1,017 research outputs found

    Equivalent random analysis of a buffered optical switch with general interarrival times

    Get PDF
    We propose an approximate analytic model of an optical switch with fibre delay lines and wavelength converters by employing Equivalent Random Theory. General arrival traffic is modelled by means of Gamma-distributed interarrival times. The analysis is formulated in terms of virtual traffic flows within the optical switch from which we derive expressions for burst blocking probability, fibre delay line occupancy and mean delay. Emphasis is on approximations that give good numerical efficiency so that the method can be useful for formulating dimensioning problems for large-scale networks. Numerical solution values from the proposed analysis method compare well with results from a discrete-event simulation of an optical burst switch

    Capacity analysis of reservation-based random access for broadband wireless access networks

    Get PDF
    Abstract—In this paper we propose a novel model for the capacity analysis on the reservation-based random multiple access system, which can be applied to the medium access control protocol of the emerging WiMAX technology. In such a wireless broadband access system, in order to support QoS, the channel time is divided into consecutive frames, where each frame consists of some consequent mini-slots for the transmission of requests, used for the bandwidth reservation, and consequent slots for the actual data packet transmission. Three main outcomes are obtained: first, the upper and lower bounds of the capacity are derived for the considered system. Second, we found through the mathematical analysis that the transmission rate of reservationbased multiple access protocol is maximized, when the ratio between the number of mini-slots and that of the slots per frame is equal to the reciprocal of the random multiple access algorithm’s transmission rate. Third, in the case of WiMAX networks with a large number of subscribers, our analysis takes into account both the capacity and the mean packet delay criteria and suggests to keep such a ratio constant and independent of application-level data traffic arrival rate

    New contention resolution techniques for optical burst switching

    Get PDF
    Optical burst switching (OBS) is a technology positioned between wavelength routing and optical packet switching that does not require optical buffering or packet-level parsing, and it is more efficient than circuit switching when the sustained traffic volume does not consume a full wavelength. However, several critical issues still need to be solved such as contention resolution without optical buffering which is a key determinant of packet-loss with a significant impact on network performance. Deflection routing is an approach for resolving contention by routing a contending packet to an output port other than the intended output port. In OBS networks, when contention between two bursts cannot be resolved through deflection routing, one of the bursts will be dropped. However, this scheme doesn’t take advantage of all the available resources in resolving contentions. Due to this, the performance of existing deflection routing scheme is not satisfactory. In this thesis, we propose and evaluate three new strategies which aim at resolving contention. We propose a new approach called Backtrack on Deflection Failure, which provides a second chance to blocked bursts when deflection failure occurs. The bursts in this scheme, when blocked, will get an opportunity to backtrack to the previous node and may get routed through any deflection route available at the previous node. Two variants are proposed for handling the backtracking delay involved in this scheme namely: (a) Increase in Initial Offset and (b) Open-Loop Reservation. Furthermore, we propose a third scheme called Bidirectional Reservation on Burst Drop in which bandwidth reservation is made in both the forward and the backward directions simultaneously. This scheme comes into effect only when control bursts get dropped due to bandwidth unavailability. The retransmitted control bursts will have larger offset value and because of this, they will have lower blocking probability than the original bursts. The performance of our schemes and of those proposed in the literature is studied through simulation. The parameters considered in evaluating these schemes are blocking probability, average throughput, and overall link utilization. The results obtained show that our schemes perform significantly better than their standard counterparts

    Design, analysis and optimization of visible light communications based indoor access systems for mobile and internet of things applications

    Get PDF
    Demands for indoor broadband wireless access services are expected to outstrip the spectrum capacity in the near-term spectrum crunch . Deploying additional femtocells to address spectrum crunch is cost-inefficient due to the backhaul challenge and the exorbitant system maintenance. According to an Alcatel-Lucent report, most mobile Internet access traffic happens indoors. To alleviate the spectrum crunch and the backhaul challenge problems, visible light communication (VLC) emerges as an attractive candidate for indoor wireless access in the 5G architecture. In particular, VLC utilizes LED or fluorescent lamps to send out imperceptible flickering light that can be captured by a smart phone camera or photodetector. Leveraging power line communication and the available indoor infrastructure, VLC can be utilized with a small one-time cost. VLC also facilitates the great advantage of being able to jointly perform illumination and communications. Integration of VLC into the existing indoor wireless access networks embraces many challenges, such as lack of uplink infrastructure, excessive delay caused by blockage in heterogeneous networks, and overhead of power consumption. In addition, applying VLC to Internet-of-Things (IoT) applications, such as communication and localization, faces the challenges including ultra-low power requirement, limited modulation bandwidth, and heavy computation and sensing at the device end. In this dissertation, to overcome the challenges of VLC, a VLC enhanced WiFi system is designed by incorporating VLC downlink and WiFi uplink to connect mobile devices to the Internet. To further enhance robustness and throughput, WiFi and VLC are aggregated in parallel by leveraging the bonding technique in Linux operating system. Based on dynamic resource allocation, the delay performance of heterogeneous RF-VLC network is analyzed and evaluated for two different configurations - aggregation and non-aggregation. To mitigate the power consumption overhead of VLC, a problem of minimizing the total power consumption of a general multi-user VLC indoor network while satisfying users traffic demands and maintaining an acceptable level of illumination is formulated. The optimization problem is solved by the efficient column generation algorithm. With ultra-low power consumption, VLC backscatter harvests energy from indoor light sources and transmits optical signals by modulating the reflected light from a reflector. A novel pixelated VLC backscatter is proposed and prototyped to address the limited modulation bandwidth by enabling more advanced modulation scheme than the state-of-the-art on-off keying (OOK) scheme and allowing for the first time orthogonal multiple access. VLC-based indoor access system is also suitable for indoor localization due to its unique properties, such as utilization of existing ubiquitous lighting infrastructure, high location and orientation accuracy, and no interruption to RF-based devices. A novel retroreflector-based visible light localization system is proposed and prototyped to establish an almost zero-delay backward channel using a retroreflector to reflect light back to its source. This system can localize passive IoT devices without requiring computation and heavy sensing (e.g., camera) at the device end

    Energy Efficient and Secure Wireless Sensor Networks Design

    Get PDF
    Wireless Sensor Networks (WSNs) are emerging technologies that have the ability to sense, process, communicate, and transmit information to a destination, and they are expected to have significant impact on the efficiency of many applications in various fields. The resource constraint such as limited battery power, is the greatest challenge in WSNs design as it affects the lifetime and performance of the network. An energy efficient, secure, and trustworthy system is vital when a WSN involves highly sensitive information. Thus, it is critical to design mechanisms that are energy efficient and secure while at the same time maintaining the desired level of quality of service. Inspired by these challenges, this dissertation is dedicated to exploiting optimization and game theoretic approaches/solutions to handle several important issues in WSN communication, including energy efficiency, latency, congestion, dynamic traffic load, and security. We present several novel mechanisms to improve the security and energy efficiency of WSNs. Two new schemes are proposed for the network layer stack to achieve the following: (a) to enhance energy efficiency through optimized sleep intervals, that also considers the underlying dynamic traffic load and (b) to develop the routing protocol in order to handle wasted energy, congestion, and clustering. We also propose efficient routing and energy-efficient clustering algorithms based on optimization and game theory. Furthermore, we propose a dynamic game theoretic framework (i.e., hyper defense) to analyze the interactions between attacker and defender as a non-cooperative security game that considers the resource limitation. All the proposed schemes are validated by extensive experimental analyses, obtained by running simulations depicting various situations in WSNs in order to represent real-world scenarios as realistically as possible. The results show that the proposed schemes achieve high performance in different terms, such as network lifetime, compared with the state-of-the-art schemes

    Violent political action during the European economic crisis: an empirical investigation of four theoretical paradigms from social movement research

    Get PDF
    The recent economic crisis has witnessed a surge in demonstrations and other protest actions all over Europe, while in the most affected countries—such as Greece—the use of personal violence and damage of property became an everyday phenomenon. What are the drivers of violent political action in times of crisis? How do these drivers interact? And to what extent does context matter? These questions are examined in the light of a new and original survey data set carried out across nine European countries, all affected to different degrees by the financial crisis. Four theoretical paradigms from social movement research that account for violent political action are examined. This study looks beyond the staple explanations of relative deprivation and resource mobilisation, expands the analysis to include a relational approach—namely, conflictual irrelevance—and explores the soundness of an integrative approach that attempts to reconcile the traditional divide between grievance and resource-based models. By measuring actual behaviour rather than merely intention, the article furthermore contributes to the discussion over the participation of individuals in violent activism and gives empirical support to the dual-pathways model of collective action for the understanding of violent political action during times of crisis

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Konoritsu musen rokaru eria nettowaku ni okeru tagen akusesu hoshiki ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:甲3738号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2012/7/25 ; 早大学位記番号:新6109Waseda Universit

    Implementation and modeling of a scheduled Optical Flow Switching (OFS) network

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (leaves 159-163).In this thesis we present analysis of Optical Flow Switching (OFS), an architectural approach for enabling all-optical user to user connections for transmission of Internet traffic. We first describe a demonstration of OFS on the ONRAMP test environment which is a MAN optical network implemented in hardware in the Boston geographic area. This demonstration shows the viability of OFS in an actual implementation, with good performance results and an assessment over OFS overheads. Then, we use stochastic models to quantify the behavior of an OFS network. Strong quantitative evidence leads us to draw the conclusion that scheduling is a necessary component of any architectural approach to implementing OFS in a Metro Area network (MAN).by Bishwaroop Ganguly.Ph.D
    corecore