199,577 research outputs found

    Modeling IoT-aware Business Processes - A State of the Art Report

    Get PDF
    This research report presents an analysis of the state of the art of modeling Internet of Things (IoT)-aware business processes. IOT links the physical world to the digital world. Traditionally, we would find information about events and processes in the physical world in the digital world entered by humans and humans using this information to control the physical world. In the IoT paradigm, the physical world is equipped with sensors and actuators to create a direct link with the digital world. Business processes are used to coordinate a complex environment including multiple actors for a common goal, typically in the context of administrative work. In the past few years, we have seen research efforts on the possibilities to model IoT- aware business processes, extending process coordination to real world entities directly. This set of research efforts is relatively small when compared to the overall research effort into the IoT and much of the work is still in the early research stage. To create a basis for a bridge between IoT and BPM, the goal of this report is to collect and analyze the state of the art of existing frameworks for modeling IoT-aware business processes.Comment: 42 page

    Constructive tool design for formal languages : from semantics to executing models

    Get PDF
    Embedded, distributed, real-time, electronic systems are becoming more and more dominant in our lives. Hidden in cars, televisions, mp3-players, mobile phones and other appliances, these hardware/software systems influence our daily activities. Their design can be a huge effort and has to be carried out by engineers in a limited amount of time. Computer-aided modelling and design automation shorten the design cycle of these systems enabling companies to deliver their products sooner than their competitors. The design process is divided into different levels of abstraction, starting with a vague product idea (abstract) and ending up with a concrete description ready for implementation. Recently, research has started to focus on the system level, being a promising new area at which the product design could start. This dissertation develops a constructive approach to building tools for system-level design/description/modelling/specification languages, and shows the applicability of this method to the system-level language POOSL (Parallel Object-Oriented Specification Language). The formal semantics of this language is redefined and partly redeveloped, adding probabilistic features, real-time, inheritance, concurrency within processes, dynamic ports and atomic (indivisible) expressions, making the language suitable for performance analysis/modelling. The semantics is two-layered, using a probabilistic denotational semantics for stating the meaning of POOSL’s data layer, and using a probabilistic structural operational semantics for the process layer and architecture layer. The constructive approach has yielded the system-level simulation tool rotalumis, capable of executing large industrial designs, which has been demonstrated by two successful case studiesβ€”an ATM-packet switch (in conjunction with IBM Research at ZΒ¨urich) and a packet routing switch for the Internet (in association with Alcatel/Bell at Antwerp). The more generally applicable optimisations of the execution engine (rotalumis) and the decisions taken in its design are discussed in full detail. Prototyping, where the system-level model functions as a part of the prototype implementation of the designed product, is supported by rotalumis-rt, a real-time variant of the execution engine. The viability of prototyping is shown by a case study of a learning infrared remote control, partially realised in hardware and completed with a system-level model. Keywords formal languages / formal specification / modelling languages / systemlevel design / embedded systems / real-time systems / performance analysis / discrete event simulation / probabilistic process algebra / design automation / prototyping / simulation tool

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Linking individual behaviour to community scale patterns in fungi

    Get PDF
    The fungi comprise a separate kingdom of life and epitomise the indeterminate growth form. Very little is known about the factors that influence the nature of fungal diversity and the link between individual behaviour and the structure and function of fungal communities is particularly poorly understood. Here, we present a theoretical framework that is capable of elucidating this link. An individual-based model for fungal community dynamics is introduced that has been developed from a physiologically based model for the fungal phenotype. The model is used to explore the role of individual interactions, the production of an external inhibitor field and the quality of the external environment on the structure and diversity of the resulting community. We show that traits relating to growth rate, autophagic behaviour and the production of inhibitors are key in influencing the success of a particular genotype in a community. The species richness increases with the amount of available resource. This is the first model of fungal community dynamics that introduces the concept of a biomass-based abundance distribution function that can be described by the log-normal form which typically corresponds to communities in equilibrium. The species abundance curve was stable to changes in the relative location of inocula, although the ranked abundance of the individuals was not. We present the first attempt to identify the traits that affect the form of that curve. Future studies should examine the role of environmental heterogeneity and spore dispersal

    Using the Proteus virtual environment to train future IT professionals

    Get PDF
    Abstract. Based on literature review it was established that the use of augmented reality as an innovative technology of student training occurs in following directions: 3D image rendering; recognition and marking of real objects; interaction of a virtual object with a person in real time. The main advantages of using AR and VR in the educational process are highlighted: clarity, ability to simulate processes and phenomena, integration of educational disciplines, building an open education system, increasing motivation for learning, etc. It has been found that in the field of physical process modelling the Proteus Physics Laboratory is a popular example of augmented reality. Using the Proteus environment allows to visualize the functioning of the functional nodes of the computing system at the micro level. This is especially important for programming systems with limited resources, such as microcontrollers in the process of training future IT professionals. Experiment took place at Borys Grinchenko Kyiv University and Sumy State Pedagogical University named after A. S. Makarenko with students majoring in Computer Science (field of knowledge is Secondary Education (Informatics)). It was found that computer modelling has a positive effect on mastering the basics of microelectronics. The ways of further scientific researches for grounding, development and experimental verification of forms, methods and augmented reality, and can be used in the professional training of future IT specialists are outlined in the article
    • …
    corecore