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ABSTRACT 

Software protection is an essential aspect of information security to 

withstand malicious activities on software, and preserving valuable software 

assets. However, software developers still lack an effective methodology for 
the assessment of deployed protections, especially in the area of mobile 

applications. To solve these issues, we present a novel attack simulation 

based software protection assessment method to evaluate and compare 
different protection solutions. Our solution relies on Petri Nets to specify 

and visualize attack models of mobile applications. We developed a Monte 

Carlo based approach to simulate attacking processes and to deal with the 

uncertainty. Then, based on this simulation, a novel protection comparison 
model is proposed to compare different protection solutions. Finally, our 

attack simulation based software protection assessment method is presented. 
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We illustrate our method by means of a case study process to demonstrate 

that our approach can provide a suitable software protection assessment for 
developers and software companies. 

Keywords: Mobile Software Security; Software Protection Assessment; 
Attack Simulation; Monte Carlo Method; Petri Net 

 

1. INTRODUCTION 

Currently, software is an extremely important asset for customers to support 

and execute their businesses. Consequently, software protection has 
attracted much attention from developers and software companies in terms 

of software security, like the anti-piracy, binary analysis, and so on. To 

ensure security against malicious software attacks, many tools have been 
developed, such as data obfuscation, tamper-proofing, code splitting, 

software watermarking, among others (Falcarin et al., 2011).  

In this regard, assessing the effectiveness of these protections is crucial 

before embedding them into real commercial software products. In 
particular, in practical use cases, like mobile computing, multiple protection 

methods could be utilised together as Protection Solutions (PSs) to thwart 

actual threats. For example, in the area of Android APP development, it is 
important to consider different attack risks on one single APP: some 

attackers try to steal the encryption key in the APP execution, others may 

focus on the illegal tampering to obtain improper utilisations, etc. Therefore, 
a software protection assessment method needs to be able to assess potential 

PSs with respect to various types of attacks. This is the context where this 

paper takes place.   

Currently, one main type of software protection assessment (Ceccato et al., 
2014) focuses on the evaluation of individual protection methods and does 

not consider PSs with multiple protection methods. Another kind of 

software protection assessment (Basile et al., 2013) discussed general 
software measurement frameworks for protection, and did not involve PSs 

either. Hence, none of these two approaches is suitable for protection 

assessment in terms of complex PSs to provide convincing results.  

Besides, for real software attack processes, uncertainty is another challenge 
for these existing assessment methods. In uncertain software attacking 

processes, there are many random variables and factors involved, such as 

the computing resources for attacking, the decisions or selections made by 
particular attackers, and so on. Moreover, specific environments, like 

mobile computing, could jeopardise this uncertainty by the fragmentation of 



 

  

mobile OS. To capture this phenomenon, we could use a non-deterministic 

attack simulation based on the Monte Carlo method to describe the real 
uncertain software attacking processes. This idea will be the basic tool for 

our proposed method.  

Petri Net (PN) based attack models are suitable objects to model software 

attacks (Murata et al., 1989; Wang et al., 2013), and in this work we use 
them to support software protection assessment in terms of Monte Carlo 

based attack simulation.  

In real software protection implementations, assessing every possible PSs in 
each specific software protection scenario is a huge task, considering the 

myriad of possible combinations of various PSs (multiple protection 

methods with their parameters) and various software protection scenarios 
(multiple attacks with weights). Hence, the relations (comparing results) 

among PSs under protection assessments are particularly valuable for this. 

Our assessment method can use a comparison model to manage the 

comparisons among PSs on the basis of the attack simulation. As such, the 
protection comparison model is the central component of our assessment 

methodology. 

To summarize our approach, our novel Attack Simulation based Software 
Protection Assessment Method (ASSPAM) uses a Monte Carlo based Attack 

Simulation (MCAS) to simulate specific software attack processes with 

implementing PSs, based on PN based attack models. Then, using the results 
obtained from the MCAS, our Attack Simulation based Protection 

Comparison Model (ASPCM) provides a numeric estimation of the PS and 

thus this can be compared in the ASSPAM to search for the best PS. Besides, 

various protection scenarios will be discussed to implement ASSPAM in the 
real world. 

This research has been carried out within the European FP7 project ASPIRE, 

Advanced Software Protection: Integration, Research, and Exploitation 
(ASPIRE, 2016). Our method focuses on the assessment of PSs, and does 

not cover the generation and optimisation of these PSs. Some other 

components of ASPIRE can store security experts’ knowledge and 

experiences in the Knowledge Base, and generate PSs by means of 
reasoning technique. Besides, to generate and optimise PSs, there are some 

aspects, such as the cost of protections, the dependency among protection 

methods, and so on, which are out of the scope of this paper.  

Furthermore, compared to traditional PNs (Murata et al., 1989), our PN 

based attack models focus on attack steps (transitions) with related 

simulation information for assessment. Therefore, some features in 
traditional PNs are not involved in this paper, such as tokens and liveness. 



 

  

PNs with full characteristics will be utilised by other software protection 

assessment approaches in the ASPIRE project. 

The paper is organized as follows. Section 2 describes related work. Section 

3 discusses preliminary concepts and background. In Section 4, our new 

method is proposed. In Section 5, we use a protection assessment instance to 

demonstrate that our proposed method can provide suitable protection 
assessments for mobile software protection. Section 6 concludes this paper 

and points out future work. 

2. RELATED WORK 

This section introduces existing research progress in the areas of software 
analysis and measurement, attack modelling, Monte Carlo simulation and 
software protection assessment.  

2.1 Software Analysis and Measurement 

Software analysis and measurement are important areas in software 

engineering (Briand et al., 1996). For example, in the software process 

improvement area, measurement has been emphasised as a central function 
and activity (Cheng, 2012). In the field of object-oriented design, software 

metrics provide the suitable approach to measure the software development 

processes (Chidamber et al., 1994). From a software security viewpoint, 
Tonella et al. (2014) presented a general framework to assess a software by 

various measurable features and metrics to withstand software attacks. 

Related software analysis and measurement mechanisms are valuable 
references for our software protection assessment.   

2.2 Attack Modelling  

Currently, attack modelling is an important area of information security 
(Sgandurra et al., 2016). Attack Tree models and Attack Graphs are widely 

used for representing network attacks, virus attacks, and so on (Dewri et al., 

2007; Sheyner et al., 2002). For example, the scalable modelling process is 
studied for attack graph generation with logic formalism in (Ou et al., 2006). 

However, none of them can precisely describe preconditions, actions and 

external impacts in software attack processes properly. 

In this regard, Petri Nets (PNs) were originally introduced as a modelling 
technique for concurrent systems (Murata et al., 1989). These nets can 

model specific cyber-physical attacks on smart grid (Chen et al., 2011). In 

the formal way, security policies can be verified by Coloured Petri Nets 
(Huang et al., 2010). Taking software protection as objective, Wang et al. 



 

  

(2013) focused on coloured PN based attack modelling. As discussed in 

Section 1, PN based attack models are suitable to describe preconditions, 
post-conditions and actions and, therefore, they will play a core role in our 

attack modelling and protection assessment. 

2.3 Monte Carlo Simulation 

The Monte Carlo simulation (method) is a powerful tool for dealing with 

uncertainty and probability (Raychaudhuri et al., 2008). It is very useful for 

analysing and simulating complex systems and problems, due to its 
flexibility and error-quantifiable features (Dell'Amico et al., 2015; Zeng et 

al., 2009).  

Hence, the Monte Carlo method (Dell'Amico et al., 2015) is a suitable 

technique to simulate complex systems in terms of multiple random 
variables. As discussed in Section 1, in this paper, we assess various PSs in 

real uncertain attacking processes to provide suitable PSs for developers and 

software companies. With the help of the Monte Carlo method, we can use 
attack simulation to support the ASSPAM when assess protections. 

2.4 Software Protection Assessment 

As previous discussed, software protection assessment is an essential part of 
software protection (Falcarin et al., 2011). Basile et al. (2013) described a 

unified high-level software attack model to assess software protections for 

developers. Experiments have been designed to assess the effectiveness and 
efficiency of related software protection techniques for code obfuscation 

(Ceccato et al., 2008; Ceccato et al., 2014; Ceccato et al., 2015b).  

Existing protection assessment methods are too specialised or too general to 
cope with uncertain software attack processes and PSs. That is why, to 

overcome this issue, our ASSPAM will be relying on PN based attack 

models and Monte Carlo based attack simulations.  

3. PETRI NET BASED ATTACK MODEL  

In this section, we discuss the PN based attack model for attack simulation, 

which is the basic supporting tool of our ASSPAM, especially for our MCAS.   

3.1 Petri Net based Software Attack Modelling 

PN based attack models are the essential rationale for our assessment 

method in this paper. Generally speaking, PN based attack models represent 
all possible attack paths and attack steps in software attacks, and support the 

attack simulations on these attacks via some extra information.  



 

  

Based on existing work (Murata et al., 1989; Wang et al., 2013), we present 

our models to describe software attacks for protection assessment: 

Definition 1 PSAM: A PN based Software Attack Model for simulation is a 

five-tuple, PSAM = (P, T, A, EC, AE), where:  

• P is a finite set of states, represented by circles. These states model 
sub-goals reached by an attacker after having executed a number of attack 
steps. P={P0,……,Pn}. 

• T is a finite set of transitions, represented by rectangles. These 
transitions model attack steps, i.e., specific actions undertaken by 
attackers to reach a sub-goal on a path to the final end goal of their attack. 
T={T0,……,Tm}. 

• P∪T≠Ø, P∩T=Ø. 

• A ⊆ {T×P} ∪ {P×T}, is a multi-set of direct arcs, relating sub-goals 
and attack steps. A={A0,……,Al}. 

• EC represents the Effort Consumption. It is a finite set of attacker’s 
effort consumed at each transition in T, where EC={ec0,……,ecm}. It is 
utilised as the preconditions.  

• AE represents the Attacker Effort. It is a finite set of attacker’s effort 
at each state in P, where AE={ae0,……,aen}. Attackers have the capability 
including resources and skills to execute attacks on protected or 
unprotected software. This “capability” is represented with AE and will be 
“consumed” in transitions of attack processes via EC in attack simulations. 

EC and AE will be discussed further in the next subsection, which are the 

key issues to support the attack simulations for our protection assessment.  

 

Figure 1. PN based attack model on a one-time password generator 

As an example of a relevant use case, Figure 1 and Table 1 present relevant 

attack paths on a One-Time Password (OTP) generator (Falcarin et al., 2015) 

by means of PSAM.  It is an important mobile software asset needed to be 
protected: P0 is the starting state in which attackers start to attack the OTP 

software, and P10 is the final state which means a successful attacking. 



 

  

Specially, this success means that attackers obtain the seed of the OTP 

generator. P1, P2, P3, P4, P5, P6, P7, P8, and P9 are nine intermediate states 
in the attack, corresponding to different sub-goals being reached. T0, T1, T2, 

T3, T4, T5, T6, T8, T9, T10, and T11 are eleven transitions, which describe 

various attack steps (actions) in attack processes, detailed in Table 1.  

Table 1. Attack Table of PN based attack model on a one-time password 
generator  

 Description/Objective Input Output 

T0 Identify PIN section of 
the code 

Original code Piece of code containing 
PIN checking 

T1 Bypass PIN check Piece of code 
containing PIN 

checking 

N/A 

T2 Bypass PIN check Piece of code 

containing PIN 
checking 

PIN obtained 

T3 Set-up for parallel run N/A N/A 

T4 Unlock provisioning 

phase 

Original code Reusable provisioning 

phase (piece of code) 

T5 Fake server setting N/A Server ready 

T6 AES decryption code 
identification 

Fake server (P5) + 
Reusable provisioning 

code (P6) 

Piece of code containing 
the AES deciphering 

algorithm 

T8 Seed recovery AES decryption code 
+ real server 

Seed 

T9 Code pruning for XOR 

localization 

Original code Code fragments 

(executed before OTP 
display) 

T10 XOR chains 
identification 

Code fragments (P8) Sequence of XOR 
operations (piece of 

code) 

T11 Seed recovery Sequence of XOR 
operations 

Seed 



 

  

PSAM is the basic supporting tool in this paper by providing attack models 

with attack paths and steps, and the part with AE and EC will be introduced 
further in the next subsection to complete the model.  

3.2 Effort Consumption and Attacker Effort  

In this subsection, we detail the Effort Consumption (EC) and the Attacker 
Effort (AE) as the important part of the PSAM to support attack simulation 

for protection assessment particularly.  

In this paper, we use uniform distributions to describe Effort 
Consumption—EC and eci. For each eci, a Maximum boundary—Maxi and a 

Minimum boundary—Mini decide this random variable by the uniform 

distribution in equation (1). 

 ],0[),,(},,...,,...,{ 0 miMaxMinfecececececEC iiimi       (1) 

In equation (1), fec() represents the sampling process of the uniform 

distribution with two boundaries: Mini and Maxi. For example, T0 in the 

OTP attack model is to “Identify the PIN check portion of the code”. Both 
Max0 and Min0 can be set in the attack modelling by users or security 

experts in industry, based on real attack data. After that, ec0 is the random 

variable with the uniform distribution and two boundaries: Max0 and Min0. 
Both boundaries can be increased due to the fact that some protections have 

been applied: for example, when some software protection methods increase 

the code size or the flow complexity, this can make the T0 attack step more 
difficult, which will change the uniform distribution for ec0 with Max0 and 

Min0. These methods could be specific PSs to change ec0. The relations 

between methods and transitions are decided by users, as well as existing 

knowledge. In other words, these Mini and Maxi (and EC) depend on various 
PSs.  

Another concept of PSAM is AE, which represents the current effort of the 

attacker in the state of this attack process. AE can be described by equation 
(2). In this equation, ae0 is the attacker effort before attack processes (in the 

initial place). In this paper, we set ae0 as a random variable with a normal 

distribution. 

},...,,...,{ 0 ni aeaeaeAE                                   (2)
 

As introduced in Section 1, since the attacker is one key part of the 

simulation, we will use a normal distribution to represent real uncertain 

attacking processes for one attacker. 



 

  

Using a PSAM is the basis of our method in this paper, and the attack 

simulation, protection comparison model and protection assessment method 
rely on this.  

In the next section, we will introduce the main content in this paper—

ASSPAM.  

4. ATTACK SIMULATION BASED SOFTWARE 
PROTECTION ASSESSMENT METHOD 

Based on previous discussions, we will introduce our novel ASSPAM in 
three steps: firstly, a MCAS simulates attack processes with PSs, based on 

PN based attack models described in Section 3; secondly, we will introduce 

our ASPCM to compare different PSs based on previous attack simulations; 
lastly, ASSPAM will be introduced based on MCAS and ASPCM to provide 

suitable PSs as the protection assessment results.  

4.1 Monte Carlo based Attack Simulation 

Monte Carlo based Attack Simulation (MCAS) includes two parts: Single 

Attack Process Simulation (SAPS) and Monte Carlo Method. They will be 

introduced in the following. 

4.1.1 Single Attack Process Simulation 

The main process of Single Attack Process Simulation (SAPS) works as 

follows: in one PSAM (as a Directed Acyclic Graph), one attacker will try to 
move from the starting state to the final state. If he/she successes, the result 

of this SAPS is TRUE; otherwise, it is FALSE. It can be viewed as a route 

searching process in the directed acyclic graph. 

In SAPS, in each node, e.g. transition, we use the Passing Probability—PP 

to control the probability that the attacker completes this transition (attack 

step) and reach the next state. 

Passing Probability (PP): A finite set for each transition in T, and ppi ∈ PP, i 

∈ [0,m].  

],0[,
),1tanh(
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In equation (3), eci comes from equation (1), which is the effort 

consumption for each attack step. And aeCUR comes from equation (2), 
which is the current attacker effort in one attack simulation process. If aeCUR 



 

  

is smaller than eci, the probability is zero, which means that the current 

attacker effort is too low to complete this attack step. Otherwise, if aeCUR is 
not smaller than eci, the passing probability is required to be monotonically 

increasing and in the range of [0, 1) when x is in ),0[  . To match this, we 

use the hyperbolic tangent function: )1()1()tanh( 22 xx eex   . 

Besides, after discussing the pre-conditions of transitions (PP), the actions 

of transitions will focus on the changing on AE and the current place. 
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In equation (4), for transition Ti, on the probability of ppi, aeCUR will be 
subtracted by eci, which means that the attacker passes this transition to 

arrive the next place after this transition. Otherwise (i.e., with probability 1- 

ppi), the attacker needs go back to the previous state to find other paths to 

reach the final state, and aeCUR is still the same.  

Briefly, the SAPS is the basis to Monte Carlo based attack simulation for 

protection assessment by indicating attack processes on PSAM.   

4.1.2 Monte Carlo based Attack Simulation  

Based on this SAPS model, we use the Monte Carlo method to manage the 

SAPS and to provide a randomized simulator emulating the attack processes 

success. The MCAS is illustrated in Figure 2. The key component is our 
SAPS. To run the SAPS, we need to perform an initialisation phase in order 

to build the underlying PN based attack model with EC and AE as 

introduced in Subsection 3.3. The result of each SAPS is of type Boolean. 
Then, the Monte Carlo method executes the SAPS several times. Finally, the 

simulation provides a probability of attack success (the ratio of SAPSs with 

TRUE in all SAPSs).  

Besides, as introduced in Subsection 3.3, specific PSs can decide specific 

ECs in PSAM. Hence, the result of one MCAS process is a probability of 

attack success on one PN based attack model and one PS.  
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Figure 2. Monte Carlo based Attack Simulation (MCAS) 

In brief, MCAS is the basic tool of ASPCM and ASSPAM.  

4.2 Attack Simulation based Protection Comparison 
Model 

We now present our ASPCM. As indicated in Section 1, the main target of 
ASPCM is to compare PSs with numeric confidences by means of MCAS. 

To reach this aim, we introduce two such values as Compare Confidence 

and Neutral Confidence.  

Based on Subsection 4.1, a probability of attack success is the result of one 

MCAS process with one PN based attack model and one PS. If we compare 

two Protection Solutions, for instance PS-1 and PS-2, we can assume that 

there are two probabilities: p1 and p2 representing the results of MCASs 
being executed based on PS-1 and PS-2 respectively.  

To describe the confidence of the comparison, it is an intuitive way to use 

the difference of these two probabilities, like p2 - p1 under the assertion: PS-
1 is better than PS-2. Besides, to enhance the previous confidence, we 

consider the scenario that these two PSs cannot be distinguished, which 

includes two kinds of events: an attacker can successfully break PS-2 while 
he/she is able to break PS-1; and an attacker cannot break PS-2 while he/she 

is unable to break PS-1. Therefore, the probability of these two events can 

be defined as )1()1( 2121 pppp  , which is equation (6). As such, our 

two confidences are expressed by equations (5) and (6).  

For the assertion: PS-1 is better than PS-2, with confidences including: 

Compare Confidence (CC):  

12 ppCC                                             (5)
 



 

  

Neutral Confidence (NeuC):  

212121 ppppNeuC                              (6)
 

Based on results of MCAS—the probabilities of successful attack, the 

ASPCM consider the comparisons based on assertions (PS-1 is better than 

PS-2, or PS-2 is better than PS-1.) with using the corresponding confidence 

values.  

Therefore, based on MCAS, the ASPCM can generate assertions with 

numeric confidences as the comparison results of various PSs. These results 

can be utilised to generate the final protection assessment results of 
ASSPAM, which will be introduced in the next subsection.  

4.3 Attack Simulation based Software Protection 
Assessment Method 

In this subsection, we will introduce our novel Attack Simulation based 

Software Protection Assessment Method (ASSPAM), based on previous 

MCAS and ASPCM. 

PS Knowledge 

Base
ASPCM

MCAS

Analysis and 

Assessment

Attack Simulation based Software 

Protection Assessment Method 

Attack Model 

Base
Rules Set

 

Figure 3. Attack Simulation based Software Protection Assessment Method 

(ASSPAM) 

In Figure 3, we depict our ASSPAM. Component “PS Knowledge Base” 
provides all potential Protection Solutions (PSs) as specific and validated 

empirical accumulations of developers and software companies. Component 

“Attack Model Base” provides all PN based attack models required to be 

assessed. In ASPIRE project (ASPIRE, 2016), these two bases are provided 
by other components, and will be out of the scope of this paper.  

Component “MCAS” is the simulation part of the whole assessment method, 

and it receives PN based attack models from the “Attack Model Base”. 
Component “ASPCM” receives PS candidates from the “PS Knowledge 

Base”, forwards them to the “MCAS”, and executes “MCAS” for comparing 



 

  

these PS candidates by simulation results. Component “Rules Set” provides 

some specific rules to aid comparing results and generate specific suitable 
PSs as final assessment results. These rules are specified by implementation 

scenarios, and we will deliver some examples in Subsection 5.3. Component 

“Analysis and Assessment” analyses the results of “ASPCM”—comparison 

assertions with confidences and corresponding software attacks to assess PS 
candidates by “Rules Set” for developers and software companies.  

In ASSPAM, firstly, users set the software protection scenarios (selecting 

attack models from the “Attack Model Base”), including which attacks need 
to be considered and the weights on them. Then, the ASPCM can be 

triggered to select potential PSs (from the “PS Knowledge Base”) to be 

compared and assessed. And these potential PSs can be executed by the 
MCAS for generating related probabilities of attacking successful. Based on 

these probabilities, the ASPCM can generate the comparison results between 

PSs with numeric confidences. In the last step, relying on these comparison 

outputs, users can use some specific rules (from the “Rules Set”) to select 
some suitable PSs as the final assessment results of our ASSPAM. These 

results can be used to optimise PSs in the ASPIRE project. 

Besides, to implement our protection assessment method in the real world, 
we need to consider the various scenarios in mobile software protection. For 

example, in one specific assessment scenario (AS), developers could foresee 

that one attack step (transition) requires a peculiar code analysis tool which 
is not available to the majority of potential software attackers. Hence, due to 

this scarcity and the low probability of this risk, developers could omit this 

attack step from the assessment consideration. In other words, it is a part of 

a whole PN based attack model to be considered. In some other ASs, 
different attackers could focus on one special piece of software to jeopardise 

software security, which means that multiple PN based attack models have 

to be considered together in the protection assessment. Hence, our 
assessment method has to support these different protection ASs.  

Based on the previous discussions, we define the AS as equation (7): 

],1[},,,{ SiwSTPSAMAS iii                          (7) 

In this AS, PN based attack models (PSAMs) have been considered and they 

are ordered by index i from 1 to S. STi is the Selected Transitions list in this 

scenario, which includes all transitions selected in this PSAMi. It means that 

a part of this PN model will be included in this AS, as discussed before. wi is 
the weight of this PSAM in the scenario, compared to other PSAMs.   



 

  

Based on the discussions, we will implement our method on different ASs to 

demonstrate the effective and flexible mobile software protection 
assessment, in the next section.  

In short, the ASSPAM executes as sub-routines the ASCPM and the MCAS to 

assess different PSs under the PSAM in order to obtain suitable assessment 

results in terms of software protection requirements (rules) and ASs.  

5. IMPLEMENTATION 

In this section, we will illustrate our ASSPAM with MCAS and ASPCM by 
implementations and experiments on software protection assessment for 

developers and software companies. Generally speaking, the 

implementation of ASSPAM will be introduced in the order of MCAS, 

ASPCM and ASSPAM. Firstly, we use an example to illustrate the 
implementation on MCAS. Then, we use specific PN based attack models to 

compare various PSs via ASPCM in terms of numeric confidences. Lastly, 

we will analyse the results from ASPCM and generate the suitable PSs with 
rules sets as the final protection assessment results of ASSPAM.  

5.1 Implementation of MCAS 

In this subsection, we use a prototype implementation of MCAS on the OTP 
attack to demonstrate the process of attack simulation. We set the ae0 as a 

normal distribution variable with mean 200 and variance 25.  

Based on the OTP attack model shown in Figure 1, these 11 transitions can 
be classified into four categories: Category 1-locating code pieces (T0, T6, 

T8, T9, T10, and T11), Category 2-bypassing or tampering code pieces (T1, 

T4), Category 3-code injecting (T2, T5), and Category 4-NULL activities 
(T3).  

Table 2. Time Ranges for Various Attack Activities 

 Category 1 Category 2  Category 3   Category 4  

Time Range 

(mins) 

[3, 120] [10, 75] [50, 110] [0, 0] 

Transitions 

in OTP 

T0, T6, T8, 

T9, T10, T11 

T1, T4 T2, T5 T3 

We hosted a student attacking experiment on these attack activities in 

2015/10/23-2015/10/29 at University of East London, involving 

postgraduates (5 persons), PhD candidates (3 persons), and Post-Docs (4 



 

  

persons). And we can use the time records of this experiment to support the 

setting of EC in each transition in the OTP attack model of Figure 1. For 
example, for the attack activities in Category 2: bypassing or tampering 

code pieces, “attackers” in our experiments spent different times: the 

shortest one is 10 mins, and the longest one is 75 mins. So, we can use these 

“10” and “75” as the boundaries: Mini and Maxi to related transitions: T1 
and T4 as discussed in Subsection 3.3, which be used to build the eci as a 

discrete uniform distribution. Similarly, for each other transition, eci can be 

built on the basis of these shortest and longest times.  

The results of these experiments are summarised in Table 2. As it can be 

observed, the time ranges of attack activities from participants can be used 

to configure these transitions’ EC to demonstrate our method in this paper. 
In future work, we will execute this experiment in different groups of people, 

such as terms of ethic hacker experts, and collect more data to simulate real 

attack processes to match the real world.  

Moreover, the “NULL” attack activities, like “T3” in the OTP attack model 
in Figure 1, are some attack steps which do not include any solid attack 

actions, and are used to represent branching multiple attack paths. Hence, its 

time range is [0, 0], without any time consuming for attackers.  

We therefore obtain the results for MCAS depicted in Figure 4: the 

horizontal axis represents the rounds of SAPS; and the vertical axis is the 

Probability of Successful Attack (PSA). As it can be observed, we can find 
out that by increasing the rounds of SAPS, the probability of successful 

attack becomes stable and is within the interval (2.05%, 2.22%). If we 

simulate the impact of different protection methods with corresponding 

different ECs as discussed in Subsection 3.3, we will obtain different results 
for PS comparison and protection assessment as described in the next 

subsections.  



 

  

 

Figure 4. Probabilities of Successful Attack by MCAS 

5.2 Implementation on ASCPM 

In this subsection, we discuss a prototype implementation of ASCPM based 

on Subsection 5.1 to demonstrate PS comparison.  

 

Figure 5. PSAs based on different attacks and PSs 

Currently, our “Attack Model Base” includes three PN based attack models 
(one of them is the OTP attack introduced before, another two are attacks on 

White Box Cryptography and SoftVM (Sutter et al., 2015)), and “PS 

Knowledge Base” currently includes ten PSs for protection assessment and 
software development. Specially, these PSs are randomly generated based 

on some existing protections now (Ceccato et al. 2015a) and will be 

improved by real usable PSs. Hence, for all these attacks and PSs, we can 



 

  

execute MCAS repeatedly and generate the Probabilities of Successful 

Attack (PSAs) depicted in Figure 5. 

 In Figure 5, all PSAs are listed based on different attacks and PSs. It can be 

observed that, there are Attack_1 (the OTP attack), Attack_2 and Attack_3, 

and PSs from PS-1 to PS-10. For each PS, there are corresponding ECs for 

each transition in PN based attack models, as discussed in Subsection 3.3.  

Table 3. Ordered PSs List for Comparison under Each Attack 

Attack PS lists ordered increasingly by PSAs 

Attack_1 PS-8, PS-5, PS-9, PS-2, PS-6, PS-1, PS-10, PS-4, PS-3, PS-7 

Attack_2 PS-4, PS-6, PS-9, PS-1, PS-10, PS-3, PS-2, PS-7, PS-8, PS-5 

Attack_3 PS-5, PS-10, PS-8, PS-7, PS-4, PS-2, PS-6, PS-3, PS-1, PS-9 

Based on the data in Figure 5, we can operate ASPCM with confidences. In 

this part, we will discuss these confidences in different attacks. We can list 

all PSs under each attack increasingly by PSAs as Table 3 to compare. For 
Attack_1, we will compare adjacent PSs pair by pair: PS-8 and PS-5, PS-5 

and PS-9, PS-9 and PS-2, PS-2 and PS-6, PS-6 and PS-1, PS-1 and PS-10, 

PS-10 and PS-4, PS-4 and PS-3, PS-3 and PS-7.  

Figure 6 shows these comparisons when they are operated under Attack_1. 

The vertical coordinate is the value of confidences in [0, 1], and the 

horizontal coordinate is the PS list according to Table 3 Row 1. There are 
two lines represented CC and NeuC between all PSs in ASPCM. For 

instance, for PS-8 and PS-5, the assertion “PS-8 is better than PS-5”, its CC 

is very low and NeuC is quite high. In other words, for the assertion that PS-

8 is better than PS-5, it is not a “positive” assertion. On the other hand, for 
PS-3 and PS-7, its CC may be high “adequately” to support the assertion: 

PS-3 is better than PS-7, to be “positive”. These “positive” and “adequately” 

are decided by specific rules in “Rules Set”, and will be implemented in the 
next subsection.  



 

  

 

Figure 6. Confidences under Attack_1 

 

Figure 7. Confidences under Attack_2 

 

Figure 8.  Confidences under Attack_3 



 

  

Similarly, Figure 7 and Figure 8 are comparison confidences under 

Attack_2 and Attack_3.  

In brief, we will introduce the implementation of ASPCM for PS comparison 

in this subsection, based on MCAS.  

5.3 Implementation on ASSPAM 

In this subsection, we discuss ASSPAM’s implementation, especially the 

components of “Analysis and Assessment” and “Rules Set” in Figure 3, 

based on previous subsections.   

As introduced before in Section 4.3, supporting various ASs is an important 

aspect of the implementation of ASSPAM. In this section, we analyse three 

representative ASs: multiple PSAMs (AS-1), a part of one PSAM (AS-2), and 

multiple PSAMs including a part of one PSAM (AS-3).  

5.3.1 AS-1: multiple PSAMs 

As discussed before, in the AS (AS-1), the implementation of ASSPAM 
needs to consider the multiple attack threats in real software developing and 

protecting processes. Specifically, all attacks need to be evaluated together 

by specific weights. In this regard, this AS includes that the weight of 

Attack_1 is 1.0 (this attack is the main concern), the weight of Attack_2 is 
0.0 (Attack_2 will not be considered), and the weight of Attack_3 is 0.3 

(Attack_3 will be considered, but not as important as Attack_1).  Besides, 

the single attack threat can be viewed as a special case: only one attack’s 
weight is 1.0, and other ones are 0.0. 

AS-1 = {Attack_1, FULL transitions, 1.0}, {Attack_2, FULL transitions, 

0.0}, {Attack_3, FULL transitions, 0.3} 

Table 4. Ordered PSs List for Comparison in AS-1 

Scenarios PS lists ordered increasingly by weighted 

sums of PSAs  

AS-1: Attack_1(1.0) + 

Attack_2(0.0) + 

Attack_3(0.3)  

PS-8, PS-5, PS-2, PS-6, PS-10, PS-4, PS-1, PS-

9, PS-3, PS-7 

Hence, in this specific scenario, we can obtain an ordered PS list, 
increasingly ordered by the weighted sum of PSAs of each PS under 

different attacks with these weights as Table 4. The obtained confidences 

are depicted in Figure 9.  



 

  

 

Figure 9. Comparisons in the specific scenario: AS-1 

In Figure 9, the vertical coordinate is the value of confidences in [0, 1], and 

the horizontal coordinate is the PS list in Table 4 Row 1. There are six lines 

represented CC and NeuC between all PSs in AS-1, Attack_1 and Attack_3 

(which have non-zero weights). This figure illustrates an intuitive and 
detailed picture about all PSs’ assessment in this specific scenario. For 

instance, the assertion that PS-8 is better than PS-5, may be not very 

“positive”. And for PS-2 and PS-1, its CC may be “adequate” to support the 
assertion: PS-2 is better than PS-1, to be “positive”.  

In this regard, different developers and software companies have their own 

unique knowledge about these “positive” and “adequate”, which are the 
specific “Rules Sets” for their own. For example, Rule 1 is “If NeuC is more 

than 0.85, the two PSs are the same in the view of protection assessment”, 

which means “not positive”. And a different one: Rule 2 is “If |CC| is 

smaller than 0.01, and NeuC is more than 0.7, the two PSs are the same”. 
Based on these rules, we can obtain assessment results as Table 5.  

In Table 5, under Rule 1, PS-8, PS-5 and PS-2 are the three best PSs as the 

assessment results. But under Rule 2, PS-8 and PS-5 are the two best PSs as 
the assessment results; PS-6 and PS-10 are the same in the list; the same to 

PS-1 and PS-9. No rule means that only one PS: PS-8 will be selected as the 

assessment result. Therefore, customer-defined rules can provide flexible 

PSs as assessment results, compared to Table 5 Row 1. This flexibility is 
also valuable in our ASPIRE project too. Hence, this flexibility on 

assessment results can provide alternatives for protection assessment in real 

software protection scenarios. 



 

  

Table 5. Assessment Results depended on Rules in AS-1 

Rules Assessment Results 

No Rule PS-8 > PS-5 > PS-2 > PS-6 > PS-10 > PS-4 > 

 PS-1 > PS-9 > PS-3 > PS-7 

Rule 1 PS-8 = PS-5 = PS-2 > PS-6 > PS-10 > PS-4 >  

PS-1 > PS-9 > PS-3 > PS-7 

Rule 2 PS-8 = PS-5 > PS-2 > PS-6 = PS-10 > PS-4 >  

PS-1 = PS-9 > PS-3 > PS-7 

…… …… 

So far, in the specific AS, our ASSPAM provides Figure 9 and Table 5 as the 

final protection assessment results for developers and software companies: 

Table 5 outlines flexible premier PSs as assessment results; and Figure 9 
shows the details about these PSs, like confidences of PSs’ comparisons.  

5.3.2 AS-2: a part of one PSAM 

As introduced before, due to these changing real risks in mobile software 
protection, one kind of ASs is to remove some “unsuitable” transitions in 

the PSAM to execute the assessment process, which called a part of the 

PSAM in the assessment process.  

In this regard, AS-2 in this subsection focuses on Attack_1 (OTP attack) as 

introduced in Figure 1 and Table 1. Specially, in this PSAM, “T9: Code 

pruning for XOR localization” is a transition requiring that attackers have to 

be high-skilled on binary analysis and very familiar with the specific target 
code piece and AES encryption. Due to the scarcity of these requirements, it 

is reasonable to assume that this specific transition of the PSAM can be 

removed for specific protection assessments. Hence, we can use the 
“modified” PSAM in Figure 10 in this AS.  

 

Figure 10. Modified OTP attack model 



 

  

In Figure 10, it is the modified OTP attack. Compared to Figure 1, due to 

correlations among transitions, transitions T10 and T11 can be removed 
with T9 together, and the same for the related places: P8 and P9. So, AS-2 is 

an AS included one PSAM: the modified Attack_1.  

AS-2 = {Attack_1, (T0, T1, T2, T3, T4, T5, T6, T7, T10), 1.0} 

Hence, based on the MCAS and APSCM functions of our assessment method, 
we can obtain the PSAs on this modified attack model in Figure 10.  

 

Figure 11. PSAs based on the modified Attack_1 and PSs 

In Figure 11, all PSAs are listed based on the modified Attack_1 and PSs. 
Compared to the PSAs in Figure 5, we can find out that most of PSAs have 

different decrements. Because one attack path has been removed from the 

attackers’ actions, which mean they have a lower degree of freedom to 
execute a successful attack process. So they have to face lower PSAs.  

Based on the data in Figure 11, we can operate ASPCM with confidences, 

similar to the previous AS. In this part, we will discuss these comparison 

confidences for the modified Attack_1. Based on the PS list in Table 6, we 
will compare adjacent PSs pair by pair: PS-2 and PS-6, PS-6 and PS-9, PS-9 

and PS-5, PS-5 and PS-1, PS-1 and PS-3, PS-3 and PS-10, PS-10 and PS-4, 

PS-4 and PS-8, PS-8 and PS-7.  

Table 6. Ordered PSs List for Comparison under the modified Attack_1 

Attack PS lists ordered increasingly by PSAs 

Modified 

Attack_1 

PS-2, PS-6, PS-9, PS-5, PS-1, PS-3, PS-10, 

PS-4, PS-8, PS-7 



 

  

Hence, Figure 12 shows the comparisons when different PSs are operated 

under the modified Attack_1. The vertical coordinate is the value of 
confidences in [0, 1], and the horizontal coordinate is the PS list according 

to Table 6.  

 

Figure 12. Confidences under modified Attack_1 (Comparison in AS-2) 

Similar to Figure 6, Figure 7 and Figure 8, in Figure 12, there are two lines 
represented CC and NeuC between all PSs under the modified Attack_1. 
Just similar to the previous discussions, related PSs can be analysed in terms 

of comparisons. For instance, the assertion that PS-2 is better than PS-6, 

may be not very “positive”. And for PS-5 and PS-1, its CC may be 
“adequate” to support the assertion: PS-5 is better than PS-1, to be 

“positive”. Besides, due to that this scenario only includes one attack model 

(modified Attack_1), this Figure 12 can also viewed as the comparison 

figure in this scenario (AS_2) as Figure 9 in the AS-1.  

In this regard, we can use the same “Rule 1” and “Rule 2” in Table 5 to 

understand these “positive” and “adequate”. Rule 1 is “If NeuC is more than 

0.85, the two PSs are the same in the view of protection assessment”. And 
Rule 2 is “If |CC| is smaller than 0.01, and NeuC is more than 0.7, the two 

PSs are the same”. Based on these rules, we can obtain assessment results as 

Table 7.  

In Table 7, under Rule 1, PS-2 is the best PS as the assessment results, 

which is the same to the “No Rule”. And under Rule 2, PS-2 and PS-6 are 

the two best PSs as the assessment results. Therefore, as discussed in the 

previous AS, customer-defined rules can provide flexible PSs as assessment 
results, compared to Table 7 Row 1. 



 

  

Table 7. Assessment Results depended on Rules in AS-2 

Rules Assessment Results 

No Rule PS-2 > PS-6 > PS-9 > PS-5 > PS-1 > PS-3 > 

 PS-10 > PS-4 > PS-8 > PS-7 

Rule 1 PS-2 > PS-6 > PS-9 > PS-5 > PS-1 > PS-3 > 

 PS-10 > PS-4 > PS-8 > PS-7 

Rule 2 PS-2 = PS-6 > PS-9 > PS-5 > PS-1 > PS-3 > 

 PS-10 > PS-4 > PS-8 > PS-7 

…… …… 

Briefly, in the specific software protection scenario: AS-2, similar to AS-1, 

our ASSPAM provides Figure 12 and Table 7 as the final protection 
assessment results for developers and software companies: Table 7 outlines 

flexible premier PSs as assessment results; and Figure 12 shows the details 

about these PSs, like confidences of PSs’ comparisons.  

5.3.3 AS-3: multiple PSAMs including a part of one PSAM 

In this subsection, we will discuss the last scenario AS-3: multiple PSAMs 

including a part of one PSAM, for the implementation of our ASSPAM. 
Specifically, the specific scenario includes three PSAMs just like AS-1. And 

the only difference is that the Attack_1 is replaced by the modified Attack_1 

introduced in Figure 10. Same to AS-1, the weight of modified Attack_1 is 
1.0, the weight of Attack_2 is 0.0, and the weight of Attack_3 is 0.3.  

AS-3 = {Attack_1, (T0, T1, T2, T3, T4, T5, T6, T7, T10), 1.0}, {Attack_2, 

FULL transitions, 0.0}, {Attack_3, FULL transitions, 0.3} 

Table 8. Ordered PSs List for Comparison in AS-3 

Scenarios PS lists ordered increasingly by weighted 

sums of PSAs  

AS-3: Modified 
Attack_1(1.0) + 

Attack_2(0.0) + 

Attack_3(0.3)  

PS-2, PS-6, PS-5, PS-3, PS-9, PS-10, PS-1, PS-
4, PS-8, PS-7 



 

  

Hence, in this specific scenario, we can obtain an ordered PS list, 

increasingly ordered by the weighted sum of PSAs of each PS under 
different attacks with these weights as Table 8. Based on this, we can obtain 

comparison confidences in Figure 13.  

 

Figure 13. Comparisons in the specific scenario: AS-3 

Similar to previous Figure 9, in Figure 13, the vertical coordinate is the 

value of confidences in [0, 1], and the horizontal coordinate is the PS list in 
Table 8. There are six lines represented CC and NeuC between all PSs in 

AS-3, modified Attack_1 and Attack_3. This figure illustrates an intuitive 

and detailed picture about all PSs’ assessment in this specific scenario. For 
example, the assertion that PS-2 is better than PS-6, may be not very 

“positive”. And for PS-5 and PS-3, its CC may be “adequate” to support the 

assertion: PS-5 is better than PS-3, to be “positive”.  

Table 9. Assessment Results depended on Rules in AS-3 

Rules Assessment Results 

No Rule PS-2 > PS-6 > PS-5 > PS-3 > PS-9 > PS-10 > PS-1 

> PS-4 > PS-8 > PS-7 

Rule 1 PS-2 > PS-6 > PS-5 > PS-3 > PS-9 > PS-10 > PS-1 
> PS-4 > PS-8 > PS-7 

Rule 2 PS-2 = PS-6 = PS-5 > PS-3 > PS-9 > PS-10 > PS-1 

> PS-4 > PS-8 > PS-7 

…… …… 



 

  

Hence, similar to the previous ASs, we can use the same “Rule 1” and “Rule 

2” in Table 5 to understand these “positive” and “adequate”. Rule 1 is “If 
NeuC is more than 0.85, the two PSs are the same in the view of protection 

assessment”. And Rule 2 is “If |CC| is smaller than 0.01, and NeuC is more 

than 0.7, the two PSs are the same”. Based on these rules, we can obtain 

assessment results as Table 9.  

In Table 9, under Rule 1, PS-2 is the best PS as the assessment results, 

which is the same to the “No Rule”. And under Rule 2, PS-2, PS-6 and PS-5 

are the three best PSs as the assessment results. Therefore, as discussed in 
the previous ASs, customer-defined rules can provide flexible PSs as 

assessment results, compared to Table 9 Row 1. 

So far, similar to the previous AS-1 and AS-2, in the specific software 
protection scenario: AS-3, our ASSPAM provides Figure 13 and Table 9 as 

the final protection assessment results for developers and software 

companies: Table 9 outlines flexible premier PSs as assessment results; and 

Figure 13 shows the details about these PSs, like confidences of PSs’ 
comparisons.  

In summary, for real mobile software attack processes, our Attack 

Simulation based Software Protection Assessment method (ASSPAM) with 
Monte Carlo based Attack Simulation (MCAS) and Attack Simulation based 

Protection Comparison Model (ASPCM) can assess complicated Protection 

Solutions (PSs) effectively.   

6.  CONCLUSIONS AND FUTURE WORK 

Software protection is a critical aspect in software security. In this regard, to 

assess complicated Protection Solutions (PSs) on uncertain mobile attack 
processes, we presented a novel attack simulation based protection 

assessment method called ASSPAM. In this method, Monte Carlo based 

Attack Simulation (MCAS) used PN based attack models to simulate 
attacking processes with different PSs. Based on this attack simulation, a 

novel Attack Simulation based Protection Comparison Model (ASPCM) was 

presented to generate comparisons among potential PSs. Finally, ASSPAM 

was described to assess mobile software protections via the PS comparing 
results of ASPCM and MCAS. We implemented ASSPAM by means of 

software protection assessment processes with various ASs to demonstrate 

that our method could provide suitable assessments for mobile software 
developers.   

For future work, we plan to extend our approach by using software metrics 

to improve the assessment methodology and to search for the optimal 

protection solution in other case studies, such as digital rights management.   
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KEY TERMS 

Keywords:  

 Mobile Software Security - The area to take mobile software as the 

assets and make sure software to be executed in ethnic ways. 

 Software Protection Assessment - The assessment on the level of 

software protection methods.  

 Attack Simulation - Simulating the processes of attacks.  

 Monte Carlo Method - The method to use random variables and 

sampling to deal with uncertainly computing tasks. 

 Petri Net - A modelling language to describe and reason 

complicated processes with solid mathematical basis. 
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