
ar
X

iv
:1

70
4.

02
15

8v
3

 [
cs

.L
O

]
 2

6
M

ar
 2

02
0

Polyteam Semantics ⋆

Miika Hannula1,2, Juha Kontinen2, and Jonni Virtema2,3,4

1 University of Auckland, New Zealand
2 University of Helsinki, Finland, {miika.hannula,juha.kontinen}@helsinki.fi

3 Hasselt University, Belgium
4 Hokkaido University, Japan, jonni.virtema@let.hokudai.ac.jp

Abstract. Team semantics is the mathematical framework of modern logics of dependence and inde-
pendence in which formulae are interpreted by sets of assignments (teams) instead of single assignments
as in first-order logic. In order to deepen the fruitful interplay between team semantics and database
dependency theory, we define Polyteam Semantics in which formulae are evaluated over a family of
teams. We begin by defining a novel polyteam variant of dependence atoms and give a finite axioma-
tisation for the associated implication problem. We relate polyteam semantics to team semantics and
investigate in which cases logics over the former can be simulated by logics over the latter. We also
characterise the expressive power of poly-dependence logic by properties of polyteams that are down-
wards closed and definable in existential second-order logic (ESO). The analogous result is shown to
hold for poly-independence logic and all ESO-definable properties. We also relate poly-inclusion logic
to greatest fixed point logic.

Keywords: team semantics, dependence, independence, expressive power, existential second-order
logic

1 Introduction

Team semantics is the mathematical framework of modern logics of dependence and inde-
pendence. The origin of team semantics goes back to [18] but its development to its current
form began with the publication of the monograph [27]. In team semantics formulae are
interpreted by sets of assignments (teams) instead of single assignments as in first-order
logic. The reason for this change is that statements such as the value of a variable x de-
pends on the value of y do not really make sense for single assignments. Team semantics has
interesting connections with database theory and database dependencies [13,15,16,21]. In
order to facilitate the exchange between team semantics and database theory, we introduce
a generalisation of team semantics in which formulae are evaluated over a family of teams.
We identify a natural notion of poly-dependence that generalises dependence atoms to poly-
teams and give a finite axiomatisation for its implication problem. We also define polyteam
versions of independence, inclusion and exclusion atoms, and characterise the expressive
power of logics using these novel atoms.

A team X is a set of assignments with a common finite domain x1, . . . , xn of variables.
Such a team can be viewed as a database table with x1, . . . , xn as its attributes. Dependence
logic extends the language of first-order logic with atomic formulae =(x, y) called dependence
atoms expressing that the value of the variable y is functionally determined by the values of
the variables in x. On the other hand, independence atoms y ⊥x z [11] express that, for any
fixed value of x, knowing the value of z does not tell us anything new about the value of
y. By viewing a team as a database table, the atoms =(x, y) and y ⊥x z correspond to the
widely studied functional and embedded multivalued dependencies. Furthermore, inclusion
atoms x ⊆ y and exclusion atoms x|y of [7] inherit their semantics from the corresponding
database dependencies.

⋆ This research was supported by the Marsden grant UOA1628, administered by the Royal Society of New Zealand,
and the grants 292767 and 308712 of the Academy of Finland. The third author was an international research
fellow of Japan Society for the Promotion of Science (Postdoctoral Fellowships for Research in Japan (Standard)).

http://arxiv.org/abs/1704.02158v3

Independence, inclusion, and exclusion atoms have very interesting properties in the
team semantics setting. For example, inclusion atoms give rise to a variant of dependence
logic that corresponds to the complexity class PTIME over finite ordered structures [9]
whereas all the other atoms above (and their combinations) give rise to logics that are equi-
expressive with existential second-order logic and the complexity class NP. The complexity
theoretic aspects of logics in team semantics have been studied extensively during the past
few years (see [5] for a survey).

A multiset version of team semantics was recently defined in [3]. Multiteam semantics
is motivated by the fact that multisets are widely assumed in database theory and occur in
applications. Multiteam semantics widens the applicability of team semantics for the study of
qualitative (e.g., functional dependence) and quantitative (e.g., probabilistic independence)
dependencies in a unified framework. Recently multiteam semantics was further generalised
to so-called probabilistic team semantics in which information on exact multiplicities are
replaced by a (probability) distribution over the assignments [4,14].

The aim of this work is similar to that of [3], i.e., we want to extend the applicability of
team semantics. In database theory dependencies are often expressed by so-called embedded
dependencies. An embedded dependency is a sentence of first-order logic with equality of the
form

∀x1 . . .∀xn
(

φ(x1, . . . , xn) → ∃y1 . . .∃ykψ(x1, . . . , xn, y1, . . . , yk)
)

,

where φ and ψ are conjunctions of relational atoms R(x1, . . . , xn) and equalities x = y.
In the literature embedded dependencies have been thoroughly classified stemming from
real life applications. Examples of well-known subclasses include full, uni-relational, 1-head,
tuple-generating, and equality-generating. For example, an embedded dependency is called
tuple-generating if it is equality free (for further details see, e.g., [19, Section 3]). The uni-
relational dependencies can be studied also in the context of team semantics as generalised
dependencies [24]. However in many applications, especially in the area of data exchange
and data integration, it is essential to be able to express dependencies between different
relations.

In the context of data exchange (see, e.g., [6]) the relational database is divided into a
set of source relations S and a set of target relations T . Dependencies are used to describe
what kind of properties should hold when data is transferred from the source schema to
the target schema. In this setting a new taxonomy of embedded dependencies rises: An
embedded dependency ∀x

(

φ(x) → ∃yψ(x, y)
)

is source-to-target if the relation symbols
occurring in φ and ψ are from S and T , respectively. The embedded dependency is target if
the relation symbols occurring in it are from T . There is no direct way to study these classes
of dependencies in the uni-relational setting of team semantics. In this paper we propose a
general framework in which these inherently poly-relational dependencies can be studied.

In Section 2 we lay the foundations of polyteam semantics. The shift to polyteams is
exemplified in Section 2.2 by the definition of poly-dependence atoms and an Armstrong
type axiomatisation for the associated implication problem. In Section 3 polyteam semantics
is extended from atoms to complex formulae. Section 4 studies the relationship between
polyteam and team semantics. We show that some polyteam logics can be simulated with
team logics. Section 5 examines the expressive power of the new logics over polyteams.
We characterise poly-independence (poly-dependence) logic as the maximal logic capable of
defining all (downwards closed) properties of polyteams definable in existential second-order
logic. Finally we relate poly-inclusion logic to a fragment of greatest fixed point logic.

2

2 From uni-dependencies to poly-dependencies

We start by defining the familiar dependency notions from the team semantics literature.
In Section 2.2 we introduce a novel poly-relational version of dependence atoms and estab-
lish a finite axiomatisation of its implication problem. We then continue to present poly-
relational versions of inclusion, exclusion, and independence atoms, and a general notion
of a poly-relational dependency atom. We conclude this section by relating the embedded
dependencies studied in database theory to our new setting.

2.1 Dependencies in team semantics

Vocabularies τ are sets of relation symbols with prescribed arities. For each R ∈ τ , let
ar(R) ∈ Z+ denote the arity of R. A τ -structure is a tuple A =

(

A, (RA

i)Ri∈τ

)

, where A is

a set and each RA

i is an ar(Ri)-ary relation on A (i.e., RA

i ⊆ Aar(Ri)). We use A, B, etc. to
denote τ -structures and A, B, etc. to denote the corresponding domains.

Let D be a finite set of first-order variables and A be a nonempty set. A function s : D →
A is called an assignment. For a variable x and a ∈ A, the assignment s(a/x) : D∪{x} → A
is obtained from s as follows:

s(a/x)(y) :=

{

a if y = x,

s(y) otherwise.

A team X is a set of assignments with a common domain D and codomain A. If A is
a τ -structure and X a team with codomain A, then we say that X is a team of A. Let
x = (x1, . . . , xn) be a sequence of variables, and s an assignment. We write s(x) to denote
the sequence

(

s(x1), . . . , s(xn)
)

, and X(x) for the set of values {s(x) | s ∈ X}. For a set (or
sequence) of variables V , we write X ↾ V for the restriction of X to V .

The following dependency atoms were introduced in [27,7,11].

Definition 1 (Dependency atoms). Let A be a structure and X a team with codomain
A. If x, y are variable sequences, then =(x, y) is a dependence atom with the truth condition:

A |=X=(x, y) if for all s, s′ ∈ X s.t. s(x) = s′(x), it holds that s(y) = s′(y).

If x, y are variable sequences of the same length, then x ⊆ y is an inclusion atom and
x | y an exclusion atom with satisfaction defined as follows:

A |=X x ⊆ y if for all s ∈ X there exists s′ ∈ X such that s(x) = s′(y).

A |=X x | y if for all s, s′ ∈ X : s(x) 6= s′(y).

If x, y, z are variable sequences, then y ⊥x z is a conditional independence atom with satis-
faction defined by

A |=X y ⊥x z if for all s, s′ ∈ X such that s(x) = s′(x) there exists s′′ ∈ X

such that s′′(x) = s(x), s′′(y) = s(y), and s′′(z) = s′(z).

Note that in the previous definitions it is allowed that some or all of the vectors of
variables have length 0. For example, A |=X=(y) holds iff ∀s ∈ X : s(y) = c holds for some
fixed tuple c, where =(y) denotes the dependence atom =(x, y) such that x is of length 0.
Also, A |=X y ⊥x z holds always if either of the vectors y or z is of length 0.

3

All the aforementioned dependency atoms have corresponding variants in relational
databases. One effect of this relationship is that the axiomatic properties of these depen-
dency atoms trace back to well-known results in database theory. Armstrong’s axioms for
functional dependencies constitute a finite axiomatisation for dependence atoms [1,11], and
inclusion atoms can be finitely axiomatised using the axiomatisation for inclusion dependen-
cies [2]. On the other hand, the non-axiomatisability and undecidability of the (finite and
unrestricted) implication problem for embedded multivalued dependencies both carry over
to conditional independence atoms [17,25,26]. Restricting attention to the so-called pure
independence atoms, i.e., atoms of the form x ⊥∅ y, a finite axiomatisation is obtained by
relating to marginal independence in statistics [10,21].

2.2 The notion of poly-dependence

For each i ∈ N, let Var(i) denote a distinct countable set of first-order variable symbols.
We say that these variables are of sort i. Relating to databases, sorts correspond to table
names. Usually we set Var(i) = {xij | j ∈ N}. We write xi, yi, xij to denote variables from
Var(i), and xi to denote tuples of variables from Var(i). Sometimes we drop the index i
and write simply x and x instead of xi and xi, respectively. Note that x is always a tuple
of variables of a single sort. In order to simplify notation, we sometimes write xi and xj to
denote arbitrary tuples of variables of sort i and j, respectively. We emphasise that xi and
xj might be of different length and may consist of distinct variables. Let A be a τ -structure
and let Di ⊆ Var(i) for all i ∈ N. A tuple X = (Xi)i∈N is a polyteam of A with domain
D = (Di)i∈N, if Xi is a team with domain Di and co-domain A for each i ∈ N. We identify
X with (X0, . . . , Xn) if Xi is the singleton team consisting of the empty assignment for all
i greater than n. Let X = (Xi)i∈N and Y = (Yi)i∈N be two polyteams. We say that X is
a subteam of Y if Xi ⊆ Yi for all i ∈ N. By the union (resp. intersection) of X and Y we
denote the polyteam (Xi∪Yi)i∈N (resp. (Xi∩Yi)i∈N). By a slight abuse of notation we write
X ∪ Y (resp. X ∩ Y) for the union (resp. intersection) of X and Y , and X ⊆ Y to denote
that X is a subteam of Y . For a tuple V = (Vi)i∈N where Vi ⊆ Var(i), the restriction of X
to V , written X ↾ V , is defined as (Xi ↾ Vi)i∈N.

Next we generalise dependence atoms to the polyteam setting. In contrast to the standard
dependence atoms, poly-dependence atoms declare functional dependence of variables over
two teams.
Poly-dependence. Let xiyi and ujvj be sequences of variables such that xi and uj , and yi

and vj have the same length, respectively. Then =
(

xi, yi/uj, vj
)

is a poly-dependence atom
whose satisfaction relation |=X is defined as follows:

A |=X=
(

xi, yi/uj, vj
)

⇔ ∀s ∈ Xi∀s
′ ∈ Xj : s(x

i) = s′(uj) implies s(yi) = s′(vj).

Note that the atom = (x, y/x, y) corresponds to the dependence atom = (x, y). For empty
tuples xi and uj the poly-dependence atom reduces to a“poly-constancy atom” =

(

yi/vj
)

.
We will later show (Remark 14) that poly-dependence atoms of the form =

(

xi, yi/ui, vi
)

can
be expressed with formulae using only ordinary dependence atoms. Thus poly-dependence
atoms of this form are considered as primitive notions only when xiyi = uivi; otherwise =
(

xi, yi/ui, vi
)

is considered as a shorthand for the equivalent formula obtained from Remark
14.

The ability to reason about database dependencies facilitates many data management
tasks such as schema design, query optimisation, and integrity maintenance. Keys, inclusion
dependencies, and functional dependencies in particular have a crucial role in all of these
processes. A traditional way to approach the interaction between dependencies has been the

4

utilisation of proof systems similar to natural deduction systems in logic. The most signif-
icant of all these systems is Armstrong’s axiomatisation for functional dependencies. This
inference system consists of only three rules which we depict below using the standard nota-
tion for functional dependencies, i.e., X → Y denotes that an attribute set X functionally
determines another attribute set Y .

Definition 2 (Armstrong’s axiomatisation [1]).

– Reflexivity: If Y ⊆ X, then X → Y
– Augmentation: if X → Y , then XZ → Y Z
– Transitivity: if X → Y and Y → Z, then X → Z

Our first objective is to generalise Armstrong’s axiomatisation to the poly-dependence
setting. To this end, we assemble the three rules of Armstrong and introduce three auxiliary
rules: Union, Symmetry, and Weak Transitivity. Contrary to the Armstrong’s proof system,
here Union is not reducible to Transitivity and Augmentation because we operate with
sequences instead of sets of variables or attributes. Symmetry in turn is imposed by the
sequential notation employed by the poly-dependence atom. Weak Transitivity exhibits
transitivity of equalities on the right-hand side of a poly-dependence atom, a phenomenon
that arises only in the polyteam setting.

Definition 3 (Axiomatisation for poly-dependence atoms).

– Reflexivity: =
(

xi, prk(x
i)/yj , prk(y

j)
)

, where k = 1, . . . , |xi| and prk takes the kth projec-
tion of a sequence.

– Augmentation: if =
(

xi, yi/uj, vj
)

, then =
(

xizi, yizi/ujwj, vjwj
)

– Transitivity: if =
(

xi, yi/uj, vj
)

and =
(

yi, zi/vj , wj
)

, then =
(

xi, zi/uj, wj
)

– Union: if =
(

xi, yi/uj , vj
)

and =
(

xi, zi/uj, wj
)

then =
(

xi, yizi/uj , vjwj
)

– Symmetry: if =
(

xi, yi/uj, vj
)

, then =
(

uj , vj/xi, yi
)

– Weak Transitivity: if =
(

xi, yizizi/uj , vjvjwj
)

, then =
(

xi, yi/uj, wj
)

This proof system forms a complete characterisation of logical implication for poly-
dependence atoms. We use |= to refer to logical implication, i.e., we write Σ |= σ if A |=X Σ
implies A |=X σ for all models A and polyteams X . Given an axiomatisation R, that is, a
set of axioms and inference rules, we write Σ ⊢R σ if R yields a proof of σ from Σ. Given
a class of dependency atoms C, we then say that R is sound (complete, resp.) for C if for
all finite sets of dependency atoms Σ ∪ {σ} from C, Σ ⊢R σ implies (is implied by, resp.)
Σ |= σ.

Theorem 4. The axiomatisation of Def. 3 is sound and complete for poly-dependence
atoms.

Proof. The proof of soundness is straightforward and omitted. We show that the axiomatisa-
tion is complete, i.e., that Σ |= σ implies Σ ⊢ σ for a set Σ∪{σ} of poly-dependence atoms.
Assume σ is =

(

xi, yi/xj , yj
)

. First we consider the case where i = j in which case σ is a
standard dependence atom. Let Σ∗ be the subset of Σ consisting of all standard dependence
atoms over Var(i). Since all teams satisfying Σ∗ can be extended to a polyteam satisfying
Σ by introducing new empty teams, we have that Σ∗ |= σ in the team semantics setting.
Since dependence atoms = (x, y) in team semantics correspond to functional dependencies
{x ∈ xi} → {y ∈ yi} in relational databases (see e.g. [11]), Armstrong’s complete axiomati-
sation from Definition 2 yields a deduction of σ0 from Σ∗

0 where Σ∗
0 and {σ0} are obtained

from Σ∗ and σ by replacing dependence atoms with their corresponding functional depen-
dencies. Since dependence atoms are provably order-independent (i.e. one derives =(x0, x1)

5

from =(y0, y1) by Reflexivity, Union, and Transitivity if xi and yi list the same variables),
the deduction in Armstrong’s system can be simulated with the rules in Definition 3. This
proves the case i = j.

Let us then consider the case i 6= j. We will show that Σ 6⊢ σ implies Σ 6|= σ. Assume
Σ 6⊢ σ. Define first a binary relation ∼ on Var(i) ∪ Var(j) such that ai ∼ aj if Σ ⊢=
(

xi, ai/xj, aj
)

, aj ∼ ai if Σ ⊢=
(

xj, aj/xi, ai
)

, and ai ∼ bi (aj ∼ bj , resp.) if ai = bi or
Σ ⊢=

(

xi, aibi/xj , ajaj
)

for some aj (aj = bj or Σ ⊢=
(

xj , ajbj/xi, aiai
)

for some ai, resp.).
We show that ∼ is an equivalence relation.

– Reflexivity: Holds by definition.
– Symmetry: First note that ai ∼ aj and aj ∼ ai are derivably equivalent by the symmetry

rule. Assume then that ai ∼ bi in which case =
(

xi, aibi/xj, ajaj
)

is derivable for some aj .
Then derive =(aibi, bi/ajaj, aj) and =(aibi, ai/ajaj , aj) by using the reflexivity rule, and
then =

(

xi, bi/xj, aj
)

and =
(

xi, ai/xj , aj
)

by using the transitivity rule. Finally derive
=
(

xi, biai/xj, ajaj
)

by using the union rule.
– Transitivity: Assume first that ai ∼ bi ∼ ci, where ai, bi, ci and are pairwise distinct. Then

=
(

xi, aibi/xj, ajaj
)

and =
(

xi, bici/xj , bjbj
)

are derivable for some aj and bj . Then analo-
gously to the previous case assemble =

(

xi, aibibi/xj, ajajbj
)

which admits =
(

xi, ai/xj , bj
)

by weak transitivity, and detach =
(

xi, ci/xj, bj
)

from =
(

xi, bici/xj, bjbj
)

. By the union
rule we then obtain =

(

xi, aici/xj, bjbj
)

and thus that ai ∼ ci. Since all the other cases
are analogous, we observe that ∼ is transitive.

Let s be a function that maps each x ∈ Var(i) ∪ Var(j) that appears in Σ ∪ {σ} to
the equivalence class x/ ∼. We define X = (Xi, Xj) where Xk = {s ↾ Var(k)} for k = i, j.
First notice that X 6|= σ for, by union, it cannot be the case that prk(y

i) ∼ prk(y
j) for all

k = 1, . . . , |yi|. It suffices to show that X satisfies each =(um, vm/un, vn) in Σ. If m = n or
{m,n} 6= {i, j}, the atom is trivially satisfied. Hence, and by symmetry, we may assume that
the atom is of the form =

(

ui, vi/uj, vj
)

. Assume that s(ui) = s(uj), that is, prk(u
i) ∼ prk(u

j)
for all k = 1, . . . , |ui|. We obtain by the union rule that =

(

xi, ui/xj, uj
)

is derivable, and
hence by the transitivity rule that =

(

xi, vi/xj , vj
)

is also derivable. Therefore, by using the
reflexivity and transitivity rules we conclude that s(vi) = s(vj). ⊓⊔

2.3 A general notion of a poly-dependency

Next we consider suitable polyteam generalisations for the dependencies discussed in Section
2.1 and also define a general notion of poly-dependency. This generalisation is immediate for
inclusion atoms which are inherently multi-relational; relational database management sys-
tems maintain referential integrity by enforcing inclusion dependencies specifically between
two distinct tables. With poly-inclusion atoms these multi-relational features can now be
expressed.
Poly-inclusion. Let xi and yj be sequences of variables of the same length. Then xi ⊆ yj

is a poly-inclusion atom whose satisfaction relation |=X is defined as follows:

A |=X xi ⊆ yj ⇔ ∀s ∈ Xi∃s
′ ∈ Xj : s(x

i) = s′(yj).

If i = j, then the atom is the standard inclusion atom.
Poly-exclusion. Let xi and yj be sequences of variables of the same length. Then xi | yj

is a poly-exclusion atom whose satisfaction relation |=X is defined as follows:

A |=X xi | yj ⇔ ∀s ∈ Xi, s
′ ∈ Xj : s(x

i) 6= s′(yj).

If i = j, then the atom is the standard exclusion atom.

6

Poly-independence Let xi, yi, aj ,b
j
, uk, vk, and wk be tuples of variables such that |xi| =

|aj | = |uk|, |yi| = |vk|, |b
j
| = |wk|. Then yi/vk ⊥xi,aj/uk b

j
/wk is a poly-independence atom

whose satisfaction relation |=X is defined as follows:

A |=X yi/vk ⊥xi,aj/uk b
j
/wk ⇔ ∀s ∈ Xi, s

′ ∈ Xj : s(x
i) = s′(aj) implies

∃s′′ ∈ Xk : s
′′(ukvk) = s(xiyi) and s′′(wk) = s′(b

j
).

The atom y/y ⊥x,x/x z/z, where all variables are of the same sort, corresponds to the
standard independence atom y ⊥x z. Furthermore, a pure poly-independence atom is an

atom of the form yi/vk ⊥∅,∅/∅ b
j
/wk, written using a shorthand yi/vk ⊥ b

j
/wk.

Poly-independence atoms are closely related to equi-join operators of relational databases
as the next example exemplifies.

Example 5. A relational database schema

P(rojects) ={project,team}, T(eams) = {team,employee},

E(mployees) ={employee,team,project},

stores information about distribution of employees for teams and projects in a workplace.
The poly-independence atom

P[project]/E[project] ⊥P[team],T[team]/E[team] T[employee]/E[employee] (1)

expresses that the relationEmployees includes as a subrelation the natural join of Projects
andTeams. If furthermoreE[project,team] ⊆ P[project,team] andE[team,employee] ⊆
T[team,employee] hold, then Employees is exactly this natural join.

In addition to the poly-atoms described above, we define the notion of generalised poly-
atoms that is analogous to the notion of generalised atoms of [24].
Generalised poly-atoms. Let n ∈ N, and let (j1, . . . , jn) be a sequence of positive in-
tegers. A generalised quantifier of type (j1, . . . , jn) is a collection Q of relational struc-
tures (A,R1, . . . , Rn) (where each Ri is ji-ary) that is closed under isomorphisms. For
every sequence (x1, . . . , xn), where xi are length ji tuples of variables from some Var(li),
αQ(x1, . . . , xn) is a generalised poly-atom of type (j1, . . . , jn) and of sort {l1, . . . , ln}. For a
structure A and polyteam X where xi ⊆ Dom(Xli), the satisfaction relation with respect to
αQ(x1, . . . , xn) is defined as follows:

A |=X αQ(x1, . . . , xn) ⇔
(

Dom(A), R1 := rel(Xl1 , x1) . . . , Rn := rel(Xln , xn)
)

∈ Q.

By rel(X, x), for x = (x1, . . . , xm), we denote the relation {(s(x1), . . . , s(xm)) | s ∈ X}. A
generalised poly-atom αQ(x1, . . . , xn) that has a singleton sort is called a uni-atom. When
referring to the set of all poly-atoms of the form αQ(x1, . . . , xn), for a fixed Q, we omit the
tuples x1, . . . , xn and write simply poly-atom αQ. We say that an atom αQ is definable in a
logic L if the class Q is definable in L. For instance, we notice that poly-inclusion atoms of
the form (xi, yi) ⊆ (uj, vj) are first-order definable generalised poly-atoms of type (2, 2).

2.4 Database dependencies as poly-atoms

Embedded dependencies in a multi-relational context can now be studied with the help of
generalised poly-atoms and polyteam semantics. Conversely, strong results obtained in the
study of database dependencies can be transferred and generalised for stronger results in

7

the polyteam setting. In particular, each embedded dependency can be seen as a defining
formula for a generalised poly-atom, and hence the classification of embedded dependencies
naturally yield a corresponding classification of generalised poly-atoms. For example, the
class

C := {αQ(x1, . . . , xn) |Q is definable by an FO(R1, . . . , Rn)-sentence in

the class of equality-generating dependencies}

is the class of equality-generating poly-atoms. The defining formula of the generalised atom
of type (2,2) that captures the poly-dependence atom of type =(xi, yi/uj, vj) is

∀x1∀x2∀y1∀y2
(

(R1(x1, x2) ∧ R2(y1, y2) ∧ x1 = y1) → x2 = y2
)

.

Thus poly-dependence atoms are included in the class of equality-generating poly-atoms.
In order to study data exchange in the polyteam setting, we first need to define the

notions of source-to-target and target poly-atoms. This classification of poly-atoms requires
some more care as it is not enough to consider the defining formulae of the corresponding
atoms, but also the variables that the atom is instantiated with. We will return to this topic
briefly after we have given semantics for logics that work on polyteams.

3 Polyteam semantics for complex formulae

We next delineate a version of team semantics suitable for the polyteam context. We note
here that it is not a priori clear what sort of modifications for connectives and quantifiers
one should entertain when shifting from teams to the polyteam setting.

3.1 Syntax and semantics

Definition 6. Let τ be a set of relation symbols. The syntax of poly first-order logic PFO(τ)
is given by the following grammar rules:

φ ::= x = y | x 6= y | R(x) | ¬R(x) | (φ ∧ φ) | (φ ∨ φ) | (φ ∨j φ) | ∃xφ | ∀xφ,

where R ∈ τ is a k-ary relation symbol, j ∈ N, x ⊆ Var(i)k and x, y ∈ Var(i) for some
i, k ∈ N.

We say that ∨ is a global disjunction whereas ∨i is a local disjunction. A literal is said to
be of sort i if its variables are of sort i. Note that in the definition the scope of negation is
restricted to atomic formulae. Note also that the restriction of PFO(τ) to formulae without
the connective ∨j and using only variables of a single fixed sort is FO(τ).

For the definition of polyteam semantics of PFO, recall the definitions of teams and
polyteams from Sections 2.1 and 2.2, respectively. Let X be a team, A a non-empty set,
and F : X → P(A) \ {∅} a function. We denote by X [A/x] the modified team {s(a/x) |
s ∈ X, a ∈ A}, and by X [F/x] the team {s(a/x) | s ∈ X, a ∈ F (s)}. Moreover let X be a
polyteam. Then X [X/Xi] denotes the polyteam (. . . , Xi−1, X,Xi+1, . . .).

Note that if restricted to the aforementioned single-sort fragment of PFO(τ) the polyteam
semantics below coincides with traditional team semantics, see e.g. [5] for a definition. Thus
for FO(τ)-formulae we may write A |=Xi

φ instead of A |=(Xi) φ.

Definition 7 (Lax polyteam semantics). Let A be a τ -structure and X a polyteam of
A. The satisfaction relation |=X for poly first-order logic is defined as follows:

8

A |=X x = y ⇔ if x, y ∈ Var(i) then ∀s ∈ Xi : s(x) = s(y)
A |=X x 6= y ⇔ if x, y ∈ Var(i) then ∀s ∈ Xi : s(x) 6= s(y)
A |=X R(x) ⇔ if x ∈ Var(i)k then ∀s ∈ Xi : s(x) ∈ RA

A |=X ¬R(x) ⇔ if x ∈ Var(i)k then ∀s ∈ Xi : s(x) 6∈ RA

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ

A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y , Z ⊆ X s.t. Y ∪ Z = X
A |=X (ψ ∨j θ)⇔ A |=X[Yj/Xj]

ψ and A |=X[Zj/Xj]
θ,

for some Yj, Zj ⊆ Xj s.t. Yj ∪ Zj = Xj

A |=X ∀xψ ⇔ A |=X[Xi[A/x]/Xi]
ψ, when x ∈ Var(i)

A |=X ∃xψ ⇔ A |=X[Xi[F/x]/Xi]
ψ holds for some F : Xi → P(A) \ {∅},

when x ∈ Var(i)

Remark 8. Note that whereas the global disjunction is both commutative and associative,
the local disjunction is only commutative. In particular (φ ∨i ψ) ∨j θ is not, in general,
equivalent with φ ∨i (ψ ∨j θ). However the local disjunction is associative with respect to
local disjunctions of the same sort, i.e., (φ ∨i ψ) ∨i θ and φ ∨i (ψ ∨i θ) are equivalent.

The truth of a sentence φ (i.e., a formula with no free variables) in a structure A is
defined as: A |= φ if A |=({∅}) φ, where ({∅}) denotes the polyteam consisting only singleton
teams of the empty assignment. We write Fr(φ) for the set of free variables in φ, and Fri(φ)
for Fr(φ) ∩Var(i).

Polyteam semantics is a conservative extension of team semantics in the same fashion
as team semantics is a conservative extension of Tarski semantics [27].

Proposition 9. Let φ ∈ FO(τ) whose variables are all of sort i ∈ N. Let A be a τ -structure
and X a polyteam of A. Then

A |=X φ ⇔ A |=Xi
φ ⇔ ∀s ∈ Xi : A |=s φ,

where |=s denotes the ordinary satisfaction relation of first-order logic.

Example 10. A relational database schema

Patient ={patient id,patient name},

Case ={case id,patient id,diagnosis id,confirmation},

Test ={diagnosis id,test id},

Results ={patient id,test id,result}

stores information about patient cases and their related laboratory tests. In order to main-
tain consistency of the stored data, database management systems support the use of in-
tegrity constraints that are based on functional and inclusion dependencies. For instance, on
relation schema Patient the key patient id (i.e. the dependence atom =(patient id,patient name))
ensures that no patient id can refer to two different patient names. On Case the foreign key
patient id referring to patient id onPatient (i.e. the inclusion atomCase[patient id] ⊆
Patient[patient id]) enforces that patient ids on Case refer to real patients. The intro-
duction of poly-dependence logics opens up possibilities for more expressive data constraints.
The poly-inclusion formula

φ0 :=confirmation 6= positive ∨Case ∃x1x2
(

x1 6= x2∧
∧

i=1,2

(Case[diagnosis id, xi] ⊆ Test[diagnosis id,test id]∧

Case[patient id, xi, positive] ⊆ Results[patient id,test id,result])
)

9

ensures that a diagnosis may be confirmed only if it has been affirmed by two different
appropriate tests. The poly-exclusion formula

φ1 :=confirmation 6= negative ∨Case

∀x
(

Case[diagnosis id, x] | Test[diagnosis id,test id]∨Case

Case[patient id, x, positive] | Results[patient id,test id,result]
)

makes sure that a diagnosis may obtain a negative confirmation only if it has no positive indi-
cation by any suitable test. Note that both formulae employ local disjunction and quantified
variables that refer to Case. Interestingly, the illustrated expressive gain is still computa-
tionally feasible as both φ0 and φ1 can be enforced in polynomial time. For φ0 note that the
data complexity of poly-inclusion logic is in PTIME because this logic can be translated to
fixed-point logic (see Theorem 36). For φ1 observe that satisfaction of a formula of the form
x1 | y2 ∨1 x1 | z3 can be decided in PTIME as well.

Poly-dependence logics. Poly-dependence, poly-independence, poly-inclusion, and poly-
exclusion logics (PFO(pdep), PFO(pind), PFO(pinc), and PFO(pexc), resp.) are obtained by
extending PFO with poly-dependence, poly-independence, poly-inclusion, and poly-exclusion
atoms, respectively. In general, given a set of atoms C we denote by PFO(C) the logic
obtained by extending PFO with the atoms of C. We also consider poly-atoms in the team
semantics setting; by FO(C) we denote the extension of first-order logic by the poly-atoms
in C. Similarly, it is also possible to consider atoms of Section 2.1 in the polyteam setting by
requiring that the variables used with each atom are of a single sort. For two logics L and
L′ in polyteam setting, we write L ≤ L′ if for all φ ∈ L there is φ′ ∈ L′ such that A |=X φ if
and only if A |=X φ′, for all structures A and polyteams X. We also write L ≡ L′ if L ≤ L′

and L′ ≤ L. We define “≤” and “≡” analogously for two logics in the team setting.

3.2 Basic properties

A polyteam X is called strictly non-empty, if none of the teams Xi, i ∈ N, is empty. We say
that a formula φ is local in polyteam semantics if for all V = (Vi)i∈N where Fri(φ) ⊆ Vi for
i ∈ N, and all structures A and polyteams X, we have

A |=X φ ⇔ A |=X↾V φ.

The truth value of a local formula depends only on the free variables at each coordinate,
including those coordinates where the set of free variables is empty. For instance, the formula
∃x1(x1 6= x1) is true if and only if the first coordinate team is empty. The truth value of
a local formula on a strictly non-empty polyteam depends only on the values of its free
variables. We now call a logic L local if all its formulae are local.

Proposition 11 (Locality). For any set C of generalised poly-atoms PFO(C) is local.

Furthermore, the downward closure of dependence logic as well as the union closure of
inclusion logic generalise to polyteams.

Proposition 12 (Downward Closure and Union Closure). Let φ be a formula of
PFO(pdep), ψ a formula of PFO(pinc), A a model, and X, Y two polyteams. Then A |=X φ
and Y ⊆ X implies that A |=Y φ, and A |=X ψ and A |=Y ψ implies that A |=X∪Y ψ.

The following proposition shows that the replacement of independence (dependence)
atoms with any (downwards closed) class of atoms definable in existential second-order logic

10

(ESO) results in no expressive gain, if the empty team is ignored. Note that dependence and
independence logic formulae are always true for the empty team. We say that a formula φ
over team semantics has the empty team property if A |=∅ φ for all models A, and a logic L
has the empty team property is all of its formulae have it.

Proposition 13. Let C (D, resp.) be the class of all (all downwards closed, resp.) ESO-
definable poly-atoms. With respect to non-empty teams, FO(C) ≡ FO(ind), FO(D) ≡ FO(dep).
If the atoms in C and D have the empty team property, the restriction to non-empty teams
can be lifted. Moreover FO(pinc) ≡ FO(inc).

Proof. The claim FO(pinc) ≡ FO(inc) follows directly from the observation that in the
team semantics setting poly-inclusion atoms are exactly inclusion atoms. Note that FO(ind)
(FO(dep), resp.) captures all (all downwards closed, resp.) ESO-definable properties of teams
which include the empty team (see Theorem 24). It is easy to show (cf. [20, Lemma 5])
that every property of teams definable in FO(C) (FO(D), resp.) is ESO-definable (ESO-
definable and downwards closed, resp.). Thus since ind ∈ C and dep ∈ D, we obtain that
FO(C) ≡ FO(ind) and FO(D) ≡ FO(dep) with respect to non-empty teams. Finally note
that if all atoms in C and D have the empty team property, the logics FO(C) and FO(D)
have it as well. ⊓⊔

Remark 14. In particular it follows from the previous proposition that, in the polyteam
setting, each occurrence of any (any downwards closed, resp.) ESO-definable poly-atom
(with the empty team property) that takes variables of a single sort as parameters may be
equivalently expressed by a formula of PFO(ind) (PFO(dep), resp.) that only uses variables
of the same single sort.

We end this section by considering the relationship of global and local disjunctions. In
particular, we observe that either one of the two disjunctions could be omitted from PFO

without influencing the expressivity of the logic. To facilitate our construction, we here allow
the use of disjunctions of type ∨I , where I is a set of indices, with the obvious semantics.
We then show that ∨ can be replaced by ∨I and ∨I by ∨i.

Proposition 15. For every formula φ of PFO there exists an equivalent formula ψl (ψg,
resp.) of PFO in which all disjunctions are local (global, resp.).

Proof. Local case. Let φ be a formula of PFO and let I list the sorts of all the variables
that occur in φ. First, we let φ′ denote the formula obtained from φ by substituting all
occurrences of ∨ by ∨I . It is a direct consequence of the locality property that φ and φ′ are
equivalent.

We will next show how to eliminate disjunctions of type ∨I . Without loss of generality,
we restrict to models of cardinality at least two. Let φ = ψ ∨I θ be a formula of PFO and
let I = {i1, . . . , in}. Define

φ+ :=∃
i∈I

xiyi(ξl ∧ ξr),

where, for each i ∈ I, the variables xi and yi are fresh and distinct, and

ξl := (xi1 = yi1 ∨i1 (xi1 6= yi1 ∧ (xi2 = yi2 ∨i2 (xi2 6= yi2

∧ (. . . ∧ (xin = yin ∨in (xin 6= yin ∧ ψ) . . .),

ξr := (xi1 6= yi1 ∨i1 (xi1 = yi1 ∧ (xi2 6= yi2 ∨i2 (xi2 = yi2

∧ (. . . ∧ (xin 6= yin ∨in (xin = yin ∧ θ) . . .).

11

The idea above is that the variables xij , yij are used to encode a (possibly overlapping) split
of the team Xj . Using locality it is easy to see that φ and φ+ are equivalent over structures
of cardinality at least two. From this the claim follows in a straightforward manner.
Global case. We show how a single local disjunction is eliminated. From this the result
follows. Again, without loss of generality, we restrict to structures of cardinality at least two.
Let φ = ψ ∨j θ be a formula of PFO and let I list the sorts of all the variables that occur in
φ except j. Define φ∗ as

∀
i∈I

xiyi
(

(ψ ∧
∧

i∈I

xi = yi) ∨ (θ ∧
∧

i∈I

xi 6= yi)
)

,

where, for each i ∈ I, the variables xi and yi are fresh and distinct. The idea in φ∗ is that
on structures with at least two elements, the evaluation of the universal quantifiers ∀xiyi

on a polyteam X duplicates each assignment in Xi in at least two ways: in some duplicates
xi = yi holds and in others xi 6= yi holds. It then follows from locality that φ∗ and φ are
equivalent. ⊓⊔

We wish to point out that, in contrast to the previous result, it is easy to see that there is
no single formula in PFO without local (global, reps.) disjunction that defines global (local,
resp.) disjunction. Moreover it’s worth noticing that the translations produced above are
quite involved and rely on the use of quantifiers. It is easy to define natural fragments of
PFO where the disjunctions cannot be expressed with another.

3.3 Data exchange in the polyteam setting

As promised, we now return to the topic of modelling data exchange in our new setting. In
this section we restrict our attention to poly-atoms that are embedded dependencies. Our
first goal is to define the notions of source-to-target and target poly-atoms. For this purpose
we define a normal form for embedded dependencies. We call an embedded dependency
∀x

(

φ(x) → ∃yψ(x, y)
)

separated if the relation symbols that occur in φ and ψ are distinct.
A poly-atom is called separated, if the defining formula is a separated embedded dependency.
In the polyteam setting this is just a technical restriction as non-separated poly-atoms can
be always simulated by separated ones. Below we use the syntax A(x1, . . . , xl, y1, . . . , yk)
for separated poly-atoms. The idea is that xis project extensions for relations used in the
antecedent and yjs in the consequent of the defining formula.

Let S and T be a set of source relations and target relations from some data exchange in-
stance, respectively. Let X = (S1, . . . Sn, T1, . . . , Tm) be a polyteam that encodes S and T in
the obvious manner. We say that an instance of a separated atom A(x1, . . . , xl, y1, . . . , yk) is
source-to-target if each xi is a tuple of variables of the sort of Sj , for some j, and each yi is a tu-
ple of variables of the sort of Tj , for some j. Analogously the instance A(x1, . . . , xl, y1, . . . , yk)
is target if each xi and yj is a tuple of variables of the sort of Tp for some p.

Data exchange problems can now be directly studied in the polyteam setting. For ex-
ample the existence-of-solution problem can be reduced to a model checking problem by
using first-order quantifiers to guess a solution for the problem while the rest of the formula
describes the dependences required to be fulfilled in the data exchange problem.

Example 16. A relational database schemas

S : P(rojects) = {name, employee, employee position},

T : E(mployees) = {name, project 1, project 2}

12

are used to store information about employees positions in different projects. We wish to
check whether for a given instance of the schema S there exists an instance of the schema T
that does not lose any information about for which projects employees are tasked to work
and that uses the attribute name as a key. The PFO(pinc, dep)-formula

φ := ∃x1∃x2∃x3
(

(

P[employee, name] ⊆ E[x1, x2]

∨P P[employee, name] ⊆ E[x1, x3]
)

∧ =(x1, (x2, x3))
)

,

when evaluated on a polyteam that encodes an instance of the schema S, expresses that a
solution for the data exchange problem exists. The variables x1, x2, and x3 above are of sort
E and are used to encode attribute names name, project 1, and project 2, respectively.
The dependence atom above enforces that the attribute name is a key.

4 Relationship between polyteam and team semantics

Before embarking on an analysis of the expressive power of polyteam logics, we consider the
relationship between polyteam and team semantics. One might ask is polyteam semantics
really necessary in order to model the polyrelational case. Is it not possible to embed and
interpret polyteams within team semantics? We will next shed some light on this question.
Independence logic FO(ind) is as expressive as existential second-order logic ESO when the
team is encoded as a relation [7]. Moreover it is relatively clear that PFO(pind) translates
to ESO when the polyteam is encoded as a tuple of relations. Furthermore in ESO multiple
relations can be encoded into a single relation of large enough arity. Theorem 25 establishes
that, analogously to the case with ESO, PFO(pind) can also be simulated using FO(ind).
On the other hand, such a result does not seem likely to hold for PFO(pdep) and FO(dep).
It seems that there is no suitable way to encode multiple relations into a single relation
that is also compatible with downward closure; it is known that FO(dep) characterises
downward closed ESO-definable properties of teams [22]. Section 4.1 lays out the groundwork
for relating polyteam semantics to team semantics. Our results will be shown in Section 4.2.

4.1 Team representation

First let us formulate precisely how polyteams can be represented by teams. Let X be a
non-empty team whose domain takes variables from Var(1), . . . ,Var(n). Then X represents
the polyteam X = (X1, . . . , Xn) where Xi = X ↾ Var(i). Note that any strictly non-empty
polyteam (X1, . . . , Xn), where

⋃

Dom(Xi) is finite, can be represented by a team. In order
to deal with the situations where some coordinate team Xi of X is empty, we next introduce
the concepts of contraction and emptification.

Definition 17 (Contraction and emptification). Let Q be a generalised quantifier of
type (j1, . . . , jn). The generalised quantifier Q

′ of type (j1, . . . , ji−1, ji+1, jn) is the i-contraction
of Q if the equivalence

(A,R1, . . . , Ri−1, ∅, Ri+1, Rn) ∈ Q⇔ (A,R1, . . . , Ri−1, Ri+1, Rn) ∈ Q′

holds for every A,R1, . . . , Rn. For I ⊆ {1, . . . , n}, the I-contraction of Q is defined analo-
gously. We say that a class of generalised poly-atoms C is closed under contraction if, for
any poly-atom αQ ∈ C and any index i, AQ′ ∈ C, where Q′ is the i-contraction of Q.

Let φ = αQ(x
j1
1 , . . . , x

jn
n) be a poly-atom, i ∈ N a natural number, I = {k | 1 ≤ k ≤

n, jk = i} a set of indices, and Q′ the I-contraction of Q. Furthermore let χ list the variable

13

tuples in xj11 , . . . , x
jn
n that are not of sort i. We let φi 7→∅ denote the poly-atom αQ′(χ), and

call it the i-emptification of φ.

For instance, the 1-emptification of the dependence atom = (x1, y1) is equivalent to ⊤. It
is easy to see that in polyteam setting, the i-emptification of α(x) can be equivalently
expressed with a PFO(α)-formula. However the same is not, in general, true in the team
semantics setting.

Next we show how statements on polyteams that have empty coordinate teams can be
transformed to equivalent statements over strictly non-empty polyteams.

Definition 18 (Emptification of complex formulae). Let C be a set of poly-atoms,
φ a formula of PFO(C), and i ∈ N. We denote by φi 7→∅ the formula obtained from φ by
simultaneously replacing all first-order literals of sort i with ⊤, all disjunctions ∨i with ∧,
and all poly-atoms α with αi 7→∅, and by eliminating all quantifiers of sort i. We call φi 7→∅

the i-emptification of φ. Note that φi 7→∅ is free of variables and local disjuctions of sort i.

The following proposition can now be shown by straightforward structural induction.

Proposition 19. Let φ ∈ PFO(C), where C is any set of poly-atoms. Then for all models
A and polyteams X,

A |=X φi 7→∅ ⇐⇒ A |=Xi=∅
φ,

where X i=∅ is obtained from X by substituting the empty team for Xi.

Next we introduce a trick that enables us to change a representation of a polyteam on
the fly.

Lemma 20. Let C be a set of poly-atoms and X a non-empty team representing X =
(X1, . . . , Xn). For every φ ∈ FO(C, inc) there exists a formula φ∃r ∈ FO(C, inc) such that

A |=X φ∃r ⇔ A |=Y φ, for some team representation Y of X.

Proof. Let φ, X, and X be as described above. For each 1 ≤ i ≤ n, let xi = xi1, . . . , x
i
k be

the variable domain of Xi and let yi = yi1, . . . , y
i
k be fresh and distinct variables. Let x and

y denote x1, . . . , xn and y1, . . . , yn, respectively. Define

φ∃r := ∃y
(

∧

1≤i≤n

(xi ⊆ yi ∧ yi ⊆ xi) ∧ ∃x
(

x ⊆ y ∧ y ⊆ x ∧ φ
)

)

.

It is easy to check, using locality, that φ∃r defined as above satisfies the claim of the lemma.
⊓⊔

4.2 Translation to team semantics

Using the concepts and results from the previous section we will now move to translations
from polyteam semantics to team semantics. The next theorem reveals that polyteam seman-
tics can be simulated with team semantics using inclusion atoms and classical disjunction
6 :

A |=X φ6ψ iff A |=X φ or A |=X ψ.

Theorem 21. Let φ be a formula in PFO(C), where C is a contraction closed set of poly-
atoms. Then there is a formula φ∗ ∈ FO(C, inc,6) such that for any structure A, with at
least two elements, and any non-empty team X representing X = (X1, . . . , Xn),

A |=X φ ⇔ A
∗ |=X φ∗,

where A∗ is an expansion of A with two distinct constants.

14

Proof. Define a rank r of a formula φ as follows. For a poly-atom α(xi11 , . . . , x
in
n), r(α) := n.

For first-order literals α, r(α) := 1. For complex formulae, r(Qψ) := r(ψ)+1 and r(ψCθ) :=
r(ψ) + r(θ) + 1, where Q ∈ {∃, ∀} and C ∈ {∧,∨,∨i}. We prove the claim by induction on
r(φ) for a mapping φ 7→ φ∗ defined recursively. This mapping is the identity on literals, and
homomorphism on conjunction and universal quantification; proving the induction claim is
straightforward for these cases and thus omitted. By Proposition 15 we can also exclude
the case of global disjunction. Thus it suffices to consider local disjunction and existential
quantification.
Local disjunction. Suppose φ = ψ ∨i θ. We define

φ∗ := ((ψi 7→∅)
∗ ∧ θ∗)6 (ψ∗ ∧ (θi 7→∅)

∗)6Φ∃r, (2)

where ∃r is as defined in Lemma 20 and

Φ := ∃z
(

x0 ⊆ xz ∧ x1 ⊆ xz ∧
(

(ψ∗ ∧ z = 0) ∨ (θ∗ ∧ z = 1)
)

)

, (3)

where z is a fresh variable and x lists all the free variables of φ which are not of the sort
i. Furthermore, 0 and 1 are the two distinct constants, and x0 ⊆ yz and x0 ⊆ yz are
shorthands for ∃v(v = 0 ∧ xv ⊆ yz) and ∃v(v = 1 ∧ xv ⊆ yz), respectively.

Assume first that A |=X φ. Then there are Yi ∪ Zi = Xi such that A |=Y ψ and A |=Z θ,
where Y and Z are obtained fromX by substituting respectively Yi and Zi forXi. Suppose Yi
is empty. Then by Proposition 19 A |=X ψi 7→∅. Thus by induction hypothesis A |=X (ψi 7→∅)

∗.
Furthermore A |=X θ∗ follows from A |=Z θ by the induction hypothesis, for Z = X since
Yi = ∅. Thus the first disjunct of φ∗ holds. If Zi is empty, we similarly obtain that the second
disjunct holds.

Suppose then that both Yi and Zi are non-empty. Let X∗ be a representation of X
obtained by taking the Cartesian product of the teams X1, . . . , Xn. For s ∈ X∗, define

G(s) :=

{0, 1} if s ↾ Var(i) ∈ Yi ∩ Zi

{0} if s ↾ Var(i) ∈ Yi \ Zi

{1} if s ↾ Var(i) ∈ Zi \ Yi.

Clearly, the two left-most conjuncts in (3) are satisfied by X∗[G/z]. Recall that Y and Z
were obtained from X by substituting respectively Yi and Zi for Xi. Let Y

′ and Z ′ consist of
those assignments of X∗[G/z] whose restriction to Var(i) belongs to Yi and Zi, respectively.
Note that if the variable z is disregarded from Y ′ and Z ′, team representations of Y and Z
are obtained, respectively. Now by induction hypothesis, locality (Proposition 11), and the
selection of G,

A |=Y ψ ⇔ A |=Y ′ ψ∗ ⇔ A |=Y ′ ψ∗ ∧ z = 0. (4)

Similarly we obtain that A |=Z′ θ∗ ∧ z = 1. Since Y ′ ∪ Z ′ = X∗[G/z], we conclude that
A |=X∗ Φ. Finally, by Lemma 20, we obtain that A |=X Φ∃r and hence that A |=X φ∗.

For the converse direction, suppose A |=X φ∗. Assume first that A |=X (ψi 7→∅)
∗∧θ∗. By the

induction hypothesis, it follows that A |=X θ and A |=X ψi 7→∅. By Proposition 19 together
with the semantics of local disjunctions, it follows that A |=X φ. Similarly, A |=X φ if
A |=X (θi 7→∅)

∗∧ψ∗. Assume then that A |=X Φ∃r. Then A |=Y Φ for some team Y representing
X . Let F : Y → P(A) \ {∅} be a mapping such that Y [F/z] satisfies the quantifier-free part
of (3), and let U and V consist of those assignments of Y [F/z] that map z to 0 and 1,
respectively. The disjunction in (3) now guarantees that U ∪ V = Y [F/z], A |=U ψ∗, and
A |=V θ∗. By the induction hypothesis, A |=U ψ and A |=V θ, where U = (U1, . . . , Un) and

15

V = (V1, . . . , Vn) are the polyteams represented by U and V , respectively. Since X and Y
represent the same polyteam, and Y (x) = U(x) = V (x) by the inclusion atoms in (3), we
obtain that Uj = Vj = Xj for j 6= i. Moreover, Ui ∪ Vi = Yi = Xi, and thus we obtain that
A |=X ψ ∨i θ.
Existential quantification. Suppose φ = ∃xψ where x ∈ Var(i). We define φ∗ := ∃xψ∗.
Suppose first A |=X φ. Then A |=X[Xi[Fi/x]/Xi]

ψ for some Fi : Xi → P(A) \ {∅}. If F : X →
P(A)\{∅} is defined as F (s) := Fi(s ↾ Var(i)), it follows that the teamX [F/x] represents the
polyteam X [Xi[Fi/x]/Xi].Hence by induction hypothesis A |=X[F/x] ψ

∗, and thus A |=X φ∗.
For the converse direction, suppose A |=X φ∗. Then we find F : X → P(A)\{∅} such that

A |=X[F/x] ψ
∗. Setting Fi : Xi → P(A) \ {∅} as Fi(s) :=

⋃

{F (s′) | s′ ∈ X, s′ ↾ Var(i) = s},
it follows that X [Xi[Fi/x]/Xi] is represented by X [F/x]. Hence, we obtain by the induction
hypothesis, that A |=X[Xi[Fi/x]/Xi]

ψ. Thus A |=X φ. ⊓⊔

For poly-inclusion logic, the following corollary now follows immediately.

Corollary 22. Let φ be a formula in PFO(pinc). Then there is a formula φ∗ ∈ FO(inc,6)
such that, for any structure A with at least two elements, and any non-empty team X
representing X,

A |=X φ ⇔ A
∗ |=X φ∗,

where A
∗ is an expansion of A with two distinct constants.

Proof. By the previous theorem φ∗ can be found from FO(C, inc,6), where C is the closure of
poly-inclusion atoms under contraction. Since poly-inclusion atoms are just inclusion atoms
in team semantics, and the closure only adds poly-atoms equivalent to ⊤ or ⊥, we obtain
that φ∗ ∈ FO(inc,6). ⊓⊔

Next we show that the polyteam logics defined in terms of ESO-definable poly-atoms
can be represented in independence logic. First, we observe that ESO-definable poly-atoms
are closed under contraction.

Proposition 23. The set of ESO-definable poly-atoms is closed under contraction.

Proof. Let αQ be a generalised ESO-definable poly-atom of type (j1, . . . , jn), and let i ∈
{1, . . . , n}. We show that the i-contraction of αQ is definable in ESO. Without loss of gener-
ality i = n, in which case the i-contraction of αQ, written αQ′, is of type of (j1, . . . , jn−1). Let
φ(R1, . . . , Rn) be an ESO formula which defines αQ, and let φ′(R1, . . . , Rn−1) be obtained
from φ by replacing all relational atoms of the form Rn(t) with ⊥. Then for all models
A = (A,RA

1 , . . . , R
A

n−1),

(A,RA

1 , . . . , R
A

n−1) ∈ Q′ ⇔ (A,RA

1 , . . . , R
A

n−1, ∅) ∈ Q

⇔ (A,RA

1 , . . . , R
A

n−1, ∅) |= φ ⇔ (A,RA

1 , . . . , R
A

n−1) |= φ′.

⊓⊔

Second, we use the fact that FO(ind) characterises all ESO-definable team properties. Note
that rel(X) refers to a relation {s(x1, . . . , xn) | s ∈ X} where x1, . . . , xn is some enumeration
of Dom(X).

Theorem 24 ([7,22]). Let φ(x) be an FO(ind) (FO(dep), resp.) formula, and let R be an
|x|-ary relation. Then there is an (downwards closed with respect to R, resp.) ESO-sentence
ψ(R) such that for all teams X 6= ∅ where Dom(X) = x,

A |=X φ(x) ⇔ (A, R := rel(X)) |= ψ(R)

The same statement holds also vice versa.

16

In fact, in the above theorem we may substitute all ESO-definable poly-atoms and classical
disjunction for independence atoms.

Theorem 25. Let C be a set of ESO-definable poly-atoms, and let φ be a formula in PFO(C).
Then there is a formula φ∗ ∈ FO(ind) such that for any structure A and any non-empty team
X representing X,

A |=X φ⇔ A |=X φ∗.

Proof. We may assume that C is the set of all ESO-definable poly-atoms. Let φ be an arbi-
trary formula of PFO(C). Without loss of generality, it suffices to prove the above equivalence
with respect to structures that have at least two elements. By Theorem 21 and Proposition
23, we find a formula φ′ ∈ FO(C, inc,6) such that, for every structure A, with at least two
elements, and team X that represents some non-empty polyteam X of φ, it holds that

A |=X φ ⇔ A
′ |=X φ′,

where A′ is an expansion of A with two distinct constants 0 and 1. Define the formula
φ′′ := ∃xy

(

=(x)∧ =(y) ∧ x 6= y ∧ φ′(x/0, y/1)
)

, where x and y are fresh distinct variables
that do not occur in φ′, and φ′(x/0, y/1) is obtained from φ′ by replacing 0 and 1 by x and
y, respectively. Clearly

A
′ |=X φ′ ⇔ A |=X φ′′.

Note that φ′′ ∈ FO(C,6), for dep and inc are ESO-definable poly-atoms. Also, when re-
stricted to non-empty teams, FO(C,6) ≤ FO(ind), for FO(C) ≡ FO(ind) by Proposition 13,
and FO(ind) is closed under classical disjunction because it inherits this property from ESO

by Theorem 24. Thus we conclude that, by taking a formula φ∗ of FO(ind) which is equiva-
lent to φ′′ with respect to non-empty teams, we obtain the required team representation of
φ. ⊓⊔

As an immediate corollary we obtain that poly-independence logic is representable in
independence logic.

Corollary 26. Let φ be a formula in PFO(pind). Then there is a formula φ∗ ∈ FO(ind)
such that for any structure A and any non-empty team X representing X,

A |=X φ⇔ A |=X φ∗.

5 Expressiveness

The expressiveness properties of dependence, independence, inclusion, and exclusion logic
and their fragments enjoy already comprehensive classifications. Dependence logic and ex-
clusion logic are equi-expressive and capture all downwards closed ESO properties of teams
[7,22]. Independence logic, whose independence atoms violate downward closure, in turn
captures all ESO team properties [7]. On the other hand, the expressivity of inclusion logic
has been characterised by the so-called greatest fixed point logic [9]. In this section we turn
attention to polyteams and consider the expressivity of the poly-dependence logics intro-
duced in this paper. Section 5.1 deals with logics with only uni-dependencies whereas in
Section 5.2 poly-dependencies are considered.

17

5.1 Uni-dependencies in polyteam semantics

First we turn attention to uni-atoms in polyteam semantics. We show that with uni-atoms
no interaction between different relations is possible.

Theorem 27. Let C be a set of uni-atoms. Each formula φ(x1, . . . , xn) ∈ PFO(C) can be as-
sociated with a sequence of formulae ψ1(x

1), . . . , ψn(x
n) ∈ FO(C) such that for all structures

A and all X = (X1, . . . , Xn), where Xi is a team with domain xi,

A |=X φ(x1, . . . , xn) ⇔ ∀i = 1, . . . , n : A |=Xi
ψi(x

i).

Similarly, the statement holds vice versa.

Proof. The latter statement is clear as it suffices to set φ(x1, . . . , xn) := ψ1(x
1)∧ . . .∧ψn(x

n).
For the other direction, we define recursively functions fi that map formulae φ(x1, . . . , xn) ∈
PFO(C) to formulae ψi(x

i) ∈ FO(C). By Proposition 15 we may assume that only disjunctions
of type ∨i, for some i ∈ N, may occur in φ. The functions fi are defined as follows:

– If φ(xj) is an atom, then fi(φ) :=

{

φ if i = j,

⊤ otherwise.

– fi(ψ ∨j θ) :=

{

fi(ψ) ∨ fi(θ) if i = j,

fi(ψ) ∧ fi(θ) otherwise.

– fi(ψ ∧ θ) := fi(ψ) ∧ fi(θ).

– For Q ∈ {∃, ∀}, set fi(Qx
jψ) :=

{

Qxfi(ψ) if i = j,

fi(ψ) otherwise.

We set ψi := fi(φ) and show the claim by induction on the structure of the formula. The
cases for atoms and conjunctions are trivial. We show the case for ∨i.

Let φ = ψ ∨j θ and assume that the claim holds for ψ and θ. Now

A |=X φ iff A |=X[Yj/Xj]
ψ and A |=X [Zj/Xj]

θ,

for some Yj, Zj ⊆ Xj such that Yj ∪ Zj = Xj.

By the induction hypothesis, A |=X[Yj/Xj]
ψ and A |=X [Zj/Xj]

θ iff A |=Yj
fj(ψ), A |=Zj

fj(θ),

and A |=Xi
fi(ψ),A |=Xi

fi(θ) for each i 6= j. Thus we obtain that A |=X φ holds iff

A |=Xj
fj(ψ) ∨ fj(θ), and A |=Xi

fi(ψ) and A |=Xi
fi(θ) for each i 6= j.

The above can be rewritten as

A |=Xj
fj(ψ) ∨ fj(θ), and A |=Xi

fi(ψ) ∧ fi(θ) for each i 6= j.

The claim now follows, since fj(ψ) ∨ fj(θ) = fj(ψ ∨j θ) and fi(ψ) ∧ fi(θ) = fi(ψ ∨j θ), for
i 6= j.

The cases for the quantifiers are similar. ⊓⊔

Theorem 27 implies that poly-atoms which describe relations between two teams are
beyond the scope of uni-logics. The following proposition illustrates this for PFO(dep).

Proposition 28. The poly-constancy atom =(x1/x2) cannot be expressed in PFO(dep).

18

Proof. Assume that = (x1/x2) can be defined by some φ(x1, x2) ∈ PFO(dep). By Theorem
27 there are FO(dep)-formulae ψ1(x

1) and ψ2(x
2) such that for all X = (X1, X2), where Xi

is a team with domain xi, it holds that

A |=X=
(

x1/x2
)

⇔ ∀i = 1, 2 : A |=Xi
ψi(x

i). (5)

Define teams X1 := {x1 7→ 0}, X2 := {x2 7→ 0}, Y1 := {x1 7→ 1}, and Y2 := {x2 7→
1}. Now clearly A |=(X1,X2)= (x1/x2), and A |=(Y1,Y2)= (x1/x2). Hence by (5), we obtain
first that A |=X1

ψi(x
1) and A |=Y2

ψi(x
2), and then that A |=(X1,Y2)= (x1/x2), which is a

contradiction. ⊓⊔

It is now easy to see that Theorems 27 and 24 together imply that PFO(ind) (PFO(dep),
resp.) captures all conjunctions of (downward closed, resp.) ESO properties of teams.

Theorem 29. Let φ(x1, . . . , xn) be a PFO(ind) (PFO(dep), resp.) formula where xi is a
sequence of variables from Var(i). Let Ri be an |xi|-ary relation symbol for i = 1, . . . , n. Then
there are (downwards closed with respect to Ri, resp.) ESO-sentences ψ1(R1), . . . , ψn(Rn)
such that for all polyteams X = (X1, . . . , Xn) where Dom(Xi) = xi and Xi 6= ∅

A |=X φ(x1, . . . , xn) ⇔ (A, R1 := rel(X1), . . . , Rn := rel(Xn)) |= ψ1(R1) ∧ . . . ∧ ψn(Rn).

The same statement holds also vice versa.

5.2 Poly-dependencies in polyteam semantics

Next we consider poly-dependencies in polyteam semantics. We begin by observing that
many translations between different team logics carry over to polyteam logics.

Lemma 30. The following equivalences hold:

=
(

x1, y1/u2, v2
)

≡ y1/y1 ⊥x1,u2/x1 v2/y1, (6)

=
(

x1, y1/u2, v2
)

≡ ∀z1(y1 = z1 ∨1 x1z1 | u2v2), (7)

x1 ⊆ u2 ≡ x1/u2 ⊥ ∅/∅, (8)

x1 ⊆ u2 ≡ ∀v2(x1 | v2 ∨2 v2 ⊆ u2), (9)

x1 | u2 ≡ ∃y1z1v2w2(=
(

x1, y1z1/u2, v2w2
)

(10)

∧ y1 = z1 ∧ v2 6= w2),

x1 | u2 ≡ ∃y1(u2 ⊆ y1 ∧ x1 | y1), (11)

y2/y1 ⊥x2,x3/x1 z3/z1 ≡ ∀p2q2∃u2v2∀p3q3r3∃u3v3
(

(12)

=
(

p2q2, u2v2/p3q3, u3v3
)

∧
(

u2 = v2 ∨1 (u2 6= v2 ∧ x2y2 | p2q2)
)

∧
(

u3 6= v3 ∨2 x3z3 | p3r3 ∨2 p3q3r3 ⊆ x1y1z1
)

)

.

Proof. The equivalences (6)–(11) are straightforward and (12) is analogous to the corre-
sponding translation in the team semantics setting (see [7]). ⊓⊔

The following theorem compares the expressive powers of different polyteam logics. Ob-
serve that the expressivity of the logics with two poly-dependency atoms remains the same
even if either one of the atoms has the standard team semantics interpretation.

19

Theorem 31. The following equivalences of logic hold:

(1) PFO(pdep) ≡ PFO(pexc),
(2) PFO(pind) ≡ PFO(pexc, inc) ≡ PFO(pinc, exc) ≡ PFO(pdep, inc)

≡ PFO(pinc, dep) ≡ PFO(pdep, ind) ≡ PFO(pexc, ind) ≡ PFO(pinc, ind).

Proof. Item (1) follows by equivalences (7) and (10). Item (2) follows from the following list
of relationships:

– PFO(pind) ⊆ PFO(pexc, inc) by (7), (9), and (12).
– PFO(pexc, inc) ≡ PFO(pinc, exc) by (9) and (11).
– PFO(pexc, inc) ≡ PFO(pdep, inc) by (7) and (10).
– PFO(pinc, exc) ≡ PFO(pinc, dep), since exclusion (dependence, resp.) atoms can be de-

scribed in FO(dep) (FO(exc), resp.) [7].
– PFO(pdep, inc) ⊆ PFO(pdep, ind), PFO(pexc, inc) ⊆ PFO(pexc, ind), and PFO(pinc, dep) ⊆

PFO(pinc, ind) since inclusion atoms can be described in FO(ind) [7] and dependence
atoms by independence atoms [11].

– PFO(pdep, ind) ⊆ PFO(ind), PFO(pexc, ind) ⊆ PFO(ind), and PFO(pinc, ind)
⊆ PFO(pind) by (6), (8), and (10).

⊓⊔

Next we show the analogue of Theorem 24 for polyteams.

Theorem 32. Let φ(R1, . . . , Rn) be an ESO-sentence. There is a PFO(pdep, inc)-formula
φ∗(x1, . . . , xn), where |xi| = ar(Ri), such that for all structures A and all polyteams X =
(X1, . . . , Xn) with Dom(Xi) = xi and Xi 6= ∅,

A |=X φ∗(x1, . . . , xn) ⇔ (A, R1 := rel(X1), . . . , Rn := rel(Xn)) |= φ(R1, . . . , Rn).

The statement holds also vice versa.

Proof. Considering first the direction from PFO(pdep, inc) to ESO, let φ(x1, . . . , xn) be a
PFO(pdep, inc)-formula. Since poly-dependence and uni-inclusion atoms are ESO-definable,
φ can be represented by some FO(ind)-formula φ∗ (Theorem 25), which in turn can be
expressed as some ESO-formula ψ(R) (Theorem 24). LetR1, . . . , Rn be fresh relation symbols
with respective arities |x1|, . . . , |xn|. Let ψ′ be obtained from ψ by replacing each atom
R(v1, . . . , vn), where v1, . . . , vn are tuples of variables respective lengths |x1|, . . . , |xn|, with
the conjunction R1(v1)∧ . . .∧Rn(vn). Then we observe that for all models A and polyteams
X = (X1, . . . , Xn) represented by X ,

A |=X φ ⇐⇒ A |=X φ∗ ⇐⇒ (A, rel(X)) |= ψ ⇐⇒ (A, rel(X1), . . . , rel(Xn)) |= ψ′.

Consider then the opposite direction. Analogously to [7], we can rewrite φ(R1, . . . , Rn)
as

∃f∀u
(

n
∧

i=1

(Ri(ui) ↔ f2i−1(ui) = f2i(ui)) ∧ ψ(u, f)
)

where f = f1, . . . , f2n, . . . , fm is a list of function variables, ψ is a quantifier-free formula in
which no Ri appears, each ui is a subsequence of u, and each fi occurs only as fi(uji) for
some fixed tuple uji of variables. For instance, ji = i/2 for even i ≤ 2n.

Let b
i
be sequences of variables of sort i such that |b

i
| = |ui|, and let u1y1 be a sequence

of variables of sort 1 such that u1 is a copy of u and y1 = y11, . . . , y
1
m. We define φ∗(x1, . . . , xn)

as the formula
∀b

1
∃z10z

1
1 . . .∀b

n
∃zn0 z

n
1∀u

1∃y1
(

θ0 ∧ θ1 ∧ ψ
′(u1, y1))

20

where

θ0 :=
n
∧

i=1

=
(

b
i
, zi0

)

∧ =
(

b
i
, zi1

)

∧ ((b
i
⊆ xi ∧ zi0 = zi1) ∨

i (xi | b
i
∧ zi0 6= zi1)),

θ1 :=
n
∧

i=1

=
(

u1i , y
1
2i−1/b

i
, zi0

)

∧ =
(

u1i , y
1
2i/b

i
, zi1

)

∧
m
∧

i=n+1

=
(

u1ji, y
1
i

)

,

and ψ′(u1, y1) is obtained from ψ(u, f) by replacing u pointwise with u1 and each fi(uji)
with y1i . Above, θ0 amounts to the description of the characteristic functions f2i−1 and f2i.

We refer the reader to [7] to check that A |=X θ0 iff for all i the functions s(b
i
) 7→ s(zi0)

and s(b
i
) 7→ s(zi1) determined by the assignments s ∈ Xi agree on s(b

i
) exactly when

s(b
i
) ∈ rel(Xi). The poly-dependence atoms in θ1 then transfer these functions over to the

first team, and the dependence atoms in ψ1 describe the remaining functions. As in [7], it
can now be seen that φ∗ correctly simulates φ. Since exclusion atoms can be expressed in
dependence logic, the claim then follows. ⊓⊔

By item (2) of Theorem 31 the result of Theorem 32 extends to a number of other logics
as well. For instance, we obtain that poly-independence logic captures all ESO properties of
polyteams. The proof of Theorem 32 can be now easily adapted to show that poly-exclusion
and poly-dependence logic capture all downwards closed ESO properties of polyteams.

Theorem 33. Let φ(R1, . . . , Rn) be an ESO-sentence that is downwards closed with respect
to Ri. Then there is a PFO(pdep)-formula φ∗(x1, . . . , xn), where |xi| = ar(Ri), such that for
all structures A and all polyteams X = (X1, . . . , Xn) with Dom(Xi) = xi and Xi 6= ∅,

A |=X φ∗(x1, . . . , xn) ⇔ (A, R1 := rel(X1), . . . , Rn := rel(Xn)) |= φ(R1, . . . , Rn).

The statement holds also vice versa.

Proof. Consider first the direction from PFO(pdep) to ESO. By Theorem 31, PFO(pdep)
is subsumed by PFO(pind), and thus the previous theorem yields a suitable ESO-sentence
φ(R1, . . . , Rn). Since PFO(pdep) is downwards closed (Proposition 23), this sentence is also
downwards closed with respect to Ri.

For the other direction, let φ(R1, . . . , Rn) be an ESO-sentence in which the relations Ri

appear only negatively. As in the proof of Theorem 32 and by downward closure we may
transform it to an equivalent form (see [22] for details)

∃f∀u
(

n
∧

i=1

(¬Ri(ui) ∨ f2i−1(ui) = f2i(ui)) ∧ ψ(u, f)
)

Now the translation φ(x1, . . . , xn) is defined analogously to the proof of Theorem 32 except
for θ0 which is redefined as

θ0 :=
n
∧

i=1

=
(

b
i
, zi0

)

∧ =
(

b
i
, zi1

)

∧ (xi | b
i
∨i zi0 = zi1).

Finally the claim follows by eliminating the exclusion atoms from θ0. ⊓⊔

Next we turn to poly-inclusion logic. Over sentences, inclusion logic is known to be as
expressive as positive greatest fixed point logic (PosGFP), the fragment of greatest fixed
point logic in which all fixed point operators occur within the scope of an even number of
negations. Moreover, all team properties definable in inclusion logic are also definable in
PosGFP, but the converse does not hold due to union closure.

21

Theorem 34 ([9]). Every FO(inc)-sentence is equivalent to some PosGFP-sentence, and
vice versa. Moreover, for every FO(inc)-formula φ(x) there is a PosGFP-sentence ψ(R),
where |x| = ar(R), such that for all structures A and all teams X with Dom(X) = x,

A |=X φ(x) ⇐⇒ (A, R := rel(X)) |= ψ(R).

To generalise these results to polyteam semantics, we use the fact that all team connectives
and quantifiers distribute over classical disjunctions.

Proposition 35 ([8]). Let φ be an FO(C,6)-formula, where C is any set of atoms. Then
φ is equivalent to some formula of the form ψ16 . . . 6ψn where ψ1, . . . , ψn are FO(C)-
formulae.

Theorem 36. Every PFO(pinc)-sentence is equivalent to some PosGFP-sentence, and vice
versa. Moreover, for every PFO(pinc)-formula φ(x1, . . . , xn) there is a PosGFP-sentence
ψ(R1, . . . , Rn), where |xi| = ar(Ri), such that for all structures A and all polyteams X =
(X1, . . . , Xn) with Dom(Xi) = xi,

A |=X φ(x1, . . . , xn) ⇐⇒ (A, R1 := rel(X1), . . . , Rn := rel(Xn)) |= ψ(R1, . . . , Rn).

Proof. Let φ(x1, . . . , xn) ∈ PFO(pinc) be a formula, and let φ∗(x1, . . . , xn) ∈ FO(inc,6) be
its team representation, obtained by Corollary 22, in which two additional constants 0 and
1 occur. Without loss of generality, we may restrict our attention to structures with at least
two elements. By Proposition 35 φ∗ is equivalent to a disjunction ψ16 . . . 6ψn, where ψi

are FO(inc)-formulae. By Theorem 34 each ψi is equivalent to some PosGFP-sentence Φi(R).
Define

Φ(R) := ∃yz
(

y 6= z ∧
(

Φ1(y/0, z/1) ∨ . . . ∨ Φn(y/0, z/1)
)

)

,

where Φi(y/0, z/1) are obtained from Φi by substituting y and z respectively for 0 and 1.
Let R1, . . . , Rn be fresh relation symbols with respective arities |x1|, . . . , |xn|. Let Φ′ be the
formula obtained from Φ by replacing each atom R(y1, . . . , yn), where y1, . . . , yn are tuples of
variables with respective lengths |x1|, . . . , |xn|, with the conjunctionR1(y1)∧. . .∧Rn(yn). The
following equivalence holds for all structures A, with at least two elements, and strictly non-
empty polyteams X = (X1, . . . , Xn). Let X denote the team representation of X obtained
by taking the Cartesian product of the teams Xi, 1 ≤ i ≤ n.

A |=X φ ⇔ A
∗ |=X ψ16 . . . 6ψn

⇔ (A, R := rel(X)) |= Φ

⇔
(

A, R1 := rel(X1), . . . , Rn := rel(Xn)
)

|= Φ′,

where A∗ is an expansion of A with two distinct constants 0 and 1. The converse direction for
PosGFP-sentences follows by Theorem 34 and since FO(inc) is a fragment of PFO(pinc). ⊓⊔

6 Conclusion

In this article we have laid the foundations of polyteam semantics in order to facilitate the
fruitful exchange of ideas and results between team semantics and database theory. Our
results show that many of the familiar properties and results from team semantics carry
over to the polyteam setting. In particular, we identified a natural polyteam analogue of
dependence atoms and gave a complete axiomatisation for the associated implication prob-
lem. We also showed that polyteam semantics can sometimes be reduced to team semantics,

22

although it can be questioned whether such an interpretation is reasonable in the first place.
The examples of this paper demonstrate that polyteam semantics is a conceptually more
natural framework for capturing properties of sets of relations. Specifications for multiple re-
lations are easier to parse if different relations are explicitly distinguished in formulae. Also,
if polyteam logics are interpreted as data constraint languages, as in Example 10, then the
reduction from polyteam semantics to team semantics incurs an unnecessary computational
overhead. First, a single team to represent the polyteam has to be constructed, e.g., by tak-
ing a Cartesian product of all coordinate teams; and second, this team has to be validated
against a team logic formula which is much larger in size than the initial polyteam formula.

Our results also open up interesting avenues for further research. One question is to
determine whether poly-dependence logic reduces to dependence logic. Our methods only
work for poly-independence and poly-inclusion logic, and the proviso in the latter case was to
include classical disjunction. As inclusion logic with classical disjunction is not union closed,
it would also be interesting to study the team properties definable in this logic. Apart from
poly-dependence atoms, we did not consider axioms for any other poly-atoms. Since the
axioms of poly-inclusion atoms are already known from database theory, a natural next step
would be to axiomatise marginal poly-independence atoms. It would also be interesting to
develop axiomatic methods for more expressive fragments of polyteam logics (cf. [12,23,28]).

References

1. William W. Armstrong. Dependency Structures of Data Base Relationships. In Proc. of IFIP World Computer
Congress, pages 580–583, 1974.

2. Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion dependencies and their interaction
with functional dependencies. J. Comput. Syst. Sci., 28(1):29–59, 1984.

3. Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. Approximation
and dependence via multiteam semantics. Ann. Math. Artif. Intell., 83(3-4):297–320, 2018. URL:
https://doi.org/10.1007/s10472-017-9568-4, doi:10.1007/s10472-017-9568-4.

4. Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. Probabilistic
team semantics. In Foundations of Information and Knowledge Systems - 10th International Sym-
posium, FoIKS 2018, Budapest, Hungary, May 14-18, 2018, Proceedings, pages 186–206, 2018. URL:
https://doi.org/10.1007/978-3-319-90050-6_11, doi:10.1007/978-3-319-90050-6_11.

5. Arnaud Durand, Juha Kontinen, and Heribert Vollmer. Expressivity and complexity of dependence logic. In
Samson Abramsky, Juha Kontinen, Jouko Väänänen, and Heribert Vollmer, editors, Dependence Logic: Theory
and Applications, pages 5–32. Springer International Publishing, Cham, 2016.

6. Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange: semantics and query
answering. Theoretical Computer Science, 336(1):89 – 124, 2005.

7. Pietro Galliani. Inclusion and exclusion dependencies in team semantics: On some logics of imperfect information.
Annals of Pure and Applied Logic, 163(1):68 – 84, 2012.

8. Pietro Galliani. On strongly first-order dependencies. In Dependence Logic, Theory and Applications, pages
53–71. 2016.

9. Pietro Galliani and Lauri Hella. Inclusion Logic and Fixed Point Logic. In Simona Ronchi Della Rocca,
editor, Computer Science Logic 2013 (CSL 2013), volume 23 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 281–295, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

10. Dan Geiger, Azaria Paz, and Judea Pearl. Axioms and algorithms for inferences involving probabilistic indepen-
dence. Information and Computation, 91(1):128–141, 1991.

11. Erich Grädel and Jouko A. Väänänen. Dependence and independence. Studia Logica, 101(2):399–410, 2013.
12. Miika Hannula. Axiomatizing first-order consequences in independence logic. Ann. Pure Appl. Logic, 166(1):61–

91, 2015.
13. Miika Hannula. Reasoning about embedded dependencies using inclusion dependencies. In Logic for Program-

ming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, Novem-
ber 24-28, 2015, Proceedings, pages 16–30, 2015. URL: https://doi.org/10.1007/978-3-662-48899-7_2 ,
doi:10.1007/978-3-662-48899-7_2.

14. Miika Hannula, Åsa Hirvonen, Juha Kontinen, Vadim Kulikov, and Jonni Virtema. Facets of distribution
identities in probabilistic team semantics. In JELIA, volume 11468 of Lecture Notes in Computer Science, pages
304–320. Springer, 2019.

15. Miika Hannula and Juha Kontinen. A finite axiomatization of conditional independence and inclusion depen-
dencies. Inf. Comput., 249:121–137, 2016.

23

https://doi.org/10.1007/s10472-017-9568-4
http://dx.doi.org/10.1007/s10472-017-9568-4
https://doi.org/10.1007/978-3-319-90050-6_11
http://dx.doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1007/978-3-662-48899-7_2
http://dx.doi.org/10.1007/978-3-662-48899-7_2

16. Miika Hannula, Juha Kontinen, and Sebastian Link. On the finite and general implication problems of indepen-
dence atoms and keys. J. Comput. Syst. Sci., 82(5):856–877, 2016.

17. Christian Herrmann. On the undecidability of implications between embedded multivalued database dependen-
cies. Information and Computation, 122(2):221 – 235, 1995.

18. Wilfrid Hodges. Compositional Semantics for a Language of Imperfect Information. Journal of the Interest
Group in Pure and Applied Logics, 5 (4):539–563, 1997.

19. Paris C. Kanellakis. Elements of relational database theory. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pages 1073–1156. 1990.

20. Juha Kontinen, Antti Kuusisto, and Jonni Virtema. Decidability of Predicate Logics with Team Semantics. In
Proceedings of MFCS 2016, pages 60:1–60:14, 2016.

21. Juha Kontinen, Sebastian Link, and Jouko A. Väänänen. Independence in database relations. In Proc. 20th
WoLLIC, volume 8071 of LNCS, pages 179–193. Springer, 2013.

22. Juha Kontinen and Jouko Väänänen. On definability in dependence logic. Journal of Logic, Language and
Information, 3(18):317–332, 2009.

23. Juha Kontinen and Jouko A. Väänänen. Axiomatizing first-order consequences in dependence logic. Ann. Pure
Appl. Logic, 164(11):1101–1117, 2013.

24. Antti Kuusisto. A double team semantics for generalized quantifiers. Journal of Logic, Language and Information,
24(2):149–191, 2015.

25. Yehoshua Sagiv and Scott F. Walecka. Subset dependencies and a completeness result for a subclass of embedded
multivalued dependencies. J. ACM, 29(1):103–117, 1982.

26. Douglas Stott Parker Jr. and Kamran Parsaye-Ghomi. Inferences involving embedded multivalued dependencies
and transitive dependencies. In Proceedings of the 1980 ACM SIGMOD International Conference on Manage-
ment of Data, pages 52–57, 1980.

27. Jouko Väänänen. Dependence Logic. Cambridge University Press, 2007.
28. Fan Yang. Negation and partial axiomatizations of dependence and independence logic revisited.

Ann. Pure Appl. Logic, 170(9):1128–1149, 2019. URL: https://doi.org/10.1016/j.apal.2019.04.010 ,
doi:10.1016/j.apal.2019.04.010.

24

https://doi.org/10.1016/j.apal.2019.04.010
http://dx.doi.org/10.1016/j.apal.2019.04.010

	Polyteam Semantics

