15,982 research outputs found

    Developing a model and a language to identify and specify the integrity constraints in spatial datacubes

    Get PDF
    La qualité des données dans les cubes de données spatiales est importante étant donné que ces données sont utilisées comme base pour la prise de décision dans les grandes organisations. En effet, une mauvaise qualité de données dans ces cubes pourrait nous conduire à une mauvaise prise de décision. Les contraintes d'intégrité jouent un rÎle clé pour améliorer la cohérence logique de toute base de données, l'un des principaux éléments de la qualité des données. Différents modÚles de cubes de données spatiales ont été proposés ces derniÚres années mais aucun n'inclut explicitement les contraintes d'intégrité. En conséquence, les contraintes d'intégrité de cubes de données spatiales sont traitées de façon non-systématique, pragmatique, ce qui rend inefficace le processus de vérification de la cohérence des données dans les cubes de données spatiales. Cette thÚse fournit un cadre théorique pour identifier les contraintes d'intégrité dans les cubes de données spatiales ainsi qu'un langage formel pour les spécifier. Pour ce faire, nous avons d'abord proposé un modÚle formel pour les cubes de données spatiales qui en décrit les différentes composantes. En nous basant sur ce modÚle, nous avons ensuite identifié et catégorisé les différents types de contraintes d'intégrité dans les cubes de données spatiales. En outre, puisque les cubes de données spatiales contiennent typiquement à la fois des données spatiales et temporelles, nous avons proposé une classification des contraintes d'intégrité des bases de données traitant de l'espace et du temps. Ensuite, nous avons présenté un langage formel pour spécifier les contraintes d'intégrité des cubes de données spatiales. Ce langage est basé sur un langage naturel contrÎlé et hybride avec des pictogrammes. Plusieurs exemples de contraintes d'intégrité des cubes de données spatiales sont définis en utilisant ce langage. Les designers de cubes de données spatiales (analystes) peuvent utiliser le cadre proposé pour identifier les contraintes d'intégrité et les spécifier au stade de la conception des cubes de données spatiales. D'autre part, le langage formel proposé pour spécifier des contraintes d'intégrité est proche de la façon dont les utilisateurs finaux expriment leurs contraintes d'intégrité. Par conséquent, en utilisant ce langage, les utilisateurs finaux peuvent vérifier et valider les contraintes d'intégrité définies par l'analyste au stade de la conception

    Handling Data Consistency through Spatial Data Integrity Rules in Constraint Decision Tables

    Get PDF

    Users Integrity Constraints in SOLAP Systems. Application in Agroforestry

    Get PDF
    SpatialData Warehouse and Spatial On-Line Analytical Processing are decision support technologies which offer the spatial and multidimensional analysis of data stored in multidimensional structure. They are aimed also at supporting geographic knowledge discovery to help decision-maker in his job related to make the appropriate decision . However, if we don’t consider data quality in the spatial hypercubes and how it is explored, it may provide unreliable results. In this paper, we propose a system for the implementation of user integrity constraints in SOLAP namely “UIC-SOLAP”. It corresponds to a methodology for guaranteeing results quality in an analytical process effectuated by different users exploiting several facts tables within the same hypercube. We integrate users Integrity Constraints (IC) by specifying visualization ICs according to their preferences and we define inter-facts ICs in this case. In order to validate our proposition, we propose the multidimensional modeling by UML profile to support constellation schema of a hypercube with several fact tables related to subjects of analysis in forestry management. Then, we propose implementation of some ICs related to users of such a system

    A template-based approach for the specification of 3D topological constraints

    Get PDF
    Several different models have been defined in literature for the definition of 3D scenes that include a geometrical representation of objects together with a semantical classification of them. Such semantical characterization encapsulates important details about the object properties and behavior and often includes spatial relations that are defined only implicitly or through natural language, such as \u201can external access shall be in touch with the building only when it is classified as a direct access\u201d. The problem of ensuring the coherence between geometric and semantic information is well known in literature. Many attempts exist which try to extent the OCL to allow the representation of spatial integrity constraints in an UML model. However, this approach requires a deep knowledge of the OCL formalism and the implementation of ad-hoc procedures to validate the constraints specified at conceptual level. Therefore, a new approach is needed that helps designers to define complex OCL constraints and at the same time allows the automatic generation of the code to test them on a given dataset. The aim of this paper is to propose a set of predefined templates to express on the classes of an UML data model, a family of 3D spatial integrity constraints based on topological relations; all this without requiring the knowledge of any formal language by domain experts and supporting their automatic translation into validation procedures

    An adverbial approach for the formal specification of topological constraints involving regions with broad boundaries

    Get PDF
    Topological integrity constraints control the topological properties of spatial objects and the validity of their topological relationships in spatial databases. These constraints can be specified by using formal languages such as the spatial extension of the Object Constraint Language (OCL). Spatial OCL allows the expression of topological constraints involving crisp spatial objects. However, topological constraints involving spatial objects with vague shapes (e.g., regions with broad boundaries) are not supported by this language. Shape vagueness requires using appropriate topological operators (e.g., strongly Disjoint, fairly Meet) to specify valid relations between these objects; otherwise, the constraints cannot be respected. This paper addresses the problem of the lack of terminology to express topological constraints involving regions with broad boundaries. We propose an extension of Spatial OCL based on a geometric model for objects with vague shapes and an adverbial approach for topological relations between regions with broad boundaries. This extension of Spatial OCL is then tested on an agricultural database

    VisĂ”es em bancos de dados de grafos : uma abordagem multifoco para dados heterogĂȘneos

    Get PDF
    Orientador: Claudia Maria Bauzer MedeirosTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: A pesquisa cientĂ­fica tornou-se cada vez mais dependente de dados. Esse novo paradigma de pesquisa demanda tĂ©cnicas e tecnologias computacionais sofisticadas para apoiar tanto o ciclo de vida dos dados cientĂ­ficos como a colaboração entre cientistas de diferentes ĂĄreas. Uma demanda recorrente em equipes multidisciplinares Ă© a construção de mĂșltiplas perspectivas sobre um mesmo conjunto de dados. SoluçÔes atuais cobrem vĂĄrios aspectos, desde o projeto de padrĂ”es de interoperabilidade ao uso de sistemas de gerenciamento de bancos de dados nĂŁo-relacionais. Entretanto, nenhum desses esforços atende de forma adequada a necessidade de mĂșltiplas perspectivas, denominadas focos nesta tese. Em termos gerais, um foco Ă© projetado e construĂ­do para atender um determinado grupo de pesquisa (mesmo no escopo de um Ășnico projeto) que necessita manipular um subconjunto de dados de interesse em mĂșltiplos nĂ­veis de agregação/generalização. A definição e criação de um foco sĂŁo tarefas complexas que demandam mecanismos capazes de manipular mĂșltiplas representaçÔes de um mesmo fenĂŽmeno do mundo real. O objetivo desta tese Ă© prover mĂșltiplos focos sobre dados heterogĂȘneos. Para atingir esse objetivo, esta pesquisa se concentrou em quatro principais problemas. Os problemas inicialmente abordados foram: (1) escolher um paradigma de gerenciamento de dados adequado e (2) elencar os principais requisitos de pesquisas multifoco. Nossos resultados nos direcionaram para a adoção de bancos de dados de grafos como solução para o problema (1) e a utilização do conceito de visĂ”es, de bancos de dados relacionais, para o problema (2). Entretanto, nĂŁo hĂĄ consenso sobre um modelo de dados para bancos de dados de grafos e o conceito de visĂ”es Ă© pouco explorado nesse contexto. Com isso, os demais problemas tratados por esta pesquisa sĂŁo: (3) a especificação de um modelo de dados de grafos e (4) a definição de um framework para manipular visĂ”es em bancos de dados de grafos. Nossa pesquisa nesses quatro problemas resultaram nas contribuiçÔes principais desta tese: (i) apontar o uso de bancos de dados de grafos como camada de persistĂȘncia em pesquisas multifoco - um tipo de banco de dados de esquema flexĂ­vel e orientado a relacionamentos que provĂȘ uma ampla compreensĂŁo sobre as relaçÔes entre os dados; (ii) definir visĂ”es para bancos de dados de grafos como mecanismo para manipular mĂșltiplos focos, considerando operaçÔes de manipulação de dados em grafos, travessias e algoritmos de grafos; (iii) propor um modelo de dados para grafos - baseado em grafos de propriedade - para lidar com a ausĂȘncia de um modelo de dados pleno para grafos; (iv) especificar e implementar um framework, denominado Graph-Kaleidoscope, para prover o uso de visĂ”es em bancos de dados de grafos e (v) validar nosso framework com dados reais em aplicaçÔes distintas - em biodiversidade e em recursos naturais - dois tĂ­picos exemplos de pesquisas multidisciplinares que envolvem a anĂĄlise de interaçÔes de fenĂŽmenos a partir de dados heterogĂȘneosAbstract: Scientific research has become data-intensive and data-dependent. This new research paradigm requires sophisticated computer science techniques and technologies to support the life cycle of scientific data and collaboration among scientists from distinct areas. A major requirement is that researchers working in data-intensive interdisciplinary teams demand construction of multiple perspectives of the world, built over the same datasets. Present solutions cover a wide range of aspects, from the design of interoperability standards to the use of non-relational database management systems. None of these efforts, however, adequately meet the needs of multiple perspectives, which are called foci in the thesis. Basically, a focus is designed/built to cater to a research group (even within a single project) that needs to deal with a subset of data of interest, under multiple ggregation/generalization levels. The definition and creation of a focus are complex tasks that require mechanisms and engines to manipulate multiple representations of the same real world phenomenon. This PhD research aims to provide multiple foci over heterogeneous data. To meet this challenge, we deal with four research problems. The first two were (1) choosing an appropriate data management paradigm; and (2) eliciting multifocus requirements. Our work towards solving these problems made as choose graph databases to answer (1) and the concept of views in relational databases for (2). However, there is no consensual data model for graph databases and views are seldom discussed in this context. Thus, research problems (3) and (4) are: (3) specifying an adequate graph data model and (4) defining a framework to handle views on graph databases. Our research in these problems results in the main contributions of this thesis: (i) to present the case for the use of graph databases in multifocus research as persistence layer - a schemaless and relationship driven type of database that provides a full understanding of data connections; (ii) to define views for graph databases to support the need for multiple foci, considering graph data manipulation, graph algorithms and traversal tasks; (iii) to propose a property graph data model (PGDM) to fill the gap of absence of a full-fledged data model for graphs; (iv) to specify and implement a framework, named Graph-Kaleidoscope, that supports views over graph databases and (v) to validate our framework for real world applications in two domains - biodiversity and environmental resources - typical examples of multidisciplinary research that involve the analysis of interactions of phenomena using heterogeneous dataDoutoradoCiĂȘncia da ComputaçãoDoutora em CiĂȘncia da Computaçã
    • 

    corecore