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Summary

Embedded, distributed, real-time, electronic systems are becoming more and more
dominant in our lives. Hidden in cars, televisions, mp3-players, mobile phones and
other appliances, these hardware/software systems influence our daily activities. Their
design can be a huge effort and has to be carried out by engineers in a limited amount
of time. Computer-aided modelling and design automation shorten the design cycle
of these systems enabling companies to deliver their products sooner than their com-
petitors.

The design process is divided into different levels of abstraction, starting with a vague
product idea (abstract) and ending up with a concrete description ready for implemen-
tation. Recently, research has started to focus on the system level, being a promising
new area at which the product design could start.

This dissertation develops a constructive approach to building tools for system-level
design/description/modelling/specification languages, and shows the applicability of
this method to the system-level language POOSL (Parallel Object-Oriented Speci-
fication Language). The formal semantics of this language is redefined and partly
redeveloped, adding probabilistic features, real-time, inheritance, concurrency within
processes, dynamic ports and atomic (indivisible) expressions, making the language
suitable for performance analysis/modelling. The semantics is two-layered, using a
probabilistic denotational semantics for stating the meaning of POOSL’s data layer,
and using a probabilistic structural operational semantics for the process layer and
architecture layer.

The constructive approach has yielded the system-level simulation tool rotalumis,
capable of executing large industrial designs, which has been demonstrated by two
successful case studies — an ATM-packet switch (in conjunction with IBM Research at
Zürich) and a packet routing switch for the Internet (in association with Alcatel/Bell
at Antwerp). The more generally applicable optimisations of the execution engine
(rotalumis) and the decisions taken in its design are discussed in full detail.

Prototyping, where the system-level model functions as a part of the prototype imple-
mentation of the designed product, is supported by rotalumis-rt, a real-time variant
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xii Summary

of the execution engine. The viability of prototyping is shown by a case study of a
learning infrared remote control, partially realised in hardware and completed with a
system-level model.

Keywords formal languages / formal specification / modelling languages / system-
level design / embedded systems / real-time systems / performance analysis / discrete
event simulation / probabilistic process algebra / design automation / prototyping /
simulation tool.



Samenvatting

Ingebedde, gedistribueerde, real-time, elektronische systemen nemen in ons leven
een steeds belangrijkere plaats in. Deze verborgen hardware-/softwaresystemen in
auto’s, televisies, mp3-spelers, mobiele telefoons en andere apparaten bëınvloeden
onze dagelijkse bezigheden. Het ontwerpen van deze systemen kan een flinke inspan-
ning vereisen van ingenieurs, die hun taak binnen beperkte tijd moeten hebben
afgerond. Modellering met behulp van computers en ontwerpautomatisering ver-
snellen de ontwerpcyclus van deze systemen en stellen bedrijven in staat om produkten
eerder dan hun concurrenten op de markt te brengen.

Het ontwerpproces kan worden onderverdeeld in verschillende niveaus van abstractie,
beginnend bij een vaag omschreven produktidee (abstract) en eindigend bij een con-
crete beschrijving die de implementatie van het produkt mogelijk maakt. Recentelijk
begint onderzoek zich te richten op het systeemniveau, een nieuw en veelbelovend
vertrekpunt voor produktontwerp.

Dit proefschrift ontwikkelt een constructieve aanpak voor het bouwen van gereed-
schappen voor systeemniveau ontwerp-/beschrijvings-/modellerings- en specificatie-
talen, en laat de praktische toepasbaarheid van deze methode zien voor de taal
POOSL (Parallel Object-Oriented Specification Language). De formele semantiek van
deze taal wordt opnieuw gedefinieerd en uitgebreid met probabilistische eigenschap-
pen, real-time, inheritance, parallellisme binnen processen, dynamische poorten en
atomaire (ondeelbare) expressies, zodat de taal geschikt wordt voor prestatieanalyse/
prestatiemodellering. De semantiek bestaat uit twee lagen: een probabilistische
denotationele semantiek om de betekenis van POOSL’s datalaag te beschrijven en
een structurele operationele semantiek voor de proces- en architectuurlaag.

De constructieve benadering heeft het systeemniveau simulatiegereedschap rotalumis
opgeleverd, dat in staat is om grote industriële ontwerpen te executeren, hetgeen
gedemonstreerd is door twee succesvolle casussen — een ATM-packet switch (in
samenwerking met IBM Research te Zürich) en een packet routing switch voor het
internet (samen met Alcatel/Bell te Antwerpen). De algemener toepasbare opti-
malisaties voor de executiemachine (rotalumis) en de daarbij genomen beslissingen
worden gedetailleerd beschreven.

Rotalumis-rt, de real-time variant van de executiemachine ondersteunt prototyping,
waarbij het systeemniveau model deel uitmaakt van het prototype van het te
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xiv Samenvatting

ontwerpen produkt. De uitvoerbaarheid van prototyping wordt aangetoond met een
casus van een lerende infrarood afstandbediening, deels gerealiseerd in hardware en
gecompleteerd met een systeemniveau model.

Trefwoorden: formele talen / formele specificatie / modelleringstalen / ontwer-
pen op systeemniveau / ingebedde systemen / real-time systemen / prestatieanalyse
/ discrete simulatie / probabilistische procesalgebra / CAD / prototyping / simu-
latiegereedschap.



Chapter 1

Introduction

The design of embedded electronic systems can be an intricate task. To appreciate
the difficulties designers have to face, we will make a short anatomical study of an
ordinary device: a mobile telephone. Figure 1.1 shows a dissected telephone, revealing
its inner parts. Several elements are encountered inside the protective housing; next
to the familiar things like a liquid crystal display, keyboard, microphone, loudspeaker
and a battery, is a part that is unknown to most people — a printed circuit board
with electronic chips mounted on either side. The chips on this board implement
several subsystems. To give an idea of the functionality implemented by these chips,
we consider what happens during an incoming telephone call.

An incoming call is relayed by a base station, and received by the antenna of the
telephone. The antenna is connected to a radio frequency (RF) section, which analyses
incoming signals and retrieves the (encrypted) information stream they carry. An
error-correction system tries to remove the errors from the bitstream, after which a
decryption unit unravels the original information stream. Besides digitised speech,
the stream also contains control packets, for instance telling the caller’s telephone
number. The digitised speech is sent to a digital-to-analog converter before it is made
audible on the loudspeaker.

For answering the caller, sound picked up by the microphone is sent to an analog-to-
digital converter and then to a digital signal processor. Finally, the digitised speech
is encrypted and, via the RF-section, transmitted by the antenna to the base station
that relays the signal to the caller.

Most of these systems are coordinated and controlled by a microprocessor that ex-
ecutes a multitasking operating system. The software applications that run on this
operating system perform various chores. Next to handling the interface to the user of
the telephone (display and keyboard), they also handle the communication protocol
with the base station, power management and so forth.

A mobile telephone is an example of a contraption containing an embedded, dis-
tributed, real-time system made up of software and hardware. Other examples are

1



2 Introduction

(digital) photo cameras, television sets, dvd/cd/mp3-players, printers and —although
you might not expect it— cars; in fact, a modern car contains several microproces-
sors communicating with and possibly reacting to each other: an engine management
system, anti-lock braking system (ABS), airbag system, climate control system and
a cruise control system. We are surrounded by embedded systems!

The design of embedded systems can be very complicated. To reason about them and
make well-founded decisions along their design trajectory, models are created that
describe the system’s behaviour, which is not necessarily transformational, but can
also be dependent on time, next to the stimuli from the environment. Describing the
behaviour of these reactive systems that continuously interact with their environment,
requires a language that can capture timing aspects, parallelism, communication,
selection, conditional execution, interrupts, watchdogs and more. These features are
missing in traditional languages such as C, Fortran, Smalltalk and Pascal, but can be
found in so-called design/description/modelling/specification languages like POOSL,
Esterel, SystemC and VHDL.

Only a few of these languages are really fit for describing the complex systems being
designed today. To better understand a system, there should not only be a rigourous
specification of it on paper, but also an adequate executable model. Tools for exe-
cutable models enable simulation, testing, verification, performance analysis and so

Figure 1.1: Disassembled mobile telephone.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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on, without the need to actually build (hardware) prototypes. Unfortunately, current
tools cannot keep up with the increase in complexity of designs, and, consequently,
engineers are having difficulties to finish their products in time. Tools may fail be-
cause they cannot render their results within reasonable time or because the size or
complexity of the model exceeds their limits.

In order to reduce the design cycle, engineers can start with a simplified model and
gradually fill in more specific details. This technique of concentrating on important
aspects only and disposing of other issues is called abstraction. At the system level ,
an engineer reasons about a system by concentrating on the interacting concurrent
subsystems it is composed of. The subsystems themselves may also be a compound
or cluster of subsystems. Indivisible subsystems are called processes. A system-level
model not only describes how these processes behave (regardless of whether that
behaviour will be realised in hardware or in software), but also how they are grouped
and interconnected by communication channels — the hierarchical architecture.

An example of such a system-level model for the mobile telephone described above,
might contain a process that models the decryption of an incoming data stream.
After unravelling the original information stream, the packets containing speech can
be sent to another process that simulates converting them into analog signals and
making them audible, while control packets might go to a process that represents
the controlling microprocessor. Notice that if the actual content of the information
stream is not used, it can be left out without any repercussions. For example, an
abstraction of the information stream can be a sequence of messages simply stating
the presence of a control packet or a data packet.

Abstraction can be advantageous for several reasons. The decrease of detail simplifies
the model, taking less time to execute. A compact and concise model is also easier to
understand and reason about with colleagues in the design team. Abstracting should,
however, be performed with great care: if relevant aspects are left out, the model may
yield incorrect results and is then called inadequate.

Only models that adequately reflect the actual system enable the engineer to examine
various implementations and to make well-founded design decisions. The explored
implementation alternatives are part of the design space. Not all implementations
fulfill the design requirements equally well — some may be cheap to build, others
may be hard to manufacture or even infeasible and still others leave the possibility
open of additional features. The designer is expected to find, within the limited
time-to-market, a profitable design that meets its requirements. It is here that the
engineer can benefit from the system-level approach: because only the key elements
of a design are taken into account, it is easier (compared to more detailed models)
to reason about the model. Decisions taken at this high level of abstraction can have
a significant impact on the realisation’s quality, performance, cost, et cetera. After
deciding upon the global behaviour and architecture of the design, the engineer can
concentrate on the subsystems one by one, describe them in more detail at a lower level
of abstraction, while using the results of the system-level model as a reference. Design
automation tools finally help the designer to actually build software and hardware to
realise the system.



4 Introduction

1.1 Objectives
The heart of the problem of designing embedded, distributed, real-time software/
hardware systems lies in their increasing complexity, which can hardly be handled
by current design tools. A solution that could alleviate this problem, at least for a
while, is the use of more abstract models that reason about a system in terms of
the subsystems it is composed of. Such a system-level approach requires at least the
following:

• a system-level design method;
• a system-level specification and modelling language;
• simulation, verification and performance analysis tools capable of handling large
industrial models.

The research performed by the Information and Communication Systems group (ICS)
has already resulted in the system-level design method SHE (Software/Hardware En-
gineering) and the system-level specification and modelling language POOSL (Paral-
lel Object-Oriented Specification Language) [41]. The accompanying techniques and
tools for verification [18] and performance analysis [54, 53, 52, 55] are being developed.

The objective of this thesis is to provide a constructive approach to building tools
for system-level design languages based on their formal semantics. The applicability
of this approach should be demonstrated by a simulation tool for POOSL, capable
of dealing with large industrial problems, yet the approach should not be restricted
to this particular tool and language. Features missing in POOSL, but required to
support performance analysis or easier modelling should be included and supplied
with a formal semantics. Proving and verifying desired properties of this semantics
is beyond the scope of this thesis and will be future research — emphasis lies on the
method of implementing the language. The simulator (or execution engine) should
enable design space explorations, performance studies, validation and prototyping.
For prototyping, the system-level model acts as a virtual prototype of (part of) the
design, interacting with actual processes in the real world. This requires the model
time to be synchronised with the real time and the generating of and reacting to
external events; this extension should be described by a formal semantics too. The
execution engine should also be able to function as a slave-component in other tools.

1.2 Related Research
Other approaches to the execution of formal specifications exist for languages such as
Lotos (Language of Temporal Ordering Specifications) [13], CCS (Calculus of Com-
municating Systems) [35], µCRL (based on Common Representation Language)[20],
SDL (Specification and Description Language) [49], χ [8] or TyCO (Typed Concurrent
Objects) [29].

[14, 12] discusses work on executing CCS/Lotos specifications. The simulator tool
Hippo executes Lotos specifications. The implementation of that tool has been
derived by a stepwise transformation of the Lotos inference rules. It employs a
‘menu’ function to compute the available transitions given the current execution state,
and a ‘next’ function to move to a subsequent state for a given available transition

http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
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and execution state. [12] also suggests to increase the efficiency of computing state
representations by factoring out the dynamic part from the part that is unchanged
during a transition.

Lotos uses abstract data types (ADTs), requiring a nonconstructive implementation
of the data part. The need for constructive approaches towards implementing data
for process calculi is for instance presented in [9], giving a redefinition of Milner’s
value-passing calculus [35] to prevent that for each value a different message should
be constructed.

In [30] and [29] a virtual machine is discussed for the execution of a polymorphic,
strongly typed, concurrent and object-oriented programming language based on a
process calculus called TyCO (a variant of the π-calculus [36]). Specifications are
compiled to an intermediate assembly language representation, which is then trans-
lated to byte-code that the virtual machine can run. The language does not have
provisions to handle real-time aspects.

Besides the research into simulation presented in this dissertation, the Information
and Communication Systems group is working on the following related subjects in
the field of system-level design. The foundation for the Software/Hardware Engineer-
ing (SHE) methodology and POOSL are laid in [41]. [18] contributes a number of
formal techniques (both exhaustive and non-exhaustive) in the area of verification
of distributed real-time systems. Further, techniques are introduced for automatic
verification of requirements formalised in linear temporal logic. In [55] a theory for
performance analysis is developed.

The tools based on this work on simulation, verification and performance modelling,
are applied to investigate techniques for design space exploration in the field of digital
video/multimedia systems [56], and have been used for industrial case studies in the
area of telecommunication systems [47, 48] (nonconfidential excerpts are [46, 45]) for
gaining insight in performance modelling, that is, techniques for building adequate
models for performance analysis.

Part of the work for this thesis is supported as part of the STW Progress Research
Project EES5202 on “Modelling and Performance Analysis of Telecommunication
Systems”.

1.3 Thesis Overview
The organisation of this thesis is as follows. After this introduction, Chapter 2 dis-
cusses the mathematical preliminaries required for understanding the semantics of
POOSL. The three conceptual layers of POOSL are discussed in Chapters 3, 4 and
5, each containing two parts: a specification of the semantics of the language primi-
tives for that layer, followed by a technique for implementing those primitives. The
resulting implementation will execute the language constructs while respecting their
meaning as specified by the formal semantics. These techniques have been applied to
build the basic framework for the execution engine rotalumis and its precursors. To
make the engine capable of supporting large industrial designs, it requires optimisa-
tion. Chapter 6 analyses the source of potential problems in large-scale models and

http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis


6 Introduction

presents countermeasures to reduce their effect (if possible). The optimised engine
has been put to the test in several case studies from the industry, which have shown
that the engine is capable of successfully handling very large models. Chapter 7
discusses an extension for prototyping, accompanied by a case study of a learning in-
frared remote control that has partly been realised in hardware. Chapter 8 concludes
this thesis and provides directions for future work. Additional content is gathered in
Appendix A, defining the formal semantics of POOSL, and in Appendix B, listing
the concrete syntax of POOSL.

1.4 Reading Instructions

The part at the back of this thesis contains a glossary of symbols that may help you
in finding the definition of symbols and their meaning; the index is added for quick
retrieval of text related to a specific subject. People only interested in techniques for
constructing execution engines, can concentrate on Sections 2.3, 2.4, 3.3, 4.3, 5.3 and
Chapter 6. If you want to model in POOSL, you can download SHESim or rotalumis
and use Appendix B to learn the syntax of POOSL. When a simulation run takes
unaccountably much time for a large-scale model, it might help to read Chapter 6
for avoiding known bottlenecks — the expressive power of POOSL introduces enough
freedom to model a problem in various ways. Persons with an affinity to mathematics
are invited to read Chapter 2, Sections 3.2, 4.2, 5.2 and Appendix A. For the diehards
among us: continue and do not stop reading before you have finished the final page!

It is recommended to read the subsequent sections. The first one gives a global
overview of POOSL, stating the key elements of this system-level specification and
modelling language. It is succeeded by an explanation of the global structure of
rotalumis, which may serve as a guide to the upcoming implementation details in
Sections 3.3, 4.3, 5.3 and Chapter 6.
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Figure 1.2: System-level model of a mobile telephone.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~mgeilen/shesim/shesim.html
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis


1.5 System-Level Modelling Language POOSL 7

1.5 System-Level Modelling Language POOSL
The formal specification language POOSL is part of the system-level design method
SHE and was introduced and formally defined in [41]. Real-time concepts for POOSL
have been studied in [17]. POOSL is used for stating a rigourous specification of a
system; this specification can directly function as an executable model of the design.
This thesis will add inheritance, immediate data, dynamic port passing (as in the
π-calculus [36]), parallelism and probabilistic features to the language and develop a
new semantics for the full language, which unifies these concepts.

Because POOSL plays a key role in this dissertation, we will give an overview of the
language, following its three conceptual layers, describing architecture, processes and
data respectively.

1.5.1 Architecture Layer

Reactive systems can often be decomposed into several concurrent, communicating
subsystems that may also be decomposable. The architecture layer of POOSL offers:

• processes to represent subsystems that are considered as single entities;
• clusters to denote a group composed of processes and clusters;
• channels to symbolise the communication paths between processes and clusters.

Clusters introduce hierarchy in the model. The architecture of a model is static; it
does not change over time. It may reflect the actual functional blocks of a system
as it will be realised, or it follows a different decomposition — one that matches a
conceptual design.

Without going into all the details, Figure 1.2 gives an example of a system-level model
of the mobile telephone discussed in the introduction of this chapter. On the highest
hierarchical level are two clusters (base station and mobile telephone) and a pro-
cess (user). The base-station cluster contains1 three processes that emulate the peer
telephone trying to communicate with the mobile telephone over an error-distorted
channel. The base-station cluster is an example of a conceptual model of the actual
base station: it merely functions as a communication partner that enables testing
the communication protocol between the mobile telephone and the base station. The
gray rectangles depict communication ports. Connected to these ports are channels,
shown by the thicker lines.

This system-level model is closed (self-containing): both the system under develop-
ment (mobile telephone) and its environment (base station and user) are specified in
a single model. The model may enable measuring the average amount of information
flowing from base-station to mobile telephone and back (a performance measurement),
or it can be used for testing the communication protocol (validation) or even proving
that the protocol is error-free (verification). Perhaps the model is part of an archi-
tectural study, enabling an early evaluation of possible system decompositions of the
telephone. What information can be extracted from the model, depends mostly on
how the behaviour of its processes is described at the process layer.

1In SHESim [16], the contents of a cluster are hidden, but the user can open a viewer to inspect
the cluster’s internal structure. This thesis displays the contents of clusters to reduce the figure count.
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Table 1.3: Part of the process class for encryption and decryption.
1 process class EncryptionAndDecryption
2 port interface ec, spsrc, spsnk, ctrlr
3 message interface ec?packet(Packet), ec!packet(Packet), spsrc?packet(Packet),
4 spsnk!packet(Packet), ctrlr!packet(Packet), ctrlr?packet(Packet)
5 instance variables p: Packet, TimeToDecrypt: Real
6 initial method call DoEncryptDecrypt()()
7 instance methods
8
9 DoEncryptDecrypt()()

10 TimeToDecrypt := 2.5; // Set constant value.
11 par
12 HandleOutgoingPackets()()
13 and
14 AwaitIncomingPackets()()
15 rap.
16
17 AwaitIncomingPackets()()
18 ec?packet(p); // Receive packet from error correction unit.
19 delay TimeToDecrypt; // Model the time for decrypting the packet.
20 if p ContainsSpeech then
21 spsnk!packet(p) // Packet contains speech.
22 else
23 ctrlr!packet(p) // Packet contains control information.
24 fi;
25 AwaitIncomingPackets()(). // Handle next packet.

1.5.2 Process Layer

The process layer describes the behaviour of processes, their communication interface
and their message interface. As with other object-oriented languages, process objects
(or just processes) are instances of their classes. It is assumed that the reader is
familiar with the concepts of object-oriented languages.

A process can be equipped with ports for communication. Connected to these ports
are channels over which messages can travel. POOSL offers synchronous pair-wise
message passing, based upon the indivisible handshake principle for communication
from CCS [35]. Processes use messages to exchange information, such as the result of
computations (discussed in the next section).

The behaviour of a process can be described with the statements shown on page 58.
There are language primitives to define interrupts, watchdogs (abort S1 with S2),
communication (send p!m and receive p?m), real-time aspects (delay t), parallelism
(par S1 and S2 rap) and more. Any combination and nesting of these statements is
allowed for specifying how processes should behave. Methods allow the behaviour to
be decomposed into well-ordered individual pieces of code — comparable with pro-
cedures or functions in imperative languages. This thesis introduces implementation
inheritance, allowing a process to inherit methods and variables of its superclass.

As an example of how behaviour is described, we show (part of) the specification
of the encryption and decryption process class in Table 1.3. After a process has
been instantiated from this class, its behaviour is started by initially calling method
DoEncryptDecrypt()(). The body of this method (lines 10–15) specifies two concur-
rent tasks — HandleOutgoingPackets()() for handling outgoing packets containing
speech or control information and AwaitIncomingPackets()() for awaiting and han-
dling incoming packets from the error correction process (Figure 1.2).

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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Table 1.4: Part of the data class Packet.

1 data class Packet
2 extends Object
3 instance variables ContentsType: String
4 instance methods
5
6 SetTypeToSpeech()
7 ContentsType := "Speech";
8 self. // Return this object as the result.
9

10 SetTypeToControlInfo()
11 ContentsType := "Control";
12 self. // Return this object as the result.
13
14 ContainsSpeech()
15 ContentsType == "Speech".

We will look at the latter method in more detail. After receiving packet p in line 18
(from port ec that is assumed to be connected to the error correction unit) and
delaying to model the decryption time, the packet is either sent to the speech sink
(line 21) or to the controller (line 23), depending on the type of the packet. The
tail-recursive call in line 25 allows the next packet to be handled.

Processes have separate data spaces, accessible through their instance variables. At
line 5, two variables are declared, p and TimeToDecrypt, so the data space of this
process comprises the data objects accessible through these two variables. Processes
do not share their data space with other processes, and data can only be exchanged
explicitly as a parameter of a message. Line 21 gives an example of this: a copy of the
object to which p refers is sent as a parameter along message packet to the speech
sink (assumed to be connected via a channel to port spsnk).

1.5.3 Data Layer

The object-oriented data can be used for complex calculations. A data class describes
what variables and methods its instances (data objects) have. Inheritance allows
objects of a class to reuse and extend methods and variables of another class (called the
super class). A data object can encapsulate its data —which it can access through its
instance variables— and defines a clear interface of data methods through which other
objects may obtain information regarding its state or modify that state. The body
of a data method is a sequence of expressions, of which the last executed expression
serves as the result of the entire method. Table 1.4 shows an example of the Packet
data class, and some of its methods.

The process class discussed in Section 1.5.2 uses method ContainsSpeech in line 20
to determine what kind of contents object p of class Packet is carrying.

1.6 Performance Analysis
One of the reasons for building system-level models, is the ability to analyse the perfor-
mance of a system early in the design trajectory. These so-called performance analyses
enable designers to explore a set of possible architectures and choose one that meets
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Table 1.5: Probabilistic model of the communication-packet generator.

1 process class PacketGenerator
2 port interface mt, ctrlr
3 message interface mt!packet(Packet), ctrlr?start, ctrlr!stop
4 instance variables DistrA, DistrB: Distribution
5 initial method call HandleControl()()
6 instance methods
7
8 HandleControl()()
9 DstrA := new(Bernoulli) withParameter(0.995);

10 DstrB := new(Bernoulli) withParameter(0.1);
11 abort
12 ctrlr?start;
13 SendCorrectPacket()()
14 with
15 ctrlr?stop;
16 HandleControl()().
17
18 SendCorrectPacket()()
19 mt!packet(new(Packet) SetTypeToSpeech);
20 if DistrA sample then SendCorrectPacket()() else SendFaultyPacket()() fi.
21
22 SendFaultyPacket()()
23 mt!packet(new(Packet) SetTypeToGarbled);
24 if DistrB sample then SendFaultyPacket()() else SendCorrectPacket()() fi.

the design requirements with respect to performance. For instance, consider a set of
processors using a set of buses for communication. Depending on the (distributed)
application run on the processors and the chosen architecture, there might from time
to time exist serious communication bottlenecks. Analysing the performance of an
abstract model of this system should reveal these problems and help designers gain
a clear insight into the origin of the bottlenecks, which might ultimately lead to a
modified architecture solving the problem — for instance by adding or merging buses.

To support the powerful tool of performance analysis, the language in which the
abstract model is built should be given a probabilistic meaning. This thesis redefines
the semantics of POOSL, providing language primitives a probabilistic meaning. We
will examine the telephone call emulator process in Figure 1.2 to discuss the issues
involved in parameter estimation.

The behaviour of the communication-packet generator is specified in Table 1.5.
Before any packet is sent, the generator will wait for a start signal from the controller
(line 12). After that, it starts producing packets, some of which are simulated to be
garbled by transmission. The controller can stop the sending at any moment with a
stop message (line 15). In this example, SendCorrectPacket()() transmits a packet
containing speech (line 19), draws a sample from the Bernoulli distribution DistrA

and decides if it should send another correct packet or a garbled one (line 20). There
is a 99.5% probability that DistrA sample returns true, causing the next packet to
be correct. If the coin flipping returns false, method SendFaultyPacket()() is called
instead. This method has similar behaviour, but uses a different distribution to draw
samples from.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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To find out what the average percentage of garbled packets is, we will construct the
underlying Markov chain for this model. To simplify the chain a bit, we consider
executing a statement from method SendCorrectPacket()() as being in state A and
executing a statement from method SendFaultyPacket()() as residing in state B.
Without going into too much detail, we assert that Figure 1.6 depicts the resulting
Markov chain. If the model is currently in state A, then with probability 0.995 it
will stay in that state, and with probability 0.005 it will go to state B. This choice
corresponds to the if-statement in line 20, and probability 0.995 originates from
a method of the random number generator implicitly called through the expression
DistrA sample.

The equilibrium probabilities of the resulting Markov chain can be computed —in
this case analytically— revealing that the program resides in state B with probability
1

181 . So, on average about 0.55% of the packets is garbled.

In general, the underlying Markov chain is much larger, even so complex that it
cannot be solved analytically within reasonable time. In [55] a theory for performance
estimation is developed, which, based on a Markov chain generated on-the-fly from
the simulated model, estimates the long-run average rewards for that chain. The same
theory allows performance metrics to be specified in terms of reward formulae. Three
kinds of rewards are defined: boolean, real and temporal. In each state, rewards can
be modified and they can be used to obtain performance metrics. For example, if we
define two real-valued rewards r

A
, r

B
and have reward r

A
= 1 and r

B
= 0 each time the

simulator encounters state A and do the opposite (r
A
= 0, r

B
= 1) in state B, the ratio

n∑
i=1

r
A
(Si)

/
n∑

i=1
r
B
(Si), where Si denotes the i-th encountered stochastic state, will become

180 in the long run (that is, for n ∞).

There are two ways to support this kind of performance analysis. One approach
uses a special language for specifying reward formulae and telling in which states
the rewards should be modified. The other technique uses POOSL to state these
matters in the model itself. Such models are called reflexive, as they reason about
themselves. Whichever method is taken, the reward theory requires each statement
of the underlying language (in our case POOSL) to have a well-defined probabilistic
meaning. Previously, POOSL lacked such a probabilistic semantics, but this thesis
will give an initial definition. Future research is needed to ensure that this definition
has the desired properties such as time-determinism, time-additivity and so on.

A B

0.005

0.9

0.1.995

Figure 1.6: Abstracted underlying Markov chain of the packet generator.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl


12 Introduction

1.7 Rotalumis
Besides the development of a new formal semantics that adds inheritance, dynamic
port passing as in the π-calculus, real-time and probabilistic aspects to POOSL, an
execution engine was developed: rotalumis. Important issues that should be and have
been taken into account for the construction of rotalumis are:
• generic implementation concepts applicable to languages with a denotational
semantics or structural operation semantics (like POOSL);
• extensibility; the engine should be extensible to serve as a verification tool,
performance analysis tool and so on;
• industrial-strength; the execution engine should be able to cope with large in-
dustrial designs — this requires optimisation techniques to reduce scalability
effects and increase the simulation speed.

The various concepts that have been used in the construction of rotalumis are dis-
cussed per semantical layer —in reversed order— in Chapters 3 (data), 4 (processes)
and 5 (architecture), following the stages of incrementally implementing the execution
engine. Each chapter first defines the formal semantics of that layer before discussing
its implementation.

Before doing so, Figure 1.7 gives a global view on the components rotalumis com-
prises. The compiled POOSL specification on the right provides the class definitions
of data objects and processes, as well as the model’s architecture. During simulation
this part remains unchanged and is therefore also referred to as the static part of the
model. The dynamic part on the left consists of “alive” objects holding the current
state of the model, which originate from the static definitions but may change while
the simulation progresses. Both the dynamic and the static section have been parti-
tioned into three pieces, corresponding to the semantical layers. On the data layer,
a virtual machine (VM) evaluates expressions, assisted by a garbage collector (GC)
that reclaims unreachable data objects. The process layer uses execution trees (ET)

data layer

process layer

architecture layer

GC VM GC VM

scheduler

compiled
specificationETET

CT

execution engine

dynamic static

Figure 1.7: Overview of the execution engine rotalumis while running a POOSL simulation.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
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to represent the current state of a process’ behaviour statement. Channel trees (CT)
at the architecture layer combine communication requests from the execution trees
before they are sent to the scheduler, along with other requests from the execution
trees. The scheduler resolves nondeterminism and decides which statement is eligible
for execution.

After the interlude of mathematical preliminaries, Chapters 3, 4 and 5 will explain
these issues in more detail.



14 Introduction



Chapter 2

Mathematical Preliminaries

2.1 General

2.1.1 Functions

The notation presented here is based on the representation used in [44, 38]. Let A
and B be sets. A partial function from A to B is any correspondence f that maps
every a ∈ D ⊆ A to some unique f(a) ∈ B. For any a ∈ A \D, f is undefined, which
is denoted by f(a) = undef. The set of all partial functions from A to B is denoted
by A B. D is called the domain of f , denoted by Dom(f). If Dom(f) = A, f is
called a (total) function from A to B. We will write A B to denote the set of all
functions from A to B. Alternative notations for f(a) are f.a and fa.

Let f ∈ V W , let v, v′ ∈ V and let w ∈ W . The variant notation f{w/v} is used
to build a modified or extended function based on f and is defined by:

f{w/v}(v′) =


f(v′) if v′ �= v and v′ ∈ Dom(f)
w if v′ = v

undef if v′ �= v and v′ ∈/ Dom(f).

With the restriction operator �, the domain of a function can be limited. Let
f ∈ V W , let v ∈ V and let Z ⊆ V . Then f�Z ∈ V W is defined by:

f�Z (v) =

{
f(v) if v ∈ Dom(f) ∩ Z

undef otherwise.

2.1.2 Natural numbers

We let N denote the set of natural numbers {1, 2, 3, . . .} and use N0 to denote N∪{0}.

15
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2.1.3 Product of sets

The (Cartesian) product A1 ×A2 of sets A1 and A2 is defined as:

A1 ×A2 =
{
f ∈ {1, 2} (A1 ∪A2)

∣∣∣ f(1) ∈ A1 and f(2) ∈ A2

}
.

If I is any set and Ai is a set for every i ∈ I, then∏
i∈I

Ai =
{
f ∈ I

⋃
i∈I

Ai

∣∣∣ f(i) ∈ Ai for all i ∈ I
}
.

Notice that I A =
∏
i∈I

A.

We will write An to denote the n-fold Cartesian product

n︷ ︸︸ ︷
A×A× · · · ×A, which is

defined as
∏

i∈{1,...,n}
A or alternatively as {1, . . . , n} A. We let Aω denote N A.

Let A be a set and let a1, . . . , an ∈ A. Further, let a be a function in An that maps each
i ∈ {1, . . . , n} to ai. We call a an ordered n-tuple and denote it by (a1, . . . , an). As an
alternative to the i-th argument of a we may speak of ai as the i-th component of the
n-tuple. Since the n-tuple (a1, . . . , an) just denotes the function a ∈ {1, . . . , n} A,
we have by definition a(i) = ai.

Let A be a set and let ai ∈ A for all i ∈ N. Furthermore, let a be a function in Aω

that maps each i ∈ N to ai. We call a a sequence and denote it by (a1, a2, . . .).

The powerset of A is denoted by 2A.

2.1.4 Binary relations

A binary relation on a set A is any subset R ⊆ A× A and we write aR a′ to specify
that (a, a′) ∈ R. A binary relation R on A is:
• reflexive if aR a for all a ∈ A;
• transitive if aR a′ and a′R a′′ imply aR a′′ for all a, a′, a′′ ∈ A;
• anti-symmetric if aR a′ and a′R a imply a = a′ for all a, a′ ∈ A.

A partial order is a reflexive, transitive and anti-symmetric relation.

2.2 Denotational Semantics
2.2.1 Chain-complete partially ordered sets and fixed-point theory
Some of the following definitions are based on the work of R.D. Tennent described
in [44]. The theory presented here extends the definition of continuous functions to
support chain-complete partially ordered sets of n-tuples and will be used to develop
the denotational semantics of POOSL’s data layer.

Definition 1 (poset) A partially ordered set (poset) is a pair (D,) where D is a
set and  is a partial order on D.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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Definition 2 (least element) Let (D,) be a poset. An element d ∈ D is called a
least element of D iff d  d′ for all d′ ∈ D.

Theorem 3 If a poset has a least element, that element is unique.

Proof of Theorem 3 Let (D,) be a poset, and assume that D has two least
elements d1 and d2. Since d1 is a least element we have d1  d2. Since d2 is a least
element we also have d2  d1. But then d1 = d2 by anti-symmetry of . �

Such a unique element is denoted by ⊥ (pronounced “bottom”).

Definition 4 (least upper bound) Let (D,) be a poset and let Y be a subset of
D. Then d ∈ D is an upper bound of Y iff d′  d for all d′ ∈ Y . An upper bound
d ∈ D of Y is a least upper bound of Y iff d  d′ for all upper bounds d′ ∈ D of
Y .

Theorem 5 Let (D,) be a poset, let Y be a subset of D and let d ∈ D be a least
upper bound of Y . Then d is unique.

Proof of Theorem 5 Assume that Y has two least upper bounds d1, d2 ∈ D. Since
d1 is a least upper bound we have d1  d2. But d2 is also a least upper bound, so
d2  d1. Anti-symmetry of  gives d1 = d2. �

If the unique least upper bound of a set Y exists, it is denoted by
⊔

Y .

Definition 6 (chain) Let (D,) be a poset. A sequence d ∈ Dω is an ascending
ω-chain (hereafter abbreviated to chain) in D, if for all i, j ∈ N, di  dj when i ≤ j.
If d is a chain, we write

⊔
d or

⊔
i

di to denote
⊔{di | i ∈ N} if this least upper bound

exists; likewise, if {di | i ∈ I} is a set,
⊔
i∈I

di denotes
⊔{di | i ∈ I}.

Using the previous definitions and theorems, we now define chain-complete partially
ordered sets, which play an important role in the denotational semantics discussed in
Section 3.2.3.

Definition 7 (ccpo) A poset (D,) is called a chain-complete partially ordered set
(ccpo) iff each chain d ∈ Dω has a least upper bound

⊔
d.

Definition 8 Let d ∈ Dω and let f ∈ D D′. We will write f(d) to denote the
sequence

(
f(d1), f(d2), f(d3), . . .

)
.

The following two properties are prerequisite to the functions describing the denota-
tional semantics.
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Definition 9 (monotony) Let (D,) and (D′,′) be poset’s and let f ∈ D D′.
Then f is monotone iff d1  d2 implies f(d1) ′ f(d2) for all d1, d2 ∈ D.

Definition 10 (continuity) Let (D,) and (D′,′) be ccpo’s and let f ∈ D D′.
Then f is ω-continuous (hereafter continuous) iff f(

⊔
d) =

⊔
f(d) for every chain

d ∈ Dω.

Theorem 11 Let f ∈ D D′ be a continuous function defined on ccpo’s (D,)
and (D′,′). Then f is also monotone.

Proof of Theorem 11 Let d1, d2 ∈ D and let d ∈ Dω be a chain of the form
(d1, d2, d2, d2, . . .). Since f is continuous,

⊔
f(d) = f

(⊔
d
)
, which equals f(d2) be-

cause
⊔

d = d2. Since f(d1) ′ ⊔
f(d) we have f(d1) ′ f(d2) and hence f is

monotone. �

Definition 12 (fixed point) Let (D,) be a poset and let F ∈ D D. We call
d ∈ D a fixed point of F if F(d) = d. If F has a least fixed point, it is denoted by
FIXF .

The following key theorem shows how the least fixed point of a function can be
computed.

Theorem 13 (Knaster-Tarski) Let (D,) be a ccpo with least element1 ⊥ and let
F ∈ D D be continuous. Then FIXF =

⊔
i∈N0

F i(⊥).

Proof of Theorem 13 See also [43] and [38].

1.
⊔

i∈N0

F i(⊥) is well-defined.

F0(⊥) = ⊥ and ⊥  d for all d ∈ D. By induction on i and monotony of F
we find that F i(⊥)  F i(d) for all d ∈ D. Hence F i(⊥)  Fj(⊥) for i ≤ j
and therefore

(F0(⊥),F1(⊥), . . .) is a chain in Dω. Because (D,) is a ccpo,⊔
i∈N0

F i(⊥) exists.

2.
⊔

i∈N0

F i(⊥) is a fixed point of F , that is F( ⊔
i∈N0

F i(⊥)) =
⊔

i∈N0

F i(⊥).

By continuity of F we get that F( ⊔
i∈N0

F i(⊥)) equals
⊔

i∈N0

F(F i(⊥)). Since⊔
(⊥, d1, d2, . . .) =

⊔
d for all chains d ∈ Dω, we can rewrite this to⊔ ({F i+1(⊥) | i ∈ N0} ∪ {⊥}

)
which is

⊔
i∈N0

F i(⊥).
1In contrast to usual ccpo definitions in literature, the existence of a least element is not auto-

matically fulfilled by Definition 7 — hence the additional requirement.
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3.
⊔

i∈N0

F i(⊥) is the least fixed point of F .

Let d be a fixed point of F . Since ⊥  d, monotony of F gives F i(⊥)  F i(d)
for all i ∈ N0. Because d is a fixed point, we have F i(⊥)  d and hence d

is an upper bound of the chain {F i(⊥) | i ∈ N0}. But
⊔

i∈N0

F i(⊥) is the least

upper bound of this chain, therefore
⊔

i∈N0

F i(⊥)  d and thus
⊔

i∈N0

F i(⊥) is the
least fixed point of F . �

This theorem is crucial in the definition of the denotational semantics in Section 3.2.3
and will be applied to the semantic function (that is defined there). Because the
theorem can only be applied to continuous functions and ccpo’s, the semantics will
have to be built in such a way that these requirements are fulfilled. The following
definitions and propositions help in the construction of the semantics and proving
some of its characteristics.

Definition 14 Let f ∈ (
D′ D

)ω and let d ∈ D′. We will write f(d) to denote
the sequence

(
f1(d), f2(d), f3(d), . . .

)
.

The context should unveil whether f(d) denotes the application of a sequence of
functions to d (Definition 14) or the function application to the elements of a sequence
d (Definition 8).

The following theorem is useful for hierarchically constructing ccpo’s.

Theorem 15 Let D′ be a set and let (D,) be a ccpo. For f, g ∈ D′ D, define
f ′ g iff f(d)  g(d) for all d ∈ D′. (D′ D,′) is a ccpo.

Proof of Theorem 15

1. reflexiveness: because f(d)  f(d) for all d ∈ D′, we also have f ′ f .

2. transitivity: if f ′ f ′ and f ′ ′ f ′′ then, for all d ∈ D′, we have f(d)  f ′(d)
and f ′(d)  f ′′(d), which implies f(d)  f ′′(d); hence f ′ f ′′.

3. anti-symmetry: if f ′ f ′ and f ′ ′ f then f(d)  f ′(d) and f ′(d)  f(d) for
all d ∈ D′, and therefore f = f ′.

4. chain-completeness: Let f ∈ (
D′ D

)ω be a chain. Define fω(d) =
⊔

f(d) for
all d ∈ D′. By definition of f , we can conclude that for all d ∈ D′, f(d) is a
chain in Dω. Since (D,) is a ccpo, this chain has a least upper bound

⊔
f(d),

and therefore fω(d) is well-defined for all d ∈ D′.

We claim that
⊔

f = fω. Since f is a chain, we have f1 ′ f2 ′ f3 ′ · · · . fω
is an upper bound of f because fi ′ fω for all i ∈ N. To see that fω is the least
upper bound of f , let f ′ be any upper bound of f . Then fi(d)  f ′(d) for all
i ∈ N and any d ∈ D′. But fω(d) was defined as being the least upper bound
of f(d) for all d ∈ D′, so fω(d)  f ′(d) for all d ∈ D′ and therefore fω ′ f ′. �
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The theory is now augmented by ccpo’s of n-tuples and ccpo’s of sequences.

Definition 16 Let (D,) be a ccpo and let d, d′ ∈ Dn be n-tuples for n ∈ N. Then
d n d′ iff di  d′i for all i ∈ {1, . . . , n}. Analogously for d, d′ ∈ Dω we define that
d ω d′ iff di  d′i for all i ∈ N.

Corollary 17 Let (D,) be a ccpo and let n ∈ N. (Dn,n) and (Dω,ω) are
ccpo’s.

Proof of Corollary 17 Let d, d′ ∈ Dn. From Theorem 15 with D′ = {1, . . . , n},
f = d, g = d′ and ′=n, we get that (Dn,n) is a ccpo since (Definition 16) d n d′

iff di  d′i for all i ∈ {1, . . . , n}. Equivalently, but with D′ = N and ′=ω, we
obtain that (Dω,ω) is a ccpo since (Definition 16) d ω d′ iff di  d′i for all i ∈ N.

�

We shall assume from here on that if (D,) is a ccpo, it is implicitly understood that
domains Dn and Dω are equipped with relations n and ω respectively, to form the
ccpo’s (Dn,n) and (Dω,ω).

Double chains [44] have an interesting property that simplifies the continuity proofs
in Chapter 4.

Theorem 18 (double chains) Let (D,) be a ccpo and let d ∈ (Dω)ω be a chain
of chains.

⊔
i

⊔
j

dij,
⊔
j

⊔
i

dij and
⊔
k

dkk are well-defined and equivalent.

Proof of Theorem 18 Define diω =
⊔
j

dij and dωj =
⊔
i

dij and dω =
⊔
i

di. Since

d is a chain, we have di ω di+1 for all i ∈ N, so diω  d(i+1)ω and therefore
⊔
i

⊔
j

dij

is well-defined. Since dω is a chain, we have dωj  dω(j+1) for all j ∈ N and therefore⊔
j

⊔
i

dij is well-defined. Finally, for all k ∈ N, we have dkk  dk(k+1)  d(k+1)(k+1),

so
⊔
k

dkk is also well-defined.

Because di is a chain, dij  diω for all i, j ∈ N and so
⊔
i

dij 
⊔
i

⊔
j

dij for all j ∈ N,
and therefore

⊔
j

⊔
i

dij 
⊔
i

⊔
j

dij . Since d is a chain, we have di ω dω for all i ∈ N,
so dij  dωj for all i, j ∈ N and thus

⊔
j

dij 
⊔
j

⊔
i

dij for all i ∈ N, and therefore⊔
i

⊔
j

dij 
⊔
j

⊔
i

dij . By anti-symmetry of  we get that
⊔
i

⊔
j

dij =
⊔
j

⊔
i

dij .

For every i ∈ N, we have dij  dkk for k = max(i, j), so
⊔
j

dij 
⊔
k

dkk for each

i ∈ N and therefore
⊔
i

⊔
j

dij 
⊔
k

dkk. Furthermore, for every k ∈ N, we have

dkk  dkω 
⊔
i

diω; so
⊔
k

dkk 
⊔
i

⊔
j

dij . By anti-symmetry of , we conclude that⊔
i

⊔
j

dij =
⊔
k

dkk. �
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2.3 Syntax
Many functions, sets and syntactic categories in this thesis are defined by describing
their elements in extended Backus-Naur form (EBNF, see Appendix B.1). An example
of such an inductive definition goes as follows.

The set of boolean expressions, B, ranged over by b is defined by:

b = true
| false
| ¬ b
| b1 ∧ b2.

(Notice that the full stop after b1 ∧ b2 is not part of that construct but merely ends
the sentence.)

Meta-variable or typical element b ranges over syntactic category B. In general, if ϕ
is a meta-variable, so are its decorated versions ϕ1, ϕ

′, . . ., and they range over the
same set. The basis constructs true and false do not depend on b, whereas composite
constructs ¬ b and b1 ∧ b2 have constituents that are boolean expressions themselves.
Example elements of B are: ¬ true ∧¬ false and false ∧ true ∧ true. The latter string
representation could have been derived in two ways, namely by (false ∧ true)∧ true or
by false∧(true∧ true). If any string can be parsed in a unique way, the corresponding
syntax is called concrete (instead of abstract). Constructs can be decorated to resolve
ambiguities — we will use parentheses instead. If the precedence (binding power) of
constructs is specified, parentheses can be omitted; for example, if ∧ binds stronger
than ¬, then ¬ (true ∧ (¬ false)) can simply be written as ¬ true ∧ ¬ false.

Let C be defined by:

c = true
| false
| ¬ c
| c1 ∧ c2

| c1= c2.

This definition implicitly specifies c to be a typical element of C. Because any con-
struct b ∈ B can also be built with constructs from C, we have B ⊆ C and, obviously,
b ∈ C.

2.4 Structural Operational Semantics
This thesis uses timed probabilistic labelled transition systems [42] to describe com-
positionally the behaviour of reactive systems modelled in POOSL.

A timed probabilistic labelled transition system (Conf , A,
A

, T,
T+ ) consists of a

set of configurations Conf , a set of actions A with a set of probabilistic action-
transition relations ·

A
· · ⊆ Conf × A × P(Conf ) where P(Conf ) denotes the set

of substochastic probability functions, and a time domain T with a set of determin-
istic time-transition relations ·

T+
· · ⊆ Conf × T+ × Conf . An example of such a

transition system has been depicted on the left in Figure 2.1 by a graph — nodes

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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Figure 2.1: Graphic representations of a timed probabilistic labelled transition system.

represent configurations and edges symbolise transitions. Only action transitions are
probabilistic; hence it is clear that 0.5 and 2 are labels of time transitions. An action
transition is drawn as a line annotated by the action, followed by a fan-out of arrows
that represents the corresponding probability function. This is just a shorthand nota-
tion that bundles transitions with a common action (see right graph), giving a clearer
notion of nondeterminism.

A configuration (S, I) ∈ Conf contains a statement S that is to be executed in the
context of information I. The statement describes the (future) behaviour of the sys-
tem, while the information captures the system’s internal state. Assuming that a ∈ A
and t ∈ T+, we use (S, I)

A

a π to denote2 that the system, currently in configuration
(S, I), can do an action (perform a transition or execution step) and yield a distri-
bution π ∈ P(Conf ) over configurations — π.(S′, I ′) gives the probability that the
system will reside in configuration (S′, I ′) after the action. Further, (S, I) a (S′, I ′)
denotes that there is a π such that (S, I) a π with π.(S′, I ′) > 0. Actions are
instantaneous (take no time). Timing aspects of a system are modelled by time tran-
sitions: t denotes the passage of t units of time. Arbitrary transitions (action or
time) are denoted by .

The sequence of configurations (S1, I1), (S2, I2), (S3, I3), . . . is called a trace, if it can
be obtained by repeatedly performing an execution step: (Si, Ii) (Si+1, Ii+1) for
i ≥ 1.

An important part of a transition system is its set of transition relations. The transi-
tion relations will be defined by a Plotkin-style [40] structural operational semantics
in GSOS format [5], as a set of inference rules of the following form:

(S1, I1)
a1 π1, (S2, I2)

a2 π2, . . . , (Sn, In)
an πn

(S, I) a π
NAME if condition

where π = f(π1,π2, . . . ,πn)

2We also allow the notation (S, I)
a

π (dropping A) if the kind of the transition can be
determined by the element above the transition or is clear by the context.
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From the premises (S1, I1)
a1 π1 through (Sn, In)

an πn, the rule name deduces
the conclusion that configuration (S, I) can perform transition a and yield probability
function π (composed of π1 through πn, denoted by function f) if the condition
is met. A rule without premises is called an axiom. In a structural operational
semantics, the rules follow the structure of statements: axioms define the behaviour
of base constructs while the other inference rules describe the behaviour of composite
constructs in terms of their constituents.

Concurrency POOSL models can contain several distributed concurrent processes.
Each process is defined by its own labelled transition system. To combine these
transition systems to a single one, interleaving concurrency is used. This abstraction
of concurrency allows transitions of the processes to be combined in arbitrary order,
allowing only pairs of synchronising statements (communication primitives) to execute
at the same moment. The internal parallelism3 of processes is described as a pure
interleaving because concurrent activities within a process cannot synchronise with
each other.

Nondeterminism Sometimes, the set of inference rules can be used to derive sev-
eral transitions for a given configuration. For instance, if (S, I) a (S′, I ′) and
(S, I) a′

(S′′, I ′′), the next configuration can either be (S′, I ′) or (S′′, I ′′), depend-
ing on which action (a or a′) is chosen. This choice is left unspecified and is made
nondeterministically.

Time domain The time domain is chosen to be a commutative monoid (T,+, 0)
with the following properties [37], for all t, t′ ∈ T :

• t+ t′ = t t′ = 0;

• the relation ≤ defined as t ≤ t′ ∃t′′∈T t+ t′′ = t′ is a total order.

It follows from these properties that:

• 0 is the least element of T ;

• for any t, t′ ∈ T with t ≤ t′, the element t′′ such that t+ t′′ = t′ is unique; it is
denoted by t′ − t.

The time domain T is called discrete if every instant in time has a successor, so
∀t∈T∃t′∈T (t < t′ ∧ ∀t′′∈T t < t′′ t′ ≤ t′′), and is called dense if in between two
instants there is always another moment in time (∀t,t′∈T t < t′ ∃t′′∈T t < t′′ < t′).
We let T+ denote T \ {0}.
Examples of proper time domains are N0 (discrete), Q≥0 (dense) and R≥0 (dense)
with their ordinary 0-elements, ordering and addition.

3In this thesis the term parallelism is considered synonymous with concurrency.

http://www.ics.ele.tue.nl/~lvbokhov/poosl


24 Mathematical Preliminaries



Chapter 3

POOSL Data Layer

3.1 Overview

This chapter presents the abstract syntax of POOSL’s data layer, strongly based upon
the data layer previously introduced with an operational semantics in [41]1. Using
the extended theory of ccpo’s discussed in Section 2.2.1, a new formal semantics is
developed here that:

• adds inheritance to the data layer of POOSL;
• gives language constructs a probabilistic meaning, which is required for perfor-
mance modelling;
• is a denotational semantics, guiding a compositional implementation for execut-
ing the language.

The different style of semantics is further attractive for describing the syntactic con-
structs’ probabilistic features that will be added to the POOSL language.

After Section 3.2 has specified both the syntax and semantics of the data layer of
POOSL, Section 3.3 develops a compositional execution framework for the data layer,
using the denotational semantics as a prescription. The resulting virtual machine
incorporates a garbage collector to free the modeler from the tedious task of deleting
objects that are no longer used.

1We stress that it is beyond the scope of this thesis to show equivalence between the semantics
defined here and (parts of) the one defined in [41]. Such a proof might be part of future research.
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3.2 Specification

3.2.1 Abstract Syntax

This section defines the abstract syntax of POOSL’s data layer. For this discussion,
we introduce the following syntactic categories and corresponding meta-variables:

CName class names C

MName method names m,n

IVar instance variables x, y

LVar local variables u,w, z

Var = IVar ∪ LVar variables v.

Throughout this chapter, C and m are assumed to range over data class names and
data method names respectively.

A POOSL model is an element of the set of system specifications containing a list,
CDList , of class definitions from the set of class definitions, ClassDef , which is par-
tially defined by:

CD = data class C
[ extends Csuper ]
instance variables x1 · · ·xn
instance methods MD1 · · ·MDk.

In Chapters 4 and 5, ClassDef will be augmented by process class definitions and
cluster class definitions. A data-class definition specifies the name of the class, the
name of its superclass, the set of variables known to each instance of the class and a
set of method definitions. Only class Object, present in every model and from which
every other class inherits2, has no superclass.

POOSL defines five primitive data classes: Boolean, Integer, Real, String and Nil.
Instances of these classes are called primitive data objects. Class Nil has only a single
instance, the primitive object nil . Other data classes will be called nonprimitive; their
instances are nonprimitive data objects.

The instance methods of a data class are elements of MethDef, the set of method
definitions:

MD = m(u1, . . . , un)
|z1 · · · zm|
E

| m(u1, . . . , un)
|z1 · · · zm|
primitive.

Each data method definition starts with a namem, a list of formal parameters u1 . . . un

and a list of local variables z1 . . . zm. The body of the method is an expression, or is
provided by axioms in the semantics of POOSL, denoted by the keyword primitive.

2This thesis describes implementation inheritance [41], not inheritance for typing.
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Methods of the latter type are called primitive methods3 and have behaviour that
cannot be captured by a POOSL data expression. Examples of such primitive methods
are deepcopy, shallowcopy, identity (==) and random. The majority of the data method
bodies is provided by expressions E ∈ Exp. The abstract syntax of Exp is as follows:

E = x global variable
| u local variable
| γ literal
| new(C) object creation
| self self
| currentTime current model time
| E m(E1, . . . , En) dynamic method call
| E m

C
(E1, . . . , En) static method call

| x := E assignment to global variable
| u := E assignment to local variable
| E1;E2 sequential composition
| if Ec then E1 else E2 fi if
| while Ec do E od. while

The first two expressions consist only of an instance variable (global variable) x or
a local variable u. The value (or result) of such expressions is the object referred
to by the respective variable. Constant expressions are denoted by γ, which is the
direct naming (textual representation) of the primitive object γ. The next expression
is object creation; it results in a new instance of the nonprimitive data class C. The
value of self is the data object that is currently executing this expression. The
expression currentTime reflects the current model time. It can only be used in the
context of a process object.

Next is the dynamic method call E m(E1, . . . , En). First, E is evaluated to some
data object β, expressions E1 . . . En are evaluated from left to right, resulting in the
actual parameters β1 . . . βn. Then, the method definition of m is looked up in the
class definition of β. The formal method parameters are initialised to β1 . . . βn and
the body is executed, resulting in some object βr that will also be the result of the
entire expression E m(E1, . . . , En).

A class inherits the methods of its superclass and can provide additional methods
itself. Methods can also be redefined, overriding the method definition provided by
the superclass. Method identifiers are decorated with the name of the superclass
to obtain a unique method identifier. For instance, the definition of method m in
superclass C is accessible through m

C
. The static method call E m

C
(E1, . . . , En)

allows explicitly calling method m defined in class C, irrespective of whether that
method is overridden for the receiving object. The implementation will restrict the
use of static method calls in such a way that only inherited methods can be accessed.

The following two expressions are assignments to instance variables and local variables
respectively. The variable is set to the value of expression E, which is also the result

3Although primitive methods are allowed to have local variables z1, . . . , zm, they cannot use them.
The variables are only permitted to simplify semantic rules 12 and 13 in Appendix A.1.
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of the assignment itself. Sequential composition is denoted by a semicolon; E1 will be
evaluated before E2 is evaluated. The result of the sequential composite is the result
of E2.

Conditional execution of data expressions is possible with the if4. If condition Ec

evaluates to primitive object true, E1 will be evaluated. If the condition evaluates
to primitive object false instead, E2 is evaluated. The result of the entire if equals
the result of the chosen branch. Execution blocks when Ec does not evaluate to a
boolean value.

Finally, the while repeatedly evaluates body E as long as condition Ec equals true.
The loop construct finishes when Ec equals false, and results in nil . Execution blocks
when Ec does not evaluate to a boolean value.

3.2.2 Context conditions

Some additional requirements apply to the abstract syntax of the data classes of a
system specification, but cannot be given in EBNF. These context conditions are
informally described by:

1. All class names in CDList are different.
2. The inheritance graph of data classes is a tree of which the root is class Object.
3. All (inherited) instance variables of a class definition have different names.
4. All (inherited) methods of a class are discernable by their name5.
5. All parameter and local variable names in a method definition are different.
6. Every variable used in a method body is either an (inherited) instance variable

of the corresponding class, a method parameter, or a local variable of that
method.

7. The class referred to by any new is contained in CDList .

3.2.3 Denotational Semantics

The technique of denotational semantics has been developed by C. Strachey and
D. Scott. It describes the effect of executing a program by means of a semantic
function that maps each syntactic construct to a mathematical object describing the
effect of executing that construct. The semantic function is defined compositionally :

• there is a semantic clause for each basis construct;
• the semantic clause for a composite construct is described in terms of the se-
mantic function applied to its immediate constituents.

As an overview, the rationale behind the denotational semantics is discussed before a
detailed description of the semantics for POOSL’s data layer is presented.

4Instead of writing “the if-expression”, we use “if”, typeset in teletype font.
5In the concrete syntax this is relaxed to a unique combination of name and parameter count.
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3.2.3.1 Rationale Behind the Denotational Semantics

The specification language POOSL, presented with an operational semantics in [41],
has been used to conduct performance studies [47, 48, 46, 45]. These explorations use
a framework of POOSL data classes within the model that is being measured (reflex-
ive performance analysis, [53]). This approach to performance analysis requires the
modeler to explicitly construct objects for collecting statistical data and calculating
performance metrics. The downside of this approach is its error-proneness and its
cluttering the specification with information only useful during performance analy-
ses. Also, when different metrics are pursued, the model may have to be adapted
accordingly.

An approach more convenient to the modeler is to use a different language to express
performance metrics in terms of rewards. The mathematical foundation for this re-
ward theory has been developed in [55]. Now, the modeler simply states a reward
formula specifying the desired performance metric and does not have to sully the
system’s specification.

Both approaches have one thing in common: they build a Markov chain (possibly on-
the-fly during simulation) and reason about its properties. However, in general these
performance results are void of meaning if the model (and hence the Markov chain)
has no probabilistic semantics [54]. Earlier experiments with CCS-based languages
in [52] show that introducing probabilistic information at the process layer by adding
probabilities directly into its operational semantics is feasible but cumbersome and
gives rise to artificial weighting factors. The modeler is forced to specify the prob-
abilities for parallel composition and selection operators, even if these operators are
used to model nondeterministic behaviour. An operational semantics also requires its
transitions to be decorated, for correctly computing transition probabilities [54].

The natural place to extend the language with probabilistic information is at the
data layer. The new semantics for POOSL’s data layer is developed here and is de-
notational, providing a guideline for a compositional implementation. It replaces the
operational semantics of the data layer described in [41]. The hallmark of denota-
tional semantics is compositionality. Unfortunately, recursion complicates stating a
compositional definition. POOSL offers two ways to describe recursion: by means of
a while (local recursion), or by means of method calls (global recursion). We will
first discuss local recursion to demonstrate why a compositional definition cannot be
obtained straightforwardly.

Local recursion, described by expression while Ec do E od, is chosen to have the same
effect as if Ec then E;while Ec do E od else nil fi, hence their meanings (de-
noted by [[ · ]]) should be identical. Intuitively, the meaning of while could have been
defined by:

[[while Ec do E od]]
= [[if Ec then E;while Ec do E od else nil fi]]
= Y(

[[Ec]], [[E]], [[while Ec do E od]]
)
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where Y is a function that gives the meaning of while Ec do E od in terms of the
semantics of Ec, E and while — not nil because that is a constant. It is clear
that this definition is not compositional because Y defines the meaning of the while
in terms of while itself. To obtain a compositional definition, we introduce the
functional6 Z(g) = Y(

[[Ec]], [[E]], g
)
. The semantics of while Ec do E od must be

a fixed point (Definition 12) of Z and is defined as the least fixed point of this
functional: [[while Ec do E od]] � FIXZ. With this definition, [[while Ec do E od]] is
compositional, because [[ · ]] is only applied to the immediate constituents of while Ec
do E od and not to the construct itself. Using a fixed point is a common approach
taken in literature to obtain a compositional semantics for while-languages [38, 44, 22].

Global recursion (through method calls) introduces a similar compositionality prob-
lem that can also be solved with a fixed point. Problems with compositionality do
not exist if method calls can statically be replaced by the bodies of the methods they
invoke. However, since POOSL offers dynamic method binding, the called method
is not known in advance and therefore recursion cannot be unrolled. To still obtain
a compositional definition of [[ · ]], an intermediate function [[ · ]]

f
is defined that gives

the meaning of expressions, conditional upon n-tuple f containing the meaning of
the method bodies. A functional B(f) will be defined (Definition 37) that gives the
semantics of method bodies conditional upon an approximation of the meanings of all
method bodies — this is comparable with functional Z’s parameter g approximating
the meaning of while. The least fixed point is taken to define the exact meaning of
the method bodies, and is used to finally define the exact (unconditional) meaning of
any expression E ∈ Exp by choosing [[E]] � [[E]]FIX B.

3.2.3.2 Typical Sets, Variables and Functions
The primitive data objects of classes Boolean, String, Integer and Real represent the
boolean objects (B), string objects (S), integer objects (I) and real objects (R) respec-
tively. The theories of these sets, together with their usual operators and relators, are
assumed to be parameters of the semantics. We let γ range over the set of all primitive
data objects, which is defined by the countable set PDObj = B ∪ S ∪ I ∪ R ∪ {nil}.
The set of nonprimitive data objects NDObj = {n̂ | n ∈ N} is ranged over by α.
The capped integer serves as an identifier representing the actual nonprimitive data
object. The entire collection of data objects is defined by DObj = NDObj ∪ PDObj ,
with typical elements β.

The executing object determines the context in which an expression is evaluated.
The currently executing object, typically denoted by δ, can either be a process object
(proc) or any nonprimitive data object ever (indirectly) known to proc and is an
element of ∆ = NDObj ∪ {proc}.
Φ = IVar DObj with typical elements φ is the set of partial functions that map
instance variables to data objects. Ψ = LVar DObj is the set of partial functions
that map local variables to data objects and is ranged over by ψ.

The set of variables states Σ = {σ ∈ ∆ Φ | Dom(σ) is finite} is ranged over by σ.
The domain of partial function σ consists of the executing process and the nonprimi-

6A functional is a mapping from a collection (class) of functions to a collection of functions.
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tive data objects ever (indirectly) known through the process’ instance variables. The
data object referred to by instance variable x of δ is determined by σ(δ)(x). The set
Λ = ∆×Ψ is ranged over by λ. Each tuple λ = (δ, ψ) stores the executing object δ and
the corresponding function ψ retaining the references of its local variables. The classes
of nonprimitive data objects are stored in elements τ of T = NDObj CName. For
assigning a unique object identifier to each nonprimitive data object, the function
MaxId(σ) is defined, where:

MaxId(σ) =

{
0 if Dom(σ) = {proc}
max{n | n̂ ∈ Dom(σ)} otherwise.

The execution state of the model, restricted to the data layer, is stored in an element
of State = Σ×Λ×T , typically denoted by s. The countable set State ′ = State×DObj
has typical elements s′ that describe the state and object resulting from the execution
of an expression.

The collection of (inherited) instance variables of a data class C is given by V(C)
where V ∈ CName 2IVar is defined by:

V(C) =



{x1, . . . , xn} if CDList ≡ CD1 · · ·CD i · · ·CDn

and CD i ≡ data class C
instance variables x1 · · ·xn
instance methods MD1 · · ·MDk

{x1, . . . , xn}
∪ V(Csuper) if CDList ≡ CD1 · · ·CD i · · ·CDn

and CD i ≡ data class C
extends Csuper
instance variables x1 · · ·xn
instance methods MD1 · · ·MDk

∅ otherwise,

where ≡ denotes syntactic identity. The definition will be completed in Section 4.2.3.

FunctionMs ∈ CName MName (MD∪MDp) is a lookup function that returns
the definition of method m if it is defined in class C and returns undef otherwise. For
data classes,Ms is defined by:

Ms.C.m ≡



MDj if CDList ≡ CD1 · · ·CD i · · ·CDn

and CD i ≡ data class C
[ extends Csuper ]
instance variables x1 · · ·xn
instance methods MD1 · · ·MDj · · ·MDk

and MDj ≡ m(u1, . . . , un)
|z1 · · · zm|
E | primitive

undef otherwise.
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Table 3.1: Example of inheritance.

Class A:
1 data class A
2 extends Object
3 instance variables
4 instance methods
5
6 init()
7 nil.

Class B:
1 data class B
2 extends A
3 instance variables
4 instance methods
5
6 init()
7 self ˆinit.

Class C:
1 data class C
2 extends B
3 instance variables
4 instance methods
5
6 init()
7 self ˆinit.

For dynamic method binding, lookup function M ∈ CName MName (MD ∪
MDp) is defined. It recursively searches in superclasses for the definition of an (in-
herited) method m for class C. For data classes it is defined by:

M.C.m ≡



Ms.C.m ifMs.C.m �= undef
M.Csuper .m ifMs.C.m = undef and CDList ≡ CD1 · · ·CD i · · ·CDn

and CD i ≡ data class C
extends Csuper
instance variables x1 · · ·xn
instance methods MD1 · · ·MDk

undef otherwise.

The definitions of Ms and M are completed in Section 4.2.3. The static method
call is introduced next to the dynamic method call to enable the “super method call”
construct self ˆm(E1, . . . , En) in the concrete syntax (Appendix B). Its intended
meaning is to start searching for the method definition of m in the super class of the
class in which the construct is placed. Notice that the class of self is not referred
to. We will now show for the example in Table 3.1 how this super method call can be
translated into a static method call of the form self m

C
(E1, . . . , En)7. Suppose that

an object of class C is created and then initialised: new(C) init. This expression will
call method init defined in class C. In line 7 of this method, method init of class
B is called. That method calls (line 7) method init of class A. At compile-time, the
construct in line 7 of class B is replaced by the static method call self initA and
the construct in line 7 of class C by self initB.

Furthermore, we define function I, which assigns unique indices to nonprimitive data
methods.

Definition 19 Let n ∈ N0 be the number of syntactically different nonprimitive data
method definitions in CDList. We assume I ∈ CName MName {1, . . . , n}
to be any function that assigns a unique number to each different nonprimitive data
method. It is such that:

1. I.C.m ∈ {1, . . . , n} if M.C.m ≡ m(u1, . . . , un)
|z1 · · · zm|
E

; otherwise I.C.m = undef

2. for all m,m′, C and C ′, such that both I.C.m and I.C ′.m′ are in {1 . . . , n},
we have I.C.m = I.C ′.m′ ⇐⇒ M.C.m ≡M.C ′.m′.

7To simplify the semantics of the static method call, the more generic form E m
C
(E1, . . . , En) is

defined.
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3.2.3.3 Semantics

Before the meaning of expressions can be given, a hierarchical framework of domains
and ccpo’s is defined. The presented framework guarantees existence of the fixed
points required in establishing the semantics of POOSL’s data layer. First, a set of
(substochastic) probability functions is defined. These functions bind probabilities to
execution states.

Definition 20 (substochastic probability function) The set of substochastic
probability functions is P =

{
p ∈ State ′ R

∣∣∣ ∑
s′∈State′

p.s′ ≤ 1
}
, where R = [0, 1].

For p, q ∈ State ′ R, define p  q iff p.s′ ≤ q.s′ for all s′ ∈ State ′. For p, q ∈ P,
define p P q iff p.s′ ≤ q.s′ for all s′ ∈ State ′.

Notice that the probabilities of all possible terminal states may not sum up to one
(hence the name substochastic), for instance because of nonterminating loops. P is
well-defined:

∑
s′∈State′

p.s′ is a well-defined series because its terms p.s′ are non-negative,

the sequence of its partial sums is bounded (by one) and State ′ is countable. Using
the fact that for such a series the summation order is irrelevant, the series converges

to
∑

s′∈State′
p.s′ =

∞∑
j=1

p.s′j = lim
n→∞

n∑
j=1

p.s′j , where State ′ = {s′1, s′2, . . .} for any s′1, s
′
2, . . . .

The following assertions simplify the upcoming continuity proofs and the proof that
(P,P) is a ccpo.

Lemma 21 Let p, q ∈ P. Then p  q iff p P q.

Proof of Lemma 21 If p  q, we have p.s′ ≤ q.s′ for all s′ ∈ State ′ and since
p, q ∈ P, we also have p P q. On the other hand, if p P q, we obtain that p.s′ ≤ q.s′

for all s′ ∈ State ′ and since p, q ∈ P ⊆ State ′ R, we also have p  q. �

Lemma 22 (R,≤) and (State ′ R,) are ccpo’s.

Proof of Lemma 22 Let d ∈ Rω be a chain. Every non-empty, bounded subset of
R has a least upper bound, and since {di | i ∈ N} ⊆ R is such a non-empty, bounded
subset of R, its least upper bound

⊔
i

di exists and is in R because di ≤ 1 for all i ∈ N;
hence (R,≤) is a ccpo. From Theorem 15 with R, State ′, ≤ and  substituted for
D, D′,  and ′ respectively, we obtain that also (State ′ R,) is a ccpo. �
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Lemma 23 Let d ∈ Pω be a chain and let V ⊆ State ′. Then
∑

s′∈V

⊔
d.s′ =

⊔ ∑
s′∈V

d.s′.

Proof of Lemma 23 Since P ⊆ (
State ′ R)

and (State ′ R,) is a ccpo
(Lemma 22),

⊔
d exists. Assume that V = {s′1, s′2, . . .}. We can then rewrite∑

s′∈V

⊔
d.s′ to lim

n→∞

n∑
j=1

⊔
d.s′j . Using the definition of least upper bound, we can

rewrite
⊔

d.s′j to
⊔
i

di.s
′
j , which is lim

i→∞
di.s

′
j (because d is a chain), thus obtaining∑

s′∈V

⊔
d.s′ = lim

n→∞

n∑
j=1

lim
i→∞

di.s
′
j = lim

n→∞ lim
i→∞

n∑
j=1

di.s
′
j , because the sum is finite and

the inner limit exists. Swapping the limits gives lim
i→∞

lim
n→∞

n∑
j=1

di.s
′
j that can be rewrit-

ten to
⊔
i

∑
s′∈V

di.s
′, which equals

⊔ ∑
s′∈V

d.s′. �

Lemma 24 Let r, s ∈ Rω be chains. Then
⊔
i

ri ·
⊔
j

sj =
⊔
i

⊔
j

ri · sj.

Proof of Lemma 24 Since r and s are chains, their least upper bounds
⊔
i

ri and⊔
i

si exist. Rewriting the product gives
⊔
i

ri·
⊔
j

sj = lim
i→∞

ri· lim
j→∞

sj = lim
i→∞

lim
j→∞

ri·sj =⊔
i

⊔
j

ri · sj . �

We are now ready to build the semantic domain hierarchically, using the theory
of chain-complete partially ordered sets discussed in Section 2.2.1, and prove some
properties required for the upcoming continuity proofs.

Theorem 25 (P,P) is a ccpo.

Proof of Theorem 25 Let d ∈ Pω be a chain. According to Lemma 22,
(State ′ R,) is a ccpo. Since d ∈ Pω ⊆ (

State ′ R)ω, ⊔
d exists. Using

Lemma 23 and the definition of least upper bound, we deduce that
∑

s′∈State′

⊔
d.s′ =⊔ ∑

s′∈State′
d.s′ =

⊔
i

∑
s′∈State′

di.s
′. Since di ∈ P for all i ∈ N, we have

∑
s′∈State′

di.s
′ ≤ 1

and hence
⊔
i

∑
s′∈State′

di.s
′ ≤ 1 for all i ∈ N. But then

⊔
d ∈ P, so (P,)

is a ccpo.

We conclude, using Lemma 21, that also
(P,P

)
is a ccpo. �

Next, the semantic domain S is defined. A function in this domain maps a start state
(begin state) to a function that defines the probability of ending up in a particular
terminal state (end state).

Definition 26 (semantic domain) Let S = State P. For f, g ∈ S, define
f S g iff f.s P g.s for all s ∈ State.
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Theorem 27 (S,S) and (Sn,n
S) are ccpo’s.

Proof of Theorem 27 From Theorem 15 with P, State, P and S substituted
for D, D′,  and ′ we get that (S,S) is a ccpo. From Corollary 17, it immediately
follows that (Sn,n

S) is also a ccpo. �

Definition 28 Let ⊥R ∈ R be such that ⊥R = 0. Let ⊥P ∈ P be such that ⊥P .s′ = ⊥R

for all s′ ∈ State ′. Let ⊥S ∈ S be such that ⊥S .s = ⊥P for all s ∈ State. Finally, let
⊥nS ∈ Sn be such that (⊥nS)i = ⊥S for all i ∈ {1, . . . , n}.

From now on it is tacitly assumed that ⊥R is defined for ccpo (R,≤), ⊥P is defined
for ccpo (P,P), ⊥S is defined for ccpo (S,S), and ⊥nS is defined for ccpo (Sn,n

S).

Theorem 29 ⊥R, ⊥P , ⊥S and ⊥nS are least elements of their respective ccpo’s.

Proof of Theorem 29 Obviously ⊥R = 0 is an element of R. For all d ∈ R, d ≥ 0
and thus ⊥R ≤ d for all d ∈ R. Hence ⊥R is the least element of R.

Since ⊥P .s′ = ⊥R = 0 for all s′ ∈ State ′,
∑

s′∈State′
⊥P .s′ ≤ 1 and therefore ⊥P ∈ P. For

all d ∈ P and all s′ ∈ State ′, ⊥P .s′ ≤ d.s′. Thus ⊥P P d for all d ∈ P and hence ⊥P

is the least element of P.

Since ⊥S .s = ⊥P for all s ∈ State, ⊥S ∈ S. For all d ∈ S and all s ∈ State, ⊥S .s P d.s.
Thus ⊥S S d for all d ∈ S and hence ⊥S is the least element of S.

Since (⊥nS)i = ⊥S for all i ∈ N, ⊥nS ∈ Sn. For all d ∈ Sn and all i ∈ N, (⊥nS)i S di.
Thus ⊥nS n

S d for all d ∈ Sn and hence ⊥nS is the least element of Sn. �

The least elements stated in Definition 28 will be required later. In Section 3.2.3.1
it was discussed that because of recursive dynamic method calls, it is impossible to
directly give a compositional definition of expressions, as is required by a denotational
semantics. Therefore, a similar approach is taken as with the while. Before defining
that functional (whose fixed point will define the meaning of nonprimitive method
bodies), we introduce [[E]]

f
that gives the meaning of expression E, conditional upon

the approximated meaning of the nonprimitive method bodies (provided by an n-tuple
f ∈ Sn).

Definition 30 Let E ∈ Exp, f ∈ Sn and let [[ · ]]· ∈ Exp Sn S be defined
such that the meaning of E conditional upon f , denoted by [[E]]

f
∈ S, is defined by

semantic rules 1 through 13 in Section A.1.
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In this definition and from this point on, n (used in Sn) is assumed to be the number
of different nonprimitive data method definitions in CDList .

It is not immediately evident that the definition of [[E]]
f
is sound, because of semantic

rule 11. We will therefore elucidate that rule and show that it is well-defined by
proving the existence of FIXXf after having shown that Xf is continuous and using
the fact that (S,S) is a ccpo.

Meaning of while Since the effect of while Ec do E od is chosen to be the same as
the effect of if Ec then E;while Ec do E od else nil fi, the semantics of while
must equal:

[[while Ec do E od]]
f
.s.s′

= [[if Ec then E;while Ec do E od else nil fi]]
f
.s.s′

=
∑

t′T :P1

[[Ec]]f.s.t
′
T × [[E;while Ec do E od]]

f
.tT .s′ +

∑
t′F :P4

[[Ec]]f.s.t
′
F × [[nil]]

f
.tF .s′

=
∑

t′T :P1

[[Ec]]f.s.t
′
T ×

( ∑
t′:P2

[[E]]
f
.tT .t′ × [[while Ec do E od]]

f
.t.s′

)
+

∑
t′F :P3

[[Ec]]f.s.t
′
F

=
∑

t′T :P1

∑
t′:P2

[[Ec]]f.s.t
′
T × [[E]]

f
.tT .t′ × [[while Ec do E od]]

f
.t.s′ +

∑
t′F :P3

[[Ec]]f.s.t
′
F

P1 : t′T = (tT , true);
P2 : t′ = (t, β);
P3 : t′F = (tF , false), s′ = (tF ,nil);
P4 : t′F = (tF , false).

The previous four lines describe the predicates P1 through P4, which are conditions
that limit the set of elements used in the summations above.

Because this equation is not compositional, as is required for a denotational seman-
tics, it cannot be used as the definition of while. However, we can conclude that
[[while Ec do E od]]

f
must be a fixed point of the following functional Xf .

Definition 31 Let E,Ec ∈ Exp, f ∈ Sn, g ∈ S and let X· ∈ S
n S S be

defined such that functional Xf (g).s.s′ =
∑

t′T :P1

∑
t′:P2

[[Ec]]f.s.t
′
T × [[E]]

f
.tT .t′ × g.t.s′ +∑

t′F :P3

[[Ec]]f.s.t
′
F where Xf ∈ S S. The meaning of while conditional upon f is

defined in the usual way: [[while Ec do E od]]
f
= FIXXf .

With this definition, [[ · ]]· is compositional, because [[ · ]]· is only applied to the immedi-
ate constituents of while and not to the construct itself. To show that this definition
is sound, we assert the following.

Theorem 32 Xf is continuous for any f ∈ Sn.
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Proof of Theorem 32 Let f ∈ Sn and let d ∈ Sω be a chain. By definition of Xf ,
we have Xf (

⊔
d) .s.s′ =

∑
t′T :P1

∑
t′:P2

[[Ec]]f.s.t
′
T × [[E]]

f
.tT .t′ × ⊔

d.t.s′ +
∑

t′F :P3

[[Ec]]f.s.t
′
F .

Using Lemma 24, we can rewrite this to
∑

t′T :P1

∑
t′:P2

⊔
[[Ec]]f.s.t

′
T × [[E]]

f
.tT .t′ × d.t.s′ +∑

t′F :P3

[[Ec]]f.s.t
′
F . Applying Lemma 23 twice gives

⊔ ∑
t′T :P1

∑
t′:P2

[[Ec]]f.s.t
′
T × [[E]]

f
.tT .t′ ×

d.t.s′+
∑

t′F :P3

[[Ec]]f.s.t
′
F , which is

⊔Xf (d) .s.s′. From this we infer that Xf is continuous

for any f ∈ Sn. �

Lemma 33 FIXXf exists for any f ∈ Sn.

Proof of Lemma 33 Since (S,S) is a ccpo with least element ⊥S , and Xf is con-
tinuous for any f ∈ Sn (Theorem 32), we conclude that FIXXf exists for any f ∈ Sn
by virtue of Theorem 13. �

This shows that the meaning of while is well-defined by semantic rule 11; there-
fore, the definition of [[E]]

f
is sound. Before presenting the semantic function that

defines the meaning of expressions, a few lemmas are asserted to simplify the proof
of continuity of [[E]]· ∈ Sn S.

Lemma 34 Let d ∈ (Sn)ω be a chain, let k ∈ N0 and let j ∈ N. If X· is continuous,
X k

dj
(⊥S) is a chain both in k and in j.

Proof of Lemma 34 We first show that X k
dj
(⊥S) is a chain in j for any k ∈ N0.

Since X· is monotone, Xdj
SXdj+1 and especially Xdj

(Xdj
(⊥S)

) SXdj+1

(Xdj
(⊥S)

) S

Xdj+1

(Xdj+1(⊥S)
)
, and in general X k

dj
(⊥S) SX k

dj+1
(⊥S) for any k ∈ N0. So, X k

dj
(⊥S) is

a chain in j.

To show that X k
dj
(⊥S) is also a chain in k, choose some j ∈ N. Since ⊥S SXdj

(⊥S) and
Xf is monotone, also Xdj

(⊥S) SXdj

(Xdj
(⊥S)

)
= X 2

dj
(⊥S), and in general X k

dj
(⊥S) S

X k+1
dj

(⊥S) for any j ∈ N, so X k
dj
(⊥S) is a chain in k. �

Lemma 35 Let k ∈ N0 and let j ∈ N. If X· is continuous, X k⊔
d
(⊥S) =

⊔X k
d (⊥S).

Proof of Lemma 35 The proof is trivial for k = 0: X 0⊔
d
(⊥S) = ⊥S =

⊔X 0
d (⊥S).

Now assume that X k⊔
d
(⊥S) =

⊔X k
d (⊥S) (induction hypothesis). Unfolding X k+1⊔

d
(⊥S)

gives X⊔
i

di

(X k⊔
j

dj
(⊥S)

)
. Using continuity of X· and the induction hypothesis, we can

rewrite this to
⊔
i

Xdi

(⊔
j

X k
dj
(⊥S)

)
, which is

⊔
i

⊔
j

Xdi

(X k
dj
(⊥S)

)
(again using continu-

ity of X·). By virtue of Lemma 34, we can apply Theorem 18 to rewrite this to⊔
i

Xdi

(X k
di
(⊥S)

)
, which is

⊔X k+1
d (⊥S). �
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Theorem 36 For each E ∈ Exp, [[E]]· is continuous.

Proof of Theorem 36 The proof is by induction on the syntactic structure of
the expressions in E ∈ Exp. First, continuity of [[E]]· is shown for the basis con-
structs — primitive data objects, variables, self and object creation. Next, conti-
nuity is demonstrated for the composite constructs under the assumption that their
immediate constituents are continuous (induction hypothesis). By induction we then
obtain continuity of [[E]]· for any expression E ∈ Exp.

Primitive data objects Let d ∈ (Sn)ω be a chain. For any s ∈ State and
s′ ∈ State ′, [[ γ ]]⊔

d
.s.s′ =

⊔
[[ γ ]]

d
.s.s′ because the definition of [[ γ ]]

f
.s.s′ is indepen-

dent of f (Appendix A.1, rule 1). Furthermore, point 4 of the proof of Theorem 15
can be used to rewrite

⊔
[[ γ ]]

d
.s.s′ to

(⊔
[[ γ ]]

d

)
.s.s′. But then [[ γ ]]⊔

d
=

⊔
[[ γ ]]

d
for every

chain d ∈ (Sn)ω and therefore [[ γ ]]· is continuous.

Instance variables, local variables, self, current time and object creation.
The cases [[x]]

f
, [[u]]

f
, [[self]]

f
, [[currentTime]]

f
and [[new(C)]]

f
are similar to [[ γ ]]

f
and

their proofs are therefore omitted.

Assignment to instance variables Let d ∈ (Sn)ω be a chain. For any s ∈ State
and s′ ∈ State ′, we have [[x:=E]]⊔

d
.s.s′ =

∑
t′:P1

[[E]]⊔
d
.s.t′ with proposition P1 as defined

in semantic rule 7 in Appendix A.1. The induction hypothesis ensures that [[E]]· is
continuous, so

∑
t′:P1

[[E]]⊔
d
.s.t′ =

∑
t′:P1

⊔
[[E]]

d
.s.t′, which is

⊔ ∑
t′:P1

[[E]]
d
.s.t′ by Lemma 23.

This equals
⊔
[[x:=E]]

d
and hence [[x:=E]]· is continuous.

Assignment to local variables The proof for [[u:=E]]· is analogous to that of
[[x:=E]]· and is omitted.

Sequential composition Let d ∈ (Sn)ω be a chain. For any s ∈ State and
s′ ∈ State ′, we have [[E1;E2]]⊔d

.s.s′ =
∑
t′:P1

[[E1]]⊔d
.s.t′ × [[E2]]⊔d

.t.s′. By the induc-

tion hypothesis and Lemma 24 this equals
∑
t′:P1

⊔(
[[E1]]d.s.t

′ × [[E2]]d.t.s
′), which is⊔ ∑

t′:P1

(
[[E1]]d.s.t

′ × [[E2]]d.t.s
′) by Lemma 23. But this equals

⊔
[[E1;E2]]d.s.s

′, so

[[E1;E2]]⊔d
=

⊔
[[E1;E2]]d and hence [[E1;E2]]· is continuous.

If The proof for continuity of [[if Ec then E1 else E2 fi]]· is skipped because it
is similar to the one of sequential composition.

While Let d ∈ (Sn)ω be a chain. We first show that X· is continuous. By se-
mantic rule 11, for any g ∈ S, s ∈ State and s′ ∈ State ′, we have X⊔

d
(g).s.s′ =∑

t′T :P1

∑
t′:P2

[[Ec]]⊔d
.s.t′T × [[E]]⊔

d
.tT .t′ × g.t.s′ +

∑
t′F :P3

[[Ec]]⊔d
.s.t′F . Since the induction

hypothesis guarantees continuity of [[Ec]]· and [[E]]·, this equals
∑

t′T :P1

∑
t′:P2

⊔
[[Ec]]d.s.t

′
T ×
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⊔
[[E]]

d
.tT .t′×g.t.s′+

∑
t′F :P3

⊔
[[Ec]]d.s.t

′
F , which is

⊔ ( ∑
t′T :P1

∑
t′:P2

[[Ec]]d.s.t
′
T × [[E]]d.tT .t′×

g.t.s′+
∑

t′F :P3

[[Ec]]d.s.t
′
F

)
with the help of Lemmas 23 and 24. This equals

⊔Xd(g).s.s′,

so X⊔
d
=

⊔Xd for any d ∈ (Sn)ω and hence X· is continuous.

For [[while Ec do E od]]· to be continuous, FIXX· must be continuous. Notice that
Theorem 33 assures the existence of FIXXf for any f ∈ Sn. By Theorem 13 we
get FIXX⊔

j
dj

=
⊔

k∈N0

X k⊔
j

dj
(⊥S) and using Lemma 35 gives

⊔
k∈N0

⊔
j

X k
dj
(⊥S). Lemma 34

allows the use of Theorem 18 to swap the least upper bounds and rewrite this to⊔
j

⊔
k∈N0

X k
dj
(⊥S), which is just

⊔
j

FIXXdj
. So FIXX⊔

d
=

⊔
FIXXd for any d ∈ (Sn)ω

and hence FIXX· is continuous.

Method call The proof for the static method call is omitted because it is essentially
the same as this proof for the dynamic method call. Let d ∈ (Sn)ω be a chain. The
proof for nonprimitive methods is given first.

Nonprimitive methods
For any s ∈ State and s′ ∈ State ′, we have [[E m(E1, . . . , En)]]⊔d

.s.s′ =∑
t′0:P0

· · · ∑
t′n:Pn

∑
u:Q

[[E]]⊔
j

dj
.s.t′0× [[E1]]⊔

j
dj
.t0.t

′
1×· · ·× [[En]]⊔

j
dj
.tn−1.t

′
n×

⊔
j

dji.u.w′ (where i

corresponds to method m as specified in semantic rule 12). Since we know that [[E]]·
and [[E1]]·,. . . ,[[En]]· are continuous (by virtue of the induction hypothesis), this equals∑
t′0:P0

· · · ∑
t′n:Pn

∑
u:Q

⊔
j

[[E]]
dj
.s.t′0×

⊔
j

[[E1]]dj
.t0.t

′
1×· · ·×

⊔
j

[[En]]dj
.tn−1.t

′
n×

⊔
j

dji.u.w′. From

Definition 16 we obtain that dji S d(j+1)i for all j ∈ N and i ∈ {1, . . . , n}, whence
dji is a chain in j. We can thus repeatedly apply Theorem 18 to join the upper
bounds and use Lemma 23 to swap that upper bound with the summation. This gives⊔
j

∑
t′0:P0

· · · ∑
t′n:Pn

∑
u:Q

[[E]]
dj
.s.t′0×[[E1]]dj

.t0.t
′
1×· · ·×[[En]]dj

.tn−1.t
′
n×dji.u.w′, which equals⊔

[[E m(E1, . . . , En)]]d.s.s
′. But then [[E m(E1, . . . , En)]]⊔d

=
⊔
[[E m(E1, . . . , En)]]d for

all d ∈ (Sn)ω and hence [[E m(E1, . . . , En)]]· is continuous for nonprimitive methods.

Primitive methods
For any s ∈ State and s′ ∈ State ′, we have [[E m(E1, . . . , En)]]⊔d

.s.s′ =∑
t′0:P0

· · · ∑
t′n:Pn

∑
u:Q

[[E]]⊔
d
.s.t′0 × [[E1]]⊔d

.t0.t
′
1 × · · · × [[En]]⊔d

.tn−1.t
′
n ×

⊔
µ.u.w′. With sim-

ilar steps as in the case for nonprimitive methods this can be shown to be equal
to

⊔ ∑
t′0:P0

· · · ∑
t′n:Pn

∑
u:Q

[[E]]
d
.s.t′0 × [[E1]]d.t0.t

′
1 × · · · × [[En]]d.tn−1.t

′
n × µ.u.w′, that is⊔

[[E m(E1, . . . , En)]]d.s.s
′. Hence [[E m(E1, . . . , En)]]· is also continuous for primitive

methods. This completes the proof for the method call.

This concludes the proof that [[E]]· is continuous for any expression E ∈ Exp. �
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We now define the functional that is used to establish the (unconditional) semantics
of any expression E ∈ Exp.

Definition 37 Let f ∈ Sn and let Bi = M.C.m denote the meaning of method
m in class C for i = I.C.m. Let B ∈ Sn Sn, such that functional B(f) =(
[[B1]]f, . . . , [[Bn]]f

)
.

The meaning of an expression is then given by [[ · ]], the semantic function.

Definition 38 (semantic function) Let [[ · ]] ∈ Exp S be such that [[E]] =
[[E]]FIX B for any E ∈ Exp. [[E]] denotes the meaning of expression E.

As with the definition of while, this is a sound definition only if FIXB exists. Exis-
tence can be proved if (Sn,n

S) is a ccpo —which holds by virtue of Theorem 27—
and if B is continuous.

Theorem 39 B is continuous.

Proof of Theorem 39 Let f ∈ (Sn)ω. By definition of B we have B(⊔ f) =(
[[B1]]⊔f

, . . . , [[Bn]]⊔f

)
. Using continuity of [[E]]· for any E ∈ Exp, this can be rewritten

to
(⊔

[[B1]]f, . . . ,
⊔
[[Bn]]f

)
, which equals

⊔(
[[B1]]f, . . . , [[Bn]]f

)
, by definition of upper

bound of n-tuples. But this is
⊔B(f) and hence B is continuous. �

Theorem 40 FIXB exists.

Proof of Theorem 40 Because B is continuous and (Sn,n
S) is a ccpo with least

element ⊥nS , FIXB exists by virtue of Theorem 13. �

Because FIXB exists, the semantic function [[ · ]] is well-defined. This almost concludes
the semantics of the data layer. What remains to be described is the behaviour of
the primitive methods.

3.2.3.4 Primitive Methods
This section discusses the definition of D ∈ CName MName S, which specifies
the behaviour of primitive data methods. Only the most interesting methods are
discussed, others can easily be derived from the set of presented methods.

RandomNumberGenerator.Random
Let s ∈ State and let 6 ∈ I such that 6 > 0. We require from CDList that:

M.RandomNumberGenerator.Random ≡ random( )
primitive.

Then D.RandomNumberGenerator.Random = f , where f ∈ S is such that:

f.s.s′ =

{
1
6 if s′ = (s, β) where β ∈ {1, . . . , 6}
0 otherwise.
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The random number generator produces an integer that falls within {1, 6} with equal
probability. This is the source of transitions with probabilities other than one or
zero. The range of random numbers (determined by 6) can be chosen to easily fit the
implementation, as is shown in Section 3.3.4.

The following functions serve as an example for arithmetic primitive methods.

Integer.+
We require from CDList that:

M.Integer.+ ≡ +(x)
primitive.

Then D.Integer.+ is defined by:

D.Integer.+.s.s′ =


1 if s = (σ, λ, τ) such that λ = (γ1, ψ) with γ1 ∈ I and

Dom(ψ) = {x} with ψ.x = γ2 and γ2 ∈ I ∪ R and
s′ = (s, γ3), where γ3 = γ1 + γ2

0 otherwise.

Real.≤
We require from CDList that:

M.Real.≤ ≡ <=(x)
primitive.

Then D.Real.≤ is defined by:

D.Real.≤.s.s′ =


1 if s = (σ, λ, τ) such that λ = (γ1, ψ) with γ1 ∈ R and

Dom(ψ) = {x} with ψ.x = γ2 and γ2 ∈ I ∪ R and
s′ = (s, γ3), where γ3 = γ1 ≤ γ2

0 otherwise.

The shallowcopy method copies an object, and has each instance variable refer to the
object referred to by the corresponding instance variable of the original. Its definition
is as follows.

Object.ShallowCopy
We require from CDList that:

M.Object.ShallowCopy ≡ shallowcopy( )
primitive.

Then D.Object.ShallowCopy = f where f ∈ S is defined by:

f.s.s′ =



1 if s = (σ, λ, τ), λ = (δ, ψ), s′ = (s, δ) and δ ∈ PDObj
1 if s = (σ, λ, τ), λ = (δ, ψ), s′ =

(
(σ′, λ, τ ′), n̂

)
and δ ∈ NDObj

where n = MaxId(σ) + 1, σ′ = σ{φ/n̂} and τ ′ = τ{τ.δ/n̂},
where Dom(φ) = V(τ.δ) and φ(x) = σ.δ.x for each x ∈ Dom(φ)

0 otherwise.
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Building upon the shallowcopy is the deepcopy method that not only copies an object,
but also the objects that object (indirectly) refers to. The following definitions stem
from the definition of the deepcopy method in [41], where additional information and
soundness proofs can be found. To calculate the set of objects that should be copied,
function Cβ,σ,τ∈ 2Dom(σ) 2Dom(σ) is introduced, which is defined for V ⊆ Dom(σ)
by:

Cβ,σ,τ(V ) =


∅ if β ∈ PDObj
{β} ∪ V ∪ Vref if β ∈ NDObj ,

with Vref =
{
σ.β′.x ∈ NDObj

∣∣ for all β′∈ V

and x ∈ Dom(V(τ.β′)
)}

FIX Cβ,σ,τ is the set containing exactly β and all of its (indirect) references. Function
DC ∈ DObj ×Σ× T DObj ×Σ× T isolates the objects in this set, and is defined
by:

DC (β, σ, τ) =

(β, σ�FIX Cβ,σ,τ , τ�FIX Cβ,σ,τ ) if β ∈ NDObj

(β, σ′, τ ′)
if β ∈ PDObj , where
Dom(σ′) = Dom(τ ′) = ∅

To duplicate this set without changing the existing data structures stored in σ, the
following relabelling function Relabel+k

∈ (DObj × Σ × T ) (DObj × Σ × T ) is
presented. It increases the object identifiers of nonprimitive data objects by k, while
leaving primitive objects unchanged, and is defined by Relabel+k

(β, σ, τ) = (β′, σ′, τ ′),
where:

1. Dom(σ′) = Dom(τ ′) =
{
n̂+k

∣∣ n̂ ∈ Dom(σ)}
2. for all n̂ ∈ Dom(σ) and x ∈ Dom(σ.n̂):

σ′. n̂+k . x =

{
p̂+k if σ.n̂.x = p̂ ∈ NDObj
γ if σ.n̂.x = γ ∈ PDObj

3. for all n̂ ∈ Dom(σ), τ ′.n̂+k = τ.n̂.

The primitive deepcopy method is then defined as follows.

Object.DeepCopy
We require from CDList that:

M.Object.DeepCopy ≡ deepcopy( )
primitive.

Then D.Object.DeepCopy = f where f ∈ S is defined by:

f.s.s′ =


1 if s = (σ, λ, τ), λ = (δ, ψ), s′ = (s, δ) and δ ∈ PDObj
1 if s = (σ, λ, τ), λ = (δ, ψ), s′ =

(
(σ ∪ σ′, λ, τ ∪ τ ′), α

)
and

δ ∈ NDObj , where (α, σ′, τ ′) = Relabel+MaxId(σ)

(
DC (δ, σ, τ)

)
0 otherwise.
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3.3 Implementation

Section 3.2 formally specifies the data layer of POOSL: its abstract syntax and its
meaning. Several aspects still need attention before POOSL models can actually be
executed. Ambiguities in the abstract syntax, which have been discussed in Sec-
tion 3.2, will have to be removed before a compiler can be constructed that parses
POOSL descriptions. Then, a platform is presented for the actual execution of ex-
pressions, strictly conforming to the denotational semantics given in Section 3.2.

3.3.1 Compiler

The abstract syntax discussed in Section 3.2.1 specifies how data classes, methods and
expressions are built, but it provides insufficient information for constructing unique
parse trees. An extension of the abstract syntax, the concrete syntax, has additional
information that removes the ambiguities, allowing it to be parsed by a compiler. The
concrete syntax of POOSL’s data layer is defined in Appendix B.

After reading a specification, the compiler’s lexical scanner tries to recognise syntactic
elements such as keywords, identifiers, variables and operators. These elements are fed
into the parser , a finite state machine that uses the elements to construct a parse tree,
based on the syntactic rules of POOSL. This initial parse tree is then decorated, that
is, information stored in the nodes of the parse tree is rearranged, transformed and
extended. The decorated parse tree finally generates compiled bytecode functioning as
a description for calculating the data expressions in the original POOSL specification
— this is comparable with machine code for computers.

The example in Figure 3.2 shows the subsequent steps as an expression from the
human readable POOSL specification is being transformed into a machine-readable
fragment of bytecode. The lexical scanner recognises the following syntactic elements
in the character string x := 3 + true (A): an identifier “x”, “:=”, an integer “3”,
an operator “+” and finally a boolean “true”. From these elements, the parser builds
the initial parse tree shown in B, which is transformed during the decoration process
into the tree in C. D shows the generated fragment of bytecode for computing this
expression.

x := 3 + true

A

identifier "x"

":="

boolean "true"

integer "3"

operator "+"

lexical scanner result B parser result C decorated parse tree D generated bytecode

push 3

push true

call add()

pop x

execution
order

variable
"x"

assignment

method call
"add()"

integer
"3"

boolean
"true"

expression

variable

identifier
"x"

expression

operator
"+"

expression expression

":="

primary primary

integer
"3"

boolean
"true"

Figure 3.2: Compilation steps for data expressions. See text for a detailed explanation.
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Besides checking a specification for correct syntax, the compiler also enforces most8

of the context conditions (stated in Section 3.2.2) to be satisfied. Notice that the
example code is syntactically correct, even though it will generate a error at run
time, as the addition (+) does not accept a boolean parameter.

3.3.2 Virtual Machine

The platform introduced here executes POOSL data expressions in conformance with
their semantics (discussed in Section 3.2.3). The semantic rules listed in Appendix A.1
are used as a prescription for introducing the features of this so-called virtual machine.
Figure 3.3 depicts an overview of this execution platform. The program consists of
bytecode instructions assembled by the compiler for executing the data expressions
found in the POOSL specification. The stack contains references to data objects that
may hold intermediate results (the stack pointer SP refers to the top element). The
data objects themselves are allocated on a heap, which is managed by a garbage col-
lector. The processor is a finite state machine (FSM) that performs calculations based
on the instruction present at the program counter (PC). The following paragraphs
discuss in more depth the various features of this virtual machine.

byte code (program) stack heap (object store)

FSM (processor)

push 3

pop xPC

SP 0x03BF.25A0

0x03BF.2548

3

garbage collector

Figure 3.3: Overview of the virtual machine.

References to Objects Let s ∈ State be the current state of an executing object,
where s = (σ, λ, τ) and λ = (δ, ψ). The environment in which expressions are exe-
cuted, called a variables context , can be split into two parts: global variables and local
variables. The global variables are always present; they are the instance variables of
the executing object, which is either a data object or a process.

Variables refer to data objects which, in turn, can also have references to (other) data
objects through their instance variables. The objects (indirectly) known through the
global variables of the executing object are captured by φ = σ(δ). The local variables
context is only present if the execution takes place within a data method, and consists
of the parameters and local variables of that method. The objects reachable through
the local variables are captured by ψ.

8Some of the checks can only be performed by the execution engine during run-time.
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The virtual machine represents data objects by instances of class PDO and references
are pointers to such objects. References of a variables context are stored in an array
of pointers to objects of class PDO. The compiler maps each variable to a unique index
in that array. Local variables are stored separately from global variables allowing the
set of local variables to be changed efficiently upon entering and leaving the body of
a data method.

Stack During the execution of an expression, temporary objects may be constructed
retaining intermediate computational results. The virtual machine uses a stack to keep
track of these possibly unbound objects. To this purpose, the stack holds pointers to
the objects that could otherwise get lost.

The ordinary push and pop instructions allow references to be stored onto or be
removed from the stack. Semantic rule 1 states that the evaluation of a constant
expression leaves the current state s unchanged, and that it results in an object rep-
resenting that constant. If the constant expression is part of a compound expression,
its result will be used in the remaining evaluation of that compound expression. This
translates to a push instruction that creates a primitive data object for representing
the constant and leaves a reference to it on the stack.

Evaluation of an instance variable (semantic rule 2) also leaves state s unchanged,
but now the result is the object that is referred to by the respective variable. The
virtual machine will lookup the reference stored in the global variables context, using
the index of the variable, and push the reference onto the stack. For evaluation of a
local variable (semantic rule 3) the virtual machine uses the local variables context
instead.

Assignment to variables introduces a copy instruction. Semantic rule 7 shows the
assignment of β to global variable x, where β is the result of evaluating some expres-
sion E ∈ Exp. State s is changed such that it captures the new reference of variable
x to object β: σ′(δ) = σ(δ){β/x}. The virtual machine reflects this state change by
copying the reference at the top of the stack to the array at the index of the global
variable. Because the result of the assignment is β, the reference is left on top of the
stack. Assignment to local variables (semantic rule 8) is handled in a similar fashion.

Data Classes Table When the compiler analyses a POOSL specification, it will
create a table of the data classes it encounters. Each entry stores information such as
the number of global variables of the data class, its methods and its superclass. During
execution, the virtual machine’s object constructor will lookup this information and
use it to allocate sufficient memory for new objects and to initialise them properly.

The push instruction is used for object creation of nonprimitive data objects (semantic
rule 6) in a similar way as for implementing semantic rules 1, 2 and 3: the virtual
machine’s object constructor creates a new instance of the specified class C and
pushes a reference9 to it onto the stack. The constructor stores references to nil at

9Semantic rule 6 refers to the new object by n̂ whereas the virtual machine can uniquely identify
the constructed object by its address.
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each position in the object’s array of global variables, effectively setting all instance
variables to nil as is required by semantic rule 6.

The type-mapping function τ is adapted to τ ′ = τ{C/n̂} to store the type of n̂.
The virtual machine distributes this type-mapping function over the created objects,
by adding to each object a pointer to its class. This implementation choice will be
clarified when methods are discussed.

Ec

test

E1

E2

jump

Ec

test

E

jump

push nil

if Ec then E1 else E2 fi while Ec do E od

execution
order

Figure 3.4: Code layout for if and while.

Conditional Execution The execution of if and while raises the need for jump-
ing. Depending on the condition of these expressions, different execution paths have
to be followed and to this end two instructions are introduced: the unconditional
jump (jump) and the conditional jump (test). We will first discuss the execution
of if. Semantic rule 10 specifies that condition Ec is to be evaluated in the current
state (s) and then, depending on the outcome, E1 or E2 has to be evaluated in the
possibly changed state t′T or t′F . The virtual machine will first evaluate condition
Ec, leaving a reference to the result on top of the stack. The test instruction pops
the reference off the stack and, if the referred object represents false, jumps to the
address corresponding to the first instruction of the else-branch E2. Otherwise, if the
condition has evaluated to true, execution continues with the next instruction (which
is the first instruction of E1). Figure 3.4 shows the layout of the instructions for if
and while. After executing E1, an unconditional jump instruction forces the virtual
machine to skip over the instructions of E2.

Since the evaluation of while Ec do E od has the same effect as evaluating the expres-
sion
if Ec then E; while Ec do E od else nil fi, it is easy to see that this can be
translated to the code layout in Figure 3.4, where a jump is taken only if condi-
tion Ec evaluates to false. The virtual machine then jumps to a push instruction
to put the result of this while (which is nil, see semantic rule 11) on top of the
stack. However, if Ec evaluates to true, the body (E) is evaluated after which an
unconditional jump brings the virtual machine back to the first instruction of Ec for
the next iteration.
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Methods The execution of method calls is defined by semantic rules 12 (dynamic)
and 13 (static). We will first discuss the dynamic method call. Its execution starts
with the evaluation of E. The resulting object, β0, is the object that will exe-
cute method m. Since in general, β0 can not be determined beforehand (at compile
time), the corresponding method is unknown and the virtual machine must employ
late method binding. Before the method is called, though, the parameters to the
method are evaluated from left (E1) to right (En). Then, the corresponding method
is searched. The semantic rule uses M.τ0(β0).m to find the method definition cor-
responding to m, based upon the type of β0. The virtual machine evaluates E and
leaves a reference to its result on top of the stack. As was mentioned in the discus-
sion of the data classes table, each object carries a pointer to its class, so that the
virtual machine can easily determine the object’s type and use the method binding
table stored in the corresponding data class to find the method definition of m. The
method binding table is simply a list that maps method names to pieces of bytecode
representing their bodies. The compiler fills the table such that it implements method
inheritance as prescribed by lookup functionM (Section 3.2.3.2).

After the method is found, the virtual machine creates a new local variables context to
store the method parameters and its local variables. The method parameters should
be bound to the results of E1 . . . En and the local variables of the method should be
initialised to nil . Instead of creating a new variables context on the heap and copying
the references from the stack, the variables context is created on the stack in such a
way that the references to the results of E1 . . . En are already stored at the correct
positions (Figure 3.5). The local variables in the variables context are initialised by
pushing sufficient references to nil onto the stack.

The virtual machine now changes the executing object to β0, but stores both a refer-
ence to the currently executing object and the address of the instruction following the
method call onto the stack to be able to return after the method body has ended. The

previous LV
return address

local variables
of method

method
parameters

selfLV, self

SP

stack

LV
stack frame

Figure 3.5: A stack frame stores the local variables (LV) of a method and other information
such as the return address and the previous stack frame (coincides with the previous local
variables environment).
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collection of the reference to the executing object, the local variables of the method
and the return information is called a stack frame. When the virtual machine has
adapted the local variables environment and has set the instruction pointer to the first
instruction of the method body, execution of the method body can commence. The
virtual machine executes a return instruction to return to the instruction following
the method call when execution of the method body has ended, thereby restoring the
executing object and local variables context, while leaving the result of the method
on top of the stack.

For the execution of super method calls, the static method call instruction is added
to the instruction set of the virtual machine. It is similar to the dynamic method
call, except that the address of the method body can be fixed at compile time, not
requiring the table lookup at run time.

Discarding Results The expressions that were discussed so far invariantly left
their result on top of the stack. Sequential composition (semantic rule 9) evaluates
E2 in the state left after executing E1, but discards result β of E1. The reference to
the result is removed from the stack with a pop instruction.

Since assignment to a variable would often lead to a copy instruction followed by a
pop instruction, a small optimisation is introduced by combining both instructions
into a special pop instruction that pops the reference off the top of the stack and
stores it into a variable.

3.3.3 Garbage Collection

POOSL offers no construct to deallocate data objects explicitly. Instead, the virtual
machine relies on automatic storage reclamation to remove obsolete objects. Without
it, the virtual machine would rapidly deplete its memory.

Garbage collection relieves the designer from the sometimes difficult task to determine
the time at which objects can be deleted. Failing to remove objects introduces memory
leaks, causing (slow) exhaustion of free memory. Deallocating an object too early can
cause even stranger behaviour: when the free memory space it leaves behind is reused
by a new object, pointers to the deallocated object give access to the wrong data.
The latter kind of errors is particularly hard to debug, as their prolonged effect is
usually detected long after the rash deallocation has taken place. A survey on these
errors and related ones can be found in [57].

The luxury of relegating objects to oblivion and relying on garbage collection to
reclaim them does not come for free. Programs with manual deallocation tend to
consume less memory and run slightly faster than programs relying on automatic
storage reclamation [59], be it at the increased risk of introducing errors that are
difficult to track down, as was discussed above. The time spent on removing these
errors hardly ever justifies the slight increase in performance.

During the development of a simulator for POOSL, several garbage collection schemes
were implemented. Before discussing these schemes and weighing their pros and cons,
a general overview of storage reclamation is given.
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Overview The user program is called the mutator . It produces and modifies a
collection of data objects, which can be viewed as a directed graph. Data objects are
represented by nodes, and the outgoing edges correspond to their references to (other)
data objects. The root set represents the data objects that are directly accessible
through variables. Through the references stored in these variables, the mutator can
access its data. A data object is unreachable if no path exists leading from the root
set to the object. The goal of the (garbage) collector is to find and reclaim the objects
that have become unreachable.

Reference counting Probably the most straightforward approach is to keep track
of the amount of references that point to a data object [10]. When this reference
count reaches zero, the object cannot be reached and by consequence can be safely
reclaimed. Before deallocating the object, its references are removed, while properly
adjusting the reference counts of the referred objects. Reference counting is without
doubt the easiest form of garbage collection to implement, but it has some serious
flaws: it fails to collect data trapped in cycles10 [32] and it can impose a highly
irregular computational load. The latter aspect is important in case the mutator is a
real-time application. Such a program requires a garbage collector with a predictable,
more uniform behaviour to know in advance it will meet its deadlines. The load of a
reference counting collector can be unacceptably large when a single reference count
reaching zero triggers a cascade of other objects becoming unreachable.

Such a deluge will in general not be harmful for simulation purposes, except that the
user may notice an apparent disruption in the normal behaviour of the simulator.
Several techniques exist to modify reference counting collectors and remove their
irregular behaviour [57]. However, it is a problem that reference counting fails to
collect unreachable objects trapped in cycles. We do not want to impose restrictions
on the mutator (read: the POOSL model) to ensure that the data graph is acyclic,
because this would limit the freedom of the modeler and require actively removing
references to break down cycles. Instead, a more sophisticated collector is required.

Mark Sweep The name of this garbage collection algorithm is derived from the two
phases it repeatedly passes through. During the first phase, reachable nodes in the
data graph are marked by a scanner, so that during the second phase the unmarked,
and therefore unreachable, objects can be swept (deallocated) from memory [33].

The entire process is repeated at such a rate that performance loss and memory usage
are in balance. The total amount of garbage the mutator produces is independent of
the behaviour of the collector. When the collector traverses the data graph frequently,
a lot of computational power is wasted, since each collection cycle will, on average,
reclaim only little garbage. If, on the other hand, the collection cycles are performed
infrequently, a lot of memory will be retained by garbage waiting to be found. At
any moment, the amount of garbage found by a Mark-Sweep collector lags behind
the quantity that would have been reclaimed by a reference counting collector (in the
absence of cyclic data); this translates to an increased memory usage.

10For example: the reference count of an object holding a reference to itself can never become less
than one, and will therefore not be reclaimed.
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Initially, the simulator was fitted with an incremental Mark-Sweep collector. Incre-
mental means that the garbage collector does not have to finish its entire cycle before
it relinquishes control to the mutator. The implementation of such a collector is more
intricate than its non-incremental counterpart because the data graph can change dur-
ing a single collection cycle. Usually, non-incremental garbage collectors are suitable
to (and sufficient for) simulation purposes, since real-time behaviour is not an issue11,
but the prospect of being able to reuse the algorithm for other synthesis targets made
the implementation of an incremental collector worthwhile12.

The Mark-Sweep algorithm uses three colours to discern the following three sets of
objects: white objects, which have not been seen by the scanner (yet); gray objects
that still need to be scanned; and black objects, which have been scanned and are
reachable. Initially, all objects are white and scanning commences by making the
objects in the root set gray. We will conveniently speak of a gray reference whenever
we are talking about a reference to a gray object.

The scanner operates on gray objects only. Upon inspecting an object, the scanner
colours it black and marks the object’s white references gray. This process is repeated
until no gray objects are left; any residual white objects went undetected by the
scanner and can be reclaimed. The remaining objects are reverted from black to
white prior to entering the next marking phase.

During scanning, the following invariant should hold [11]: black objects have no white
references. Suppose what happens if the invariant is broken: let a black object hold
the only reference to a white object. Since the scanner only inspects gray objects, the
white object will never be marked black and will eventually be reclaimed undeservedly.
This faulty behaviour can only occur if the data graph is being changed while scanning
is in progress, that is, if the mutator and the (incremental) collector run in parallel.
The mutator should therefore always check the colour of the involved objects upon
changing a reference and if necessary, mark the referred (white) object gray to keep
the invariant. Note that marking it black is incorrect as the object itself may provide
the only link to other white objects as well.

The implemented incremental Mark-Sweep collector uses an integer pivot to discern
the four(!) sets it operates on. The fourth set (containing dead objects) springs from
the lazy object recycler that deallocates objects gradually, even while the next mark-
ing phase may have started. To keep track of all objects (especially the unreachable
ones), the objects are stored in a circular doubly-linked list: the chain. Each object
has an integer state that determines its colour: if the object’s state is below the pivot
it is considered dead, if the state equals the pivot it is white, and gray and black
objects have a state larger than the pivot. A stack stores the gray objects, which the
scanner still has to inspect. The marking phase is finished when the stack becomes
empty, and at that moment the pivot will be increased. Any white objects left are
now considered dead (since their state is just below the new pivot), and black objects

11An exception could be in-situ simulation (prototyping) discussed in Chapter 7.
12Leaving out of consideration that creating an error-free implementation turned out to be a

torment of Tantalus. . .
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have instantly become white. Then, the stack is refilled with the objects in the root
set and the next marking phase commences.

First Hybrid Approach As it turned out, garbage collection took considerable
time if a model created a lot of data. The culprit was the huge amount of objects
produced by the mutator. In order to lower this quantity, a hybrid scheme was
devised. A close inspection of the data graph reveals that it contains two parts. One
part (say G1) is formed by objects that can have references to other objects, whereas
the other part (say G2) contains the objects without references. When the graph is
cut in such a way that both parts become severed, edges over this cut are always
directed from G1 to G2, since objects in G2 have no references. Objects in G1 can
therefore never be accessed by objects in G2 and the collector can restrict itself to
inspecting objects in G1 for determining garbage. Objects in G2 can never be part of
cycles and can hence be reclaimed by reference counting.

The hybrid collection scheme uses the Mark-Sweep algorithm on nonprimitive data
objects (comprising G1) and applies reference counting to reclaim primitive data
objects (of classes Boolean, Integer, Real, String and Nil). For most simulations,
the primitive data objects form the larger part of the data graph. The amount of
objects the Mark-Sweep collector has to maintain is therefore significantly reduced,
thus diminishing the performance loss induced.

Second Hybrid Approach An alternative hybrid scheme proved to be advanta-
geous for simulation as well. Exploiting the fact that reference counting imposes a
lighter computational burden than the Mark-Sweep algorithm, the latter is applied
only once in a while for reclaiming the cyclic garbage that reference counting fails to
collect. This scheme requires the implementation of the Mark-Sweep collector to be
non-incremental: if reference counting decides that an object is garbage, it will deallo-
cate it immediately. However, if it is currently stored in the stack of the Mark-Sweep
collector, it has to be removed from this singly-linked list first. Given the average
occupation of the stack, this will be quite an expensive operation. Of course, the
stack could have been implemented as a doubly-linked list, making removal from the
stack cheap enough to render this hybrid scheme attractive compared to the schemes
discussed previously. However, the memory overhead for an object without any ref-
erences will then total to 7× 4 = 28 bytes on a 32-bits machine (pointer to its class,
32-bits reference count, two pointers to build the chain, two pointers to build the
stack and 32 bits to hold the object’s state). In actual simulations, data objects oc-
cupy a significant part of the total amount of memory required at run time, justifying
optimisations that will lower their overhead.

The only reason for storing objects in the chain is to keep track of them once they
have become unreachable through the root set. Since objects stored in the stack
cannot get lost, there is no need to store them in the chain as well. So, when an
object becomes gray it can be removed from the chain and be added to the stack,
using the very same pointers that are used for storing it in the doubly-linked chain.
This reduces the overhead to 5 × 4 = 20 bytes. At this point the implementation of
the Mark-Sweep collector starts to expose a strong resemblance to another garbage
collection scheme which is also known as Baker’s Treadmill.
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Baker’s Treadmill Baker’s Treadmill [1] is a large cyclic doubly-linked list con-
taining all registered data objects, just like the chain in the Mark-Sweep implemen-
tation. The treadmill identifies four segments and uses pointers to delimit them. The
segments in cyclic order contain: objects that have been processed (black objects),
objects that should be scanned (gray objects), objects that have not been marked
(ecru objects), and finally the objects that can be reclaimed (white).

Initially, the black segment is empty and the gray segment contains the objects in
the root set. Notice that the gray segment corresponds to the stack of the Mark-
Sweep implementation. The top of the stack is adjacent to the black segment, its
bottom borders on the ecru segment. When the scanner inspects the object on top
of the stack, it first makes the object black, simply by advancing the top pointer to
the next gray object, and checks for ecru references. The corresponding objects are
moved from the ecru segment to the top of the gray section for depth-first traversal
or, alternatively, to the bottom for breadth-first ordering. Notice that only a single
bit is needed to discern ecru references from other references. When the gray section
becomes empty, the remaining ecru objects can be added to the list of dead (white)
objects, simply by changing the pointer that denotes the border between the ecru
segment and the dead objects. Before the next scanning phase can be repeated, the
interpretation of the ecru and black objects is interchanged. This eliminates the need
to reset the bit stored in the objects in the black section to make them ecru.

The simulator currently employs the hybrid incremental garbage collection scheme as
it was suggested for the Mark-Sweep collector, except that it uses Baker’s Treadmill
to reclaim cyclic garbage.

Object Recycling After identifying which objects are considered garbage, the ob-
jects can be deallocated to reclaim the memory they occupy. Instead of deallocating
the objects, the collector recycles them. The recycled instances are stored in a list
kept by their data class, so that when a new object is requested one can be pro-
vided immediately, not making use of the expensive allocation process of the memory
manager. Recycling leads to an increase in simulation speed of roughly a factor of
two or three. Each class stores only a limited amount of objects, balancing between
memory usage and performance. The amount of objects that is being recycled is set
heuristically. If the list is full, additional (dead) objects will not be recycled, but will
be deallocated to preserve memory.

3.3.4 Primitive Methods

Primitive data methods are needed to implement behaviour that cannot be described
by POOSL data expressions. The body of a primitive method is implemented in
a native language, for instance C++ or Smalltalk. Primitive methods can also be
used to control hardware, by having them communicate with a device driver (see
Chapter 7). Examples of primitive methods are random, deepcopy, shallowcopy
and == (identity); see Section 3.2.3.4 for their semantics.

Random The need for a good implementation of a random number generator should
not be underestimated. In general, the random number generator offered through
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library functions have demonstrably nonrandom characteristics [39]. The denotational
semantics makes clear that probabilistic characteristics of a model depend on the
distribution of numbers produced by the random number generator. This distribution
is defined to be uniform and the performance analyses build upon this assumption
— if the generator’s implementation produces a different distribution, performance
metrics will simply be incorrect.

Method random of class RandomNumberGenerator implements the behaviour defined
by D.RandomNumberGenerator .Random. The initial implementation used Lehmer’s
prime modulus multiplicative linear congruential generator [28] to produce a large
sequence of numbers uniformly distributed from 1 . . . 231 − 1 that will satisfy almost
any statistical test of randomness [39]. Recent progress in research has made avail-
able random number generators with much longer sequences. Therefore, Lehmer’s
generator has been replaced by an implementation of the Mersenne Twister [31],
which has a period of 219937 − 1.

The algorithm is only random in the sense that it simulates a random draw (without
replacement) that is statistically indistinguishable from a sequence really drawn at
random. The algorithm can be completely deterministic if the seed (first sample) is
known. Traces can therefore be completely reproducible, which is ideal for debugging.

Alternatively, the set of produced random numbers can be chosen to be small, thus
simplifying an exhaustive analysis of the model.

DeepCopy When a deepcopy method is sent to an object, the method body calls
a native deepcopy function to traverse the data graph of the object and the objects
(indirectly) accessible through its references for constructing a replica of that graph
(as prescribed by D.Object.DeepCopy). The algorithm is as follows, starting with N
being the data object that executes the deepcopy method (Figure 3.6).

Let object N be the argument to the deepcopy function. The function marks the
original object N , creates a copy Ncopy and stores a reference to Ncopy in N . The
deepcopy function is called recursively to copy the references of N . The instance
variables of Ncopy are then set to point to the copied references.

original deepcopy

copy

N Ncopy

Figure 3.6: The deepcopy algorithm marks the nodes it traverses and stores references
to copied objects. After copying the entire structure, these markings and references are
removed, and the deepcopy (right) is returned.
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The traversal is in depth-first order and each node is marked to prevent objects from
being copied twice. Without giving any proof, we mention that the set of marked
objects corresponds to the set of objects calculated by FIX Cβ,σ,τ (where β is the object
executing the deepcopy method) in Section 3.2.3.4. Each object in the original data
graph stores a reference to its copy to provide the same object in case the deepcopying
algorithm revisits it via different paths (Figure 3.6).

After the original graph has been copied, the markings are removed, and the copy is
returned to the deepcopy method.

ShallowCopy Like the deepcopy method, shallowcopy requires a primitive im-
plementation. Only the object that receives the shallowcopy message is copied, and
the references of the copy are set equal to the references in the original.

Identity (==) The identity method returns true if and only if the receiving object
and the operand to this message are one and the same. Primitive objects are identical
if they represent the same mathematical object, and nonprimitive objects are identical
if they are stored at the same memory address.

3.4 Summary
The first part of this chapter has specified the new abstract syntax for the POOSL
data layer and has redefined its formal meaning in terms of a denotational semantics.
This new semantics adds probabilistic features to support performance modelling
[55]. Adding probabilistic information at the data layer instead of the process layer
as in [54] solves the problem identified in [52] of having to specify rather arbitrary
probabilities for operators that model nondeterministic behaviour. In the denotational
semantics developed here, the probabilistic behaviour springs from method Random of
class RandomNumberGenerator , which returns a uniformly distributed integer value
in {1, . . . , 6} — composite expressions then combine these probabilities.

Local and global recursion complicate the construction of a compositional definition
of while and nonprimitive data methods. This problem is overcome by introducing
a functional whose least fixed point serves as the compositional definition of the
meaning of while. Because POOSL supports dynamic method calls, the behaviour of
nonprimitive methods cannot be unfolded (as is often done in literature) and therefore
an approach similar to the one for while is employed to obtain a compositional
definition.

To be able to actually create executable models, a concrete syntax for POOSL is
defined (Appendix B) that resolves the ambiguities present in the abstract syntax of
Section 3.2.1. Using the formal semantics in Section 3.2.3 as a prescription, a plat-
form for executing expressions is developed: the virtual machine (Section 3.3.2). The
bytecode for this machine is provided by a compiler that also checks if the compiled
POOSL specification (model) satisfies the context conditions stated in Section 3.2.2.
POOSL offers no manual way to perform memory management, but rather relies on
a garbage collector to reclaim obsolete data objects instead. The simulator employs

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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a hybrid incremental garbage collection scheme based on reference counting comple-
mented by Baker’s Treadmill to cleanup cyclic data.

Several collection schemes have been implemented and evaluated for simulation pur-
poses (Section 3.3.3). Reference counting cannot remove unreachable cyclic data
structures, and is therefore inadequate. Mark-Sweep collection can reclaim any data
structure, but induces a performance loss in simulation speed proportional to the size
of the data graph it traverses and increases the memory requirements significantly.
A hybrid approach identifies that primitive data cannot produce cycles, and uses ref-
erence counting to reclaim this data, while the remaining (significantly reduced) set
of nonprimitive data is managed by the Mark-Sweep collector. A second hybrid ap-
proach uses reference counting on all data, but uses an incremental Baker’s Treadmill
to collect the garbage reference counting fails to reclaim. The simulator currently
employs the latter hybrid scheme.
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Chapter 4

POOSL Process Layer

4.1 Overview
After describing the abstract syntax of POOSL process statements (or just state-
ments), this chapter discusses the structural operational semantics that defines the
meaning of the process layer. The semantics also describes the probabilistic features of
process statements, using the probabilistic information extracted from the data layer.
Finally, execution of process statements by means of execution trees is explained.

4.2 Specification

4.2.1 Abstract Syntax

The syntactic categories used for the discussion of the syntax and semantics of the
POOSL process layer have already been introduced in Section 3.2.1. Some of the
definitions of that section are extended here.

The definition of ClassDef is augmented by process class definitions:
CD = process class C(y1, . . . , yr)

[ extends Csuper ]
port interface p1 · · · pg
message interface ms1 · · ·msh
instance variables x1 · · ·xn

initial method call m
C′(E1, . . . , Eq)( )

instance methods MDp
1 · · ·MDp

k.

A process class definition starts by defining the name C of the class. Some of the
instance variables (x1 . . . xn or inherited variables) serve as instantiation parameters
y1 . . . yr.1 Upon initialisation these variables are set to the results of parametric
expressions provided by cluster classes; this is discussed in Chapter 5. Other variables
are set to nil . Optionally, a process class can inherit from another process class

1In fact {y1, . . . , yr} ⊆ V(C), where V(C) is the set of all (inherited) instance variables (see
Section 4.2.3).
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(Csuper ). Like data objects, processes have instance methods. The initial method call
specifies which method is to be called first after the process has been created. Like
the static data method call, m

C′(E1, . . . , Eq)( ) refers to method m, defined in class
C ′. In practice, the compiler restricts method calls to the set of (inherited) methods
defined in the process class of the caller (see Section 4.2.3).

Each instance of the process class will be equipped with the communication ports
listed in the port interface. Ports are merely denoted by (non-empty) strings: p is a
typical element of the set of ports Ports = S \ {""}. The message interface defines
the signatures of the messages that travel across the ports. Variable ms is a typical
element of MsgSignatures that is defined by:

ms = p!m(n)
| p?m(n).

Each signature defines the name p of the port that accepts sending or receiving mes-
sages called m with n parameters. The architecture layer can impose additional re-
strictions on communication before processes are interconnected by channels — these
details will be discussed in Chapter 5.

The instance methods of a process class, process methods, are elements of MethDef p

(the annotation p discerns MethDef p from MethDef defined in Section 3.2.1):

MDp = m(u1, . . . , un)(w1, . . . , wk)
|z1 · · · zm|
Sb.

Each method definition starts with the name of the method (m) followed by input
parameters u1 . . . un, output parameters w1 . . . wk and local variables z1 . . . zm. The
method body Sb is an element of Statb, the set of basic statements:

Sb = E expression
| skip skip
| delay E delay
| Ep!m(E1, . . . , En){E} message send
| Ep?m(v1, . . . , vn|Erc){E} message receive
| m

C
(E1, . . . , En)(v1, . . . , vk) method call

| [E]Sb guarded command
| if E then Sb

1 else Sb
2 fi if

| while E do Sb od while
| Sb

1;S
b
2 sequential composition

| par Sb
1 and Sb

2 rap parallel composition
| sel Sb

1 or Sb
2 les select

| abort Sb
1 with Sb

2 abort
| interrupt Sb

1 with Sb
2 interrupt.

Most expressions E ∈ Exp are also valid statements2. The skip models an execution
step that does not change the variables state of the model; it is syntactic sugar for

2The context conditions in Section 4.2.2 elaborate on the forbidden constructs.
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nil and is for example a convenient placeholder for behaviour that will be filled out
later when refining the model.

Passage of time is modelled by a delay. The amount of time to pass is given by the
accompanying expression, which should evaluate to a Real3 or an Integer.

Next, two statements for interprocess communication are defined. Both constructs
specify the communication port the message should be sent to or received from. Only
if the connected channel has a matching (complementary) message, communication
can take place. This rendez-vous message exchange is based on the synchronous
pair-wise message passing mechanism of CCS [34, 35].

The message send statement Ep!m(E1, . . . , En){E} models a message m being sent
to the port whose name corresponds to the string resulting from evaluating Ep. When
a rendez-vous takes place, the parameters E1 . . . En are evaluated from left to right
and are deepcopied4 before their results are bound to the parameters v1 . . . vn of the
complementary message receive statement E′

p?m(v1, . . . , vn|Erc){E}. After binding
the data, the reception condition Erc of the receive statement is evaluated and only
if the result is true, the communication can actually take place. If the reception
condition evaluates to false, communication cannot take place, and the model’s state
is reverted to the state prior to the rendez-vous. Communication statements can
optionally be equipped with an expression (E) that is evaluated immediately after
communication has taken place.

The following statement is the (process) method call with input expressions E1 . . . En

and output parameters v1 . . . vk. When the corresponding (process) method m is
called in class C, the input expressions are evaluated from left to right and the results
are bound to the method’s input parameters. After the method’s body has been
executed, the output parameters are bound to variables v1 . . . vk as specified in the
method call. Process methods without output parameters allow for tail-recursion;
this facilitates the modelling of repetitive behaviour.

The guarded command [E]Sb limits the execution of Sb. Only if condition E evaluates
to true is Sb allowed to execute, for any other value the guarded command blocks.

Conditional execution of statements is offered by the if. If condition E evaluates to
true, Sb

2 is discarded, leaving Sb
1 for execution. If E evaluates to false instead, Sb

1 is
discarded, leaving Sb

2 for execution.

The while repeatedly executes statement S as long as condition E evaluates to true.

Sequential composition (Sb
1;S

b
2) specifies that the execution of Sb

1 must be finished
before Sb

2 is being executed. Parallel composition, on the other hand, allows for any
interleaving of the execution steps of concurrent activities Sb

1 and Sb
2. The select

allows two alternative statements to compete for execution. Only the first one that
actually starts executing may proceed, the other statement is discarded.

3We use “a C” as a shorthand for “an instance of class C”.
4Processes are not allowed to share data objects and therefore the result is deepcopied. The

deepcopies are used by the receiver and are unknown to the transmitter.
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An executing statement can be terminated prematurely if it is enclosed by an abort.
When Sb

2 performs an execution step, Sb
1 is aborted. A similar construct is the

interrupt. However, when Sb
2 performs a step, S

b
1 is merely suspended, and continues

where it left off after Sb
2 has terminated. Sb

1 can be interrupted by Sb
2 repeatedly.

Several semantic rules require additional constructs for representing intermediate ex-
ecution states. For instance, a method call executing the body of the corresponding
method must be remembered, so that the output parameters can be bound upon
termination of the body. To this end, an extended set of statements Stat is defined,
which contains constructs similar to the basic constructs of Statb and a few more:

S = E
| skip

| delay E
| Ep!m(E1, . . . , En){E}
| Ep?m(v1, . . . , vn|Erc){E}
| m

C
(E1, . . . , En)(v1, . . . , vk)

| [E]S
| if E then S1 else S2 fi

| while E do S od

| S1;S2

| par S1 and S2 rap

| sel S1 or S2 les

| abort S1 with S2

| interrupt S1 with S2

| delay t̃
| p̃!m(E1, . . . , En){E}
| p̃?m(v1, . . . , vn|Erc){E}
| m

C
( )(w1, . . . , wk)[S]

ψ

| [S ]ψ

| interrupt S1 with S2, S3

| S1 interrupted by S2, S3

| √
.

A delay that expires in t units of time is denoted by delay t̃ . The tilde distinguishes
this statement from delay t, which denotes a delay whose expression (the variable
t) has not yet been evaluated.

The statement p̃!m(E1, . . . , En){E} denotes a send statement whose port identifier
has evaluated to p and is kept fixed at that value (suggested by the tilde). Likewise,
p̃?m(v1, . . . , vn|Erc){E} denotes a receive statement that has been fixed and is ready
to communicate.

A method call, currently executing the remainder S of the corresponding method
body in local variables context ψ, is denoted by m

C
( )(w1, . . . , wk)[S]

ψ. It stores
the parameters w1 . . . wk for binding when the method terminates. For an executing
method call without return parameters, only the body and the local variables context
it executes in are preserved, yielding [S]ψ.
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For restoring a finished interrupt to its original state, interrupt S1 with S2, S3 is
introduced. S1 is the statement that can still be interrupted by S2, where S2 originally
emanated from S3. An executing interrupt (with suspended S1) is denoted by
S1 interrupted by S2, S3. When the currently executing interrupt S2 has ended, it
will be restored to S3.

Finally,
√

(pronounced tick) denotes the terminated statement.

4.2.2 Context Conditions

Besides the conditions stated in Section 3.2.2, additional context conditions must be
fulfilled by a system specification:

1. The inheritance graph of process classes is free of cycles.
2. All (inherited) instance variables and instantiation parameters of a process class

definition have different names.
3. All (inherited) methods of a process class are discernable by their name5.
4. All parameter and local variable names in a process method definition are dif-

ferent.
5. Every variable used in a process method body is either an inherited instance

variable of the corresponding class, or, a method parameter or a local variable
of that method.

6. The use of self within a process method is forbidden.
7. The actual parameters to an initial method call do not contain any local vari-

ables nor do they use self.
8. Every method call invokes an existing method definition.
9. Parameters of message-send statements and expressions of guards are side-

effect free and deterministic.
10. All (inherited) variables and ports in a process class have different names.

4.2.3 Structural Operational Semantics

G.D. Plotkin introduced the technique of structural operational semantics in [40].
Section 2.4 has provided preliminary knowledge that will now be tailored to POOSL.

The meaning of statements is specified by the timed probabilistic labelled transition
system (Conf ,Act ,

Act
,Time,

Time+ ). The countable set of configurations (Conf )

is ranged over by c. Configurations have the form6
(
[S]ψ

C
, σ, τ

)
. The first component,

[S]ψ
C
, represents the statement S ∈ Stat that is to be executed in the context of class

C and local variables context ψ. The global variables context is stored in σ, while
type information can be found in τ .

5In the concrete syntax this is relaxed to a unique combination of name and parameter count.
6Actually, the set of configurations is larger, and is defined completely in Section 5.2.3.
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Act is the set of actions, ranged over by a. Three different kinds of actions can be
identified:
• the internal action τ (also called silent action), denoting an internal computa-
tion that is unobservable for the system’s environment;
• communication actions (or synchronisation actions) of the following forms: the
(message) send action p!m[data], denoting the system’s willingness to send a
message m with data to port p; and the (message) receive action p?m[data],
denoting that the system is susceptible to receiving a message m with data
from port p ;
• the fix action f , denoting an internal action that does not affect its context7.

The subtle difference between the internal action τ and fix action f will be explained
later. The set of communication actions will be called L. When the exact signature
of a communication action is not important, it is denoted by 9. The complement
function · ∈ Act Act is defined in such a way that p!m[data] = p?m[data] and
such that it does not affect the internal action and fix action (τ = τ and f = f). The
complement function is extended to the whole of L, so that 9 = 9. The time domain
Time, ranged over by t, should satisfy the definition in Section 2.4 and can either
be discrete or dense. Each process is equipped with a special instance variable called
currentTime that equals the model time.

To describe the probabilistic effect of executing a statement, a set of substochastic
probability functions is defined (comparable with Definition 20 for expressions). These
functions bind probabilities to configurations.

Definition 41 (substochastic probability function)

Let P(Conf ) =
{

π ∈ Conf R
∣∣∣ ∑
c∈Conf

π.c ≤ 1
}
.

The sum of probabilities from a particular configuration to any other configuration
may be less than one because of nonterminating loops. For all π ∈ P(Conf ),

∑
c∈Conf

π.c

is a well-defined series because its terms π.c are non-negative, the sequence of its
partial sums is bounded (by one) and Conf is countable.

The semantics uses two labelled transition relations to describe the effect of state-
ments: one describes action steps, the other describes the passage of time (delay
steps).

Definition 42 (action transitions)
We let the action transitions ·

Act
· · ⊆ Conf × Act × P(Conf ) be defined by the

semantic rules 14 through 37 in Appendix A.2.

Definition 43 (time transitions)
We let the time transitions ·

Time+
· · ⊆ Conf × Time+ × Conf be defined by the

semantic rules 38 through 52 in Appendix A.2.
7By context, we mean the behavioural description of the executing process, not its variables state.

This is explained in full detail in Section 4.2.3.1.



4.2 Specification 63

Table 4.1: The termination function
√ ∈ Stat Stat .

S
√
(S)

E E

skip skip

delay E delay E

Ep!m(E1, . . . , En){E} Ep!m(E1, . . . , En){E}
Ep?m(v1, . . . , vn|Erc){E} Ep?m(v1, . . . , vn|Erc){E}
m

C
(E1, . . . , En)(v1, . . . , vk) m

C
(E1, . . . , En)(v1, . . . , vk)

[E]S
√

if
√
(S) =

√

[E]
√
(S) otherwise

if E then S1 else S2 fi if E then S1 else S2 fi

while E do S od while E do S od

S1;S2 S2 if
√
(S1) =

√
√
(S1);S2 otherwise

par S1 and S2 rap
√
(S2) if

√
(S1) =

√
√
(S1) if

√
(S2) =

√

par
√
(S1) and

√
(S2) rap otherwise

sel S1 or S2 les
√

if
√
(S1) =

√

or
√
(S2) =

√

sel
√
(S1) or

√
(S2) les otherwise

abort S1 with S2
√

if
√
(S1) =

√

or
√
(S2) =

√

abort
√
(S1) with

√
(S2) otherwise

interrupt S1 with S2 interrupt S1 with S2

interrupt S1 with S2, S3
√

if
√
(S1) =

√

interrupt
√
(S1) with S3, S3 if

√
(S1) �=√

and
√
(S2)=

√

interrupt
√
(S1) with

√
(S2), S3 otherwise

S1 interrupted by S2, S3 interrupt S1 with S3, S3 if
√
(S2) =

√

S1 interrupted by
√
(S2), S3 otherwise

m
C
( )(w1, . . . , wk)[S]

ψ
m

C
( )(w1, . . . , wk)[

√
(S)]ψ

[S ]ψ
√

if
√
(S) =

√

[
√
(S)]ψ otherwise

p̃!m(E1, . . . , En){E} p̃!m(E1, . . . , En){E}
p̃?m(v1, . . . , vn|Erc){E} p̃?m(v1, . . . , vn|Erc){E}
delay t̃

√
if t = 0

delay t̃ otherwise√ √

These transition relations are defined by the inference rules 14 through 52 listed
in Appendix A.2. To simplify these semantic rules, a termination function

√ ∈
Stat Stat is defined by Table 4.1 in accordance with [18]. Without such a function,
some of the rules would have to discriminate between nonterminated statements and
terminated statements. To give an example: without a termination function the
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semantic rule for sequential composition would look like:

Sequential composition(
[S1]ψ

C
, σ, τ

) a π′(
[S1;S2]ψ

C
, σ, τ

) a π
SEQ

where

π.c =



π′.
(
[S′

1]
ψ′

C
, σ′, τ ′)

for c =
(
[S′

1;S2]ψ
′

C
, σ′, τ ′) if S′

1 �= √

π′.
(
[√]ψ

′

C
, σ′, τ ′)

for c =
(
[S2]ψ

′

C
, σ′, τ ′)

0 otherwise.

Thus, when the first statement terminates, the sequential composition should reduce
to S2. With the termination function, there is no separate rule for the second case
(S′

1 =
√
), because

√
(
√
;S2) = S2. The semantic rule now reduces to:

Sequential composition(
[S1]ψ

C
, σ, τ

) a π′(
[S1;S2]ψ

C
, σ, τ

) a π
SEQ

where

π.c =


π′.

(
[S′

1]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(S′

1;S2)]ψ
′

C
, σ′, τ ′)

0 otherwise.

Function V was introduced in Section 3.2.3.2 to compute the collection of (inherited)
instance variables of a data class C. Its definition is extended here to cope with
process classes as well:

V(C) =



{x1, . . . , xn} if CDList ≡ CD1 · · ·CD i · · ·CDn where
CD i ≡ process class C(y1, . . . , yr)

port interface p1 · · · pg
message interface ms1 · · ·msh
instance variables x1 · · ·xn

initial method call m
C′(E1, . . . , Eq)( )

instance methods MDp
1 · · ·MDp

k

{x1, . . . , xn} if CDList ≡ CD1 · · ·CD i · · ·CDn where
∪ V(Csuper) CD i ≡ process class C(y1, . . . , yr)

extends Csuper
port interface p1 · · · pg
message interface ms1 · · ·msh
instance variables x1 · · ·xn

initial method call m
C′(E1, . . . , Eq)( )

instance methods MDp
1 · · ·MDp

k

∅ otherwise.
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FunctionMs for looking up method definitions (see Section 3.2.3.2) is completed by
extending it for process methods:

Ms.C.m ≡



MDp
j if CDList ≡ CD1 · · ·CD i · · ·CDn and

CD i ≡ process class C(y1, . . . , yr)
[ extends Csuper ]
port interface p1 · · · pg
message interface ms1 · · ·msh
instance variables x1 · · ·xn

initial method call m
C′(E1, . . . , Eq)( )

instance methods MDp
1 · · ·MDp

j · · ·MDp
k

and MDp
j ≡ m(u1, . . . , un)(w1, . . . , wk)

|z1 · · · zm|
Sb

undef otherwise.

Although process method calls are static and Ms provides sufficient knowledge to
give their semantics, we will also extend recursive lookup function M for process
methods:

M.C.m ≡



Ms.C.m ifMs.C.m �= undef
M.Csuper .m ifMs.C.m = undef and

CDList ≡ CD1 · · ·CD i · · ·CDn and
CD i ≡ process class C(y1, . . . , yr)

extends Csuper
port interface p1 · · · pg
message interface ms1 · · ·msh
instance variables x1 · · ·xn

initial method call m
C′(E1, . . . , Eq)( )

instance methods MDp
1 · · ·MDp

k

undef otherwise.

We define ↑M.C.m = M.Csuper .m if Csuper is the superclass of C, and ↑M.C.m =
undef otherwise. Function ↑M is like M, except that the recursive search starts at
the superclass of the caller. It has been introduced to impose restrictions on the use
of method calls offered by implementations of POOSL.

To support inheritance, the static method call was introduced. The semantics al-
lows a process or data class to call any of its inherited methods by explicitly stating
the name of the class and method; in practice, this is too liberal8. Implementations
are restricted to offer process method calls in the form of m(E1, . . . , En)(v1, . . . , vk)
and ˆm(E1, . . . , En)(v1, . . . , vk). In the context of class C, these calls must use def-
initions M.C.m and ↑M.C.m respectively. The compiler can replace the calls by
equivalent static method calls because at that time the inheritance tree is known. For
data method calls, E m(E1, . . . , En) and self ˆm(E1, . . . , En) in the concrete syn-
tax represent the dynamic method call and static method call respectively, and the
corresponding definitions in the context of class C are given byM.C.m and ↑M.C.m.

8During the development of a class that inherits from some superclass Csuper , the programmer is
not allowed to rely on the implementation of Csuper , only on the interface formed by the methods
that Csuper offers.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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4.2.3.1 Discussion

This section discusses some of the more interesting rules in Appendix A.2 of POOSL’s
process layer.

Expressions Axiom 14 (exp) states the effect of evaluating statement E in the
current context formed by σ, ψ and τ . The rule stores the probabilistic effect of
evaluating expression E in probability function π. From the given start configuration(
[E]ψ

C
, σ, τ

)
, start state s is computed in which expression E is to be evaluated. This

yields terminal state s′ with probability [[E]].s.s′. The terminal state is defined to
correspond to terminal configuration

(
[√]ψ

′

C
, σ′, τ ′). Other configurations cannot be

reached; for these configurations the probability equals zero.

Method call The behaviour of the method call is defined by rules 29 (mc1),
30 (mc2), 31 (mc3), 32 (mc4), 41 (mc5) and 42 (mc6). Rule mc1 defines the first
phase of executing a method call. A new local variables environment ψ′ is created
in which the local variables z1 . . . zm and w1 . . . wk are set to nil . The actual pa-
rameters E1 . . . En are evaluated from left to right and the results are bound to the
formal parameters u1 . . . un. Method body S runs in the new local variables con-
text ψ′, denoted by [S]ψ

′
. The end configuration for methods with output parameters(

[m
C′( )(w

′
1, . . . , w

′
k) [S]

ψ′
]ψn

C
, σn, τn

)
remembers the variables w′

1 . . . w′
k in which the re-

sults of the method must be stored after the body terminates. If the method has no
return parameters, the method call can be dropped, yielding the terminal configura-
tion

(
[ [S]ψ

′
]ψn

C
, σn, τn

)
.

The second phase of executing the method call is executing the body. Rules mc5 and
mc6 allow the body to perform time transitions in the context of an executing method
call (with or without output parameters), whereas rules mc2 and mc3 allow the body
to perform actions. To support tail recursion, rule mc3 uses function V ∈ Stat Stat
for cleaning up redundant local variables contexts, which is defined by:

V(S) =

{
[S′]ψ

′
if S = [ [S′]ψ

′
]ψ

S otherwise.

The third and final phase is described by rule mc4. When the body of the called
method has terminated in local variables context ψ′′, the formal output parameters
w1 . . . wk are bound to the actual output parameters w′

1 . . . w′
k (either global variables

or local variables of context ψ in which the method call itself runs). The yielded end
configuration cleans up the terminated body and the method call.

Rule mc1 defines the expansion of the method call to the corresponding method body
as a fix action. These transitions are invisible to the statement context as long as they
do not yield

√
. If the transition were a silent action, this would not necessarily be

the case. This subtle yet important difference, is clarified by examining the select.
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Select The select is defined by three rules: 21 (sel1), 22 (sel2) and 45 (sel3).
Rules sel1 and sel2 are one another’s counterparts because the select is symmet-
rical. Rule sel1 discards the second branch (S2) when the first branch performs an
action, and continues to behave as the remainder of the first branch, S′

1. The rule dis-
criminates between the fix action and other actions; the following example motivates
this distinction.

Consider the statement sel m( )( ) or S les. During the first phase of execution,
the method call uses a fix action to expand. If sel1 would not discern fix actions
from others, the select would immediately choose for the first branch, discarding
the second. The behaviour is clearly different if the method call is replaced by the
corresponding method body syntactically. Then, the select founds its choice on the
first action performed by the method’s body.

We would like to see the method call as an abstraction of the corresponding method
body. To support this view, the fix action has been introduced. This allows the
select to treat fix actions differently from other actions. For fix actions, rule sel1

yields a terminal configuration that leaves the second branch intact. In the example
above, the method call expands but the select leaves both alternatives open — just
as it would when the method call were replaced syntactically.

Fix action The fix action has been introduced to solve the following problems
emerging from adding time and data to the language. [17] already signified the prob-
lem that evaluating a delay’s expression in the context of a select unwantedly leads
to discarding other branches. In Table 4.2.A, evaluation of z+2 (line 2) leads to dis-
carding the branch in line 4. A similar problem occurs if the input parameter of
method n is bound (line 4) — this will lead to discarding line 2. The source of the
problem is that the expression evaluation is performed with an internal action (τ)
that triggers the select. Notice that the input parameter z must be bound, when
the delay in method n depending on z via x is evaluated. Because the select cannot
discern the internal action originating from the delay’s expression from other internal
actions, it is unable to yield a different terminal state. Both problems can be solved
with a different kind of internal action: the fix action.

The fix action is an internal action like τ , except that it is “invisible” to its statement
context. More precise: compound statements do not react to changes due to fix
actions as long as the changed constituent does not tick. So, in the example of Table
4.2.A, the delay in line 2 can evaluate and fix the expression z+2 and the select
will keep both branches. The same applies to binding input and output parameters
of method calls.

Originally, method output parameters were bound at the same moment the method
body terminated. Because the new semantics introduces parallelism within processes,
binding at termination is no longer always valid. In combination with time transitions,
which are not interleaved like actions but performed simultaneously instead, multiple
method calls can terminate at exactly the same moment. This can cause problems as
shown in Table 4.2.B. Consider method m where output parameter z is set to input
parameter y, and after a delay that value is bound to x. When concurrently executing
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Table 4.2: Problems solvable with fix actions.

Problem A:

1 sel
2 delay z+2; p?m
3 or
4 n(z)(v); p?n
5 les

1 n(x)(y)
2 delay x

Problem B:

1 par
2 m(2)(x)
3 and
4 m(3)(x)
5 rap

1 m(y)(z)
2 z := y;
3 delay 1

two method calls to m, as is shown in the left column of problem B, both methods first
execute (interleaved) the assignment to their local variable z. Then, both methods
delay and have to bind different values (2 and 3) to x simultaneously. What value
should x get? To prevent that a variable is assigned several different values at the
same instant, a separate fix action is introduced for binding the output parameters.
After having performed the delay simultaneously, both methods sequentially bind
their output parameter to x (in nondeterministic order).

Five inference rules can generate a fix action, namely rules 29 (mc1), 32 (mc4),
33 (comm1), 34 (comm2) and 37 (delay1). Rules comm1 and comm2 describe the
evaluation and fixation of port expression Ep along which communication will take
place. The result is denoted by p̃ to avoid confusion with the port identifier p that
has not been evaluated. Similarly, rule delay1 defines the evaluation and fixation of
E, the time to delay. Again, the result t̃ is denoted slightly different to distinguish
it from the unevaluated literal value t.

Several rules for compound statements discern between the fix action and the silent
action τ : 17 (grd1), 21 (sel1), 22 (sel2), 24 (abort2) and 27 (intr3). The reader
can easily verify that all these rules leave the context of a constituent performing a
fix transition intact as long as that constituent does not tick. For instance, rule intr3

allows interrupt S2 to do a fix action without interrupting S1.

Communication The semantics presented in this dissertation introduces the con-
cept of dynamic port passing in POOSL. Previously, the communication port a mes-
sage was sent to or received from, was static and determined at compile-time. Now,
the port is determined by an expression that is evaluated at run-time. This so-called
port expression should yield a string naming a port defined in the port interface of
the executing process — see rules 33 (comm1) and 34 (comm2).

The late-binding of ports enables dynamic port passing as in the π-calculus [36]:
a process can receive the name of the port via which it can communicate with a
previously unknown process. This can be convenient for modelling relay stations that
have to pass on messages to recipients initially only known by the message’s sender.

Semantic rules 35 (comm3) and 36 (comm4) take care of producing communication
actions. In comm3 the message parameters E1 . . . En are evaluated and deepcopied
before they are sent as [data] along the message if the port is defined in the port
interface of the corresponding process. The copying is required to keep the data spaces
of the sender and receiver separated. Before injecting the data into the receivers data
space (rule comm4) the data objects are relabelled to prevent that existing data
objects are discarded.

The actual communication takes place via rule 57 (par6), discussed in Section 5.2.3.
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Time Timing properties of a model can be specified with the delay. Its behaviour
is defined by rules 37 (delay1) and 52 (delay2). After evaluating and fixing the
time to delay (delay1), the delay can let an arbitrary amount of time up to t go
by (delay2). This is called time additivity or time continuity [17, 37]. In delay2

the global variables context is updated to reflect the increased model time: σ↑t de-
notes σ.proc{(σ.proc.currentTime + t)/currentTime}; it increments currentTime by
the amount of t, while leaving other variables unchanged.

The semantics of POOSL should exhibit wait-timing : processes are allowed to wait
for communication. To this end synchronisation primitives allow unbound idling
(arbitrary waiting). To ensure maximal progress, time is not allowed to progress if
actions can be performed. This action urgency is to be guaranteed9 by semantic
rule 60 (par7) for parallel composition of behaviour specifications (see Section 5.2.1).
This rule uses the notion of urgent actions. A behaviour specification BSpec is ur-
gent, written as Urgent(BSpec), if configuration BSpec can perform an internal action

(denoted by BSpec
τ,f

). A behaviour specification BSpec is urgent within time t,
denoted by Urgent(BSpec, t), if there exists a t′ ≤ t and configuration BSpec′ such
that BSpec t′ BSpec′ and BSpec′ is urgent. This urgency predicate is comparable
to the ones in [18, 20, 58].

As was mentioned, rule par7 uses the urgency predicate as a condition to prevent
time to progress beyond an instant in time where BSpec1 and/or BSpec2 can perform
an action. Note that when BSpec1 and BSpec2 synchronise, rule 57 (par6) produces
a silent action, making BSpec1 ‖ BSpec2 urgent. Without the urgency predicate, syn-
chronisation could be postponed indefinitely because of the unbound idling property
of the communication primitives.

Temporal deadlock is chosen not to exist in POOSL. To prevent temporal deadlock,
statements such as

√
and a blocking guard must allow time to progress indefinitely.

To this end rules 38 (tick) and 46 (grd2) allow unbound idling.

The semantics is expected to be time-deterministic: when a configuration c performs
a delay t, the resulting behaviour is completely determined by c and t. More precisely:
for all c, c′, c′′ and t, it follows that if c t c′ and c t c′′, then c′ = c′′. Together
with maximal progress, time-determinism gives rise to a two-phase execution model.
During the first phase actions are executed until none are left, followed by a second
phase in which all processes synchronously advance time until one or more processes
become urgent. The phases are then repeated.

9Rule par7 uses a negative condition. In general negative premises could endanger the existence
of a unique solution of the transition relation [19]. The existence of a transition system is shown in
[51, 50] for a case similar to ours, but we can also show it by a stratification that separates action
transition rules from time transition rules. Time transition rules refer negatively to only action
transitions, while action transitions do not refer to time transitions. It is therefore impossible to
infer a transition whose very existence could prevent it from occurring.
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Guard Rules 17 (grd1), 46 (grd2) and 47 (grd3) define the behaviour of the
guard. Rule grd1 states that the guarded statement S can only perform an action
if the guarding expression E evaluates to true. The conditions [[E]].s.(s, true) = 1
and Timeless(E, s) ensure that E is not probabilistic (deterministically yields true)
and is independent of currentTime. To determine this, the function Timeless ∈
Exp × State {true, false} is defined:

Timeless(E, (σ, λ, τ)) =


true if [[E]].s1.s

′
1 = [[E]].s2.s

′
2 for all t ∈ Time,

where s1 = (σ, λ, τ), s′1 =
(
(σ′, λ′, τ ′), β

)
,

s2 = (σ.proc{t/currentTime}, λ, τ) and
s′2 =

(
(σ′.proc{t/currentTime}, λ′, τ ′), β

)
false otherwise.

This premise10 is required for making grd1 implementable and preventing temporal
deadlock. For instance, when is S allowed to run in [currentTime>3]S if the time
domain is dense? If currentTime = 3, S is not allowed to run, but any moment
beyond that is too late, hence action urgency will be violated. To avoid the problem
altogether, the guarding expression is not allowed to depend on currentTime.

4.3 Implementation

The processes in a specification will be mimicked by process objects in the simulator.
The implementation of process objects and the communication channels between them
is part of the architecture layer and will be discussed in the next chapter. Here, we
concentrate on how to execute the statements defined in Section 20, which are used
for describing the behaviour of processes.

The collection of process statements is a rich set that contains primitives for paral-
lelism, interrupts, communication, selection, delaying and more. To obtain an ex-
ecutable model, these primitives have to be mapped to the constructs of a target
language such as Java, Pascal, C, C++ or Smalltalk. This mapping is nontrivial
because the target constructs are different and less powerful — in the sense that the
behaviour given by a single POOSL primitive can mostly not be captured by a sin-
gle construct in the target language, but only by a set of constructs. An additional
problem is that there may be a restriction on the composition of certain constructs,
whereas POOSL allows each primitive to be combined with any other.

To support a smooth mapping of POOSL statements to different target languages,
execution trees have been developed. The initial idea for these data structures was
conceived by M. Geilen and implemented in SHESim [16]. The further development
of the execution trees will now be presented. A brief description can also be found in
[7] and earlier results for CCS have been published in [6].

10The engine restricts itself to expressions that do not (indirectly) refer to currentTime at run-
time.
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Figure 4.3: Generic execution tree for sel p?m or skip;x:=3 les. See the text for a
detailed description.

4.3.1 Execution Trees (Concept)

[18] introduces execution trees as an implementation method to represent (part of)
the state of a process and calculate its next transitions. Actions of the underlying
labelled transition system are decorated to form uniquely identifiable action requests.
Execution trees follow the syntactic structure of a statement and compute the ac-
tion requests for the next transitions, given their current shape. From these action
requests, one is granted, after which the tree adapts itself to reflect the next state.
[18] finally shows the correctness of this execution method —with respect to the
semantics— by means of bisimulation. We will concentrate on deriving an efficient
implementation of execution trees for POOSL, but first the concept of (generic) ex-
ecution trees is explained, guided by Figure 4.3. It is the starting point for a more
detailed discussion in the next section of the actually implemented (optimised) exe-
cution trees.

In Figure 4.3.A, the initial execution tree is displayed, representing the statement
sel p?m or skip;x:=3 les. Each part of this statement is reflected by a node whose
behaviour obeys the inference rules for that part. Nodes of composite statements have
ordered directed edges pointing to their children, nodes that represent the constituents
of the construct.

After the construction of the execution tree, each leaf node generates a request for
performing an action. The actions are propagated towards the root of the tree by
means of messages (depicted by numbered arrows). Figure 4.3.B shows the message-
receive node sending its parent a fix request (1) for performing a fix action to evaluate
port expression p, conform semantic rule 34 (comm2). Rule 21 (sel1) states that a
select can perform an action transition if its first branch can. The select node reflects
this behaviour by forwarding the fix request (2); since the node is the root of the tree,
the request ends up at the scheduler. Similarly, the skip node sends a silent request
(3) to its parent (rule 14, exp) which is forwarded (4) by the sequential-composition
node (rule 20, seq1) and also (5) by the select node (rule 22, sel2). The silent request
(6) of expression x:=3 is not forwarded by the sequential-composition node because
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there is no semantic rule that allows its second branch to execute before the first one
has finished.

From the received requests, a scheduler picks a request and grants it, allowing the
model to perform the corresponding transition. When a request is granted, the exe-
cution tree adapts itself to reflect the next configuration. Figure 4.3.C shows the skip
node receiving a granted message (7). After doing its computation —which happens
to be nothing in case of skip— the skip node signals its parent that it has finished
(8). The sequential-composition node replaces itself by its second child (x:=3) to
yield the terminal statement in rule 20 (seq1), and informs its parent that it has
performed an action (9). The select node then kills (10) its first child and replaces
itself by its second child, x:=3 (!), to yield the terminal statement in rule 22 (sel2).

The yielded statement, represented by the execution tree in Figure 4.3.D, computes
the next transitions by reissuing its requests (11). So, execution trees alternately
reside in the following phases:
• computing requests to represent the transitions leaving the present
configuration;
• adapting the tree to reflect the yielded configuration.

The next section shows how an incremental approach can yield an efficient implemen-
tation by avoiding the recalculation of requests after each execution step. After the
second step, the execution engine is in a stable state — it can therefore be used as a
slave component in a larger simulation framework.

4.3.2 Execution Trees (Implementation)
This section presents the implementation of execution trees in rotalumis, suitable for
handling large industrial models. This implementation arose from earlier realisations
after careful assessment of their pros and cons. Relevant aspects to the implemented
execution trees are motivated by properties of the semantics of POOSL. The section
concludes with a survey of the implementation choices and discusses what properties
a language should possess to enable these choices.

4.3.2.1 Initialisation
At the start of a simulation, each process constructs its initial execution tree, con-
sisting of a single node: the root node. The root node implements semantic rule
53 (proc). After being constructed, the root node issues a silent request at the
scheduler to evaluate and bind the instantiation parameters of the process, set the
other instance variables to nil , and create a method-call node to represent the initial
method call. During execution, the root node remains to function as a representative
of the execution tree.

4.3.2.2 Separating Construction from Activation
The example in Figure 4.3.B shows that the sequential-composition node initially
blocks requests from its second child because semantic rule 20 (seq1) states that the
first branch must be finished before the second branch can execute. This gives rise to
separating a node’s construction from its activation. Nodes are activated by sending
them a startup message11. Most of the nodes for composite constructs do not react

11In this context, message should be understood as a function call or method call.
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to the startup message, yet simply forward it to their children. The three exceptions
are the sequential-composition node (that only sends a startup message to the child
eligible for execution) and the nodes for while and if. The latter two first issue a
request for evaluating their condition before they construct and activate their child,
a subtree representing the body or branch.

When leaf nodes receive a startup message, they issue a request for performing a
transition. The method-call node, for instance, issues a fix request to evaluate and
bind its input parameters and construct its body, conform semantic rule 29 (mc1).
After the body has been built, it either becomes the child of the method-call node or
replaces that node if output parameters are absent (as is the case with tail-recursive
calls).

4.3.2.3 Conditional Granting

Inspection of the rules for statements of POOSL reveals that most of them simply
infer the same transition as stated in their premises; only the guard, interrupt and
sequential composition may block transitions. The sequential-composition node can
be excluded from this list, because only the branch eligible for execution is activated;
this guarantees that the node will not receive any requests it will have to block. We
now examine when the other two constructs (guard, interrupt) block their children’s
requests.

An interrupt node represents the behaviour defined by semantic rules 25 (intr1),
26 (intr2), 27 (intr3) and 28 (intr4). The node can be in two states: normal opera-
tion and interrupted. During normal operation, requests from the first (interruptible)
branch can be executed freely, but when the node is in the interrupted state, requests
of the first branch are suspended (blocked) until the second branch, the interrupt,
terminates.

The guarded statement [E]S allows S to execute if and only if E evaluates to true
(17, grd1). This means that the requests of the subtree representing S may only
be issued if E yields true, in the current data context. After each execution step,
this data context may have changed, influencing the outcome of E and therefore the
blocking of requests of S. However, it is computationally too expensive to compute E
after each transition, and so is checking whether a transition actually has influenced
the outcome of E.

To avoid the overhead of recalculating requests after each step, interrupt nodes and
guard nodes forward all of their children’s requests, regardless of whether these re-
quests should be blocked or not. Because now every node forwards requests from its
children until they end up at the scheduler, leaf nodes can just as well send their
requests to the scheduler directly, without the intervention of other nodes in the ex-
ecution tree. In order to still respect the semantics of the guard and interrupt,
conditional granting is introduced.

With conditional granting, the scheduler grants requests like before, but now the
granted request must check if it is executable. A request is executable if the corre-
sponding node that issued it neither has guards that evaluate to false, nor is inter-
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rupted. If the request is executable, the requested transition is performed; otherwise
the request is blocked and the scheduler will have to grant another request.

Because any leaf node issues at most one request at a time, the node itself can function
as its request. So, in the implementation, issuing a request simply becomes handing
over the memory address of the requesting leaf node to the scheduler. The address
automatically enables the scheduler to inform the requestor of its granted request.
This implementation choice prevents the need to construct additional objects that
would function as requests, and means a significant increase in performance with
respect to execution speed.

4.3.2.4 Adaptation
A node that has performed an action notifies the rest of the tree by sending an
action message to its parent. The message carries several parameters that tell the
receiving parent what kind of transition was performed —an action transition or a
time transition— and which child sent it. The message also indicates whether the
child finished (has become

√
, the terminated statement). This information is used to

determine the residual behaviour of a construct. The following paragraphs show why
this information is needed.

Discerning terminated behaviour from nonterminated behaviour The ter-
mination function, defined by Table 4.1, inventories the statements whose residual
behaviour depends on a constituent being terminated or not. The termination func-
tion has an implementation that is distributed over the different execution tree nodes:
each node decides (based on its transition rules) what to do when one of its children
terminates. As an example, we will examine how an interrupt node implements the
behaviour defined by the termination function and semantic rule 28 (intr4) in Ap-
pendix A.2 — notice that this rule implies the first statement (S1) to be interrupted.
When the second child (interrupt) of an interrupt node finishes, it is replaced by a
new subtree representing the interrupt, and the first child is resumed. If the second
child performed an action without terminating, the first child would not have been
resumed.

Discerning action requests from time requests The semantic rules for in-

terrupt clearly show that a node must also know the nature of the transition that
has just been performed. Semantic rule 27 (intr3) (for action transitions) and rule
49 (intr5) (for time transitions) define different residual behaviour for an interrupt

when the interrupting branch performs a transition while the interruptible branch is
not suspended. If a nonterminating time transition has occurred, the interrupt node
can keep the interruptible branch running, whereas a nonterminating action transition
would suspend that branch.

No distinction between different kinds of actions A closer inspection on se-
mantic rule 27 (intr3) reveals that the fix request is handled differently from commu-
nication requests or the silent requests. However, in the implementation, nodes do not
have to distinguish between different kinds of actions as long as the node that caused
the action does not terminate. We can show this by examining the semantic rules
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for the statements in Stat involved with action transitions, namely rules 14–37. Rules
17 (grd1), 21 (sel1), 22 (sel2), 24 (abort2) and 27 (intr3) draw a distinction be-
tween between fix actions and other actions, but it is also easy to see that for fix actions
not yielding tick, the only part changed in the resulting configuration of these rules is
the statement already changed in the premise. For instance, a fix transition for rule
27 (intr3) only changes S2 into S′

2, and leaves the rest of interrupt S1 with S2, S3

unchanged if S2 �= √
. So, in the implementation there is no need for nonterminating

nodes to inform their parent or any other node in the tree of fix actions, because they
do not react to that message. Furthermore, none of the rules 14–37 discern between
internal actions and communication actions. Since these are the only actions commu-
nicated between nodes, the implementation does not need to know their type either.
Only if a node ceases to exist, the type of action can be important.

Terminating nodes The kill message is introduced because some inference rules
(21 (sel1), 22 (sel2), 23 (abort1), 24 (abort2) and 26 (intr2)) discard statements.
Semantic rule 22 (sel2), for instance, can transit from sel S1 or S2 les to S′

1, if S1

transits to S′
1 because of a (non-fix) action. This means that the subtree representing

S2 is no longer needed. To free the resources used by that subtree, a kill message is
sent to its root. Composite nodes receiving this message, forward it to their children,
and commit suicide afterwards. Leaf nodes first retract their requests (if they had
issued any) before they cease to exist.

4.3.2.5 Incorporating Data

Each process object has global variables (instance variables) and this set of refer-
ences is fixed. The set of local variables on the other hand is dynamic: each called
method can introduce new variables. These variables are accessible to constructs of
the method’s body only, and after the method returns its result(s), the local variables
are no longer needed. This observation has led to the implementation depicted in
Figure 4.4 for incorporating local data in execution trees.

A local variables environment is a data entity that not only stores the local variables
themselves (the references to local data objects) but also keeps a reference count of the
execution tree nodes using this environment. When the reference count reaches zero,

local
variables

environment

par

mE

delay

m

2

4

execution
tree

data space

Figure 4.4: Execution tree nodes can access data through local variables.
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the local variables are no longer needed and the environment can destroy itself. The
garbage collector (Section 3.3.3) takes care of reclaiming unreachable data objects.

The method-call node is given the responsibility of creating the local variables envi-
ronment and loading a subtree that represents the corresponding method body. First,
the method-call node issues a request to fix the method parameters. The resulting
data objects are stored in a new local variables environment that is handed down to
the constructor of the subtree. New nodes receive a reference to this local variables
environment when they are created.

4.3.2.6 Tree Constructor
For the construction of execution trees, the POOSL compiler converts the statements
found in process methods into sequences of instructions: bytecode. The bytecode
is a static part of the execution engine (Figure 1.7). For each statement a different
instruction exists, but all instructions have two things in common: an identifier to
determine what kind of statement it represents and the number of children of the
statement. The children immediately follow this instruction, but are not listed con-
tiguously. The tree is stored in a pre-ordered fashion, and the list of children can
therefore be interleaved by the children’s children (Figure 4.5). The pre-order traver-
sal simplifies the finite-state machine that builds trees. An extra instruction marks
the end of the list of children of composite nodes.

par
    c!m
and
    sel
        x := 3
    or
        skip
    les
rap;
[x == 2] c?m

;

par []

c?msel

expr skip

c!m

; par c!m sel expr skip [] c?m

Figure 4.5: The execution tree (left) corresponds to the process statements on the right.
Below is the marshalled tree as it is stored in the compiled specification (the arrows mark
the end of a list of children).

4.3.2.7 Survey
Execution trees form a means to implement the behaviour of statements on the basis
of the corresponding semantic rules. This section restates the requirements for the
implementation choices as they were discussed for POOSL in the previous sections.
If a different language fulfills these prerequisites, the same techniques can be applied
to execution trees for that language as well.

After the construction of a subtree, its activation can be postponed for as long as the
requests of that tree are all blocked. Actually, there is no need to build the tree before
it can issue requests — this reduces the memory requirements during simulation.
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Some execution tree nodes may have to block requests on the basis of certain con-
ditions. By postponing these checks until granting a possibly inexecutable request,
requests can be sent to the scheduler directly. This avoids the overhead of other exe-
cution tree nodes along the path handling the request as it is forwarded towards the
root before it ultimately reaches the scheduler. Notice that this is a tradeoff because
of the performance penalty coming from the additional requests being issued.

The action message, used for informing the execution tree that a transition has been
performed, is sent from the leaf node that caused the transition to the nodes along the
path towards the root. The message can carry additional information, that tells what
kind of transition occurred, if a statement terminates and so on. The need for such
information depends on the specific semantics of the language being implemented.
Next to the action message, the tree can also be transformed by sending a kill message
to subtrees that must be discarded because the statements they represent no longer
exist in the yielded configuration.

A local variables environment can be referred to by execution tree nodes represent-
ing statements in the scope of these variables. By keeping track of the number of
referees, it is possible to clean up the environment when it is no longer used. If the
language offers parallelism within a single process, a multiple of active local variable
environments can coexist, rendering the usual approach of storing local variables on
a stack impossible.

4.3.3 Scheduler

Execution trees and channel trees (Section 5.3.1) issue their requests at the scheduler.
Requests are stored in two lists — one just for action requests, the other for time
requests. This separation is merely for implementation convenience. Given the issued
requests, the scheduler determines which transition will be taken next. The set of
transitions thus encountered is called a (simulation) trace. The following sections
discuss the details of granting requests (the scheduling policy).

4.3.3.1 Action requests

The scheduler must obey several rules when it chooses a request; for instance, the se-
mantics prescribes action urgency, so action requests have priority over time requests.

In rotalumis, the action request list is implemented as a dynamic linear array. Such
a list can hold a varying number of requests and enables cheap insertion and removal
of requests.

If several action requests are available, the scheduler has to pick one to resolve the
nondeterminism. The next section discusses how requests are chosen. The selected
request is granted by sending a granted message to the execution tree node that issued
the request. Remember that an execution tree leaf node acts as its own request to
prevent the need for constructing a new object for representing the request. The
leaf node notifies the scheduler if the corresponding transition was performed. If the
request was inexecutable, the scheduler will have to mark it, and choose another one
until either a transition step has been made or no executable action requests are left.

http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
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4.3.3.2 Time requests

When none of the action requests can be executed, the scheduler tries to advance the
model time. From the executable time requests, the scheduler chooses the ones with
the smallest value. The model time is advanced by this amount to make maximal
progress, the executable time requests are decreased accordingly and the expired
requests are granted. To respect action urgency (rule 60, par7), the scheduler returns
to granting action requests, which may have become executable now (but were not
before).

Time is handled differently from actions. Semantic rule 52 (delay2) shows the special
nature of time: a delay statement willing to delay for some amount of time, is also
willing to let only part of that time go by and wait for the remainder of the period
afterwards. This means that a delay node representing delay t would have to issue a
possibly infinite set of time requests to represent its willingness to wait for an arbitrary
amount of time up to t. Since this approach is infeasible, the following technique is
used instead (see [18] for a similar approach).

A delay node, representing delay E, first issues a fix request for evaluating E, which
yields the time to delay, say t, as stated by semantic rule 37 (delay1). Then, the
delay node issues a time request of value t. When time advances by t′ < t, the value
of the time request is simply decreased by t′, allowing it to wait for only t − t′ from
now on. Section 6.4 elaborates on efficiently computing the minimal time request and
reducing the overhead of adjusting the time requests. When a time request becomes
zero, it is said to expire and the scheduler will send a granted message to inform the
corresponding delay node, which terminates (as specified by the termination function
in Table 4.1).

4.3.3.3 Resolving nondeterminism

The transition system of a POOSL model contains nondeterminism. For performance
analysis, we need an entirely probabilistic system, so the nondeterminism should
be resolved (Figure 4.6). An easy way to let the scheduler efficiently resolve the
nondeterminism is by using a uniform distribution. We are aware that the result
of performance analyses depends on the transition selection algorithm, but resolving
nondeterminism differently is subject of future research.
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Figure 4.6: Resolving nondeterminism.
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From the user’s point of view, it is attractive that the scheduler chooses each alterna-
tive transition with equal probability. For instance, when a select is executed with
identically starting branches, none of the branches is expected to have priority over
the other. It is easy to choose requests according to a uniform distribution if the list
of requests is a linear array: a random number generator produces the index of the
request that the scheduler grants.

4.4 Summary
This chapter has discussed the process layer of POOSL, adding parallelism within
processes. Communication primitives can now be equipped with an optional expres-
sion (immediate data) that is evaluated immediately after the communication has
taken place.

The semantics of [41] is expanded with the real-time concepts discussed in [17] and
given probabilistic features. Proving equivalence between the semantics described in
this thesis and (parts of) the former definitions, as well as proving desired properties,
such as time-additivity, are part of future research. Furthermore, both dynamic port
passing as in the π-calculus and implementation inheritance are added to the language.

The added concepts of time and data cause problems discussed in Section 4.2.3.1.
The introduction of a different kind of internal action, called fix action, solves these
problems.

For implementing the behaviour specifications, the generic execution trees of [18]
have been explained and adapted to efficiently execute statements (Section 4.3.2).
The language properties enabling these optimisations have been summarised in Sec-
tion 4.3.2.7, along with some of the characteristics of the implemented execution trees.

Section 4.3.3 has discussed a scheduling policy that resolves nondeterminism while
respecting the action urgency and maximal progress as stated by the semantics.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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Chapter 5

POOSL Architecture Layer

5.1 Overview

This chapter presents the architecture layer of POOSL. The architecture of a system
is a hierarchical topology of processes and channels defined by behaviour specifica-
tions. After introducing the constructs for building such specifications, the structural
operational semantics of the previous chapter is extended to provide the meaning
of constructs of the architecture layer. Then, a generic approach for implementing
behaviour specifications is presented, based on their semantic rules.

5.2 Specification

5.2.1 Abstract Syntax

The set of all POOSL system specifications SSpecifications , ranged over by SSpec, is
defined by:

SSpec = system specification
behaviour specification BSpecb
CDList ,

where CDList = CD1 · · ·CDn is a list of class definitions; its existence is implicitly
assumed in the semantic rules. The system specification contains the top-level be-
haviour specification BSpecb that describes the architecture of the system in terms
of a topology of processes and channels. This topology can be defined hierarchically
by means of clusters, for which ClassDef is finally extended to include cluster class
definitions:

CD = cluster class C(y1, . . . , yr)
port interface p1 · · · pg
message interface ms1 · · ·msh
behaviour specification BSpecb.
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A cluster class has instantiation parameters y1 . . . yr and a port and message interface,
just as process class definitions. Like system specifications, cluster classes describe
their constituents with BSpecb, which is a typical element of BSpecificationsb, the
basic set of behaviour specifications:

BSpecb = C(PE 1, . . . ,PE r) process/cluster instantiation
| BSpecb1 ‖ BSpecb2 parallel composition
| BSpecb \ L hiding
| BSpecb [f ] relabelling.

A behaviour specification can either be a single process or cluster, parameterised
with expressions PE 1 . . .PE r, or it can be composed of several instances running
concurrently (specified by the parallel composition operator ‖).
The port interface of a constituent can be modified in two ways. Ports can be hidden
(BSpecb \ L) by listing their names in the hiding set L. The name of a port can be
changed by means of relabelling (BSpecb [f ]). We introduce function f ∈ Act Act
to relabel a set of ports and write p′1/p1 . . . p′n/pn to define f such that f(pi) = p′i for
i ∈ {1, . . . , n} and f(p) = p otherwise. Relabelling function f is extended by:

f(p!m(n)) = f(p)!m(n)
f(p?m(n)) = f(p)?m(n)
f(p!m[data]) = f(p)!m[data]
f(p?m[data]) = f(p)?m[data]
f(τ) = τ
f(f) = f .

Equally named ports within a single cluster are interconnected by an imaginary
channel with the same name. To demonstrate this, Figure 5.1 gives a graphical
representation of the following cluster definition:

CD = cluster class E
port interface q s
message interface q!out(2) s?ack(0)
behaviour specification ((A ‖ B)[s/r] ‖ (C ‖ D)) \ {

p
}

assuming that class A has ports p, q and r, class B has ports p and q, class C has
ports p and s, and finally, class D has port p.

To describe a system specification during execution, the following set of extended
behaviour specifications BSpecifications is defined:

BSpec = C(PE 1, . . . ,PE r)
| BSpec1 ‖ BSpec2

| BSpec \ L
| BSpec [f ]
| (

[S]ψ
C
, σ, τ

)
.

BSpecifications encompasses BSpecificationsb and adds
(
[S]ψ

C
, σ, τ

)
to denote that

statement S is being executed in a process of class C in the local variables context ψ
and global variables context σ (type information is stored in τ).
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Figure 5.1: The construction of the behaviour of E is shown in two stages. On the left,
respectively (A ‖ B)[s/r] and C ‖ D are shown. In the final stage (shown on the right) these
components are combined to form cluster E.

From the discussion of C(PE 1, . . . ,PE r), we know that processes and clusters can be
parameterised. However, only a restricted set of expressions is allowed. This set of
parametric expressions PExp is defined by:

PE = y

| γ

| new(C)
| PE m(PE 1, . . . ,PEn)
| PE 1;PE 2

| if PE c then PE 1 else PE 2 fi

| while PE c do PE od.

Parametric expressions are evaluated in the context of clusters or in the context of the
top-level specification. In neither environment instance variables are available, hence
assignments to and the use of local variables has been prohibited. Because self and
E m

C
(E1, . . . , En) are only allowed in the context of data objects, these constructs

have been omitted as well. Only the use of instantiation parameters y of the current
context is allowed.

5.2.2 Context Conditions

Several functions are defined to facilitate the stating of the context conditions for the
architecture layer. Function Port extracts the port identifier from a message signature
and is defined by:

Port(p!m(n)) = p

Port(p?m(n)) = p

Port(p!m[data]) = p

Port(p?m[data]) = p

Port(τ) = undef
Port(f) = undef.
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Function MSS computes the message signature sort of various constructs:

MSS (C)=



{ms1, . . . ,msh} if CDList ≡ CD1 · · ·CD i · · ·CDn and
CD i ≡ process class C(y1, . . . , yr)

port interface p1 · · · pg
message interface ms1 · · ·msh
instance variables x1 · · ·xn

initial method call m
C′(E1, . . . , Eq)( )

instance methods MDp
1 · · ·MDp

k

MSS (Csuper ) ∪
{ms1, . . . ,msh}

if CDList ≡ CD1 · · ·CD i · · ·CDn and
CD i ≡ process class C(y1, . . . , yr)

extends Csuper
port interface p1 · · · pg
message interface ms1 · · ·msh
instance variables x1 · · ·xn

initial method call m
C′(E1, . . . , Eq)( )

instance methods MDp
1 · · ·MDp

k

{ms1, . . . ,msh} if CDList ≡ CD1 · · ·CD i · · ·CDn and
CD i ≡ cluster class C(y1, . . . , yr)

port interface p1 · · · pg
message interface ms1 · · ·msh
behaviour specification BSpecb

∅ otherwise

MSS (C(PE 1, . . . ,PE r)) = MSS (C)
MSS (BSpecb1 ‖ BSpecb2) = MSS (BSpecb1) ∪MSS (BSpecb2)
MSS (BSpecb \ L) = {ms ∈ MSS (BSpecb) | Port(ms) ∈/ L}
MSS (BSpecb[f ]) = {f(ms) | ms ∈ MSS (BSpecb)}.

Likewise, function PS computes the port sort of cluster classes, process classes and
behaviour specifications:

PS (C) = {Port(ms) | ms ∈ MSS (C)}
PS (BSpecb) = {Port(ms) | ms ∈ MSS (BSpecb)}.

The following context conditions should be met by a system specification, next to the
conditions stated in Sections 3.2.2 and 4.2.2:

1. Each class used in the behaviour specification of a cluster class is defined.
2. Any variable used in the behaviour specification of a cluster must be an instan-

tiation parameter of that cluster.
3. The port interface and message interface of cluster classes should be consistent

with their behaviour specifications. Let cluster class C be defined by:
cluster class C(y1, . . . , yr)
port interface p1 · · · pg
message interface ms1 · · ·msh
behaviour specification BSpecb.

The port interface of C is consistent with BSpecb iff PS (BSpecb) ⊆ {p1, . . . , pg}.
Similarly, the message interface is consistent iffMSS (BSpecb) ⊆ {ms1, . . . ,msh}.
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4. The port interface and message interface of a process class must agree. The port
interface p1 . . . pg of process class C is consistent with C’s message interface iff
PS (C) ⊆ {p1, . . . , pg}.

5. The port sort of the top-level specification is empty.
6. Behaviour specifications of cluster classes may not be defined (indirectly) recur-

sively.

5.2.3 Structural Operational Semantics

Although architecture and process classes are described in separate conceptual layers,
their meaning is provided by a single semantics, the structural operational semantics
of Section 4.2.3, which will now be completed. The added semantic rules are listed in
Appendix A.3.

The countable set of configurations Conf = BSpecifications is ranged over by c.
Notice that configurations of the form

(
[S]ψ

C
, σ, τ

)
have already been encountered in

Chapter 4. The initial configuration on page 81, BSpecb, is the top-level behaviour
specification that recursively defines the architecture of the model.

The definition of the model time update function ↑t is modified to include the following
behaviour specifications:(

BSpec1 ‖ BSpec2

)↑t = BSpec1
↑t ‖ BSpec2

↑t(
BSpec \ L

)↑t = BSpec↑t \ L(
BSpec [f ]

)↑t = BSpec↑t [f ](
[S]ψ

C
, σ, τ

)↑t =
(
[S]ψ

C
, σ↑t, τ

)
.

Cluster initialisation When a cluster is initialised, it is replaced by its behaviour
specification (rule 54, clus). Any occurrence of C’s instantiation parameters y1 . . . yr
is syntactically replaced by expressions PE 1 . . .PE r respectively. To this end the set
of syntactic substitution functions SyntSubst = Var PExp with typical elements
ς is introduced. We write PE 1/y1 . . .PE r/yr to define ς such that ς(yi) = PE i for
i ∈ {1, . . . , r} and ς(y) = y otherwise. BSpec ς denotes the application of syntactic
substitution function ς to the parametric expressions in BSpec and is defined induc-
tively by:

C(PE 1, . . . ,PE r) ς ≡ C(PE 1 ς , . . . ,PE r ς )
(BSpec1 ‖ BSpec2) ς ≡ BSpec1 ς ‖ BSpec2 ς
(BSpec \ L) ς ≡ BSpec ς \ L
(BSpec [f ]) ς ≡ BSpec ς [f ]
y ς ≡ ς(y)
γ ς ≡ γ
new(C) ς ≡ new(C)
(PE m(PE 1, . . . ,PEn)) ς ≡ PE ς m(PE 1 ς , . . . ,PEn ς )
(PE 1;PE 2) ς ≡ PE 1 ς ;PE 2 ς
ifPE c thenPE 1 elsePE 2 fi ς ≡ ifPE c ς thenPE 1 ς elsePE 2 ς fi

while PE c do PE od ς ≡ while PE c ς do PE ς od.
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Hiding ports Rule 58 (hide1) excludes communication actions from BSpec that
are sent to a port listed in the hiding set L. If BSpec can perform an internal action
(τ ,f), so can BSpec \ L; rule 61 (hide2) specifies the same for time transitions.

Relabelling ports Rule 59 (relab1) alters the port description in communication
actions as specified by relabelling function f . Internal actions and time transitions
(rule 62, relab2) remain unchanged.

Parallel composition The semantic rules 55 (par4), 56 (par5) for the parallel
composition operator ‖ implement interleaving concurrency to combine the transition
systems of two behaviour specifications. Rule 57 (par6) allows the two components
to synchronise. The composite can perform a silent action τ if BSpec1 can perform a
communication action 9 while BSpec2 can perform the complementary communication
action 9. The probability of this action is the product of the probabilities of the
corresponding actions 9 and 9. Finally, inference rule 60 (par7) describes how two
parallel components synchronously allow time to progress; par7 has already been
discussed in Section 4.2.3.1.

5.3 Implementation

5.3.1 Channels

5.3.1.1 Generic Approach
Section 5.2.1 explained that the model’s topology of processes and channels is de-
fined by behaviour specifications, using three different kinds of constructs. Two of
them, hiding and relabelling, modify the ports of a component. The third, parallel
composition, allows components to synchronise if their communication actions match.
Conceptually, this can be interpreted as if parallel composition creates channels be-
tween equally named ports.

A channel tree implements the behaviour of these constructs. It relabels, hides and
combines communication requests from processes. The channel tree looks for match-
ing communication requests, and issues an internal action request at the scheduler for
each match it can find.
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Figure 5.2: Example of a topology (left) and a hierarchical view (right) showing the channel
tree. The light gray entities represent adapted instances.
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Figure 5.2 depicts the architecture and the corresponding channel tree for the following
behaviour specification (inessential details have been omitted):

system specification
behaviour specification C[r/s] \ {r}
cluster class C
port interface s
behaviour specification

(
A[p/q, s/r] ‖ B[p/r, p/s, s/q] \ {s}) \ {p}

process class A
port interface p q r

process class B
port interface q r s.

Message-send nodes and message-receive nodes of the execution tree of a particular
process transmit their communication requests to the channel tree’s leaf node con-
nected to that process. From there on, the requests are forwarded towards the root
as follows.

Hiding A hiding node satisfies the behaviour of semantic rule 58 (hide1) by for-
warding only those communication requests to its parent that are not listed in the
hiding set. Notice that hide1 never rules out internal actions τ and f .

Relabelling A relabelling node changes the port identifier in the message signature
of communication requests in accordance with the relabelling function it represents;
this is conform semantic rule 59, relab1. Again, requests for internal actions are
forwarded unchanged.

Parallel composition The parallel composition node not only forwards the re-
quests of its children to its parent conform rules 55 (par4) and 56 (par5), but also
issues a silent action request (τ) for every pair of matching communication requests
it can find (57, par6). Like the relabelling and hiding nodes, the parallel composition
node does not affect requests for internal actions (τ ,f), but simply forwards them.

Notice that the implementation discussed in this section always yields precisely one
channel tree; context condition 5 in Section 5.2.2 implies that the root of the channel
tree will never have to forward communication requests.

None of the channel tree nodes block or react to requests for internal actions. These
requests can therefore be sent to the scheduler directly, without intervention of the
channel tree. The same applies to time requests, because semantic rules 61 (hide2),
62 (relab2) and 60 (par7) infer the same time transitions for the composite behaviour
specification as their constituents. The latter rule allows time to progress only up to
the moment at which actions transitions can be performed again. Section 4.3.3.2
explained that the scheduler already takes care of this behaviour by collecting delay
requests from every process in the model and granting only the smallest time request
if none of the action requests is currently executable. From this we can conclude that
only communication requests have to be sent to the channel tree.
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Figure 5.3: Decomposition of the channel tree on a per-channel basis (left), and the actually
implemented channel trees (right).

5.3.1.2 Channel Decomposition

The previous section has explained a generic approach to implement the hiding, re-
labelling and parallel composition operators of behaviour specifications. However,
the initial1 implementation of channels uses a different kind of node —one that com-
bines the behaviour of these three operators— to reduce the height of the channel
tree and consequently the processing time per communication request. The new kind
of node will simply be called channel-tree node. Section 6.3 shows a more efficient
implementation for calculating silent action requests for synchronisation.

Figure 5.3 decomposes the relabelling, hiding and parallel composition on a per-
channel basis (left). Each node is decorated with the name of the channel it represents.
Each channel is mapped onto a separate channel tree. The implemented channel trees
are depicted on the right. The behaviour of a channel-tree node is as follows: if and
only if the node has a parent, it forwards the communication requests received from
its children.

The structure of the channel tree is such that the relabelling and hiding rules for
the channel are satisfied. Besides forwarding requests, the channel-tree node also
computes matches (like the parallel composition node). Notice that the port identifier
of the requests’ message signatures automatically match, due to the construction of
the tree. An additional check is required however, to ensure that components cannot
synchronise with themselves.

The extra node s in cluster C is an implementation artefact introduced to allow
clusters and processes being treated similarly. The node temporarily functions as a
port (like node p in C) for clusters on the next (higher) hierarchical level during the
recursive construction of the model’s architecture.

1Several optimisations can still be carried out; these are discussed in Section 6.3.
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5.3.2 Clusters and Processes

For an attractive graphical representation of behaviour specifications, the implemen-
tation of the architecture layer restricts behaviour specifications of the system speci-
fication and cluster classes to the following form:

BSpecg = BSpecl \L [f ]

where [f ] denotes an optional2 global relabelling, \L denotes an optional global hid-
ing, and BSpecl denotes a parallel composition of adapted classes:

BSpecl = AC
| BSpecl1 ‖ BSpecl2.

An adapted class is a class whose ports are adapted by an optional local hiding and
local relabelling:

AC = C(PE 1, . . . ,PE r) \L [f ].

The restricted set of behaviour specifications is attractive because it allows joining
the conceptual boundaries introduced by relabelling and hiding ports with process
and cluster boundaries, yielding system specifications that are visually less cluttered.
The construction of a model’s architecture proceeds as follows3.

An adapted instance represents a behaviour specification of the form
AC = C(PE 1, . . . ,PE r) \L [f ] and contains not only an instance of class C, but
also channel-tree nodes to perform the local hiding and relabelling. A process object
is an object in the implementation, that represents an instance of a process class. A
process object owns port nodes that represent the ports listed in the port interface of
its class. Cluster objects are objects in the implementation that represent instances of
cluster classes. A cluster object contains a set of adapted instances to represent the
adapted classes in the behaviour specification BSpecl \L [f ] of its class. Furthermore,
it contains channel-tree nodes to represent the globally relabelled ports — given by
PS (BSpecl [f ]). These channel-tree nodes also function as the parallel composition of
the adapted instances, as explained in the previous section.

The architecture of a model is built recursively, starting at the lowest hierarchical
level with the process objects. The ports of these process objects can be adapted
by channel-tree nodes. Then, cluster objects are constructed with channel-tree nodes
to compose adapted instances in parallel. The ports of cluster objects can also be
adapted, just like the ports of process objects, yielding an adapted instance that can
be a constituent in a higher hierarchical layer. The construction ends at the top-level
specification.

2Optional, because f can be chosen to be the identity function. Likewise, the hiding is optional
since it is allowed to choose L = ∅.

3For the unrestricted set of behaviour specifications a similar construction can be derived.
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5.4 Summary
This chapter first introduced the syntax of constructs in the architecture layer for
constructing a specifications’ topology of processes and channels. Then, the mean-
ing of these constructs (behaviour specifications) has been added to the structural
operational semantics introduced in the previous chapter.

A constructive approach to implementing the behaviour specifications has been dis-
cussed. The implementation constructs a process object for each process found recur-
sively in the top-level specification. Channel trees, which interconnect process objects,
compute and issue silent action requests to represent synchronisation (rendez-vous)
possibilities between processes. Only communication requests are sent to the channel
tree, other requests go straight to the scheduler.



Chapter 6

Execution Engine Optimisations

6.1 Introduction
POOSL offers designers a wide variety of language primitives to describe for instance
parallelism, communication, guarded commands and selection. Combinations of these
primitives allow for even more intricate and varied behaviour. Several combinations
may offer different solutions to the same design problem, and it is this flexibility
that gives designers the freedom to choose a subset of primitives appropriate for
solving their modelling problem. Initially, solutions with concise descriptions may
be preferred. These compact specifications enable clear and efficient communica-
tion to other team members. During the design process other solutions may become
more interesting, for instance because of their speedier execution. To help designers
objectively consider alternative solutions that use different primitives, each primi-
tive should —ideally— offer approximately the same performance, regardless of the
model’s size. If the execution speed of certain primitives differs greatly from others,
designers might become prejudiced and use only the subset of faster primitives; hence,
a strong imbalance in the execution speed of primitives reduces design freedom.

One of the key issues to contemplate during the implementation of POOSL’s lan-
guage primitives for the simulator, is the size of models. Industrial models tend to be
large. Without an efficient implementation, the algorithms behind certain primitives
will force the execution of large models to a grinding halt. If the modeler cannot
devise an alternative solution that does not use those primitives, lack of simulation
speed will render the simulator impracticable. This situation, where the modeler is
wasting valuable time trying to cope with the simulator, should be avoided because
it distracts the modeler’s attention from the real problem: designing the model. In-
stead, the simulator should use algorithms that minimise the overhead of language
primitives even when the size of the model is scaled up. This section discusses the
major performance problems, which were encountered during several industrial case
studies with earlier versions of the simulator, and presents algorithms that deal with
these scalability issues.
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The performance of the algorithms is shown by stress tests whose results have been
collected in Appendix C. After having presented an algorithm, its performance is
discussed. An algorithm will be called efficient when it is realising the minimum
complexity expected to be possible while satisfying the constraints set by the seman-
tics of POOSL. For instance, the execution of a select will be linearly dependent
on the amount of alternatives it offers, because each of its branches has to construct
and register its requests for the next transition. Figure 6.1 shows that the increase in
execution time is indeed directly proportional to the number of branches (with equal
tasks). Since the actual algorithm has the expected (linear) order of complexity, it
will be called efficient. We mention the little twist in the curve when the branch
count is low. To explain this and other recurring specifics in the measurements, the
following section will explain on what machine the stress tests have been run.

Although we are mostly interested in the complexity of algorithms in rotalumis, we
should not forget to keep an eye on its absolute speed. An algorithm with constant
complexity scales splendidly, but if its run time is measured in centuries, it clearly
looses its practical value. The case studies that have been performed in conjunction
with IBM and Alcatel have confirmed that rotalumis is capable of executing large
industrial models. At the end of this chapter, in Section 6.7, the scalability is tested
for an actual industrial model.
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Figure 6.1: Choosing a branch from a select.
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In guiding the design of the simulator we can ask ourselves the question: where does
the simulator spend its time? A close inspection of the scheduler provides an answer
to this question. The simulator is said to run at full speed when the scheduler can
always immediately pick out an executable request from its request lists. However, as
some requests may block, the scheduler might have to select several requests before
it provokes a transition. Blocking can be caused by guards, interrupts, delays and
(conditional) communication statements. The scheduler marks requests to be able
to find the requests it has not tested yet. After executing a request, the scheduler
removes the marks and continues with the next transition. The overhead of testing
and (un)marking requests can slow the simulator down significantly and is related to
the proportion between blocking requests and executable requests. When executable
requests are outnumbered by blocking requests, the scheduler probably1 encounters
several blocking requests before it can actually perform a step.

The scheduling overhead is reduced by separating the tested blocking requests from
the other requests until a transition is provoked. This prevents the scheduler from
testing them twice and simplifies finding the untested requests. After performing a
step, the tested requests are moved back in constant time. An optimisation that can
significantly speed up simulation is reducing the amount of blocking statements.

6.2 Measuring the Performance of Rotalumis
The performance of rotalumis has been measured with stress tests that explore the
capabilities of the execution engine. The tests are carefully designed POOSL models
that show the scalability of a particular type of statement. For instance, there is a
test to determine the time required for performing a computational task (evaluat-
ing an expression) in the presence of other tasks. The measurement (Appendix C,
Figure C.20) shows that the execution time per task is nearly independent of the
number of tasks that is running in parallel. The graph exhibits two puzzling features
that require an explanation: the faster execution time when there are but a few tasks
running concurrently, and the minor performance degradation when more tasks are
being run. To find the cause of these effects, we will examine the platform on which
the tests have been executed.

The execution platform for the stress tests is a machine running the Windows 98
operating system on a Pentium III, 600 MHz microprocessor with 256kB L2-cache,
133MHz data bus and 512MB SD-RAM (100MHz) of memory. The memory avail-
able to rotalumis is approximately 400MB, and none of the tests induce swapping
of virtual memory pages. All2 tests have been performed with a single executable
whose maximum stack size has been increased to 100MB to allow for the extreme set
of models to run. The initial size of the request queue of the scheduler has been set
to ten million requests. This eliminates dynamically resizing the queue at run-time,
which would distort the time measurements of the stress tests.

1The scheduler picks potential requests at random. This allows the simulator to cover the entire
transition space in the long run.

2The only exception is the test demonstrating the effect of (lacking) tree height reduction (Ap-
pendix C, Figure C.18).
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The models incorporate a data class Clock with primitive methods for measuring the
time accurately. The methods implicitly use the rdtsc instruction to read the 64-bit
clock cycle counter of the microprocessor. Since the operating system that rotalumis
is run on is multitasking, the timing results will be slightly off, but we will ignore this
effect and try to minimise it by not running other applications during stress testing.

The following three tests written in C++ show scalability effects imposed by this
hardware/software configuration, that will bias the actual stress tests. Figure C.24
shows the time required for creating execution tree nodes (a node occupies 56 bytes)
with the new operator of C++. As the number of nodes increases, the cost for allo-
cating nodes can become significantly higher (for 5 ·106 nodes the costs are a factor of
three higher than can be expected from extrapolation). This effect causes measure-
ments of algorithms with theoretically linear complexity to display a slightly ascending
curvature. Figures C.26 and C.27 give an indication of the memory access time when
randomly modifying parts of an array of a certain size. Randomly accessing memory
reflects the type of memory access caused by the (simulated) nondeterminism of the
scheduler in the execution engine. For array sizes below 256kB, caching improves
memory access significantly, whereas arrays with sizes above 64MB require more time
to access. The final major effect that can be retrieved in some stress tests is caused
by the delete operator of C++. The highly irregular graph shown in Figure C.25 re-
veals that sometimes destroying more execution tree nodes can actually significantly
reduce the total time destruction takes.

These scalability aspects, related to dynamically creating or destroying nodes and
accessing them in random order, will play a smaller or larger role in the actual stress
tests. It is assumed that the reader recognises this biasing in the measurements. For
example, one of the stress tests measures the execution speed of an abort killing N
concurrent tasks. The time (see Figure C.21) required for constructing the statement
—merely a tree consisting of N+1 nodes— is proportional to the time for constructing
the same amount of nodes with a simple C++ program. Likewise, the destruction of
the N concurrent tasks (Figure C.22) exhibits a highly irregular execution time due
to the delete operator of C++.

Before discussing the algorithms for enhancing execution speed and their measured
behaviour, a model is presented to elucidate the need for such optimisations.

6.3 Communication
Interprocess communication can only occur if a message-send statement of one process
matches a message-receive statement of another process so as to form a rendez-vous.
Two message statements match iff:

• they are complementary: one transmits and the other receives;
• they have identical names;
• they have equal parameter counts;
• the corresponding channel allows communication between the respective pro-
cesses.

http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
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The last condition is fulfilled only when:

• a channel between the two processes exists;
• the hiding and relabelling rules specified for that channel permit communication;
• the semantics for clustering is respected.

If two message statements match, communication can occur if both statements are
executable and the optional reception condition evaluates to true. Efficiently com-
puting matches is the key to reducing communication overhead, and the following
paragraphs show why and how the matching algorithm has evolved since the simula-
tor was brought into action in numerous case studies.

Initial Approach The initial machinery behind communication primitives used
channel trees to represent channels that interconnect processes. The example in
Figure 6.2 shows how such a data structure (middle) represents a channel of a model
(left). Each node represents a part of the channel at a certain hierarchical level: in
Figure 6.2 node c represents the channel at the hierarchical level of cluster C, whereas
node d represents the channel at the highest hierarchical level of the specification.
Processes P and Q are connected to channel c that is linked to port e of process R via
channel d. We will assume that process P currently has two message-send statements
a!m (whose requests will be represented by !m1 and !m2), while process Q has two
message-receive statements b?m (whose requests will be represented by ?m1 and ?m2).
The following matches can then be made: !m1 with ?m1, !m1 with ?m2, !m2 with
?m1 and !m2 with ?m2; computing these matches is exactly what channel-tree node c
does. For each match, node c issues a silent request that becomes registered at the
scheduler, as depicted in Figure 6.2 on the right. When the scheduler grants such
a silent request, the request will notify both the message-send and message-receive
statement it represents.

After calculating all matches, channel-tree node c will forward the message requests
it manages (that is the requests originating from port a and b) to its parent, node
d, which will try to match them with requests it got from port e. So, each non-leaf
channel-tree node stores references to the message requests it gets from its children
and creates silent requests for the matches it finds.

c
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process P process Q process R

process
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process
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cluster C

a b
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scheduler
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scheduled
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send / receive
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Figure 6.2: Processes P, Q and R in the model on the left are connected through ports a, b
and e to the channel formed by parts c and d. In the simulator (middle image) the channel
is represented by a channel tree. The right image shows that channel-tree node c computes
silent requests from send/receive requests forwarded by port nodes a and b.
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From a computational point of view, the above implementation of communication
primitives can be expensive. First of all because each message request that ceases to
exist must notify all the objects referring to it (such as channel-tree nodes and silent
requests); and second —more importantly— because of the worst-case overhead of
creating n×m silent requests for n equal message-send statements matching m equal
message-receive statements. In that case n + m − 1 silent requests are created and
destroyed for at most one successful rendez-vous.

Preventing Explicit Construction of Requests for Matches The overhead
introduced by explicitly creating silent requests for each possible match can be very
high. Obviously, there must be searched for better approaches. The algorithm has
therefore been adapted so that matches are no longer computed beforehand, but
only when a message-send request is about to be executed — now without explicit
construction of silent requests for matches. To allow this approach to work, message-
send nodes of an execution tree issue a request at the scheduler. Since a message-send
node knows to which port its message should be sent, it can ask the corresponding
channel tree to gather the matching message-receive requests. The message-send
node then randomly picks one of the matching requests and tries to communicate. If
communication is unsuccessful because the receiver’s reception condition evaluates to
false, other requests are tried either until communication does take place or until all
requests have been tested.

Like the previous algorithm, each channel-tree node stores references to the cur-
rently active message requests. However, only message-receive requests are sent to
the channel tree; message-send requests are registered at the scheduler. For gather-
ing matches, the message-send node asks the corresponding port to generate a list of
matching message-receive requests. The port will redirect this request to its parent
(a channel-tree node), which will add all requests matching at that hierarchical level.
The parent’s parent will then add matches at the next hierarchical level, and so on,
until all matching requests have been collected.

Although this algorithm does not generate explicit silent requests, it still has to (re-
peatedly) find all matching receivers. The time spent looking for matches depends
on both the hierarchical depth of the model (determining the height of the channel
tree) and the number of message-receive requests active at that moment. Because the
channels are static, the following optimisation is possible.

Removing Hierarchy The fact that communication between two ports is allowed
or not, is determined by the topology of channels and since this topology is static, this
fact will not change during a simulation. The channel tree can therefore be replaced
by a single node (representing the entire channel) that stores a square connection
matrix . The matrix holds true at position (x, y) if the channel between ports x and
y allows communication and holds false otherwise.

The channel uses a single list to store all current message-receive requests. The mem-
ory and computational overhead of storing references to a request at each hierarchical
level of the channel tree is thus reduced to storing only a single reference per request.
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Table 6.3: Example to demonstrate the need for message representatives.

Process P:
1 par
2 p!m
3 and
4 p!m
...

...
2n+1 rap

Process Q:
1 while true do
2 p?m
3 od;

Also the search for matching requests no longer depends on the hierarchical depth of
a channel: only a single list is to be searched and a simple lookup determines if the
channel allows communication.

Two problems still remain; they are dealt with by the next (final) matching algorithm.

Message Representatives The algorithm that prevents explicit construction of
requests for matches still has two deficiencies: it is asymmetrical and it does not use
all static information that is already available at compile-time and which could be
used for reducing the work at run-time. The algorithm’s asymmetry expresses itself
clearly when many transmitters try to communicate with but a few receivers.

Consider n concurrent transmitters trying to communicate with n receivers sequen-
tially (Table 6.3). Because the transmitters of process P are added to the scheduler’s
request list, n message-send requests occupy this list, next to an action request to
unroll the while-loop of process Q once. To make progress, the scheduler must find
that action request, because until that moment, no matching receiver is available to
render the message-send requests executable. After that, the scheduler picks the next
request and will find a transmitter that can communicate. Immediately after that,
n − 1 blocking requests are left in the list, next to an action request to unroll the
while-loop once more.

If the message-send statements (lines 2,4,. . . ) were to be replaced by message-receive
statements and, conversely, the message-receive statement in line 2 by a message-send
statement, the scheduler’s queue would initially contain only a single action request
to unroll the while-loop once. After the scheduler has executed that request, process
Q issues a single message-send request. The scheduler has but one possible next step,
which is executable. Then, another action request is scheduled for the next iteration.

In the original example (Table 6.3), the scheduler had to find the action request buried
within n, n−1, n−2, . . . (blocking) message-send requests to perform a communication,
slowing it down. In the second case, after swapping the message-send statements and
the message-receive statement, the request list contained only a single executable
request at each step — hence the scheduler would immediately find the request to
make progress.

This asymmetrical behaviour of communication primitives is unacceptable — it could
force modelers to use a message-send statement where they would normally have used
a message-receive statement, only to prevent a severe slow down in execution speed.
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A more efficient approach is highly desirable and also feasible: schedule only a single
message representative when matches have been found.

Figure 6.4 shows the data structure that each channel employs to render communica-
tion efficient. For each different combination of message name and parameter count,
the channel has a message representative accompanied by two circular doubly-linked
lists. These lists store the requests of corresponding message nodes — one storing
only message-send requests, the other storing the message-receive requests. The mes-
sage representative issues a request at the scheduler iff both its lists contain a request.
The crux of this symmetrical(!) message-matching algorithm is that the scheduler’s
request list contains only a single request (the message representative’s) when matches
exist, independent of the number of message requests.

Inevitable Run-Time Checks When a message representative issues a request at
the scheduler, it cannot guarantee that communication will occur. Two final checks
can still thwart successful synchronisation: testing if a pair of executable message
requests exists, and testing the optional reception condition. These checks must be
computed at run-time since they depend on the corresponding processes’ dynamic
data that may change while the model is executing.

To reduce the overhead of these run-time checks, a message-send request is paired
with any of the available receivers before proceeding with the next message-send
request. This allows for single evaluation of the message parameters. Only when one
of the receivers permits synchronisation will the message’s data be deepcopied to the
receiver. Then —at long last— has the communication been settled.

Measured Cost of Communication Figure C.1 in Appendix C shows that the
time required for communication over a separate channel between a pair of a trans-
mitting process and a receiving process is independent of other concurrently running
processes. Figure C.2 demonstrates the constant cost of communicating through hier-
archical levels. One of the communicating partners is a process wrapped into clusters

m(•,•)

retry

ack(•)

rqst(•)

m(•,•,•)

message
representatives

message-send
requests

message-receive
requests

Figure 6.4: A channel node uses a list of message representatives to represent equally typed
messages. The message representative issues a request iff communication might be possible.
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(introducing the hierarchical levels), the other is a process at the top level. Commu-
nication cost is also independent of the hierarchical depth, as is shown by Figure C.3.
In this test, both the transmitting and receiving process are wrapped into clusters.

The communication algorithm is symmetrical: synchronising a single transmitter with
one out of N receivers takes the same amount of time as synchronising a single receiver
with one out of N transmitters (Figures C.4 and C.5). The first test constructs a
single transmitting process, connected via a single channel to N receiving processes,
whereas the second test has N transmitters and one receiver connected to a single
channel. The measurements show that the cost is independent of channel connectivity
for (nonblocking) communication. The measurements in Figures C.6 and C.7 show the
execution time of synchronising with one out of N concurrent communication partners
within a single process. The reader is reminded that the increase in execution time
and noise are caused by slower memory access for large amounts of memory and object
destruction respectively.

A deviation on the last two tests is by using conditional receive statements. Only
one of the N communication pairs matches, the other communication statements
block. The communication cost (Figures C.8 and C.9) is independent of the number
of blocking partners. This constant execution time is the result of using message
representatives — otherwise, the time per communication would have been linearly
dependent on the amount of blocking partners.

When no run-time checks are required, the overhead of communication is (almost)
independent of the amount of message statements in a POOSL specification; almost,
because the number of different combinations of message name and parameter counts
determines the amount of message representatives that can become active at a single
moment. It is safe to say that this matching algorithm scales very well for uncondi-
tional messages.

6.4 Delays
The semantics of POOSL dictates action urgency. The scheduler must therefore
perform action transitions before it may schedule a delay transition. When none of
the action requests is executable, the scheduler lets the model time proceed to the
next moment at which action transitions may have become executable. To determine
the next point in time, the scheduler calculates the minimal delay from its list of delay
requests, increases time by this minimum and grants the expired delays.

Initial Approach The initial algorithm that determines the next moment in model
time, used a list to store delay requests. When a delay statement issues a delay
request, the scheduler evaluates the expression of the delay statement to determine
the time period after which the statement will expire, and stores this initial duration
in the request. If the model time progresses when a delay statement is blocked, the
moment of expiry of the corresponding delay request is prolonged. When the scheduler
is about to perform a time transition, it determines the minimum of the durations
that are stored in the delay request list. The durations are then lowered by this
minimum and delay requests that expire because their remaining duration becomes

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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zero are moved to a separate list for convenient retrieval. Finally, the scheduler adjusts
model time, grants the expired delay requests and proceeds with scheduling action
transitions.

The scheduling overhead is proportional to the amount of delay requests in the list.
In the worst case, each delay request determines a unique point in time, introducing
adjustments to the delay requests that do not expire (Figure 6.5).

Special Case: Invariable Delays Often, delay statements are neither guarded,
nor interruptible. For such statements, the duration of the corresponding delay re-
quest is invariable from the moment it is issued, and therefore its expiry time can
be precalculated. By sorting the expiry times of these invariable delay requests, the
scheduler can quickly find the next instant in time and make a delay transition.

The scheduler uses a binary heap to store invariable delay requests. Elements in a
heap are stored in such a way that the smallest or largest value is accessible in O(1)
(constant time) at the root of the heap. Adding or removing elements can be done in
O(log n) where n is the size of the heap. Since requests are usually added and removed
only once in their lifetime, the performance of this algorithm is mainly determined
by the fast retrieval of the minimum.

Because absolute expiry times are stored, and not relative durations, the delay re-
quests require no adjustments as was the case in the initial algorithm. This algorithm
performs significantly better, because the invariable delay requests do not need ad-
justing, something that caused a large overhead in the initial approach. Variable
delay requests originate from delay statements that are guarded or interruptible; they
are still handled as in the initial approach. Luckily, in many models these statements
are simply absent.

Measured Cost of Delays The actual performance of the discussed algorithm for
computing the next time transition for guarded delays is shown in Figure C.10. The
cost per time transition is, as is expected, linearly dependent on the amount of con-
current guarded delays. The use of true guards will prevent the execution engine from
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Figure 6.5: Creation, adjustments and expiry of concurrent delays.
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using the binary heap. Figure C.11 shows the time required for computing the next
time transition if the model contains only invariable delays. The cost is constant (tak-
ing into account the increased memory access time, as discussed in Section 6.2). Using
the binary heap for storing expiry times of invariable delays dramatically improves
the execution speed over normal handling of delays.

6.5 Guards
Guarded statements can only execute if their guards evaluate to true. The imple-
mented approach assumes that since the last transition, reevaluation of a guard is
necessary (the scheduler only evaluates a guard if it encounters one). This is costly,
but the alternative of keeping track of possible changes in the outcome of a guarding
expression is generally even more expensive.

A guarding expression usually depends on data that changes during simulation, so
it is often impossible to reduce the overhead of guards by trying to calculate if an
execution step has influenced the outcome of a guard. To see this, consider the simple
case of [x m()] S, where x is a data object, and m is a method. POOSL offers
dynamic method binding and is an untyped language, so it is only at run-time that
the corresponding method body is known. The outcome of the guarding expression x

m() can only be determined if it is known of which class x is an instance, such that
the correct body of method m can be found. The method may depend on other data
objects as well (via the instance variables of x), so to determine whether the outcome
of method m has changed, the execution engine should also keep track of the changes
in these objects. This bookkeeping may all be without purpose, because x could be
reassigned to a different kind of object before the scheduler encounters the guarded
statement.

In general the objects determining the outcome of a guarding expression cannot be
computed efficiently, and it is therefore infeasible to detect when a guard has changed
and the scheduler cannot use the previous outcome of a guarding expression. Although
the real problem cannot be solved, we can alleviate it a bit.

To determine whether the request of a statement is guarded, the scheduler traverses
the corresponding execution tree from the leaf node that issued the request towards
the root, looking for guards. Because most statements are not guarded, the scheduler
can save a lot of time if this information is available in the request itself. When a
request is unguarded, the scheduler can immediately grant it without traversing the
tree. In the unfortunate case that the request is guarded, the scheduler proceeds as
normal.

Another optimisation seems to be storing the result of an evaluated guard, and use
that result as long as it is not invalidated. Because it is impossible to determine which
changing data object can affect the result, the scheduler can only assume the result to
be valid until the next transition is taken. Because processes do not share any data,
only transitions of the corresponding process might affect the guard. The overhead
of storing and invalidating results does not seem to be worthwhile in general.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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Blocking guards greatly influence the performance of the simulator. When the amount
of blocking requests is large compared to executable requests, the scheduler probably
encounters many guards and must evaluate their guarding expressions before it actu-
ally finds an executable request to perform a transition. The higher the percentage of
blocking requests is, the more probable the scheduler is to encounter them and spend
time evaluating their expressions.

Measured Cost of Guards The measured cost of guards as a function of their
count confirms our suspicions. Figure C.12 shows the time required to find a single
executable request hidden among N blocking guards. The speed degradation is linear
in the ratio of blocking guards to executable requests. A second test with guards
measures the cost guards impose when they are nested. The test repeatedly executes
a statement of the form [true]...[true] skip. The graph in Figure C.14 shows
that the cost linearly depends on the depth of nesting. The cost is primarily caused
by having to evaluate the guarding expressions for determining whether the guarded
command is executable. Another part of the cost is caused by the increased depth of
the execution tree, which is the topic of the following section.

6.6 Execution Tree Height Reduction
When a process performs a transition, its execution tree must adapt itself to reflect
the process’ next state. The overhead of changing the execution tree depends on
its height, because the executed request that caused the transition sends a message
along the path from the request to the root. Each node along this path will then
decide, based on its semantic rules, how it must react. The shorter the path, the less
nodes that process the requests’ message and the lower the overhead for performing
a transition is.

There is a second reason for keeping the path from request to root short: guards.
When a guarded request is granted, the request must evaluate its guards to determine
if it can execute. Along the path towards the root, starting at its parent, the request
searches for its guards. The overhead of searching for guards is lower when less nodes
have to be visited. This can be achieved by reducing the height of the execution tree.

Table 6.6 shows an example of a method that dynamically creates N concurrent ac-
tivities S. The parameter of the initial method call specifies the number of concurrent
activities that m()() should start. In the method, the parameter is interpreted as an
identifier of the activity S in line 5. In parallel, the method tail-recursively creates
the remaining activities. The recursion ends when ID becomes one.

Table 6.6: Dynamically creating concurrent activities.

1 m(ID: Integer)()
2 par
3 if ID > 1 then m(ID - 1)() fi
4 and
5 S
6 rap.
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Figure 6.7: Subsequent trees during dynamic creation of concurrent activities.

Figure 6.7 represents a possible trace of intermediate trees while m()() unfolds. Tree
A shows the initial method call (with parameter N). The method-call node creates
its body (B) and has its parent —the root— replace the method-call node by its body
(C). The if-node representing the if in line 3 replaces itself by a new method-call
node (D) that creates its body in E. Then, the method-call node has its parent (a
parallel-composition node) replace the method-call node by its body (F). Recursion
ends in G where the if-node has just replaced itself by skip (representing its else-
branch). The tree is unbalanced, and the average path length from the root to a
subtree Si is N+1

2 nodes.

For compound statements such as parallel composition, sequential composition and
selection, the tree can be reduced (no proof is provided, this is future work). When
the method call node in E is replaced by its body, the tree can thus be reduced to
F’. When recursion ends in G’ the average path length from the root to a subtree Si

has been reduced to only one node.

Measured Cost of Execution Tree Height Figure C.17 shows the time required
for running a task at a certain depth of the execution tree. When the depth increases,
the execution time scales proportionally. Nonterminating statements that run after
their fix requests have been granted, however, have a run-time that is independent of
the depth at which they are positioned in the tree (Figure C.15). The reason for this
constant complexity is that fix requests are not communicated to other parts of the
execution tree, because fix transitions do not modify the statement context.

The graph in Figure C.16 shows that returning from a method (with return parame-
ters!) exhibits a complexity linear to the depth the method call node is positioned at.
This may become a problem, as was experienced during a stress test: if a statement
nested in N method calls terminates, it takes O(N2) to destroy the tree, because
each terminating method call must inform its parent that it has terminated. The
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parent (also a method call) will issue a request at the scheduler for binding its output
parameters, and will inform its predecessors that its child has terminated. A possible
optimisation would seem to allow the parent to immediately bind its output param-
eters without requesting permission to the scheduler. In that case, the entire tree
could be terminated in one pass, yielding a total complexity of only O(N) (that is, a
constant cost per terminating method). Such an optimisation should be backed by a
proof showing that the resulting behaviour is bisimilar to the original behaviour. In
this case, it is easy to produce a counterexample.

The effect of tree reduction on execution trees with dynamically created concurrent
activities is shown in Figures C.18 and C.19. The former graph shows the time
required for executing a task (a while loop) at varying depth in the execution tree.
For trees with a modest depth (less than hundred nodes), the execution speed is
predominantly determined by other overhead, but for a depth of over a thousand
nodes, the execution time depends linearly on the depth of the tree. With the tree
reduction proposed in the previous section, the execution speed becomes independent
of the depth of the tree (Figure C.19).

6.7 Industrial Case Study: Internet Packet Switch
The previous sections have discussed several optimisations separately, but real-life
models will usually contain a motley collection of language primitives. To demonstrate
the combined effect of the accelerations, this section presents the execution speed of
an industrial model of a packet switch as a function of its scale parameter N , for
various loads. Because the model itself is confidential, a greatly abstracted model
is presented for theoretical analysis of its complexity (and validating the measured
execution time).

6.7.1 Abstract Model of the Packet Switch

Figure 6.8 shows the conceptual model of a packet switch that routes IP traffic over
the backbone of the Internet. This model has been derived from a model used for
performance analyses of a large industrial case study that is fully described in [47, 48].
Nonconfidential excerpts can be found in [46, 45]. The size of the switch can be
changed by varying parameter N , which determines the number of input and output
ports of the switch. Parameter M determines the number of independent sources
offering traffic on a single input of the switch.

The conceptual model simulates the environment that produces IP traffic (the sources)
and consumes it (the sinks). For each of the N inputs, M independent sources pro-
duce a bursty stream of IP packets of varying length. Each source uses a two-state
Markov mechanism to model transferral of files, alternated by bursts of small packets.
Incoming traffic goes to input adapters where it is buffered. The conceptual model
represents the input adapters by one process that uses a single input dispatcher to
place packets in one of the N × N input buffers. The switch fabric transports the
buffered packets to their respective output adapters where buffers flatten out tempo-
rary peaks in traffic. Packets leaving the Internet packet switch finally disappear in
the sinks.
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Four methods (Table 6.9) deserve special attention because they exemplify the scal-
ability issues encountered in earlier implementations of the simulator.

Sources Process Sources runs N ×M methods TransmitPacket in parallel. Each
method uses an infinite loop to produce packets. CreatePacket (line 5) returns a
packet and calculates the remaining time until the next packet is to be produced.
The packet is sent (line 6) to the input adapter along with information that identifies
the input port (srcID). Since each packet carries its own destination, the switch can
transport the packet to the correct output port. Finally, the source waits for the next
moment to send a packet (line 7).

Input Adapters Process InputAdapters uses a single method DispatchInput to
route incoming packets to one of the input buffers. In line 4 a packet is received and
stored —with an immediate data expression— in global variable Queues that refers
to a matrix of N × N FIFO queues. Each input and output pair has its own FIFO
queue to buffer incoming packets (virtual output queuing [27]); the destination stored
in the packet and the source (srcID) determine in which buffer the packet is stored.
The input dispatcher uses a tail-recursive method call (line 5) to process the next
packet.

Every input buffer is emptied by an output handler (method HandleOutput) as fol-
lows. The guard on line 3 blocks while the buffer is empty. As soon as a packet is
present, the message-send statement (line 4) will send it to the switch fabric. Be-
cause the parameter expressions of a message-send statement must be side-effect free,
the packet is retrieved with data method inspect, which leaves Queues untouched.
Immediately after the communication has taken place, the packet is removed by the
message’s immediate data expression. The output handler uses tail-recursion (line 5)
to transfer any remaining packets to the switch fabric.

Switch Fabric Process SwitchFabric always reserves one method Transfer-

Packet to await (line 4) a packet from any of the input adapters. After receiving
a packet, the method splits up into two concurrent activities, one that handles the
packet and another that awaits additional packets. Packet handling is modelled by
delaying for a constant time SwitchingTime after which the packet is sent to the
appropriate output adapter.

To give an idea of the size of the model, we mention that most of the simulations
where performed with typical values for N ranging from 32 through 64 and M usually
being 16. This amounts to approximately3 2,500 through 9,200 concurrent activities.
Larger switches being simulated were performed with N in excess of 256 and M equal
to 64, amounting to over 147,000 concurrent activities.

3The approximations are based on high-load traffic, resulting in few empty input buffers. In
this typically measured situation the switch fabric is running at peak performance and has N × N
branches to handle packet transport, amounting to a total of about N ·M +N ·N +N ·N concurrent
activities for the entire model.
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Figure 6.8: Internet packet routing switch.

Table 6.9: Methods of the Internet packet switch that cause scaling problems.

Process class Sources:
1 TransmitPacket(srcID: Integer)()
2 | p: Packet, t: Real |
3
4 while true do
5 CreatePacket()(p, t);
6 out!packet(srcID, p);
7 delay t
8 od.

Process class InputAdapters:
1 DispatchInput()()
2 | srcID: Integer, p: Packet |
3
4 in?packet(srcID, p) {Queues put(srcID, p)};
5 DispatchInput()().

Process class InputAdapters:
1 HandleOutput(srcID, dstID: Integer)()
2
3 [Queues notEmpty(srcID, dstID)]
4 out!packet(dstID, Queues inspect(srcID, dstID)) {Queues remove(srcID, dstID)};
5 HandleOutput(srcID, dstID)().

Process class SwitchFabric:
1 TransferPacket()()
2 | dstID: Integer, p: Packet |
3
4 in?packet(dstID, p);
5 par
6 delay SwitchingTime;
7 out!packet(dstID, p)
8 and
9 TransferPacket()()

10 rap.
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6.7.2 Optimisations

Many test cases have been used during the development of rotalumis, to check the
effect of the optimisations discussed in this chapter. The packet-switch model is one
of those test cases that showed the need for optimisations to obtain scalability. It is
illustrative to examine the model and discuss those parts that would blow up without
these accelerations.

Communication The case study confirmed that the initial algorithm for finding
matching communication statements does not scale well. The N × N output han-
dlers of the input adapters trying to communicate with the switch fabric cause a
slowdown dependent on the size of the switch. For typical values of N this overhead
was dominating for simulation speed: changing the switches’ size from 32 ports to
64 ports would increase the simulation time sixteen times (doubling the size quadru-
ples the workload, and the number of silent requests constructed and removed per
synchronisation is also four times larger).

The second implementation for communication prevented the construction of requests
for each possible combination, but it was asymmetric. We will now consider the
N×M (say k) sources trying to synchronise with the single input dispatcher of process
InputAdapters. We conveniently discard the other processes and abstract from time
and message data: line 6 of method TransmitPacket then contains out!packet;

and line 4 of method DispatchInput becomes simply in?packet;. (We will call this
the first case.)

Now consider the situation where line 6 of method TransmitPacket is replaced by
out?packet; while line 4 of method DispatchInput is changed into in!packet;.
(This is the second case.) Both processes still synchronise as expected; functionally,
nothing has changed. However, this subtle and seemingly innocuous alteration does
boost simulation speed by a factor of up to k (actually, in the first case performance
was up to k times too slow and has now been restored).

What has happened? The first case has a large scheduling overhead because of the at
least k−1 transmitters trying to synchronise with a single receiver. Because message-
send nodes issue a request at the scheduler, there are equally many blocking requests
whenever a communication has just taken place. For the subsequent transition, the
simulator will have to find the single request that allows the input dispatcher to per-
form a method call and issue the next message-receive request at the channel. Only
then will the message-send requests become executable and can the next synchro-
nisation take place. Actually, the scheduler can successively perform several other
requests, namely those originating from the source that just has communicated (be-
ing related to TransmitPacket’s lines 4, 5 in this order), but eventually this source
blocks at line 6 leaving only a single executable request: that of the receiver. Most of
the time the scheduler picks inexecutable requests and has a low probability of finding
executable requests; whence the large scheduling overhead (proportional to k).

In the second case (many receivers, single transmitter) this overhead is not present,
because the k message-receive nodes issue their requests at the channel tree. The

http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
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request list of the scheduler now contains only executable requests and, consequently,
the simulator runs at full speed. As explained before, this asymmetrical behaviour of
communication primitives is unacceptable; in the case study it slowed down execution
speed approximately 500 to 1000 times (N ∈ {32, . . . , 64} and M = 16).

Because rotalumis employs the implementation with message representatives to match
communication primitives, there will not be scheduled any blocking communication
requests in this case.

Delays The sources in Table 6.9 exhibit the worst-case behaviour mentioned in
Section 6.4 that delays have to be adjusted often. This behaviour is introduced by
the delay requests (from the delay on line 7) of the N × M concurrently running
methods TransmitPacket. Because the sources are statistically independent, it is
likely that delay requests are started at different model times, and will end at different
model times. In this situation, performing delay transitions is expensive: for each
delay transition, the scheduler must adjust the almost N ×M delay requests. For
typical values of N ∈ {32, . . . , 64} and M = 16, the overhead of adjusting 500 to 1000
requests for each delay transition would become problematic with the initial approach.
However, because the delay statements are unguarded, they will be invariable from
the moment their expression has been evaluated — the execution engine will employ
the faster approach with the binary heap.

Guards Consider the guard in line 3 of method HandleOutput in Table 6.9. Method
notEmpty of data object Queues (a matrix of FIFO queues) is called to check if the
buffer at position (srcID, destID) contains any packets. Section 6.5 explained that
guards are expensive. Since the packet switch has N ×N input adapters, there may
be equally many blocking guards. In such a situation, the scheduler will encounter
many blocking requests while trying to find the next executable transition. Here, only
rewriting the model to avoid using this many guards will help — the actual packet
switch model creates a new concurrent activity to handle output only if there is a
packet in the corresponding queue, using a method similar to the one discussed in
Section 6.6.

6.7.3 Actual performance

The theoretical behaviour is of order O(M × N + N × N). Since N determines the
dominant factor, we will vary that parameter while keeping M fixed at its typical
value sixteen. The theoretical complexity of the model is then of order O(N + N2).
For lower values of N , the execution time of the model should scale proportionate to
N , but for larger values of N the execution time will be of order O(N2).

The theoretic behaviour is reflected in practice; the execution time (for simulating
one second) for the actual packet-switch model is shown in Figure 6.10.

For N ≤ 32 the execution time is almost linearly dependent on N , while for N > 32
it scales with O(N2). The slight additional increase in execution speed is about a
factor of two for N = 1024, and is caused by slower memory access (see Figure C.26
in Appendix C) — at that point approximately two million concurrent processes are
active. Notice that for higher loads, the amount of data in use by the model is higher,
and thus memory access is slower.

http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
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Figure 6.10: Execution time of the Alcatel packet switch model (for simulating one second).

6.8 Summary
To offer designers the full power of the language, an effort has been taken to optimise
the execution speed of (combinations of) the language primitives. Industrial problems
tend to be of such large dimensions that omission of these speedups would result in
extremely long simulation times that it would render the execution engine unusable.

The most significant source of these scalability problems is formed by blocking state-
ments. After identifying and discussing the different kinds of blocking statements,
the implemented optimisations were explained, which alleviate most of the distress
these blocking statements cause.

An important speedup has been achieved for communication primitives, using both
information that is available at compile-time (such as channel topology) as well as
information available at run-time (storing messages in categories based on their sig-
natures, for efficient matching).

After having identified two kinds of delays —variable and invariable— an enhanced
algorithm was devised that allows efficient handling of invariable delays whose expiry
time can be precalculated. The required adjustments after each time transition for
variable delays (which are either guarded or interruptible) remain because they can
not be averted.
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The main culprit is and remains the guard. Its semantics requires evaluation of the
guarding expression before the scheduler can decide whether a guarded statement is
eligible for execution. Combined with the action urgency requirement of POOSL’s
semantics, the scheduler must evaluate all guards before it can decide whether to let
model time pass by. When the amount of blocking statements becomes relatively
large, the execution speed may become so slow that it becomes problematic; in that
case the modeler is required to restructure the model to either minimise or avoid the
use of guards. Further research into the use of guards may lead to speedier execution
of guards in special cases.

Dynamic restructuring of execution trees allows reducing their height, thus improving
the simulation speed, which is related to the path length from request (leaf node) to
root.

The measurements presented in this chapter show that rotalumis is a scalable, efficient
execution engine for POOSL.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl


Chapter 7

Prototyping

7.1 Overview

The simulator can be adapted for prototyping. This allows a model to control hard-
and software and to react to actual events from the outside world while satisfying
timing constraints. Figure 7.1 gives an overview of how communication with the
environment (real world) can be accomplished. Processes can use data objects to en-
capsulate part of the environment, for instance a hardware device such as a computer
display. Such data objects define a clean interface towards the model (their instance
methods), and internally use a device driver to access or control the hardware. The
device driver could be as simple as a set of library functions that allow interaction
with software. The next section discusses a case study to illustrate the design alter-
natives that were encountered during the implementation of the real-time variant of
the simulator (rotalumis-rt).

process

data object

hardware /
software

model

environment

ProcessingUnit

IR_Transceiver

hardware infrared
transceiver

Display

Keyboard

Keyboard

computer
display

computer
keyboard

device driver parallel port driver display driver keyboard driver

system-level specification of the learning infrared remote control

data layer

process layer
kb

kb kb

Figure 7.1: The model (left image) can interact with the environment through data objects
that encapsulate external hardware devices or software and use device drivers to access or
control those devices. The image on the right depicts the example that will be explained in
the next section.
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Figure 7.2: Example of a signal transmitted by an RC-5 compliant remote control of a video
recorder while pressing its play button. From top to bottom: the entire signal, a single
telegram, the encoded bit pattern and finally the carrier wave.

7.2 Case Study: Learning Infrared Remote Control
A case study has been carried out to discover the common difficulties in real-time
simulation. The case study encompasses the implementation of a prototype of an
infrared remote control with learning capabilities. A short introduction to existing
protocols for infrared remote controls might help the reader in better understanding
the specification of the learning infrared remote control (LIRC).

7.2.1 Protocols for Infrared Remote Controls

Remote controls can use different protocols to transmit information by means of
infrared light; examples of such protocols are RC-5 and SIRCS. Figure 7.2 shows an
example of the signal transmitted by a video recorder’s remote control —compliant
with the RC-5 standard— when its play button is pressed. The signal is a carrier wave
of 36 kHz whose amplitude is modulated by a bitstream of 1125 Hz. The bitstream
that toggles the carrier wave on and off is a repetition of a telegram, which is an
encoded version of the message that is being transmitted. The message contains a
command and an identifier that indicates which device should react. It is phase-shift
encoded; each bit in the message is translated to a pair of bits in the telegram (0 10
and 1 01). The original message (00101110101) contains five bits to identify the
device (00101 for video recorder) and six bits for the command (110101 to select
play). The telegram begins with two start bits (always 1), followed by a toggle
bit that flips each time a key is pressed. Then the five device bits are sent, most
significant bits first, followed by the six command bits. Each 113.778 ms the telegram
is repeated.

Other remote controls using different protocols exhibit similar features, but may differ
in for instance number of device/command bits or use different encodings, like pulse-
length coding or space-length coding instead of phase-shift coding.
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Figure 7.3: The LIRC will be restricted to deal with telegrams of this form.

7.2.2 Specification of the Learning Infrared Remote Control

The following specification is not intended to be complete and precise, but merely to
give a general idea of the prototype that serves as an example to explore real-time
simulation.

The learning infrared remote control (LIRC) will be restricted to handle telegrams
with the following characteristics:

• the smallest duration between two signal transitions defines the clock frequency;
other durations are a multiple of this duration;
• telegrams are repeated at a constant frequency and repetitive telegrams are
identical.

The telegrams will be sent using a 36 kHz carrier wave. The LIRC should be capable
of mimicking signals that were sent by remote controls producing similar telegrams.
The LIRC should be fitted with a display to give the user feedback or instructions. A
keyboard allows the user to communicate with the remote control’s internal processor
that performs signal (de)composition and storage and controls the display and an
infrared transceiver.

Figure 7.3 shows the same1 telegram as in Figure 7.2, but now viewed as a collection
of transitions separated by an integer number of clock cycles. The clock frequency of
the bitstream defined by RC-5 is 1125 Hz.

7.2.3 Implementation

The prototype consists of a hardware infrared (IR) transceiver controlled by a POOSL
model that is being executed by the real-time variant of the simulator on a personal
computer. The following sections will discuss the common problems that were en-
countered: synchronising model time with real time, reacting to events from the en-
vironment (for example from sensors) and producing output (for instance to control
actuators).

The carrier wave will be generated by hardware (a prototype IR-transceiver) to relax
the timing constraints for the real-time simulator. The IR-transceiver (Figure 7.4) also
contains a demodulator to recover the enveloping signal that might contain telegrams

1The learning remote control assumes that the first off-to-on transition defines the beginning of the
telegram. The telegram in Figure 7.2 actually starts one clock cycle earlier, but the asynchronously
operating receiving unit (in this case the video recorder) will not be able to notice the difference.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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Figure 7.4: The electrical scheme of the hardware infrared transceiver.

sent by another remote control. The rest of the remote control is modelled in POOSL
as is shown on the right in Figure 7.1. The architecture of the model contains two
processes: one modelling a keyboard and the other modelling a processing unit with
display and infrared transceiver. The keyboard is connected to the processing unit
by a channel allowing it to offer the processing unit information on pressed keys.

As was mentioned before, the processing unit uses two data classes, Display and
IR_Transceiver, to encapsulate the actual devices. Display, for instance, contains
the primitive method writeln whose parameter is a string that will be displayed on
the monitor of the computer the model is running on. Data classes can be viewed
as wrapper classes whose primitive methods can encapsulate functions in a native
programming language.

For the actual transmission of infrared signals, the hardware IR-transceiver connected
to the parallel port of the computer (LPT1) must be controlled from within the
POOSL model. Data class IR_Transceiver represents this hardware IR-transceiver.
For transmission only one method is of real interest: method Out. The parameter to
this method is either zero or one, to turn the IR-transmitter off and on respectively.
When the transmitter is switched on, it will begin sending the carrier wave generated
by its oscillator.

Two aspects of the model deserve special attention because they reveal the general
problems of performing input and output from a system-level model while satisfying
timing constraints: transmitting telegrams (output) and learning new telegrams (in-
put). The methods will only be introduced here and discussed more thoroughly in
the subsequent sections.

Process class ProcessingUnit offers method TransmitTelegram (Table 7.5) to send
telegrams to the infrared transceiver. The method reads the telegram characteristics
from a file, starting with the clock frequency, followed by the amount of transitions

http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
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Table 7.5: Method TransmitTelegram of process class ProcessingUnit.
1 TransmitTelegram(FileName: String)()
2 | FSamples: FileIn,
3 i, NrOfTelegramsSent, NrOfTransitions, ClockFrequency: Integer,
4 Samples: Array |
5
6 // Read the telegram from file.
7 FSamples := new(FileIn) source(FileName) open;
8 ClockFrequency := FSamples readInteger;
9 NrOfTransitions := FSamples readInteger;

10 i := 0; Samples := new(Array) size(NrOfTransitions);
11 while (i := i + 1) <= NrOfTransitions do Samples put(i, FSamples readInteger) od;
12
13 // Transmit the telegram.
14 LCD writeln("Transmitting....");
15 i := NrOfTelegramsSent := 0;
16 while
17 if i == NrOfTransitions then NrOfTelegramsSent := NrOfTelegramsSent + 1 fi;
18 i := i modulo(NrOfTransitions) + 1;
19 NrOfTelegramsSent < 5
20 do
21 IR Out(i & 1);
22 delay Samples get(i) / ClockFrequency
23 od.

and finally the durations between the consecutive transitions. By definition, the first
transition will switch the transmitter on. In order to reduce the error sensitivity, the
receiving device usually only accepts a message after having received several correct
telegrams; TransmitTelegram therefore repeats the telegram five times (this is an
arbitrary number).

Method ReceiveTelegram (also of process class ProcessingUnit) is shown in Ta-
ble 7.6. It writes a message to the display (LCD) to give the user instructions. Then a
data object of class IRSignal is constructed, which will store the samples (signal tran-
sitions) and implements a signal-analysis algorithm for recovering the telegram from
the samples. After enabling input events, the method will wait for the transceiver’s
input signal to reach one (=on) before informing the user that it has detected the
signal of the sending remote control. A loop will keep waiting for other transitions,
adding the time of occurrence and signal state to Samples. A watchdog, formed by
the delay statement will abort scanning after SampleTime. Then the input events are
disabled, the user is informed that sampling has ended and the samples are analysed
(and implicitly stored).

7.3 Generating External Events
As was mentioned in the overview (Section 7.1), the model can interact with the en-
vironment through primitive methods of data objects. In general, primitive methods
encapsulate behaviour that cannot be captured by POOSL expressions but is provided
in a native language. Here, these methods are used for defining and implementing an
interface to the real world. To generate external events, a primitive method can call
library functions, use device drivers or even access hardware directly.

As an example, Table 7.7 shows the implementation of the primitive method Out of
IR_Transceiver in C. First the operand is checked, since the parameter to method

http://www.ics.ele.tue.nl/~lvbokhov/poosl
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Table 7.6: Method ReceiveTelegram of process class ProcessingUnit.

1 ReceiveTelegram(FileName: String, SampleTime: Real)()
2 | FSamples: FileOut, Samples: IRSignal |
3
4 LCD writeln("Aim your original remote control (ORC) to the LIRC,")
5 writeln("and press the key on the ORC you want the LIRC to learn.");
6
7 Samples := new(IRSignal) Initialise;
8 IR EnableInputEvents;
9
10 // Wait for the input signal.
11 [IR In == 1] LCD writeln("Signal detected, please keep the key pressed.");
12
13 // Start scanning transitions on the input of the IR transceiver.
14 abort
15 while true do
16 [IR InputHasChanged] Samples AddSample(currentTime, IR In)
17 od
18 with
19 delay SampleTime;
20
21 IR DisableInputEvents;
22 LCD writeln("You can now release the key.");
23
24 Samples CorrectForDutyCycle(1.0E-5) AnalyseSignal.

Table 7.7: Implementation of primitive method Out of IR_Transceiver in C.

1 static PDO *PDM_Out(PDO **LV)
2 {
3 if (LV[1]->Class != PDC_Integer)
4 DisplayError("Operand of IR_Transceiver.Out is not an Integer.");
5 _outp(0x387, (uint8)LV[1]->i);
6 return LV[0];
7 } // end of PDM_Out().

Out should be of class Integer. Then the parameter’s value (LV[1]->i) is written to
the data register of the parallel port interface (assumed to be present at port address
0x378). Finally a reference to the executing object itself is returned (LV[0]).

7.4 Synchronising with Real Time
The core of method TransmitTelegram is a loop that flips the output of the trans-
mitter and waits for the next transition (lines 16–23 in Table 7.5). But how does the
model time relate to the real time? In a normal (non-real time) simulation, when
the next moment in model time has been computed, the simulation clock is updated
and the simulation proceeds immediately. For real-time simulations this situation is
impractical, because external processes in the real world depend on physical time,
which cannot make such leaps instantaneously. Hence, to allow interaction with the
environment, the model time should be synchronised with the real time.

A model introduces moments in model time by its delay statements. Such moments or
instants will be denoted by mt i where i ∈ N0. The periods between instants are called
epochs. The corresponding instants in real time will be denoted by rt i. The model



7.4 Synchronising with Real Time 117

time will be synchronised at instant mt i with real time if mt i−mt0 = (rt i − rt0 + ε)·c
for some 0 ≤ ε ≤ εmax and εmax ∈ R. The scheduler, responsible for synchronising
the model time with real time introduces the inevitable timing error ε because it
can only read a clock or timer at discrete moments in real time (it is running on
a synchronous processor). Notice that ε ≥ 0 because the clock readout always lags
behind. Speed factor c allows model time to progress faster than real time (c > 1),
equally fast (c = 1) or slower than real time (c < 1).

The semantics prescribes that actions take no model time, but in the real world they
certainly do consume physical time. Two approaches have been identified that cope
with this discrepancy without violating POOSL’s semantics.

The first approach is to have a discrete model time and synchronise at any possible
instant. This requires all actions, scheduled at a particular instant mt i, to be finished
before mt i + 1. This imposes very stringent timing constraints on the execution: the
computationally most expensive actions must satisfy the same constraint as the cheap-
est actions. On the other hand, the grain of the simulation clock is always known:
parallel composition cannot introduce worse timing constraints simply because there
are no instants between mt i and mt i + 1.

In the second approach, the timing constraints can be relaxed by synchronising the
model time only when it is actually needed, that is on the instants defined by the
model. Model time is kept constant during mt i and mt i+1 as is shown in Figure 7.8.
If the unit time of the simulation clock is small compared to the minimal time between
any two instants imposed by the model, then the timing constraints are much easier to
satisfy (with respect to the first approach), while still offering a high time resolution.
This approach does not require the time domain to be discrete. In contrast to the first
approach, the minimal time between instants is not known beforehand, but the first
approach seems to be too restrictive for prototyping; the second approach is preferred
and has been implemented.
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Figure 7.8: Synchronising model time with real time.
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Both approaches are comparable to the important synchrony hypothesis [4, 3] of syn-
chronous languages such as Esterel [2], Lustre [21], Argos, Signal [15] and
Statecharts [23] or zero-delay models used in hardware design. The synchrony hy-
pothesis states that each reaction is instantaneous (here: actions take no model time)
and only temporal statements take time (here: only delay statements consume model
time).

A closely related question is when synchronisation has failed. The synchronisation
formula uses ε to express the timing error, allowing a maximum timing error of εmax.
Synchronisation has failed if ε > εmax. Ideally εmax would be zero, but since this
cannot be achieved in a practice, it is chosen as small as needed. The exact value is
determined by both the computer on which the real-time simulator is running and
the timing tolerance of the environment.

Real-time computing comes in two forms: hard real time and soft real time. Hard
real-time computing does not tolerate any timing constraint being violated, as this
might result in fatal incidents. Soft real-time computing (best-effort computing) is
allowed to occasionally miss a temporal deadline as long as it catches up eventually.
The real-time variant of the simulator acts like the latter type, and just counts the
number of deadlines it has missed so far and proceeds.

7.5 Reacting to External Events
How and when can an external event influence the running simulation? To answer this
question, the statement [IR InputHasChanged] Samples AddSample(currentTime,

IR In) inside the scanning loop of ReceiveTelegram (Table 7.6, line 16) needs
closer examination. Process instance variable IR encapsulates the infrared transceiver.
Sending it method InputHasChanged will either return false when the transceiver’s
input has not changed or, more interestingly, return true when the input did change.
The statement behind the guard that stores the time and input level in data object
Samples, will therefore only be executed when the transceiver’s input has changed.

Suppose that ReceiveTelegram is the only executing method, with the transceiver’s
input still at its initial level. The scheduler will test the guard and conclude that it
blocks. Since no further action requests are available, it will let model time progress
and wait until simulation time and real time are again in sync. Effectively, this means
that after the guard has become blocking, no additional events will be detected. This
is clearly an unsatisfactory situation. If the scheduler would have reevaluated the
guarding expressions, it could have detected any guards becoming nonblocking and
perform the accompanying statements. Before making plausible that reevaluating the
guards is indeed a sensible implementation choice, we will compare this behaviour with
interprocess communication.

The example in Table 7.9 shows two processes for which we will assume that they can
communicate through their ports IR. Process Q is used in this example for simulating
transitions on the infrared transceiver, and does so by sending —in the course of
time— several messages InputHasChanged to process P and, along with it, the sim-
ulated input level. Process P is willing to wait for any transition during five units of



7.5 Reacting to External Events 119

Table 7.9: Example of two synchronising processes.

Process P:
1 abort
2 while true do
3 IR?InputHasChanged(IR_In)
4 {Samples AddSample(currentTime, IR_In)}
5 od
6 with
7 delay 5

Process Q:
1 delay 1.7;
2 IR!InputHasChanged(1);
3 delay 0.3;
4 IR!InputHasChanged(0);
5 delay 0.9;
6 IR!InputHasChanged(1)

time. (Notice the strong resemblance with lines 14–19 of method ReceiveTelegram

in Table 7.6). In the example, Q defines intermediate points in time at which P can
perform an action, namely at 1.7, 2.0 and 2.9. In case of the scanning loop of method
ReceiveTelegram, the intermediate points in time are defined by an external process
in much the same way as Q does for P. The main difference is that the very moment
at which the guard will become nonblocking is now unknown to the scheduler.

Attempts to have the model generate the instants at which the guard should be
checked will be futile2 because the time at which an external event occurs is (in
general) unpredictable. The scheduler, however, can pretend as if the external event
has performed a delay request that expires exactly when the event occurs. At that
instant, the scheduler will reexamine the guard and may find that it has become
nonblocking and execute the accompanying action.

The view that external events introduce an additional moment in model time is quite
natural as shown by means of the example in Table 7.9 and will be adopted by
the real-time simulator. The working scheme is thus as follows. The data class
that encapsules some event-generating device installs an event handler to notify the
scheduler in case an event occurs. As long as the scheduler can perform an action
transition, it can ignore the notifications of the event handlers, because guards will
eventually be reevaluated before allowing model time to pass. If on the other hand,
the scheduler is waiting for time synchronisation, it will react to a notification by
adjusting the model time to reflect the current3 instant at which the event is taking
place, and retry performing an action transition.

After an event has been detected, it should be “consumed” to prevent it from being
used over and over again. Line 16 in Table 7.6 illustrates the need for consuming
events. The guard may have to be evaluated several times, so we cannot presume
that the event is no longer needed after IR InputHasChanged has been evaluated.
Instead, the IR In consumes the event (only once) after the scheduler has decided to
execute the statement in line 16. So, the model implicitly notifies the device driver
that the event has been consumed.

An event handler can either be passive —explicitly called by the scheduler to poll for
an event— or active, like an interrupt. The real-time simulator currently uses only

2In parallel with the scanning loop, another loop could be used for creating all possible instants
in time, effectively forcing the scheduler to reevaluate the guard time and again. Needless to say,
this is such an inefficient method that it will not be considered realistic.

3The time that would have resulted from synchronising model time with the current physical
time.
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the first kind of event handlers, for simplicity reasons only. Since the scheduler will
only poll the event handlers while it is waiting for time to synchronise, the overall
speed of the simulator is not compromised.

The case study of the learning infrared remote control has demonstrated successfully
that prototyping with POOSL is feasible after the suggested modifications have been
made to the simulator (rotalumis-rt).

7.6 Extending the Semantics for Prototyping
This section will formalise the ideas described in Section 7.2.3. We define the set
of external variables EVar with typical elements χ, and the set of external events
ExtEvent = { }. The set of external variables states Z = EVar DObj has typical
elements ζ that map external variables to their values.

Definition 44 (event transitions)
We let ·

ExtEvent
· · ⊆ Z × ExtEvent × Z denote external event transitions.

Definition 45 (time transitions)
We let ·

Time+
· · ⊆ Z × Time+ × Z denote time transitions.

The external processes (processes in the real world) are modelled by the timed la-
belled transition system (Z,ExtEvent ,

ExtEvent
,Time,

Time+ ). We assume that
this transition system is given, is deterministic and that after each transition the
state is changed (to guarantee that the system is time-closed). We let ζ ζ ′ (Def-
inition 44) denote the occurrence of an external event while being in state ζ, and
yielding the terminal state ζ ′. The state remembers the current time whose value
ζ.currentTime is assumed to be zero when a simulation is started.

In the simulator, the transition system that models the real world is generated on-
the-fly by device drivers that monitor external processes. When an external process
generates an event, the device driver will record the event in its variables (elements
of EVar) and notify the scheduler that an event transition has happened.

For allowing POOSL models to interact with external processes, we define the follow-
ing transition system to model their composition:

(Conf e,Act ,
Act

,Time,
Time+ ,ExtEvent ,

ExtEvent
).

The set of extended configurations Conf e = Z × Conf is defined by:

ce = ζ ||| c
where the interleaving operator ||| denotes the interleaving of internal transitions with
external transitions. Its meaning is defined by semantic rules 63 (par8), 64 (par9),
65 (par10) in appendix A.4. Rule 63 (par8) gives priority to action transitions the
POOSL model can perform. The yielded extended probability function is defined as
follows.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
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Definition 46 (extended substochastic probability function)
The set of extended substochastic probability functions is denoted by P(Conf e) ={

πe ∈ Conf e R
∣∣∣ ∑
ce∈Conf e

πe.ce ≤ 1
}
.

If the POOSL model is waiting for the model time to synchronise with the real time
(rule 64, par9), the composed system can react to an external event. Without giving
a detailed definition of function IncorporateExtData ∈ Conf ×Z Conf , we assume
that this function incorporates the external data (stored in ζ ′, representing the device
drivers’ external variables) into the model by only modifying the values of global
or local variables referring to primitive objects whose data reflects part of the outer
world. Rule par9 allows the transition system to update its image of the external
processes only if it cannot perform any actions.

The composed system can let time advance only if there are no events within t units
of model time (rule 65, par10). To this end the urgency predicate Urgent(ζ, t) is
used. An external process ζ is urgent, written as Urgent(ζ), if it can perform an
event transition (denoted by ζ ). An external process ζ is urgent within time
t, denoted by Urgent(ζ, t), if there exists a t′ ≤ t and external process ζ ′ such that
ζ t′ ζ ′ and ζ ′ is urgent.

Notice that currentTime defined in ζ equals the model time of the POOSL model. In
the implementation, the moments in model time induced by the combined transition
system are called instants, denoted by mt i where i, j ∈ N0 and such that mt i ≤ mtj
iff i ≤ j (see Figure 7.8). The corresponding instants in real time will be denoted by
rt i. The model time will be assumed to be synchronised with real time at any instant.
An instant mt i is synchronised if mt i−mt0 = (rt i − rt0 + ε)·c for some 0 ≤ ε ≤ εmax.
Constant ε takes care of (inevitable) timing errors; the maximum allowable error is
εmax ∈ R. The constant c can be interpreted as speed factor, allowing model time to
progress faster than real time (c > 1), equally fast (c = 1) or slower than real time
(c < 1).

7.7 Summary
The simulator has been extended for prototyping — rotalumis-rt. In a real-time sim-
ulation, part of the system is formed by the prototype (the executable model), while
the rest is formed by elements in the real world (the external processes). Normally
the simulator can make leaps in model time, but now external processes obey physi-
cal time. To keep the prototype in pace with its environment, the model time must
be synchronised with physical time. This imposes time constraints on the actions
performed by the prototype: the semantics prescribes actions to be timeless, but the
prototype consumes physical time to execute them. Two approaches have been iden-
tified for dealing with this discrepancy without violating POOSL’s semantics. The
first approach introduces a discrete model time domain and requires actions to be
executed before the next epoch starts. The second approach only synchronises time
on instants defined by the model or the environment. Between two synchronisation

http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl
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points, model time is considered constant. Both approaches are similar to the im-
portant synchrony hypothesis in synchronous languages such as Esterel, Lustre,
Argos, Signal and Statecharts or zero-delay models used in hardware design.

Data classes function as abstractions of part of the external environment (the real
world). Their primitive methods are viewed of as device drivers to communicate with
hardware (actual devices) or software (library functions) and offer a clean interface
towards the model. Events from external processes introduce additional instants if
the scheduler is idling for time synchronisation. This implementation has been chosen
because it is similar to the case where one process is awaiting a message from another
internal process, but does not know when the message will come — the latter process
introduces an instant in time that did not exist for the former process before.

A successful case study of a learning infrared remote control has demonstrated the ap-
plicability of rotalumis-rt to prototyping by letting a POOSL model emulate software
that interacts with an actual hardware prototype.

http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl


Chapter 8

Conclusions and Future Work

Conclusions
This thesis develops a new formal semantics for POOSL (Parallel Object-Oriented
Specification Language) [41] and describes a constructive approach to building an
efficient execution engine for that language based on its formal semantics.

The new semantics is developed for several reasons. Modelling practice has led to
the desire for incorporating a few additional modelling concepts into POOSL, such
as the concept of time [17]. The semantics now supports the new theory for perfor-
mance analysis based on Markov chains developed in [54, 53, 52, 55] by equipping
expressions and statements with probabilistic features. The presented two-layered
semantics consists of a denotational semantics for the data layer of POOSL and a
structural operational semantics for the process and architecture layer. It unifies the
concepts presented in [41] and [17] adding:
• probabilistic features;
• real-time;
• inheritance;
• concurrency within processes;
• immediate (indivisible) expressions;
• dynamic communication ports.

The semantics is an initial definition and verifying its desired properties is future
research. This thesis has elaborated on a constructive approach to implementing
platforms that can execute POOSL primitives efficiently and in such a way that their
behaviour described by a formal semantics is respected.

To obtain executable models, the proposed constructive approach has successfully been
applied to POOSL, yielding the execution engine rotalumis1. This engine contains

1Rotalumis can be downloaded from www.ics.ele.tue.nl/∼lvbokhov/poosl/rotalumis.
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a compiler that transforms human readable POOSL specifications into bytecode, a
constructor that creates the architecture described in a model, and two platforms
for the execution of dynamic behaviour. The platform that executes expressions (the
data layer of POOSL) is a virtual machine with an instruction set that contains push,
pop, call, jump and test instructions. To reclaim storage occupied by unreachable
data objects, the virtual machine is equipped with a hybrid garbage collector that
relies on reference counting and Baker’s Treadmill. The state and dynamic behaviour
of processes is captured by execution trees [18]. This dissertation has presented an
efficient implementation of execution trees.

Rotalumis has been optimised for handling large industrial-sized models. The opti-
misations are described in this thesis since they may also be applicable to execution
engines for other languages. Two industrial case studies have successfully demon-
strated that rotalumis can cope with large models: an ATM-packet switch (in con-
junction with IBM Research at Zürich) and a packet routing switch for the Internet
(in association with Alcatel/Bell at Antwerp).

The execution engine always relinquishes control after having performed an execution
step, and can therefore be used as a slave component in a larger simulation framework.

Additionally, rotalumis has been extended to function as a prototype implementation
of (part of) the designed product. This requires the execution engine to cooperate
with actual processes (either in hardware or software) and synchronise model time
with the real time. A case study of a learning infrared remote control has shown the
viability of this extension.

Future Work
To increase the ease-of-use of rotalumis, the following items will have to be dealt with:

• coupling to the graphical user interface of SHESim [16];
• debugging support (breakpoints, inspection of the model’s state);
• additional compiler optimisations on expressions (although the dynamic method
call severely reduces the optimisation possibilities).

A framework of observers, which monitor performance properties of a POOSL model,
is desired for facilitating performance analyses. Part of such a framework is a language
for stating performance measurements in the form of reward expressions.

Because of the floating-point representation of model time (in case of a dense time
domain), small rounding errors can accumulate that may compromise the correct
execution of the model — this deserves attention.

Distributed simulation offers the perspective of being able to simulate models that
are too large to fit within a single machine. Such distribution is nontrivial, requiring
semantics-preserving synchronisation protocols for time and communication. Because
failure of network connections or machines is bound to happen, marshalling (part of)
the simulation state is needed, to enable saving and restoring that state.

http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~lvbokhov/poosl/rotalumis
http://www.ics.ele.tue.nl/~mgeilen/shesim/shesim.html
http://www.ics.ele.tue.nl/~lvbokhov/poosl
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Some desired properties of the formal semantics have not yet been verified. Examples
of such properties are time-determinism and time-additivity. Mathematical proofing
techniques could also be applied to construct a set of reduction rules that enable
further optimisations either at compile-time or at run-time.

Finally, the industry’s interest in synthesis to software and hardware for implemen-
tation requires, among many other issues, resolving nondeterminism in models.
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Appendix A

The Semantics of POOSL

A.1 The Data Layer of POOSL
The semantic rules in this section establish the semantic function (see Definition 30)
[[ · ]]· ∈ Exp Sn S for each construct in Exp listed in Section 3.2.1. The rules
implicitly assume f ∈ Sn, s ∈ State and s′ ∈ State ′.

1. Primitive data objects

[[ γ ]]
f
.s.s′ =

{
1 if s′ = (s, γ)

0 otherwise.

2. Instance variables

[[x]]
f
.s.s′ =


1 if s′ = (s, σ.δ.x) where s = (σ, λ, τ), λ = (δ, ψ),

σ.δ �= undef and σ.δ.x �= undef

0 otherwise.

3. Local variables

[[u]]
f
.s.s′ =


1 if s′ = (s, ψ.u) where s = (σ, λ, τ), λ = (δ, ψ)

and ψ.u �= undef

0 otherwise.

4. Self

[[self]]
f
.s.s′ =


1 if s′ = (s, δ) where s = (σ, λ, τ), λ = (δ, ψ)

and δ �= proc

0 otherwise.

5. Current time

[[currentTime]]
f
.s.s′=


1 if s′ = (s, σ.proc.currentTime) where

s = (σ, (proc, ψ), τ)

0 otherwise.
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6. Object creation

[[new(C)]]
f
.s.s′ =



1 if CDList ≡ CD1 · · ·CD i · · ·CDn

and CD i ≡ data class C
[ extends Csuper ]
instance variables x1 · · ·xn
instance methods MD1 · · ·MDk

and s = (σ, λ, τ), n = MaxId(σ) + 1, Dom(φ) = V(C)
such that φ(x) = nil for all x ∈ Dom(φ), σ′ = σ{φ/n̂},
τ ′ = τ{C/n̂} and s′ =

(
(σ′, λ, τ ′), n̂

)
0 otherwise.

7. Assignment to instance variables

[[x:=E]]
f
.s.s′ =

∑
t′:P1

[[E]]
f
.s.t′

P1 : t′ =
(
s′′, β

)
;

if s′′ = (σ, λ, τ), λ = (δ, ψ) and s′ =
(
(σ′, λ, τ), β

)
such that σ′ = σ

{
σ.δ{β/x}/δ

}
, σ.δ �= undef and σ.δ.x �= undef.

8. Assignment to local variables

[[u:=E]]
f
.s.s′ =

∑
t′:P1

[[E]]
f
.s.t′

P1 : t′ = (s′′, β);

if s′′ = (σ, λ, τ), λ = (δ, ψ) and s′ =
(
(σ, λ′, τ), β

)
where λ′ =

(
δ, ψ{β/u})

and ψ.u �= undef.

9. Sequential composition

[[E1;E2]]f.s.s
′ =

∑
t′:P1

[[E1]]f.s.t
′ × [[E2]]f.t.s

′

P1 : t′ = (t, β).

10. If

[[if Ec then E1 else E2 fi]]f.s.s
′ =∑

t′T :P1

[[Ec]]f.s.t
′
T × [[E1]]f.tT .s′ +

∑
t′F :P2

[[Ec]]f.s.t
′
F × [[E2]]f.tF .s′

P1 : t′T = (tT , true);
P2 : t′F = (tF , false).

11. While

[[while Ec do E od]]
f
= FIXXf

where Xf (g).s.s′ =
∑

t′T :P1

∑
t′:P2

[[Ec]]f.s.t
′
T × [[E]]

f
.tT .t′ × g.t.s′ +

∑
t′F :P3

[[Ec]]f.s.t
′
F

P1 : t′T = (tT , true);
P2 : t′ = (t, β);
P3 : t′F = (tF , false) and s′ = (tF ,nil).
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12. Dynamic method call

[[E m(E1, . . . , En)]]f.s.s
′ =∑

t′0:P0

· · · ∑
t′n:Pn

∑
u:Q

[[E]]
f
.s.t′0 × [[E1]]f.t0.t

′
1 × · · · × [[En]]f.tn−1.t

′
n × µ.u.w′

P0 : t′0 = (t0, β0) and t0 =
(
σ0, (δ, ψ0), τ0

)
;

Pj : t′j = (tj , βj) and tj =
(
σj , (δ, ψj), τj

)
for j ∈ {1, . . . , n};

Q : u =
(
σn, (β0, ψ

′′), τn
)
, ψ′′ = ψ′′′{β1/u1} · · · {βn/un}{nil/z1} · · · {nil/zm}

and w′ =
((

σ′, (β0, ψ
′), τ ′), β′), where Dom(ψ′′′) = ∅;

if s =
(
σ, (δ, ψ), τ

)
and s′ =

((
σ′, (δ, ψn), τ ′), β′) and where

µ =



fi where i = I.τ0(β0).m ifM.τ0(β0).m ≡ m(u1, . . . , un)
|z1 · · · zm|
E′

D.τ0(β0).m ifM.τ0(β0).m ≡ m(u1, . . . , un)
|z1 · · · zm|
primitive

⊥S otherwise.

13. Static method call

[[E mC(E1, . . . , En)]]f.s.s
′ =∑

t′0:P0

· · · ∑
t′n:Pn

∑
u:Q

[[E]]
f
.s.t′0 × [[E1]]f.t0.t

′
1 × · · · × [[En]]f.tn−1.t

′
n × µ.u.w′

P0 : t′0 = (t0, β0) and t0 =
(
σ0, (δ, ψ0), τ0

)
;

Pj : t′j = (tj , βj) and tj =
(
σj , (δ, ψj), τj

)
for j ∈ {1, . . . , n};

Q : u =
(
σn, (β0, ψ

′′), τn
)
, ψ′′ = ψ′′′{β1/u1} · · · {βn/un}{nil/z1} · · · {nil/zm}

and w′ =
((

σ′, (β0, ψ
′), τ ′), β′), where Dom(ψ′′′) = ∅;

if s =
(
σ, (δ, ψ), τ

)
and s′ =

((
σ′, (δ, ψn), τ ′), β′) and where

µ =



fi where i = I.C.m andMs.C.m ≡ m(u1, . . . , un)
|z1 · · · zm|
E′

D.C.m ifMs.C.m ≡ m(u1, . . . , un)
|z1 · · · zm|
primitive

⊥S otherwise.
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A.2 The Process Layer of POOSL
The semantic rules in this section establish the timed probabilistic labelled transition
system (Conf ,Act ,

Act
,Time,

Time+ ) defined in Section 4.2.3. The transition
system is completed by the rules in Appendix A.3.

14. Expression
−(

[E]ψ
C
, σ, τ

) τ π
EXP

where

π.c =


[[E]].s.s′

for c =
(
[√]ψ

′

C
, σ′, τ ′)

if s =
(
σ, (proc, ψ), τ

)
and s′ =

(
(σ′, (proc, ψ′), τ ′), β

)
0 otherwise.

15. If
−(

[if E then S1 else S2 fi]ψ
C
, σ, τ

) τ π
IF

where

π.c =



[[E]].s.s′

for c =
(
[S1]ψ

′

C
, σ′, τ ′)

if s =
(
σ, (proc, ψ), τ

)
and s′ =

(
(σ′, (proc, ψ′), τ ′), true

)
[[E]].s.s′

for c =
(
[S2]ψ

′

C
, σ′, τ ′)

if s =
(
σ, (proc, ψ), τ

)
and s′ =

(
(σ′, (proc, ψ′), τ ′), false

)
0 otherwise.

16. While
−(

[while E do S od]ψ
C
, σ, τ

) τ π
WHILE

where

π.c =



[[E]].s.s′

for c =
(
[S;while E do S od]ψ

′

C
, σ′, τ ′)

if s =
(
σ, (proc, ψ), τ

)
and s′ =

(
(σ′, (proc, ψ′), τ ′), true

)
[[E]].s.s′

for c =
(
[nil]ψ

′

C
, σ′, τ ′)

if s =
(
σ, (proc, ψ), τ

)
and s′ =

(
(σ′, (proc, ψ′), τ ′), false

)
0 otherwise.
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17. Guarded command 1(
[S]ψ

C
, σ, τ

) a π′(
[[E]S ]ψ

C
, σ, τ

) a π
GRD1

where

π.c =



π′.
(
[S′]ψ

′

C
, σ′, τ ′)

for c =
(
[S′]ψ

′

C
, σ′, τ ′)

if [[E]].s.(s, true) = 1, Timeless(E, s) and a �= f ,
where s =

(
σ, (proc, ψ), τ

)
π′.

(
[S′]ψ

′

C
, σ′, τ ′)

for c =
(
[
√
([E]S′)]ψ

′

C
, σ′, τ ′)

if [[E]].s.(s, true) = 1, Timeless(E, s) and a = f ,
where s =

(
σ, (proc, ψ), τ

)
0 otherwise.

18. Parallel composition 1(
[S1]ψ

C
, σ, τ

) a π′(
[par S1 and S2 rap]ψ

C
, σ, τ

) a π
PAR1

where

π.c =


π′.

(
[S′

1]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(par S′

1 and S2 rap)]ψ
′

C
, σ′, τ ′)

0 otherwise.

19. Parallel composition 2(
[S2]ψ

C
, σ, τ

) a π′(
[par S1 and S2 rap]ψ

C
, σ, τ

) a π
PAR2

where

π.c =


π′.

(
[S′

2]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(par S1 and S′

2 rap)]
ψ′

C
, σ′, τ ′)

0 otherwise.

20. Sequential composition 1(
[S1]ψ

C
, σ, τ

) a π′(
[S1;S2]ψ

C
, σ, τ

) a π
SEQ1

where

π.c =


π′.

(
[S′

1]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(S′

1;S2)]ψ
′

C
, σ′, τ ′)

0 otherwise.
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21. Select 1 (
[S1]ψ

C
, σ, τ

) a π′(
[sel S1 or S2 les]ψ

C
, σ, τ

) a π
SEL1

where

π.c =



π′.
(
[S′

1]
ψ′

C
, σ′, τ ′)

for c =
(
[S′

1]
ψ′

C
, σ′, τ ′)

if a �= f

π′.
(
[S′

1]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(sel S′

1 or S2 les)]ψ
′

C
, σ′, τ ′)

if a = f

0 otherwise.

22. Select 2 (
[S2]ψ

C
, σ, τ

) a π′(
[sel S1 or S2 les]ψ

C
, σ, τ

) a π
SEL2

where

π.c =



π′.
(
[S′

2]
ψ′

C
, σ′, τ ′)

for c =
(
[S′

2]
ψ′

C
, σ′, τ ′)

if a �= f

π′.
(
[S′

2]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(sel S1 or S′

2 les)]
ψ′

C
, σ′, τ ′)

if a = f

0 otherwise.

23. Abort 1 (
[S1]ψ

C
, σ, τ

) a π′(
[abort S1 with S2]ψ

C
, σ, τ

) a π
ABORT1

where

π.c =


π′.

(
[S′

1]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(abort S′

1 with S2)]ψ
′

C
, σ′, τ ′)

0 otherwise.
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24. Abort 2 (
[S2]ψ

C
, σ, τ

) a π′(
[abort S1 with S2]ψ

C
, σ, τ

) a π
ABORT2

where

π.c =



π′.
(
[S′

2]
ψ′

C
, σ′, τ ′)

for c =
(
[S′

2]
ψ′

C
, σ′, τ ′)

if a �= f

π′.
(
[S′

2]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(abort S1 with S′

2)]
ψ′

C
, σ′, τ ′)

if a = f

0 otherwise.

25. Interrupt 1(
[interrupt S1 with S2, S2]ψ

C
, σ, τ

) a π(
[interrupt S1 with S2]ψ

C
, σ, τ

) a π
INTR1

26. Interrupt 2 (
[S1]ψ

C
, σ, τ

) a π′(
[interrupt S1 with S2, S3]ψ

C
, σ, τ

) a π
INTR2

where

π.c =


π′.

(
[S′

1]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(interrupt S′

1 with S2, S3)]ψ
′

C
, σ′, τ ′)

0 otherwise.

27. Interrupt 3 (
[S2]ψ

C
, σ, τ

) a π′(
[interrupt S1 with S2, S3]ψ

C
, σ, τ

) a π
INTR3

where

π.c =



π′.
(
[S′

2]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(S1 interrupted by S′

2, S3)]ψ
′

C
, σ′, τ ′)

if a �= f

π′.
(
[S′

2]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(interrupt S1 with S′

2, S3)]ψ
′

C
, σ′, τ ′)

if a = f

0 otherwise.
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28. Interrupt 4 (
[S2]ψ

C
, σ, τ

) a π′(
[S1 interrupted by S2, S3]ψ

C
, σ, τ

) a π
INTR4

where

π.c =


π′.

(
[S′

2]
ψ′

C
, σ′, τ ′)

for c =
(
[
√
(S1 interrupted by S′

2, S3)]ψ
′

C
, σ′, τ ′)

0 otherwise.

29. Method call 1
−(

[m
C′(E1, . . . , En)(w

′
1, . . . , w

′
k)]

ψ

C
, σ, τ

) f
π

MC1

where

π.c =



∑
s1:P1

· · · ∑
sn:Pn

[[E1]].s.s′1 × [[E2]].s1.s
′
2 × · · · × [[En]].sn−1.s

′
n

where s = (σ, (proc, ψ), τ)
Pi : si = (σi, (proc, ψi), τi) and s′i =

(
si, βi

)
for i ∈ {1, . . . , n}

for c =
(
[m

C′( )(w
′
1, . . . , w

′
k)[S

b]ψ
′
]ψn

C
, σn, τn

)
if k �= 0

or c =
(
[ [Sb]ψ

′
]ψn

C
, σn, τn

)
if k = 0,

if M.C ′.m ≡ m(u1, . . . , un)(w1, . . . , wk)
|z1 · · · zm|
Sb

and Dom(ψ′) = {u1, . . . , un, w1, . . . , wk, z1, . . . , zm}, ψ′.v = nil for
v ∈ {w1, . . . , wk, z1, . . . , zm} and ψ′.ui = βi for i ∈ {1, . . . , n}

0 otherwise.

30. Method call 2 (
[S]ψ

C
, σ, τ

) a π′(
[m

C′( )(w
′
1, . . . , w

′
k)[S]

ψ ]ψ
′′

C
, σ, τ

) a π
MC2

where

π.c =


π′.

(
[S′]ψ

′

C
, σ′, τ ′)

for c =
(
[m

C′( )(w
′
1, . . . , w

′
k)[S

′]ψ
′
]ψ

′′

C
, σ′, τ ′)

0 otherwise.
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31. Method call 3(
[S]ψ

C
, σ, τ

) a π′(
[ [S]ψ ]ψ

′′

C
, σ, τ

) a π
MC3

where

π.c =


π′.

(
[S′]ψ

′

C
, σ′, τ ′)

for c =
(
[
√
(V([S′]ψ

′
)) ]ψ

′′

C
, σ′, τ ′)

0 otherwise.

32. Method call 4
−(

[m
C′( )(w

′
1, . . . , w

′
k)[

√
]ψ

′′
]ψ
C
, σ, τ

) f
π

MC4

where

π.c =



1 for c =
(
[√]ψk

C
, σk, τ

)
if M.C ′.m ≡ m(u1, . . . , un)(w1, . . . , wk)

|z1 · · · zm|
Sb

where σi =


σi−1

{
σi−1.proc{ψ′′(wi)/w′

i}
/
proc

}
if w′

i ∈ Dom(σ)
and w′

i ∈/ Dom(ψ)
σi−1 otherwise

and ψi =

{
ψi−1{ψ′′(wi)/w′

i} if w′
i ∈ Dom(ψ)

ψi−1 otherwise
for i ∈ {1, . . . , k} with σ0 = σ, ψ0 = ψ

0 otherwise.

33. Message send 1
−(

[Ep!m(E1, . . . , En){E}]ψ
C
, σ, τ

) f
π

COMM1

where

π.c =


[[Ep]].s.s′

for c =
(
[ p̃!m(E1, . . . , En){E}]ψ

′

C
, σ′, τ ′)

if s =
(
σ, (proc, ψ), τ

)
and s′ =

(
(σ′, (proc, ψ′), τ ′), p

)
0 otherwise.
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34. Message receive 1
−(

[Ep?m(v1, . . . , vn|Erc){E}]ψ
C
, σ, τ

) f
π

COMM2

where

π.c =


[[Ep]].s.s′

for c =
(
[ p̃?m(v1, . . . , vn|Erc){E}]ψ

′

C
, σ′, τ ′)

if s =
(
σ, (proc, ψ), τ

)
and s′ =

(
(σ′, (proc, ψ′), τ ′), p

)
0 otherwise.

35. Message send 2
−(

[ p̃!m(E1, . . . , En){E}]ψ
C
, σ, τ

) p !m[data]
π

COMM3

where

π.c =



[[E]].s.s′

for c =
(
[√]ψ

′

C
, σ′, τ ′) if [[E1]].s.(s, β1)× · · · × [[En]].s.(s, βn) = 1,

Timeless(Ei, s) for i ∈ {1, . . . , n}, p!m(n) in MSS (C),
s =

(
σ, (proc, ψ), τ

)
, s′ =

((
σ′, (proc, ψ′), τ ′), β)

and
data =

(
DC (β1, σ, τ), . . . ,DC (βn, σ, τ)

)
0 otherwise.

36. Message receive 2
−(

[ p̃?m(v1, . . . , vn|Erc){E}]ψ
C
, σ, τ

) p?m[data]
π

COMM4

where

π.c =



[[E]].t.s′

for c =
(
[√]ψ

′

C
, σ′, τ ′) if [[Erc]].s.(s, true) = 1, Timeless(Erc , s),

p?m(n) in MSS (C), s =
(
σ, (proc, ψ), τ

)
,

s′ = ((σ′, (proc, ψ′), τ ′), β), data =
(
(β1, σ1, τ1), . . . , (βn, σn, τn)

)
and (β′

i, σ
′
i, τ

′
i) = Relabel

+MaxId(σ′′
i−1)

(βi, σi, τi) for i ∈ {1, . . . , n}

where σ′′
i =


(σ′′

i−1∪ σ′
i) if vi ∈ Dom(σ){

(σ′′
i−1∪ σ′

i).proc{β′
i/vi}

/
proc

}
and vi ∈/ Dom(ψ)

σ′′
i−1∪ σ′

i otherwise

and ψ′′
i =

{
ψ′′
i−1{β′

i/vi} if vi ∈ Dom(ψ)
ψ′′
i−1 otherwise

and τ ′′
i = τ ′′

i−1∪ τ ′
i

with σ′′
0 = σ, ψ′′

0 = ψ, τ ′′
0 = τ and t = (σ′′

n, (proc, ψ′′
n), τ

′′
n )

0 otherwise.
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37. Delay 1
−(

[delay E ]ψ
C
, σ, τ

) f
π

DELAY1

where

π.c =


[[E]].s.s′

for c =
(
[
√
(delay t̃ )]ψ

′

C
, σ′, τ ′) if s =

(
σ, (proc, ψ), τ

)
and s′ =

(
(σ′, (proc, ψ′), τ ′), t

)
, such that t ∈ Time

0 otherwise.

38. Terminated statement
−(

[√]ψ
C
, σ, τ

) t (
[√]ψ

C
, σ↑t, τ

) TERM

39. Message send 3
−(

[ p̃!m(E1, . . . , En){E}]ψ
C
, σ, τ

) t (
[ p̃!m(E1, . . . , En){E}]ψ

C
, σ↑t, τ

) COMM5

40. Message receive 3
−(

[ p̃?m(v1, . . . , vn|Erc){E}]ψ
C
, σ, τ

) t (
[ p̃?m(v1, . . . , vn|Erc){E}]ψ

C
, σ↑t, τ

) COMM6

41. Method call 5 (
[S]ψ

C
, σ, τ

) t (
[S′]ψ

C
, σ↑t, τ

)(
[m

C′( )(w
′
1, . . . , w

′
k)[S]

ψ ]ψ
′

C
, σ, τ

) t (
[m

C′( )(w
′
1, . . . , w

′
k)[S

′]ψ ]ψ
′

C
, σ↑t, τ

) MC5

42. Method call 6(
[S]ψ

C
, σ, τ

) t (
[S′]ψ

C
, σ↑t, τ

)(
[ [S]ψ ]ψ

′

C
, σ, τ

) t (
[
√
([S′]ψ)]ψ

′

C
, σ↑t, τ

) MC6

43. Sequential composition 2(
[S1]ψ

C
, σ, τ

) t (
[S′

1]
ψ

C
, σ↑t, τ

)(
[S1;S2]ψ

C
, σ, τ

) t (
[
√
(S′

1;S2)]ψ
C
, σ↑t, τ

) SEQ2

44. Sequential composition 3(
[S1]ψ

C
, σ, τ

) t1 (
[√]ψ

C
, σ↑t1 , τ

)
,

(
[S2]ψ

C
, σ↑t1 , τ

) t2 (
[S′

2]
ψ

C
, σ↑t1+t2 , τ

)
(
[S1;S2]ψ

C
, σ, τ

) t1+t2 (
[S′

2]
ψ

C
, σ↑t1+t2 , τ

) SEQ3
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45. Select 3(
[S1]ψ

C
, σ, τ

) t (
[S′

1]
ψ

C
, σ↑t, τ

)
,

(
[S2]ψ

C
, σ, τ

) t (
[S′

2]
ψ

C
, σ↑t, τ

)(
[sel S1 or S2 les]ψ

C
, σ, τ

) t (
[
√
(sel S′

1 or S′
2 les)]

ψ

C
, σ↑t, τ

) SEL3

46. Guarded command 2
−(

[[E]S ]ψ
C
, σ, τ

) t (
[[E]S ]ψ

C
, σ↑t, τ

) GRD2

if [[E]].s.(s, false) = 1 and Timeless(E, s) where s =
(
σ, (proc, ψ), τ

)
.

47. Guarded command 3(
[S]ψ

C
, σ, τ

) t (
[S′]ψ

C
, σ↑t, τ

)(
[[E]S ]ψ

C
, σ, τ

) t (
[
√
([E]S′)]ψ

C
, σ↑t, τ

) GRD3

if [[E]].s.(s, true) = 1 and Timeless(E, s) where s =
(
σ, (proc, ψ), τ

)
.

48. Abort 3(
[S1]ψ

C
, σ, τ

) t (
[S′

1]
ψ

C
, σ↑t, τ

)
,

(
[S2]ψ

C
, σ, τ

) t (
[S′

2]
ψ

C
, σ↑t, τ

)(
[abort S1 with S2]ψ

C
, σ, τ

) t (
[
√
(abort S′

1 with S′
2)]

ψ

C
, σ↑t, τ

) ABORT3

49. Interrupt 5(
[S1]ψ

C
, σ, τ

) t (
[S′

1]
ψ

C
, σ↑t, τ

)
,

(
[S2]ψ

C
, σ, τ

) t (
[S′

2]
ψ

C
, σ↑t, τ

)(
[interruptS1 withS2,S3]ψ

C
,σ,τ

) t (
[
√
(interruptS′

1 withS
′
2,S3)]ψ

C
,σ↑t,τ

) INTR5

50. Interrupt 6 (
[S2]ψ

C
, σ, τ

) t (
[S′

2]
ψ

C
, σ↑t, τ

)(
[S1 interrupted byS2,S3]ψ

C
,σ,τ

) t (
[
√
(S1 interrupted byS

′
2,S3)]ψ

C
,σ↑t,τ

) INTR6

51. Parallel composition 3(
[S1]ψ

C
, σ, τ

) t (
[S′

1]
ψ

C
, σ↑t, τ

)
,

(
[S2]ψ

C
, σ, τ

) t (
[S′

2]
ψ

C
, σ↑t, τ

)(
[par S1 and S2 rap]ψ

C
, σ, τ

) t (
[
√
(par S′

1 and S′
2 rap)]

ψ

C
, σ↑t, τ

) PAR3

52. Delay 2
−(

[delay t̃ ]ψ
C
, σ, τ

) t′ (
[
√
(delay t̃−t′)]

ψ

C
, σ↑t′ , τ

) DELAY2

if t′ ≤ t.
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A.3 The Architecture Layer of POOSL
The semantic rules in this section complete the timed probabilistic labelled transition
system (Conf ,Act ,

Act
,Time,

Time+ ) defined in Sections 4.2.3 and 5.2.3.

53. Process initialisation
−

C(PE 1, . . . ,PE r)
τ π

PROC

where

π.c =



∑
P1

· · ·∑
Pr

[[PE1]].s.s′1 × [[PE2]].s1.s
′
2 × · · · × [[PE r]].sr−1.s

′
r

where s = (σ, (proc, ψ), τ), Dom(σ) = Dom(ψ) = Dom(τ) = ∅ and
Pi : si = (σi, (proc, ψ), τi), s′i =

(
si, βi

)
for i ∈ {1, . . . , r}

for c =
(
[m

C′(E1, . . . , Eq)( )]ψ
C
, σ′, τ ′)

if CDList ≡ CD1 · · ·CD i · · ·CDn

and CD i ≡ process class C(y1, . . . , yr)
[ extends Csuper ]
port interface p1 · · · pg
message interface ms1 · · ·msh
instance variables x1 · · ·xn

initial method call m
C′(E1, . . . , Eq)( )

instance methods MDp
1 · · ·MDp

k
with Dom(σ′) = V(C)
and σ′ = σr

{
σr.proc{nil/x}

/
proc

}
for x ∈ V(C)\{y1, . . . , yr}

and σ′ = σr

{
σr.proc{βi/yi}

/
proc

}
for i ∈ {1, . . . , r} and τ ′ = τr

0 otherwise.

54. Cluster initialisation
−

C(PE 1, . . . ,PE r)
τ π

CLUS

where

π.c =



1 for c = BSpec PE 1/y1, . . . ,PE r/yr
and CDList ≡ CD1 · · ·CD i · · ·CDn

and CD i ≡ cluster class C(y1, . . . , yr)
port interface p1 · · · pg
message interface ms1 · · ·msh
behaviour specification BSpecb

0 otherwise.

55. Parallel composition 4

BSpec1
a π1

BSpec1 ‖ BSpec2
a π

PAR4

where

π.c =


π1.BSpec′1

for c = BSpec′1 ‖ BSpec2

0 otherwise.
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56. Parallel composition 5

BSpec2
a π2

BSpec1 ‖ BSpec2
a π

PAR5

where

π.c =


π2.BSpec′2

for c = BSpec1 ‖ BSpec′2
0 otherwise.

57. Parallel composition 6

BSpec1
% π1,BSpec2

% π2

BSpec1 ‖ BSpec2
τ π

PAR6

where

π.c =


π1.BSpec′1 × π2.BSpec′2

for c = BSpec′1 ‖ BSpec′2
0 otherwise.

58. Port hiding 1

BSpec a π′

BSpec \ L a π
HIDE1

where

π.c =


π′.BSpec′

for c = BSpec′ \ L if Port(a) ∈/ L

0 otherwise.

59. Port relabelling 1

BSpec a π′

BSpec[f ]
f(a)

π
RELAB1

where

π.c =


π′.BSpec′

for c = BSpec′[f ]

0 otherwise.

60. Parallel composition 7

BSpec1
t BSpec′1↑t, BSpec2

t BSpec′2↑t
BSpec1 ‖ BSpec2

t BSpec′1↑t ‖ BSpec′2↑t
PAR7

if ¬Urgent(BSpec1 ‖ BSpec2, t).
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61. Port hiding 2

BSpec t BSpec′↑t
BSpec \ L t BSpec′↑t \ L

HIDE2

62. Port relabelling 2

BSpec t BSpec′↑t
BSpec[f ] t BSpec′↑t[f ]

RELAB2
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A.4 Extension for Prototyping with POOSL
The semantic rules in this section extend the semantics for prototyping as discussed
in Section 7.6.

63. Parallel composition 8

BSpec a π

ζ ||| BSpec a πe
PAR8

where

πe.ce=

{
π.c for ce = ζ ||| c
0 otherwise.

64. Parallel composition 9

ζ ζ ′

ζ ||| BSpec ζ ′ ||| BSpec′
PAR9

if ¬Urgent(BSpec) and BSpec′ = IncorporateExtData
(
BSpec, ζ ′

)
.

65. Parallel composition 10

ζ t ζ ′, BSpec t BSpec′↑t
ζ ||| BSpec t ζ ′ ||| BSpec′↑t

PAR10

if ¬Urgent(ζ, t).



Appendix B

Concrete Syntax of POOSL

B.1 Extended BNF

This section gives a brief summary of the syntactic metalanguage EBNF, standardised
in [26].

The following syntax rule defines a language containing strings ε (the empty string),
ba, bbaa, bbbaaa, . . . :

A = | "b", A, "a";

It defines two alternatives, separated by |. The first alternative is the empty sequence
represented by the (invisible) empty sequence between = and |. The second alterna-
tive is any sequence starting with b, followed by another string produced by A, and
terminated by a.

The list of symbols used in EBNF are (with decreasing precedence): - exception
symbol, , concatenate symbol, | definition separator symbol, = defining symbol,
; terminator symbol. The normal precedence is overridden by the following bracket
pairs: ’ ’ first quote pair, " " second quote pair, ( ) grouping, [ ] optional
sequences, {} repetition, and ? ? special sequences.

Examples:
B = {"a", "b"}-;

defines the sequences consisting of a repetition of subsequence ab, except the empty
sequence (ab, abab, ababab, ...).

C = ?ISO 6429 character Form Feed? | ’"’;

defines the sequence consisting of a single form feed character as defined in [25] or a
quotation mark (").

In general, a language is defined by a set of syntax rules. The following sections
present the syntax for POOSL specifications, represented by the start symbol system
specification.

143
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B.2 Keywords
abort do les port system
and else message process then
behaviour extends method primitive variables
call fi methods rap while
class if new return with
cluster initial nil sel
currentTime instance od self
data interface or skip
delay interrupt par specification

B.3 Operator Precedence
precedence operator equivalent method name

highest - unaryMinus

higher
* multiply

/ divide
+ add

medium
- subtract

& and
| or
= equals
!= equalsNot
== isIdenticalWith

lowest
!== isNotIdenticalWith

< lessThan
<= lessOrEqual
> moreThan
>= moreOrEqual

B.4 Characters, Literals and Identifiers
The characters and special control sequences used in this section have been standard-
ised in [24] and [25] respectively.

letter
= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m"
| "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
| "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M"
| "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z";

binary digit
= "0" | "1";

octal digit
= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7";

decimal digit
= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";

hexadecimal digit
= decimal digit
| "a" | "b" | "c" | "d" | "e" | "f" | "A" | "B" | "C" | "D" | "E" | "F";
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new line
= [?ISO 6429 character Carriage Return?], ?ISO 6429 character Line Feed?
| ?ISO 6429 character Carriage Return?, [?ISO 6429 character Line Feed?];

horizontal tab
= ?ISO 6429 character Horizontal Tab?;

white space
= " " | new line | horizontal tab;

other character
= "!" | ’"’ | "#" | "$" | "%" | "&" | "’" | "(" | ")" | "*" | "+" | ","
| "-" | "." | "/" | ":" | ";" | "<" | "=" | ">" | "?" | "@" | "[" | "\"
| "]" | "ˆ" | "_" | "‘" | "{" | "|" | "}" | "˜";

identifier
= letter, {letter | decimal digit | "_"};

class name
= identifier;

class names
= class name, {",", class name};

message name
= identifier;

method name
= identifier;

port name
= identifier;

port names
= port name, {",", port name};

variable
= identifier;

boolean
= "true" | "false";

integer
= {decimal digit}-
| "0b", {binary digit}-
| "0o", {octal digit}-
| "0x", {hexadecimal digit}-;

real
= {decimal digit}-, ".", {decimal digit}-,
[("e" | "E"), ["+" | "-"], {decimal digit}-];

string
=’"’, {letter|decimal digit|white space|other character-’"’|’""’}, ’"’;
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B.5 Expressions
variables

= variable, {",", variable};

data method call
= ["ˆ"], method name, ["(", [list of expressions], ")"];

declaration
= variables, ":", class name;

declarations
= declaration, {",", declaration};

operator
= "+" | "-" | "*" | "/" | "!=" | "==" | "!=="
| "&" | "|" | "<" | ">" | "<=" | ">=" | "=";

primary
= variable
| boolean | integer | real | string
| "nil" | "self" | "currentTime"
| "new", "(", class name, ")"
| "(", expressions, ")";

expression
= ["-"], primary, {data method call}
| expression, operator, expression
| variable, ":=", expression
| "if", expressions, "then", expressions, ["else", expressions], "fi"
| "while", expressions, "do", expressions, "od"
| "return", expression;

expressions
= expression, {";", expression};

list of expressions
= expressions, {",", expressions};

port expression
= port name
| expression
| "{", expressions, "}";

B.6 Data Methods and Classes
data method definition

= (method name | operator), ["(", [declarations], ")"], ":", class name,
["|", [declarations], "|"],
("primitive" | expressions), ".";

data class definition
= "data", "class", class name,
["extends", class name],
"instance", "variables", [declarations],
"instance", "methods", {data method definition};
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B.7 Statements
message

= port expression, "?", message name,
["(", [variables], ["|", expressions], ")"], ["{", expressions, "}"]

| port expression, "!", message name,
["(", [list of expressions], ")"], ["{", expressions, "}"];

process method call
= method name, "(", [list of expressions], ")", "(", [variables], ")";

statement
= expression
| "{", expressions, "}"
| "delay", expression
| message
| process method call
| "skip"
| "[", expressions, "]", statement
| "if", expressions, "then", statements, ["else", statements], "fi"
| "while", expressions, "do", statements, "od"
| "par", statements, {"and", statements}-, "rap"
| "sel", statements, {"or", statements}-, "les"
| "abort", statements, "with", statement
| "interrupt", statements, "with", statement
| "(", statements, ")";

statements
= statement, {";", statement};

B.8 Process Methods and Classes
instantiation parameters

= declarations;

message signature
= port name, "?", message name, ["(", [class names], ")"]
| port name, "!", message name, ["(", [class names], ")"];

message signatures
= message signature, {",", message signature};

process method definition
= method name, "(", [declarations], ")", "(", [declarations], ")",
["|", [declarations], "|"],
statements, ".";

process class definition
= "process", "class", class name,["(",[instantiation parameters],")"],
["extends", class name],
"port", "interface", [port names],
"message", "interface", [message signatures],
"instance", "variables", [declarations],
"initial", "method", "call", process method call,
"instance", "methods", {process method definition};
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B.9 Cluster Classes
hidings

= "\", "{", [port names], "}";

relabelling
= port name, "/", port name;

relabellings
= "[", [relabelling, {",", relabelling}], "]";

specification primary
= identifier, ":", class name, ["(", [list of expressions], ")"],
[hidings], [relabellings];

specification primaries
= specification primary, {"||", specification primary};

behaviour specification
= specification primaries
| "(", specification primaries, ")", [hidings], [relabellings];

cluster class definition
= "cluster", "class", class name,["(",[instantiation parameters],")"],
"port", "interface", [port names],
"message", "interface", [message signatures],
"behaviour", "specification", behaviour specification;

B.10 System Specification
class definition

= cluster class definition
| data class definition
| process class definition;

system specification
= "system", "specification", class name,
"behaviour", "specification", behaviour specification,
{class definition};
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Figure C.1: Performing a communication in the presence of other processes.
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Figure C.2: Communicating through hierarchical levels.
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Figure C.3: Communicating at various hierarchical depths.
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Figure C.4: Transmitting messages to nonblocking processes connected to a single channel.
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Figure C.5: Receiving messages from nonblocking processes connected to a single channel.
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Figure C.6: Transmitting messages to concurrent receivers within a single process.
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Figure C.7: Receiving messages from concurrent transmitters within a single process.
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Figure C.8: Conditionally transmitting messages to a single receiver in the presence of
blocking receivers.
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Figure C.9: Conditionally receiving messages from a single transmitter in the presence of
blocking transmitters.
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Figure C.10: Advancing time in the presence of guarded delays.
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Figure C.11: Advancing time in the presence of unguarded delays.
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Figure C.12: Executing a task in the presence of false guards.
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Figure C.13: Suspending or resuming statements with interrupt.
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Figure C.14: Executing a task that is nested in guards.
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Figure C.15: Calling a method at various depths of the execution tree.
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Figure C.16: Terminating a method with return parameters at various depths of the execu-
tion tree.
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Figure C.17: Executing a task at various depths in the execution tree.



158 Performance of Rotalumis

10
0

10
1

10
2

10
3

10
4

1

10

100

1000

ex
ec

ut
io

n 
ti

m
e 

pe
r 

ta
sk

 in
 [

µ s
]

tree depth

Figure C.18: Executing a task at various depths in the execution tree (without tree height
reduction).
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Figure C.19: Executing a task at various depths in the execution tree (with tree height
reduction).
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Figure C.20: Concurrently executing computational tasks.
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Figure C.21: Creating tasks in abort.
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Figure C.22: Destroying tasks in abort.
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Figure C.23: Choosing a branch from a select.
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Figure C.24: Creating nodes in C++.
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Figure C.25: Destroying nodes in C++.
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Figure C.26: Incrementing an array element in random order in C++ (including loop over-
head).
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Figure C.27: Incrementing an array element in random order in C++ (detailed view).
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Glossary of Symbols

Symbols in the following chapter-wise glossaries have been sorted alphabetically, based
on their pronunciation. Symbols whose pronunciation is probably unknown have been
collected and listed at the beginning of each list. If a symbol is not present in the
glossary of a particular chapter, it might already have been listed in one of the previous
glossaries.

Chapter 2 Mathematical Preliminaries
Symbol Page Meaning

2A 16 powerset of A
⊥ 17 least element of a poset (pronounced “bottom”)
� 16 partial order⊔
d 17 least upper bound of chain d

� 15 restriction operator
A×B 16 Cartesian product
A B 15 set of partial functions from A to B
A B 15 set of total functions from A to B
(a1, . . . , an) 16 ordered n-tuple
(a1, a2, . . .) 16 sequence
An 16 {1, . . . , n} A (set of ordered n-tuples)
Aω 16 N A (set of sequences)
d ∈ Dω 17 d is an ω-chain
Dom(f) 15 domain of function f
(D,�) 16 partially ordered set (poset) or

17 chain-complete partial order (ccpo)
f(a) 15 image of a under function f
f(a) = undef 15 function f is undefined for a
fa 15 image of a under function f
f.a 15 image of a under function f
f{w/v} 15 variant notation, function equal to f except that f(v) = w
FIXF 18 least fixed point of F
N 15 natural numbers: {1, 2, 3, . . .}
N0 15 {0, 1, 2, 3, . . .}
nil 26 single element of primitive data class Nil

Chapter 3 POOSL Data Layer
Symbol Page Meaning

� 30 equal by definition
≡ 31 syntactic identity
⊥P 35 least element of ccpo (P,�P)
⊥R 35 least element of ccpo (R,≤)
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⊥S 35 least element of ccpo (S,�S)
⊥nS 35 least element of ccpo (Sn,�nS)
� 33 partial order on functions State ′ R
�P 33 partial order on probability functions
�S 34 partial order on functions of the semantic domain
�nS 34 partial order on an n-tuple of functions of the semantic domain
[[ · ]] 40 semantic function (defines the meaning of an expression)
[[ · ]]· 35 conditional semantic function

[[E]]f 35 meaning of E conditional upon f
α 30 typical element of NDObj
β 30 typical element of DObj
B 40 functional used to define the meaning of method bodies
B 30 set of boolean objects
C 26 typical element of CName
Cβ,σ,τ 42 function for calculating the set of β’s (indirect) references
CD 26,57,81 typical element of ClassDef
ClassDef 26,57,81 syntactic category of class definitions
CName 26 syntactic category of class names
D 40 function that defines the behaviour of primitive methods
DC 42 function for calculating the set of (indirect) references
δ 30 typical element of ∆
∆ 30 set of executing objects (process or data)
DObj 30 set of all data objects
E 27 typical element of Exp
Exp 27 syntactic category of data expressions
γ 30 typical element of PDObj
γ 27 textual representation (direct naming) of γ
I 32 maps nonprimitive method bodies to unique indices
I 30 set of integer objects
IVar 26 syntactic category of instance variables
λ 31 typical element of Λ
Λ 31 set of local variables states
LVar 26 syntactic category of local variables
m 26 typical element of MName
ˆm 32,65 super method call (calls m in superclass)
M 32,65 dynamic method lookup function
Ms 31,65 static method lookup function
mC 27 method m of data class C
MaxId(σ) 31 returns the largest object identifier in σ
MD 26 typical element of MethDef
MethDef 26 syntactic category of data method definitions
MName 26 syntactic category of method names
n̂ 30 identifier of a nonprimitive data object
NDObj 30 set of nonprimitive data objects
p 33 typical element of P
P 33 set of substochastic probability functions
PDObj 30 set of primitive data objects
φ 30 typical element of Φ
Φ 30 set of functions that assign values to instance variables
proc 30 executing process object
ψ 30 typical element of Ψ
Ψ 30 set of functions that assign values to local variables
R 30 set of real objects
Relabel+k 42 relabelling function that increases object identifiers by k
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! 40 limits the range of random numbers to {1, . . . , !}
s 31 typical element of State
S 34 semantic domain
S 30 set of string objects
s′ 31 typical element of State ′

σ 30 typical element of Σ
Σ 30 set of global variables states
State 31 set of execution states
State ′ 31 set of pairs of execution state and object resulting from an

expression evaluation
τ 31 typical element of T
T 31 set of functions that give the types of data objects
u 26 typical element of LVar
v 26 typical element of Var
V 31,64 calculates the set of (inherited) instance variables of a class
Var 26 syntactic category of variables
w 26 typical element of LVar
x 26 typical element of IVar
X· 36 functional used to define the meaning of while
Xf 36 functional used to define the meaning of while
y 26 typical element of IVar
z 26 typical element of LVar

Chapter 4 POOSL Process Layer
Symbol Page Meaning

c
a

π 62 action transition in c producing probability function π

c
t

c′ 62 time transition in c producing configuration c′

[S]ψ
C

61 S executed in class C with local variables state ψ(
[S]ψ

C
, σ, τ

)
82,61 configuration representing statement S running in

class C in variables contexts ψ (local) and σ (global)
with type information stored in τ√

(S) 63 terminated function applied to statement S√
61 terminated statement (pronounced “tick”)

a 62 typical element of Act
Act 62 set of actions
c 61 typical element of Conf
CD 26,57,81 typical element of ClassDef
Conf 61,85 set of configurations
f 62 fix action
' 62 typical element of L
' 62 complement of message '
L 62 set of communication actions
↑M 65 super method lookup function
MDp 58 typical element of MethDef p

MsgSignatures 58 syntactic category of message signatures
MethDef p 58 syntactic category of process method definitions
ms 58 typical element of MsgSignatures
P(Conf ) 62 set of substochastic probability functions over configurations
π 62 typical element of P(Conf )
S 60 typical element of Stat
Sb 58 typical element of Statb

σ↑t 69,85 increases currentTime in global variables state σ by t
Stat 60 syntactic category of (extended) statements
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Statb 58 syntactic category of basic statements
t 62 typical element of Time
t̃ 60 evaluated and fixed value t (used for time and port expressions)
τ 62 internal action (also called silent action)
Time 62 time domain
Timeless(E, s) 70 determines if E does not depend on currentTime in state s
Urgent(BSpec) 69 action urgency predicate
Urgent(BSpec, t) 69 states if an urgent action happens within t units of time
V 66 function for cleaning up redundant local variables contexts

Chapter 5 POOSL Architecture Layer
Symbol Page Meaning

‖ 82 parallel composition operator
↑t 85 increases the model time by t
BSpec 82 typical element of BSpecifications
BSpecb 82 typical element of BSpecificationsb

BSpec [f ] 82 relabelling of ports listed in relabelling set f
BSpec \ L 82 hiding of ports listed in hiding set L
BSpecifications 82 syntactic category of extended behaviour specifications
BSpecificationsb 82 syntactic category of basic behaviour specifications
CD 81 typical element of CDList
CDList 81 syntactic category of class definitions
MSS 84 calculates the message signature sort
p 82 direct naming (textual representation) of p
PE 83 typical element of PExp
PExp 83 syntactic category of parametric expressions
Port 83 port-identifier extractor function
PS 84 calculates the port sort
ς 85 typical element of SyntSubst
SyntSubst 85 set of syntactic substitution functions
SSpec 81 typical element of SSpecifications
SSpecifications 81 syntactic category of system specifications

Chapter 7 Prototyping
Symbol Page Meaning

120 external event
||| 120 interleaving operator

ζ ζ′ 120 external event transition
ce 120 typical element of Conf e

Conf e 120 set of extended configurations
ζ 120 typical element of Z
EVar 120 set of external variables
ExtEvent 120 set of external events
χ 120 typical element of EVar
IncorporateExtData 121 function to incorporate external data into a model
mt 117 instant in model time
P(Conf e) 121 set of extended substochastic probability functions
πe 121 typical element of P(Conf e)
rt 116 instant in real time
Urgent(ζ) 121 external-event urgency predicate
Urgent(ζ, t) 121 states if an urgent external event happens within t units of time
Z 120 set of external processes
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A
abort 60

abstract syntax 21

abstraction 3, 3, 23, 67

action 21, 62

∼ message 74, 77

∼ request 71, 74, 77

∼ urgency 69, 77, 78

action transition 21, 62

∼ relation 21

adequate model 3

anti-symmetric relation 16

arbitrary waiting 69

architecture 81

architecture layer 7

abstract syntax 81

concrete syntax 148

context conditions 83

overview 7

semantics 85

ascending ω-chain 17

automatic storage reclamation

see garbage collector 48

B
Backus-Naur form (BNF)

extended ∼ (EBNF) 21, 143

Baker’s treadmill 52

behaviour specification 82

top-level ∼ 81, 85

binary heap 100

binary relation 16

binding power 21

blocking request 93

bottom (⊥) 17

bytecode 43, 44, 76

C
call (see method ∼) 27

case study

Internet Packet Switch 104

Learning Infrared Remote Control
(see LIRC) 112

ccpo 17

chain 17, 50

chain-completeness 17

channel 7, 82

connection matrix 96

∼ decomposition 88

∼ tree 13, 86, 88, 95, 96

∼ tree node 88

class definition 81

cluster ∼ 81

data ∼ 26

process ∼ 57

closed model 7

cluster 7, 89

definition 81

initialisation 85

communication 68

∼ action 62

∼ channel 82

channel connection matrix 96

∼ port (see port) 8, 58

interprocess ∼ 59, 86, 94

matching requests 94

receive statement 59

reception condition 59

reducing ∼ overhead 95

send statement 59

synchronisation 86

compiler 43

composition

select (alternatives) 59

parallel ∼ 59

with external processes 120

sequential ∼ 28, 59
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compositional definition 30

concrete syntax 21, 143

concurrency 23

interleaving ∼ 23, 86, 87, 120

pure interleaving ∼ 23

concurrent activities 59

dynamically creating ∼ 102

conditional execution 28, 46, 59

conditional granting 73

configuration 21, 61

consistent interface 84

construct

basis ∼ 21

composite ∼ 21

syntactic ∼ 43

context conditions 28

checking ∼s 44

of the architecture layer 83

of the data layer 28

of the process layer 61

continuity 18

currentTime 27, 62

cyclic data structure 49

D
data class definition 26

data classes table 45

data layer

abstract syntax 26

concrete syntax 146

context conditions 28

overview 9

semantics 28

data method (see method) 26

data object 9, 30

creating ∼s 27

∼ identifier 31

deleting ∼s 48

nonprimitive ∼s 30

primitive ∼s 26, 30

references to ∼s 44, 45

types 46

unreachable ∼s 49

deallocating objects 48

deepcopy 42, 53

delay 59, 69, 99

invariable ∼s 100

variable ∼s 100

deleting objects 48

denotational semantics 28

dense time domain 23

design 1

∼ freedom 91

∼ space 3

∼ space exploration 5

device driver 111, 120

direct naming 27

discrete time domain 23

double chain 20

dynamic method call 27, 47

see also method

dynamic port passing 68

E
EBNF 21, 143

embedded system 1

epoch 116

equilibrium probability 11

event 111, 115

∼ handler 119

∼ transition 120

reacting to ∼s 118

executable request 73

executing object 30

execution engine 12

see also rotalumis 12

execution step 22

execution tree 12

adaptation 72, 74

concept 71

∼ constructor 76

∼ node 71

height reduction 102

implementation 72

incorporating data 75

initial ∼ 72

messages (see message) 72

expression 27, 66

executing ∼s 44

parametric ∼ 83

external event (see event) 111

external process 120
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F
fix action 62, 67

fixed point 18

computing the least ∼ 18

least ∼ 18, 30

function 15

∼ call (see method call) 27

notations for ∼ application 15

partial ∼ 15

total ∼ 15

functional 30, 36, 40

G
garbage collection 48

Baker’s treadmill 52

hybrid approaches 51

Mark Sweep 49

(non)incremental ∼ 50

reference counting 49

garbage collector 12, 44, 48

chain 50

recycling objects 52

stack 50

generating requests 71

global

∼ recursion 29

∼ variable 27, 44

see instance variables 26

∼ variables context 61

granted message 77

granting requests 72

guard 59, 70, 73, 101

guarded command (see guard) 59

H
hard real time 118

heap (binary ∼) 100

heap of the virtual machine 44

hiding ports 86, 87

I
if 28, 59

industrial case study 104

inference rule 22

inheritance 26, 57

inherited instance variables 31, 64

inherited methods 27, 65

initial method call 58

input parameters 59

instance

cluster class ∼ (see cluster) 82

data class ∼ (see data object) 9, 26

process class ∼ (see process) 8

instance variables 26, 27, 57

inherited ∼s 31, 64

instant in time 116, 121

instantiation parameters 57, 82

interface consistency 84

interleaving (see concurrency) 120

interleaving concurrency 23, 86, 87

internal action 62

fix action f 62

silent action τ 62

interprocess communication 59, 86, 94

interrupt 60, 73

invariable delay 100

K
kill message 75, 77

Knaster-Tarski 18

L
labelled transition system 21

timed probabilistic ∼ 21

late binding

of methods 47

of ports 68

layer

see architecture ∼ 7

see data ∼ 9

see process ∼ 8

least element 17

see also bottom (⊥) 17

least fixed point 18, 30

computing the ∼ 18

least upper bound 17

Lehmer generator 53

lexical scanner 43

LIRC 112

implementation 113

specification 113

local

∼ recursion 29

∼ variable 26, 27, 44

∼ variables context 61, 75

removing redundant ∼s 66

loop construct 28, 59
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M
Mark Sweep 49

Markov chain 11

matching communication requests 94

maximal progress 69, 78

message

action ∼ 74, 77

complementary ∼ 62

exchanging ∼s 59

granted ∼ 77

kill ∼ 75, 77

∼ signature 58

∼ signature sort 84

receive statement 59

representative 98

send statement 59

startup ∼ 72

meta-variable 21, 26

method

see also primitive method 27

data ∼ definition 26

index of nonprimitive ∼s 32

input parameters 59

lookup function for

dynamic ∼s 32

static ∼s 31, 65

super ∼s 65

∼ binding table 47

output parameters 59

overriding ∼s 27

process ∼ definition 58

redefining ∼s 27

tail recursion 59

method call 27, 59, 66

dynamic ∼ 27

initial ∼ 58

static ∼ 27, 32

super ∼ 32, 48, 65

tail-recursive ∼ 59, 73

model 2

adequate ∼ 3

closed ∼ 7

∼ time 78

POOSL ∼ 26

monotony 18

mutator 49

N
nil 26

node (channel tree ∼) 88, 96

node (execution tree ∼) 71

nondeterminism 23

resolving ∼ 77, 78

nonprimitive data 30

∼ class 26

O
object

see also data ∼ 26

executing ∼ 30

∼ recycler 50, 52

ω-continuous 18

optimisations 91–110

ordered n-tuple 16

output parameters 59

overriding methods 27

overview

architecture layer 7

data layer 9

performance analysis 9

POOSL 7

process layer 8

rotalumis 12, 12

P
parallel composition 23, 59, 86, 87, 120

parallelism (see concurrency) 23

parametric expression 83

parse tree 43

∼ decoration 43

parser 43

partial

∼ function 15

∼ order 16

performance analysis 5, 9, 29

reflexive ∼ 11

performance modelling 5

performance of rotalumis 93

Plotkin-style semantics 61

POOSL 4

concrete syntax 143

language overview 7

∼ model 26
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port 8, 58

hiding ∼s 86, 87

∼ interface 58, 82

relabelling ∼s 86, 87

∼ sort 84

poset 16

precedence 21

premise 23

primitive data 26, 30

∼ class 26

primitive method 27, 40, 52, 115

∼ definition 26

priority 77, 79, 120

probabilistic semantics 29

probability

equilibrium ∼ 11

substochastic ∼ function 33, 62, 121

process 7, 89

external ∼ 120

process class definition 57

process layer 8

abstract syntax 57

concrete syntax 147

context conditions 61

overview 8

semantics 61

syntax 57

process method (see method) 58

prototyping 111

pure interleaving (see concurrency) 23

R
random number generator 40, 53, 79

implementation 53

reactive system 2

real-time simulator (see rotalumis-rt) 111

reception condition 59

recursion 29

recycling objects 52

redefining methods 27

reference counting 49, 75

references (see data object) 44, 45

reflexive relation 16

relabelling ports 86, 87

relation (binary ∼) 16

rendez-vous message exchange 59

representative (message ∼) 98

request 74

action ∼ 71, 74, 77

blocking ∼s 93

conditionally granting ∼s 73

executable ∼ 73

generating ∼s 71

granting ∼s 72

time ∼ 74, 78

resolving nondeterminism 77, 78

restriction 15

reward (∼ formula) 11

root (channel-tree ∼) 87

root (execution-tree ∼) 72

root set 49

rotalumis 12, 12

performance measurements 93

rotalumis-rt 111, 120

S
scalability 91, 105

scheduler 77

resolving nondeterminism 77, 78

scheduling policy 77

select 59, 67

self 27

semantic

∼ domain 34

∼ function 40

∼ rules 35, 127–142

semantics

denotational ∼ 28

probabilistic ∼ 21, 29, 61

structural operational ∼ 21, 61

sequence 16

sequential composition 28, 59

shallowcopy 41, 54

SHE 4

signature (see message ∼) 58

silent action (τ) 62

soft real time 118

sort

message signature ∼ 84

port ∼ 84

specification 81

stack 44, 45, 50
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stack frame 47

start state 34

startup message 72

state (execution ∼) 31

statement 22, 58, 60

static method call 27, 32, 48, 65

see also method

structural operational semantics 21, 61, 85

substochastic 33

super class 26, 57

super method call 32, 48, 65

synchronisation 86

∼ action 62

∼ with real time 116

synchronised 117

synchrony hypothesis 118

syntactic

∼ category 21

∼ construct 21, 43

∼ substitution 85

syntax

abstract ∼ 21

architecture layer 81, 148

concrete ∼ 21

data layer 26, 146

process layer 57, 147

system

architecture 81

embedded ∼ 1

reactive ∼ 2

∼ specification 81

system level 3

example of a ∼ model 7

T
tail recursion 59, 66, 73

telegram 112

temporal deadlock 69, 70

terminal state 34

termination function 63, 63, 74

tick (
√
) 61

time 59, 69, 78

additivity 69, 78

continuity 69

determinism 69

∼ instant 116, 121

∼ request 74, 78

time domain 23, 62

dense ∼ 23

discrete ∼ 23

∼ required properties 23

time transition 21, 62

∼ relation 21

top-level behaviour specification 81, 85

topology 81

total function 15

trace 22

transition 22

action ∼ 62

time ∼ 62

∼ system 61

see labelled ∼ system 21

transitive relation 16

tree constructor (execution ∼) 76

tuple 16

two-phase execution model 69

type (∼ information) 46, 61

typical element 21

U
unbound idling 69

upper bound 17

least ∼ 17

urgency (see action ∼) 69, 77

V
validation 7

variable 26

global ∼ 44

instance ∼ 26, 27, 57

instantiation parameter 82

local ∼ 26, 27, 44

∼ delay 100

∼s context 44, 47

∼s state 30

variant notation 15

verification 5

virtual machine 12, 44

W
wait-timing 69

watchdog (see abort) 60

while 28, 59
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