1,332 research outputs found

    CLASSIFICATION BASED ON SEMI-SUPERVISED LEARNING: A REVIEW

    Get PDF
    Semi-supervised learning is the class of machine learning that deals with the use of supervised and unsupervised learning to implement the learning process. Conceptually placed between labelled and unlabeled data. In certain cases, it enables the large numbers of unlabeled data required to be utilized in comparison with usually limited collections of labeled data. In standard classification methods in machine learning, only a labeled collection is used to train the classifier. In addition, labelled instances are difficult to acquire since they necessitate the assistance of annotators, who serve in an occupation that is identified by their label. A complete audit without a supervisor is fairly easy to do, but nevertheless represents a significant risk to the enterprise, as there have been few chances to safely experiment with it so far. By utilizing a large number of unsupervised inputs along with the supervised inputs, the semi-supervised learning solves this issue, to create a good training sample. Since semi-supervised learning requires fewer human effort and allows greater precision, both theoretically or in practice, it is of critical interest

    Transmission line condition prediction based on semi-supervised learning

    Full text link
    Transmission line state assessment and prediction are of great significance for the rational formulation of operation and maintenance strategy and improvement of operation and maintenance level. Aiming at the problem that existing models cannot take into account the robustness and data demand, this paper proposes a state prediction method based on semi-supervised learning. Firstly, for the expanded feature vector, the regular matrix is used to fill in the missing data, and the sparse coding problem is solved by representation learning. Then, with the help of a small number of labelled samples to initially determine the category centers of line segments in different defective states. Finally, the estimated parameters of the model are corrected using unlabeled samples. Example analysis shows that this method can improve the recognition accuracy and use data more efficiently than the existing models

    A human motion feature based on semi-supervised learning of GMM

    Get PDF
    Using motion capture to create naturally looking motion sequences for virtual character animation has become a standard procedure in the games and visual effects industry. With the fast growth of motion data, the task of automatically annotating new motions is gaining an importance. In this paper, we present a novel statistic feature to represent each motion according to the pre-labeled categories of key-poses. A probabilistic model is trained with semi-supervised learning of the Gaussian mixture model (GMM). Each pose in a given motion could then be described by a feature vector of a series of probabilities by GMM. A motion feature descriptor is proposed based on the statistics of all pose features. The experimental results and comparison with existing work show that our method performs more accurately and efficiently in motion retrieval and annotation

    Impact of Labelled Set Selection and Supervision Policies on Semi-supervised Learning

    Full text link
    In semi-supervised representation learning frameworks, when the number of labelled data is very scarce, the quality and representativeness of these samples become increasingly important. Existing literature on semi-supervised learning randomly sample a limited number of data points for labelling. All these labelled samples are then used along with the unlabelled data throughout the training process. In this work, we ask two important questions in this context: (1) does it matter which samples are selected for labelling? (2) does it matter how the labelled samples are used throughout the training process along with the unlabelled data? To answer the first question, we explore a number of unsupervised methods for selecting specific subsets of data to label (without prior knowledge of their labels), with the goal of maximizing representativeness w.r.t. the unlabelled set. Then, for our second line of inquiry, we define a variety of different label injection strategies in the training process. Extensive experiments on four popular datasets, CIFAR-10, CIFAR-100, SVHN, and STL-10, show that unsupervised selection of samples that are more representative of the entire data improves performance by up to ~2% over the existing semi-supervised frameworks such as MixMatch, ReMixMatch, FixMatch and others with random sample labelling. We show that this boost could even increase to 7.5% for very few-labelled scenarios. However, our study shows that gradually injecting the labels throughout the training procedure does not impact the performance considerably versus when all the existing labels are used throughout the entire training

    A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams

    Full text link
    Unlabelled data appear in many domains and are particularly relevant to streaming applications, where even though data is abundant, labelled data is rare. To address the learning problems associated with such data, one can ignore the unlabelled data and focus only on the labelled data (supervised learning); use the labelled data and attempt to leverage the unlabelled data (semi-supervised learning); or assume some labels will be available on request (active learning). The first approach is the simplest, yet the amount of labelled data available will limit the predictive performance. The second relies on finding and exploiting the underlying characteristics of the data distribution. The third depends on an external agent to provide the required labels in a timely fashion. This survey pays special attention to methods that leverage unlabelled data in a semi-supervised setting. We also discuss the delayed labelling issue, which impacts both fully supervised and semi-supervised methods. We propose a unified problem setting, discuss the learning guarantees and existing methods, explain the differences between related problem settings. Finally, we review the current benchmarking practices and propose adaptations to enhance them

    Semi-supervised transductive speaker identification

    Get PDF
    We present an application of transductive semi-supervised learning to the problem of speaker identification. Formulating this problem as one of transduction is the most natural choice in some scenarios, such as when annotating archived speech data. Experiments with the CHAINS corpus show that, using the basic MFCC-encoding of recorded utterances, a well known simple semi-supervised algorithm, label spread, can solve this problem well. With only a small number of labelled utterances, the semi-supervised algorithm drastically outperforms a state of the art supervised support vector machine algorithm. Although we restrict ourselves to the transductive setting in this paper, the results encourage future work on semi-supervised learning for inductive speaker identification
    • …
    corecore