and
independence have the empty team property, and even logics as strong as team logic, which
have classical negation (and hence do not have the empty team property) cannot express
anything useful about the given structure in the presence of the empty team [11]. To take
care of the problems arising with the empty team we add a dummy element § to 2 to obtain
the structure A° with universe A U {d} such that, for every relation symbol R € 7, we set
R¥ .= R¥ and for any function symbol f € 7, we let fm(s coincide with f® on all tuples
from 2(, and map all other tuples to §. We extend the vocabulary by a new constant symbol
¢ interpreting the dummy element and add a dummy assignment to the team.

» Definition 3. Given a structure A and some element § € A, a triple (2,4, s) is now repres-
ented by the pair (A%, Xy ;) where Xy ¢ 1= Yy s U{s’} with s°(z) = s°(y1) = - = s°(y) = 9
and 5°(z;) = s(z;) fori=1,...,m. Note that for any assignment s: {z1,...,2m} — A we
have that Xg s = {s°}.

Based on the presentation of triples (21, b,s) by (A%, Xy ¢) it is not difficult to translate
the first-order part of separation logic to the extension of dependence logic with the uniform
quantifiers 3' and V!, the classical disjunction LI, the non-empty split disjunction and the
non-emptiness predicate NE.

Splitting and extending heaps and teams. The translation of the separating conjunction
1 %  into team semantics requires that we are able to talk about splits of a heap h on the
level of teams X .. We do this by defining the formula

split(z, ¢) := [(¢ = SANE)V (¢ # 0 Adep(c) ANE)]A[(z = SA(NEY . NE))V(x # d Adep(z; c))].

For any triple (2, b, s) and any function F': Xy, ; — P+ (AU{0}), we have that 2° =y, s r)
split(z, ¢) if, and only if, there is an element a € A and a split (h,,bh,) of h such that
Xy slc— F] = Xy, s[c — 0] U Xy, s[c — a]. The separating conjunction is translated as

(pxtp)* = Hc(split(m,c) Alc=6Ap*)V(c#dN w*)))

We next discuss the translation of the septraction 1) — . Recall that 20, =5 ¢ — ¢
if there exists a disjoint extension b U §’ with 2, " 5 ¢ and 2,5 U b’ =4 . We have
to represent extensions of the given heap h by appropriate extensions of the encoding team
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Xp,s. We need a formula that says that a team Y, restricted to variables (x,7), correctly
encodes a heap. This is achieved by

k
heap(z,7) := dep(z;y) AFin(z) A (=6 AF=0 ANE) V (z # 6 A /\ Y #0)).
i=1

For a given formula ¢ of separation logic, and its translation to ¢* to a formula with
team semantics, let ¢*[u,?] be obtained from ¢* by renaming z,7 to new variables u, 7
(whereas the variables Z representing the assignment s are left unchanged). We now construct
a formula to talk about disjoint extensions of the given heap by a heap that satisfies .

Vext (T, 7, u, V) 1= ((ac =0 Aheap(u, ) A p*[u, D) V(e I Au=2 AT = y)) A dep(u; x)

The translation of ¢ —o 1 now asserts that 1 is true in some disjoint extension of the
given heap by a heap that satisfies ¢:

(¢ — )" = FuTv(pext (2, Y, u, V) A Y [u, 7]).

Translating the separating disjunction and the magic wand. We finally discuss the trans-
lation of the two connectives that involve a universal quantification about heaps. It is clear
that these are not definable in the existential fragment of second-order logic, and the natural
way to go is to extend dependence logic by the intuitionistic implication 1 — . But notice
that this is a quite different kind of implication than the magic wand, and the translation is
far from obvious. Recall that

2, b s o — 1 < for every heap b’ with h#b" and 2, b’ =, 1, also A, (h U b) Es ¢
A Ex ¢ = 1 < for every subteam Y C X with 2 =y ¢, also A =y ¢

where h#h’ means that h and §’ are disjoint, i.e. dom(h) Ndom(h’) = @.

We start with the idea to use a universal variant of the translation of septraction, i.e.
VUV (exs (2,7, u, T) — 1*[u,T]). Intuitively, in the evaluation of this formula over Xy g, the
universal quantification generates a team Y that represents a maximal extension of the given
heap h. The implication then says that all subteams of Y that represent an extension by a
heap b’ that satisfies ¢ must also satisfy . But this is not really correct, because left side of
the implication can also be true for subteams that do not contain all the data present in
b i.e. represent an extension not of b, but of some subheap. We thus have to restrict the
left side of the implication so that it talks only about those subteams that contain the full
information of the team Xy ;. To achieve this, we construct a formula in two variables z, z’
that enforces a cyclic permutation of the values of z in the team. We set

cycle(z,z') := x a2’ Adep(z;2') Adep(a’;z) A (z <2’ — ((x =5 ANE) V o # 9)).
A finite team Z with dom(Z) = {z,2'} is a model of cycle(x,2’) if, and only if, there
is a cyclic permutation (ag,...,am-1) of Z(z) = Z(a') such that Z = {so, ..., -1} with

si(z) = a; and s;(2') = @i} 1(moa m)- As a consequence, if Y C Z is a non-empty subteam of
such a model with |y z <12’ then Y = Z. We then translate the magic wand ¢ — ¢ by

(o —ap)* := 32’ (cycle(m, &) AVuVT((NEA &> 2’ A exe (2,7, u, D)) — w*[u,i]))

13
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For the translation of the separating disjunction ¢ o, a similar idea is used, based on

the formula split(z, c). We put

(poth)* := 3 (cycle(m, a') AVe((NE Az <z’ Asplit(z,c)) —

(((c=5A<p*)vC7A5)u((C7A5A¢*)vC=5))).

We summarize our findings:

» Theorem 4. There is a compositional translation that maps any formula ¢ € SL into a
formula ¢* € TLESL such that (A,h) =5 ¢ <= A° Fx,. ©", for every triple 2, b, s.
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First-order inquisitive logics of finite width
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Inquisitive pair semantics (previously known as inquisitive semantics) is a formalism introduced
by Groenendijk to study logical relations between statements and questions ([7]). Mascarenhas
gave a complete axiomatization for the corresponding propositional logic InqL and showed that
this can be regarded as an pseudo-intermediate logic ([8]). Later, Sano presented a cut-free
Gentzen-style calculus for InqL ([9]).

Ciardelli and Roelofsen introduced (what is now called) inquisitive semantics by generalizing
the inquisitive pair semantics of Groenendijk ([5]; see also [4] for the state-of-the-art in the
topic). This semantics allows to capture the inquisitive content of some complex questions, not
correctly represented by the previous system (see for example [1, Ch. 5]). In [5] the authors
proved that IngB—the propositional logic corresponding to this generalized semantics—is also
an extension of intuitionistic logic and gave a complete axiomatization for it. InqBQ, a first-
order version of IngB, was later introduced in [2] and it is still an open problem whether this
logic is axiomatizable.

The precise connection between IngL and IngB was first explored Ciardelli in [1, Ch. 6].
There the author introduced a 2D-chain of logics (IngB,,), .y, converging to IngB—that is,
IngB = [,y IngB,,—among which also inquisitive pair logic appears: InqL = IngB,. More-
over, building on the results of Mascarenhas, it was shown that these logics are all finitely
axiomatizable.

Following the same approach, in [10] Sano defined a 2-chain (IngBQ,,),, . of first-order logics
bounded by IngBQ, among which IngBQ, can be regarded as a first-order version of InqL. In the
same paper, Sano axiomatized IngBQ, by adapting the canonical model completeness technique
for first-order intuitionistic logic with constant domain CD [6, Sec. 7.2]. Two questions were left
open in Sano’s paper: whether the other elements of the chain are axiomatizable, and whether
first-order inquisitive logic is the limit of this chain: we tackle exactly these two questions.

Firstly, we present the family of formulas {C,,},¢en, characterizing the classes of models of
bounded finite size—that is, the classes of models defining the logics IngqBQ,,. Then we show
that InqBQ is not the limit of this chain, by exhibiting a formula in (), .y IngBQ, ) \ IngBQ.
Finally, we give an explicit strongly complete axiomatization for every logic IngBQ,,, using the
formula C,,. Interestingly, this completeness proof also relies on the canonical model proof for
the logic CD, but it is completely based on a semantical analysis of this model, in contrast with
the proof-theoretic approach of Sano and Mascarenhas.

Background

For brevity and to simplify the presentation, we will only work with the first-order signature
¥ = {P} (counsisting of only a unary predicate symbol P) in a language without the equality
symbol. All the results here presented can be easily adapted to finite signatures in the language
with equality. The syntax of IngBQ is given by the following grammar:

¢ u= P@)|Lllerglevele—e|Vp|Ire
We also introduce a shorthand for negation, defined as - := ¢ — L.

An information model—used to interpret formulas of IngBQ—is a tuple M = (M, |w € W),
where W is a set (the worlds of M) and each M, is a first-order structures over the same
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M,sFy P(z) <= VYw€s.g(x) € P,
w w | w’ M,sk, L = s=0
M;sEgp At <= M,sF, pand M,sF,
M, sFg VY = M,sF por M,skg ¢
b| | [ u M, sy @ — b=Vt C s [M itk o= Mty ]
M,skE g Vz.p <= Vde DM M,s Folwmrd]
M, sk, Tz <= 3de DM M, s Fylod ¢

a | | ]

(a) An example of information model.
The domain is D = {a,b} and the set
of worlds is W = {w,w’,w"}. The ex-
tension of P is represented by the black  (b) The semantics of IngBQ. In the clauses, g is an assign-
boxes: for example a € P, and a ¢ P,». ment with values in D.

domain D (the domain of M). Additionally we require the structures M, to be pairwise
distinct, that is, to have pairwise distinct interpretations of the symbol P; we will indicate with
P,, the extension of P in M,,. An example of information model is depicted in Figure (a).

Formulas of IngBQ are evaluated over pointed models, that is, pairs (M, s) consisting of an
information model M and a set s C W—we call s an information state of M. The semantics
of IngBQ is presented in Figure (b). We define as usual the corresponding logical consequence
relation: we indicate with ® F ¢ that for every pointed model (M, s), if M, s E ¢ for every
@ € @ then M, s F 1.

A chain of first-order inquisitive logics

In [10], Sano defined a chain of inquisitive-like logics by restricting the semantics to the classes
of pointed models { (M, s) | #s < n}. We introduce a generalization of this hierarchy.

Definition 1. Let A be an arbitrary cardinal. We define InqBQ_, as the logic of the class of
pointed models { (M, s) | #s < A }, that is, the set of formulas valid in all the pointed models
in { (M, s) | #s < X }. Moreover, we define InqBQ, as a shorthand for IngBQ_,; (where AT
indicates the cardinal successor of \).

As previously mentioned, IngBQ,—that is, the logic of information states with at most two
worlds—coincides with first-order inquisitive pair logic introduced and axiomatized by Sano.
We will call the logics IngBQ,, for n € N inquisitive logics of finite width. Clearly InqBQ_, 2
IngBQ_,, for every A < &; for A and « finite, we can prove that the containment is strict.!

Lemma 2. Consider the formulas recursively defined as follows:
n
Cy :=Va.(P(x)WV-P(x)) Cpyq = 3. \\/ [(P(x) = C) AN (—=P(z) = Chy1_s)
i=1

Then a pointed model (M, s) satisfies C,, iff #s < n.

Proof. We prove this result by strong induction on n. The case of C; is simple, since a pointed
model (M, s) satisfies the formula iff every world of s agrees on the extension of P; since the
structures in M are required to be pairwise distinct, the latter condition is equivalent to #s < 1.

As for the inductive step, fix a pointed model (M, s). Firstly, suppose the model satisfies
C,,. Then there exists an element d and a value k € [1,n — 1] such that M, s E P(d) — C}, and
M, sE =P(d) — C,,_;. By the inductive hypothesis, the statements are equivalent to the two
conditions st :=#{wes|deP,}<kand s":=#{wes|d¢ P, } <n—k; and since
s =sT Us™, it follows that #s < n.

Secondly, suppose #s < n. If #s = 1, then the statement is easy to verify; so suppose
that #s > 1, that is, that there exists an element d and two worlds w,w’ € s such that

I This result also follows from the corresponding result for the propositional case ([1, Proposition 4.1.8]).

17
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d€ P, \ P, . Defining s™ and s~ as above, it follows that w € st \ s~ and w’ € s~ \ s; and
since n = #s = #st + #s~, we have that #s1,#s~ € [1,n —1]. By defining k := #s™ and by
inductive hypothesis, we obtain M, s F P(d) — C;, and M, s F ~P(d) — C,,,1_4, from which
M, sk C,, . easily follows. O

Corollary 3. C,, € IngBQ,, \ IngBQ,, ;.

An interesting property of the propositional inquisitive hierarchy is that IngB = (),, IngB,,, that
is, IngB is the limit of the chain (IngB, |n € N) (1, Corollary 4.1.6]). This is not the case for
the first-order version of the hierarchy.

Proposition 4. (), .y IngBQ,, = IngBQ_y 2 IngBQ.

Proof. The equality on the left and the containment on the right follow by definition of IngBQ,,
and IngBQ <R To prove that the containment is strict, we introduce the following formula:

Pe:=Va,y.[ (P(x) » P(y)) V(P(y) = P(2))].

To analyze Pc, we need to introduce a special kind of information models: We call a pointed
model (M, s) a P-chain if the relation < defined as w < w’ iff P, C P, is a total order on
s. We want to show that the formula Pc is satisfied by a pointed model (M, s) iff (M, s) is a
P-chain. Firstly, suppose that M, s ¥ Pc. Let a,b be elements such that M, s ¥ P(a) — P(b)
and M, s ¥ P(b) — P(a). Both formulas are \-free and 3-free and so they are flat.> Thus
there exist two worlds w, w’ such that

M, {w} E P(a) M,{w} ¥ P(b) M {w'} E P(a) M, {w'} E P(b) (1)

In particular, w and w’ are incomparable under <, and so < is not a total order.

Secondly, suppose that (M, s) is not a P-chain. So there exist two incomparable worlds
w,w’ under <; which in turns means there exist two elements a, b for which the relations in 1
hold. But from this it follows immediately that M, s ¥ Pc, as wanted.

Given this property, the reader can easily verify that the formula v := Pc — 3x.[P(x) — O]
is valid over models with finitely many worlds; but that there exist infinite P-chains that do
not validate 1. O
So this shows that IngBQ is not the limit of the inquisitive logics of finite width, unlike in the
propositional case. However, it is still true that InqBQ = InqBQ_, for some cardinal A > Ry,—
we just need to take A := min{ #s| M, s ¥ ¢ }. This leads to the following question,
which is currently open.

¢¢TnqBQ

Open question 5. Is IngBQ equal to IngBQy, the logic of countable information states?

To recap: indicating with CQC classical first-order logic, for a certain uncountable A we have

CQC = IngBR; 2 IngBQ, 2 IngBQ;... 2 IanQ<NU D IanQ<A = InqgBQ

= = = =

Axiomatizing inquisitive logics of finite-width

We focus now on the inquisitive logics of finite-width. As noticed in Lemma 2, C,, characterizes
exactly the models with at most n worlds. This suggests the axiomatization in Figure (c) for
the logic InqBQ,, (compare with the axiomatization for IngBQ proposed in [3, Ch. 4]). Our aim
is to prove that this axiomatization is strongly complete, and to do so we will treat IngBQ,, as
a first-order intuitionistic theory. The result that allows us to do so is the following:

Proposition 6 (Immediate Corollary of Proposition 6.6.11 of [1]). Consider a first-order in-
tuitionistic Kripke model A (1) with constant domain, (2) based on a frame of the form

2Recall that a formula ¢ is called flat if M, s F ¢ iff Vw € s. M, {w} F ¢. See [3, Proposition 4.1.9] for a
proof that \-free and 3-free formulas are flat.
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Axioms of IQC (intuitionistic first-order logic)  CD schema: Va.(p\W 1) — (Vz.p W) for & not free in 3

Modus Ponens Rule: ¢, — /¢ KP schema: (—¢ — 9V x) = (m¢ = ¥) V(=¢ — X)
UP schema: (—¢ — Jz.9) — Jz.(mp — ¢) DNE axioms: ——a — « for o W-free and 3-free
for x not free in ¢ C,, formula

(c) Hilbert-style axiomatization for IngBQ,,.

(P(W)\ {0},D) (for W an arbitrary set) and (3) satisfying the DNE axioms. There exists
an information model M with set of worlds W such that M FE ¢ iff NI .3

The strategy of the proof consists in studying IngBQ,, as a theory in N§, the canonical model
of the superintuitionistic logic CD + KP + UP over a countable domain A ([6, Sec. 7.2]). Recall
that A§ is the constant-domain intuitionistic model, whose domain is A; whose points are the
saturated theories in the signature X[A] (that is, ¥ extended with a constant symbol @ for
every element a € A) ordered by inclusion; and in which the extension of P is defined by the
clause [P(a)] = {T'|P(a) € T'}. The defining property of the canonical model is that, for every
sentence in the signature X[A], N§, T F p iff p € T

Given a theory I' in N§, we will indicate with Er the set of endpoints of N§ that are
successors of I'. We can show that the rooted submodel of N§ having as root a theory I' D
IngBQ,, has the properties (1-3) listed in Proposition 6, and so I is the theory of an information
model with at most n worlds. Property (1) follows from the definition of canonical model and
Property (3) follows from IngBQ, C T', so the non-trivial part is showing that Property (2)
holds. The following are the main technical results needed for the proof.

Proposition 7. Let T" be a theory in N§ extending
DNE, := { ~—ala/Z] — ala/z]|a@ € A and \v and 3 not appearing in « }
Then I' has at least one successor which is an endpoint of N§.

Lemma 8. Let T be a theory in N§ extending DNE 4 such that N§,T'IF C,,. Then #Er < n.

Lemma 9. Let I" as in Lemma 8 and let E be a non-empty set of endpoints above I'. Then
there exists a point © successor of I' such that Fg = E.

As a proof of concept, we detail the proof of Lemma 8.

Proof of Lemma 8. The proof proceeds by strong induction over n. For n = 1, we have
N, T Ik Va.(P(z) WV —P(z)), that is, for every element a € A in the domain of the model we
have N§,T' I P(a) or N§,T' |- =P(a). This is possible iff I is itself an endpoint of the canonical
model, from which the thesis follows. As for the inductive step, suppose N§,I' I C,,. We are
going to find formulas a, . .., a, such that (1) every endpoint of N'§ satisfies exactly one among
them and (2) N§,T IF a; — C; for every i € [1,n]. From these two properties, the inductive
step follows easily. Let us start by unpacking the condition N5, T I+ C,,:

NS, TIF 3z VEH(P(x) — C;) A (=P(z) — C,_y)]
(for some ag € A, kg <n—1) = N{,TIF P(ag) = Cy, and M4, T Ik =P(ag) = C,_y,

Notice that every endpoint of N§ satisfies exactly one among the formulas P(aq) and —~P(ag).
If kg = 1 we define a; := P(ag); otherwise we proceed unpacking the formula Cy, :
N TIF P(ag) = Fz. ;0 H[(P(x) = C)) A (=P(x) = Cy,y )]
(by DNE, UP and KP) = NS, T I3z Vi [(Plag) A P(z) = C;) A (Plag) A —~P(x) = Cy, ;)]
N§.T I P(ag) A P(agy) = Cr,,

for some agg € A, koo < k —
( 00 00 < ko) { NG, T I P(ag) A =P(agg) = Cry—y,

3JF indicates the usual intuitionistic forcing relation. W and 3 are treated as intuitionistic disjunction and
existential quantifier under I-.
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Similarly, if n — ky = 1 we define a,, := —P(ag); otherwise we can unpack C,_j and find
ag1 € A and kOl S [1, n — ko] such that

NX,P I+ _‘P(ao) A\ P(G’OI) — Ckol and Nﬁ,l—‘ I+ _|P(a0) A\ _|P(a01) — C(n—ko)—km

Notice that every endpoint of N§ satisfies exactly one among the formulas P(ag) A P(ag),
P(ag) AN—P(ayy), 7P(ag) A P(ag;) and —=P(ag) A ~P(ag;). By proceeding recursively with this
“unpacking” procedure we can find a sequence of formulas satisfying properties (1) and (2).*

O
The previous results entail that the subframe generated by T is isomorphic to (P(Er) \ {0}, 2)
and so, by Proposition 6, I" is the theory of an information model with at most n worlds. This
can be refined in the following proposition, which in turn allows to prove the completeness
result.

Proposition 10. Given a finite set E of endpoints of N, there exists a unique theory I'
extending DNE 4, and such that Er = E. Moreover, this is the theory of an inquisitive model
with #FE worlds.

Theorem 11. The axiomatization proposed is strongly complete for InqBQ,,.

Proof. We will indicate with t,, the consequence relation for the system proposed in Figure (c),
and with F; the consequence relation for the superintuitionistic logic L := CD 4+ KP 4 UP.
Let ® U {¢} be a set of formulas and suppose that ® ¥, 1. By definition of I, this is
equivalent to PUDNEUC,, ¥, 1. By [6, Lemma 7.2.3], this means that there exists a countable
set of parameters A and a saturated theory I' in A'§ such that PUDNEUC,, CT and ¢ ¢ I'. In
particular, by Lemma 8 # FEr < n; and by Proposition 10 this means that I' is the theory of an
information model with at most n worlds, meaning this model satisfies all the formulas in ® and

does not satisfies 1. This amounts to the strong completeness of the system for InqBQ,,. O
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1 Introduction

Decision problems in general ask for the existence of a solution to some problem instance.
In contrast, for enumeration problems we aim at generating all solutions. For many—or
maybe most—real-world tasks, enumeration is therefore more natural or practical to study;
we only have to think of the domain of databases where the user is interested in all answer
tuples to a database query. Other application areas include web search engines, data mining,
web mining, bioinformatics and computational linguistics. From a theoretical point of view,
maybe the most important problem is that of enumerating all satisfying assignments of a
given propositional formula.

Clearly, even simple enumeration problems may produce a big output. The number
of satisfying assignments of a formula can be exponential in the length of the formula.
In [9], different notions of efficiency for enumeration problems were first proposed, the
most important probably being DelP (“polynomial delay”), consisting of those enumeration
problems where, for a given instance x, the time between outputting any two consecutive
solutions as well as pre- and postcomputation times (see [13]) are polynomially bounded
in |z|. Another notion of tractability is captured by the class IncP where the delay and
post-computation time can also depend on the number of solutions that were already output.
The separation DelP C IncP was mentioned in [14], although one should note that slighlty
different definitions were used there. Several examples of membership results for tractable
classes can be found in [11, 10, 4, 2, 1, 5]. As a notion of higher complexity, recently an
analogue of the polynomial hierarchy for enumeration problems has been introduced [3].
For this DelC' (for a decision complexity class C') was defined as the class of enumeration
problems that can be enumerated by a machine M with access to an oracle L € C' with
polynomial delay and polynomially bounded oracles queries. For proving hardness a new
reducibility notion was introduced. The enumeration problem E; reduces to enumeration
problem FEy via D-reductions (E; <p Fj3), if there is a machine that enumerates E; that has
access to an Fs-oracle with polynomial delay. Lower bounds for enumeration problems are
obtained by proving hardness under D-reductions in a level 3} of that hierarchy for some
k > 1 and are regarded as evidence for intractability.

Here, we consider enumeration tasks for first-order-team-based logics with the inclusion
(C), the dependence (=(...)) and the independence (L) atom with lax semantics. We assume
the reader to be familiar with team-based logics.

For a fixed first-order formula and a given input structure, the complexity of the problem
of counting all satisfying teams has been studied by Haak et al. [8], where completeness
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for classes such as # - P and # - NP was obtained. In the enumeration context, and in
analogy to the case of classical propositional logic as above, it is now natural to ask for
algorithms to enumerate all satisfying teams of a fixed formula in a given input structure.
Enumerating teams for formulas with the above mentioned dependency atom thus means
enumerating all sets of tuples in a relational database that fulfil the given Boolean combination
of FO-statements and functional dependencies. In this paper, we consider this problem and
initiate the study of enumeration complexity for team based logics. Notice that, the task
of enumerating teams has been considered before in the propositional setting by Meier and
Reinbold [12].

We study the problems of enumerating all satisfying teams (E—SATf;am) or certain
optimal satisfying teams, where optimal can mean maximal (E—MAXSATffam) or minimal
(E—MINSATffam) with respect to inclusion or maximum (E—CMAXSATffam) or minimum
(E-CMINSAT ™) with respect to cardinality.

Problem: E-SaT{™™, for ¢ € FO(A), for A C {=(...),C, 1}
Input: Structure A
Output: {X|AEx oAX £0}

Our results are summarised in Table 1 on p. 5. It is known that in terms of expressive
power dependence logic corresponds to the class NP. Hence, one cannot expect efficient
algorithms for enumerating teams, and in fact, we prove that the problem is DelNP-complete
(i.e., Del¥}-complete) in all variants (enumerating all or optimal satisfying teams). Analogous
results hold for independence logic. Inclusion logic, however, in a model-theoretic sense is
equal to the class P (at least in lax semantics) [7]). Consequently, inclusion logic is less
expressive than dependence logic over sentences (under the assumption P # NP). While this
is not the case over open formulas, the picture in the enumeration context mostly reflects
the situation over sentences: We prove that for each inclusion logic formula, there is a
polynomial-delay algorithm for enumerating all satisfying teams in a given structure. This is
also true when we want to enumerate all maximal, minimal, or maximum satisfying teams.
Interestingly, enumerating minimum satisfying teams is DelNP-complete, as for the other
logics we consider.

2 Results

We start with our results for the class DelP. All those results are for inclusion logic and
rely on the fact that MAXSUBTEAM—the problem to compute the maximal subteam of a
given team satisfying a given inclusion logic formula in a given structure—is computable in
polynomial time [7]. Note that in inclusion logic there is a unique maximum satisfying team
due to union closure.

Problem: MAXSUBTEAM
Input: Structure A, formula ¢ € FO(CQ), team X
Output: X' with AEx pAX ' CXAVX" CX: | X" > |X'|= Axr ¢

» Theorem 1. Let ¢ € FO(C). Then E-SATS ™™, E-MINSATS*™, E-MAXSATS ™™,
E-CMAXSATS*™ € DelP.

Proof. We will show this result for E—SATf;’am. The proofs for all other cases can be found
in the full version of the paper. We construct a recursive algorithm with access to a
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MAXSUBTEAM oracle that on input (A, X,Y") enumerates all satisfying subteams X’ # ) of
X with Y C X’. To compute for a given A all satisfying subteams, we then need to run this
algorithm on input (A, dom(A)free(®)l ().

Algorithm 1: Algorithm used to show E—SATffam € DelP for p € FO(C)

1 Function EnumerateSubteams (structure A, teams X,Y)
2 X = MAXSUBTEAM(A, X)

3 if X£A£0AY C X then

4 output X

5 for s € X do

6

7

Y={s]|s<sAns X}
EnumerateSubteams(A4, X \ {s},Y)

The algorithm does not output any solution more than once. In the recursive calls, it only
outputs solutions where at least one assignment is omitted from the maximal solution, which
is the only solution output before. Also, when the assignment s is chosen in the for-loop,
the next recursive call only outputs solutions that omit s, but contain all assignments s’ < s
that were present in X. In contrast, in every solution found in previous recursive calls, at
least one of the assignments s’ < s from X was omitted. On the other hand, the algorithm
outputs every solution at least once. Every solution is a subset of the maximal satisfying
subteam of X and the algorithm starts with that maximal solution and then recursively looks
for all strict subsets of it. This can be seen by noticing that when choosing the assignment s
in the for-loop, the next recursive call outputs all satisfying subteams of X that exclude s,
except for those that also exclude some s’ < s from X and were hence output before. <

Next we show that for certain formulas the problem E—SATffam captures the class DelNP.

Moreover, we will extend this result to all remaining cases, that is, all combinations of logics
and problems we did not classify already.

» Theorem 2. Let A C {=(...),L}. There exists a formula ¢ € FO(A) such that the problem
SATffam is NP-hard. Hence, the problems E—SATffam,E—MAXSATZ,&W,E—Cl\/IAXSATff'“““7
E—MINSATffam, E—CMINSAT:fam are DelNP-hard.

For the next result, we need the model checking problem for first-order team logic
formulas in the setting of data complexity (fixed formula) defined as follows: The problem
VERIFYTEAM,, is the problem to decide, given a structure .4 and team X, whether X is
non-empty and A Ex . This problem is contained in NP for the dependence, inclusion and
independence logic.

» Lemma 3. Let AC {L,C,=()}, p € FO(A). Then VERIFYTEAM,, € NP.

» Theorem 4. Let A = {1,=(...),C}, ¢ € FO(A). Then B-SAT ™™, E-MAXSAT ™™,
E-CMAXSAT™™, E-MINSAT ™™, E-CMINSAT ™™ € DelNP.

Proof. We again give a proof for E—SATt;am (the proofs for all other cases can be found in

the full version of the paper). We give a recursive algorithm enumerating E—SATZ;am with
polynomial delay, when given oracle access to EXTENDTEAM,, (for definition see below) and
VERIFYTEAM,,.

Problem: EXTENDTEAM,
Input: Structure A, team X, set of assignments Y’
Question: {X'|AEx oAXCX' AX'NY =0} #0?
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EXTENDTEAM,, € NP for all p: A team X' is guessed and X C X’ A X' NY =0 can be
checked in polynomial time. Finally, A [Ex+ ¢ can be decided in NP by Lemma 3.

We now construct an algorithm that gets a structure A and a team X as inputs and out-
puts all satisfying teams X’ with X C X’ and X'\ X C {s € dom(A)/¢)! | 5 > max(X)},
that is, X’ only contains new assignments that are larger than the largest assignment in
X. For this to work for X = (), we define max(f}) to be the empty assignment. The
algorithm searches these teams X’ by using recursive calls where exactly one assignment
s > max(X) is added to X. By design, the recursive call where s’ is added only out-
puts teams that contain s’ and no assignment between max(X) and s, ensuring that no
team is output twice. To get all satisfying teams we run the algorithm on input (A, ).

Algorithm 2: Algorithm used to show E—SAT:fam € DeINP for ¢ € FO(A)

1 Function EnumerateSuperteams (structure A, team X )

2 Y = Us<max(X)/\s€X 8

3 | if X # 0 A VERIFYTEAM, (A, X) then output X
4 if EXTENDTEAM, (A, X,Y) then

5 forall s > max(X) do

6 L L EnumerateSuperteams(A, X U {s})

Problem: CMINSATf{,Cam
Input: Structure A,k € N
Question: {X | AEx o A|X| <k} #0?

» Theorem 5. There is a formula ¢ € FO(C) such that CMINSATf:am is NP-hard. Hence,
E—CMINSATff‘”” is DelNP-hard.

» Corollary 6. Let £ = {E-SAT, E-MAXSAT, E-CMAXSAT, E-MINSAT, E-CMINSAT}.

1. For all E € £ and ¢ € FO(A) with A C {L,=(...),C} ES*™ is in DelNP.

2. There are formulas 1 € FO(=(...)),p2 € FO(L), ¢35 € FO(Q) such that for all E € £
the problems Efffm, Effjm and E—CMINSAT:f:m are DelNP-complete.

By Corollary 6 we get a characterization of the class DelNP as the closure of the mentioned
problems under the enumeration reducibility notion.

3 Conclusion

In Table 1, we summarise the complexity results we obtained in this paper. We completely
classified all here considered enumeration problems and obtained either polynomial-delay
algorithms or completeness for DelNP.

There are some open issues that immediately lead to questions for further research. First,
all our results are obtained for a certain fixed set of generalised dependency relations. Our
selection was motivated by those logics found in the literature, but essentially arbitrary. It
will be interesting to see whether other atoms or combinations of atoms lead to different
(higher?) complexity.

Also, there is a notion of strict semantics (see, e.g., the work of Galliani [6]). Our results
do not immediately transfer to strict semantics, therefore it would be interesting to study
the enumeration complexity of team logics in strict semantics.
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C =(...) €L
E-SAT € DelP DelNP-complete  DelNP-complete
E-MaAXSAT € DelP DelNP-complete  DelNP-complete
E-MINSAT € DelP DelNP-complete  DelNP-complete
E-CMAXSAT € DelP DelNP-complete  DelNP-complete

E-CMINSAT  DelNP-complete  DelNP-complete  DelNP-complete

Table 1 Summary of obtained complexity results

Maybe even more interesting is the extension of the logical language by the so called

strong (or classical) negation (our logics only allow atomic negation). It is known that with

full classical negation, many generalised dependency atoms can be simulated (in modal logic,

negation is even complete in the sense that it can simulate any FO-expressible dependency).

We consider it likely that enumeration problems for logics with classical negation will lead us
out of the class DelNP and potentially even to arbitrary levels of the hierarchy.
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Abstract. We study an adaptation of inclusion logic to probabilistic team seman-
tics which is a novel framework for studying logical and probabilistic dependencies
simultaneously. In terms of its computational properties we show that the data
complexity of probabilistic inclusion logic is in polynomial time. We also consider
probabilistic inclusion logic extended with dependence atoms, and show that this
logic is strictly less expressive than probabilistic independence logic but captures
a natural additive fragment of existential second-order logic, which in turn col-
lapses to non-deterministic polynomial time over sentences. We also investigate
the axiomatic properties of marginal identity atoms, and compare our findings to
the axiomatization of inclusion dependencies well known in database literature.

1 Introduction

Team semantics is the semantical framework of modern logics of dependence and
independence. Introduced by Hodges [12] and adapted to dependence logic by Véininen
[16], team semantics defines truth in reference to collections of assignments, called
teams. Thus team semantics is particularly suitable for a formal analysis of properties,
such as the functional dependence between two variables, which only arise in the
presence of multiple assignments. In the past decade numerous research articles have,
via re-adaptations of team semantics, shed more light into the interplay between logic
and dependence. A common feature, and limitation, in all these endeavors has been
their preoccupation with notions of dependence that are qualitative in nature. That is,
notions of dependence and independence that make use of quantities, such as conditional
independence in statistics, have usually fallen outside the scope of these studies.

In contrast to earlier literature there has recently been a gradual shift toward quantita-
tive dependence in team semantics studies. Two parallel approaches have been identified.
In multiteam semantics formulae are evaluated against multisets of variable assign-
ments, called multiteams [4]. This approach, which is analogous to the bag semantics in
databases, centers attention to application domains in which the actual multiplicities of
values, and not just their ratios, are meaningful. Another approach comes from proba-
bilistic team semantics in which the basic semantic units are probability distributions,
called probabilistic teams. To be sure, the idea of adding a probability measure on a
team is not new, as first ideas of probabilistic teams trace back to the works of Galliani
[6] and Hyttinen et al. [13]. But a systematic study on the topic is quite recent. In [5]
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probabilistic team semantics was studied in relation to the dependence concept that is
most central in statistics: conditional independence. Mirroring [7,9,15] the expressive-
ness of probabilistic independence logic (FO(L.)), obtained by extending first-order
logic with conditional independence, was in [5,11] characterised in terms of arithmetic
variants of existential second-order logic. In [11] the data complexity of FO(LL.) was
also identified in the context of Blum-Shub-Smale machines [1] and the existential the-
ory of the reals. In [10] the focus was shifted to the expressivity hierarchies between
probabilistic logics defined in terms of different quantitative dependencies.

Of all the dependence concepts thus far investigated in team semantics, that of
inclusion has arguably turned out to be the most intriguing and fruitful. One reason is
that inclusion logic, which arises from this concept, can only define properties of teams
that are decidable in polynomial time [8]. In contrast, other natural team-based logics,
such as dependence and independence logic, capture non-deterministic polynomial time
[7,15,16], and many variants, such as team logic, have an even higher complexity [14].
Thus it should come as no surprise if quantitative variants of many team-based logics turn
out be intractable; in principle, adding arithmetical operations and/or counting cannot be
a mitigating factor when it comes to complexity. Indeed, it has been recently shown that
the data complexity of probabilistic independence logic over sentences is possibly even
higher than NP; it can be characterised in terms of a fragment of the existential theory of
the reals which is NP-hard but not necessarily in NP [11]. The least known upper bound
is PSPACE, as this is the least known upper bound for the full existential theory of the
reals [2].

In this paper we ask the following general question: what are the definability and
complexity properties of inclusion logic, if defined in quantitative terms. In team se-
mantics the inclusion atom x C y, for two variables x and y, expresses that each value
a of x also appears as a value of y. A quantitative variant of this atom is obtained by
considering a so-called marginal identity atom x ~ y, which states the probability (or
multiplicity) of x being a is the same as the probability (or multiplicity) of y being a,
for all possible values a [5]. Of the aforementioned two parallel approaches, our focus is
in probabilistic team semantics.

We make the following contributions. First, we show that the data complexity of
probabilistic inclusion logic (FO(a2)) over sentences is in P. Thus no complexity in-
crease, at the sentence level, is here effected by the introduction of quantities. In con-
trast, as stated above, whether independence logic is defined in terms of probabilistic
teams or plain teams bears a (possible) impact upon complexity. Second, we show
that probabilistic inclusion logic extended with dependence atoms (FO(=2, =(+))) cap-
tures an additive variant of existential second-order logic. Using this we also show that
FO(=, =(-)) over sentences corresponds to NP. Third, we show that FO(LL.) over
open formulae is strictly more expressive than FO(~, =(-)).* From [10] we already
know that FO(~, = (-)) is strictly more expressive than FO(=); the reason is that
marginal identity atoms, but not dependence atoms, are closed under so-called scaled
unions of probabilistic teams. Thus we obtain the following strict expressivity hierarchy:

# Results in the vein of the second and third item have been independently developed, but not yet

published, in the context of multiteam semantics. While our results are here similar, the proof
techniques are different.
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FO(~) < FO(~,=(-)) < FO(LL.). Fourth, we consider the axiomatic properties of
the marginal independence atom. That inclusion atoms enjoy simple sound and complete
axioms is well known from database theory [3]; we will investigate whether the same
axioms yield a complete characterisation of marginal identity atoms.

2 Preliminaries

2.1 Probabilistic team semantics

Let D be a finite set of first-order variables, A a finite set, and X a finite set of assign-
ments (i.e., a team) from D to A. A probabilistic team X is then defined as a function

X: X —[0,1]

such that ) __\ X(s) = 1. Also the empty function is considered a probabilistic team.
We call D and A the variable domain and value domain of X, respectively.

Let X: X — [0, 1] be a probabilistic team, A a finite non-empty set, p 4 the set of all
probability distributions d: A — [0,1], and F': X — p4 a function. We now define the
duplication and supplementation operations for probabilistic teams. We first introduce
the following useful notation:

X[A/z] .= {s(a/z)|se€ X,a€ A}.

Duplicate Team. We denote by X[A/x] the duplicate team X[A/x] — [0, 1] defined

such that )

X[A/a](s(a/x)) = > X() T
i =

ti(Vari\{z})=s[(Var1\{z})

for each a € A and s € X. Note that if x is a fresh variable then the righthand side of

the above definition is simply X(s) - ﬁ.

Supplement Team. We denote by X[F /x| the supplement team X[A/x] — [0,1]

defined such that

X[F/x](s(a/x)) = > X(t) - F(t)(a),
HH(Vars\{2})zs ] (Var\ {x})

for each a € A and s € X. Again, if z is a fresh variable, the righthand side of the above
definition can be simplified to X(s) - F'(s)(a).
Function Arithmetics. Let o be a real number, and f and g be functions from a
shared domain into real numbers. The scalar multiplication «f is a function defined by
(af)(x) := af(x). The addition f + g is defined as (f + g)(z) = f(x) + g(z), and
the multiplication fg is defined as (fg)(z) := f(x)g(x). In particular, if f and g are
distributions and « + 8 = 1, then a.f + [g¢ is a distribution.

We may now define probabilistic team semantics for first-order formulae. As is
customary in the team semantics context, we restrict attention to first-order formulae in
negation normal form.
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Definition 1. Let 2 be a T-structure over a finite domain A, and X: X — [0,1] a
probabilistic team of . The satisfaction relation [=x for first-order logic is defined as
follows:

AExx=y &Vse X :ifX(s) >0, then s(z) = s(y)
AExx#y @VSEX:ifX(s)>O,thens(x)7és()
AEx R(x) & Vse X :ifX(s) >0, then s(x) € R*
A x ~R(x) & Vs € X :ifX(s) > 0, then s(x) ¢ R*

AEx (YAD) & AEx Yand A l=x 0
AEx (YVO) e A=y and A =y 6 for some Y, Z,
a € [0,1] such that oY + (1 — )Z =X
AExVey & AExa/. ¥
Ax Iy & A g/l ¢ holds for some F: X — pa.

Note that, in the case for disjunction for non-empty X, o = 0 when Y is the empty team
and o = 1 when Z is the empty team, for X, Y, and Z need to be distributions or empty.

Probabilistic independence logic (FO(1L.)) is now defined as the extension of
first-order logic with probabilistic independence atoms y L, z whose semantics is the
standard semantics of conditional independence in probability distributions. Probabilistic
inclusion logic (FO(~2)), is obtained by extending first-order logic with marginal identity
atoms x ~ y which state that the marginal distributions on  and y are identically
distributed.

2.2 R-structures

In this paper we relate team semantics to structures that enrich finite relational structures
by adding real numbers (R) as a second domain sort and functions that map tuples over
the finite domain to R.

Definition 2. Let 7 and o be a finite relational and a finite functional vocabulary,
respectively. An R-structure of vocabulary T U o is a tuple

A= (AR, (B rer, (9™)geo),

where the reduct of 2 to T is a finite relational structure, and each g* is a function from
A*(9) 1o R,

In particular, our focus is on a variant of functional existential second-order logic
with numerical terms (ESOg) that is designed to describe properties of R structures. As
first-order terms we have only first-order variables. For a set o of function symbols, the
set of numerical o-terms ¢ is generated by the following grammar:

iu=c| f(x)|ixi|i+i]SUM,q,

where the interpretations of +, -, > are the standard addition, multiplication, and sum-
mation of real numbers, respectively.

29



Proceedings of LoDE 2020V

30

Definition 3 (Syntax of ESOg). Let T be a finite relational vocabulary and o a finite
functional vocabulary. Let O C {+, x,SUM}, E C {=, <, <}, and C C R. The set of
7 U o-formulae of ESOR|O, E, C| is defined via the grammar:

pu=x=yl-z=yliej|iej|R(x)|-R()|
GNPV G| Iz | Vae | IfY,

where i and j are numerical o-terms constructed using operations from O and constants
from C, and e € E, R € T is a relation symbol, f is a function variable, x is a tuple of
first-order variables, and 1 is a T U (o U { f})-formula of ESOR|O, E, C].

Note that the syntax of ESOg[O, E, C] allows first-order subformulae to appear only in
negation normal form, and the semantics of ESOgr[O, E, C1] is defined via R-structures
and assignments analogous to first-order logic in a standard way, but the existential
quantification of a function variable f ranges over all functions f: A**(/) — R. Fur-
thermore, given S C R, we define ESOg[O, E, C] as the variant of ESOg[O, E, C] in
which existential quantification ranges over h: A*(f) — .

Loose fragment. For S C R, define L-ESOg|O, E,C| as the loose fragment of
ESOgs[O, E, C] in which negated numerical atoms —i e j are disallowed.

3 Results

We show that the data complexity problem of probabilistic inclusion logic is in P via an
approach from linear systems.

Theorem 1 Let ¢ € FO(=) be a sentence. Given a structure 2, the problem of deter-
mining whether A |= ¢ is in P.

We show that FO(=2, =(-)) captures exactly those properties of probabilistic teams that
can be defined in loose additive ESO.

Theorem 2 Over open formulae, FO (=, =(-)) corresponds to L-ESOq [+, =,0,1].
Corollary 3 Over sentences, FO(~,=(-)) corresponds to NP.

In contrast, a recent result shows that FO(LL.) defines exactly those properties of
probabilistic teams that can be defined in L-ESOg 11+, x, =, 0, 1] [11]. Thus we can
show that FO(~,=(-)) < FO(.L.) over open formulae by considering properties
definable in corresponding variants of real arithmetics.

Theorem 4 Over open formulae, FO(=~, =(-)) < FO(LL.).
Finally, we consider the axiomatic properties of marginal identity atoms.

Conjecture 5 Marginal identity atoms have a finite sound and complete axiomatization
over probabilistic teams.
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1 Introduction

Semantic frameworks are commonly based on the notion of truth that is captured as a relation
between possible worlds and formulas. The team semantics for propositional dependence logic
(Yang and Véiidninen 2016, 2017) is based on the observation that propositional dependence
cannot be defined in terms of truth relative to single possible worlds. Above the layer of
possible worlds, one needs to add the extra layer of teams (sets of possible worlds) and define
dependency relations among statements relative to these teams. We have here an example of
a peculiar semantic relativity: While atomic statements are primarily evaluated with respect
to possible worlds, dependence statements are primarily evaluated with respect to teams. This
paper is motivated by the view that this kind of relativity is a more integral part of language
than it might seem and in order to capture it in full generality one should go beyond the two-
layered framework (involving just possible worlds and sets of possible worlds) and employ a
whole hierarchy of other types of semantic objects. These new semantic objects allow us to
capture higher-order dependencies as well as some tricky interaction between the dependence
operator and other logical operators.

In the next section, we will further elaborate on this idea and formulate two principles that
will govern our approach. The principles are formulated rather vaguely but their meaning is
illustrated with examples and they are embodied in a precisely defined formal semantics that
is introduced in the subsequent section.

2 Semantic relativity and syntactic sensitivity

The common logical approach to information can be called eliminative. Growth of information
is represented as elimination of possibilities. It is usually assumed that there is only one type of
“possibilities” that can be eliminated by a piece of information. In the most standard approach
these possibilities are called possible worlds. Thus, a body of information is usually modelled
as a set of possible worlds, those worlds that are compatible with the information (Bar Hillel
and Carnap 1964). This approach is sometimes (for example, by van Benthem and Martinez
2008) called Information as Range. We will call it Information as a Set of Possible Worlds, or
ISPW, for short.

More abstract frameworks that go beyond the ISPW approach to overcome its weaknesses
are related to the development of various relational semantics for non-classical logics such as
intuitionistic logic, relevant logic and other substructural logics (Kripke 1965, Wansing 1993,
Bimb6 2016). These logics are usually equipped with some generalization of the possible
world semantics. These generalized relational semantics typically replace possible worlds
with other kinds of entities, for example situations or information states. Let us use for these
generalized possible worlds a neutral generic term states. In contrast to possible worlds, states
may be partial or, in some cases, even inconsistent (e.g. in relevant logic).

I'Supported by grant no. 20-18675S of the Czech Science Foundation
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Even though these general frameworks overcome some of the weaknesses of the ISPW
approach, they typically share with it one important feature: There is only one type of infor-
mation that can be conveyed by all kinds of declarative sentences. In analogy to ISPW, where
every piece of information is associated with a set of possible worlds, in the relational seman-
tics of the mainstream non-classical logics every piece of information is associated with a set
of states of one particular kind (typically an upward closed set).

The general strategy to identify the informational content of a sentence with a set of states
of one particular kind is without doubt very powerful. It allows to capture some complicated
relations among sentences (e.g. entailment) via somewhat more perspicuous set-theoretic re-
lations (e.g. inclusion), which is analogous to Venn diagrams for Aristotelian syllogistic that
transform various relations among concepts into simple relations among sets. This approach
represents the informational contents of all declarative sentences as semantic objects of the
same kind. Such a uniform account of information is appealing and for some purposes it is
sufficient.

However, propositional dependence logic (Yang and Viddninen 2016, 2017), clearly shows
that there are statements that do not fit into such a simple picture. The propositions expressing
functional dependence of statements correspond semantically to sets of sets of possible worlds
rather than to simple sets of possible worlds. In other words, while an elementary statement p
primarily classifies possible worlds into those in which p is true and those in which it is false,
a dependence statement ¢ is functionally dependent on p (formalized as =(p,q)) primarily
classifies sets of possible worlds (usually called teams) into those that support =(p,q) and
those that do not support =(p,q).

In this paper, we would like to argue that such statements requiring a more complex seman-
tic representation are quite common in language and are not restricted to dependence claims.
For example, a modal statement of the form might p (formalized as ¢ p) can also be captured
as a classifier of sets of possible worlds. It classifies sets of possible worlds into those in which
p may be true (is true at least in one of its elements) and those in which it is false (it is false
in all its elements). One can observe that in both mentioned cases (dependence statements
and might-statements) the special informational character of the statement is determined by
an application of a particular logical operator.

So, the first claim, on which our paper is based, can be expressed in the form of the fol-
lowing principle that is partly reflected in the standard semantics of propositional dependence
logic.

Principle of semantic relativity: Different kinds of sentences may classify different kinds of
semantic objects. Moreover, this semantic diversity is generated by particular logical opera-
tors.

The second claim on which our paper is based can be, rather vaguely, expressed in the form of
the following principle:

Principle of syntactic sensitivity: The behaviour of logical operators is sensitive to the syn-
tactic features of the statements to which the operators are applied.

For example, consider negations of two statements that are of substantially different forms:

(A) It is not the case that p (formalized as —p),

(B) It is not the case that q is dependent on p (formalized as —=(p, q)).
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Negation in the first case operates primarily on the level of possible worlds. A natural semantic
clause is this:

(A)* —p holds (is true) in a world w iff p does not hold (is not true) in the world w.

It is then natural to expand this clause to the level of teams in the following way: —p holds in (is
supported by) a team X iff p does not hold (is not true) in any world of X. The situation seems
quite different in the second case. The statement (B) does not have natural truth conditions
relative to single possible worlds. It must be evaluated on the level of teams. Using the
setting of standard propositional dependence logic we obtain that the statements of this form
are contradictions, which seems rather unintuitive. Instead, we claim that a natural semantic
clause for (B) would be:

(B)* —=(p,q) holds in (is supported by) a team X iff =(p,q) does not hold in the team X.

In this case what negation negates is a global property of the whole team and not the local
property of its possible worlds. We can see that the form of the statement to which a negation
is applied affects the behaviour of the negation, in particular, the level on which it operates.
Similar effects can be observed for example in the case of disjunction.

Moreover, it seems that the operators that are responsible for the semantic relativity are
also syntactically sensitive. If the dependence operator is applied, for example, to two elemen-
tary statements p and ¢, it can be naturally evaluated on the level of teams. But what if it is
applied for example to two might-statements that are themselves team-relative. For example,
the claim

(C) might-q is functionally dependent on might-p (formalized as =(Op, 0q)),
or the claim
(D) g might be functionally dependent on p (formalized as O=(p,q))

are naturally evaluated on an even higher level. They seem to be relative to sets of teams. For
these cases, the following sematnic analysis would be adequate:

(©)* =(Op,0q) holds in a set of teams Z iff for any two teams X,Y € Z, if X and Y agree on
the value of ¢p, they also agree on the value of (gq.

(D)* O=(p,q) holds in a set of teams Z iff there is a team ¥ € Z such that =(p,¢) holds in Y,
i.e., for any worlds v,w € Y, if v and w agree on the value of p, they also agree on the
value of g.

These examples indicate that to obtain a fully general framework that reflects the principle
of semantic relativity as well as the principle of syntactic sensitivity, we will need an infinite
hierarchy of teams. The goal of this paper is to propose and explore such a framework.

3 Formal semantics

In this section we will define a formal semantics motivated by the observations presented in
the previous section. Let us start with definitions. A possible world is a function that assigns
to every atomic formula a unique truth value (either 7, or F). Every possible world will be
called a context of degree 0. A context of degree n+ 1 is defined as a nonempty set of contexts
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of degree n. The empty set is called a context of infinite degree. The degree of a context C
will be denoted as d(C).

We will work with a propositional language L containing formulas that are built out of
atomic formulas by =, A, V,— and the dependence connective. There are no restrictions con-
cerning the application of this connective. So, if ¢y,...,¢,, ¥ are formulas of L then we can
apply this connective to obtain =(@y,...,®,, ¥) as another formula of L. We also define a
contradiction L as p A —p (for an arbitrarily selected atom p) and the modality operators {¢
as ~(¢ — L1),and J@ as =@ — L.

For every L-formula ¢ we define the degree of ¢, denoted as d(¢), in the following way:

d(p) = 0, for every atomic formula p,

(
(—o) =d(9),
(pAy)=d(oVy)=max{d(p).d(y)},
(¢

(

Q.&

d ) = max{d(@) + 1,d(y)},

d(=(1,...,0n, ) = max{d(¢1),...d(¢n),d(¥)} + 1.

Now we define a relation IF- of truth between contexts and formulas. However, we impose the
following restriction:

C Ik @ is defined if and only if d(¢) < d(C).

In particular, dependence claims, conditionals and, consequently, also modal assertions are not
evaluated in singular possible worlds. We state that

ifd(@) <d(C),thenCl- ¢ iffforall De C,DIF ¢.

In particular, if C is the empty set, then automatically, C I ¢, for any formula ¢. It remains to
be defined C I ¢ for the cases where d(C) = d(¢). For this purpose, we will use the following
notation. Let C be a context and ¢ an L-formula such that d(¢) < d(C). Then C? denotes a
context that is either empty or of the same degree as C, and that is defined as follows:

C?={DeC|DI ¢}

Moreover, let C,D be contexts and ¢ an L-formula such that d(¢) < d(C) = d (D). Then we
write C(@) = D(¢) iff

either CI- @ and D IF ¢, or C I —¢@ and D |- —¢.

Now we are prepared to formulate the semantic conditions for the cases, where the degree of
the formula on the right is equal to the degree of the context on the left:

Cl- piff C(p) =T, for every atomic formula p,

ClF—oiff Cl¥ ¢,

ClFoAyiffClF @ and ClI- vy,

ClroVvyifftClFoorCl- vy,

ClFo— yiffC?I- vy,

ClF=(¢1,..., 9., y) iff for any D,E € C, if D(¢;)=E(¢;), for all i, then D(y) = E(y).
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The degree of a set of formulas is defined as the maximal degree of the formulas in the set.
The degree of an argument A/ ¢ is defined as the degree of the set AU {¢}.

Let A/ @ be an argument of the degree n. We say that the argument is valid if C I ¢, for
every context C such that d(C) = n and C I y, for all y € A. Two L-formulas, ¢ and y are
equivalent iff ¢ /y and y/ ¢ are valid arguments.

Let us observe some consequences of these definitions. First, note that C I+ L iff C is
empty. Now, we can calculate the semantic clauses for the modal claims of the forms (¢ and
Oe. If d(¢) =nthen d(O@) =d(O¢@) =n+ 1. Let C be a context of degree n+ 1 (note that
C must be non-empty). Then C |- Q@ iff CIF —(¢ — L) iff CI¥ ¢ — L iff C? ¥ L iff C?
is non-empty. Moreover, C IF Oy iff C IF —¢p — L iff C™? |- L iff C™? is empty. Thus we
obtain:

CIF Qo iff there is D € C such that D I ¢,
ClFOgiff forall D € C, D I+ ¢.

One can observe that the particular cases —p, ==(p,q), =(0p, 0q), O=(p,q) discussed in the
previous section are evaluated as expected, i.e. in accordance with (A)*, (B)*, (C)*, and (D)*.

The resulting framework differs in many aspects from the standard framework of propo-
sitional dependence logic. The background propositional logic for the language L™, defined
as L without the dependence connective, is non-classical. For example, though transitivity of
implication holds for atomic sentences (the argument p — ¢q,q — r/p — r is valid), it does not
hold for some more complex cases like p — g,q — Or/p — Or (note that ¢ is defined using
the connectives of L™ and thus this argument is formulated in L™). One can observe that this
result is desirable. Consider for example the following invalid natural language instance of the
argument form: If Ann is in Berlin, she is in Germany. If Ann is in Germany, she might be in
Munich. Therefore, if Ann is in Berlin, she might be in Munich.

The proposed framework allows us to capture in a natural way the meaning of claims
that seem to be quite tricky from the perspective of the standard framework of propositional
dependence logic. For example, we can represent naturally iterated dependencies or express

claims such as if r is not dependent on p then it is dependent on q.

In our paper, we will explore this framework and especially how the dependence operator
behaves in it, how it interacts with the modalities and the non-classical conditional. Moreover,
we will present further natural language examples to which this framework can be reasonably
applied.
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1. Introduction

In this work we introduce an algebraic semantics for propositional dependence logic and we
show some possible applications of this novel semantic framework.

Dependence logic was introduced in 2007 by Jouko Vadnénen [11] as an extension of first-
order logic with dependence atoms. In its now standard formulation, dependence logic is defined
via team semantics, originally introduced by Hodges in [5], which generalizes standard Tarski’s
semantics by teams, namely sets of assignments which map first-order variables to elements
of the domain. In its propositional version, a team is simply a set of valuations mapping
propositional atoms to either 1 or 0. Propositional dependence logic has been studied in [9],
while [10] also considers other extensions of classical logic using team semantics.

There is no algebraic semantics for propositional dependence logic in the literature, though
some study in the algebraic interpretations of dependence logic was initiated for instance in
[1] and [6]. In this work we follow a partially different route and we introduce the algebraic
semantics of dependence logic by introducing downward team algebras and relying on the
relation between dependence and inquisitive logic. This relation has already been pointed out
e.g. in [3, 9], while the algebraic semantics for inquisitive logic has been recently introduced in
[2] and [8].

In the present work we define downward team algebras analogously to inquisitive algebras
and we show they provide a sound and complete semantics for dependence logic. Moreover, we
describe applications of this semantics to the study of extensions of dependence logic and we
discuss ongoing work to extend the present setting to other logics based on team semantics, in
particular to so-called team logic — see [6].

2. Downward Team Algebras and Algebraic Semantics

To give an algebraic semantics to dependence logic we shall first introduce downward team
algebras. We first recall some basic definition. We say that a bounded distributive lattice H is
a Heyting algebra if it can be endowed with an operation — such that a A b < ¢ if and only if
a < b — c¢. The operation of negation — is defined by -z := x — 0. Moreover, recall that if H
is a Heyting algebra, H_, is its subset of reqular elements, namely H- = {x € H : x = ——«x}.
It is easy to show that H- is a subalgebra of H with respect to the reduct {1,0,A, —} and
that it forms a Boolean algebra if supplemented by a join V defined, for all a,b € H-_, as
aVb:=—(-a Ay —b). The logic ND is defined axiomatically as follows:

ND = IPC+ {(-p = Vi<x 7¢:) = Vi< (=P — —q;) : k = 2}

and was first introduced by Maximova in [7].
We can now define downward team algebras as follows.

*I would like to thank Fan Yang for comments and discussions on this work. This research was supported by
Research Funds of the University of Helsinki.
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Definition 1 (Downward Team Algebra). A downward team algebra H is a tuple (H, WV, ®, A, —
,0, H-, V), where (H,\,®,A,—,0) is a ND-algebra, (H-,V,A,—,0) a Boolean algebra and, in
addition, it satisfies the following equation:

(x) z@yVz)~(ry) V(rez2)
(k%) -z ® -y~ -xV y.

We can define negation over such algebras by —x := x — 0, and also a partial operation =)
on elements of H- as =(z) := x \V —z. Now, since for any Heyting algebra H we have already
seen that (H-,V, A, —,0) is always a Boolean algebra, the definition before amounts to say that
(H,\,®,\,—,0) is a ND-algebra provided with an extra operator ® satisfying () and (k).
A downward team algebra is thus a ND-algebra supplemented with a tensor operator ® and a
signed subset of elements, i.e. its regular elements H_. We denote by DTA the class (and the
category) of downward team algebras. We remark that a similar class of structures has been
previously considered in [2, 8] to give an algebraic semantics to inquisitive logic.

We shall now supplement downward team algebras by suitable valuations of atomic formulas
in order to obtain algebraic models for dependence logic. In particular, we will give a semantics
for the version of dependence logic formulated in the signature {T, L, A, ®,—, =(p)}, which
is called propositional intuitionistic dependence logic in [9]. In particular, we will treat the
dependency atom =(p, q) as a non-primitive symbol, which can be defined as follows:

=5,9) = (\ =ps)) = =a)-

i<n

A wvaluation over a downward team algebra H is a function V™ : AT — H_, which assigns to
every atomic formula some regular element in H_. Algebraic models for intuitionistic depen-
dence logic are then defined as follows.

Definition 2 (Algebraic Downward Team Model). An algebraic downward team model of in-
tuitionistic dependence logic is a pair M = (H,V ™) such that H is a downward team algebra
and V7 a valuation.

The interpretation of an arbitrary formula ¢ € Lpp in an algebraic downward team model
M = (H,V7™) is then defined as follows.

Definition 3 (Interpretation of Arbitrary Formulas). Given an algebraic downward team model
M and a formula ¢ € Lpp, its interpretation [¢]M is defined as follows:

[PI* =V"(p) [L]* =0 =)™ =[] v [-p]"
o AglY = [8]Y AIY [p@¢]Y =[WIY @ DAY [¢ = ]Y = [6]Y — [¥]"

This is a standard definition, modulo the fact that atomic formulas can be assigned only to
elements of the signed subset H_, and cannot be given arbitrary values of H. From the former
definitions it is straightforward to adapt the usual definitions of truth at a model and validity.
We say that a formula ¢ is true under V™ in H or true in the model M = (H,V ™) and write
M E™ ¢ if [¢]M = 1. We say that ¢ is valid in H and write H ™ ¢ if ¢ is true in every
model M = (H,V™) over H. Finally, we way that ¢ is an algebraic validity of intuitionistic
dependence logic if it is true in all algebraic downward team models, namely if DTA F™ ¢.
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3. Characterisation of Downward Team Algebras

DTA is by our definition an equational class of algebras, hence by Birkhoff Theorem it is
also a variety of algebraic structures, i.e. a class of algebras which is closed under subalgebras,
products and homomorphic images. As a variety, we have that DTA is generated by its
collection of subdirectly irreducible elements. However, in the case of downward team algebras
it is actually possible to identify a smaller class of generators. Recall that a Heyting algebra H is
said to be regular if H = (H-), and let regular downward team algebras be defined analogously.
We let DTA rrs; be the collection of finite, regular, subdirectly irreducible downward team
algebras and Varprsr(ND) the collection of finite, regular, subdirectly irreducible ND-algebras.
We can then prove the two following results:

Theorem 4. Suppose DTA E™ ¢, then DTApgrsr £~ ¢.

Theorem 5. The categories DTAprsr and Varprsi(ND) are equivalent: DTApgrs; =
VaT’FRS](ND).

By Theorem 4 we know that DTA prg; witnesses the falsity of formulas in the variety, while
Theorem 5 tells us that any finite, regular, subdirectly irreducible ND-algebra can be extended
in a unique way to a downward team algebra. In particular, the tensor disjunction ® over finite,
regular, subdirectly irreducible ND-algebra H is always defined as follows:

TRy = \\/{a\/b:aﬁx,bgyanda,beHﬁ}.

Moreover, Theorem 5 allows us to relate downward team algebras to teams via the following
observation. As done in [2], given a finite set s, we can construct a corresponding finite, regular.
subdirectly irreducible ND-algebra Hy by first building the Boolean algebra B = (p(s), C) and
then considering the Heyting algebra of nonempty downsets Dw™ (B). Conversely, it was proved
in [2, 8] that any algebra in Varpgrsy(ND) is isomorphic to one of the form H;. We thus obtain
the following equivalence between categories, extending 5. We denote by FinSet the category
of finite sets with functions as arrows.

Theorem 6. DTA prs; = Varprsi(ND) = FinSet.

Hence every finite set determines a finite, regular, downward team algebras up to isomorphism,
and vice versa.

Finally, we remark that the previous theorem also allows us to relate the present setting to
previous work on inquisitive logic. In fact, it was shown in [8] that Varprsy(ND) is the class
of generators of Var™(IngB), the so-called DNA-variety of Heyting algebras which validate the
axioms of inquisitive logic under valuations restricted to regular elements. It is possible to show
that DNA-varieties are standard varieties which are also closed under core superalgebras, where
we say that a Heyting algebra K is a core superalgebra of H if H, = K_ and H < K. From
these facts, one can prove that DTA is the least variety containing DTA prg; which is also
closed under core superalgebra, thus showing in which sense the collection DTA prsr generates
DTA.

4. Equivalence of Team and Algebraic Semantics

In the previous section we have shown how, given a finite set s, one can construct a downward
team algebra Hg and we have proved that the category FinSet of finite sets is equivalent to

1We write H < K to denote that H is a subalgebra of K.
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the category DTA of downward team algebras. Now we want to extend this result to take into
account the situation where the starting set s is not an arbitrary finite set, but a finite team,
i.e. a set of valuations. To this end, let FinTeam be the category of finite teams and ADTM
the category of algebraic downward team models. We shall prove in this section the equivalence
of these two categories.

Given a finite team s we define its corresponding algebraic downward team model M as
My = (H,,V,"), where V. is the canonical valuation defined, for all p € AT, as V7 (p) =
pT{a € s:alp) =1}, where p™(z) = p(x) \ {0}. By using the equivalence of categories of the
previous section we can then prove the following proposition.

Proposition 7.

1. Let s € p(22T) be a finite team and My = (Hg,Vs) its corresponding finite, reqular,
subdirectly irreducible algebraic downward team model. We have that s E ¢ if and only if
Mg E™ .

2. Let M = (H,V™) be a finite, regular, subdirectly irreducible algebraic downward team
model and sy its corresponding team. We have that M E™ ¢ if and only if sy E ¢.

Hence from the previous proposition and Theorem 4 above, we then obtain our main result, i.e.
the equivalence of team and algebraic semantics.

Theorem 8 (Equivalence of Team and Algebraic Semantics). The team semantics and the
algebraic semantics of PD are equivalent, i.e. o(2*7)F ¢ if and only if DTA £~ ¢.

Which shows that downward team algebras give a complete semantics to (intuitionistic) depen-
dence logic. Finally, the previous results also give us the following equivalence.

Theorem 9. ADTMpgrsr = FinTeam.

5. Applications, Extensions and Open Problems

We conclude our presentation of the algebraic semantics for propositional dependence logic by
mentioning some further problems and applications.

Firstly, notice that the introduction of algebraic semantics for dependence logic turns espe-
cially useful to study the arity fragments of dependence logic. In fact, it was shown in [8] that
the sublattice of DNA-logics extending propositional inquisitive logic IngB is dually isomorphic
to w4+ 1. Moreover, every such extension corresponds to a fragment obtained by putting some
constraints on the cardinality of the underlying algebras. The case of dependence logic is sim-
ilar, in particular we can show that the lattice of extensions of dependence logic is isomorphic
to the lattice of extensions of inquisitive logic.

Secondly, an important direction of investigation is whether the framework that we described
here can be extended to other logics defined via team semantics. In particular, we propose the
introduction of the following algebraic structures to provide an algebraic semantics to team
logic, i.e. the system PL(~) described e.g. in [6].

Definition 10 (Full Team Algebra). A full team algebra B4 is a tuple (B,WV,®,®, ~
,0B,A,V,A\,—,04), such that:

e (B,\,®,~,0p) and (A, V,A,—,04) are Boolean algebras;

e ACB;
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e R[A2=V, dlAZ=ANand ~] A=~
And, in addition, B# satisfies the following equation:
(x) zeEVz)= oy V(re:2).

Here a special role is then played by regular full team algebras, namely full team algebras B4
such that every element of B can be expressed as a join of elements of A. Interestingly, this is
equivalent to say that B is an atomic Boolean algebra and that A is its set of atoms. Finally,
we remark that such definition seems to capture in algebraic terms some previous work on the
notion of teamification, developed especially in [6].

Finally, we mention two important open issues related to the algebraic semantics of depen-
dence logic. On the one hand, we have seen that the category of finite, regular, subdirectly
irreducible downward team algebras is equivalent to the categories of finite sets and of finite,
regular, subdirectly irreducible ND-algebra. Is it possible to obtain a similar result for the full
category of downward team algebras? On the other hand, there has been no attempt so far to
give a topological semantics to dependence logic. The work done in this paper could shed some
light in this direction, especially considering that in [2] a topological semantics for inquisitive
logic was introduced. It is therefore interesting to investigate whether it is possible to extend
such framework to dependence logic and possibly to other logics based on team semantics.
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Abstract

Given a team X, a k-tuple ¥ of variables in dom(X) defines a corre-
sponding k-ary (team) relation X (%). The expressive power of a logic L
with team semantics amounts to the set of properties of team relations
which L-formulae can define. We introduce a concept of k-invariance which
is a natural semantic restriction on logical atoms. Then we develop a
proof method to show that, if L is an extension of FO with any k-invariant
atoms, then there are such properties of (k + 1)-ary team relations which
cannot be defined in L. This method can be applied for the arity fragments
of various logics with team semantics to prove undefinability results.

1 Background and related work

The origin of team semantics goes back to the work of Hodges [8] who presented
it to give a compositional semantics as an alternative to game-theoretic semantics
of IF-logic by Hintikka and Sandu ([6, 7]). In the compositional approach it was
not sufficient to consider single assignments; instead there was a need to use
sets of assignments which are nowadays called teams. Vaaninen [12] developed
this approach further by introducing dependence atoms and adding them to
first order logic with team semantics. Later various other natural atoms from
database theory have been added to this framework, such as independence atoms
([4]), inclusion atoms and exclusion atoms ([2]).

In this extended abstract we present a notion of k-invariance of atoms, which
is closely related to the study of arity fragments of logics with team semanics.
We list here some of the most relevant works related to the expressive power of
such fragments (on the level of sentences). In [1], [3] it is shown that the arity
fragments of dependence and independence logic correspond to the functional
arity fragments of existential second order logic, ESO. In [11] it is shown that
similarly the arity fragments of exclusion logic correspond to the relational arity
fragments of ESO. Moreover, in [5] it is shown that inclusion logic has a strict
arity hierarchy over graphs.

When the expressive power of logics with team semantics is studied on the
level of all formulas (not just sentences), we need to examine which properties of
team relations are definable. Galliani [2] has shown that with inclusion-ezclusion
logic one can define exactly those team relations which are ESO-definable. In
[10] we show that the relationship between these two logics becomes more
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delicate when we consider k-ary inclusion-exclusion logic (INEX|k|) and k-ary
relational fragment of ESO, (ESO[k]). Then all INEX[k]-definable properties are
ESOlk]-definable and conversely all ESO[k]-definable properties of k-ary team
relations are INEX[k]-definable. However, this leaves open what happens to
INEX[k]-definability of team relations of higher arity. A partial answer to this
question is given in this extended abstract as we show, in particular, that the
(k + 1)-totality of a team relation cannot be defined in INEX[k]. All the results
here are based on PhD Thesis [9] by the author.

2 Preliminaries

Let M be a relational structure. A team X for M is any set of assignments s for
M with a common domain — denoted by dom(X). Often dom(X) is assumed to
be finite, but in this paper we may also allow teams with infinite domains. For
any {y1,...,yr} C dom(X) we write

X(yr--ye) ={syr-..yx) [ s € X}.

Hence every k-tuple i of variables in dom(X) naturally defines a corresponding
k-ary team relation X () in the model M.

The semantics of first order logic (FO) can naturally be generalized from
single assignments to sets of assignments. This leads to team semantics ([12])
where a team X satisfies an FO-formula ¢ (denoted by M Ex ¢) if and only if
every assignment s € X satisfies ¢ with the standard semantics of FO.

When FO with team semantics is extended with new logical atoms (or
operators) we obtain more expressive logics. Some of the most common atoms
studied are dependence atoms ([12]), independence atoms ([4]), inclusion atoms
and exclusion atoms ([2]). In most natural extensions of FO the so-called locality
property is preserved. That is, the truth of a formula ¢ is determined by only
the values of those variables which occur in ¢ as free variables. Some atoms,
such as dependence atoms and exclusion atoms, are also closed downwards. This
means that if X satisfies the atom, then also all the subteams Y C X satisfy the
atom. If L is an extension of FO with only downwards closed atoms, then this
property holds for all L-formulae, whence we say that L is closed downwards.

3 k-invariant atoms

A natural way to restrict the expressive power of logics with team semantics
is to put restrictions on the complexity of logical atoms that can be used. By
restricting the arity of atoms, shorter tuples of variables are allowed to be used
and thus it suffices to check team relations of lower arity when evaluating the
atom. For example, the truth condition of k-ary inclusion atoms is defined with
respect to k-ary team relations — as follows:

MExxy...xp Cyr.ooye i X(xg.ooxg) € X(y1-.yk).
Definition 3.1. Let XY be teams for a model M such that X, Y have a

shared domain D. We say that X and Y are k-equivalent if the following holds
for all {y1,...,yx} C D:

Xi.-ye) =Y (y1 ... yx).
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Moreover, we say that an atom A is k-invariant if we have
MEx A iff MEy A,
for all models M and k-equivalent teams X and Y for M.

The notion of k-invariance intuitively states that an atoms can only “see”
the k-ary relations in the given team. Hence this property could also be called
“k-dimensionality”. Also note that this definition is very liberal since it allows
e.g. atoms which are not invariant under isomorphisms. However, the results in
Section 5 can be proven without any further restrictions on this definition.

Next we define quite a general class of logics with team semantics by setting
the k-invariance restriction on certain atoms.

Definition 3.2. A logic L belongs to class L[k] if (i) L is an extension of FO
with new atomic formulas so that L is local; and (ii) all atomic formulas in L
belong to either (or both) of the following two classes:

(a) downwards closed atoms;
(b) k-invariant atoms.

Note that, in particular, all downward closed logics and all k-ary fragments
of logics with team semantics (studied so far) belong to the class L[k].

4 Definability of team relations

By saying that a class P (i.e. a property) of k-ary team relations is definable in a
logic L with team semantics, we mean that by fixing a tuple y; ...y of distinct
variables, in the given order, there is a formula ¢(y; ...yx) € L such that

M':)((p iff X(ylyk) eP.

It is important to note the difference between defining relations in a model
and relations in a team. Consider e.g. the property of symmetry of binary
relations which is FO-definable as a property of a relation in a model. However,
since this property is not closed downwards, the corresponding team property is
not definable in any downwards closed logic L — such as dependence logic ([12]).

Next focus our attention to k-ary inclusion-exclusion logic INEX[k] which
extends FO with both k-ary inclusion and exclusion atoms. In [10] we showed
that all ESO[k]-definable properties of k-ary team relations can be defined in
INEX][k]. Hence the expressive power of INEX]2] is already very strong since
we can define all ESO[2]-definable properties of binary team relations. However,
this result tells us only very little about the expressive power of INEX[1].

By the results in [10] we also know that all INEX[k]-definable properties
of team relations must be ESO[k]-definable. However, these results leave open
whether INEX[1] can define some natural ESO[1]-definable properties of binary
team relations, such as the following two:

(a) X(y1y2) is symmetric.

(b) X(y1y2) is c-colorable for a given ¢ € Z..
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(In (b) we consider the undirected graph that corresponds to X (y1y2).)
It can be shown that the rather complex property (b) is definable in INEX[1],
for any ¢ € Z4, with the following formula:

V<o V 3x1...3xc(/\xi|xj A Vy(\/ygmi)
i#j i<c
A \/{ylg-Ti/\y2|xi |i§0}),

T1y..3Tc

where v<. is an FO-sentence defining that the model has at most ¢ elements.

However, interestingly it turns out that the much more simple property (a)
cannot be defined in INEX][1]. This follows from a more general result which we
present in the next section.

5 Theorem for proving undefinability results

Theorem 5.1 below can be used for proving undefinability results for any logic
L in the class L[k] (recall Def. 3.2). A complete proof of this theorem is too
long for this extended abstract, but the intuitive idea behind it can be described
as follows. When removing assignments from a team, a k-invariant atom can
“see” this change only if some of the k-ary team relations change. When a
team X is large enough with respect a given L-formula ¢, there must be some
assignments whose removal does dot change any k-ary relations anywhere within
the “evaluation process of ¢” and thus the removal does not change the truth
value of any atoms in L. (For a complete proof, see Section 5.2 in [9].)

Theorem 5.1. Let P be a property of (k + 1)-ary relations. Assume that there
is a constant ¢ such that for any finite model M, with at least ¢ elements, there
are teams X and X* for M such that the following conditions hold:

1. X*CX

2. dom(X) ={y1,...,Yr+1}-

3. X(y1.-.Yr+1) has the property P.

4. (X\{s})(y1-..yr+1) does not have the property P for any s € X*.

5. |X7| > MdomAOI,

c

Then the property P cannot be defined in any logic L € L[k].

The assumptions above may look quite technical, but the core idea is rather
simple: those properties of teams that are very sensitive to removal of assignments
cannot be defined with logics in L[k]. By “sensitive” we mean that for any team
X with the given property P, there are several assignments (namely those in
X* C X) such that the removal of any single one of them makes X to lose the
property P. By “several” we mean that the number of such assignments (|X*|)
is at least |dom(M)**1| /e, for some constant c. Theorem 5.1 can be used for
proving various undefinability results. We present here two examples, where
some very simple properties of team relations are shown to be undefinable.
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Corollary 5.2. For any k > 1, the (k + 1)-totality of X(y1...yk+1) (i.e. the
property of it being the full relation dom(M)¥*+1) is undefinable in L[k].

Proof. Let ¢ = 1 and let M be any finite model. Let X be the team for M

for which dom(X) = {y1,...,yrs1} and X(y1...yps1) = dom(M)F*L. Let

X* = X; now the claim follows immediately from Theorem 5.1. 0

Corollary 5.3. Symmetry of X (y1y2) cannot be defined in L[1].

Proof. Let ¢ = 2 and let M be any finite model with at least 2 elements. Let X

be the team for M s.t. dom(X) = {y1,y2} and X (y1y2) = dom(M)?. We define
X" :={se€ X |s(z1)# s(x2)}.

Now X (y1y2) is clearly symmetric by being the full binary relation. However,
(X \ {s})(y1y2) is not symmetric for any s € X* (as the removal of a single edge
from any 2-cycle immediately violates the symmetry). We also have

|dom(M)[>  |dom(M)|[?
2 N c ’

Thus the claim follows from Theorem 5.1. O

X[ = [dom(M)[* — [dom(M)| >
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Introduction

Linear temporal logic (LTL) is a simple logic for formalising concepts of time.
It has become important in theoretical computer science, where Amir Pnueli
connected it to system verification in 1977, and within that context the logic
has been studied extensively [6]. With regards to expressive power, a classic
result by Hans Kamp from 1968 shows that LTL is expressively equivalent to
FO?%(<) [4, 7).

LTL has found applications in the field of formal verification, where it
is used to check whether a system fulfils its specifications. However, the
logic cannot capture all of the interesting specifications a system may have,
since it cannot express dependencies between its executions, known as traces.
These properties, coined hyperproperties by Clarkson and Schneider in 2010,
include properties important for cybersecurity such as noninterference and
secure information flow [2]. Due to this background, extensions of LTL have
recently been the focus of research.

HyperLTL is one of the most extensively studied of these extensions [1].
Its formulas are interpreted over sets of traces and the syntax extends LTL
with quantification on traces. Among the many results for the logic, there
are many expressivity results, that relate it to fragments of first, and even
second order logic. In particular there is a translation from HyperLTL to
FO(<,E), where E is an equal level predicate [3]. Here the sets of traces T'
are coded as T' x N for the domains of the first-order models.

On the other hand, there are alternative approaches to extending LTL to
catch hyperproperties. Team semantics is a framework in which one moves
on from considering truth through single assignments to regarding teams of
assignments as the linchpin for the satisfaction of a formula. Clearly, this
framework, when applied to LTL, provides an approach on the hyperprop-
erties. Krebs et al in 2018 introduced two semantics for LTL under team
semantics: the synchronous semantics and the asynchronous variant that
differ on the interpretation of the temporal operators [5]. The same paper
showed a variety of complexity and expressivity results for the two semantics,
as well as that the asynchronous semantic has the flatness property, while the
synchronous one does not. This article will follow the semantic definitions of

that previous work.
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In this article several translations between fragments of TeamLTL and FO
under team semantics are introduced. Firstly, we define a translation from
the asynchronous semantics to FO? under team semantics, which relies on the
flatness of both logics. Next we develop this translation further, in order to
accommodate for extensions of asynchronous TeamLTL which lack flatness,
and we translate them to FO3(=(...),~). We further evolve the previous
translation to apply to the synchronous semantics, which in turn we translate

to FO*(=(...),~).

Preliminaries

Definition 1 (Traces). Let ® be a set of atomic propositions. A trace m over
® is an infinite sequence 7 € (2%)“. We denote a trace as T = (7(i))%,, and
given j > 0 we denote the suffix of 7 starting at the jth element 7[j, 00) :=

(m(i))72;-

Definition 2 (Linear Temporal Logic). Formulas of LTL are defined by the
grammar

p=p|lp|leNe|loVe|Xe|Fo|Ge|eUp | R,
where p € ©.

Definition 3 (Classical Semantics for LTL). Given a trace m, proposition
p € ®, and LTL formulas ¢ and 1, the semantics of linear temporal logic are
as follows.

TEFp< 3k>0:nk,00) Ee

TEGp o VE>0:7k,00) E¢

T Uy < 3k >0 : [k, 00) = ¢ and
VE < k: 7wk, 00) E ¢

T Ry < Vk>0: 7k ,00) =1 or
Ak < k7K, 00) ¢

TEp<epen(0)

T pepEn(0)
TEpAY e TEpand T EY
rEoVieTEporT Y
TEXpen[l,oo) e

The properties captured by LTL are sets of traces, known as trace prop-
erties. Hyperproperties are sets of trace properties, which intuitively means
that hyperproperties can be captured by logics that are interpreted over sets
of traces. HyperLTL is one such logic, however team semantics provides
another approach.

A team is a set of traces. We denote T[i,00) := {t[i,00) | t € T'}. The
upcoming definitions are from [5].
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Definition 4 (Team Semantics for LTL). Suppose T is a team, p € ® is
a proposition, and ¢ and v are TeamLTL formulae. Then the semantics of

TeamLTL are defined by the following.

TEpepen0) forallmeT
TE-pepé¢n0) forallmeT
TEeNYveTEpand T E1
TE Vi< there exists T, 1o C T

such that 77 U1y, =T and

TiEpand Ty =
TEXpeTl,0) =@
TEFypeIk>0

such that Tk, 00) = ¢
TEF'v< forallme T Jk, >0,

such that {7k, 00) | T €T} = ¢
TEGeeYE>0:Tk,o) Ep
TEG'y<« forall me T and

Vi, > 0 {rlks,00) | T €T} E ¢

T = oU%Y < 3k > 0 such that
T[k, 00) = ¢ and VK < k
such that T[K', 00) E ¢

T U o VreT 3k, >0
{mlkr,00) [T €T} =4
and Vk. < k, such that
falk, c0) | 7 €T}

T |= ¢R*) < Vk > 0 such that
Tk, 00) = ¢ or 3k’ < k
such that T[k',00) E ¢

TE R < VreT Vk, >0:
{wlkr,00) [T €T} 9
or 3k < k, such that

{mlkr 00) [T €T}y

We denote the asynchronous and the synchronous fragments by TeamLTL?
and TeamLTL®, respectively. The two fragments of team TeamLTL have vastly
different expressive power. TeamLTL?® collapses to a universal fragment of
HyperLTL, while TeamLTL® is incomparable to HyperLTL. The latter claim
is witnessed by the fact that there is no HyperLTL sentence that is equivalent

to F*p [5].

Definition 5 (Flatness Property). A logic L has the flatness property, if for
all formulae ¢ of L and teams 7' it holds that T |= ¢ if and only if {t} = ¢

forallt eT.

A Translation of Asynchronous LTL to FO

Suppose T' = {7; | j € J} is a team of traces. Define M to be the following
structure of vocabulary {<} U{P; | p; € &} where

Dom(Myp) =T x N

<Mr={((m,n),(7;,m)) | i =j and n < m}
P = {(mh, 5) | i € mi(4)}-
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In addition we define a team Sr = {s; | s;(x) = (m;,0), for all m; € T'}. We
notate p — ¥ = —p V (p A ).

Next we define inductively the translations ST, where w € {z,y, z},
from TeamLTL? to FO? under team semantics as follows:

T:(pi) = Pi(z) ST (G%) = Vy(x <y — ST, (¢))

T (—pi) = ~Fi(z) ST (Fp) = Jy(xr <y AST,(p))
T.(p ANY) = ST (@) A ST, (v) ST (pU) = Fy(x <y A ST, (V)N
T:(p V) = STo(p) V ST(¢) Vz((z < 2N 2 <y) = ST.(p)))
T.(Xp) = (fv <yANST,(p)N ST (pR") =Vy(z <y — (ST, (Y)V
Vea(z < zAz<y)) z(x < zAz<yAST.(9)))).

Proposition 6. For all TeamLTL? formulas p, T |= ¢ < Mr =g, ST.(p).

This proposition follows from the fact that both logics are downward
closed and flat, and in fact, by the same argument, any translation from LTL
to FO is also a translation for the asynchronous semantic.

Translations in the Absence of Flatness

The previous translation makes use of the fact that both TeamLTL? and FO
have the flatness property. However, flatness does not hold for TeamLTL®
or extensions of TeamLTL®. Thus the translation needs to be modified to
accommodate for these cases.

Let My and St be as previously. We define a translation of TeamLTL?
formulas to FO3(=(...), ~) as follows:

The translation is analogous to the previous translation for the atomic
propositions, A, V, and X.

STy (Fp) = Fy(z <y A=(z,y) N ST, (¥))
ST (Gp) =~ Fy(z <y A=(z,y) A ~ ST ()
ST (pU") = Fy(x <y A=(z,y) AN ST, ()N
~ (e <zAz<yA=(x,2) A~ ST (p)))
ST (pR™)) =~ Fy(z <y A=(z,y) A ~ ST7(¥)A
Jz(x < zAhz<yA=(x,2z) A~ STI(p))).

Theorem 7. For all TeamLTL? formulas p, T = ¢ < Mr s, ST (p).

This result can now easily be expanded to extensions of TeamLTL® which
are not flat, by providing a translation for the extending atoms or opera-
tors. For instance, the dependence atom satisfies the equivalence =(p, q) =
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(pA(q2—q)V (=pA(q@—q), which uses the Boolean disjunction @ that can
be expressed in FO(=(...),~). Thus by using this equivalence we can trans-
late any formula of TeamLTL?(=(...)) to FO3(=(...),~) using the previous
translation.

Corollary 8. For all TeamLTL?(=(...)) formulas ¢, T = ¢ & My s,
ST ().

Translation for Synchronous Team LTL

The synchronous team semantics for LTL does not have the flatness property
[5]. Armed with the previous translation, we need to capture the equal
level teams on the first-order side. This can be done as for HyperLTL, by
introducing an equal level predicate E [3].

Let M7 and St be as above, with the addition of the equal level predicate
E together with its negation, both defined in the usual way by EM7 =
{((mi, k), (mj,k)) | 1,7 € Jand k € N}. Next we define a translation from
TeamLTL® to FO*(=(...),~) as follows: The translation is analogous to the
previous translations for the atomic propositions, A, V, and X.

STy (FPp) = Fy(=(y) A F2(E(y,z) N < 2 A ST ()
ST (G*p) =~ Fy(=(y) AN Fz(E(y, 2) Nz < 2A ~ ST (p)))
ST (pU) = Fy(=(y) A F2(E(y, z) Ao < 2 ASTZ(P)A
~ Jy(=(y) A Jw(E(y,w) Az Sw Aw < 2 AST(p)))))
ST (pRY) =~ Fy(=(y) A F2(E(y, 2) Az < 2A ~ STZ(Y)A
Jy(=(y) A Jw(E(y,w) Nx <wAw < zA ~ ST (¥))))).

Theorem 9. For all TeamLTL® formulas ¢, T |= ¢ < M7 g, ST (p).

In future research the translations presented in this article can be used
to further study the expressivity and complexity of TeamLTL.
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On the Presburger Fragment of Logics with Multiteam
Semantics

RicHARD WILKE

Modern logics for arguing about dependence and independence are based on team semantics [VA407].
From a purely logical point of view these logics have clean theoretical properties, as for example in-
clusion and exclusion logic corresponds to independence logic which again is equivalent to existential
second-order logic. However, in these logics data is represented as teams which are sets of assignments,
hence one can only argue about the presence or absence of data. As in many real-world applications
the multiplicities are a key factor (e.g. in databases) different logics that incorporate such information
have been proposed [HPV15, HPV17, DHK"18]. In this article we consider multisets of assignments,
called multiteams, which extend teams by the number of occurrences of each assignment. Notions
such as independence in this setting only make sense if the multiplicities are natural numbers, hence
we consider only finite multiteams and structures.

Logics with team semantics without negation are embeddable in existential second-order logic >},
similarly logics with multiteam semantics can be embedded into the second-order logic ESO™[+, -]
with built-in features for dealing with arithmetic. Formally, all structures are extended by a numerical
sort and second-order quantifiers over functions f : A¥ — IN mapping tuples of elements of the uni-
verse A of a structure 2( to natural numbers are added to first-order logic. Additionally, basic arithmetic
+and - is available allowing terms of the kind fx + g. This note intends to discuss the Presburger frag-
ment ESO™[+] of this logic, i.e. the restriction where only addition is allowed, but no multiplication.
As it has turned out on the level of multiteam semantics this logic is equivalent to FOM[ g, | ], that is
multiteam inclusion / exclusion logic. The focus of the present work is on multiteam logics, and due
to the space limitations we will not investigate the second-order logic ESO™[+]; for the same reason
most proofs are omitted, sometimes when we translate a logic into another we present the formula that
expresses an atom of one logics in the other, but do not argue for its correctness. We aim at discussing
the logic FOM[ <, | ] in more detail which includes finding an atom a such that FOM[ g, |] = FOM[a].
In team semantics independence logic is equivalent to inclusion / exclusion logic, which - as we will
discover — is not the case under multiteam semantics, but multiteam independence can still express
both multiteam inclusion and exclusion. It turns out that in multiteam logics with a forking atom «_1/,
both inclusion and exclusion are expressible. This leads to a further analysis of the different variants
of forking «_, and «.,, for some p € [0, 1].

§1 Multiteam Semantics

A multiset M = (S, n) is a tuple of a (finite) set S together with a function n: S — IN., assigning
every element its multiplicity. We write |M| for the size of M, that is ), s n(x). The additive union of
two multisets (S, n) v (S, n’) is (Su §’, n + n’), where n + n’(x) := n(x) + n’(x) with the convention that
n(x) = 0 in case x € S and analogously for n’. Inclusion (S, n) € (S, n’) means that n(s) < n’(s) holds
for all s € S. For a number k the multiple kM is (+),.; M. A multiteam M is a multiset (X, n) such that
X is a team. We fix some notation. The support, or underlying team, of M is M" := X; the evaluation of
M on a tuple x, written M(x), is the multiset {s(x) : s € M}, where {A(s) : s € M} is a notation for
(Wsenr n(s){A(s)}; the restriction M|, is {s € M : s = p}; the probability Pry(x = a) that the variable
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% takes value @ in M is defined as |M[;_4|/|M|, and the conditional probability Pry(x = a@ | y = b) is
defined similarly. Moreover, if { is a first-order formula we write { — & as a shorthand for ~{' v ({A ).
The dependency concepts known from team semantics or database theory can be understood in a
natural way under multiteam semantics. Further, the access to multiplicities gives rise to additional
notions. The following lists the most important ones that are considered throughout this abstract.

Definition 1 (Multidependence Atoms). Let 2 be a finite structure and M a multiteam.

Dependence: A =y dep(x, y) = A =y dep(x, y)

Exclusion: A=y x|y = A=y x|

Inclusion: A =y X € y = M(x) € M())

Statistical independence: 2 =) % L 7 holds if, and only if, Pry(% = @) = Pry(x = @ | y = b) for all
a € M(x) and b € M(j). An equivalent condition is that M(x) x M(y) = |[M| - M(x¥).

Conditional independence: A =y % 1L; jif Pryg(X = @ | Z = ¢) = Pryg(% = @ | 7z = be) for all a € AX,

be AVl and ¢ € A,
Vil

First-order operators can be defined as either being strict, i.e. using each assignment exactly once,
or lax. In team semantics lax operators turned out to be the correct choice, which intuitively is based
on the fact that only the information whether or not an assignment is present is available in a team. The
situation is different under multiteam semantics since the multiplicities are accessible and an analysis
has shown that indeed strict semantics should be assumed [GW]. For a set of multiteam dependency
notions Q, its closure under first-order operators is denoted by FOM[Q].

Definition 2 (Multiteam Semantics). Multiteam semantics is defined by the following rules. Let Q be
a set of multidependency atoms, 2 a structure, M a multiteam over A and ¢, ¥, Y» € FOM[Q].

e Ay A if A =y ¥ and A =y o

o A =y Y v Py if there are My w My = M with A =y, ¢

o A=y Vxyif A FEM[x—A] ¥;

o A=y Iy if A Epppep) ¥ for some function F: M — A.

Where M[x — A] = {s[x — a] : s € M,a € A}, i.e. every assignment in M is updated with every
value of A, thus |[M[x — A]| = |A|-|M|. The function F maps every assignment s € M to a value F(s) € A.
If an assignment s is present more than once in M each copy may or may not receive a different value
from F. Accordingly M[x +— F] denotes {s[x +— F(s)] : s € M}, especially |[M[x +— F]| = [M|. 4

Downwards- and union closure are defined analogously to team semantics, i.e. ¢ is downwards
closed if 2 =5 ¢ implies 2 =g ¢ for all R € M and ¥ is union closed in case 2 =y ¥ and A =g ¥
implies 2 g . To avoid confusion between team and multiteam semantics we write FOT for
first-order team logic and accordingly FOM for first-order multiteam logic.

§2 Between Inclusion, Exclusion and Independence

Let us start by repeating the picture in team semantics. Independence logic FOT[1] and condi-
tional independence logic FOT[L.] coincide, as was shown by Galliani [Gal12]. The proof provides
translations of exclusion and inclusion atoms into independence logic and a formula that expresses
conditional independence by means of inclusion / exclusion, i.e. FO'[1.] = FO'[c, | ] = FO'[1] and
hence FO'[L] = FO"[L.] = FO"[c, | ]. We observe that instead of going through this chain of trans-
lations, conditional independence can be defined by using just a single independence atom in team
semantics.
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Example 3. The formula ¢, (%, y, Z) € FOT[L] is equivalent to X L; , where
01, (%,3,2) =VpAmAw((Z = p — aw = XP) A (2 # pv ZiL L pw)).

Intuitively this formula builds from a given team X an extension Y such that Y[ ;_;_5(@, w) = X1;_4(%, ).
Further, no restriction on Y is imposed whenever p and Z differ, hence all possible combinations may
be present which implies that Y = Zéi L pw holdsifand only if X = x L; j. o

A similar technique however fails under multiteam semantics. Nevertheless for the special case of
dependence dep(%, y), which is equivalent to y 13 y and y 1z y, this idea is applicable for multiteams.

Proposition 4. FOM[dep] < FOM[L].

Proof. As already stated dep(x, y) = y Lz y which we claim to be equivalent to
Y =vpau((x =p — u=y)AxyLpu).

Assume 2l ¥ dep(%, y). Thus there are s, s’ € MT with s(%) = s'(X) = abut b = s(y) # s'(y) = c¢. Towards
a contradiction assert that 2 =), . Let R be the multiteam M[p +— A¥][u > F] for an appropriate F
such that R = (X = p — u = y). Observe that 0 = Prr(xy = ab | pu = ac) < Prr(xy = ab).

On the other hand assume 2 =) dep(%, y), i.e. f : M'(%¥) — A exists such that for all assignments
s € M holds s(y) = f(s(x)). We describe how the values for u can be chosen such that we witness 2 =,
. The choice is clear for all assignments in which x and p agree. If s(x) # s(p) we put s(u) = f(s(p)), in
case s(p) is a value occurring in M(x) and s(u) = ¢ for an arbitrary fixed value ¢ € A otherwise. Let S
be the resulting multiteam. Certainly Prg(xy = ab) = Prg(xy = ab | pu = ¢d) forall a,¢,b,d € A". [

In our favour we can prove that multiteam inclusion is expressible in statistical independence logic by
a slight modification of the formula that defines inclusion via independence in team semantics [Gal12].

Proposition 5. FOM[<] < FOM[L].

Proof. Without going into detail we claim that ¥ € y is equivalent to the formula ¢e(%, y), where
pe(x,y) :=Va,b,’2((2;E inzEPv(EZEIratb)v(Z=pra=bv((zZ=Fva= b))/\iJLab). O

Hence, similarly to team semantics multiteam independence can express dependence (and hence
exclusion) and inclusion. However, multiteam inclusion and exclusion logic is less expressive than sta-
tistical independence logic as is demonstrated by the upcoming theorem that we state without proof
(cf. [GW]). In fact we find that no combination of downwards closed and union closed atomic depen-
dency notions is able to express independence under multiteam semantics.

Theorem 6. Let @ be any collection of downwards closed atoms and B be any collection of union
closed atoms. There is no formula 1 € FOM[&, 8] with x L y = ¥/(x, ).

This leaves open two questions, first: Can statistical independence logic FOM[L] express condi-
tional independence x IL; y? As the previous statements demonstrate the methods applicable in team
semantics that show FOT[L] = FO"[L.] do not translate to multiteam semantics. The second issue is
whether there is a (natural) atomic formula & such that FOM[ <, | ] = FOM[«]? We leave open the first
question and give a positive answer to the second question in the following paragraph.
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§3 Forking / Anonymity

We now turn our attention to atoms that can count assignments by their forking degree, i.e. such
an atom may state that depending on a variable the values of another one all occur with probability at
least (at most) a given threshold. Gradel and Hegselmann [GH16] investigated the notion of forking in
context of team semantics. To do so they augmented each structure by a number sort which enabled
writing formulae such as x<**y which states that for each value for x at most A different values for
y occur, where A is a variable over the number sort. Since handling natural numbers is a built-in
feature of multiteam semantics we do not need to consider two sorted structures in order to define a
meaningful concept. For technical reasons we assume all structures to contain at least two elements
in the following.

Definition 7 (Forking). Let M be a multiteam over some finite set A and p € [0,1]. For < € {<,=,2>
the forking atom «., is defined via M = x«.,y, if Pry(y = b | X = @) < pfor all a, b € A” whenever
Pry(y=b|x=a)>0. Vi

The forking atom <./, resembles a multiteam version of the anonymity atom that was introduced by
Vadnianen [GKKV19]. It states that the values a certain variable takes do not suffice to determine the
value of another. More formally, xYy is satisfied in a team X whenever for every value a that x takes
in X there are (at least) two assignments s and s’ such that s(x) = s’(x) = a but s(y) # s’(y). This atom
is in fact equivalent to non-dependence [Gal15]. In multiteam semantics we may further impose the
degree p of anonymity in «_, giving us a natural atom defining the concept of anonymity.

Let us start the analysis of the forking atoms by examining the closure properties of the different
forking variants.

Proposition 8. Let p € (0,1), g € (0,1/2] and r € {% : n > 1}. %, is union- but not downwards
closed, while <., and <, are neither union-, nor downwards closed.

There are two conspicuousnesses of this proposition. First, the thresholds for which the statements
hold exclude certain cases. For some of these values the forking atoms trivialise; indeed we observe
that x4.0y = X<y = false, X¥.1y = X%.oy = true and furthermore x4,y = false for all p # 1/n. The
remaining atoms, i.e. ¥4-;y and X<«.,j for p > 1/2, all coincide with the dependence atom dep(x; ).

This explains the choice of the thresholds. Secondly, one might expect a symmetry between «_,
and <., like, for example, one being union closed and the other downwards closed. While this is not
true we find that <., is in fact weakly downwards closed for all p € [0, 1].

Definition 9. A formula ¢ is weakly downwards closed, or downwards closed in the team semantical
sense, if % =(x n) ¢ implies 2l =y ) ¢ for all (Y, m) € (X, n) such that n(s) = m(s) forall s € Y. 4

Since the other forking atoms are not weakly downwards closed we obtain the following relationship.
Corollary 10. The logics FOM[<):SP] and FOM [«-4] are incomparable for all p € (0,1) and g € (0, 1].

Let us continue our analysis by comparing forking logics to more well known logics with multiteam
semantics. Because of the severe space limitations and since the formulae arising in the upcoming
proofs are too long and difficult to parse we state the relationships without presenting even the formu-
lae used in the translations. However, we hope that the closure properties provide enough intuition
for the reader to believe the statements.

Theorem 11. (1) FOM[dep] = FOM[«. /2], FOM[«_y/2].
(2) FOM[€] < FOM[«.1/2], FOM[<_12].
(3) FOM[«.y2] = FOM[<].

Corollary 12. FOM[«_,,] = FOM[<].
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This enables us to identify «_;/; as the atom equivalent to inclusion / exclusion in multiteam semantics.
Theorem 13. FOM[«. ;] x FOM[dep, €] = FOM[<x_y/3].

Proof. By Theorem 11 we may use <.y as it is available in FOM[€]. Then %4.1,7 = (dep(%, y) v
dep(x, y)) A X<<1/25.

X<z12) = dep(x, y) vz X<2172), where 2 =y ¢ vz ¥ < there are Ry S = M such that 2 =5 ¢,
A =g ¢ and for all s,s" € M if s(x) = s’(x) then both s and s’ belong either to R or to S. It is easy to
define this kind of disjunction using dependence atoms. O

Notice that FOM[«_;/5] = FOM[«.y/3, <.1/2] follows as a corollary. Let us end this section by demon-
strating that using <1/, one can express <.y, for all n € IN..

Proposition 14. FOM[«_,/,] = FOM[«_/,] for all n € IN.,.

Proof. The special case n = 1 was handled in Theorem 11 which also allows us to make use of depen-
dence atoms. Let n > 1 (of course n = 2 is trivial but also covered by the upcoming construction). We
claim that x«.;/,¥ is equivalent to the formula #:

EAZI ﬂyn(lé\n dep(%, 7i) A é\jih‘ # A (i\</n)7 = i) A é\j()‘/ =VivYy =3 X£223)).

Before we start the analysis, notice that the formula 5 is x-guarded, that is 2l =, n holds if, and only
if, A =y, nforalla e M T(x). In fact, instead of 1 one may consider its unguarded version, that
is the formula 7, where dep(x, ¥;) is replaced by dep(y;) and x<-1/2y by «_1/2y. Since X<y, is also
x-guarded we will for the sake of simplicity in the following consider «.1/,y and multiteams M with
domain . Assume A =y <-1/,7. Thus, Pry(y = b) = 1/nfor each b € M (§), implying that [MT(§)| = n.
Let us write this set as {b, ..., b, }. To show the claim 2 =y 1, let M’ be the extension of M by values
for ji, ..., , such that for all s € MT holds s(j;) = b;. By construction 2 =y A\ ;-, dep(7i) A Nizj Vi #
¥i A (Vicn ¥ = ¥i)- Hence it remains to verify A =y /\i(7 = yi vy = Jj — <-129), which is the
case if for all i # j holds Prg(y = b;) = Prr(y = bj) = 1/2 where R = M’ rye{lSi,Ej}- This is equivalent to
|M’ [yl = |M’ [5- 13,-|' By assumption the probability that y takes any value equals 1/n. Thus all values
for y must be equally distributed whence |M’ [y, = |M’ [5- Ej| and hence 2 =y 1 follows.

Conversely let 2 =y 1. Thus there is an extension M’ of M by (constant) values by, ..., b, for j;
through j, such that M” = \;.,, dep(7:) A \ij Ji # 35 A (Vi< ¥ = 31)- Hence IMT ()| < n. Moreover
M = Niyj(9 = 91 vy = 3 — %=112Y), implying that for all i # j we have [M [5-5.] = IM [}-,:l;j|. Therefore
IMT ()| = n (if there are less than n values one of these multisets is empty and hence not equivalent
to another non empty one, which must exist). Since M contains the same amount of assignments that
map 7 to b; as those that map 7 to b; we conclude that Pry(y = b;) = 1/nfori € {1,...,n}. O

§4 Summary

Figure 1 displays the relationships of the various logics considered in this note and shows the
corresponding relations for logics with team semantics.
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ESO™S[+, -]
t
FOM[ L]
1?
FOM[L]
)
2% FOM[<fs1/2, L12] = FOM[<}:=1/2] = FOM[Q, ] — ESO™*[+]
] 7 T
FO'[1] =FO'[c, |] FOM[«.15]
7 ™~ / FOM[<_1/x]

FOT[<] FO'[|]= FOM[dy FOM[ €] = FOM[«.1/2]
1 /’
\ FOT = FOM

Figure 1: Anarrow L — Rmeans L x Rand L <> R stands for L = R. The precise relationship between
statistical independence and conditional independence logic remains open.
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