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those motion data to create realistic motions for new char-
acters by applying motion editing [1, 2], motion synthesis 
[3–5] and motion retargeting [6] techniques has become the 
focus of research in the past several years. However, prior 
to reusing and processing the old motions, one fundamen-
tal problem of identifying and extracting similar motion 
clips from the database has to be solved. It is essentially a 
motion matching problem. The general procedure is to cal-
culate a concise and representative feature for each motion, 
and then compare the similarities with all other motions in 
the mocap database. The efficiency and accuracy of these 
motion retrieval and annotation processes largely depend 
on the property of the used features.

Most early work [7] uses textual description such as run-
ning, walking, to label existing motions in a database. It 
does not only involve a lot of manual work, the textual label 
is also too short and general to fully represent the features 
of each motion. Later works [8–11] use the numeric-based 
features and logic-based features involving the 3D coor-
dinates of each joint in each frame. It includes too much 
redundant information and the ‘huge’ feature makes the 
motion matching really slow. Some recent works [12] pre-
sent semantic features which better represent the essence of 
motions and the low dimension of features largely speeds 
up the motion retrieval process. In this paper, we present a 
new feature in this category. The work [13] has shown that 
a human motion clip could be described with some repre-
sentative poses, which we call the ‘key-pose’. Intuitively, 
two similar motions may share most key-poses, while the 
motions belonging to different motion classes may share 
none or only a few key-poses (as shown in Fig. 1). A good 
selection of key-poses can be used to represent different 
motion classes. The second benefit to use key-poses as a 
feature is, although the category of motions is infinite, the 
types of key-poses are relatively limited. A new category 
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1  Introduction

The growing popularity of motion capture (mocap) tech-
nique in feature films and interactive entertainments has 
led to an explosive growth of motion data. The reuse of 
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of motions could be composed of existing key-poses. But 
unfortunately, most state-of-the-art research classifies a 
motion by its pose feature directly, and does not utilize the 
‘key-pose’ as a middle level between the pose feature and 
the motion class. In the work of Qi et al. [12], the Gaussian 
mixture model (GMM) is applied to model the key-poses 
of every motion class. However, the result of this unsuper-
vised learning method shows that the mean value of each 
Gaussian model may not align with the motions’ seman-
tic category. To improve the result, we manually define a 
class of key-poses from close observation of all the motions 
in our database, and partially label some poses for semi-
supervised learning.

In this paper, we present a novel probabilistic human 
motion feature and a semi-supervised learning of GMM 
method to train the key-pose model. The flowchart of 
our work is shown in Fig. 2. First, some key-frames are 

extracted for each motion in the database. Then a logic-
based feature called General Position Feature (GPF) is 
extracted on each key-frame. Since the key-frames are par-
tially labeled according to the defined key-pose categories, 
we construct both the classifier (supervised learning) and 
the GM model (unsupervised learning). Similar to [14], 
a combined semi-supervised learning method based on 
Expectation-Maximization (EM) algorithm is introduced 
to model the key-poses by a set of GM parameters. Then 
given an unknown input motion clip, a probabilistic pose 
feature is calculated for each pose by the key-pose model. 
Finally, the motion feature is generated by combining the 
statistical value of all the poses in the motion clip.

As the main contribution of this paper, we propose a 
novel probabilistic human motion feature based on semi-
supervised learning of GMM. Unlike the other state-of-the-
art research, the key-frames of our database are partially 

Fig. 1   Examples of key-poses 
in four motions. The top two 
motions are from the same 
motion class (RotateArms) and 
they share almost all key-poses. 
However, the third motion 
(Walk) and the last motion 
(Clap) share only a few key-
poses with the top two. The 
red, green and blue rectangles 
represent the only three pairs of 
similar key-poses that shared 
between different kinds of 
motions (one color for one pair)

Fig. 2   The flowchart of our 
approach
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labeled by a series of specified key-poses, which could be 
well estimated by our feature model. Therefore, the com-
plete motion matching process is divided into two parts, 
pose recognition and motion matching, which is close to 
human perception. In addition, our probabilistic model 
contains more information than general clustering methods, 
and the semi-supervised learning method is able to prevent 
overfitting (both of which will be discussed in Sect. 3 in 
detail).

2 � Related work

Multimedia content analysis and understanding is a crucial 
research problem, where designing a discriminative feature 
is a basic way to improve the performance. In recent work, 
both features and models have been worked out for many 
applications in multimedia area, such as image recognition 
[15], retrieval [16], cropping [17], segmentation [18, 19], 
and video annotation [20]. Unfortunately, in our 3D human 
motion applications, there is still lack of an efficient feature 
for motion representation.

With the rapid growth of mocap databases, the applica-
tions based on large motion data repository, such as motion 
retrieval and data-driven motion recognition or annotation, 
become popular, and a lot of research has been focused 
on them in recent years. As described in the last section, 
motion matching, the key procedure, could be divided 
into two parts, extracting pose features and comparing the 
similarity. They rely on the answers of two further issues, 
which are how to construct a concise and representative 
feature, and how to compare motions of different length by 
pose features.

In the past two decades, a great deal of research has been 
carried out for skeleton feature extraction, which could be 
concluded as two categories, the numeric-based features 
and the logic-based features. A numeric-based feature is 
obtained from the original data directly, regardless of its 
physical meaning, while a logic-based feature concerns 
more about the joint relationship in a real skeleton hier-
archy structure. With the increasingly precision of mocap 
devices, the dimensionality of mocap data gets bigger. 
Principle Component Analysis (PCA) is applied [21–23] to 
reduce the dimensionality of poses in motion. For further 
improvement, Forbes et al. [8] employ the weighted PCA 
to distinguish the different importance of different skeleton 
nodes simultaneously. In addition, some signal process-
ing methods, such as wavelet transform [9], are also intro-
duced. As shown in Fig. 1, motions could be represented 
by a series of key-poses. Therefore, all poses in a database 
could be clustered, and the idea of using motion cluster-
ing indices (MCI) to represent poses is adopted by [21, 24, 
25]. However, all numeric-based features cannot describe 

the logic meaning of a motion, e.g. the relative locations of 
skeleton joints. It is a fatal weakness of this kind of feature, 
as logically similar motions may not be numerically similar 
[26].

Therefore, a lot of logic-based features are presented to 
describe motion in recent research. Muller et al. proposed a 
Boolean feature that describes geometric relations between 
specified points of a pose [10], e.g. the right hand is in front 
or behind the body plane. Such a series of Boolean values 
are combined to describe each pose in a motion. This work 
is extended by Chen et al. [11] In their work, 10 types of 
relational geometric features (RGF) are defined, which use 
the basic elements of points, lines and planes to calculate 
the relative position of joints in each pose. Similarly, Tang 
et al. [27] take the relative distance between the joints as 
the basic features, to calculate the similarity of a pair of 
motions. The feature is improved to retrieve logically rel-
evant motions by [28]. Those geometric features are also 
applied and extended by [29], where a combined relational 
geometric feature of over 20,000 dimensions is used. Since 
the feature is high dimensional, feature selection methods 
such as Adaboost are usually needed.

However, both low-level numeric and logic-based fea-
tures could only describe or represent a pose. They cannot 
make use of semantic pose labels as a part of the feature 
directly. As discussed in the last section, the specified pose 
labels can be used to improve the accuracy of recognition 
only when the key-poses in a motion are recognized. So in 
this paper, we still use the logic-based features, but present 
a high-level probabilistic feature based on semi-supervised 
learning of GMM, which utilizes both the logic informa-
tion and the labels of a pose.

Once the skeleton features are extracted on pose, another 
difficult point is how to compare motions with a different 
length by pose features. The dynamic time warping (DTW) 
algorithm is most widely used here, due to its effectiveness 
[8, 29, 30]. It is a dynamic programming (DP)-based algo-
rithm that finds a path with a minimal distance between two 
motions. In addition, some string matching methods could 
be applied if a pose in a motion is represented as a character 
(such as MCI). In the work of [25], human motions are bro-
ken into hierarchical parts, and clustered by k-means. The 
motion clustering indices (MCI) are used to represent each 
motion pattern. A classical Knuth–Morris–Pratt (KMP) 
string matching algorithm is applied and extended to com-
pare motions. Qi et al. [31] generate the ‘action string’ 
from a motion, and a string matching algorithm based on 
dynamic programming (DP) is used in motion matching.

However, the computational cost of either DTW or those 
string matching algorithms is very high, which cannot meet 
the real-time requirement of most applications, especially 
for interactive applications. But if a pose feature is proba-
bilistic, there is a way to prevent this disadvantage, that is 
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taking the normalized statistical value of each pose feature 
as the descriptor of the motion [12]. The computation is 
very fast, and the performance is robust in motion match-
ing. This idea is adopted in this paper, so the feature model 
is trained by the probabilistic model GMM. However, in 
the work of [12], the key-poses are estimated separately 
in each motion class, which will cause some redundancy, 
because the common key-poses shared in different motion 
classes are duplicated in different models. In this paper, 
a semi-supervised learning method is applied to take full 
advantage of the partial pose labels, and all the key-poses 
are estimated only once in the same time, to overcome the 
redundancy.

3 � Motivation

In this section, we discuss the detail and the justification 
on why we choose the GMM rather than the K-means to 
model the key-poses, and why we choose semi-supervised 
learning rather than unsupervised or supervised learning, 
which is a key idea of this paper.

3.1 � GMM vs. K-means

As described in Sect. 1, key-poses can be chosen to repre-
sent all kinds of motions. A simple way to estimate key-
poses is using the K-means algorithm to build clusters, in 
which each pose is labeled by the nearest clustering index. 
However, if there is a transitional pose between two neigh-
bor key-poses, it must be labeled as one of them, which 
is not always necessary. Unlike the k-means, the GMM is 
able to allow soft assignments by providing a probability 
for a given pose that belongs to a cluster.

For example, Fig. 3 shows the data points of poses in a 
real motion with the category of ‘cartwheel’, which are 
projected to a 2D space with the first two principle com-
ponents. The three large x-marks represent the center loca-
tions of key-poses generated by unsupervised learning algo-
rithms. If K-means is applied, although the pose of point A 

is perfectly labeled to class 1, the transitional pose of point 
B has to be forced to class 2 or 3. Unlike K-means, when 
GM model is used (the ellipse of each center represents the 
covariance of that Gaussian), the descriptor of point A is the 
same, but the B’s descriptor could be a set of probabilities as 
{0, 0.5, 0.5}, which could well describe this pose.

3.2 � Unsupervised vs. supervised learning

Although the mean of each GM model could esti-
mate the key-pose, it may not be the right position we 
expected, because the learning is unsupervised. If the 
motion is well labeled for each pose, the key-pose could 
be pointed out by calculating the average positions of all 
poses with the same corresponding label. Figure 4 gives 
the same example as Fig. 3. The raw data points are dis-
tributed as Fig. 4a, the three different marks(x-marks, 
circle marks and star marks) represent the three differ-
ent pose labels on each frame. The subfigure 4b shows 
the expected key-poses (large red circle marks) and the 
estimated positions (green ellipses with blue x-marks as 
their centers) by unsupervised learning of GMM. When 
supervised and semi-supervised learning of GMM [14] 
is applied to take advantage of the pose labels, the esti-
mation result is much closer to the expected positions 
(shown in Fig. 4c, d).

However, since the key-poses are defined and labeled 
manually, it may be too specific to cause overfitting when 
taking the totally supervised learning algorithms. Because 
the semi-supervised learning algorithms utilize distribution 
of those unlabeled data to expand the training set, they are 
more likely to prevent overfitting.

On the other hand, it has to be full-labeled on the data-
base, if a totally supervised learning method is applied. 
However, setting the pose label on a large mocap data 
repository costs a great deal of manual effort. Moreover, 
when a new category of motion is added into the database, 
the key-poses included may already exist in the original 
database. So it is not necessary to label any pose in the 
new motion category if a semi-supervised learning method 

Fig. 3   The data distribution of 
a real motion with the category 
of ‘cartwheel’. The three large 
x-marks represent the center 
locations of key-poses gener-
ated by unsupervised learning 
algorithms. In this scheme, pose 
A could be well represented, 
but pose B cannot. The three 
clustering centers, poses A and 
B are visualized in the right
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is used. Actually, this approach has been already adapted 
in visual recognition area [32, 33], but rarely used in 3D 
human motion applications.

Following the above analysis, we apply an efficient 
semi-supervised learning method of the probabilistic GM 
model [14] to both get a better performance and save labor 
cost.

4 � Human motion feature generation

4.1 � Notations and pre-processing

Motion data consist of 3D joint positions frame by frame. 
A motion clip s can be represented as s = {f1, f2, . . . , fs}, 
where fi contains the x, y, z coordinates of each joint in the 
i-th frame.

As mentioned before, logically similar motions may not 
be numerically similar. To describe the logic meaning of a 
motion, we present a simple but robust logic-based feature, 
called the GPF, which contains four parts. First, the velocity 
of each joint, which is calculated by its position offset from 
the last frame divided by the time interval. If there are K joints 
in the skeleton model, the data dimensionality of this part is 
K. Second, the acceleration of each joint, which is variation 
of velocity between the current and last frame, with K dimen-
sions in each frame. Next, the relative distances, calculated 
between each pair of two arbitrary joints, with K × (K − 1)/2 
dimensions. And last, the distance of each joint to the body 

center (root joint), with K − 1 dimensions. The GPF, there-
fore, contains a total of K × (K − 1)/2+ 3K − 1 dimensions 
for each frame, and the feature in each part is normalized to 
avoid a bias. Since there is some redundancy in GPF, espe-
cially in the third part, we adopt PCA to reduce its dimension-
ality and find the principle feature subspace. The above four 
relational geometric features (RGFs) are chosen in our GPF 
feature, because they could well describe a pose, and is fast 
enough for online computation.

After the GPF feature extraction, we apply the K-means 
clustering-based key-frame extraction algorithm, intro-
duced by [12], and then a set of key-frames are selected 
as ŝ = {xT1 , x

T
2 , . . . , x

T
n }

T, which is an n× m matrix, where 
m is data dimension of the principle feature subspace, n is 
the number of key-frames and xi is the feature data of i-th 
key-frame.

4.2 � Semi-supervised learning of GMM

Assuming there are altogether N key-frames selected 
from all motions in a database, the specified P key-poses 
are learned by the semi-supervised learning algorithm of 
GMM. Each Gaussian model N (µi,�i), i = 1, 2, . . . ,G,  
represents an estimated data distribution of one or more 
certain key-poses, and there are a total of G Gaussian mod-
els mixed together to describe all key-poses. Since the 
key-poses are specified and labeled manually, there will be 
errors. In detail, in a few cases, the manually labeled two 
separate categories of key-poses may be very similar actu-
ally, as well as the poses labeled to the same kind of key-
poses may be varied a lot. Therefore the number of Gauss-
ian G may not necessarily be equal to P in this scheme, to 
reduce the error caused by manual labels.

In a general GM model, the initial prior of each Gauss-
ian is set to p(qi|�) = 1/G, where qi is the i-th cluster, 
and � is the parameter set. And the posterior probability 
p(qi|xk ,�), k = 1, 2, . . . ,N is calculated as follows:

Unlike the standard GM method, the semi-supervised GM 
algorithm [14] we adopted does not only take the advan-
tage of probabilistic data distribution given by GM, but also 
utilizes the partial labels by a supervised classifier. First, a 
supervised classifier must be trained to give a suggestive 
label to unlabeled data, p(cj|xk), where cj(j = 1, 2, . . . ,P) 
represents the j-th key-pose class. Then p(xk|cj) is calcu-
lated by the Bayesian rule. According to that, a mapping 
from each cluster qi to each key-pose class cj could be esti-
mated as:

(1)p(qi|xk ,�) =
p(qi|�) · p(xk|qi, θi)

∑

t p(qt|�) · p(xk|qt , θt)
.

(2)p(cj|qi) =

∑

k p(xk|cj) · p(xk|qi)
∑

t

∑

k p(xk|ct) · p(xk|qi)
.

(a) (b)

(c) (d)

Fig. 4   The key-pose location estimation by unsupervised, supervised 
and semi-supervised learning algorithms. a The data distribution. b 
The unsupervised learning result (original GMM). c The result of 
supervised learning of GMM. d The semi-supervised learning result 
of GMM
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Then the supervised part of each cluster F(qi) is defined as 
probabilistic style:

To optimize both the supervised part and the unsupervised 
part (traditional GM model), the objective function, which 
contains the two-fold uncertainty p(cj|xk) and p(qi|xk) is 
defined as:

where α(0 ≤ α ≤ 1) is a balance parameter to determine 
the proportion between unsupervised and supervised learn-
ing. The optimal parameter set �∗ is found by maximizing 
the objective function �∗ = argmax�J(�).

The Expectation-Maximization algorithm is applied 
to solve the equation above iteratively. The µi, �i and the 
weight p(qi|�) are updated as follows:

where a
j
i = 1+ log(p(cj|qi)), Ak

i = (xk − µi)(xk − µi)
t 

and Bi is defined as:

The overall process of this algorithm (called GEMP)[14] in 
our application of key-pose model estimation is presented 
as below.

Input: The pre-processed dataset X = {x1, . . . , xN }, and 
the partial corresponding specified label in P key-poses.

Output: The final GM parameters �: µi, �i and weight 
p(qi|�), ∀i.

Task:
(1) Set t = 0

(2) Train a classifier that can provide p(cj|xk) for ∀j, k.
(3) Use K-means to find the initial parameters �0.
(4) E-step: Calculate p(xk|qi) by �t, and estimate 

p(qi|xk), p(xk|cj), Bi and aji, ∀i, j, k, by the equations above.

(3)F(qi) = −log



−
�

j

p(cj|qi) · log(p(cj|qi)))+ log(log(P)



.

(4)J(�) = (1− α)
∑

xk

log(p(xk|�))+ α

G
∑

i

log(F(qi)),

(5)

µi =

∑

k{(1− α)p(qi|xk)+ αBi

∑

j a
j
ip(xk|qi)p(xk|cj)}xk

∑

k{(1− α)p(qi|xk)+ αBi

∑

j a
j
ip(xk|qi)p(xk|cj)}

,

(6)

�i =

∑

k{(1− α)p(qi|xk)+ αBi

∑

j a
j
ip(xk|qi)p(xk|cj)}A

k
i

∑

k{(1− α)p(qi|xk)+ αBi

∑

j a
j
ip(xk|qi)p(xk|cj)}

,

(7)p(qi|�) =

∑

k p(qi|xk)

N
,

(8)Bi =
−1

F(qi)[
∑

j p(cj|qi) · log(p(cj|qi))]
.

(5) M-step: Update parameters �t+1 using Eqs. 5, 6 and 7.
(6) Set t = t + 1

(7) Repeat (4) to (6) until convergence.

4.3 � Motion feature generation

As the key-poses are described as a set of GM param-
eters �, our pose feature could be generated from the 
GM model. For a given motion s, an n× m feature matrix 
ŝ = {xT1 , x

T
2 , . . . , x

T
n }

T is obtained after the key-frame selec-
tion and GPF feature extraction, as represented in Sect. 4.1. 
For each pose xk , k = 1, 2, . . . , n, the probabilities p(xk|qi) 
that xk belonging to each clusters qi, i = 1, 2, . . . ,G is cal-
culated by the GM parameter set �. Thus the pose feature 
t(p) for xk is defined as:

where p̂(xk|qi) is normalized from p(xk|qi), which subject 
to 
∑G

i=1 p̂(xk |qi) = 1.
Since our pose feature is probabilistic, it can easily 

describe a complete motion taking the normalized statisti-
cal value of each pose feature, which could avoid applying 
the time-consumed DTW algorithm. The motion clip fea-
ture could be described as:

5 � Experiments

In this paper, the dataset we used for experiments is from 
HDM05 [34]. The well-segmented motion database con-
tains 130 motion classes, but many of them are very simi-
lar (e.g. ‘walk2StepsLstart’ and ‘walk2StepsRstart’). So we 
combine them into 24 basic motion classes, including 2,073 
motion clips and over 420,000 frames. To take advantage 
of pose labeling, we defined a total of 82 key-pose classes, 
and the key-frames of about 20 % motions in each motion 
class are manually labeled to those key-pose classes. In our 
experiments below, half of the motions in dataset are served 
as training data, and the others are testing data.

Our method is implemented using MATLAB, and all 
experiments are executed on a computer with an Intel Core 
i5 3570 3.4 GHz and 8 GB of RAM.

5.1 � Compared methods

In this paper, a semi-supervised learning of GMM is intro-
duced to construct the key-pose model, where the key-poses 
are specified and poses in database are partially labeled 
manually. To prove the improved performance when taking 

(9)t
(p)
k =

{

p̂(xk|q1), p̂(xk|q2), . . . , p̂(xk |qn)
}

,

(10)

t(m) =
1

n
×

{

n
∑

k=1

p̂(xk |q1),

n
∑

k=1

p̂(xk |q2), . . . ,

n
∑

k=1

p̂(xk |qn)

}

.
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advantage of pose labels, two unsupervised methods, the 
original GMM method and K-means clustering algorithm, 
are implemented. In addition, another method using MCI 
[21] is also executed for comparison purposes, where the 
same logic feature is extracted.

The parameters in the above algorithms are optimized 
for best performance. In our method, the two important 

parameters G and α are set to 75 and 0.5, and the Sup-
port vector machine (SVM) is chosen to be the classifier 
for the supervised part. While in GMM, K-means and 
MCI algorithms, the optimal value of the same param-
eter G, the number of pose clusters, are 55, 70 and 40, 
respectively.

5.2 � Motion retrieval

Motion retrieval from a large data repository is a well-
researched topic in recent years, where the key problem is 
the similarity calculation between two motions. In this sub-
section, the above four algorithms (MCI, K-means, GMM 
and ours) are compared. For each input motion, the first 
K most similar motions obtained by K-nearest-neighbor 
(KNN) are selected as the retrieval result. However, there 
is no general criterion to evaluate the retrieval results. In 
our experiments, if a retrieved motion belongs to the same 
motion class with the input motion, which means they are 
logically similar, it will be treated as a ‘hit’, otherwise a 
‘miss’. The accuracy of each algorithm with different situa-
tions K = 1, 3, 5, 10 is shown in Fig. 5.

1 3 5 10
0

0.2

0.4
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1
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ours
GMM
K−means
MCI

Fig. 5   The experimental result for motion retrieval. The methods of 
MCI, K-means, original GMM and ours are compared in each situa-
tion of K = 1, 3, 5, 10

Table 1   The detailed 
experimental results for motion 
classification

The methods of original GMM, 
K-means, MCI, the combination 
of GMM and K-means 
(GMM + K-means), supervised 
learning of motion categories 
(SLMC) and ours are compared 
separately with different motion 
classes

Total Ours GMM K-means MCI GMM +  
K-means

SLMC

Cartwheel 14 13 14 14 8 14 6

Clap 32 30 26 27 29 29 19

ElbowToKnee 40 40 40 40 40 40 35

Grab 110 107 96 100 86 100 45

HitHandHead 6 3 0 2 0 0 0

Hop 37 34 32 36 35 37 22

Hop1leg 69 64 65 65 61 66 41

Jog 32 32 31 30 30 32 10

JumpingJack 32 32 32 32 32 32 12

Kick 86 80 84 63 50 83 55

LieDownFloor 10 7 3 3 6 4 2

Punch 88 85 85 70 59 86 40

RotateArms 96 96 96 96 96 95 92

RunOnPlace 72 68 65 67 53 69 33

Shuffle 25 25 19 14 11 17 11

SitDown 38 28 33 28 29 31 13

Skier 20 20 20 20 16 20 15

Sneak 31 29 29 25 25 29 10

Squat 32 32 32 32 32 32 21

StandUp 48 37 33 33 33 35 13

Throw 14 11 14 8 3 11 2

ThrowBasketball 7 6 3 5 4 5 0

Walk 47 46 39 41 38 43 33

WalkBackward 15 15 8 7 15 9 3

WalkOnPlace 30 26 30 28 8 29 7

Overall (%) 100 93.7 90.1 85.9 77.5 91.9 52.4
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The experimental results show that our method outper-
forms the other three in retrieval accuracy. The original 
GMM is weaker than ours, because it cannot take advan-
tage of the pose labels, while K-means is weaker than 
original GMM,because the probabilistic feature takes more 
information than pure clustering method. MCI also takes 
clustering index to represent each pose, but the matching 
method of two sequences is not discriminative enough, 
so its performance is not better than others. Moreover, as 
DTW is used as the matching method, it is very time con-
suming in similarity calculation.

5.3 � Motion classification

Motion classification is another important application. 
Similar to motion retrieval, in our experiments, the KNN is 
applied to search for the K retrieved motions. The motion 
class which contains most retrieved motions is chosen as 
the classification result. The classification accuracy of the 
above four algorithms is compared with the parameter 
K = 4. To give a more competitive comparison, we even 
combine both the GMM and K-means features and gener-
ate a high dimension representation (GMM+K-means). In 
addition, a supervised learning algorithm is added, where 
each pose is labeled by its motion category (SLMC), to 
prove the necessity of our manual labels. Table 1 shows 
the experimental results separated with different motion 
classes. Our method again outperforms the others for 
most motion classes, which proves the effectiveness of our 
motion feature.

The time expended on each part of our method is shown 
in Table 2, where the above three basic methods(MCI, 
K-means and GMM) are also compared. It can be concluded 

that our method is more time consuming on the training 
stage than the others, but our method is very fast in the test-
ing stage. As the GPF feature could be extracted online, and 
the total time spent on motion matching is only 212 ms, the 
input motion data collected from real-time devices (such as 
Microsoft Kinect) could be recognized in real time.

6 � Discussion and future works

In this paper, a novel probabilistic motion feature is pre-
sented, based on semi-supervised learning of GMM, which 
can well estimate the key-poses in human motions, and 
take full advantage of the manually specified pose labels. 
The experimental results show that our method outper-
forms the unsupervised learning methods (original GMM 
and K-means) and the state-of-the-art (MCI). The time con-
sumed by our method in the testing stage is fast enough for 
real-time applications.

As a main disadvantage, our method takes the statistical 
probabilities of all pose features as the motion descriptor, 
so it cannot keep the timing sequence in a motion. But on 
the other hand, it saves much time on the motion matching 
process, which is a justifiable trade-off between efficiency 
and accuracy.

Our method mainly focuses on the feature extraction 
process, and the motion matching process could be opti-
mized. Other than using the simple KNN algorithm to 
search the entire database, some data structure, such as 
K-D tree, could be applied to reduce the time complexity 
in the retrieval of similar motions, which is taken as one of 
our future works.

In addition, as our GMM-based motion feature is high 
dimensional, it would be beneficial to perform feature 
selection based on the newly designed feature. In our future 
works, we plan to introduce some research in state-of-the-
art [33, 35] to have a more compact and discriminative 
representation.
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