
Intl. Journal on Cyber Situational Awareness, Vol. 1, No. 1, 2016

Attack Simulation based

Software Protection

Assessment Method with

Petri Net

Gaofeng Zhang, Paolo Falcarin, Elena Gómez-Martínez,

Shareeful Islam

University of East London, London, UK

Christophe Tartary

Saarland University, Saarbrücken, Germany

Bjorn De Sutter

Ghent University, Ghent, Belgium

Jérôme d’Annoville

Gemalto, Meudon, France

ABSTRACT

Software protection is an essential aspect of information security to

withstand malicious activities on software, and preserving valuable software

assets. However, software developers still lack an effective methodology for
the assessment of deployed protections, especially in the area of mobile

applications. To solve these issues, we present a novel attack simulation

based software protection assessment method to evaluate and compare
different protection solutions. Our solution relies on Petri Nets to specify

and visualize attack models of mobile applications. We developed a Monte

Carlo based approach to simulate attacking processes and to deal with the

uncertainty. Then, based on this simulation, a novel protection comparison
model is proposed to compare different protection solutions. Finally, our

attack simulation based software protection assessment method is presented.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74659978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We illustrate our method by means of a case study process to demonstrate

that our approach can provide a suitable software protection assessment for
developers and software companies.

Keywords: Mobile Software Security; Software Protection Assessment;
Attack Simulation; Monte Carlo Method; Petri Net

1. INTRODUCTION

Currently, software is an extremely important asset for customers to support

and execute their businesses. Consequently, software protection has
attracted much attention from developers and software companies in terms

of software security, like the anti-piracy, binary analysis, and so on. To

ensure security against malicious software attacks, many tools have been
developed, such as data obfuscation, tamper-proofing, code splitting,

software watermarking, among others (Falcarin et al., 2011).

In this regard, assessing the effectiveness of these protections is crucial

before embedding them into real commercial software products. In
particular, in practical use cases, like mobile computing, multiple protection

methods could be utilised together as Protection Solutions (PSs) to thwart

actual threats. For example, in the area of Android APP development, it is
important to consider different attack risks on one single APP: some

attackers try to steal the encryption key in the APP execution, others may

focus on the illegal tampering to obtain improper utilisations, etc. Therefore,
a software protection assessment method needs to be able to assess potential

PSs with respect to various types of attacks. This is the context where this

paper takes place.

Currently, one main type of software protection assessment (Ceccato et al.,
2014) focuses on the evaluation of individual protection methods and does

not consider PSs with multiple protection methods. Another kind of

software protection assessment (Basile et al., 2013) discussed general
software measurement frameworks for protection, and did not involve PSs

either. Hence, none of these two approaches is suitable for protection

assessment in terms of complex PSs to provide convincing results.

Besides, for real software attack processes, uncertainty is another challenge
for these existing assessment methods. In uncertain software attacking

processes, there are many random variables and factors involved, such as

the computing resources for attacking, the decisions or selections made by
particular attackers, and so on. Moreover, specific environments, like

mobile computing, could jeopardise this uncertainty by the fragmentation of

mobile OS. To capture this phenomenon, we could use a non-deterministic

attack simulation based on the Monte Carlo method to describe the real
uncertain software attacking processes. This idea will be the basic tool for

our proposed method.

Petri Net (PN) based attack models are suitable objects to model software

attacks (Murata et al., 1989; Wang et al., 2013), and in this work we use
them to support software protection assessment in terms of Monte Carlo

based attack simulation.

In real software protection implementations, assessing every possible PSs in
each specific software protection scenario is a huge task, considering the

myriad of possible combinations of various PSs (multiple protection

methods with their parameters) and various software protection scenarios
(multiple attacks with weights). Hence, the relations (comparing results)

among PSs under protection assessments are particularly valuable for this.

Our assessment method can use a comparison model to manage the

comparisons among PSs on the basis of the attack simulation. As such, the
protection comparison model is the central component of our assessment

methodology.

To summarize our approach, our novel Attack Simulation based Software
Protection Assessment Method (ASSPAM) uses a Monte Carlo based Attack

Simulation (MCAS) to simulate specific software attack processes with

implementing PSs, based on PN based attack models. Then, using the results
obtained from the MCAS, our Attack Simulation based Protection

Comparison Model (ASPCM) provides a numeric estimation of the PS and

thus this can be compared in the ASSPAM to search for the best PS. Besides,

various protection scenarios will be discussed to implement ASSPAM in the
real world.

This research has been carried out within the European FP7 project ASPIRE,

Advanced Software Protection: Integration, Research, and Exploitation
(ASPIRE, 2016). Our method focuses on the assessment of PSs, and does

not cover the generation and optimisation of these PSs. Some other

components of ASPIRE can store security experts’ knowledge and

experiences in the Knowledge Base, and generate PSs by means of
reasoning technique. Besides, to generate and optimise PSs, there are some

aspects, such as the cost of protections, the dependency among protection

methods, and so on, which are out of the scope of this paper.

Furthermore, compared to traditional PNs (Murata et al., 1989), our PN

based attack models focus on attack steps (transitions) with related

simulation information for assessment. Therefore, some features in
traditional PNs are not involved in this paper, such as tokens and liveness.

PNs with full characteristics will be utilised by other software protection

assessment approaches in the ASPIRE project.

The paper is organized as follows. Section 2 describes related work. Section

3 discusses preliminary concepts and background. In Section 4, our new

method is proposed. In Section 5, we use a protection assessment instance to

demonstrate that our proposed method can provide suitable protection
assessments for mobile software protection. Section 6 concludes this paper

and points out future work.

2. RELATED WORK

This section introduces existing research progress in the areas of software
analysis and measurement, attack modelling, Monte Carlo simulation and
software protection assessment.

2.1 Software Analysis and Measurement

Software analysis and measurement are important areas in software

engineering (Briand et al., 1996). For example, in the software process

improvement area, measurement has been emphasised as a central function
and activity (Cheng, 2012). In the field of object-oriented design, software

metrics provide the suitable approach to measure the software development

processes (Chidamber et al., 1994). From a software security viewpoint,
Tonella et al. (2014) presented a general framework to assess a software by

various measurable features and metrics to withstand software attacks.

Related software analysis and measurement mechanisms are valuable
references for our software protection assessment.

2.2 Attack Modelling

Currently, attack modelling is an important area of information security
(Sgandurra et al., 2016). Attack Tree models and Attack Graphs are widely

used for representing network attacks, virus attacks, and so on (Dewri et al.,

2007; Sheyner et al., 2002). For example, the scalable modelling process is
studied for attack graph generation with logic formalism in (Ou et al., 2006).

However, none of them can precisely describe preconditions, actions and

external impacts in software attack processes properly.

In this regard, Petri Nets (PNs) were originally introduced as a modelling
technique for concurrent systems (Murata et al., 1989). These nets can

model specific cyber-physical attacks on smart grid (Chen et al., 2011). In

the formal way, security policies can be verified by Coloured Petri Nets
(Huang et al., 2010). Taking software protection as objective, Wang et al.

(2013) focused on coloured PN based attack modelling. As discussed in

Section 1, PN based attack models are suitable to describe preconditions,
post-conditions and actions and, therefore, they will play a core role in our

attack modelling and protection assessment.

2.3 Monte Carlo Simulation

The Monte Carlo simulation (method) is a powerful tool for dealing with

uncertainty and probability (Raychaudhuri et al., 2008). It is very useful for

analysing and simulating complex systems and problems, due to its
flexibility and error-quantifiable features (Dell'Amico et al., 2015; Zeng et

al., 2009).

Hence, the Monte Carlo method (Dell'Amico et al., 2015) is a suitable

technique to simulate complex systems in terms of multiple random
variables. As discussed in Section 1, in this paper, we assess various PSs in

real uncertain attacking processes to provide suitable PSs for developers and

software companies. With the help of the Monte Carlo method, we can use
attack simulation to support the ASSPAM when assess protections.

2.4 Software Protection Assessment

As previous discussed, software protection assessment is an essential part of
software protection (Falcarin et al., 2011). Basile et al. (2013) described a

unified high-level software attack model to assess software protections for

developers. Experiments have been designed to assess the effectiveness and
efficiency of related software protection techniques for code obfuscation

(Ceccato et al., 2008; Ceccato et al., 2014; Ceccato et al., 2015b).

Existing protection assessment methods are too specialised or too general to
cope with uncertain software attack processes and PSs. That is why, to

overcome this issue, our ASSPAM will be relying on PN based attack

models and Monte Carlo based attack simulations.

3. PETRI NET BASED ATTACK MODEL

In this section, we discuss the PN based attack model for attack simulation,

which is the basic supporting tool of our ASSPAM, especially for our MCAS.

3.1 Petri Net based Software Attack Modelling

PN based attack models are the essential rationale for our assessment

method in this paper. Generally speaking, PN based attack models represent
all possible attack paths and attack steps in software attacks, and support the

attack simulations on these attacks via some extra information.

Based on existing work (Murata et al., 1989; Wang et al., 2013), we present

our models to describe software attacks for protection assessment:

Definition 1 PSAM: A PN based Software Attack Model for simulation is a

five-tuple, PSAM = (P, T, A, EC, AE), where:

• P is a finite set of states, represented by circles. These states model
sub-goals reached by an attacker after having executed a number of attack
steps. P={P0,……,Pn}.

• T is a finite set of transitions, represented by rectangles. These
transitions model attack steps, i.e., specific actions undertaken by
attackers to reach a sub-goal on a path to the final end goal of their attack.
T={T0,……,Tm}.

• P∪T≠Ø, P∩T=Ø.

• A ⊆ {T×P} ∪ {P×T}, is a multi-set of direct arcs, relating sub-goals
and attack steps. A={A0,……,Al}.

• EC represents the Effort Consumption. It is a finite set of attacker’s
effort consumed at each transition in T, where EC={ec0,……,ecm}. It is
utilised as the preconditions.

• AE represents the Attacker Effort. It is a finite set of attacker’s effort
at each state in P, where AE={ae0,……,aen}. Attackers have the capability
including resources and skills to execute attacks on protected or
unprotected software. This “capability” is represented with AE and will be
“consumed” in transitions of attack processes via EC in attack simulations.

EC and AE will be discussed further in the next subsection, which are the

key issues to support the attack simulations for our protection assessment.

Figure 1. PN based attack model on a one-time password generator

As an example of a relevant use case, Figure 1 and Table 1 present relevant

attack paths on a One-Time Password (OTP) generator (Falcarin et al., 2015)

by means of PSAM. It is an important mobile software asset needed to be
protected: P0 is the starting state in which attackers start to attack the OTP

software, and P10 is the final state which means a successful attacking.

Specially, this success means that attackers obtain the seed of the OTP

generator. P1, P2, P3, P4, P5, P6, P7, P8, and P9 are nine intermediate states
in the attack, corresponding to different sub-goals being reached. T0, T1, T2,

T3, T4, T5, T6, T8, T9, T10, and T11 are eleven transitions, which describe

various attack steps (actions) in attack processes, detailed in Table 1.

Table 1. Attack Table of PN based attack model on a one-time password
generator

 Description/Objective Input Output

T0 Identify PIN section of
the code

Original code Piece of code containing
PIN checking

T1 Bypass PIN check Piece of code
containing PIN

checking

N/A

T2 Bypass PIN check Piece of code

containing PIN
checking

PIN obtained

T3 Set-up for parallel run N/A N/A

T4 Unlock provisioning

phase

Original code Reusable provisioning

phase (piece of code)

T5 Fake server setting N/A Server ready

T6 AES decryption code
identification

Fake server (P5) +
Reusable provisioning

code (P6)

Piece of code containing
the AES deciphering

algorithm

T8 Seed recovery AES decryption code
+ real server

Seed

T9 Code pruning for XOR

localization

Original code Code fragments

(executed before OTP
display)

T10 XOR chains
identification

Code fragments (P8) Sequence of XOR
operations (piece of

code)

T11 Seed recovery Sequence of XOR
operations

Seed

PSAM is the basic supporting tool in this paper by providing attack models

with attack paths and steps, and the part with AE and EC will be introduced
further in the next subsection to complete the model.

3.2 Effort Consumption and Attacker Effort

In this subsection, we detail the Effort Consumption (EC) and the Attacker
Effort (AE) as the important part of the PSAM to support attack simulation

for protection assessment particularly.

In this paper, we use uniform distributions to describe Effort
Consumption—EC and eci. For each eci, a Maximum boundary—Maxi and a

Minimum boundary—Mini decide this random variable by the uniform

distribution in equation (1).

],0[),,(},,...,,...,{ 0 miMaxMinfecececececEC iiimi (1)

In equation (1), fec() represents the sampling process of the uniform

distribution with two boundaries: Mini and Maxi. For example, T0 in the

OTP attack model is to “Identify the PIN check portion of the code”. Both
Max0 and Min0 can be set in the attack modelling by users or security

experts in industry, based on real attack data. After that, ec0 is the random

variable with the uniform distribution and two boundaries: Max0 and Min0.
Both boundaries can be increased due to the fact that some protections have

been applied: for example, when some software protection methods increase

the code size or the flow complexity, this can make the T0 attack step more
difficult, which will change the uniform distribution for ec0 with Max0 and

Min0. These methods could be specific PSs to change ec0. The relations

between methods and transitions are decided by users, as well as existing

knowledge. In other words, these Mini and Maxi (and EC) depend on various
PSs.

Another concept of PSAM is AE, which represents the current effort of the

attacker in the state of this attack process. AE can be described by equation
(2). In this equation, ae0 is the attacker effort before attack processes (in the

initial place). In this paper, we set ae0 as a random variable with a normal

distribution.

},...,,...,{ 0 ni aeaeaeAE (2)

As introduced in Section 1, since the attacker is one key part of the

simulation, we will use a normal distribution to represent real uncertain

attacking processes for one attacker.

Using a PSAM is the basis of our method in this paper, and the attack

simulation, protection comparison model and protection assessment method
rely on this.

In the next section, we will introduce the main content in this paper—

ASSPAM.

4. ATTACK SIMULATION BASED SOFTWARE
PROTECTION ASSESSMENT METHOD

Based on previous discussions, we will introduce our novel ASSPAM in
three steps: firstly, a MCAS simulates attack processes with PSs, based on

PN based attack models described in Section 3; secondly, we will introduce

our ASPCM to compare different PSs based on previous attack simulations;
lastly, ASSPAM will be introduced based on MCAS and ASPCM to provide

suitable PSs as the protection assessment results.

4.1 Monte Carlo based Attack Simulation

Monte Carlo based Attack Simulation (MCAS) includes two parts: Single

Attack Process Simulation (SAPS) and Monte Carlo Method. They will be

introduced in the following.

4.1.1 Single Attack Process Simulation

The main process of Single Attack Process Simulation (SAPS) works as

follows: in one PSAM (as a Directed Acyclic Graph), one attacker will try to
move from the starting state to the final state. If he/she successes, the result

of this SAPS is TRUE; otherwise, it is FALSE. It can be viewed as a route

searching process in the directed acyclic graph.

In SAPS, in each node, e.g. transition, we use the Passing Probability—PP

to control the probability that the attacker completes this transition (attack

step) and reach the next state.

Passing Probability (PP): A finite set for each transition in T, and ppi ∈ PP, i

∈ [0,m].

],0[,
),1tanh(

,0
mi

ecaeecae

ecae
pp

iCURiCUR

iCUR

i

 (3)

In equation (3), eci comes from equation (1), which is the effort

consumption for each attack step. And aeCUR comes from equation (2),
which is the current attacker effort in one attack simulation process. If aeCUR

is smaller than eci, the probability is zero, which means that the current

attacker effort is too low to complete this attack step. Otherwise, if aeCUR is
not smaller than eci, the passing probability is required to be monotonically

increasing and in the range of [0, 1) when x is in),0[. To match this, we

use the hyperbolic tangent function:)1()1()tanh(22 xx eex .

Besides, after discussing the pre-conditions of transitions (PP), the actions

of transitions will focus on the changing on AE and the current place.

)1_(___,

)_(___,

iCUR

iiCUR

NEW
ppofyprobabilittheonae

ppofyprobabilittheonecae
ae (4)

In equation (4), for transition Ti, on the probability of ppi, aeCUR will be
subtracted by eci, which means that the attacker passes this transition to

arrive the next place after this transition. Otherwise (i.e., with probability 1-

ppi), the attacker needs go back to the previous state to find other paths to

reach the final state, and aeCUR is still the same.

Briefly, the SAPS is the basis to Monte Carlo based attack simulation for

protection assessment by indicating attack processes on PSAM.

4.1.2 Monte Carlo based Attack Simulation

Based on this SAPS model, we use the Monte Carlo method to manage the

SAPS and to provide a randomized simulator emulating the attack processes

success. The MCAS is illustrated in Figure 2. The key component is our
SAPS. To run the SAPS, we need to perform an initialisation phase in order

to build the underlying PN based attack model with EC and AE as

introduced in Subsection 3.3. The result of each SAPS is of type Boolean.
Then, the Monte Carlo method executes the SAPS several times. Finally, the

simulation provides a probability of attack success (the ratio of SAPSs with

TRUE in all SAPSs).

Besides, as introduced in Subsection 3.3, specific PSs can decide specific

ECs in PSAM. Hence, the result of one MCAS process is a probability of

attack success on one PN based attack model and one PS.

Monte Carlo based Attack

Simulation

PN based

Attack Model
SAPS

Monte Carlo

method

Simulation

results

Figure 2. Monte Carlo based Attack Simulation (MCAS)

In brief, MCAS is the basic tool of ASPCM and ASSPAM.

4.2 Attack Simulation based Protection Comparison
Model

We now present our ASPCM. As indicated in Section 1, the main target of
ASPCM is to compare PSs with numeric confidences by means of MCAS.

To reach this aim, we introduce two such values as Compare Confidence

and Neutral Confidence.

Based on Subsection 4.1, a probability of attack success is the result of one

MCAS process with one PN based attack model and one PS. If we compare

two Protection Solutions, for instance PS-1 and PS-2, we can assume that

there are two probabilities: p1 and p2 representing the results of MCASs
being executed based on PS-1 and PS-2 respectively.

To describe the confidence of the comparison, it is an intuitive way to use

the difference of these two probabilities, like p2 - p1 under the assertion: PS-
1 is better than PS-2. Besides, to enhance the previous confidence, we

consider the scenario that these two PSs cannot be distinguished, which

includes two kinds of events: an attacker can successfully break PS-2 while
he/she is able to break PS-1; and an attacker cannot break PS-2 while he/she

is unable to break PS-1. Therefore, the probability of these two events can

be defined as)1()1(2121 pppp , which is equation (6). As such, our

two confidences are expressed by equations (5) and (6).

For the assertion: PS-1 is better than PS-2, with confidences including:

Compare Confidence (CC):

12 ppCC (5)

Neutral Confidence (NeuC):

212121 ppppNeuC (6)

Based on results of MCAS—the probabilities of successful attack, the

ASPCM consider the comparisons based on assertions (PS-1 is better than

PS-2, or PS-2 is better than PS-1.) with using the corresponding confidence

values.

Therefore, based on MCAS, the ASPCM can generate assertions with

numeric confidences as the comparison results of various PSs. These results

can be utilised to generate the final protection assessment results of
ASSPAM, which will be introduced in the next subsection.

4.3 Attack Simulation based Software Protection
Assessment Method

In this subsection, we will introduce our novel Attack Simulation based

Software Protection Assessment Method (ASSPAM), based on previous

MCAS and ASPCM.

PS Knowledge

Base
ASPCM

MCAS

Analysis and

Assessment

Attack Simulation based Software

Protection Assessment Method

Attack Model

Base
Rules Set

Figure 3. Attack Simulation based Software Protection Assessment Method

(ASSPAM)

In Figure 3, we depict our ASSPAM. Component “PS Knowledge Base”
provides all potential Protection Solutions (PSs) as specific and validated

empirical accumulations of developers and software companies. Component

“Attack Model Base” provides all PN based attack models required to be

assessed. In ASPIRE project (ASPIRE, 2016), these two bases are provided
by other components, and will be out of the scope of this paper.

Component “MCAS” is the simulation part of the whole assessment method,

and it receives PN based attack models from the “Attack Model Base”.
Component “ASPCM” receives PS candidates from the “PS Knowledge

Base”, forwards them to the “MCAS”, and executes “MCAS” for comparing

these PS candidates by simulation results. Component “Rules Set” provides

some specific rules to aid comparing results and generate specific suitable
PSs as final assessment results. These rules are specified by implementation

scenarios, and we will deliver some examples in Subsection 5.3. Component

“Analysis and Assessment” analyses the results of “ASPCM”—comparison

assertions with confidences and corresponding software attacks to assess PS
candidates by “Rules Set” for developers and software companies.

In ASSPAM, firstly, users set the software protection scenarios (selecting

attack models from the “Attack Model Base”), including which attacks need
to be considered and the weights on them. Then, the ASPCM can be

triggered to select potential PSs (from the “PS Knowledge Base”) to be

compared and assessed. And these potential PSs can be executed by the
MCAS for generating related probabilities of attacking successful. Based on

these probabilities, the ASPCM can generate the comparison results between

PSs with numeric confidences. In the last step, relying on these comparison

outputs, users can use some specific rules (from the “Rules Set”) to select
some suitable PSs as the final assessment results of our ASSPAM. These

results can be used to optimise PSs in the ASPIRE project.

Besides, to implement our protection assessment method in the real world,
we need to consider the various scenarios in mobile software protection. For

example, in one specific assessment scenario (AS), developers could foresee

that one attack step (transition) requires a peculiar code analysis tool which
is not available to the majority of potential software attackers. Hence, due to

this scarcity and the low probability of this risk, developers could omit this

attack step from the assessment consideration. In other words, it is a part of

a whole PN based attack model to be considered. In some other ASs,
different attackers could focus on one special piece of software to jeopardise

software security, which means that multiple PN based attack models have

to be considered together in the protection assessment. Hence, our
assessment method has to support these different protection ASs.

Based on the previous discussions, we define the AS as equation (7):

],1[},,,{ SiwSTPSAMAS iii (7)

In this AS, PN based attack models (PSAMs) have been considered and they

are ordered by index i from 1 to S. STi is the Selected Transitions list in this

scenario, which includes all transitions selected in this PSAMi. It means that

a part of this PN model will be included in this AS, as discussed before. wi is
the weight of this PSAM in the scenario, compared to other PSAMs.

Based on the discussions, we will implement our method on different ASs to

demonstrate the effective and flexible mobile software protection
assessment, in the next section.

In short, the ASSPAM executes as sub-routines the ASCPM and the MCAS to

assess different PSs under the PSAM in order to obtain suitable assessment

results in terms of software protection requirements (rules) and ASs.

5. IMPLEMENTATION

In this section, we will illustrate our ASSPAM with MCAS and ASPCM by
implementations and experiments on software protection assessment for

developers and software companies. Generally speaking, the

implementation of ASSPAM will be introduced in the order of MCAS,

ASPCM and ASSPAM. Firstly, we use an example to illustrate the
implementation on MCAS. Then, we use specific PN based attack models to

compare various PSs via ASPCM in terms of numeric confidences. Lastly,

we will analyse the results from ASPCM and generate the suitable PSs with
rules sets as the final protection assessment results of ASSPAM.

5.1 Implementation of MCAS

In this subsection, we use a prototype implementation of MCAS on the OTP
attack to demonstrate the process of attack simulation. We set the ae0 as a

normal distribution variable with mean 200 and variance 25.

Based on the OTP attack model shown in Figure 1, these 11 transitions can
be classified into four categories: Category 1-locating code pieces (T0, T6,

T8, T9, T10, and T11), Category 2-bypassing or tampering code pieces (T1,

T4), Category 3-code injecting (T2, T5), and Category 4-NULL activities
(T3).

Table 2. Time Ranges for Various Attack Activities

 Category 1 Category 2 Category 3 Category 4

Time Range

(mins)

[3, 120] [10, 75] [50, 110] [0, 0]

Transitions

in OTP

T0, T6, T8,

T9, T10, T11

T1, T4 T2, T5 T3

We hosted a student attacking experiment on these attack activities in

2015/10/23-2015/10/29 at University of East London, involving

postgraduates (5 persons), PhD candidates (3 persons), and Post-Docs (4

persons). And we can use the time records of this experiment to support the

setting of EC in each transition in the OTP attack model of Figure 1. For
example, for the attack activities in Category 2: bypassing or tampering

code pieces, “attackers” in our experiments spent different times: the

shortest one is 10 mins, and the longest one is 75 mins. So, we can use these

“10” and “75” as the boundaries: Mini and Maxi to related transitions: T1
and T4 as discussed in Subsection 3.3, which be used to build the eci as a

discrete uniform distribution. Similarly, for each other transition, eci can be

built on the basis of these shortest and longest times.

The results of these experiments are summarised in Table 2. As it can be

observed, the time ranges of attack activities from participants can be used

to configure these transitions’ EC to demonstrate our method in this paper.
In future work, we will execute this experiment in different groups of people,

such as terms of ethic hacker experts, and collect more data to simulate real

attack processes to match the real world.

Moreover, the “NULL” attack activities, like “T3” in the OTP attack model
in Figure 1, are some attack steps which do not include any solid attack

actions, and are used to represent branching multiple attack paths. Hence, its

time range is [0, 0], without any time consuming for attackers.

We therefore obtain the results for MCAS depicted in Figure 4: the

horizontal axis represents the rounds of SAPS; and the vertical axis is the

Probability of Successful Attack (PSA). As it can be observed, we can find
out that by increasing the rounds of SAPS, the probability of successful

attack becomes stable and is within the interval (2.05%, 2.22%). If we

simulate the impact of different protection methods with corresponding

different ECs as discussed in Subsection 3.3, we will obtain different results
for PS comparison and protection assessment as described in the next

subsections.

Figure 4. Probabilities of Successful Attack by MCAS

5.2 Implementation on ASCPM

In this subsection, we discuss a prototype implementation of ASCPM based

on Subsection 5.1 to demonstrate PS comparison.

Figure 5. PSAs based on different attacks and PSs

Currently, our “Attack Model Base” includes three PN based attack models
(one of them is the OTP attack introduced before, another two are attacks on

White Box Cryptography and SoftVM (Sutter et al., 2015)), and “PS

Knowledge Base” currently includes ten PSs for protection assessment and
software development. Specially, these PSs are randomly generated based

on some existing protections now (Ceccato et al. 2015a) and will be

improved by real usable PSs. Hence, for all these attacks and PSs, we can

execute MCAS repeatedly and generate the Probabilities of Successful

Attack (PSAs) depicted in Figure 5.

 In Figure 5, all PSAs are listed based on different attacks and PSs. It can be

observed that, there are Attack_1 (the OTP attack), Attack_2 and Attack_3,

and PSs from PS-1 to PS-10. For each PS, there are corresponding ECs for

each transition in PN based attack models, as discussed in Subsection 3.3.

Table 3. Ordered PSs List for Comparison under Each Attack

Attack PS lists ordered increasingly by PSAs

Attack_1 PS-8, PS-5, PS-9, PS-2, PS-6, PS-1, PS-10, PS-4, PS-3, PS-7

Attack_2 PS-4, PS-6, PS-9, PS-1, PS-10, PS-3, PS-2, PS-7, PS-8, PS-5

Attack_3 PS-5, PS-10, PS-8, PS-7, PS-4, PS-2, PS-6, PS-3, PS-1, PS-9

Based on the data in Figure 5, we can operate ASPCM with confidences. In

this part, we will discuss these confidences in different attacks. We can list

all PSs under each attack increasingly by PSAs as Table 3 to compare. For
Attack_1, we will compare adjacent PSs pair by pair: PS-8 and PS-5, PS-5

and PS-9, PS-9 and PS-2, PS-2 and PS-6, PS-6 and PS-1, PS-1 and PS-10,

PS-10 and PS-4, PS-4 and PS-3, PS-3 and PS-7.

Figure 6 shows these comparisons when they are operated under Attack_1.

The vertical coordinate is the value of confidences in [0, 1], and the

horizontal coordinate is the PS list according to Table 3 Row 1. There are
two lines represented CC and NeuC between all PSs in ASPCM. For

instance, for PS-8 and PS-5, the assertion “PS-8 is better than PS-5”, its CC

is very low and NeuC is quite high. In other words, for the assertion that PS-

8 is better than PS-5, it is not a “positive” assertion. On the other hand, for
PS-3 and PS-7, its CC may be high “adequately” to support the assertion:

PS-3 is better than PS-7, to be “positive”. These “positive” and “adequately”

are decided by specific rules in “Rules Set”, and will be implemented in the
next subsection.

Figure 6. Confidences under Attack_1

Figure 7. Confidences under Attack_2

Figure 8. Confidences under Attack_3

Similarly, Figure 7 and Figure 8 are comparison confidences under

Attack_2 and Attack_3.

In brief, we will introduce the implementation of ASPCM for PS comparison

in this subsection, based on MCAS.

5.3 Implementation on ASSPAM

In this subsection, we discuss ASSPAM’s implementation, especially the

components of “Analysis and Assessment” and “Rules Set” in Figure 3,

based on previous subsections.

As introduced before in Section 4.3, supporting various ASs is an important

aspect of the implementation of ASSPAM. In this section, we analyse three

representative ASs: multiple PSAMs (AS-1), a part of one PSAM (AS-2), and

multiple PSAMs including a part of one PSAM (AS-3).

5.3.1 AS-1: multiple PSAMs

As discussed before, in the AS (AS-1), the implementation of ASSPAM
needs to consider the multiple attack threats in real software developing and

protecting processes. Specifically, all attacks need to be evaluated together

by specific weights. In this regard, this AS includes that the weight of

Attack_1 is 1.0 (this attack is the main concern), the weight of Attack_2 is
0.0 (Attack_2 will not be considered), and the weight of Attack_3 is 0.3

(Attack_3 will be considered, but not as important as Attack_1). Besides,

the single attack threat can be viewed as a special case: only one attack’s
weight is 1.0, and other ones are 0.0.

AS-1 = {Attack_1, FULL transitions, 1.0}, {Attack_2, FULL transitions,

0.0}, {Attack_3, FULL transitions, 0.3}

Table 4. Ordered PSs List for Comparison in AS-1

Scenarios PS lists ordered increasingly by weighted

sums of PSAs

AS-1: Attack_1(1.0) +

Attack_2(0.0) +

Attack_3(0.3)

PS-8, PS-5, PS-2, PS-6, PS-10, PS-4, PS-1, PS-

9, PS-3, PS-7

Hence, in this specific scenario, we can obtain an ordered PS list,
increasingly ordered by the weighted sum of PSAs of each PS under

different attacks with these weights as Table 4. The obtained confidences

are depicted in Figure 9.

Figure 9. Comparisons in the specific scenario: AS-1

In Figure 9, the vertical coordinate is the value of confidences in [0, 1], and

the horizontal coordinate is the PS list in Table 4 Row 1. There are six lines

represented CC and NeuC between all PSs in AS-1, Attack_1 and Attack_3

(which have non-zero weights). This figure illustrates an intuitive and
detailed picture about all PSs’ assessment in this specific scenario. For

instance, the assertion that PS-8 is better than PS-5, may be not very

“positive”. And for PS-2 and PS-1, its CC may be “adequate” to support the
assertion: PS-2 is better than PS-1, to be “positive”.

In this regard, different developers and software companies have their own

unique knowledge about these “positive” and “adequate”, which are the
specific “Rules Sets” for their own. For example, Rule 1 is “If NeuC is more

than 0.85, the two PSs are the same in the view of protection assessment”,

which means “not positive”. And a different one: Rule 2 is “If |CC| is

smaller than 0.01, and NeuC is more than 0.7, the two PSs are the same”.
Based on these rules, we can obtain assessment results as Table 5.

In Table 5, under Rule 1, PS-8, PS-5 and PS-2 are the three best PSs as the

assessment results. But under Rule 2, PS-8 and PS-5 are the two best PSs as
the assessment results; PS-6 and PS-10 are the same in the list; the same to

PS-1 and PS-9. No rule means that only one PS: PS-8 will be selected as the

assessment result. Therefore, customer-defined rules can provide flexible

PSs as assessment results, compared to Table 5 Row 1. This flexibility is
also valuable in our ASPIRE project too. Hence, this flexibility on

assessment results can provide alternatives for protection assessment in real

software protection scenarios.

Table 5. Assessment Results depended on Rules in AS-1

Rules Assessment Results

No Rule PS-8 > PS-5 > PS-2 > PS-6 > PS-10 > PS-4 >

 PS-1 > PS-9 > PS-3 > PS-7

Rule 1 PS-8 = PS-5 = PS-2 > PS-6 > PS-10 > PS-4 >

PS-1 > PS-9 > PS-3 > PS-7

Rule 2 PS-8 = PS-5 > PS-2 > PS-6 = PS-10 > PS-4 >

PS-1 = PS-9 > PS-3 > PS-7

…… ……

So far, in the specific AS, our ASSPAM provides Figure 9 and Table 5 as the

final protection assessment results for developers and software companies:

Table 5 outlines flexible premier PSs as assessment results; and Figure 9
shows the details about these PSs, like confidences of PSs’ comparisons.

5.3.2 AS-2: a part of one PSAM

As introduced before, due to these changing real risks in mobile software
protection, one kind of ASs is to remove some “unsuitable” transitions in

the PSAM to execute the assessment process, which called a part of the

PSAM in the assessment process.

In this regard, AS-2 in this subsection focuses on Attack_1 (OTP attack) as

introduced in Figure 1 and Table 1. Specially, in this PSAM, “T9: Code

pruning for XOR localization” is a transition requiring that attackers have to

be high-skilled on binary analysis and very familiar with the specific target
code piece and AES encryption. Due to the scarcity of these requirements, it

is reasonable to assume that this specific transition of the PSAM can be

removed for specific protection assessments. Hence, we can use the
“modified” PSAM in Figure 10 in this AS.

Figure 10. Modified OTP attack model

In Figure 10, it is the modified OTP attack. Compared to Figure 1, due to

correlations among transitions, transitions T10 and T11 can be removed
with T9 together, and the same for the related places: P8 and P9. So, AS-2 is

an AS included one PSAM: the modified Attack_1.

AS-2 = {Attack_1, (T0, T1, T2, T3, T4, T5, T6, T7, T10), 1.0}

Hence, based on the MCAS and APSCM functions of our assessment method,
we can obtain the PSAs on this modified attack model in Figure 10.

Figure 11. PSAs based on the modified Attack_1 and PSs

In Figure 11, all PSAs are listed based on the modified Attack_1 and PSs.
Compared to the PSAs in Figure 5, we can find out that most of PSAs have

different decrements. Because one attack path has been removed from the

attackers’ actions, which mean they have a lower degree of freedom to
execute a successful attack process. So they have to face lower PSAs.

Based on the data in Figure 11, we can operate ASPCM with confidences,

similar to the previous AS. In this part, we will discuss these comparison

confidences for the modified Attack_1. Based on the PS list in Table 6, we
will compare adjacent PSs pair by pair: PS-2 and PS-6, PS-6 and PS-9, PS-9

and PS-5, PS-5 and PS-1, PS-1 and PS-3, PS-3 and PS-10, PS-10 and PS-4,

PS-4 and PS-8, PS-8 and PS-7.

Table 6. Ordered PSs List for Comparison under the modified Attack_1

Attack PS lists ordered increasingly by PSAs

Modified

Attack_1

PS-2, PS-6, PS-9, PS-5, PS-1, PS-3, PS-10,

PS-4, PS-8, PS-7

Hence, Figure 12 shows the comparisons when different PSs are operated

under the modified Attack_1. The vertical coordinate is the value of
confidences in [0, 1], and the horizontal coordinate is the PS list according

to Table 6.

Figure 12. Confidences under modified Attack_1 (Comparison in AS-2)

Similar to Figure 6, Figure 7 and Figure 8, in Figure 12, there are two lines
represented CC and NeuC between all PSs under the modified Attack_1.
Just similar to the previous discussions, related PSs can be analysed in terms

of comparisons. For instance, the assertion that PS-2 is better than PS-6,

may be not very “positive”. And for PS-5 and PS-1, its CC may be
“adequate” to support the assertion: PS-5 is better than PS-1, to be

“positive”. Besides, due to that this scenario only includes one attack model

(modified Attack_1), this Figure 12 can also viewed as the comparison

figure in this scenario (AS_2) as Figure 9 in the AS-1.

In this regard, we can use the same “Rule 1” and “Rule 2” in Table 5 to

understand these “positive” and “adequate”. Rule 1 is “If NeuC is more than

0.85, the two PSs are the same in the view of protection assessment”. And
Rule 2 is “If |CC| is smaller than 0.01, and NeuC is more than 0.7, the two

PSs are the same”. Based on these rules, we can obtain assessment results as

Table 7.

In Table 7, under Rule 1, PS-2 is the best PS as the assessment results,

which is the same to the “No Rule”. And under Rule 2, PS-2 and PS-6 are

the two best PSs as the assessment results. Therefore, as discussed in the

previous AS, customer-defined rules can provide flexible PSs as assessment
results, compared to Table 7 Row 1.

Table 7. Assessment Results depended on Rules in AS-2

Rules Assessment Results

No Rule PS-2 > PS-6 > PS-9 > PS-5 > PS-1 > PS-3 >

 PS-10 > PS-4 > PS-8 > PS-7

Rule 1 PS-2 > PS-6 > PS-9 > PS-5 > PS-1 > PS-3 >

 PS-10 > PS-4 > PS-8 > PS-7

Rule 2 PS-2 = PS-6 > PS-9 > PS-5 > PS-1 > PS-3 >

 PS-10 > PS-4 > PS-8 > PS-7

…… ……

Briefly, in the specific software protection scenario: AS-2, similar to AS-1,

our ASSPAM provides Figure 12 and Table 7 as the final protection
assessment results for developers and software companies: Table 7 outlines

flexible premier PSs as assessment results; and Figure 12 shows the details

about these PSs, like confidences of PSs’ comparisons.

5.3.3 AS-3: multiple PSAMs including a part of one PSAM

In this subsection, we will discuss the last scenario AS-3: multiple PSAMs

including a part of one PSAM, for the implementation of our ASSPAM.
Specifically, the specific scenario includes three PSAMs just like AS-1. And

the only difference is that the Attack_1 is replaced by the modified Attack_1

introduced in Figure 10. Same to AS-1, the weight of modified Attack_1 is
1.0, the weight of Attack_2 is 0.0, and the weight of Attack_3 is 0.3.

AS-3 = {Attack_1, (T0, T1, T2, T3, T4, T5, T6, T7, T10), 1.0}, {Attack_2,

FULL transitions, 0.0}, {Attack_3, FULL transitions, 0.3}

Table 8. Ordered PSs List for Comparison in AS-3

Scenarios PS lists ordered increasingly by weighted

sums of PSAs

AS-3: Modified
Attack_1(1.0) +

Attack_2(0.0) +

Attack_3(0.3)

PS-2, PS-6, PS-5, PS-3, PS-9, PS-10, PS-1, PS-
4, PS-8, PS-7

Hence, in this specific scenario, we can obtain an ordered PS list,

increasingly ordered by the weighted sum of PSAs of each PS under
different attacks with these weights as Table 8. Based on this, we can obtain

comparison confidences in Figure 13.

Figure 13. Comparisons in the specific scenario: AS-3

Similar to previous Figure 9, in Figure 13, the vertical coordinate is the

value of confidences in [0, 1], and the horizontal coordinate is the PS list in
Table 8. There are six lines represented CC and NeuC between all PSs in

AS-3, modified Attack_1 and Attack_3. This figure illustrates an intuitive

and detailed picture about all PSs’ assessment in this specific scenario. For
example, the assertion that PS-2 is better than PS-6, may be not very

“positive”. And for PS-5 and PS-3, its CC may be “adequate” to support the

assertion: PS-5 is better than PS-3, to be “positive”.

Table 9. Assessment Results depended on Rules in AS-3

Rules Assessment Results

No Rule PS-2 > PS-6 > PS-5 > PS-3 > PS-9 > PS-10 > PS-1

> PS-4 > PS-8 > PS-7

Rule 1 PS-2 > PS-6 > PS-5 > PS-3 > PS-9 > PS-10 > PS-1
> PS-4 > PS-8 > PS-7

Rule 2 PS-2 = PS-6 = PS-5 > PS-3 > PS-9 > PS-10 > PS-1

> PS-4 > PS-8 > PS-7

…… ……

Hence, similar to the previous ASs, we can use the same “Rule 1” and “Rule

2” in Table 5 to understand these “positive” and “adequate”. Rule 1 is “If
NeuC is more than 0.85, the two PSs are the same in the view of protection

assessment”. And Rule 2 is “If |CC| is smaller than 0.01, and NeuC is more

than 0.7, the two PSs are the same”. Based on these rules, we can obtain

assessment results as Table 9.

In Table 9, under Rule 1, PS-2 is the best PS as the assessment results,

which is the same to the “No Rule”. And under Rule 2, PS-2, PS-6 and PS-5

are the three best PSs as the assessment results. Therefore, as discussed in
the previous ASs, customer-defined rules can provide flexible PSs as

assessment results, compared to Table 9 Row 1.

So far, similar to the previous AS-1 and AS-2, in the specific software
protection scenario: AS-3, our ASSPAM provides Figure 13 and Table 9 as

the final protection assessment results for developers and software

companies: Table 9 outlines flexible premier PSs as assessment results; and

Figure 13 shows the details about these PSs, like confidences of PSs’
comparisons.

In summary, for real mobile software attack processes, our Attack

Simulation based Software Protection Assessment method (ASSPAM) with
Monte Carlo based Attack Simulation (MCAS) and Attack Simulation based

Protection Comparison Model (ASPCM) can assess complicated Protection

Solutions (PSs) effectively.

6. CONCLUSIONS AND FUTURE WORK

Software protection is a critical aspect in software security. In this regard, to

assess complicated Protection Solutions (PSs) on uncertain mobile attack
processes, we presented a novel attack simulation based protection

assessment method called ASSPAM. In this method, Monte Carlo based

Attack Simulation (MCAS) used PN based attack models to simulate
attacking processes with different PSs. Based on this attack simulation, a

novel Attack Simulation based Protection Comparison Model (ASPCM) was

presented to generate comparisons among potential PSs. Finally, ASSPAM

was described to assess mobile software protections via the PS comparing
results of ASPCM and MCAS. We implemented ASSPAM by means of

software protection assessment processes with various ASs to demonstrate

that our method could provide suitable assessments for mobile software
developers.

For future work, we plan to extend our approach by using software metrics

to improve the assessment methodology and to search for the optimal

protection solution in other case studies, such as digital rights management.

7. ACKNOWLEDGEMENT

This research is supported by the European Union Seventh Framework

Programme (FP7/2007-2013) under grant agreement no. 609734, project

ASPIRE. The work of Christophe Tartary is supported by the German
Federal Ministry of Education and Research (BMBF) through funding for

the Project PROMISE (No. 16KIS0362K). Part of Christophe Tartary’s

research was done while he was still affiliated with the University of East
London where his research was supported by a Mid-Career Researchers

award from the university.

8. REFERENCES

ASPIRE Project (Advanced Software Protection: Integration, Research and

Exploitation). On-line at https://aspire-fp7.eu/, accessed on 21/09/2016.

Basile, C., & Ceccato, M. (2013, May). Towards a Unified Software Attack
Model to Assess Software Protections. Paper presented at the 2013 IEEE

21st International Conference on Program Comprehension, San Francisco,

USA.

Briand, L. C., Morasca, S., & Basili, V. R. (1996). Property-based Software
Engineering Measurement. IEEE Transactions on Software Engineering,

22(1), 68-86.

Ceccato, M., Di Penta, M., Nagra, J., Falcarin, P., Ricca, F., & Torchiano,
M. (2008, October). Towards Experimental Evaluation of Code Obfuscation

Technique. Paper presented at the 4th ACM Workshop on Quality of

Protection, Alexandria, Virginia, USA.

Ceccato, M., Di Penta, M., Falcarin, P., Ricca, F., Torchiano, M., & Tonella,

P. (2014). A Family of Experiments to Assess the Effectiveness and

Efficiency of Source Code Obfuscation Techniques. Empirical Software

Engineering, 19(4), 1040-1074.

Ceccato, M. (2015). Early White-Box Cryptography and Data Obfuscation

Report. https://aspire-fp7.eu/sites/default/files/D2.01-ASPIRE-Early-White-

Box-Cryptography-and-Data-Obfuscation-Report-v1.01.pdf, accessed on
21/09/2016.

Ceccato, M., Capiluppi, A., Falcarin, P., & Boldyreff, C. (2015). A Large

Study on the Effect of Code Obfuscation on the Quality of Java Code.
Empirical Software Engineering, 20(6), 1486-1524.

Chen, T. M., Sanchez-Aarnoutse, J. C., & Buford, J. (2011). Petri Net

Modeling of Cyber-Physical Attacks on Smart Grid. IEEE Transactions on

Smart Grid, 2(4), 741-749.

Cheng, C. K. (2012). Evaluation and Measurement of Software Process

Improvement—A Systematic Literature Review. IEEE Transactions on
Software Engineering, 38(2). 398-424.

Chidamber,S. R., & Kemerer, C. F. (1994). A metrics suite for object

oriented design. IEEE Transactions on Software Engineering, 20(6), 476 –

493.

De Sutter, B. (2015). Preliminary Complexity Metrics. https://aspire-

fp7.eu/sites/default/files/D4.02-ASPIRE-Preliminary-Complexity-

Metrics.pdf, accessed on 21/09/2016.

 Dell'Amico, M., & Filippone, M. (2015, October). Monte Carlo Strength

Evaluation: Fast and Reliable Password Checking. Paper presented at the

22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, Colorado, USA.

Dewri, R., Poolsappasit, N., Ray, I., & Whitley, D. (2007, November).

Optimal Security Hardening using Multi-Objective Optimization on Attack

Tree Models of Networks. Paper presented at the 14th ACM Conference on
Computer and Communications Security, Alexandria, Virginia, USA.

Falcarin, P., Collberg, C., Atallah, M., & Jakubowski, M. (2011). Guest

Editors' Introduction: Software Protection. IEEE Software, 28(2), 24-27.

Falcarin. P. (2015). Preliminary ASPIRE Security Model. https://aspire-

fp7.eu/sites/default/files/D4.01-Preliminary-ASPIRE-Security-Model.pdf,

accessed on 18/07/2016.

Huang, H., & Kirchner, H. (2010). Formal Specification and Verification of

Modular Security Policy Based on Colored Petri Nets. IEEE Transactions

on Dependable and Secure Computing, 8(6), 852 – 865.

Raychaudhuri, S. (2008, December). Introduction to Monte Carlo
Simulation. Paper presented at the 2008 Winter Simulation Conference,

Miami, USA.

Murata, T. (1989, April). Petri Nets: Properties, Analysis and Applications.
Proceedings of the IEEE, 77(4), 541-580.

Ou, X., Boyer, W. F., & McQueen, M. A. (2006, November). A Scalable

Approach to Attack Graph Generation. Paper presented at the 13th ACM

Conference on Computer and Communications Security, Alexandria,
Virginia, USA.

Sgandurra, D., & Lupu, E. (2016). Evolution of Attacks, Threat Models, and

Solutions for Virtualized Systems. ACM Computer Surveys, 48(3), Article
46.

Sheyner, O., Haines, J., Jha, S., Lippmann, R., & Wing, J. M. (2002, May).

Automated Generation and Analysis of Attack Graphs. Paper presented at
the 2002 IEEE Symposium on Security and Privacy, Oakland, California,

USA.

Tonella, P., Ceccato, M., Sutter, B. D., & Coppens, B. (2014, November). A

Measurable Framework to Quantify Software Protections. Paper presented
at the 2014 ACM SIGSAC Conference on Computer and Communications

Security, Scottsdale, Arizona, USA.

Wang, H., Fang, D., Dong, H., Lei, Y., Gong, X., & Gu, Y. (2013,
November). Software Attack Modelling and Its Application. Paper

presented at the 2014 IEEE International Conference on High Performance

Computing and Communication, Zhangjiajie, China.

Zeng, Y., Cao, J., Hong, J., Zhang, S., & Xie, L. (2009, October). SecMCL:

A Secure Monte Carlo Localization Algorithm for mobile sensor networks

Paper presented at the IEEE 6th International Conference on Mobile Adhoc

and Sensor Systems, Macau, China.

KEY TERMS

Keywords:

 Mobile Software Security - The area to take mobile software as the

assets and make sure software to be executed in ethnic ways.

 Software Protection Assessment - The assessment on the level of

software protection methods.

 Attack Simulation - Simulating the processes of attacks.

 Monte Carlo Method - The method to use random variables and

sampling to deal with uncertainly computing tasks.

 Petri Net - A modelling language to describe and reason

complicated processes with solid mathematical basis.

BIOGRAOHICAL NOTES

Gaofeng Zhang obtained his PhD degree in Information and

Communication Technologies in 2013, from Swinburne University of

Technology, Australia. Before that, he received his BEng and MEng degrees

in Computer Science and Technology in 2005 and 2008, from Hefei

University of Technology, China. His research interests include mobile

security, cloud security & privacy, security assessment, IoT software and

security.

Paolo Falcarin received his Ph.D. in Software Engineering in 2004 and

MEng in Computer Engineering in 2000, from Polytechnic of Turin

University, Italy. He is currently a Reader in Computer Science, at the

School of Architecture Computing and Engineering, University of East

London.

His research interests include software protection and security, software and

systems engineering.

Elena Gómez-Martínez received her M.Sc. and Ph.D. degrees in Computer

Engineering from the University of Zaragoza, Spain, in 1999 and 2014,

respectively. Her Ph.D. dissertation was related to the study of software

performance assessment at architectural level based on software

performance engineering principles with stochastic Petri nets. She worked at

the R&D department of Ilunion (former Technosite) as researcher,

developer, project coordinator of INREDIS project and Simplext project

(was awarded by Vodafone Foundation) and technical coordinator of the

ATIS4all European Thematic Network. Later, she worked as researcher at

the Babel group and at the Center for Open Middleware, both in the

Universidad Politécnica de Madrid, Spain. At the present, she is research

assistant in the ASPIRE project at the University of East London, United

Kingdom.

Shareeful Islam is currently working at school of ACE, University of East

London, UK. He received the PhD from Technische Universität München,

Germany. He received M.Sc. in Information Communication System

Security from Royal Institute of Technology (KTH), Sweden and M.Sc. in

CS and B.Sc. (Hon’s) in APE from the University of Dhaka, Bangladesh.

He is a Fellow of the British Higher Education Academy (HEA). He has

published more than 60 referred papers in high quality journals and

international conferences. He participated in EU, industry, KTP projects.

His research interest and expertise is risk management, requirements

engineering, security, privacy, and cloud computing.

Christophe Tartary obtained his Master in Cryptography, Coding Theory

and Calculus from the University of Limoges (France) in 2001 and his PhD

in Computer Science from Macquarie University (Sydney, Australia) in

2008. His research interests include cryptography, coding theory, number

theory, complexity theory and information security.

Bjorn De Sutter is a professor at Ghent University in the Computer

Systems Lab. He obtained his Msc. and Ph.D. degrees in Computer Science

from Ghent University's Faculty of Engineering in 1997 and 2002. His

research focuses on the use of compiler techniques to aid programmers with

non-functional aspects of their software, such as performance, code size,

reliability, and software protection.

Jerome d'Annoville received a degree in Computer Science in 1983 from

Pierre et Marie Curie University in Paris, France. He is working in the

Advanced R&D Department of Gemalto and is head of a team in charge of

developing innovative components to be embedded in future products in the

field of mobile devices security. He currently works on Trusted Computing

and IoT.

Reference to this paper should be made as follows: Zhang, G., Falcarin, P.,

Gómez-Martínez, E., Islam, S., Tartary, C., De Sutter, B., & d’Annoville, J.

(2016). Attack Simulation based Software Protection Assessment Method

with Petri Net. International Journal on Cyber Situational Awareness, Vol.

1, No. 1, pp152-181

