

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Specifying Geographic Information - Ontology, Knowledge Representation, and Formal
Constraints

Christensen, Jesper Vinther; Jacobi, Ole; Bjørner, Dines; Nilsson, Jørgen Fischer; Frederiksen, Poul

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Christensen, J. V., Jacobi, O., Bjørner, D., Nilsson, J. F., & Frederiksen, P. (2007). Specifying Geographic
Information - Ontology, Knowledge Representation, and Formal Constraints. (IMM-PHD-2007-178).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13734454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/specifying-geographic-information--ontology-knowledge-representation-and-formal-constraints(f6255521-a182-477a-b39d-ef482cc1d533).html

Specifying Geographic Information

- Ontology, Knowledge Representation, and
Formal Constraints

Jesper Vinther Christensen

Kongens Lyngby 2007
IMM-PHD-2007-178

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD-2007-178
ISSN 0909-3192
ISBN 87-643-0148-4

Summary

This thesis deals with the specification of geographic information. On the basis
of the role of geographic information as an infrastructure element, a method is
developed for the making of specifications which are well-structured and ensure
the connection between the data collections being part of a joint infrastructure.

The motivation for the presented work is to meet the need for topical geographic
information at any time, so that the requirements for data content and qual-
ity are fulfilled, and the information can thus form actively part of the task
performance in public administration as well as in the private sector.

The theoretical background is the establishment of a representational system,
which ontologically comprises a representation of notions in the ”real world” and
notions which include the representation of these. Thus, the thesis leans towards
a traditional division between modeling of domains and conceptualization of
these. The thesis contributes a formalization of what is understood by domain
models and conceptual models, when the focus is on geographic information.
Moreover, it is shown how specifications for geographic information are related
to this representational system.

The starting point of the thesis is an analysis mapping the elements in a speci-
fication for geographic information. The basis of this empirical investigation is
TOP10DK’s data content specification, version 3.2 of the National Survey and
Cadastre. The basic idea is to view a specification as a collection of requirements
and rules, building on terms from the domain and concept ontologies.

ii Summary

In combination with the theoretical basis the analysis is used for developing an
underlying model of notions, which defines the individual elements in a spe-
cification and the relations between them. In the chapters of the thesis this
underlying model is extended to include a number of components, which each
contribute to the model being able to form the basis of a strong and produc-
tive specification tool for the making and maintenance of specifications for ge-
ographic information. These components among others include description of
quality requirements and formalization of rules, so that they can be used for
verification of produced information.

An essential contribution is a formal specification language dedicated to the
formulation of formal rules to be observed by the information. The language is
based on a formal semantic model which makes translation into other languages
possible. In the thesis it is shown how statements can be translated into SQL
and thus form the basis of direct implementation in the production environments
where the geographic information is procured.

To be able to describe requirements for the quality of geographic information is
an essential part of a specification. The thesis contributes a structure of quality
descriptions by introducing two notions: ”Acceptable Quality Levels” (AQL)
and ”Quality Element Requirements” (QER), which designate respectively the
minimum quality requirements for information produced according to a given
specification and the requirements for the quality parameters used to describe
this information. The two notions are incorporated and related to the developed
system of notions for specification for geographic information.

It is an important part of an infrastructure for geographic information that there
is a connection between the individual data collections. This thesis argues for
ensuring the connection by first and foremost describing these as an integrated
part of the specification work. The thesis contributes a model which describes
relations and dependencies by writing specifications in the context of one or
more other specifications.

As an illustration of the applications of specifications written in the developed
specification language, a concept is developed in the thesis to make possible
a decentralized collection and distribution of information about changes to be
used for updating geographic information.

Resumé

Denne afhandling omhandler specifikation af geografiske informationer. Med
udgangspunkt i geografiske informationers rolle som infrastrukturelement ud-
vikles en metode til udarbejdelse af specifikationer, der er velstrukturerede og
sikrer sammenhæng mellem de datasamlinger, som indg̊ar i en fælles infrastruk-
tur.

Motivationen for det fremlagte arbejde er at imødekomme behovet for en til
enhver tid aktuelle geografiske informationer, s̊aledes at kravene med hensyn til
dataindhold og kvalitet opfyldes, og informationerne dermed kan indg̊a aktivt i
opgavevaretagelsen i s̊avel den offentlige administration som i den private sektor.

Det teoretiske grundlag tager udgangspunkt i opstillingen af et repr{aesentations-
system, som ontologisk omfatter repræsentationen af begreber i den ”virkelige
verden” og begreber, som omfatter repræsentation af disse. Dermed lægger
afhandlingen sig op ad traditionel opdeling mellem modellering af domæner og
konceptualisering af disse. Afhandlingen bidrager med en formalisering, af hvad
der forst̊aes ved domænemodeller og konceptuelle modeller, n̊ar fokus er p̊a
geografiske informationer, samt hvordan specifikationer for geografiske informa-
tioner forholder sig til dette repræsentationssystem.

Udgangspunktet for afhandlingen er en analyse, der kortlægger elementerne i
en specifikation for geografiske informationer. Grundpillen i denne empiriske
undersøgelse er TOP10DK’s dataindholdsspecifikation ver. 3.2. fra Kort &
Matrikelstyrelsen. Grundideen er at anskue en specifikation som en samling af
krav og regler, der bygger p̊a termer fra domæne- og konceptontologierne.

iv Resumé

Analysen kombineret med det teoretiske fundament anvendes til at udvikle en
grundlæggende begrebsmodel, som definerer de enkelte elementer i en speci-
fikation samt relationerne mellem disse. Denne grundlæggende model udvides
i afhandlingens kapitler til at omfatte en række komponenter, der hver for sig
bidrager til, at modellen kan danne grundlaget for et stærkt og produktivt
specifikationsværktøj til udarbejdelse og vedligeholdelse af specifikationer for ge-
ografiske informationer. Disse komponenter omfatter blandt andet beskrivelse
af kvalitetskrav og formalisering af regler, s̊aledes de kan anvendes til verifikation
af producerede informationer.

Et væsentligt bidrag er et formelt specifikationssprog, der er dedikeret til at
formulere formelle regler, som informationer skal overholde. Sproget er baseret
p̊a en formel semantisk model, hvilket muliggør oversættelse til andre sprog.
I afhandlingen er det vist, hvordan udsagn kan oversættes til SQL og dermed
danne grundlag for en direkte implementering i de produktionsmiljøer, hvori de
geografiske informationer tilvejebringes.

At kunne beskrive krav til kvaliteten af geografiske informationer er en væsentlig
del af en specifikation. Afhandlingen bidrager med en strukturering af kvalitets-
beskrivelser ved at indføre to begreber: ”Acceptable Quality Levels” (AQL) og
”Quality Element Requirements” (QER), som henholdsvis betegner mindste
kvalitetskrav til informationer produceret efter en given specifikation, og krav
til kvalitetsparametrene til beskrivelse af disse. De to begreber er indarbejdet
og relateret til det udviklede begrebsapparat for specifikationer for geografiske
informationer.

En vigtig bestanddel af en infrastruktur for geografiske informationer er, at der
er sammenhæng mellem de enkelte datasamlinger. Der argumenteres i denne
afhandling for, at denne sammenhæng først og fremmest sikres ved, at disse
beskrives som en integreret del af specifikationsarbejdet. Afhandlingen bidrager
med en model, hvor relationer og afhængigheder beskrives ved, at specifikationer
kan skrives i konteksten af en eller flere andre specifikationer.

Som illustration af anvendelsesmulighederne for specifikationer skrevet i det ud-
viklede specifikationssprog, udvikles der i afhandlingen et koncept, som muliggør
decentral opsamling og distribution af informationer om ændringer til brug for
ajourføring af geografiske informationer.

Preface

This thesis was prepared at GeoInformatics and Informatics and Mathematical
Modelling at the Technical University of Denmark in partial fulfillment of the
requirements for acquiring the Ph.D. degree in engineering.

The thesis deals with different aspects of modeling and specification of geo-
graphic information. The main focus is on studying the relations among domain
descriptions, requirements and the design of geographic information.

The thesis is a summary report and is based on a collection of research papers
written during the period 2003–2006, and published elsewhere.

Lyngby, February 2007

Jesper Vinther Christensen

vi Preface

Papers Included in the Thesis

1. ”A Framework for modeling Quality Requirements”, Symposium for Spa-
tial Data Handling 2004. Anders Friss-Chrisensen, Jesper Vinther Chris-
tensen, and Christian Jensen.

2. ”Formalizing Constraints for Geographic Information” in proceedings of
Information System Development 2005”. Jesper Vinther Christensen and
Mads Johnsen

3. ”Specifying Geographic Information”, in proceedings of AGILE 2006. Jes-
per Vinther Christensen.

viii Papers Included in the Thesis

Acknowledgements

Many people have contributed to my Ph.D. project. I would like to greatly
acknowledge this support and help.

I acknowledge the financial support of the National Survey & Cadastre - Den-
mark. Thanks for giving me the time and opportunity to pursue my ideas.

I would like to thank my supervisors at the Technical University of Denmark:
Professor Ole Jacobi, Professor Dines Bjørner and Professor Jørgen Fischer Nils-
son. Ole for introducing me to the concept of geographic information and espe-
cially the issues of information quality, Dines for introducing me to formal meth-
ods and for bringing the idea of domain engineering into the project. Jørgen for
encouraging me to study logics and for showing directions within the science of
knowledge engineering and representation.

Also thanks to all my colleagues at the National Survey & Cadastre. Poul
Frederiksen, my internal supervisor, for providing me the time and opportunity
to do the project, and especially Brian Pilemann Olsen, who has always been
helpful and taken his time to discuss my ideas and guide me through the difficult
periods of the project, thanks Brian.

I would also like to thank Anders Friis-Christensen for the work we have done
together on quality requirements and for many interesting discussions. Also
thanks to Mads Johnsen for the collaboration on the paper on formulating formal
constraints and his work on the HLCL translator.

x Acknowledgements

My family and I spent six months at ESRI in Redlands from February to August
2003. We would like to thank all for making this stay possible. Thanks to Klaus
Gerlich and Kurt Andersen at Informi GIS for spending time and resources on
arranging the contact to ESRI, and to all people at ESRI making us feeling
welcome. The ESRI campus is a great place to stay. Thanks to Earl Nordstrand,
who let me join his team in Product Development.

Finally, I would like to thank my family and friends for thier support and en-
couragement. Especially to Pernille, my wife, and my two sons Mikkel and
Jeppe. Without your love, dedication, and understanding, finishing this project
would never have been possible.

xi

xii Contents

List of Figures

2.1 Aragos approach to domain engineering 10

2.2 The two signs at the escalator. 12

2.3 Jackson’s distinction between the system and the world. 13

2.4 The two signs at the escalator . 19

2.5 An entity-relationship diagram exemplifying simple inheritance. . 20

3.1 Communicating geographic information perspective. 26

3.2 The principle of co-operative design 28

3.3 ER diagram for the entity types and relations included in the
running example. 39

4.1 Representation model. 46

4.2 Pattern for mapping domain and conceptual models. 64

5.1 Concepts of an ”and/or” goal tree. 76

xiv LIST OF FIGURES

5.2 Concepts of an ”and/or” goal tree. 77

6.1 Quality Requirements. 87

6.2 Quality information, elements, and subelements. 88

6.3 Quality assessment. 91

7.1 Ensuring consistency using a Validation Engine. 103

7.2 Examples of topologic relations which can be modeled by the
nine-intersection matrix. 107

7.3 Some topological relations between to polygons 109

7.4 Allowed and disallowed relations between buildings and residen-
tial areas. 110

7.5 Entity-relationship for a network model. 110

7.6 Entity-relationship diagram of details of the road code format. . 113

7.7 Strategy for evaluation of ”inner distance”. 115

7.8 Relations between two time intervals (after [Ohlbach, 2004]) . . . 116

7.9 Left: two overlapping buildings, right: two road segments with
identical start and end points. 119

8.1 Basic principle for the translation process 140

Contents

Summary i

Resumé iii

Preface v

Papers Included in the Thesis vii

Acknowledgements ix

1 Introduction 1

1.1 Problem Description . 2

1.2 Objectives, Aims, and Hypothesis 3

1.3 Contribution . 4

1.4 Reading This Thesis . 6

2 Contributing Disciplines 9

xvi CONTENTS

2.1 Domain Engineering . 10

2.2 Knowledge Engineering and Representation 14

2.3 Requirement Engineering . 21

2.4 Geographic Information . 22

3 Specifying Geographic Information 25

3.1 Introduction . 26

3.2 The Process of Developing Specifications 27

3.3 Specifications for Geographic Information 28

3.4 A Small Example . 31

3.5 Existing Approaches to Specifying GI 34

3.6 Design Goals for GeoSML . 37

3.7 Summary . 41

4 Structuring Specifications for Geographic Information 43

4.1 Introduction . 44

4.2 Representation System . 45

4.3 Domain Model . 48

4.4 Conceptual Model . 57

4.5 Mapping Domain and Conceptual Models 63

4.6 Summary . 70

5 Requirement Specification 71

5.1 Introduction . 72

CONTENTS xvii

5.2 Requirement Engineering . 74

5.3 Grammar for Requirement Models 78

5.4 Example of Modeling Requirements 79

5.5 Summary . 81

6 Specifying Quality Requirements 83

6.1 Introduction . 84

6.2 Quality of Geographic Information 85

6.3 Modeling Quality . 91

6.4 An Example . 97

6.5 Summary . 99

7 Constraints on Geographic Information 101

7.1 Introduction . 102

7.2 The Basic Idea . 103

7.3 Constraints on Geographic Information 105

7.4 Summary . 121

8 Formalizing Constraints on Geographic Information 123

8.1 Introduction . 124

8.2 Formalizing Constraints . 126

8.3 Formal Description . 133

8.4 Model-theoretic Semantics . 136

8.5 Translating GeoSML Constraints to SQL 139

xviii CONTENTS

8.6 Examples - Translation of Constraints 140

8.7 Summary . 146

9 Conclusion 149

9.1 Results . 150

9.2 Overall Conclusion . 153

9.3 Future Work . 155

Chapter 1

Introduction

Geographic information is today seen as an infrastructure element equal to
roads, railways, and water supply systems. Geographic information is an impor-
tant tool for managing our physical surroundings and supporting decision mak-
ing. Geographic information (GI) is created and used by many organizations,
public as well as private. The produced information constitutes the backbone
of the Spatial Data Infrastructures (SDI’s). The efficiency of SDI’s depends on
how well the content and the maintenance of the basic data collections are co-
ordinated. Models and specifications are fundamental in the effort of doing so.
How these models and specifications are developed and structured is the subject
of the investigations in the present thesis. The aim is to provide a framework
supporting the development of specifications for geographic information which
can be used both by domain experts, in this case specialists in designing and
producing GI, and computer experts responsible for developing production and
distribution systems. The presented work is strongly influenced by the perspec-
tive of national mapping agencies (NMA’s) and other producers of geographic
information on the specification and production of geographic information. The
examples used to identify requirements and illustrate the developed concepts
are taken from topographic mapping. This does not mean that the presented
framework cannot be used to specify other types of geographic information. The
concept is meant to be general and the hope is that the framework can be used
in a wide varieties of applications.

2 Introduction

1.1 Problem Description

Specifying data content and cartographic design are recognized as major chal-
lenges by developers and producers of geographic information. Today most
specifications are written in natural language with a loosely defined structure
and content. The specifications may be supported by a number of data and
conceptual models, using UML object type diagrams, ER diagrams, or one of
the languages designated for the specification of geographic information. The
experiences achieved by using these formal/semi-formal approaches in combi-
nation with natural language specifications have in some cases, at least for the
National Survey & Cadastre - Denmark, been somewhat disappointing. There
are a number of reasons for this:

• The use of modeling languages like UML seems to result in either too
abstract models with properties of metamodels like the General Feature
Model (GFM) [ISO, 2004] and UML’s meta-model itself, or the models be-
coming too complicated drowning in a large number of topologic relations
and constraints.

• Ontological commitments are often implicitly given in natural language
specification. Design decisions may therefore be based on unexpressed un-
derstandings of the problem domains and user requirements. This leads
to specifications that are more likely to be based on traditions and ex-
periences capturing the requirements the users once had, rather than the
requirements they will have in the future.

• Natural-language-based specifications are not directly coupled with the
production systems. Rules and constraints expressed in the specifications
must be interpreted and translated into a programming language before
they can be introduced in the production system. This approach is er-
ror prone: information may be lost or misunderstood in the translation
process, which results in implementations not necessarily reflecting the
intended design.

• User requirements are not expressed in the traditional specifications, and
are at best described in independent documents. Thus, there is no di-
rect and documented relation between the representation of the problem
domain, the stated requirements, and the decided design.

• Describing relations and dependencies among specifications written in nat-
ural language is difficult. Moreover, to use and reuse information for mul-
tiple purposes in an efficient way, the delegation of responsibilities for
creating and maintaining the various parts of an SDI must be clear and
unambiguous.

1.2 Objectives, Aims, and Hypothesis 3

• Formulating requirements related to quality is a very complex task, and
most specifications today either omit quality requirements or the descrip-
tions are scattered throughout the specifications. Therefore, a systematic
approach to embedding quality requirements in specifications is needed.

Approaches to modeling geographic information already exist. In Section 3.5
the most important are introduced and discussed in relation to the above re-
quirements. The conclusion is that none of the existing approaches meet the
requirement that producers of geographic information for a specification lan-
guage, and that there is a need for a new approach for developing specifications
that can be used both in the production geographic information and as support
in the development of spatial data infrastructures.

1.2 Objectives, Aims, and Hypothesis

1.2.1 Objectives and Aims

The motivation of this thesis is the increasing need for geographic information
representing reality so that actuality, content, and structure of the information
constitute a stable and solid foundation for spatial data infrastructures (SDI’s)
as well as a reliable platform for making decisions about our physical surround-
ings. The aim is to develop a specification language that meets the requirements
listed in the problem definition and enables domain experts, designers of geo-
graphic data collections, and computer engineers to participate in a cooperative
design process. The idea is that a language dedicated to the development of
specifications will enable information providers like national mapping agencies
to develop and produce new products faster, and with a design and content that
are more likely to meet the users’ requirements that of existing approaches. To
establish a foundation of the development of this language, concepts within the
domain of specifying geographic information must be clarified, which is achieved
by investigating various perspectives of the specification, production, and uses
of geographic information.

1.2.2 Hypothesis

The thesis is based on two dogmas, one from computer science and one from
the science of geographic information. The conjunction of the two is here called

4 Introduction

geoinformatic, a term widely recognized within the research of geographic infor-
mation.

The hypothesis:

The knowledge embedded in natural language specifica-
tion for geographic information can be represented in formal
computational structures.

This hypothesis shall be seen as a vision to be followed throughout the thesis,
rather than a goal defining the success criteria for the project as a whole. We
will investigate the hypothesis from three different viewpoints:

(i) Ontology and knowledge representation

Specifying geographic information is a discipline deeply involving ontological
consideration. The notions of classification and conceptualization are the central
concepts.

(ii) The concept of geographic information specification

The second perspective concerns the identification and definition of domain
concepts in the field of specifying and producing geographic information. The
notions of domain and representation of domain phenomena are central in the in-
vestigation and conceptualization of specifications and production of geographic
information.

(iii) Validation and consistency checking

Computer science concepts and principles are introduced and used to formalize
the domain concept of specifying and producing geographic information. The
concepts of domain modeling, temporal interval logic, description logic, formal
semantics, and mereology are introduced and treated in relation to the domain
of specifying and producing geographic information. The production of geo-
graphic information strongly depends on specifications. We will investigate how
specifications can be organized to support the production process.

1.3 Contribution

This thesis contributes to the understanding of the specification of geographic
information. The overall contribution is a framework, which we call the Geo-

1.3 Contribution 5

graphic Information Specification Markup Language (GeoSML). The contribu-
tion of this thesis has four major parts:

1. A method for structuring specifications for geographic information written
in natural language.

2. A clarification of the role of ontologies in specifications.

3. A framework for specifying functional requirements

4. A framework for specifying quality requirements

5. A language to formalize constraints on geographic information as a part
of developing a conceptual model.

The following sections summarize each of the five contributions.

1.3.1 Structuring Specifications Written in Natural Lan-
guage

This thesis contributes with a syntax for marking up statements according to
the role they play in the interpretation process, where entities in a domain
are represented as objects in a geographic data collection. It is suggested that
specifications include three models: (i) requirement model, (ii) domain model,
and (iii) conceptual model. Statements in a specification are included either in
one of the three models or in the description of the relationships among these
models. Thus, a bridge is built between the knowledge of how the world is
perceived and the representation of this knowledge as geographic information.

1.3.2 Ontological Commitments in Specifications

An important part of a specification is to describe the part of reality that
must be represented in a geographic data collection. This thesis contributes
to the understanding of domain descriptions by discussing what will be called
the ontological commitment of specifications. The classification and modeling
of geographic entities are discussed and related to existing approaches within
knowledge representation and software engineering.

6 Introduction

1.3.3 Structuring of Functional Requirements

The work contributes with a method for structuring functional requirements
which the users demand from the data collections being developed. Functional
requirements are related to elements in the conceptual model and thus justify
the design of the data collection.

1.3.4 Specifying Quality Requirements

The quality elements necessary for adequately describing the quality of the
geographic data collection are identified and described. Furthermore, elements
are added to GeoSML which support a dynamic and flexible specification of
requirements related to quality assessment. The result is a framework enabling
designers and users to specify requirements related to quality and include these
in the design.

1.3.5 Formalizing Constraints

The role of formal constraints in relation to designing and producing geographic
information is discussed, and a formal constraint language to include formal
constraints in specifications of geographic information is introduced in GeoSML.
It is illustrated how statements written in natural language can be translated
into this formal language and implemented by automatically translating the
statements into SQL.

1.4 Reading This Thesis

1.4.1 Intended Audience

The intended audience of this thesis is both persons with a scientific interest
in the specification and modeling of geographic information and professionals
working with the development and production of geographic information. We
also hope that the method for designing geographic data collections will be
appreciated and used as a source of inspiration for project managers and team
members responsible for developing new data collections or remodeling existing
ones. The idea of dividing specifications into three distinct and related models,

1.4 Reading This Thesis 7

and the explanation of the role of ontologies may be especially helpful. When
designing production systems and case tools supporting the development of
specifications, system architects and developers may benefit from the approach
to formalizing constraints and introducing these in the production environment.

1.4.2 Structure of the Thesis

The nine chapters of this thesis are organized as follows:

Chapter 1 is an introduction to the subject of the thesis, including back-
ground, hypothesis, and contributions.

Chapter 2 gives an overview of the scientific disciplines that contribute to the
presented work. The overview focuses on the theories of computing science
and software engineering, including requirement engineering, domain en-
gineering, and knowledge representation. Readers familiar with the theory
of software engineering may skip this chapter.

Chapter 3 introduces concepts central for the specifications of geographic in-
formation and relates these to theoretic and philosophic issues of speci-
fication, including ontology and the classification of geographic entities.
Furthermore, the role of geographic information seen as a basis for deci-
sion making is discussed.

Chapter 4 introduces the basic syntax of the Geographic Information Speci-
fication Markup Language (GeoSML). GeoSML is based on a representa-
tion system, which makes a clear distinction between the description of
the world to be represented a data collection, and the conceptual design
of the data collection.

Chapter 5 extends GeoSML with grammars for structuring functional require-
ments for the data collection being developed. Requirements can be re-
lated to elements at the conceptual level and thus document and motivate
design decisions.

Chapter 6 discusses the notion of quality in relation to geographic information
and suggests an approach to embedding quality requirements in specifica-
tions for geographic information.

Chapter 7 introduces a classification of constraints on geographic information.
Each type of constraint is treated in the context of producing geographic
information, and suggestions for formalizing constraints in predicate logic
are given.

8 Introduction

Chapter 8 adds a formal constraint language to GeoSML. This language is
called the High Level Constraint Language and is designed to specify
formal constraints in the context of a conceptual model, which can be
translated into SQL.

Chapter 9 summarizes the results of the thesis and the conclusions to be drawn
from the results achieved in the presented work. Furthermore, future work
and research directions are discussed.

Chapter 2

Contributing Disciplines

Abstract: This chapter introduces the research areas that have contributed to
and inspired the work presented in this thesis. References to the main material
are given and the notions of domain, requirement, and knowledge engineering
are discussed. The main references on domain engineering are due to Jack-
son and Bjørner, while the approach to requirement engineering is inspired by
Lambsweerde.

10 Contributing Disciplines

2.1 Domain Engineering

Domain engineering is the process of identifying and modeling domain properties
and capturing the knowledge of a domain in domain models. Domain models
are descriptive by nature , as they deal with designating ”real-world” things and
phenomena and the relations among these. Domain engineering is inherently
related to domain analysis. A definition of domain analysis is formulated by
Prieto-Diaz, who elucidates its purpose as

[Domain Analysis is] ... a process by which information used in
developing software systems is identified, captured, and organized
with the purpose of making it reusable when creating new sys-
tems.[Prieto-Diaz, 1990]

The original motivation for domain engineering is software reuse [Arango, 1989].
Arango and Prieto-Diaz presented a model of domain analysis summarized in
the following SADT diagram:

Technical literature

Existing implem.

Customer surveys

Expert advice

Current and future

requirements

Taxonomies

Standards

Functional models

Domain languages

Domain

Analysis

Methods

Management

Procedures

Domain

analyst

Domain

expert

Domain

Analysis

Figure 2.1: Aragos approach to domain engineering

This model describes domain analysis as an activity that takes multiple sources
of input and produces many different kinds of output. The model shall be seen
as an abstract paradigm for domain engineering, where a number of techniques
and methods can be applied depending on the problem concerned. For example
is the domain analysis method a parameter in the model. Domain analysis
methods cover a variety of methods, e.g structured analysis, Jackson’s JSD,

2.1 Domain Engineering 11

RAISE, and object-oriented analysis and development. Domain knowledge from
relevant sources is used as a background to gathering domain knowledge and
structuring this according to the selected paradigm. This is done, among others,
by domain experts and analysts. The results of domain analysis are taxonomies,
domain processes, standards, and logical architectures.

Domain models are a prerequisite to stating requirements for systems. Without
an established understanding of the domain in which a system will operate,
requirements will be loosely formulated and unrelated to the problems in the
domain that the system being developed should seek to solve. During modeling
it is important to bear in mind that the word ”model” has at least to meanings
in relation to system specification and design. It is important two distinguish
the two meanings from each other.

The first sense of model is to consider a model as a description of a part of the
world, e.g. a set of differential equations describing the movement of ground
water or a set of classes and relations describing the ownership of properties
and condition influencing the taxation of these. This kind of models is analytic
by nature. The second type of models is called analogic or sometimes iconic
[Ackoff, 1962]. A map is an example of an analogic model, it consists of objects
representing real world phenomena. The specification for geographic informa-
tion is an example of an analytic model. Such models are investigated in the
present thesis.

Domain analysis is equally important to the specification of geographic infor-
mation and to software engineering. One of the major contributions from this
thesis is a paradigm for structuring domain knowledge, hence GeoSML includes
methods for organizing the knowledge needed to design geographic information.
While the motivation for domain modeling within software engineering is the
possible reuse of software components, one of the arguments for creating domain
models has been the need for combining geographic information from several
sources, which is also denoted the capability of interoperability of geographic
information. However, seen in relation to the specification and production of
geographic information, domain models are motivated by the need to specify
the requirements for the content of a geographic data collection. Here, domain
models are developed to achieve an in-depth understanding of the domain the
information will be representing [Worboys, 1995, Molenaar, 1998].

It is a characteristic of the process of domain engineering that the knowledge of
the designers of the problem domain increases over time. From being weak ideas,
growing into stable requirements, and finally turning into a design which can
be used as the basis of an implementation. The first version of a specification
may be a rough sketch, written in a natural language, which in the following
process is enhanced and expanded, resulting in a precise and formal specification.

12 Contributing Disciplines

Formal specifications are necessary if a precise description of a domain should
be achieved. The following example is from Jackson [Jackson, 1995] and is
about two signs he once saw at the foot of an escalator in an airport. The
example illustrates very well the reasons for a structured and formal approach
of describing domains.

Dogs
must be
carried

Shoes
must be

worn

Figure 2.2: The two signs at the escalator.

Jackson asks the question: ”What do they mean?” Must the two signs be inter-
preted in the same way, so that if you want to use the escalator you must wear
a pair of shoes and carry a dog, leading to restrictions on who is qualified to
use the escalator. Another interpretation could be that if you want to use the
escalator and bring a dog, then the dog must be carried, and analogously for
shoes, if you want to use the escalator and bring a pair of shoes, then they must
be worn. Reasonable enough, but what if you just bought two pair of shoes,
must they all be worn, which seems impossible?

Formalization of rules and constraints is a strong tool for clarifying intended
meanings. When it comes to describing domains, requirements, and writing
data content specifications for geographic information formalizations can be a
useful tool. Formal rules and constraints a more likely to be unambiguous than
if written in natural-language. In predicate logic the meaning properly intended
in the above example can be expressed like this:

∀ x (IsPerson(x) ∧ OnEscalator(x) → ∃ y (PairOfShoe(y) ∧ IsWearing(x,y))

”For all x where x is a person and is on an escalator they must wear a pair
of shoes”, or in the formal constraint language introduced in this thesis (see
Chapter 8): ”all person using escalator must wear shoe”.

The meaning of the rule on the second sign could be formalized like this:

∀ x (OnEscalator(x) ∧ IsDog(x) → IsCarried(x))

2.1 Domain Engineering 13

”for all x where x is on an escalator and is a dog must be carried”, or in the
mentioned constraint language: ”all dog on escalator must be carried”

2.1.1 Jackson’s World-Machine Distinction

Jackson has contributed to the understanding of the process of system devel-
opment for the past four decades, and he has published a large number of
papers and books on the subject. The books ”Software Requirements & Speci-
fications – A lexicon of principles, practices and prejudices” [Jackson, 1995] and
”Problem Frames: Analysing and Structuring Software Development Problems”
[Jackson, 2001] summarize the most important contributions.

Jackson makes a clear distinction between the real world and the system and
thus defines the notion of domains. The domain is a part of reality in which
the problem exists, and the system is the solution to the problem. Domain
engineering is a prerequisite to requirement engineering.

The computer
and its

software

The world
outside the
computer

The solution
is here

Connection between
the world and the computer

The problem
is here

Figure 2.3: Jackson’s distinction between the system and the world.

Jackson introduces the notions of designations, definitions, and refutable asser-
tions.

Designations are identification and description of what Jackson calls the ground
terms. Ground terms are terms that fix the relationship between the description
and what is described. Ground terms form the basis of defining other terms.

Definitions add new terms to the domain description. Defined tems are defined
on the basis of terms previously designated or previously formally defined terms.
Formal definitions add no new knowledge of the description of a domain, but give
easy access to complex concepts and thus provide a more convenient terminology
for saying what we could have said less conveniently without them.

Assertions relate designated and defined terms by stating rules that constrain
and explain the interaction among domain entities. Jackson emphasizes that

14 Contributing Disciplines

assertions must be refutable. He claims that if an assertion about a domain
cannot be questioned, then nothing important has been said about the domain.

2.1.2 Bjørner: Triptych Approach

Bjørner’s approach to domain modeling is to identify the fundamental principles
of a domain. Bjørner calls these principles the domain facets, which cover among
others: the intrinsics, the enterprize, the processes, the technology support, the
management, and the rules and regulations. Throughout his research Bjørner
investigates the methods for software engineering. A method is according to
Bjørner ”a set of principles for selecting and applying techniques and tools in
order efficiently to construct an artifact” [Bjørner, 2006a].

Bjørner’s method, which is called Triptych (from the Greek tri- ”three” +
ptyche ”fold”), is a semi-formal approach to software engineering, where the
methods and principles needed to design efficiently artifacts are divided into
three: Domain engineering, requirement engineering, and software design. An
introduction to Bjørners paradigm is found in the essay ”What is a Method?”
[Bjørner, 2003], and the complete theory can be found in Software Engineering, a
three-volume book on system development and formal methods [Bjørner, 2006b].
Bjørner has applied the method to a number of domains, e.g. sustainable
development [Bjørner, 1999], railways [Bjørner, 2004], and air traffic control
[Bjørner, 1995], to mention a few.

Bjørner’s approach draws on the theories introduced by Jackson. However,
where Jackson methodologically is primarily based on textual descriptions, Bjørner
intensively uses formal specification languages, primarily the RAISE specifica-
tion language [George et al., 1992].

2.2 Knowledge Engineering and Representation

According to Sowa knowledge representation is a multidisciplinary subject which
applies theories and techniques from three different fields [Sowa, 2000]:

1. Logic provides the formal structure and rules of inference

2. Ontology defines the kind of things in the application domain

3. Computation supports the applications that distinguish representation
from pure philosophy

2.2 Knowledge Engineering and Representation 15

Representing knowledge is vital for the specification of most computer-based
systems, and also for the design of geographic information. Domain knowl-
edge and representation of domain knowledge are prerequisites to designing
geographic information. Abstract representations of reality as geographic infor-
mation, which project the user’s perception of the domain entities, depend on
an in-depth understanding of the domain the information seeks to represent.

Knowledge is assertions about individuals and phenomena and constitutes the-
ories about abstract relationships among concepts, based on observations of
reality, processed and interpreted by humans. Knowledge representations can,
following [Davis et al., 1993], play five roles in the design and implementation
of knowledge based system.

1. A knowledge representation is most fundamentally a surrogate, a substi-
tute for the thing itself, used to enable an entity to determine consequences
by thinking rather than acting, i.e. by reasoning about the world rather
than taking action in it.

2. It is a set of ontological commitments, i.e. an answer to the question: In
what terms should I think about the world?

3. It is a fragmentary theory of intelligent reasoning, expressed in terms of
three components: (i) the fundamental conception of intelligent reasoning
of representation; (ii) the set of inferences the representation sanctions;
and (iii) the set of inferences it recommends.

4. It is a medium for pragmatically efficient computation, i.e. the compu-
tational environment in which thinking is accomplished. A contribution
to this pragmatic efficiency is supplied by the guidance a representation
provides for organizing information so as to facilitate the making of the
recommended inferences.

5. It is a medium of human expression, i.e. a language in which we say things
about the world.

The context in which this thesis uses knowledge representation resembles points
2 and 5. Developing specifications for geographic information is, seen from a
knowledge engineering perspective, to describe a part of reality, as stated above.

Some steps in the semantic spectrum include the following:

16 Contributing Disciplines

2.2.1 Methods for Representing Knowledge

Several systems and languages have been suggested for knowledge represen-
tation, each with syntax and semantics designed for a particular application.
Even though these formalisms are different in approach and syntax, they have
common properties: they concern concepts and relationships among concepts.
Concepts are called classes, entity sets, or object types, and relationships are
called roles, relation, or slot depending on approach.

Traditionally, three meanings have been defined for binary relationships: as-
sociations, taxonomic and mereologic relations. Mereologic relations concern
”part-whole” relations, e.g. a wall is part of a house and implies a strong de-
pendency among the entities participating in the relation. Association indicates
a weaker relation among the participating entities than for mereologic relations,
hence they indicate a relation between two independent entities, e.g. that per-
son owns that house. Taxonomic relations concern ”is-a” relations, e.g. a car is
a vehicle. To be more express full, different semantics can be applied to a rela-
tionship. A relationship is transitive if it exists between a and b, and between b
and c, which also means that it exists between a and c, e.g. the ”decent-from”
relation. A relationship can be defined to be the inverse of another, e.g. ”son-
of” is inverse of ”father-of. A relation can be antisymmetric meaning that if it
exists between a and b, then it cannot exit between b and a, e.g the ”father-of”
relation. A relation can be symmetric meaning that if it exists between a and
b, then it also exists between b and a, e.g. the ”is-sibling-of” relation. Some
formalisms also provide relationship inheritance (”is-a” relationships among re-
lations), e.g. the relation between the ”father-of” relation and the ”parent-of”
relation

Mathematically, relationships can be represented as binary predicates formu-
lated in the context of set theory, and the semantic for the various kinds of
relations can be explained by defining relations among sets. The following defi-
nitions is inspired by [Wikipedia, 2006, Smith, 2004].

An association between two concepts, e.g. person and building, can be re-
graded as a binary relation R and defined as a triple (X, Y, G), where X and Y
are arbitrary sets (X can symbolize a set of persons and Y a set of buildings),
and G is a subset of the cartesian product X × Y. The sets X are called the
domain of the relation and the sets Y are called the codomain or range of the
relation. G is called the graph of the relation. Usually, a relation is denoted
xRy or R(x,y), which is read as x is R-related to y. G can for example stand for
the own relations that may hold between a person and a building.

2.2 Knowledge Engineering and Representation 17

Special kinds of binary relations can be defined by introducing axioms to the
binary relation. For example a binary relation R over a set X is said to be
transitive if it holds for all x, y, and z in X, that is if x is related to y and y is
related to z, then x is related to z:

∀ x,y,z ∈ X (R(x,y) ∧ R(y,z) → R(x,z))

A reflexive relation R on a set X is one where it for holds for all x in X that x
is R-related to itself:

∀ x ∈ X → R(x,x)

A binary relation R on a set X is irreflexive if it holds for all x in X, that x is
never R-related to itself:

∀ x ∈ X → ¬ R(x,x)

A binary relation R on a set X is symmetric if it holds for all x and y in X that
if x is related to y then y is related to x:

∀ x,y ∈ X (R(x,y) → R(y,x))

A binary relation R on a set X is antisymmetric if it holds for all x and y in X
that if x is related to y and y is related to x, then x and y are the same object:

∀ x,y ∈ X (R(x,y) ∧(x, y) → x=y))

The is-a or taxonomic relation can set-theoretically be defined by using set
inclusion. If an is-a relation exists between two concepts, it means that all
instances of the first concept are also instances of the second concept, and it
is said that the set of instances of the first concept is a subset of the set of
instances of the second concept.

is-a(A,B) = ∀ x (inst(x,A) → inst(x,B))

18 Contributing Disciplines

The part-of relation is semantically more difficult to explain than other binary
relations, and has extensively been a subject of discussion in the literature (see
[Varzi, 1996, Smith, 1996, Lambrix, 2000, Eir, 2004]). It has been suggested
that the part-whole relation P(x,y) can be regarded as a binary relation where
P is reflexive, antisymmetric, and transitive [Varzi, 1996].

Barry Smith has introduced a formal framework for describing part-whole re-
lationships, which he calls mereotopology [Smith, 1996]. In [Smith, 2004] he
suggest the following definitions of part-whole relations:

part for(A,B) = ∀ x(inst(x,A) → ∃ y (inst(y,B) ∧ part(x,y)))

The above statement gives the information that instances of A only exist if there
is an instance of B in which the instance of A is contained.

has part(B,A) = ∀ y (inst(y,B) → ∃ x (inst(x,B) ∧ part(x,y)))

which states that instances of B only exist if there is an instance of A in which
the instance of B is contained.

The need for precision in modeling and representing geographic entities has an
influence on how expressive the chosen modeling language should be. The chal-
lenge is to find a balance between being able to express the wanted properties
of a domain and not introducing a language that will be too difficult to apply
in ”real world” projects. The modeling language introduced in the thesis fo-
cuses on the usability, rather than on being capable of expressing all possible
details of a domain. The language elements in our language primarily build on
traditional entityrelationship diagrams (ER-diagrams) and and the formal con-
straint language introduced in chapter 8 is partly inspired by description logics,
but without description logics reasoning facilities. The next two sections will
introduce the syntax of these two approaches for knowledge representation.

2.2.1.1 Entity-Relationship Diagrams

One of the simplest approaches to modeling concepts and their mutual relation-
ships is the entity-relationship model, which was introduced by Chen in 1976
[Chen, 1976] and extended by several other authors, e.g. the extended entity-
relationship (EER) approach [Elmasri et al., 1985, Engels et al., 1992], and the
spatial-temporal entity-relationship modeling language (STER) [Tryfona and Jensen, 1999].

2.2 Knowledge Engineering and Representation 19

Entity sets are drawn as a rectangle with names referring to the individuals in-
cluded in the set, e.g. Person, House, Road or Forest. A relationship captures
how two entities or concepts are related to one another. Chen introduced ER as
a language for modeling the conceptual content of databases, and he included
only simple binary relationships between entity types, which he suggested to be
drawn as diamond shapes with the name designating the relationship between
two (or the same) entity sets, e.g. own, work for, father of, and passed course
(figure 2.4B). [Engels et al., 1992] extend ER with a syntax for taxonomic rela-
tions (Figure 2.4B), and mereologic relations (Figure 2.4C).

Network

part

Terminator

Connection

point
Connection has

Network

part
Network

A B

C

Figure 2.4: The two signs at the escalator

2.2.1.2 Description Logic

The role of ontology in a computer science perspective is to formalize struc-
tures that specify conceptualizations of specific domains. An ontology can be
regarded as a controlled vocabulary that describes objects and their mutual re-
lations in a formal way, and a grammar for combining the vocabulary terms to
meaningful statements which make assertions about the domain of interest. On-
tologies can include glossaries, taxonomies and thesauruses, but normally have
greater expressivity and stricter rules than these tools. Formal ontologies are
based on description logics [Baader et al., 2003], which are subsets of first order
predicate logic. Several languages has been suggested to enhance the usability of
description logics. The most prominent are oil+daml [D. Connolly et al., 2001]
and OWL [Smith et al., 2004].

20 Contributing Disciplines

C,D → A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)

¬ C | (concept negation)
C u D | (concept conjunction)
C t D | (concept disjunction)
∀ R.C | (value restriction)
∃ R.C | (existential quantification)

The above syntax introduces the minimum description logic of practical interest
[Baader et al., 2003], the attributive language AL. In the syntax A is an atomic
concept, C and D concept descriptions, and the letter R stands for atomic roles.
AL can be extended to be more expressive, e.g. union of concepts, full existential
quantification, number restrictions, and negations (see [Baader et al., 2003] for
details).

2.2.2 The Relations between ER and DL

Even though entity-relationship diagrams and description logics are two differ-
ent approaches to knowledge representation, they do have semantic similarities.
In general description logics are more expressive than the entity-relations ap-
proaches. Largely speaking the are two differences between description logics
and entity-relationship: Descriptions logics support reasoning and negations,
which entity-relationship diagrams does not. Furthermore, description logics
are often used to develop knowledge bases on the open world assumption, which
means that all facts must be introduced explicitly in the knowledge base.

The two following examples illustrate the corresponding between ER-diagrams
and Description Logics.

School

Building

used for Teaching
Residential

area

Land-use

area

Commercial

area

Figure 2.5: An entity-relationship diagram exemplifying simple inheritance.

The left diagram at Figure 2.5 illustrates a simple inheritance relation, which
can be captured by description logic as:

2.3 Requirement Engineering 21

Land− use area ≡ Commercial area ∪Residential area

The right diagram at Figure 2.5 illustrates an inheritance relation restricting the
”child” entity class by require that the members of school must have at least
one relation to the teaching entity type through the ”usedfor” relation. This
can be captured by description logic as:

School ≡ Building ∪ ∃usedfor.Teaching

A general discussion on conceptual modeling using description logics is found
in Chapter 10 in [Baader et al., 2003] and [Goodwin, 2005] exemplify the use of
description logics within the domain of geographic information.

2.3 Requirement Engineering

Requirement engineering is a branch of computing science that deals with col-
lecting and organizing functional and structural requirements for computer sys-
tems. The nature of requirement engineering is prescriptive, hence it deals
with future systems, in contradiction to domain engineering, which is deals
with capturing knowledge of real world phenomena and therefore is of a de-
scriptive nature. A requirement is the effect in the problem domain that the
users want the system, in this case a geographic data collection, to guarantee
[Jackson, 2001]. Requirements are in this way the functionality to which the
geographic information used in an appropriate geographic information system
must lead.

The aim of requirement engineering is to identify the boundaries of the sys-
tem, the stakeholders, and what sort of problems the system should solve.
A number of techniques and methods for supporting requirement engineering
have been suggested. Examples are the use-cases within the UML framework
[Booch et al., 1999, Cockburn, 2000], Rollands CREWS, which is a scenario-
based approach
[Rolland and Achour, 1998] and [Sutcliffe and Minocha, 1998], and the goal-oriented
approach KAOS1 suggested by Lamsweerde [van Lamsweerde et al., 1991].

In this thesis the KAOS approach to modeling and structuring goal-oriented
requirements is preferred, and the following section introduces the approach

1KAOS is an acronym for Knowledge Acquisition in autOmated Specification.

22 Contributing Disciplines

adopted in KAOS.

KAOS is a semi-formal approach where requirements are formulated as goals
that can be formalized and used to ensure that the implemented system meets
the requirements. Goals can be related by a and/or trees. The most general
goals are situated nearest the top of the tree and more specific requirements
are situated at the bottom. Thus, goal trees will be organized so that subre-
quirements state how their parent requirement should be fulfilled, and vice versa
the parent requirement explains why its sub-requirements must be met. The
innovative idea of KAOS is to assign the responsibility of implementing goals to
objects, which can either be agents, entities, events, or relationships.

2.4 Geographic Information

This section briefly describes the fundamental aspects of geographic informa-
tion, to emphasize that geographic information has certain special characteris-
tics which are not common to other types of information.

Geographic information is determined by three dimensions:

• Space. The spatial dimension defines the coordinates (x, y and z) for a
location in the three-dimensional space with a given theme in time.

• Time. The temporal dimension defines the coordinates for a location with
a given theme in time (t).

• Theme. The thematic dimension defines values of one or more thematic
attributes having a location in time.

The structure (x, y, z and t) provides the framework for collecting thematic at-
tributes [Veregin and Hargitai, 1995]. Geographic information is characterized
as either entity-based or field-based. In the entity-based approach the real world
consists of fully definable disjunctive entities, such as roads and buildings. In
the field-based model the real world is considered as continuous fields, such
as precipitation and temperature. During recording of entity-based informa-
tion, each object2 is usually based on a sequence/number of observations. A
geographic object has a theme (the object type) with a number of thematic
attributes, e.g., a building object which has attributes specifying the number of
floors and total square meters. A geographic object will always have a location

2We use object for an entity represented in a database.

2.4 Geographic Information 23

and extent in the space, hence, it has a spatial attribute. The spatial attribute
may specify a point, line, or polygon. A line and a polygon consist of a sequence
of connected points. This means that a spatial attribute value may contains a
number of point objects (observations). Finally, a geographic object is depen-
dent on time. It may exist in a given time interval as well as its spatial and
thematic attributes may be valid or non-valid at a given time. Field-based infor-
mation contain a number of single independent observations, e.g. observations
made by a number of precipitation stations. Here, each observation has one or
more thematic attribute values at a given location (x, y, z) at a given time (t).
The most important component of geographic information, and what essentially
makes geographic information different from most other kinds of information, is
the geometric component. In vector-based systems geometries can in general be
either points, polylines, or polygons. At least two points are necessary to form
a polyline and at least one polyline to form a polygon. A point can either be a
vertex or a node. Nodes are starting points and end points in polylines. Points
not included in a polyline are also regarded as nodes and are sometimes called
isolated nodes. Two other axioms that are not included in the drawing must
hold: 1) A polygon has to be closed, i.e. there are no gaps in the boundary, and
2) The boundary of a polygon must not touch or intersect itself.

Topology is properties of geometry that are invariant in respect to scaling, rota-
tion, and affine transformations. Two kinds of topology are used in geographic
information systems: Arc-node topology and polygon topology. Herring was one
of the first to give a formal description of topology in the context of geographic
information using a point set approach [Herring, 1991]. [Clementini et al., 1993]
named to standard topologic relations, while [Smith, 1996] introduced a logical
system that defines the topological relations as predicates, based on a mereologic
basis.

Constraints are an important aspect of specifying geographic information. Con-
straints state when information is consistent and ensure that the consistency
requirements are satisfied. An approach to ensuring the quality of geographic
data using constraints specified in Object Constraint Language (OCL) has been
investigated previously [Casanova et al., 2002, Casanova et al., 2000].

24 Contributing Disciplines

Chapter 3

Specifying Geographic
Information

Abstract This chapter discusses the specification of geographic information.
The aim is to identify the requirements for a specification language designated
for the development of geographic information specifications. The chapter also
provides an overview of existing approaches to modeling and specifying geo-
graphic information. These approaches are discussed in relation to the devel-
opment of specifications used in the production of geographic information. The
final section presents the running example that will be used throughout the
thesis.

26 Specifying Geographic Information

3.1 Introduction

Geographic information is created to communicate facts about phenomena in
reality. It is the intention to enable the receiver of the messengers embodied in
the geographic information, whether it is a map or some information derived
from a map, to make decisions. Several studies of the communication perspective
of geographic information, geocommunication, have been conducted. An early
reference is Kolacny [Kolacny, 1969]. Kolacny was inspired by Shannon’s 1949
paper on the mathematical foundation of communication [CE and W, 1949],
and he brought Shannon’s communication model in the context of geographic
information (or cartographic information in Kolacny’s terminology), and added
the notion of the cartographer’s interpretation of the real world and the user’s
interpretation of the real world into the model. By introducing what he called
the cartographic information process, Kolacny was able to relate the production
and use of geographic information. The cartographic information process is
determined by seven principal factors:

The cartographer's
interpretation of
the real world, S

The encoding
of the cartograp-
her's reality, L

The carto-
graphic

product, M

The decoding
of the cartograp-
hic product, D

The user's interpretation
of the real world from the
cartographic product, Z

The cartographer's
reality, C

The map
user's reality, U

Figure 3.1: Communicating geographic information perspective.

1. The cartographer’s reality (C)

2. The cartographer’s interpretation of the real world (S)

3. The encoding of the cartographer’s reality (L)

4. The cartographic product (M)

5. The decoding of the cartographic product (D)

6. The map user’s interpretation of the real world from the cartographic
product (Z)

7. The map user’s reality (U)

3.2 The Process of Developing Specifications 27

The challenge of specifying and designing geographic information, is to cre-
ate the basis for sending messengers which the receiver can rely on to make
proper decisions and act accordingly. A successful communication depends on
the sender and receiver using the same language and giving the same meaning
to the terms and symbols used in the message. Developing clear and unambigu-
ous specifications addresses this problem, hence one of the motivations of the
specification is to establish terminologies accepted and understood by both the
designers and the users of data collections.

This chapter discusses the nature of geographic information specifications, by
addressing the process of developing specifications and describing the content
of a specification. Section 3.2 discusses the processes leading to geographic in-
formation specifications and Section 3.3 introduces the concept of specifications
for geographic information. Section 3.4 gives a small example of the content of a
specification of a topographic map, just to illustrate the kind of specification we
deal with. Section 3.5 lists some of the existing approaches to specifying or mod-
eling geographic information. The properties of these approaches are discussed
in relation to the requirements for developing specifications from which informa-
tion can be produced. Section 3.6 lists identified design goals that the framework
developed in this thesis must achieve. Finally, Section 3.6.1 introduces the run-
ning example which will be used in most of the examples throughout the thesis.

3.2 The Process of Developing Specifications

The design of geographic information is a challenging task which requires a
diversity of knowledge. Typically, the design of a data collection is carried
out by a group of people representing both the organization responsible for the
development and the stakeholders who have an interest in the data collection
that will be produced from the specification.

There are a number of different approaches to and methods for gathering and
integrating the required knowledge for design of a system. Examples are Object-
oriented Analysis and Design (OOAD), AGILE methods, Model Driven Archi-
tecture, and Rational Unified Process (RUP). A newer approach is the concept
of Co-design or Cooperative Design. This approach presumes that the world
consists of an infinite number of views of reality. These views or perspectives
on reality must be expressed in the design an artifact, in our case a database
consisting of geographic information.

The key idea is that the number of persons contributes to the development of
specifications. End users and domain experts have knowledge of the problems in

28 Specifying Geographic Information

Database
designers

End-users

Cartographers

Domain experts

Information-
architects

Specification

Programmers

REQUIREMENTS
AND NEEDS

DOMAIN
KNOWLEDGE

PRODUCT DESIGN AND
DEVELOPMENT

PRODUCTION

IMPLEMENTATION

Figure 3.2: The principle of co-operative design

the domain, and so that they can contribute to the analysis leading to the iden-
tification of the requirements for the data collection being developed. Experts
in geographic information, such as cartographers and geographic information
architects, have a large knowledge of the representation of geographic entities
and thus contribute to the design of the information at the conceptual level,
such as the definition of object types, attribute types, and relationships. Com-
puter engineers, programmers, and database experts are skilled in implementing
software and databases which can facilitate the production and storage of the
information specified at the conceptual level.

The point is that all the different kinds of knowledge are needed to develop
specifications which meet the user’s requirements and needs, have a well-defined
structure and content, and which can be produced and stored in an appropriate
way. To support cooperative design is a key principle for the GeoSML framework
that will be developed in this thesis.

3.3 Specifications for Geographic Information

It is a challenging task to specify geographic information. The difficulties arise
from three sources. (i) Geographic information deals with modeling and repre-
senting ”real things” like lakes and forests. Everyone who has tried to define
what a forest is, or to determine the boundary of a lake, or to answer questions
like ”can a lake be a part of a forest?” knows how difficult it is. (ii) Describing
how the location and the extent of entities are represented by geometries is an

3.3 Specifications for Geographic Information 29

extensive process, which depends on scale and available sources of information.
(iii) Specification of geographic data collections requires large amounts of infor-
mation. Specifying a topographic map database may require several hundred
pages, including detailed descriptions for 100 object types or more.

The content of a specification is influenced by a number of factors. Ideally, user
requirements are decisive when the content and structure of a geographic data
set are designed. User requirements may be contradictive or stated requirements
not supported by a will to cover the cost for establishing the information that
meets the stated requirements. Several other factors influence the content of a
specification, among others politics, culture, traditions, the nature of domain,
and last but not least available technologies and resources.

Specifications are basically created to describe a vision developed and owned by
a group of individuals. Without writing down ideas and decisions in a specifica-
tion, an in-depth understanding of the problem domain will never arise, and a
possible design will be based on unsolid ground. In this way, the process of devel-
oping specifications forms consensus among the individuals, groups, or organiza-
tions that have an interest in the data collection produced from the specification.
Seen from a user’s point of view, specifications and the realization of specifica-
tions, seen in relation to the specific application, determine the perception of
data quality. The value chain from user requirements, over written specification,
to deliverable products is essential to creating products that meet the require-
ments stated by the users [Zeithaml et al., 1988, Parasuraman et al., 1985]. A
second point that motivates the development of specifications, is to be able to
communicate, in detail, what content a data set can be expected to have. Thus,
specifications can be regarded as detailed metadata or more general metadata
may be derived from a specification.

In general specifications deal with designing artifacts. The methods used for
developing specifications vary depending on the kind of artifact to be designed
but the methods may also have similarities. They must all include a collection
and representation of knowledge of the domain in which the artifact will operate
and describe the problems that it seeks to solve.

A specification for geographic information must answer two key questions: ”Which
entities in the domain must be given a representation?” and ”How must this
representation be?”. A specification constitutes what is called a nominal ground
or universe of discourse [Worboys, 1995, Friss-Christensen, 2003] and can be re-
garded as a mechanism that points out entities in a domain and defines how
these are represented as objects.

Geographic information is an abstraction or representation of the real world. To
be able to design appropriate representations, a fundamental understanding of

30 Specifying Geographic Information

the entities and phenomena in geographic space is needed. A geographic entity,
e.g. a house or a river, is characterized by its location in space and existence in
time, and is described or classified by a set of properties. It is the representation
of these three components that results in geographic information.

Classification of entities builds on the assumption that things in reality can
be grouped according to number of properties. The classification of an observed
entity decides if it should have a representation or not, by which attributes the
representation should be described, the allowed values for each attribute, how
the representation must change according to changes to the geographic entity,
and finally which quality requirements there are to the representation.

There are a number of approaches to formal classification of entities. Formal
Concept Analysis is a mathematic framework based on the assumption that a
Galois connection exists between an ordered set of types and an ordered set of
properties. This approach to classification is especially useful for analyzing the
inheritance structure between a large number of types or concepts and to identify
”hidden” concepts for which there are no denotations in natural language.

Data modeling using entity-relationship diagrams or UML can also, seen from a
set-theoretical point of view, be regarded as a formal classification of types. In
Section 2.2.2 the relation between entity-relationship diagrams and description
logics is explained.

An important part of classification is to determine the properties of an entity
type. Often there is a differentiation between necessary and sufficient prop-
erties. A property of an entity is necessary if it must hold for all entities of the
type concerned. The necessary condition can therefore be seen as definitional,
e.g. a building must have walls. Sufficient properties that may or may not hold
for an entity. These properties can be used to describe properties may change,
e.g. the color of a car.

Changes in reality may result in alteration of geographic entities that are rep-
resented as objects in a geographic data collection. When this happens a need
for updating the representation of the entities may be in question. One of the
predominant questions in relation to capturing changes and introducing these
in the relevant data collections is the question of identity and existence, or in
other words ”how much can an entity change and still be perceived as the same
entity?” and ”when does an entity exist?”. Producers of geographic informa-
tion often ask themselves these questions, and without a well-defined basis for
making decisions about the identity and existence of entities as they are born,
changed, and die, the answers may be inconsistent.

Traditionally, changes of entities are modeled by use of state charts which are

3.4 A Small Example 31

basically petrinets [Sowa, 2000]. State charts describe allowed transitions be-
tween states. These models enable a process view of the life cycles of entities
that includes a description of the situation before and after a change occurs, and
less about what actually happened, or about the identity of the entity before
and after it changed.

An entity occupies a volume in space. This volume can be described as the lo-
cation of the entity and its extent. Entities can be either atomic or composite.
Composite entities consist of other entities. The relation between a composite
entity of which and the entities it consists is the part-whole relation (see Sec-
tion 2.3). Thus, two entities may share the same volume in space. Representing
composite geographic entities may be

3.4 A Small Example

The following statements are taken from the specification of TOP10DK [KMS, 1999].
The statements describe some of the details needed to represent buildings in re-
ality as building outlines in the topographic map.

1. A building is defined as a house, foundations in connection with the con-
struction of a house, or a ruin of building structural character.

2. A building is registered at the roof overhang/eaves of the house.

3. A building must be registered as closed polygons with a common start and
end point.

4. A building should be registered on the outer extremity of the foundations
or ruin.

5. As a general rule, all buildings larger than 25m2 must be registered in
their fundamental form.

6. A building must be registered with as few points as possible but in such
a way that the difference between the actual sequence and the registered
sequence is never larger than 1 m in plan and elevation.

7. All building corners must be registered. However, buildings with over-
hangs and extensions of a side length of less than 3m and an area smaller
than 10m2 must not be registered. Agricultural buildings smaller than
100m2 in connection with farms that are considered to be used for habi-
tation must not be registered.

32 Specifying Geographic Information

8. Houses built together must be registered as one building. However, multi-
storey buildings with a difference of more than 5m must be registered as
independent BUILDINGS with common 2-D geometry. Industrial build-
ings built together are registered as one building irrespective of large
differences in elevation.

9. Storage barns larger than 100m2 must be registered as building.

10. Fur farm buildings located closer than 2.5m to each other must be regis-
tered as one building.

11. Separate platform roofs between railroad tracks must not be registered
as building.

12. building that seem to be right-angled must be rectified mathematically.
However, no registered point must be moved more than 0.5m.

13. Telegraph mast and towers with the character of a building should be
registered as building.

14. Buildings like terrace houses, blocks of flats and housing blocks in residen-
tial areas with a uniform appearance must be generalized homogeneously.

15. Buildings preserve their identity as long as the extent and the building
parts do not change considerably.

The main purpose of such descriptions is to enable an agent, human or machine,
to analyze the source material, e.g. aerial images, and to extract information
from these to represent interpretations of identified entities as objects in the
data collection. In its most abstract notion a source material is an observation
of a property. Observations are evaluated by the agent using the appropriate
statements from the specification as the basis. By this process the agent acquires
new knowledge of the domain. When having sufficient knowledge the agent
draws conclusions, which result in one or more objects representing a number of
entities within the domain. The interpretation process is complicated and has
been a research subject within philosophy and cognitive sciences since the times
of Aristotle and Plato. In the following, we settle for a pragmatic approach by
assuming that such things as entities and properties exist, and that the agents
are capable of identifying entities and observing their properties.

3.4.1 Discussion of the Example

Even though the above example is a small fraction of a specification, valuable
information about the fundamental parts and elements included in a specifi-
cation can be extracted. Look at the following statement: Fur farm buildings

3.4 A Small Example 33

located closer than 2.5m must be represented as one building (statement 10).
This statement includes a lot of information. There is something called Fur
farm buildings which can apparently be located at a certain distance, and if
the distance between some instances of fur farms is less than 2.5m, it has a
consequence for the representation, namely that they must represented as one
building. Several issues can be questioned, e.g. should fur farm buildings that
are further away from each other also be represented as buildings? Or are fur
farm buildings a kind of agricultural building, and if so, should they conform
to the minimum area criteria in statement 7? And if they should, how is it
determined if they do so: is it the total area of the fur farm building candidates
for being represented as one, or is it the area of the individual fur farm building
that must be larger than 100m2? All these questions should be answered before
the agent can use the description to evaluate how fur farm buildings should be
represented. The description as it is seems incomplete, which gives rise to the
question: when is a description complete? The simple answer to this question is
that descriptions are never complete. Naturally, this answer is not satisfactory,
and we will throughout this thesis supply more adequate answers. The first step
is to recognize that more effective methods for structuring the specifications are
needed to ensure the quality of the specifications. The example in the previous
section can serve as input to a first structure of specifications.

Two Vocabularies

The first important observation that to be made from the above example is that
the statements are formulated by use of two sets of terms. One set describing
real world entities and one set describing the objects that represent the entities.
It is important to be able to distinguish between terms referring to entities and
terms referring to objects.

Definitions
Definitions, and as we shall see later, designations are important components
of a geographic information specification (or for all kind of specifications for
that matter), hence terms need to be defined if they should give meaning to the
specification.

Statement 1 is an example of a definition and it defines what a building is in
the given context.

Criteria of Importance
To determine which entities should be represented in a data collection, it is not
enough to list the types of entities that should be included. Often the product
cost will increase dramatically, if there is not a set of rules restricting the entities
that should be represented by some defined criteria of importance. Statements

34 Specifying Geographic Information

5 and 9 are examples of criteria for importance. Statement 5 is a general rule
for all buildings, and statement 9 imposes further restrictions on buildings used
for agricultural purposes.

Rules for Instantiation of Objects
Statement 10 describe the instantiation of fur farms buildings as discussed above.
In general instantiation rules are included in a specification for either cost or
cartographic considerations.

Guidelines for Drawing Geometries
An important part of a specification is the guidelines for drawing geometries.
Statements 3,4, and 6 describe the properties that are decisive for the represen-
tation of the location and the extent of the buildings by polygons.

Generally speaking, the guidelines for drawing geometries can be divided into
two groups. One can be called ”internal” guidelines describing requirements for
the accuracy of the points and line segments and the number of details that
must be included in the geometry. The second group of guidelines consists of
”external” guidelines describing the impact the representation of other entities
may have, e.g. how a stream is drawn if it is adjacent to a forest, or if a road
crosses a river.

Life Cycles of Entities
When an entity changes it may have consequences for its representation. The
most predominate question is if the identity of the entities is preserved during
the change or not. Life cycle rules state under which condition the identity is
preserved and under which condition it is changed. Statement 15 is an example
of a life cycle rule stating that a building preserves its identity as long as no
important building parts are added to or removed from the building.

3.5 Existing Approaches to Specifying GI

Using modeling languages like UML can help to get an understanding of the
domain at hand. Geographic information, however, is very complex, and using
existing modeling language may be impossible or at least very difficult, if all
properties needed to describe fully a geographic data collection should be in-
cluded in the model. Problems arising from modeling geographic information
include: Definition of all appropriate topologic relations, including requirements
for acceptable quality levels and measurements, specification of rules or con-
straints that formulate how objects must be registered and how the life cycles
of these objects are, and describe the relations among object types at different

3.5 Existing Approaches to Specifying GI 35

scales.

Several research projects have developed languages for modeling different as-
pects of geographic information. This section is a summary of preceding ap-
proaches, followed by a discussion if existing approaches possess the necessary
properties, to establish and support a well-structured and efficient infrastructure
for geographic information. This discussion is concluded by defining a number
of research topics to be treated in this thesis.

STER
The STER 1 diagraming language [Tryfona and Jensen, 1999] extends in tradi-
tional Entity-Relationship approach by adding language elements to modeling
of both spatial and temporal properties. STER includes symbols for indicating
if an entity set has spatial properties.

IGN Approach
The Cosit laboratory at IGN in France has developed a framework for developing
production specification for geographic information. This framework shares the
fundamental idea to distinguish between concepts in a domain and geographic
object types in a conceptual model [S. et al., 2003].

MADS
MADS [Parent et al., 1998, Parent et al., 1999] 2 combines the ER and object-
oriented modeling approaches and supports modeling of spatial as well as tem-
poral properties of spatial entities and relationships. This is achieved by intro-
ducing a set of abstract object types (labeled with icons for simple and complex
geometries), which can be included in the definition of spatial attributes. MADS
provides a number of predefined icons for modeling spatial relationships, and fur-
ther more specification of simple constraints is supported. Recently, MADS has
been extended with modeling constructs for multi-representational descriptions
[Vangenot, 2004]. MADS is supported by some formal definitions, specifying
the formal definition of the various constructs [Parent, 2004].

OMT-G
OMT-G is an object-oriented data model for geographic applications. OMT-
G provides primitives for modeling the geometry and topology of spatial data,
supporting different topologic structures, multiple views of objects, and spa-
tial relationships. The language also contains constructs for specification of
transformation processes and presentation alternatives, as well as multiple rep-
resentation [Borges et al., 2001].

1STER is an acronym for Spatial-Temporal Entity-Relationship.
2MADS is an acronym for Modeling of Application Data with Spatio-temporal features.

36 Specifying Geographic Information

MRSL
Multiple Representation Schema Language is a language specific to descriptions
of relations and dependencies between multiple representations. The method
includes the definition of integration classes, which are responsible for instan-
tiating and keeping consistency among multiple representations of the same
geographic entity [Friss-Christensen, 2003]

GeoFrame
GeoFrame is another extension of UML and serves as a framework for concep-
tual modeling of geographic information. The approach differs from other UML
based extensions by using analysis patterns which focus on reuse [Ruschel et al., 2005].

3.5.1 Discussion of Existing Approaches

In this section the existing approaches to specifying geographic information
are compared to the need for a specification language in the development of
specifications used to support the production of geographic information.

As the example in Section 3.4 shows production specifications are composed
of a diversity of types of descriptions. The most predominate drawback of the
existing approaches is that none are particularly well-suited for structuring or
formalizing these types of descriptions.

It also seems that existing approaches first of all address the conceptual modeling
of geographic information. Thereby the focus is on describing the structure of
the data collection-to-be, rather than the reality it seeks to represent. The result
is that there are no direct relations from the specifications to the underlying
ontological model describing the reality as the users see it.

Furthermore, the existing approaches lack a method for specifying formal con-
straints, which are accessible to non-programmers. It is believed that such a
method would be of great importance if it should be possible to include formal
constraints explicitly in the specifications.

Finally, the existing approaches do not incorporate mechanisms for stating re-
quirements. Without the gathering and structuring of users’ requirements and
expatiations on the data collection, the design of the data collection may not
possess the optimal properties compared to the users’ applications. We suggest
that the specification of requirements must be an integrated part of a language
for geographic information specification.

3.6 Design Goals for GeoSML 37

3.6 Design Goals for GeoSML

Inspired by Bjørner’s and Jackson’s approach for domain engineering and Lam-
sweerde’s approach to requirement engineering, this thesis suggests a new method
for developing specifications for geographic information which is especially de-
signed to meet the requirements for producing information from the specifica-
tions. The method, which is called the Geographic Information Specification
Markup Language (GeoSML), divides the design process into three parts: (i)
domain engineering - resulting in domain models, (ii) requirement engineering
- resulting in requirement models, and (iii) information design - leading to con-
ceptual models.

A specification can be regarded as a set of statements. Each statement can be
classified according to its role in the interpretation process, representing geo-
graphic entities as geographic objects. Furthermore, statements can be related,
according to their meaning and type, to form internal specification structures.
A statement can assume three basic forms: (i) make assertions about a domain,
(ii) describe a conceptualization of a domain, or (iii) state a requirement to a
data collection. Furthermore, elements in a domain model can be related to
elements in a corresponding conceptual model, and requirements can be related
to elements in the conceptual model.

GeoSML addresses the problems with current approaches to modeling geo-
graphic information by focusing on the following language properties, and the
following design goals are identified as important to the GeoSML framework:

Structuring of specifications written in natural language. GeoSML must
support semi-formal specification and structuring of specification parts
written in natural language. GeoSML must provide a classification scheme
that can be used for markup statements according to their properties.

Support of cooperative design. The GeoSML framework must support a
co-operative design process. The combination of knowledge from users of
geographic information, cartographic experts, and computing engineers is
necessary to design high-quality geographic information.

Separate domain descriptions and design decisions. Elements for mak-
ing clear distinctions between descriptions of the reality that must be
represented in a geographic data collection and the design of the data
content must be incorporated in GeoSML. Designers must make a clear
distinction between the ontological commitment of a specification and the
design of the geographic information.

38 Specifying Geographic Information

Inclusion of requirements in the specification. GeoSML must include el-
ements that enable designers to motivate design decisions.

Formal constraints. It must be possible to specify formal constraints directly
in the GeoSML framework, which enable designers to specify precise con-
ceptual models.

Quality requirements. GeoSML must provide language elements for specify-
ing quality requirements, which makes to possible for designers to inte-
grate requirements to precision, accuracy, classification, and completeness
directly into the conceptual models.

Each chapter in the remaining part of the thesis contributes to different parts
of the GeoSML framework. Chapter 4 introduces language elements for devel-
oping domain models and conceptual models and relating the two model types.
Chapter 5 introduces elements for specifying requirement models and relating
requirements to the conceptual model. Chapter 8 develops a formal constraint
language, and Chapter 6 supplies language elements for specifying quality re-
quirements.

3.6.1 Running Example

This section presents an example that will be used to illustrate the developed
concepts and elements of the GeoSML framework throughout the thesis. Since
”real” specifications for geographic data collections include several hundreds of
pages, the example cannot include all aspects of a specification. The challenge
has been to develop an example that illustrates the complexity of specifying
geographic information and still keeps the example as simple as possible.

The example focuses on the conceptual level of a specification, meaning the
structure of the information which must be stored in a database. In the follow-
ing chapters the example will be expanded to incorporate domain descriptions,
functional requirements, quality requirements, and constraints.

The example is designed to include entity types which are typically represented
by points, polylines forming a network, and polygons that the entity types
represent, land-use areas, man-made objects, and administrative boundaries.
From the above criteria the following object types have been chosen:

• Building

• Address

3.6 Design Goals for GeoSML 39

• Municipality

• Road

• Land-use area

The properties of and relationships between these obeject types are illustrated
by the ER diagram at Figure 3.3.

Building

Residential

Area

contains

Land-use

Area

Commercial

Area

touches

gives
accces

to

Address

overlaps
number of

floors

building

type

number of

residents

height

area type

Road

Segmentroad name

connects

intersects

road type

intersects

house

number

Municipality name

is in

is
acceesed

from

Figure 3.3: ER diagram for the entity types and relations included in the running
example.

In the following descriptions of the object types are introduced.

Building
Definition: Buildings are man-made objects created for a particular purpose,
e.g. residence, commerce, or production.

Properties: A building has a construction year, a number of floors, main usages,
and can be owned by one or more persons or companies. The construction year
is defined as the year in which the building was taken into use. The number of
floors is defined as the number of different levels above ground separated by a
staircase or an elevator. The main use of a building is defined as the predominate

40 Specifying Geographic Information

activity carried out in the major part of the building, e.g. commerce, industrial
production, or living. All buildings have one or more entrances. Each entrance
may have an address.

The location and extent of a building are represented by a building outline.
The outline must be registered with as few points as possible but in such a way
that the difference between the actual sequence and the registered sequence is
never larger than 1 m in plan and elevation. All corners in the building outline
must be registered. However, buildings with overhangs and extensions of a side
length of less than 3 m and an area smaller than 10m2 must not be registered.
Agricultural buildings smaller than 100m2 in connection with farms that are
considered to be used for habitation must not be registered.

Houses built together must be registered as on building. However, multistory
buildings with a difference of more than 5m must be registered as independent
buildings with common 2-D geometry. Industrial buildings built together are
registered as one building irrespective of large differences in elevation.

Address
Definition: An address is a unique identification of an entrance to a building.

Properties: An address is characterized by its house number, road code, and
municipality number. A house number is composed of a positive integer and
an optional letter. The numbering of buildings on a road starts with 1 and 2
for the first buildings on each side of one end of the road. Buildings on the
second side of the road are assigned even numbers in steps of two, while build-
ings on the first side are assigned odd numbers, also increasing the number with
two. The optional letter is applied to e.g. group attached buildings or if a new
building is constructed between two existing buildings already assigned a house
number. A road code is a number uniquely identifying a road within a munici-
pality. A municipality number is a number uniquely identifying a municipality
in Denmark.

An address is represented as an address point with x- and y-coordinates, and
located inside a building assigned a house number.

Municipality
Definition: A municipality is an administrative body which is responsible for
local planning, providing educational institutions, well-fare, etc.

Properties: A municipality has a name, a number of inhabitants, and a munic-
ipality number.

3.7 Summary 41

Geometrically, a municipality is represented by a municipality border. A poly-
gon represents the outer extremity of the municipalities. Municipality borders
must not intersect each other or be self-intersecting.

Road
Definition: A road is a strip of land, smoothed or otherwise prepared to allow
easier travel, connecting two or more destinations.

Properties: A road is described by a road code, the municipality number, and a
classification code. The road code is a four-digit number, which together with
the municipality number can be used to decide the name of the road. The
classification of a road can either be ”minor road”, ”major road”, or ”highway”.

The location and extent of a road are represented by a center line. A polyline
marks the approximate center of the road. Center lines representing roads meet-
ing in an intersection must have a starting point or an end point in common.

Land-use Area
Definition: Land use is the pattern of construction and activity for which land
is used. Patterns of land use arise naturally in a culture through customs and
practices, but land use may also be formally regulated by zoning, other laws or
private agreements such as restrictive covenants. For example, the setting aside
of wilderness either publicly as a wilderness area or privately as a conservation
easement [Wikipedia, 2005].

Properties: To illustrate the use of inheritance, land-use areas are divided into
commercial areas and residential areas. Residential areas have a property indi-
cating if the area consists of dense or scattered residences and the number of
residents within the area.

The extent and location of land-use areas are represented by polygons indicating
the outer extremity of the areas.

3.7 Summary

This chapter discusses various views on the specification of geographic informa-
tion. The most important result is the identification of five design goals, which
should be met by the design of the GeoSML framework. The design goals were
primarily chosen because we want to develop a method for designing geographic
information specifications which can be applied in the production of geographic
information and which supports cooperative design processes.

42 Specifying Geographic Information

Chapter 4

Structuring Specifications for
Geographic Information

Abstract: This chapter introduces a framework for specifying geographic infor-
mation, which is called the Geographic Specification Markup Language (GeoSML).
GeoSML is based on the theories presented in Chapter 2 and the requirements
identified in the previous chapter. The suggested framework has three important
properties: (i) It enables designers of geographic information to structure and
organize natural-language-based specifications, (ii) It supports a cooperative de-
sign process, and (iii) it is capable of formalizing natural language statements.
It will be argued that a specification can be divided in tree separate parts:
(i) a domain model, (ii) a conceptual model, and (iii) a descriptions that re-
late the two types of models. A grammar for these basic elements of GeoSML
will be introduced in this chapter, including the notions of statements, terms,
domain model, and conceptual model. The following chapters will contribute
to GeoSML by adding new elements, each of which provides developers with
new syntactic structures and guidelines for writing specifications for geographic
information.

44 Structuring Specifications for Geographic Information

4.1 Introduction

The previous chapter discussed the specification of geographic information. It
was described how national mapping agencies develop large specifications writ-
ten in natural language, describing the content of data collections in such detail
that geographic information can be produced from them. These specifications
are developed in text editors offering little or no support for semantic markup or
structuring of the specification elements. As argued in the problem description
(Section 1.1), there are several reasons why a new approach to developing and
managing specification for geographic information is needed. The main argu-
ment is that the ontological commitment is implicitly given in existing specifi-
cations. The consequence is that the description of domain properties may be
unclear, and that in some cases it is difficult to recognize if a statement describes
properties of the domain, or if it describes properties of the data collection. The
design of a geographic data collection may therefore be based on an unexpressed
understanding of the problem domains, which leads to specifications built on a
vague and potentially faulty description of the problem domain. The specifica-
tions may also include several hundred pages, making it difficult to retrieve the
information needed in a given situation, e.g. to be sure that all rules concern-
ing the representation of a particular object type have been revealed in a given
situation.

The major inspiration for the GeoSML framework is Bjørner’s TripTych paradigm
for software engineering [Bjørner, 2006b], Jackons approach to describing do-
mains, and the STER modeling language suggested by Tryfona and Jensen.
It is suggested that the development of specifications for geographic informa-
tion involves three disciplines: Requirement engineering, domain modeling, and
conceptual design. Practicing these three disciplines results in three types of
models: Domain models, requirement models, and conceptual models. We will
focus the introduced constructors on meeting the requirements for modeling ge-
ographic information. The aim is to minimize the complexity, resulting in a
language that is targeting experts both within the area of designing geographic
information and experts within developing computer systems and information
technology.

Existing approaches to modeling geographic information primarily concern con-
ceptual modeling focusing on the data structures in which information is stored,
and less on the underlying phenomena and ontological commitment these struc-
tures seek to represent. The design of database structures is of great importance,
but it is equally important to specify the nature and content of the information
that will be included in the data collections. Approaches have been suggested
to distinguishing between domain models and conceptual models based on UML
[Larman, 2001]. It seems that these methods focus on drawing class diagrams,

4.2 Representation System 45

rather than achieving an in-depth understanding of the problem domain by de-
scribing the domain facets. Moreover, there is no support for describing how
concepts in domain models relate to concepts in the conceptual models, which
is a must in specification of geographic information. Gesbert [Gesbert, 2004]
and Mustière [S. et al., 2003] proposed a profile of UML that addresses these
problems. Unfortunately, the specification of the elements in a profile is not
complete and the grammar for structuring the statements in geographic infor-
mation specification is missing.

The remainder of this chapter is organized as follows. Section 4.2 introduces
a representation system that defines the basis of GeoSML. Section 4.3 defining
specification elements for specifying domain models, Section 4.4 the elements
for specifying designs using conceptual models, and section 4.5 specify the rela-
tionships among the two model types. The chapter is finished by a summary in
Section 4.6.

4.2 Representation System

A specification can be regarded as a collection of statements that describe how
geographic entities are identified, which ones should have a representation, and
how this representation should actually be. These statements are built by use
of two sets of vocabularies, one used for denoting geographic entities and their
properties, and one for denoting geographic objects and their attributes1. If
establishing a framework for specifying clear and unambiguous specifications
for geographic information should be successful, a systematic approach to iden-
tifying and denoting phenomena in the real world and their representational
counterpart must be introduced. The representation system suggested has four
levels as illustrated in Figure 4.1: (i) The domain, (ii) a model of the domain,
(iii) a conceptualization that describes which information should be stored about
entities in the domain, and (iv) the representation of entities.

The domain and the domain model represent reality and an abstract de-
scriptions of reality at terminology level. The conceptual model and the
representation of entities represent the data collection, and a description
of the data collection, i.e the two boxes to the left represent the reality and
and a terminology enabling us to talk about reality, and the two boxes to the
right represent data collections and a description of the structure and content
of the data collection. The distinction between what is in reality and what is in
the computer is analogous to the world/machine distinction made by Jackson

1Entities and properties denote real world phenomena and objects and attributes denote
the representation of entities and properties.

46 Structuring Specifications for Geographic Information

Geographic
Entity

Geographic
Object

Specification

Representation
of the domain

Domain
Term

Conceptual
Term

Domain model Conceptual Model

Domain

is instantiated
from

identity

denotes

is represented by

Figure 4.1: Representation model.

[Jackson, 2001] (see page 13). To the left the domain and the domain model
represent the world and a terminology for describing the world. To the right the
conceptual model and the representation of the domain represent the system or
in our case a geographic data collection.

A domain is a part of the real world that is interesting for a particular problem
[Jackson, 1995, Shlaer and Mellor, 1992]. The domains that are interesting to
the specification of geographic information incorporate geographic entities. A
geographic entity is a real world phenomenon with spatial properties, which in a
given context can be distinguished from all other geographic entities. An entity
is characterized by a number of properties. Each property may have a value de-
termined by an observation. Distinguishing between entities and properties can
in practice be challenging. In general, an entity is a phenomenon that should be
exposed as an individual, while properties are unary predicates and functions,
e.g. the house is used for living and the height of the house is 10 meters de-
scribe a particular entity. A geographic entity can be classified according to its
properties, e.g. material, function, use, and spatial relation to other entities,
but also location, orientation, size, and shape play a role in the classification
classifying geographic entities.

A domain model is a conceptualization of a domain of interest. A domain
model captures the characteristic properties of a domain that for certain appli-
cations are particulary interesting. For the domain of real estate, properties like
number of bedrooms, distance to the nearest supermarket, and market value
are interesting properties of a building, while the type of heating system and
the consumption of energy are interesting properties of a building within the

4.2 Representation System 47

domain of measuring the environmental impact from heating buildings in resi-
dential areas.

To capture interesting properties of a domain, a set of basic description tech-
niques are needed, including the development of taxonomies and writing desig-
nations, definitions, and assertions.

A conceptual model expresses design decisions. Based on acquired require-
ments and the domain knowledge, the conceptual model formulates the structure
in which entities must be represented and the constraints with which the repre-
sented entities must comply for geographic information. The conceptual model
includes a number of geographic object types. Each object type is associated
with a list of attribute types. Object types and attribute types are named by use
of terms. Attribute types are furthermore described by a data type, a measure
and a unit that are used when objects are instantiated. To be precise about the
conceptualization of a domain, constraints can be included in the conceptual
model.

Geographic entities can be represented as geographic objects stored in com-
putable data structures. A set of geographic objects is often denoted a data
collection or geographic information. The intention of geographic information
is to establish models that simulate the properties and behavior of geographic
entities and the relations among them. Objects are classified according to the
type of the real world entity they represent, and the characteristics of the enti-
ties, i.e. the number of floors or the outline of a building, that are important to
a given application are modeled as attributes, for which each object is assigned
attribute values.

The is represented by relation between the domain model, and conceptual
model in Figure 4.1 represents a mapping from descriptions in the domain model
to elements in the conceptual model. In fact, this mapping constitutes the back-
bone of a specification and mapping defines at an abstract level the interpreta-
tion of domain concepts and binds these to corresponding terms in a represen-
tational model. The is represented by relation explains at the conceptual level
how entities are instantiated.

While is represented by operates at the conceptual level, the identify relation
operates at the instance level. It is a mapping between objects in the data
collection and entities in the domain. The instantiation of this relation is made
by humans when recognizing a map object, e.g. a building or a forest, as
corresponding to their respective counterpart in reality, or the opposite case
when it is recognized that an entity in reality is represented by an object in a data
collection. The purpose of creating maps is often to enable users to establish
this relation, for example when using a map for navigation. For some types of

48 Structuring Specifications for Geographic Information

objects the creation of identify relations is supported by reference systems.

As illustrated in Figure 4.1, specifications following the GeoSML concept include
three components: a domain model, a conceptual model, and a mapping between
two corresponding models. In the following sections, the content and structure
of each of the three components are developed, and the syntax for these basic
parts of GeoSML is presented.

4.3 Domain Model

The purpose of a domain model is to capture the domain knowledge needed
to make proper design decisions, i.e. domain models are developed to describe
the part of reality the geographic data collection must represent. Engineering
domain models is challenging. One of the problems is to describe the domain
with an appropriate level of details. Including too few descriptions leads to
underspecified models, which may miss important knowledge of the domain.
Including too much information leads to overspecified models, which in return
result in complex models where the most important information may be diffi-
cult to identify. Frank [Frank, 1998] recognizes this problem and suggests that if
none of the two can be avoided, underspecification is to prefer. This guideline is
not really operational, and therefore the key to solve the problem is found in the
requirement model (requirement models are discussed in Chapter 5). In general
domain engineering is an activity that precede requirement engineering, since
stating requirements is done in terms of domain models and the fundamental
terms in the requirement model must be defined in the domain model. In prac-
tice domain engineering and requirement engineering are an iterative process,
where domain terms, assertions, and requirements are defined as the knowledge
and nature of the problem and solutions to these increase.

Domain models included in specifications of geographic data collections identify
and describe sets of individuals or geographic entities that are particularly im-
portant ti the domain. These entity sets are named by relating them to what
we call domain terms. Domain models also relate the named sets to each other
and constitutes the ontological commitment of the specification. Domain de-
scriptions in GeoSML build on Jackson’s approach, and the basic methods are
identification and designation of ground terms, defining new terms on the basis
of designated terms, and making assertions that restrict or relate designated or
defined terms [Jackson, 1995, Jackson, 2001].

Descriptions in a domain models can be more or less formal, spanning from text
descriptions to formal ontology developed in description logics [Baader et al., 2003]

4.3 Domain Model 49

or algebraic specification and model-based languages like the Vienna Developing
method [Fields, 1992] and the RAISE specification language [George et al., 1992].
Both description logic and algebraic specification languages are very expres-
sive and can include detailed descriptions of the domain. The challenge is to
choose a language that will be productive, i.e. it must be able to express the
knowledge of the domain needed for an application and not be so complex that
it is to difficult to learn and use. GeoSML adopts a semi-formal approach
to describing domains. Descriptions are primarily written in plain natural
language and structured according to Jackson’s theories on domain modeling
(terms,designations, definitions, and assertions). To model relations among do-
main terms, or more precise the entities they refer to, GeoSML includes a for-
malism based on Entity-Relationship (ER) diagram 2.2.1.1. There are several
reasons why entity-relationship diagrams are chosen to represent the ontological
relations in the specification. The main arguments are that we do not want to
increase the complexity of the modeling language unnecessarily, and than the
specifications of geographic information focus on representational issues rather
that reasoning about the terms included in the specifications. It is believed that
to be productive in real world specification development projects, simplicity
comes before expressiveness, and most domain experts are not able to express
their knowledge in description logics.

4.3.1 Domain Terms

Words are not given by nature, but created and defined by humans. The mean-
ing of words may change over time, new words are invented, and the importance
of others decreases. Some words may even be forgotten. A characteristic prop-
erty of a language is that people using it give the same meaning to the words,
or to be more precise, almost the same meaning. In some cases it is important
to be precise about the meaning of words, e.g. in law texts, contracts, scientific
reports, and also in specifications for geographic information. It is therefore a
very important task to identify and define important terms in a specification,
hence they constitute the fundamental terminology of a specification.

Domain terms are used to denote geographic entities and properties, which
are identified to be of the same type, e.g. Building, street, and forest are
terms to denote geographic entity types, and number of floors, Street name,
and Vegetation type are terms denoting property types that may be associated
with the listed entity types. Properties are semantically defined differently, e.g.
the height of a building is not the same thing as the height of a telephone mast.
Therefore, a property type can only describe one type of entities. This just
means that terms may have several senses and that the representation system
must be able to distinguish two senses from each other.

50 Structuring Specifications for Geographic Information

Terms may have several senses, but in general only one sense should be assigned
to a term in a specification, since terms with more than one sense may lead
to confusion and misunderstandings. The occurrence of terms that need more
than one sense is, in the specification of geographic information often related to
terms referring to properties, e.g. height, size, and color. When two properties
are referred to by two syntactically similar terms with different semantics, a
solution can be to include the term that the properties describe in the term
referring to the property, e.g. the heights of buildings and poles can be referred
to as building height and pole height.

4.3.2 Designations

The knowledge expressed in traditional data models developed in e.g. UML or
entity-relationship diagrams is not sufficient if information should be produced
from the models. Data models include classes, their properties, and relations
among the classes. Thus, traditional data models focus on the structure of
information rather than what things really are as phenomena.

To be able to include buildings or greenhouses in a data collection, they must
be recognizable. The tool for this is designations. A designation has two parts:
The designated term and a recognition rule. Terms are discussed in the previous
section, and recognition rules are informal natural language rules that can be
used to identify and classify real world phenomena. Exampled of designations
from the domain of topographic mapping are:

Tree A large, perennial, woody plant, having secondary branches supported on
a single main stem or trunk. Compared with most other plant forms, trees
are long-lived. A few species of trees grow to a height of 100m, and some
can live for several millennia.

Building Man-made construction made for human activities, e.g. for living,
sports, industrial production, and commerce. Generally, buildings have
a foundations, a number of walls, and a roof. The various construction
parts can be made from a number of building materials. Foundations are
mostly made from concrete and walls can be made from bricks, glass, or
wood.

Road is a strip of land, especially suitable or prepared for car driving.

Designations say nothing about the domain, only that there are some phe-
nomena that can be recognized. Relations and rules connecting the designated
phenomena are applied by assertions, which is discussed later in the chapter.

4.3 Domain Model 51

From a phenomenological point of view the recognition rules are formulated
in terms of the properties which are evidential for a given entity type. The
perceived physical appearance is used to recognize an entity and to classify it
as a particular type. Therefore, when designations are written, the physical
evidence of the entities is used as recognizable properties. Examples can be
the parts of which a particular type of entity normally consists, or physical
property or combination of properties unique for a set of entities, e.g. color,
height, orientation and distance to other entities.

4.3.3 Definitions

New terms can be defined on the basis of designated terms. A definition is a
concise statement that includes as much information as it can in a minimum
amount of space. It consists of three parts: (i) The term to be defined, (ii) the
concept under which the entities the term refers to falls, and (iii) the properties
differentiating the entities from all other entities of this concept. An example
is a greenhouse (term) is a building (concept) made for growing plants and
vegetables(differentiating properties).

A definition can be supported by mentioning the parts of which the reference
term of the entities consists of, e.g. a greenhouse is a building made for growing
plants and vegetables and has walls and roof made from glass. The concept
used to define the term should be as ”close” to the term as possible, e.g. a
greenhouse is a building made for growing plants and vegetables and has walls
and roof made from glass is better than a greenhouse is a man-made construc-
tion for growing living organisms and has construction parts made from glass.
In general definitions should not be written by using negations, e.g. windmills
are not buildings. Describing what a term is not can easily become exhausting.
Besides, circular definitions should be avoided, e.g. evergreen tree - tree with
evergreen foliage. Definitions can be formalized and thus differ from a designa-
tion. Moreover, definitions do not add anything new to the description of the
domain other than a convenient way to refer to a set of entities which can be
recognized by a designation, and which have some special properties separating
them from all other entities identifiable with the same designation. Examples
of formal definitions using predicate logic are given below.

SingleStandingtree(x) → ∀t1tree(t1)¬∃t2tree(t2) ∧ close(t1, t2) ∧ t1 ≡ ¬t2

The example above defines single-standing trees. It can be interpreted as a
single-standing tree is all trees for which it holds that no other tree is close to
the tree.

52 Structuring Specifications for Geographic Information

∀x forest(x) → ∃s set(s) ∀a ∀b (isin(a, s) ∧ isin(b, s) ∧ indirectlyclose(a, b) ∧
count(s) > 200 ∧ partof(a, x) ∧ partof(b, x)

The next example defines the concept of forest. The definition of forests is
somewhat complicated, since it includes a set of trees which must have particular
relations to each other, namely that all pairs of trees in the set must be close or
indirectly close to each other. The predicate close is evaluated to be true if the
distance between two trees is within a defined threshold, and isdirectlyrelated
is defined as:

∀a∀bindirectlyclose(a, b) → close(a, b) ∨ ∃c(close(c, b) ∧ indirectlyclose(a, c))

Descriptions of domains most likely include directly observable phenomena, like
forests and residential areas, as designated. Definitions are more relevant phe-
nomena that are only observable over a period of time, e.g. traffic density. On
the other hand, geographic definitions may be relevant in the definition of new
data collections in the context of others, or to support the specifications of con-
straints. In both cases the formal definitions are specified in terms of conceptual
models, and not domain models. The problem of giving formal definitions to
geographic entities is that they concern ”real world phenomena”. To find a term
that can be designated and used to define terms like hill and mountain is diffi-
cult. The suggestion is that if definitions of domain terms are needed, it should
be kept in natural language. The consequence is that GeoSML does not include
capabilities to specify formal definitions at domain level, other than what can
be achieved by defining relations and assigning attributes to subtypes.

4.3.4 Assertions

A domain is described by use of a set of assertions which form an abstraction
that defines a particular view of the problem domain. Assertions are formulated
in the context of designated and defined terms and express rules or regulations
describing some properties of the domain and thus contribute to the development
of a domain theory. Examples of assertions are: Buildings may be owned by
persons or by organizations, buildings of historic value are subject to a special
reduced property tax, and the water level of a lake is determined by the intake
and output for a given period.

Jackson emphasizes that assertions must be refutable. Assertions that cannot
be questioned gives no substantial knowledge of the domain. If an assertion
states that highways have at least two lanes in each direction, someone may

4.3 Domain Model 53

come up with counterexamples: ”What about the lanes that connect two in-
tersecting high ways?”, or ”if a lane is closed because of road work?”. This
kind of argumentation is desirable. Only by ”negotiating” the meaning of
terms stable domain descriptions that are applicable to design processes can
be developed. It is important to remember that descriptions which fully cap-
ture the meaning of words are difficult to achieve, and problems will always
arise. Therefore, agreement on designations, definitions, and assertions is a
necessity, without agreement formalization of the domain concept is pointless.
As John Neumann wrote in The Theory of Games and Economic Behavior
[von Neumann and Morgenstern, 1947]: ”There is no point in using exact meth-
ods where there is no clarity on the concepts and issues to which they are to be
applied”.

4.3.5 Domain Modeling

Using the basic description techniques presented in the previous section enables
designers to capture domain knowledge in a structured, but yet informal man-
ner. To be able to represent formally the meaning captured by the domain
descriptions, relations among domain terms must be more precisely defined.
The GeoSML syntax therefore includes elements for formalizing parts of do-
main models. The elementary method for doing this is to group properties
according to the entities they describe, thus forming entity types. By defining
entity types a commitment to the domain is made. It is postulated that a set
of entities has so many similarities that it makes sense to treat them equally in
the domain model.

Terms denoting entities, e.g. building, forest, and lake, and terms denoting
properties, e.g. number of floors, building material, and height, can be related
by what we call property relationships. Property relationships can either be
mandatory or optional. Properties are implicitly understood as optional. If a
property is mandatory is must be labeled with the mandatory keyword.

In Section 2.2.1 relations among individuals in sets are discussed and formalized.
Since object types can be regarded as a set of entities, the defined relations
can be used to describe formally the relations among geographic entities. This
is achieved by introducing the notion of relationships in GeoSML. The first
version of GeoSML supports: taxonomic relations, mereologic relations, and
associations. Furthermore, optional inverse relationships can be specified.

54 Structuring Specifications for Geographic Information

4.3.6 Grammar for Domain Models

The following grammar describes the syntax of the part of GeoSML used for
describing and modeling domains. The syntax is written in a context-free EBNF
grammar 2 (see [Garshol, 2006] for an introduction to EBNF and [ISO, 1996]
for a complete reference).

〈domain model〉::=Domain Model
(〈domain term〉)*
(〈designation〉)*
(〈definition〉)*
(〈assertion〉)*
(〈entity type〉)*
(〈domain relationship〉)*

〈assertion〉::=Assertion: 〈assertionID〉[Concerning (〈domain termID〉)*]〈statement〉
〈definition〉::=〈definitionID〉 Definition: 〈domain termID〉 :〈statement〉
〈designation〉::=〈designationID〉Designation: 〈domain termID〉:〈statement〉
〈domain term〉::=Domain term: 〈domain termID〉〈term〉
〈entity type〉::=Entity type: 〈entity typeID〉

Name: 〈domain termID〉
Properties::=(〈propertyID〉〈domain termID〉)*

〈domain relationship〉::=〈drID〉〈drdef〉
〈drdef〉::=〈dr-is-a〉 |〈dr-part-of〉 |〈dr-association〉
〈dr-is-a〉::=(〈entity typeID〉)* is-a 〈entity typeID〉
〈dr-part-of〉::=(〈entity typeID〉)* is-part-of 〈entity typeID〉
〈dr-association〉::=〈entity typeID〉〈domain termID〉〈entity typeID〉
〈statement〉::=〈string〉
〈term〉::=〈String〉

A domain model has a name, includes a set of designations, definitions, entity
types, and relationships. An assertion is defined as a statement with the keyword
”Assertion”. A domain term is defined as a term with the keyword ”Domain

2The Backus-Naur form was developed by John Backus and Peter Naur to describe the
syntax of the Algol 60 programming language. Later the notation was extended with optional
and repeated symbols.

4.3 Domain Model 55

term”. Domain terms can either be defined or designated, by relating a term to
a statement, and using the appropriate keyword. An entity type is defined by a
name, which is a domain term and a set of properties, each being a domain term.
Entity types can be related by the 〈domain relation〉 symbol, which can either
be expressed as a taxonomic relationship (the 〈dr-is-a〉 symbol), an association
(the 〈dr-association〉 symbol), or a mereologic relationship (the 〈dr-part-whole〉
symbol).

4.3.7 Domain Modeling - Example

To illustrate the use of GeoSML’s domain modeling capacities this section gives
an example of how domain descriptions can be marked up using GeoSML. The
example has its origin in the domain of handling of building permissions. It
is important to emphasize that a ”real” domain model of these domains would
require more pages than it would be appropriate to incorporate in this thesis.
Therefore, the models only capture a few parts of the domains, - the aim is not
to give extensive descriptions of the domains, but to include enough descriptions
to illustrate the various language elements.

The example is inspired by the practice in Denmark regarding building per-
mits. Building permissions are given by local authorities and governed by two
sets of rules and regulations: local plans and general requirements for building
materials and the assembly of building parts, e.g. requirements concerning in-
flammability or the dimension of building parts. The focus is on the regulations
stated by local plans, so that geographic properties are mostly described.

Domain model: Building permits

Domain term building: Building

Domain term parcel: Parcel

Domain term parcel_number: Parcel_number

Domain term construction_Year: Construction_year

Domain term floor: floor

Domain term area: area

Domain term number_of_floors: number_of_floors

Domain term social_security_number: social_security_number

Domain term owns

Domain term is_owned_by

Domain term is_situated_on

Domain term contains

Domain term Greenhouse

Designation no1 Building: Man-made construction made for human

activities, e.g. for living, sport, industrial production,

and commerce. Generally, buildings have a foundation, a

56 Structuring Specifications for Geographic Information

number of walls, and roof. The various construction parts

can be made of a number of building materials.Foundations

are mostly made of concrete and walls can be made of

bricks, glass, or wood.

Definition no1 Greenhouse: is a building with roof and walls

made of glass and primarily used to grow plants.

Definition Build percent: is the sum of the area of each

floor in the building divided by the area of the parcel

on which the building is situated, multiplied by 100.

Assertion no1 concerning Building

New Buildings must be situated at least 3 meters

from the boundary of the parcel on which the building

is planed

Assertion no2 concerning Building

The distance from planned Buildings to existing

constructions must be larger than 5 meters.

Assertion no3 concerning building_percentage

The building_percentage must not exceed 25%

Assertion no4

The owner of the parcel on which a construction less

than 10 m2. is planned may begin the construction

when an application is filled.

Assertion no6. Applications must be filed for all buildings,

that is houses, garages, winter gardens, and greenhouses,

of an area larger than 10 m2

Entity type Building

Name: Building

Properties:

construction_year construction_year

number_of_floors number_of_floors

Entity type Greenhouse

Name: Greenhouse

Entity type Person

Name: Person

Properties:

person_name person_name

social_security_number social_security_number

Entity type Parcel

Name Parcel

Properties

parcel_number parcel_number

Relation owns

person owns parcel

Relation is_owned_by

parcel is_owned_by person

Relation is_situated_on

building is_situated_on parcel

4.4 Conceptual Model 57

Relation contains

parcel contains building

Note that the terms are used as the 〈domain termID〉. This is done to increase
the readability of the example. In ”real” specifications a numbering system using
a unique integer-based numbering system should be applied. Such a numbering
system is not described in the above specification or in following specifications.

4.4 Conceptual Model

The next component of a specification developed using GeoSML is a conceptual
model. As explained in the beginning of this chapter, a conceptual model is a
prescription of an internal representation structure which acts as a template for
the creation of geographic objects. Conceptual modeling has been a subject of
investigations by several research projects (see Section 3.5), each proposing its
own method or language specially suited for the various aspects of conceptual
modeling of geographic information.

Conceptual models express design decisions based on acquired requirements and
the domain knowledge expressed in the corresponding requirement and domain
models (requirement models are introduced in GeoSML in Chapter 5). The
design of geographic information consists of two exercises: (i) development of
a conceptual model, including deciding the object type to represent the entity
types in the corresponding domain model and the constraints that restrict the
values and relations of these objects. (ii) Description of the rules that define
the entities to be represented in the data collection, and how the representation
should be done. This section deals with the first part, while Section 4.5 intro-
duces the GeoSML elements for binding domain descriptions to the conceptual
model.

A conceptual model can be regarded as a set of constraints, which restrict the
information stored in a database. The conceptual model includes a number of
geographic object types. Each object type is associated with a list of attribute
types. Object types and attribute types are named by use of conceptual terms.
Attribute types are furthermore described by the data types used for instanti-
ation of the objects. To be precise about the conceptualization of a domain,
constraints can be included in the conceptual model. Constraints are state-
ments assigned to guard the intended meaning of a requirement, an assertion,
or a representation rule, and which the objects instantiated from the concep-
tual model must comply. Constraints are always formulated in the context of

58 Structuring Specifications for Geographic Information

conceptual terms. These constraints can either be simple or complex. The sim-
ple constraints are treated formally in this chapter, and the complex ones in
Chapter 8.

Conceptual models for databases are often represented in entity relationship
models (ER diagrams), which are a graphical notation for representing database
structure and concepts. An introduction to ER diagramming rules and concepts
is found in Section 2.2.1, and a more in-depth presentation can be found in
[Chen, 1976]. The conceptual modeling of geographic information has been a
subject of intensive research. Some of the suggested solutions and approaches
have already been discussed in Section 3.5. The approach proposed here re-
sembles most of the STER approach developed by Tryfona and Jensen, hence
our approach and syntax also build on an ER modeling approach. Later the
ER-like syntax will be extended with constructs for specifying complex con-
straints, which add elements similar to those of Description Logics, but without
any reasoning facilities.

4.4.1 Object Types

Objects with common characteristics can be addressed as an object type. The
characteristics, i.e. the number of floors or the outline of a building important to
an application, are modeled as attributes, for which each object has an attribute
value. Object types are patterns to be used to instantiate objects representing
a specific entity. In GeoSML object types are described by a name and a set
of attribute types. Each attribute type has an attribute name, unit, and data
type.

There are three types of attributes [Tryfona and Jensen, 1999]:

• Spatial Attributes

• Temporal Attributes

• Thematic Attributes

4.4.1.1 Spatial Attributes

Instances of spatial attributes represent the physical location and extension of
an entity. In the simplest case a spatial attribute can be either a point, line,
or polygon, but more complex geometric data types can also be defined, see

4.4 Conceptual Model 59

e.g. the simple feature specification in [ESRI, 2003], where also multipoints,
multilines and multipolygons are included together with more complex types of
polygons, e.g. polygons with wholes.

4.4.1.2 Temporal Attributes

A geographic entity and its relations to other entities are dependent on time.
It exists in a given time period, as well as its relations to other entities, and
its properties e.g. a house may have new owners, or its properties, e.g. a car
may be black in a given period and afterwards painted blue. If these time-
dependent properties should be represented, they must be included in the con-
ceptual model. The STER [Tryfona and Jensen, 1999] approach suggests three
temporal aspects to be included in the conceptual model:

Existence time is used to represent the period from which an entity begins
its existence to it stops to exist.

Valid Time is the period in time when a relation between two entities is valid
or the period when a value for an attribute is valid.

Transaction Time is the period in which an element, either an object, at-
tribute, or a relations instance, is in the database.

As suggested in STER, GeoSML uses the abbreviations ”et”, ”vt”, and ”tt” for
existence time, valid time, and transaction time respectively.

4.4.1.3 Thematic Attributes

Apart from spatial and temporal attributes, a geographic object may be de-
scribed by a number of thematic attributes, e.g. a building object which has
attributes specifying the number of floors and total square meters.

4.4.2 Relationships

As in domain models conceptual models may include associations, taxonomic
relationships, and mereologic relationships. Furthermore, topologic relation-
ships are added to this list. Spatial properties and relationships are naturally of
the greatest concern in relation to the specification of geographic information.
Section 7.3.1 gives an introduction to the foundation of topologic relations.

60 Structuring Specifications for Geographic Information

4.4.3 Constraints

Constraints are rules that restrict the creation of objects from the conceptual
model and are introduced to ensure that the produced information possesses
the desired properties. Constraints may regulate both the values of attributes
and the instantiation of relations among objects. Constraints can be grouped
in five types according to their function:

• Topology constraint, e.g. buildings must not overlap

• Format constraint, e.g. a date attribute must follow a predefined pattern

• Metric constraint, the distance between two forests must be larger than
30 meters

• Domain constraint, e.g. the value of an attribute must be one of the values
included in a specified list

• Temporal constraint, e.g. some change must happen prior to another

In reality, constraints may be a mixture of the five categories, and therefore it
does not make sense to subdivide the markup in the specification. The basic
GeoSML syntax, as introduced in the next sections, provides elements for intro-
ducing natural language constraints in the specification. Chapters 7 and 8 are
dedicated to the formalization of constraints and introduce a formal constraint
language that extended the GeoSML syntax to conceptual models. Further-
more, the five types of constraints and the formalization of these are treated in
detail.

4.4.4 Syntax for the Conceptual Model

The syntax of conceptual models specified in EBNF is the following:

〈conceptual model〉::= Conceptual Model〈name〉
(〈object type〉)*
(〈conceptual relationship〉)*
(〈constraint〉)*
(〈conceptual term〉)*

〈object type〉::=Object Type〈object typeID〉[ET][TT]
Name:〈conceptual termID〉

4.4 Conceptual Model 61

Attributes
(Name: 〈attributID〉〈conceptual termID〉 [VT][TT]
Data type:〈datatype〉)*

〈conceptual relationship〉::=〈crID〉〈crdef〉
〈crdef〉::=〈cr-association〉 |〈cr-is-a〉 |〈cr-part-whole〉 |〈cr-spatialrelation〉
〈cr-association〉::=Association:〈typeID〉〈conceptual termID〉〈typeID〉
〈cr-part-whole〉::=Part-whole relation:(〈typeID〉)* is part-of 〈typeID〉
〈cr-is-a〉::=Taxonomic relation: (〈typeID〉)* is-a 〈objecttypeID〉
〈cr-spatialrelation〉::=Spatial relation:〈named spatial relation〉 |〈defined

spatial relation〉
〈named spatial relation〉::=〈typeID〉〈topooperator〉〈typeID〉
〈defspatialrel〉::=〈typeID〉〈topodef〉〈typeID〉
〈constraint〉::= concerning (〈object typeID〉)*: 〈statement〉
〈conceptual term〉::=Conceptual term 〈conceptual termID〉〈term〉
〈term〉::=〈string〉
〈statement〉::=〈string〉
〈datatype〉 ::= string | bool | float | date | integer | point |

polyline | polygon

〈topooperator〉::=overlap | touch | contain | inside | covered by
|cover |disjoint |equal

〈topodef〉::=
11:〈val〉 12:〈val〉 13:〈val〉
21: 〈val〉 22:〈val〉 23:〈val〉
31:〈val〉 32:〈val〉 33:〈val〉

〈val〉::=0 |1 |2

As seen some of the grammar is analogous to the one used to specify do-
main models (see Section 4.3). The major differences are that 〈assertion〉,
〈designation〉, and 〈definition〉 are omitted, and the 〈constraint〉 is introduced.
Constraints can only be formulated in natural language in this version of GeoSML.
Chapter 8 adds the syntax for specifying formal constraints. Furthermore,
topologic relations are added to the list of possible types of relations (the
〈spatialrelation〉 symbol).

62 Structuring Specifications for Geographic Information

4.4.5 Conceptual Model - Example

To illustrate the usage of the grammar give supply an example based on the
domain model developed in Section 4.3. In the example the conceptual model
has four classes: Area, Residential Area, Commercial Area, and Building. Area
is the superclass of residential area and commercial area. Residential area has
two attributes: Residential area type and number of residents. Building has
also attributes: Building type and number of floors. There are two topologic
relations between area and building: contain and overlap. The contain relation
indicates which buildings are contained in an area, and overlap indicates if there
is an overlap between the boundary of an Area and the boundary of a building.

Conceptual model My Small Topographic Map
Conceptual term building: building
Conceptual term building_outline: building_outline
Conceptual term construction_year: construction_year
Conceptual term building_type: building_type
Conceptual term number_of_floors: number_of_floors
Conceptual term hight: hight
Conceptual term road_segment: road_segment
Conceptual term centerline: centerline
Conceptual term road_type: road_type
Conceptual term road_name: road_name
Conceptual term area: area
Conceptual term extent: extent
Conceptual term area_type: area_type
Conceptual term residential_area: residential_area
Conceptual term number_of_residents: number_of_residents
Conceptual term address: address
Conceptual term house_number: house_number
Conceptual term municipality: municipality
Conceptual term municipality_name: municipality_name
Object Type building

name: building
Attributes:

building_outline building_outline polygon
construction_year construction_year integer
building_type building_type string
num_of_floors number_of_floors integer
height height float

Object Type road_segment
Name: road_segment

4.5 Mapping Domain and Conceptual Models 63

Attributes:
centerline polyline
road_type road_type string
road_name road_name string

Object Type area
Name: land-use area
Attributes:

extent extent polygon
area_type area_type string

Object Type residential_area
Name: residential_area
Attributes:

num_of_residents number_of_residents integer
Object Type commercial area

Name: commercial area
Object type address

Name: address
Attributes:

house_number house_number string
Object type municipality

Name: municipality
Attributes:

municipality_name municipality_name string
Taxonomic relation:
commercial_area and residential_area is-a area
Spatial relation: contain area contain building
Spatial relation: ab_overlap area overlap building
Spatial relation: bb_overlap building overlap building
Spatial relation: br_intersect building intersect road_segment
Spatial relation: ar_intersect area intersect road_segment
Spatial relation: touch building touch building
Association: isaccessedfrom address isaccessedfrom road segment
Association: gives_access_to address gives_access_to building
Association: belongsto address belongsto municipality

4.5 Mapping Domain and Conceptual Models

The third part of the GeoSML concept is descriptions that relate elements in
the domain model with elements in the conceptual model. By applying a map
between entity types and object types a bridge between descriptions of the
domain, which is constituting the ontological commitment of the specification,

64 Structuring Specifications for Geographic Information

and the design of a data collection is created. Thus, the descriptions of terms in
the domain model are bound to descriptions of objects in the data collection, and
enables designers to describe, how entities and relations in the domain actually
should be represented in the data collection.

Mappings between a domain model and a conceptual model are facilitated by
the is-represented-by relation, which is used to indicate that an entity type
is represented by an object type, e.g greenhouse is represented by building.
Binding the models together ensures that the design of a data collection builds
on a well-formed ontology, and that the chosen representation schema can fulfill
the stated requirements.

The is-represented-by relation not only binds entity types together with ob-
ject types, but also provides a syntax for describing the interpretation of domain
entities to form objects in the data collection, hence these rules are called inter-
pretations rules. Interpretation rules define correct instantiation of objects by
stating conditional relationships between observable properties in the domain
and the representation of these. The rules formally follow the pattern:

∀x1 . . . xn(Ψ(x1 . . . xn) → ∃y1 . . . ym(Φ(y1 . . . ym, x1 . . . xn)))

where Ψ(x1 . . . xn) is a proposition over the geographic entities x1 . . . xn and
Phi(y1 . . . ym) is a proposition over the geographic entities y1 . . . ym and the
geographic objects x1 . . . xn. If something holds true for the domain then some-
thing must hold true for the representation of the domain.

Y(x ...x)1 n F(y ...y)1 n

HOUSE

RIVER

LAKE

FOREST
Building

Road Centerline

Tech Area

Domain Model Conceptual Model

Figure 4.2: Pattern for mapping domain and conceptual models.

An example of a formula following this pattern is

∀ b1,b2 building(b1) building(b2)(isneighbors(b1,b2) ∧ heightdiff<5(b1,b2) →
∃ b (Building(b) ∧ represent(b,b1) ∧ represent(b ,b2)

4.5 Mapping Domain and Conceptual Models 65

The above statement is to be read as for all building, b1 and building, b2, if
b1 and b2 are neighbors and the height difference between b1 and b2 is smaller
than 5 meters, then there must exist a building, b where b represents b1 and b
represents b2.

In other words, if two buildings are neighbors and have a height difference less
than 5 meters, then they must be represented by a building in the data collection.
The ”represent” predicate in the above formula is true if an object exists that
represents an entity (and all constraints and representation rules are fulfilled).

Representation relations are in practice hard to specify, and even harder to im-
plement. In general they, should be specified in natural language and leave the
formalization to the constraints. In Chapter 8 it is shown how interpretation
rules can be translated into constraints formulated in terms of conceptual mod-
els, and used to ensure that the produced information observes the interpretation
rules.

It is possible to categorize interpretation rules according to the role they play
in the interpretation process. In Section 3.4.1 we recognized five types of state-
ments:

• Classification rules

• Selection rules

• Instantiation rules

• Representation rules

• Life Cycle rules

4.5.1 Classification Rules

Classification rules often have characteristics equal to definitions, e.g. ”a
building is a man-made construction used to facilitate human activities, such as
living, production of goods, and sports”. In this statement the term building is
defined and it can be used to identify geographic entities that candidates for a
representation in one or more data sets.

66 Structuring Specifications for Geographic Information

4.5.2 Selection Rules

The purpose of selection rules is to restrict the set of entities that should
have a representation in the data collection. Selection rules can be formulated
as rules that explicitly include entities with specified properties in the data col-
lection (inclusion rules), or as rules explicitly excluding entities with specified
properties from the data collection (exclusion rules). An example of a selec-
tion rule concerning roads is: ”roads shorter than 50 meters should not be given
a representation, unless they connect two or more roads in the road network”.

Inclusion and exclusion rules often describe required properties of entities in
order to determine whether they should be represented in the data collection,
but can also state restrictions on relations to other entities, i.e. ”Buildings in
Lakes must be excluded”.

4.5.3 Instantiation Rules

Instantiation rules describe how entities are instantiated as objects. It is not
always the case that a one-to-one relation between entities and objects exists. A
road is identified by its road name, while the objects representing the road are
often divided in segments going from intersection to intersection. In the case
of roads there are one-to-many relations between entities and objects. In other
cases a set of entities is aggregated as one object. The motivation of aggregation
is to reduce the work and thus the cost to instantiate a large set of entities, or
if it is difficult to determine the exact boundary between two entities.

Examples from the TOP10DK specification are: Two buildings must be instan-
tiated as one building if they are neighbors and the height difference is less than
5 meters and two fur farm buildings must be instantiated as one building if the
distance between them is smaller than 2.5 meters.

In some cases it is difficult to distinguish between selection and instantiation
rules. Take one of the above examples: Two Buildings must be instantiated
as one building if they are neighbors and the height difference is less than 5
meters. If two buildings are neighbors and both have an area smaller than
25m2, but together have an area larger that 25m2, how must the two buildings
be represented? Given the two rules it is clear that the two building should not
be given an representation. However, if the number of buildings is ten instead of
two, e.g. a group of garages. Then the total area of all buildings is much larger
than the minimum requirement for one building, and we really want to have
a representation of the buildings. Adding a selection rule we can ensure that:

4.5 Mapping Domain and Conceptual Models 67

Neighboring buildings of a total area larger than 50m2 must be represented.
Note that if a building of an area of 10m2 is neighboring a building with an
area of 50m2, then both buildings should be represented, but instantiated as
one building (according to the instantiation rule).

4.5.4 Representation Rules

When it has been determined how an entity or a group of entities is instantiated
as an object, each attribute of the object must be assigned a value. The exact
value is determined by applying a set of representation rules. For simple
attributes the representation rules are often given in the definition of the cor-
responding property, e.g. if the construction year of a building is defined to be
the year in which the construction of the building started, then it is obvious
which value should be assigned to each building object.

For more complex attributes, and particularly for attributes whose values are
geometric data types, several representation rules may be necessary to describe
all the information needed to correctly assign values to an attribute.

For attributes of the geometric data type, registration rules often describe how
generalization of the geometric representation is to be made, or how the differ-
ent data sources are interpreted in order to extract the wanted information. For
example an outline of a building is drawn from a digital image or a classifica-
tion of vegetation is made. These rules are often difficult to formalize or even
express in natural language. Therefore, illustrations or pictures can be used to
describe a registration rule. An example of a registration rule is: The corners of
buildings must be registered with 90-degree angle if this does not compromise
the requirements for a precision of 1 meter.

4.5.5 Life Cycle Rules

When a domain changes from one state to another it may implicate a need for
updating the representation of the domain. How and when these updates should
be done is decided by a set of life cycle rules. The key question for life cycles
rules is to decide wether a change in the state of a geographic entity is identity
preserving or not. In other words, the task of life cycle rules is to define the
criteria for identifying an entity as the same at two different points in time. An
example of a life cycle rule is: ”If building parts are added or removed from a
building, then its identity is preserved only if the area of the resulting building
has changed less than 30%.

68 Structuring Specifications for Geographic Information

4.5.6 Grammar for Mappings between Domain and Con-
ceptual Models

The syntax for the ”is-represented-by” relations in EBNF:

〈repexp〉::=〈entity typeID〉 is represented by 〈typeID〉
using (〈selection rule〉)*
(instantiation rule)*
(〈life cycle rule〉)*
Attribute Values::=(〈attributID〉 [has default value 〈value〉)] is
determined by (〈representation rule〉*) |
〈drID〉 is represented by 〈crID〉
using (〈selection rule〉*)
(〈instantiation rule〉*)

〈selection rule〉::=〈statement〉
〈instantiation rule〉::=〈statement〉
〈life cycle rule〉::=〈statement〉
〈representation rule〉::=〈statement〉

Three sets of rules and a set of attribute value descriptions are applied to each
mapping between an 〈Entity Type〉 and an 〈Object Type〉. The sets of rules
include selection rules, instantiation rules, and life cycle rules. The 〈Attribute
Value〉 part includes an optional default value and a set of representation rules
for each attribute.

The repexp symbol is included in the conceptual modeling level.

4.5.7 An Example

To exemplify use of the mapping relation the following example is given. The
example binds the domain model from Section 4.3 and the conceptual model
from the previous section together.

Greenhouse is represented by Building
Selection Rule

4.5 Mapping Domain and Conceptual Models 69

The area of greenhouses must be larger than 25m2
Attribute Values:

Type is set to ’greenhouse’

Road is represented by road_segment
setting roadtype to ’road’

Cycle path is represented by road_segment
setting roadtype to ’cycle path’

Residential_building is represented by Building
Attribute Values:

type is set to ’residential’
building outline is represented using
Representation Rules:

building outline is registered on the roof
overhang/eaves of the building

Selection Rules
The area of building must larger than 10m2

Instantiation Rules
Two neighbor buildings of a height difference
smaller than 5m must be represented as one building

Representation Rule:
building outline must be registered as closed
polygons with a common start and end point.

Representation Rule:
building outline must be registered on the outer
extremity of the foundation or ruin.

Representation Rule:
buildings outline must be registered with as few points
as possible but so that the difference between the actual
sequence and the registered sequence is never larger than
1 m in plan and elevation.

Representation Rule:
All Building corners must be registered. However,
buildings with overhangs and extensions of a side length
of less than 3m and an area smaller than 10m2 must
not be registered.

Selection Rule:
Agricultural buildings smaller than 100m2 in connection
with farms that are considered to be used for habitation,
must not be registered.

Representation Rule:
Houses built together must be registered as one building.

70 Structuring Specifications for Geographic Information

4.6 Summary

In this chapter a representation system for denoting phenomena in a domain
and their representations as geographic entities has been introduced and a new
principle for structuring specifications for geographic information written in
natural language has been suggested.

The presented language developers are able to write specifications according
to a predefined structure. By dividing a specification into the three suggested
parts, it is clearer which part of the reality should be represented in the data
collection being developed and how this representation should actually be.

The GeoSML approach to describing the domain is primarily informal, and only
a few language elements are included to express formal properties of entities
and objects. GeoSML as it is introduced in this chapter has little support
for formalizing specification statements. The expressiveness of the formalism
introduced to describe the domain may be insufficient for modeling all properties
in the domain formally.

Chapter 5

Requirement Specification

Abstract: This chapter introduces the notion of requirement models into
the GeoSML framework. By simple syntactic constructors, designers of geo-
graphic information are enabled to capture and structure the users needs for
geographic information. The suggested approach to modeling user require-
ments is inspired by the KAOS requirement model [van Lamsweerde, 2001] and
[van Lamsweerde et al., 1991]. Requirements are formulated as goals that the
users want to achieve using a data collection. Goals can be refined or abstracted
by ordering them in and/or trees. The major contribution from this chapter is
specification elements that relate requirements to terms in the corresponding
domain model and thus ensure that requirements are built on a formulated
domain theory. Furthermore, requirements are related to elements in the con-
ceptual model. By relating requirement and conceptual models, the motivation
of design decisions formulated in conceptual models is documented.

72 Requirement Specification

5.1 Introduction

There is a gap between the way users state requirements and needs for ge-
ographic information and the way developers design data collections. While
users specify their needs in terms of the domain in which they operate and goals
they want to reach using the data collection, designers design data collections
in terms of the object types, attribute types, and relationships they want to
include in the data collection. To close this gap a framework for modeling user
requirements, with the following properties, is suggested:

• requirements are formulated as goals

• goals are built by use of the terminology defined in a corresponding domain
model

• goals can be refined by using refinement trees

• goals can be assigned to elements in a corresponding conceptual model

The elements in the framework are inspired by and partly based on the GOAL
requirement model (see Section 2.3). While Lambsweerde’s method is oriented
toward a formalization of requirements, we use the idea of organizing require-
ments as and/or trees, and especially the idea of delegating the responsibilities
for implementing goals to agents, human or computer-based, is of great value.
The formalization is in our approach left to be formulated as constraints speci-
fied in the context of a corresponding conceptual model (see Chapter 8).

The contents of this chapter are organized as follows. Section 5.1.1 discusses
the types of requirements for geographic information. Section 5.2 explains the
approach for requirement engineering. Section 5.3 extends GeoSML to include
syntax for structuring requirements and to related requirements to other spe-
cification elements, such as interpretation rules, object types, attributes, and
constraints. Section 5.4 continues the running example by illustrating the usage
of the language elements for defining and structuring requirements. The chapter
is concluded by a summary.

5.1.1 Requirements for Geographic Information

The purpose of using geographic information and geographic information sys-
tems is in general to support the users in making spatial decisions according
to predefined tasks. Examples of tasks are to transport some goods from one

5.1 Introduction 73

location to an other, to manage a water supply system, or to deploy resources
to prevent or reduce the consequences of natural catastrophes. All tasks are
carried out to achieve a particular goal or set of goals. For the task of water
supply system management these goals could be: ”All consumers must be sup-
plied with the required amount of water” and ”the water quality must be within
the acceptable ranges”. To operationalize these kind of high-level goals, they
must be refined to goals with a lower level scope. For the first of the above ex-
amples this could be done as ”the capacity of the installed water pumps must be
double the nominal water consumption” and ”major nodes in the water supply
network must have alternative sources”. To relate these goals to requirements
for geographic information, they must be further refined. For example the first
of the above refined goals can be further refined as ”the capacity of all water
pumps must be recorded”, ”the estimated outtake must be recorded for each
building which is supplied with water” and ”the structure of the water supply
system must be known”.

Generally speaking, the goals directly stating requirements to a data collection
can be divided into the following categories:

• Data content

• Topology and data structure

• Scale and resolution

• Cartographic design and representation

• Frequency of updates

• Quality

The usability of geographic information is first of all decided by the data con-
tent in terms of object types, attribute types and relationships. Also the topol-
ogy and data structure are important to the application of a data collection.
For example, if a data collection must be used for trip planning it is imperative
to have access to a set of road segments forming a topologic network.

Requirements related to scale and resolution depend on which detail entities
must be represented. If the goal for a task is to measure distances between build-
ings with a one-meter precision, then all details must be included in polygons
representing the extents of the buildings.

Cartographic design and representation may also implicate the usability
of a data collection. While data content and resolution are invariant properties

74 Requirement Specification

for a data collection, cartographic design and representation can be changed
from one application to another.

The quality contributes to the usability of a data collection. The most im-
portant aspects of quality are completeness and accuracy. Some applications
are sensitive to the completeness of a data collection, such as address databases
used for dispatching ambulances, for others the accuracy is also important, e.g.
databases describing the positions of pipes used for transportation of gas. Re-
quirements related to quality are not treated as goal-oriented requirements, but
as an integrated part of the conceptual model. Chapter 6 discusses in detail how
requirements in relation to quality are introduced in a GeoSML specification.

A parameter correlated to quality is the frequency of updates. To ensure
that a data collection is complete, it must be updated regularly. The more
often a data collection is updated, the more actual is the information in the
data collection. This is also a parameter in the evaluation of the usability of an
data collection. Some applications require information which is updated often,
e.g. weather forecasts and management of infrastructures, other applications
need less often updated information.

5.2 Requirement Engineering

This section discusses aspects of requirement engineering important to the con-
text of GeoSML and the specification of geographic information. First, the no-
tions of requirements and goals are discussed, second, the structuring of goals is
discussed, and third the relations between corresponding requirement, domain,
and conceptual models are described.

5.2.1 Requirements and Goals

According to Jackson [Jackson, 1997] a requirement means the effect in the
problem domain that the users want the system to guarantee..., in our case a
geographic data collection. Requirements are in this way the functionality that
some geographic information used in an appropriate geographic information
system must deliver.

To capture the requirements for a system, various approaches can be adopted,
e.g. investigating background papers, such as project proposals, cooperate busi-
ness strategies, and work flow descriptions. Enquiring domain experts and users

5.2 Requirement Engineering 75

is important in this process. Users know much more about solving problems and
carrying out tasks within their specific domain than about designing geographic
information. Therefore, to invite users to participate in a design process means
that requirements should be formulated in terms of the user’s domain.

Formulating requirements as goals is an effective method for doing this. By
enforcing the users to thing in goal ensure that the collected requirements are
directly inherited from actual needs and that they support the existing business
processes, - implemented or being developed.

5.2.2 Structuring Goals

A goal can be refined as a subgoal or a set of subgoals, e.g. the goal ”the cost
of distributing goods to customers must be minimized” can be refined as the
subgoals ”the travel distance must be minimized” and ”the travel time must be
minimized”.

Goals can be related by a tree-structure where the most general requirements
are situated in the top of the tree and more specific requirements at the bottom
of the tree. The ”requirement tree” is organized so that subrequirements state
how their parent requirement should be fulfilled, and vice versa the parent re-
quirement explains why its subrequirements must be met. The tree structure of
the requirement model is implemented by adding a list of subrequirements to a
requirement.

The innovative idea of KAOS is to assign the responsibility of implementing
goals to objects, which can either be agents, entities, events, or relationships.
The approach adopted to stating and structuring requirements is inspired by
the KAOS model, where requirements are formulated as goals the system must
ensure that the user can reach by using the system.

Goals may be conflicting. This means that the satisfaction of one goal may
prevent other goals from being fulfilled. In GeoSML conflicting goals are related.

Goal A goal is a state of affairs or a state of a concrete activity domain which
a person or a system is going/tends to achieve or obtain.

Subgoal Goals can be refined as a set of subgoals. This is done either by linking
goal and subgoals by ”and-links” or by ”or-links”.

and-link If a goal is related to a set of subgoals through and-links, it means
that the goal is achieved if all subgoals are achieved.

76 Requirement Specification

or-link
and-link

Goal

Subgoal

Requirement

Expatiation

Conflict

Figure 5.1: Concepts of an ”and/or” goal tree.

or-link If a goal is related to a set of subgoals through or-links, it means that
the goal is achieved if one of the subgoals is achieved.

Requirement A requirement is a goal that has been assigned to an element in
a conceptual model.

Contradiction Two goals are said to be contradictive, if the fulfillment of one
of the goals excludes the fulfillment of the other goal.

Expectation An expectation is a goal which is expected to be achieved by
an agent in the domain. In the case of specifying requirements for geo-
graphic information, this agent is likely to be a function in a geographic
information system.

Figure 5.2 shows how an and/or goal tree can support the organization of goals.
The most general goal states that the system being developed must support the
transportation of goods between distributions centers and retail stores. This
goal is refined as two subgoals linked by and-links. The two subgoals state that
the higher level goals can be achieved if the location of the distribution center
and the location of the store are known. The two subgoals are further refined
by or-links, to two pais of subgoals stating that the locations can be found by
either an address or a coordinate.

5.2 Requirement Engineering 77

Origing known

Transportation from distribution
central to stores

Destination
known

Coordinate

Address
Coordinate

Route calculated

Address

Figure 5.2: Concepts of an ”and/or” goal tree.

5.2.3 The Implement Relation

The relation between corresponding domain, requirement, and conceptual mod-
els can theoretically be described by the implement relation [][Jackson, 1997]:
Let D, R, and S stand for a domain model, a related requirement model, and
a conceptual model. For S to be an implementation of R - based on D - the
following relation must hold:

D,S |= R

In other words, a system design, represented by a conceptual model, must im-
plement the requirements stated in a requirement model and be based on the
domain knowledge captured by the related domain model. It is in fact very
difficult to prove that an implementation meets all requirements stated in a
requirement model, and that it represents the domain facets in an appropriate
way. To conduct a formal prove that the implement relation holds for a given
domain model, requirement model, and conceptual model is difficult - if not
impossible.

It could be argued that if the implement relation could be mathematically
proved, the consequence would be that a design could automatically be derived
from the domain and requirement models. We believe that design of geographic
information requires human interaction to make efficient designs. Therefore,

78 Requirement Specification

domain descriptions, requirements, and design are handled in separate and in-
tegrated models.

The integration of goals is facilitated by two element in the specification lan-
guage. (i)Goals are formulated in the context of terms existing in the problem
domain, and are thereby bound to the theory of the domain. In practise this
is done by listing the domain terms that are relevant for a given goal. (ii)
Requirements are also strongly related to the conceptual model, hence the de-
sign decisions expressed in the conceptual model depend and is motivated by
requirements in the requirement model. The knowledge of which requirements
motivate which design elements is captured by assigning requirements to the
elements in the conceptual model.

5.3 Grammar for Requirement Models

In this section a grammar that builds on the theory of goal-orientation of user
requirements and the above analysis on requirements for geographic information.
The grammar includes elements for structuring requirements and relating these
to corresponding domain and conceptual models.

Requirement model:::= 〈requirementmodel〉
〈requirementmodel〉::=(〈goalexp〉)*

(〈contradiction〉)*
(〈goalassign〉)*

〈goalexp〉::=〈goal〉[is refined as 〈operator〉〈goalexp〉*
〈goal〉::=goal〈goalID〉[concerning (〈domain termID〉)*]〈statement〉
〈contradiction〉::=〈goalid〉 is conflicting 〈goalid〉*
〈operator〉::=and |or

〈goalassign〉::=〈element〉 is motivated by 〈goalID〉*
〈element〉::=〈object typeID〉 |〈attribute typeID〉 |〈constraintID〉 |〈representationruleID〉

The top symbol in this grammar is 〈Requirement model〉. This symbol marks the
beginning of a requirement model in a GeoSML specification. A 〈Requirement
model〉 is defined as three sets: a set of 〈goalexp〉 (short for goal expression), a
set of 〈contradiction〉, and a set of 〈goalassign〉 (short for goal assignment).

5.4 Example of Modeling Requirements 79

The 〈goalexp〉 symbol is used to define refinement trees by adding the optional
”is refined as” which has an 〈operator〉 and a set of 〈goalexp〉 on the right hand
side. The recursive definition of 〈goalexp〉 enables the creation of and/or trees
having 〈goal〉 as nodes. The 〈goal〉 symbol defines the format for specifying
goals that can be included in a refinement tree and is defined as an identifier,
an optional list of keywords from a domain model, and a 〈statement〉. The
〈statement〉 symbol is defined in Section 4.4.4 and is the carrier of the text
describing a particular goal.

The 〈contradiction〉 symbol is used to mark two goals as conflicting. The
〈contradiction〉 symbol can be is a symmetric binary relation between two goals.
Therefore, if it is stated that goal1 is contradictive to goal2 then it is given that
goal2 is also contradictive to goal1.

The 〈goalassign〉 symbol are used to describe relations between goals in the
requirement model and a corresponding conceptual model. This relation is
facilitated by the is motivated by relation, which has an element from the
conceptual model on the left-hand side and a 〈goalID〉 on the right hand-side. An
〈element〉 is a reference to either an object type, an attribute type, a constraint
or a representation rule.

5.4 Example of Modeling Requirements

To illustrate the usages of GeoSML grammar for specifying requirement models
three requirement models. It must be emphasized that the models to some
extent are ”naive” and that their main purpose is to show have the grammar is
used. The examples should be self-explanatory.

Requirement model: building permits.
1 Application must be analyzed to determine if the filled
application can be approved or not.
1.1 No requirements in the small-build regulation must be broken
1.1.1 No building parts must be taller than 8.5 meters.
and
1.1.2 The area of a building must be smaller than 25% of the areal
on which the plan building will be situated.
or
1.2 a dispensation must be given for the rules that are not meet.

Requirement model: school district planning
1 School district must be
planned each year

80 Requirement Specification

Goal 1.1 The route which the students travel to school
must be the best possible
Goal 1.1.1 The students must have as short way to

school as possible.
Goal 1.1.1.1 Home addresses and school locations

must be recorded
and
Goal 1.1.1.2 Road network must be available

and
Goal 1.1.2 The way to school must be as safe as possible

1.1.2.1 The student must crosses as few roads
as possible

and
Goal 1.1.2.2 crosses no major roads

1.1.2.1.1 There must be access to the classification
of roads

and
Goal 1.2 The number of elver must be relatively similar

each year
and
Goal 1.3 The school districts must be as stable as possible

1.2 is conflicting 1.3
1.1.1 is conflicting 1.1.2

1.1.1.2 is implemented by Roadnetwork
1.1.1.1 is implemented by Address
1.1.2.2.1 is implemented by Roadtype

Requirement model: navigation
Goal 1 The system must enable pedestrians, car drivers,

and cyclists to find their way around
Goal 1.1 It must be possible to calculate the travel

distance and time between two locations
and
Goal 1.2 Generation of traveling directions based on
road names the leads like "turn left at next intersection"
and "use the second leg in the roundabout".
and
Goal 1.3 Start points and destinations should be found by
addresses, place names, and points of interest,
like hospitals and museums.

5.5 Summary 81

5.5 Summary

In this chapter a method for stating and organizing requirements for geographic
data collections is developed. GeoSML, which was introduced in the previous
chapter, has been extended with grammar elements for including what is called
a requirement model.

In the proceeding chapter requirements for the quality of geographic informa-
tion will be investigated in further detail, and the conceptual model will be
extended to include the specification of acceptable quality levels and the quality
parameters of a data collection will be presented.

82 Requirement Specification

Chapter 6

Specifying Quality
Requirements

Abstract: This chapter extends GeoSML with structures for specifying require-
ments related to quality. Two concepts are introduced: (i) Acceptable quality
level (AQL), defining requirements for minimum and maximum values of qual-
ity parameters, such as precision and completeness, and (ii) quality element re-
quirement (QER), which specifies the quality parameters that must be used to
describe the quality of a data collection. The work presented in this chapter was
carried out in collaboration with Anders Friss-Christensen and published at the
International Symposium on Spatial Data Handling 2004 [Friss-Christensen and Christensen, 2004].
The originally introduced work was made as extensions to the metamodel of the
Unified Modeling Language. In this chapter the language is defined as a context-
free grammar and adjusted to the GeoSML framework.

84 Specifying Quality Requirements

6.1 Introduction

A geographic data collection is by nature an abstraction of the domain sought
to be represented and therefore ”only” offers approximate descriptions of the
entities within the domain. Quality descriptions are needed to determine how
good the approximation actually is. Explained in the context of the representa-
tion model presented in Chapter 4 (see Figure 4.1 on page 46) quality is related
to the identify relation between geographic entity and geographic object. The
quality can be regarded as the loss of information going from the ”real” entity
to its representational counterpart.

Users who need certain object types from a certain area should receive addi-
tional quality information customized to their specific application. Hence, qual-
ity information is metadata for instances of object types. This differs from the
traditional approach where quality information is provided at a more general
and higher level. Typically, the fitness for use is mainly evaluated by studying
metadata, but there is a need for a more dynamic approach to quality manage-
ment in which quality information is an integrated part of the geographic data
model. Here, quality can be assessed directly when sources of information are
selected, as opposed to having to study a separate and general metadata report.

Producers of geographic information assess the quality to ensure that the pro-
duced information conforms to the underlying specifications, and users need
quality evaluation reports to determine how good the information actually is,
and to decide if the information is appropriate for a given application.

The contributions of this chapter are twofold: First, we identify and describe
quality elements that are necessary for adequately describing the quality of any
geographic data collection. The elements identified are based on requirements
from the National Survey and Cadastre, but should satisfy most applications
that utilize geographic information. Second, we extend GeoSML to incorporate
geographic information quality elements. The result is a framework that enables
designers and users to specify quality requirements in a geographic data model.
Such a quality-enabled model supports a more application specific distribution
of geographic information, e.g. one using web services.

Geographic information quality has been a research topic for more than a
decade, and several aspects of data quality in relation to GIS have been in
focus. The fundamental elements of quality have been investigated in previous
work [Chrisman, 1984, Goodchild and Gopal, 1989, Guptill and Morrison, 1995,
Veregin, 1999]. Furthermore, the International Standardization Organization’s
TC211 is close to the release of standards for geographic information qual-
ity [ISO, 2001b, ISO, 2001a]. Its work focuses on identifying, assessing, and

6.2 Quality of Geographic Information 85

reporting relevant quality elements for geographic information, but does not
consider integrating information quality requirements into conceptual models.
We believe that conceptual modeling is important when making the manage-
ment of geographic information quality operational. Another aspect of geo-
graphic information quality is error propagation [Heuvelink, 1998], which is the
description of how quality and errors evolve in GIS analysis. Whereas error
propagation focuses on determining the quality when calculations are applied
to the information, we focus on the modeling of the fundamental elements of
quality. However, our work establishes a framework which can be used in error
propagation in GIS.

The remainder of the chapter is organized as follows. Section 6.2 presents the
quality elements and investigates how to classify quality requirements. It also
describes how quality is assessed in a production process. Section 6.3 develops
a framework for modeling quality by extending GeoSML to include quality ele-
ments. In section 6.4 the running example is used to illustrate how requirements
to quality can be included in conceptual models.

6.2 Quality of Geographic Information

The notion of geographic information quality is a complex and open-ended con-
cept covering a wide range of characteristics related to the perception and usage
of geographic information. The approach taken in this chapter seeks to oper-
ationalize the quality of geographic information by suggesting that the quality
of a geographic data collection can be described by a finite set of quality ele-
ments. A set of quality elements is termed quality information. This section
describes each such quality element. Furthermore, the relevance to applications
of geographic information is explained. Finally, we describe how quality can be
assessed as part of a production process.

6.2.1 Quality and Quality Requirements

Two overall approaches may be adopted to describe quality: A user-based ap-
proach and a product-based approach [Garvin, 1988]. The former emphasizes
fitness for use. It is based on quality measures evaluated against user require-
ments dependent on a given application. The product-based approach considers
a finite number of quality measures against which a product specification can
be evaluated. While the product specification is based on user requirements, it
is often a more general specification that satisfies the needs of a number of dif-

86 Specifying Quality Requirements

ferent customers. The ISO 9000 series (quality management) defines quality as
the totality of characteristics of a product that bear on its ability to satisfy stated
and implied needs [ISO, 1994]. This definition is used in the ISO standards on
quality of geographic information [ISO, 2001a, ISO, 2001b], and it covers both
the user-based and the product-based approaches.

As quality is a relative measure, users and database designers are faced with
two challenges: how to specify their quality requirements and how to determine
whether the information satisfies the requirements. The first challenge concerns
the specification of implied costumer needs, which are often not expressed di-
rectly. Introducing quality elements in conceptual models is helpful in meeting
this challenge, because it then becomes easier to capture quality requirements in
the design phase. The second challenge concerns the possible difference between
actual and required quality of the information. A solution is to make it possible
for users to evaluate their requirements against the information, by including
quality information about each object, attribute and association in the data
collection.

To be able to support quality requirements in conceptual models the charac-
teristics of such requirements must be identified. In doing so, the requirements
are divided into two. First, it should be possible to specify which of the quality
sub-elements are relevant to a given application. These requirements are termed
quality element requirements, or QER. Second, it should be possible to express
requirements related to the values of the actual quality, i.e. express specifica-
tions or standards that the information should satisfy. These requirements are
termed acceptable quality level, or AQL. The two levels of requirements are sim-
ilar to the notions of information quality requirements and application quality
requirements [Wang et al., 2001].

The quality element requirements can be characterized as the necessary elements
making it possible to assess and store quality information. Thus, quality element
requirements are at a detailed design level. At a more abstract level, we find
requirements such as 90% of all objects must be present in a data collection,
which is the acceptable quality level. It is important to be able to separate these
two levels of requirements. The acceptable quality level does not necessarily have
to be specified, but if any quality information is needed, the quality element
requirements have to be specified.

Figure 6.1 shows the two levels. The requirements are specified as user-defined,
which means that the designers are specifying the requirements, but they should
reflect the requirements from the application users. As seen in the figure, the
quality elements require that different evaluation methods are assessed: internal
and external methods, which methods are described in Section 6.2.3.

6.2 Quality of Geographic Information 87

Quality assessment

(internal and

external)

Acceptable quality

level

Quality element

requirements

(aggregation/instance

level)

User specified

requirements
User specified

requirements

uses

requires

uses

Figure 6.1: Quality Requirements.

In the internal approach, quality is assessed immediately when information is in-
serted in the database using internal tests and, hence, requires no external source
to be carried out. For example, topologic constraints are evaluated immediately
after information has been inserted into the database. If the information does
not satisfy the constraints it is rejected. In the external approach, information
is checked against an external reference that is believed to be the “truth.” For
example, if 90% of all forest objects are required to be present in the informa-
tion, this has to be measured against some kind of reference. Hence, quality
elements assessed by external methods need to be assessed at a later stage, by
means of an application running on top of the database.

Finally, the quality elements are divided into two levels: the aggregation level
and the instance level. These levels refer to whether quality is measured/spec-
ified for each instance of an object type or the quality is aggregated at, e.g.
an object type level. It should be possible to specify requirements related to
both levels. As an example, a building object (instance level) has a spatial ac-
curacy which is different from the aggregated spatial accuracy of all buildings
(aggregation level). Both levels may be important to an application user.

6.2.2 Quality Elements

This section describes elements of quality which are adequate to compose a qual-
ity report that can be used in applications of geographic information. These ele-
ments are covered in most descriptions of geographic information quality. Exist-
ing work characterizes quality [ISO, 2001a, ISO, 2001b, Veregin, 1999, Guptill and Morrison, 1995],
but does not completely agree on the elements being relevant and necessary.
However, they agree on most quality elements. We include the quality elements
specified by ISO. However, in addition we include precision and metric consis-
tency [Guptill and Morrison, 1995]. The choice of which elements to include is
based on requirements from the National Survey and Cadastre, but should be
applicable to geographic information in general. In Figure 6.2, quality informa-
tion is divided into elements and subelements.

88 Specifying Quality Requirements

Completeness

Accuracy Precision
Consistency
Constraints

OmissionCommission

Spatial

Thematic

Temporal

Domain

Format

Topological

Metric

Spatial

Thematic

Temporal

Quality
Elements

Quality
Subelements

Lineage

User-
defined

Figure 6.2: Quality information, elements, and subelements.

In the following sections each quality element is described in further detail.

6.2.2.1 Lineage

Lineage is a qualitative aspect of quality and refers to the process of recording
and keeping track of the origins of the information. All elements of a geographic
object may have lineage information, e.g. lineage can be specified for both
objects and attributes. Lineage information is related to the measurement and
creation of the information and may contain information about the person or
company that has registered a given object or attribute. However, it can also be
information stating that an object is derived from, e.g. another data collection.
Lineage is used as a basis when expressing how reliable the information is. The
actual recording of lineage information and the kind of information to be stored
depends on the given application. An observation has spatial, temporal, and
thematic attributes, which may all contain lineage information. An example is
that a specific GPS model is used to measure the spatial properties of an object.
The observation itself may also contain lineage information, e.g. the name of the
person who has registered the information. Finally, a geographic object, which
consists of a number of observations, may also contain lineage information, e.g.
that an object is derived from another object in another data collection.

6.2.2.2 Consistency

The consistency quality element includes the following:

6.2 Quality of Geographic Information 89

• Domain consistency expresses whether information belongs to a given
value domain, which may specify numeric types or enumerated types. An
example is that an attribute value must have a value existing in the list:
red, green, blue.

• Format consistency expresses to which degree attribute values satisfy a
specified format, e.g. a temperature should be specified as a decimal
number with two digits.

• Topologic consistency gives rules for how spatial attribute values should
be related. An example is rules specifying that two polygons are not to
overlap. Valid topologic relationships include disjoint, contains, inside,
equal, meet, covers, coveredBy, and overlap. These eight relationships are
valid for polygons in two-dimensional space and for lines in one-dimen-
sional space [Kainz, 1995].

• Metric consistency refers to the relative positions of objects related to each
other. An example is that an instance of one object type is to be at least
10 meters from an instance of another object type.

6.2.2.3 Completeness

Completeness concerns the absence or presence of some information. It includes
descriptions of whether the information is in excess (i.e. objects are present in
the information collection, but not in reality) or whether information is missing
compared to the universe of discourse. These subelements are also termed com-
mission and omission, respectively. An example of a completeness requirement
is that the omission of buildings in a data collection must be less than 2%. To
be able to assess completeness, some kind of reference information is required.

6.2.2.4 Accuracy

Accuracy covers a range of quality subelements and can be characterized ac-
cording to the three dimensions of geographic information (theme, space, time).

• Thematic accuracy concerns thematic attributes and classifications of ob-
jects. The measurement of thematic accuracy can be to determine the
classification correctness of object types against some kind of reference
believed to be the truth. Typically, this is reported in an error matrix as
seen in Table6.1.

90 Specifying Quality Requirements

Table 6.1: An error matrix.
ClassA ClassB

ClassA 95% 5%

ClassB 2% 98%

• Spatial accuracy concerns spatial properties of objects. Spatial accuracy
can be either absolute or relative. The absolute spatial accuracy is the
closeness of a stored position compared to some kind of reference believed
to be true, whereas the relative spatial accuracy is the relative mutual
closeness of objects compared to a reference.

• Temporal accuracy concerns the quality of temporal attributes. An exam-
ple is the accuracy of the construction year for a building.

6.2.2.5 Precision

Precision is the level of known uncertainty of each registration and it is not to be
confused with accuracy. As with accuracy, precision can be separated in three
subelements that are related to the three dimensions of geographic information.
Thematic precision refers to the precision of a unit used for registration. Spatial
precision refers to the uncertainty of a measured position. Temporal precision
refers to uncertainty of a time measurement. An example is that the expected
spatial precision in a stereoscopic model is 0.5 meters in aerial photos on a scale
of 1:25,000. Precision can be recorded when an object is instantiated.

6.2.3 Quality Assessment

Quality assessment is the process which generates the quality information and is
always related to specifications. In addition to the standard application require-
ments, the specifications specify quality information that should be accessible,
rules for the information that must be kept true, and the level of quality to
which the produced information must conform. This implies that the quality
is measured against the specifications. There are two overall approaches to as-
sess quality: internal and external quality assessment. In the internal approach
quality is assessed immediately after the information has been inserted into the
database by using internal tests and, hence, requires no external source to be
carried out. For example, topologic constraints can be evaluated immediately
after the information is inserted into the database. If the information does not
satisfy the constraints it are rejected. In the external approach information is

6.3 Modeling Quality 91

checked against an external reference believed to be the “truth”. For example,
if 90% of all forest objects are required to be present in the information, it has
to be measured against some kind of reference. Hence, quality elements assessed
by external methods need to be assessed at a later stage by means of an ap-
plication on top of the given database. In Figure 6.3, a production process is
depicted. It is seen that geographic information is captured from a given source

Geographic
Database

Data sources
Models and

specifications Reference data

Data collection
and internal

quality assesnemt

External quality
assesment

Step 1 Step 2

Figure 6.3: Quality assessment.

(e.g. aerial photos) and an internal quality assessment is performed based on
the quality element requirements specified in the specifications. When the geo-
graphic data collection has been established, an external quality assessment can
be performed. This requires a reference against which information can be mea-
sured. The result is a geographic data collection including quality information,
which can be accessed by application users.

6.3 Modeling Quality

We proceed to present a framework for conceptual modeling of geographic in-
formation quality. We first describe how conceptual models can be extended to
support quality requirements. Then, the various quality subelements are related
to model constructs. This sets the stage for the quality-enabled model, which
is covered last.

92 Specifying Quality Requirements

6.3.1 Quality in Conceptual Models

Conceptual models typically support constructs such as classes, associations,
and attributes. No special notation is offered for the modeling of information
quality, and database designs often do not capture information quality, because
producers often neglect the importance of useful quality information. The fact
that database designs do not offer appropriate quality information hinders the
application users from considering quality for their applications.

In certain cases this can reduce the applicability of the data collections: to be
able to use the information properly, it is important for the user to have access
to quality information. Integration of information quality subelements into the
common model constructs is a first step to make it possible to express quality
requirements in the conceptual design phase. This would enable users of the
information to have access to quality information.

Table 6.2 relates conceptual model constructs to data quality elements and is
used to extend GeoSML with data quality elements. As seen from the table,
quality subelements related to model constructs are divided into an aggregation
level and an instance level. The aggregation level is the aggregated quality sub-
element measure for all objects of a class. The instance level is the quality sub-
element measure for each object. As described previously, quality requirements
can reside at both levels.

Furthermore, the quality subelements are classified according to their required
assessment approach. Completeness and accuracy sub-elements require external
data to be assessed, whereas the remaining quality subelements only require in-
ternal quality assessment. Precision and lineage information are closely related
to the production process and are attached to the instance of the model con-
struct. Precision can later be assessed at the aggregation level. The consistency
requirements are related to the specification of the universe of discourse. They
specify requirements to be satisfied and are usually expressed as constraints in
the conceptual models. Consistency requirements can be specified for instances,
but also for collections and sets (aggregation level).

At the instance level, the omission subelement of completeness is not included
for objects. This is because information cannot be associated with objects that
do not exist in the data collection. On the other hand, commission error can
be stored, because this means that an object exists in the data set, but not
in the universe of discourse. For attributes and associations, we can assess
both omission and commission. When a class is instantiated, it is possible to
determine whether an attribute has a value or not. The same applies to explicit
associations, as they can be implemented as foreign keys or object reference

6.3 Modeling Quality 93

Table 6.2: Quality related to model constructs.

Aggregation level
Quality elements

Completeness
(external)

Accuracy
(external)

Precision
(Internal)

Lineage
(internal)

Consistency
(Internal)

Class Omission
Commission

Thematic Thematic — Format

Attr. Omission
Commission

Absolute:
Spatial
Thematic
Temporal

Absolute:
Spatial
Thematic
Temporal

— Domain
Format
Topologic
Metric

Assoc. Omission
Commission

Relative:
Spatial

Relative:
Spatial

— Domain
Format
Topologic
Metric

Instance level
Quality elements

Completeness
(external)

Accuracy
(external)

Precision
(internal)

Lineage
(internal)

Consistency
(Internal)

Object Commission Thematic Thematic Source Format
Attr.
value

Omission
Commission

Absolute:
Spatial
Thematic
Temporal

Absolute:
Spatial
Thematic
Temporal

Source Domain
Format
Topologic
Metric

Assoc.
instance

Omission
Commission

Relative:
Spatial

Relative:
Spatial

Source Domain
Format
Topologic
Metric

attributes. Only spatial accuracy and precision of associations are possible.
This is the relative distance, which may be relevant in certain situations. Based
on requirements, the relative temporal and thematic accuracy/precision is not
found to be relevant.

94 Specifying Quality Requirements

6.3.2 Quality Measures

Quality cannot be expressed by a single value as it depends on the application
and on a range of subelements all expressing a measure for a single aspect of
quality. The value of each subelement can be expressed differently. Here, some
practices are presented that can be used in the determination of how to express
the values of the subelements. The value domain of each subelement has to be
determined before any implementation can take place.

Omission and commission. At the aggregation level omission and commis-
sion can be measured as a total number of objects, attributes, or associa-
tions either missing or in excess in the data set. It may also be presented
as a percentage. For example 10% of the building objects are missing
from the data set. At the instance level omission (only on attributes and
associations) and commission can be represented as a Boolean value.

Accuracy is a complex quality element and can be measured and assessed in
numerous ways [Drummond, 1995, Goodchild, 1995]. Spatial accuracy is
the discrepancy (or error) measured between the “true” coordinates and
the measured coordinates. A common way to measure accuracy at the
aggregation level is to express the root mean squared error (RMSE). It
requires a set of checkpoints to be assessed. For a point at the instance
level, the error is recorded for each coordinate, either by recording the
“true” value or by recording the discrepancy. Temporal accuracy can
also be expressed by the RMSE. Thematic accuracy can be of numeric or
nominal value. At the aggregation level, standard deviation can be used
for the numeric values and percentage classified correctly (PCC) can be
used for nominal values, usually presented via a misclassification matrix.
At the instance level for nominal values, either a Boolean value or the
“true” value can be recorded. For numeric values the “true” value or the
discrepancy can be recorded. A reason for storing the “true” value can be
that errors found are not necessarily corrected in the same process as the
assessment.

Precision is related to the measurement techniques used and can be expressed
by standard deviation (e.g. ±2 meters). Both the instrument used and the
operator influence precision. Hence, if different instruments or operators
are used for registering a complete data set, the value can vary from the
instance level to the aggregation level.

Consistency is specified by constraints and can be expressed, e.g. in natural
language or as formal constraints (see Chapter 8). A consistency require-
ment at the aggregation level specifies a requirement valid for all instances

6.3 Modeling Quality 95

of a model construct, e.g. the sum of all values of a specific attribute must
not exceed a certain number.

Lineage information describes the origin of the produced information, and it
can include many types of information. Therefore, lineage must be de-
scribed by a set of parameters defined by the users.

Naturally, the acceptable quality level has to be specified in the same value
domain as the subelements. Which value domain to choose depends on the
application and is to be decided by the designers.

6.3.3 Extending GeoSML with Quality Requirements

This section extends the grammar for conceptual models introduced in Section
4.4 to include quality requirements. Object type and relationship are redefined
to include quality subelements used to describe relevant quality element require-
ments and need to be assessed at the aggregation and instance levels. The
acceptable quality level is included in the conceptual model to specify require-
ments for the values of quality subelements for both the instance level and the
aggregation level. This is done by extending the GeoSML language element for
conceptual modeling with ”AQL aggregation level”, ”AQL instance level”, QER
aggregation level”, and ”QER instance level” for 〈object type〉, 〈attspec〉, and
〈association〉.

〈conceptual model〉::= Conceptual Model〈name〉
(〈object type〉)*
(〈conceptual relationship〉)*
(〈constraint〉)*
(〈conceptual term〉)*

〈object type〉::=Object Type〈object typeID〉[ET][TT]
Name:〈conceptual termID〉
AQL Aggregation Level:(〈objtypeAQL〉〈operator〉〈value〉)*
AQL Instance Level:(〈objtypeAQL〉〈operator〉〈value〉)*
QER Aggregation Level(〈AQualityElement〉)*
QER Instance Level(〈IQualityElement〉)*
Attributes
(Name: 〈attributID〉〈conceptual termID〉 [VT][TT]
Data type:〈datatype〉
AQL Aggregation Level:(〈attAQL〉〈operator〉〈value〉)*
AQL Instance Level:(〈attAQL〉〈operator〉〈value〉)*
QER Aggregation Level(〈QualityElement〉)*

96 Specifying Quality Requirements

QER Instance Level(〈QualityElement〉)*)*

〈conceptual relationship〉::=〈crID〉〈crdef〉
〈crdef〉::=〈cr-association〉 |〈cr-is-a〉 |〈cr-part-whole〉 |〈cr-spatialrelation〉
〈cr-association〉::=Association:〈typeID〉〈conceptual termID〉〈conceptual

termID〉〈typeID〉〈relqualiyelement〉
〈cr-part-whole〉::=Part-whole relation:(〈typeID〉)* is part-of 〈typeID〉〈relqualiyelement〉
〈cr-is-a〉::=Taxonomic relation:(〈typeID〉)* is-a 〈objecttypeID〉
〈cr-spatialrelation〉::=Spatial relation:〈named spatial relation〉 |〈defined

spatial relation〉
〈named spatial relation〉::=〈typeID〉〈topologicoperator〉〈typeID〉〈relqualiyelement〉
〈defined spatial relationship〉::=〈typeID〉〈topologicdef〉〈typeID〉

〈relqualiyelement〉
〈relqualiyelement〉::=

AQL Aggregation Level:(〈attAQL〉〈operator〉〈value〉)*
AQL Instance Level:(〈attAQL〉〈operator〉〈value〉)*
QER Aggregation Level:(〈QualityElement〉)*
QER Instance Level:(〈QualityElement〉)*

〈objectypeAQL〉::=Omission |Commission |Accuracy |Precision

〈attAQL〉::=Omission |Commission |Accuracy |Precision

〈relAQL〉::=Omission |Commission

〈qualityElement〉::=〈Lineage〉 |Omission |Commission |Accuracy |Precision

〈lineage〉::=linage:〈user-defined quality element〉〈statement〉
〈user-defined quality element〉::= Producer |User |Software version

|Production date | . . .

The grammar shown below extends the GeoSML to support geographic data
quality using Table 6.2 as a basis.

The syntax enables designers to specify both requirements for the acceptable
quality level (AQL) and requirements for the elementsused to measure the in-
formation quality (QER). Some of the elements, such as accuracy, precision,
omission, and commission are associated with a GeoSML element that carries
quality information, so that their values belong to the object type and, hence,
apply to all instances. They enable specification of quality requirements at the
aggregation level.

6.4 An Example 97

6.4 An Example

In this section our example from the previous chapters is continued by adding
requirements related to quality to the conceptual model by use of the suggested
syntax.

The example includes a data collection with the four basic classes, Building,
Road, Road Segment, and Municipality. The model contains no explicit infor-
mation on quality requirements, though some are represented implicitly in the
model. An example is that the cardinalities of associations express consistency
requirements. Apart from the implicit quality requirements, several additional
quality requirements exist. We proceed to state the quality requirements that
must be included in the model by describing each requirement in natural lan-
guage.

1. The address is a characteristic of a building; thus, it should be located
inside the building it belongs to (consistency requirement).

2. All road segments must have an average maximum root mean squared
error of maximum 1.7 meters (accuracy requirement).

3. The name of a road object should be correct (accuracy requirement).

4. A road object should have a name (completeness requirement).

5. At least 99% of all roads in the domain must be represented in the data,
and no more than 1% of all roads must be represented in the data without
being in the domain (completeness requirement).

6. At least 99% of all road segments must be classified correctly (accuracy
requirement).

7. For all roads, buildings, and municipalities, there should be information
about who has digitized and created each object (lineage requirement).

8. The height of buildings must be measured by an accuracy of 1 meter
(accuracy requirement).

This list exemplifies the variety of quality requirements that exist. We would like
to be able to express these requirements in our conceptual model. Adding these
quality requirements to the existing conceptual model from Chapter 4.4results in
the following specification (only elements necessary for incorporating the quality
requirements are included):

98 Specifying Quality Requirements

Conceptual model My Small Topographic Map
Object Type building

name: building
AQL Aggregation Level:

Commission < 0,01
Omission < 0,01

QER Instance level
Operator
Producer

Attributes:
building_outline polygon
construction_year integer
building_type string
number_of_floors integer
hight float
AQL Aggregation Level:

Accuracy < 1m
Object Type road_segment

Name: road_segment
AQL Aggregation level:

commission < 0.01
omission < 0.01

Attributes:
centerline polyline
AQL Aggregation level

accuracy < 1.7m
road_type string
AQL Aggregation:

thematic accuracy = 1
road_name string
AQL instance level

accuracy = 1
Object Type address

Name: address
Attributes:

house_number housenumber
Association: address gives access to building

AQL Aggregation level
Completeness = 1

6.5 Summary 99

6.5 Summary

This chapter discusses the notion of quality in the context of specifying geo-
graphic information. Two important concepts has been introduce (i) Acceptable
quality level (AQL) which are used to describe requirements to the intervals or
values measured quality parameters must be within and (ii) Quality parameter
requirement (QER) which are used to list the requirements with which the qual-
ity of a data collection must be measured. Furthermore, the GeoSML framework
has been extended by language elements for including the two at the conceptual
modeling level.

100 Specifying Quality Requirements

Chapter 7

Constraints on Geographic
Information

Abstract: The aim of this chapter is to identify the requirements for a declar-
ative langauge built on first order predicate logic, which can specify formal
constraints on geographic data collections. Five types of constraints are identi-
fied and it is discussed how each type can be formalized by first order predicate
logic. The requirements and analyzes made in this chapter are used in the
following chapter to develop a constraint language. This constraint language
extends GeoSML to include formal constraints, which can be evaluated to check
whether the produced information conforms to the specified requirements.

102 Constraints on Geographic Information

7.1 Introduction

Ensuring the quality of produced information is a significant task in the pro-
duction of geographic information. Generally speaking, the quality is checked
either by sampling where a number of objects are chosen for inspection and
compared with a superior data set, or the quality is checked by ensuring that
the produced information conforms to a set of predefined constraints.

We shall in the following two chapters focus on constraints for geographic infor-
mation and the formalization of these. GeoSML, as it is defined in the previous
chapters, regards constraints as statements formulated in natural language. To
evaluate the conformance to predefined constraints, the produced information
must be evaluated in a software system capable of constraint checking. It is a
requisite to this process that the constraint must be suitable for evaluation in
a computer-based system. In general, this means that the constraints must be
specified by a formal language and that they must be formulated in the context
in which the information is computationally handled and stored.

The objective of this chapter is to establish a basis for the formal constraint
language, which is introduced in the next chapter. The aim is to identify classes
of constraints that can be used to ensure the consistency and to create a plat-
form for developing a declarative rule language with resemblance to natural
language and which can be automatically translated into queries in ordinary
query language, such as SQL.

Constraints for geographic information have not been given much attention in
research. Cockcroft discusses the classification of constraints and the relation be-
tween business rules and constraints on geographic information [Cockcroft, 1997].
Frank discusses constraints in the context of ontologies and specifications of
geographic information [Frank, 1998]. In [Hoel et al., 2003] a framework for
defining and storing topology constraints is presented. One of the few ex-
amples treating formal approaches to constraints on geographic information is
[Brisaboa et al.,], here the Unified Modeling Language is used in combination
with the Object Constraint Language to test the ability of the two languages to
specify formal constraints on geographic information.

The remainder of this chapter is organized as follows. Section 7.2 explains
the basic idea of formalization and evaluation of constraints and Section 7.3
introduces five types of constraints that are relevant to geographic information
and the formalization of these.

7.2 The Basic Idea 103

7.2 The Basic Idea

Geographic information is produced by use of geographic information systems.
These systems are specially designed to create, store and handle spatial infor-
mation. The requirements for these systems depend on the type of information
the systems must produce. In most cases the system, to some extent, must be
able to validate if the produced information conforms to the set of rules stated
in the specification. Today these rules and constraints are mostly hard-coded
into the software itself, using proprietary customizing languages delivered with
most commercial systems, e.g. MapBacis for MapInfo or ArcObject for the
ArcGIS family. Some systems accommodate functions for specifying topology
rules in the user interface, e.g. ArcInfo.

A disadvantage of hard coding or defining constraints in proprietary systems is
that it becomes difficult to use more than one production system or to change
from one to another. It is also a problem that the implemented rules and con-
straints exist independently of the specifications, making it difficult to maintain
when specifications change.

Figure 7.1 suggests an architecture separating the validation of produced infor-
mation from the production software by delegating the control of the validation
process to a validation engine. This results in a loose coupling with other parts
of the production environment. The construction has several advantages com-
pared to traditional approaches, since it

1. makes it easier to maintain the constraints

2. enables the reuse of constraints in several production systems

3. makes it easier to replace parts of the production systems

Validation
Engine

Production
system

Data-
base

1

2

3

4

5 5

Figure 7.1: Ensuring consistency using a Validation Engine.

The following workflow can be applied to validation of the produced information

1. Initialization of validation engine

104 Constraints on Geographic Information

2. Sending information to the validation engine

3. The validation engine starts a transaction on the database, inserting the
information in the database and “firing” the appropriate constraints at
the database

4. The database returns the result of the queries

5. The validation engine analyzes the results and responds to the production
system and the database

• If the information passes the tests, then the changes are committed
to the database and the production system is given a “passed test”
message.

• Otherwise a rollback is issued to the database and the production
system receives a ”failed test” plus a list of the failed constraints

The realization of this idea depends on a medium or language to communicate
the rules and constraints to the validation engine. This kind of languages is
addressed as formal constraint languages.

Wagner identifies three types of constraints [Wagner, 2002]:

• Integrity constraints

• Derivation rules

• Reaction rules

An integrity constraint is an assertion that must be satisfied in all states and
state transitions of a system, e.g. a database. Two types of constraints exist:
state constraints and process constraints.

State constraints must hold at any point in time. An example of a state con-
straint is: The buildings in a topographic database must not overlap.

A derivation rule is a statement of knowledge derived from other knowledge
by an inference or a mathematical calculation. Derivation rules allow to cap-
ture terminological domain knowledge about concepts whose extension is not
stored explicitly. An example of a derivation rule is the following definition of
a connected pipe in water supply system: A connected pipe is a pipe that is
connected to two other pipes, one in each end.

7.3 Constraints on Geographic Information 105

The third kind of rule is reaction rules or event-condition-action rules, as they
are also called. This type of rules is concerned with regulating the behavior of a
system. They describe patterns for which actions should be started in response
to events, by stating the conditions under which the actions must be taken. An
example of a reaction rule from the domain of topographic mapping is: When
a new building is inserted in the database, then it must be checked if a new
residential area also must be created, or if an existing must be expanded.

In the remainder of this chapter the focus will be on what Wagner calls integrity
constraints. In the following, production or updates of a data collection will be
regarded as transactions bringing the database from one valid state to another
valid state. What determines if a state is valid or not is if a predefined and finite
set of constraints “fired” toward the database returns an empty set of records
or not. The constraints formulate the well-formed conditions for the objects in
the database.

In order to elicit the requirements for a constraint language suited for validating
geographic information, the various types of constraints are discussed in the next
section.

7.3 Constraints on Geographic Information

To be precise about the conceptualization of a domain, constraints are included
in the conceptual model. Constraints are statements assigned to guard the
intended meaning of a requirement, an assertion, or a rule describing the inter-
pretation of domain entities. If for example a selection rule states that buildings
in the domain must be larger than 10 m2 to be represented in the data collection,
then the corresponding constraint could be that the area of building outlines
must be larger than 10 m2.

The difference between the two statements is that the first statement binds terms
from the domain model to terms in the conceptual model, while the latter state-
ment only includes terms from the conceptual model. This is a characteristic
property of constraints – they must only include terms, or more precisely ref-
erences to object types and relations, in the conceptual model. Constraints are
divided into five types:

• Topology constraints

• Domain constraints

• Format constraints

106 Constraints on Geographic Information

• Temporal constraints

• Metric constraints

The following sections describe the five types of constraints, discuss possible
formalizations and evaluations of the constraints, and give examples using pred-
icate logic of the various types.

7.3.1 Topology Constraints

A topology constraint specifies consistency requirements for topologic relation-
ships among objects, e.g. buildings must not intersect residential areas; routes
must be on top of a road network; and buildings must not be inside a lake.
They are all examples of topology constraints.

Topology constraints are important for geographic information. By formulating
and applying these in the production process three goals are supported: (i)
”nice” cartographic representation of the geographic information is achieved
and e.g. overlapping polygons avoided. (ii) the relations among objects do not
violate the users perception of how entities relates in reality. (iii) topological
structures in e.g. road networks are guarantied.

Topology constraints uses topological relations among geometries. The theory of
topological relations for geographic information originates from point-set theory.
Egenhofer [Egenhofer and Herring, 1990] introduces a 9-intersection model to
compare the spatial relation between two geometries (A and B) in the two-
dimensional space, by studying the nine intersections between As interior (Ao),
boundary (partialA), and exterior (A−) with Bs interior (Bo), boundary (∂B),
and exterior (B−).

Γ9(A,B) =

Ao ∩Bo Ao ∩ ∂B Ao ∩B−

∂A ∩Bo ∂A ∩ ∂B ∂A ∩B−

A− ∩Bo A− ∩ ∂B A− ∩B−

 .

The values in the matrix are determined by two rules: If the intersection is
the empty set (∅) the value is set to zero, and if the intersection is the non-
empty set (¬∅) the value is set to one. Thus, the topologic relation between

7.3 Constraints on Geographic Information 107

two geometries can be described by a three-by-three matrix with either the
value ”1” representing the non-empty set, or the value ”0” for the empty set.
Figure 7.2 illustrates threetopologic relations which can be modeled by the nine-
intersection matrix. The corresponding matrices are given in table 7.3.1.

B

A Disjoint B

A

A Contains B

B

A

A Overlaps B

B

Example A Example CExample B

Figure 7.2: Examples of topologic relations which can be modeled by the nine-
intersection matrix.

Γ(A, B) =

0
@

1 1 1
1 1 1
1 1 1

1
A Γ(A, B) =

0
@

0 0 1
0 0 1
1 1 1

1
A Γ(A, B) =

0
@

1 0 0
1 0 0
1 1 1

1
A

Three topologic relations described by the nine-intersection matrix.

To describe topologic relationships more precisely, the dimensionally extended
nine-intersection Matrix is introduced by applying the function dim(x) to each
intersection geometry in the tree-by-three intersection matrix [Clementini et al., 1993].
This function returns the highest dimension of the intersection geometry, i.e. it
returns the value 0 if highest dimension of all geometries in the resulting in-
tersection geometries is zero-dimensional, 1 if it is a one-dimensional geometry,
and 2 if x is a two-dimensional geometry. -1 if the intersection geometry is the
empty set:

Γ9(A,B) =

dim(Ao ∩Bo) dim(Ao ∩ ∂B) dim(Ao ∩B−)
dim(∂A ∩Bo) dim(∂A ∩ ∂B) dim(∂A ∩B−)
dim(A− ∩Bo) dim(A− ∩ ∂B) dim(A− ∩B−)

 .

Investigations of the values of the dim(x) function for all combinations of inter-
sections between interiors, exteriors, and boundaries of two geometries, give a
detailed description of the topologic relations between the two geometries.

108 Constraints on Geographic Information

Intersection matrices can describe topologic relations among all combinations
of points, lines, and polygons if the interior, boundary, and exterior are defined.
For points the interior and boundary are defined as the point itself and the
exterior as all other points. For lines the interior is defined as the line excluding
the end points, the boundary as the end points, and the exterior as all other
points.

Intersection matrices can also be used to define allowed topologic relations
among geometric objects, e.g. two building objects. For this purpose the
predicate, R (or relate) is introduced [ESRI, 2003]. This predicate takes two
geometries and the allowed values for the nine values of the intersection matrix
and returns TRUE, if the values for the intersection matrix correspond to the
acceptable values, otherwise it returns FALSE.

The allowed values for each cell in the intersection matrix can be any subset of
{-1,0,1,2}. To ease the description of allowed values, the symbol p is introduced.
This symbol is assigned the following values, depending on the allowed values
of dim(x):

p =

T if dim(a) ∈ {0, 1, 2}
F if dim(a) = -1
∗ if dim(a) ∈ {−1, 0, 1, 2}
0 if dim(a) = 0
1 if dim(a) = 1
2 if dim(a) = 2

The following definitions exemplify the use of the dimensional extended nine-
intersection matrix:

Disjoint: disjoint(a,b) ↔ relate(a,b,”FF*FF****”)

Touches: touches(a,b) ↔ relate(a,b,”FT*******”) ∨ relate(a,b,”F***T****”)
∨ relate(a,b,”F**T*****”)

Line crosses polygon: crosses(a,b) ↔ relate(a,b,”T*T******”)

Line crosses line: crosses(a,b) ↔ relate(a,b,”0********”)

Within: within(a,b) ↔ relate(a,b,”T*T**F***”)

Two points or polygons overlap: overlaps(a,b)↔ relate(a,b,”T*T***T**”)

Two lines overlap: overlaps(a,b) ↔ relate(a,b,”1*T***T**”)

7.3 Constraints on Geographic Information 109

Intersects: intersect(a,b) ↔ disjoint(a,b)

Contains: contains(a,b) ↔ within(b,a)

A
B

A Disjoint B

B

A

A Covers B

A

A Contains B

B

AA
B

A Touch B

A
B

A Overlaps B

B
A

B

A Equals B

Figure 7.3: Some topological relations between to polygons

Examples of formulas including topology predicates is the following:

∀b(building(b) → (¬∃ra : residentialarea(r) ∧ overlap(b, r)))

This formula can be interpreted as: for all buildings (b) there must not exists a
residential area (r) so that the building and residential area overlap.

∀b1, b2(building(b1) ∧ building(b2) → disjoint(b1, b2))

This constraint states that all pairs of buildings must be disjoint, i.e. no build-
ings must be overlap.

∀ra, b(residential − area(ra) ∧ building(b) → ¬overlap(ra, b))

The above constraint states that all pairs of buildings and residential areas must
not be overlap.

Topology constraints are not only restricted to descriptions of intersections
among geometries.

Topology constraints can also express connectivity rules in networks, e.g. ”But-
terfly valves can only be connected to a pipe with a diameter larger than 14

110 Constraints on Geographic Information

Residential area

Building

Figure 7.4: Allowed and disallowed relations between buildings and residential
areas.

Network

part
Connection

point
has

Pipe Valve Terminator

Connection included

Figure 7.5: Entity-relationship for a network model.

inches”. Figure 7.5 shows a small conceptual model for a database representing
a water supply system.

A topology constraint including subtyping of pipes and valves, requiring that
pipes must be of a certain type to be connected to a certain type of valves, can
be stated as follows:

∀v, p(valve(v) ∧ pipe(p) ∧ isconnected(v, p) ∧ sizelargerthan(p,′ 14′) →
havetype(v,′ butterfly′))

Another example of a network constraint is that road segments included in a
road network are not allowed to have pseudonodes, which means that at least
three end points must meet in an intersection.

7.3 Constraints on Geographic Information 111

7.3.2 Domain Constraints

The term domain in domain constraint must not be confused with the term
domain in the domain model. For historical reasons we use the term domain
constraints for the kind of constraints that restrict the values of attributes, which
is widely used in the database literature, e.g. [Elmasri and Navathe, 1996] where
a database relation is defined as a subset of the Cartesian product of the possible
domain values of each attribute:

r(R) ⊆ (dom(A1)× dom(A2)× . . .× dom(An))

Also in the area of geographic information systems, there is a tradition for the
use of domain constraints, e.g. the Modular GIS Environment for Intergraph
uses the notion of list domain and range domain for attributes and the ArcGIS
software family also supports predefined domains for attributes.

7.3.2.1 Coded Value Domains

A coded value domain is a kind of domain constraint that defines a finite list
holding allowed values for an attribute. An example is that the roadtype at-
tribute of a road object must be either minorroad, majorroad, or highway. By
use of predicate logic this can be be formalized by the following formulas:

∀r(road(r) →
hastype(r,′minorroad′) ∨ hastype(r,′majorroad′) ∨ hastype(r,′ highway′))

∀r(road(r) ∧ hastype(r,′minorroad′) →
¬hastype(r,′majorroad′) ∧ ¬hastype(r,′ highway′))

∀r(road(r) ∧ hastype(r,′ highway′) →
¬hastype(r,′minorroad′) ∧ ¬hastype(r,′major′))

∀r(road(r) ∧ hastype(r,′majorroad′) →
¬hastype(r,′minorroad′) ∧ ¬hastype(r,′ highway′))

There is no doubt about the insufficiency of this approach to specifying coded
list domains, and some languages have introduced an abbreviated syntax for this
construct. E.g. the oneof provided by some description logics [Smith et al., 2004].
The above example can be expressed in owl as

112 Constraints on Geographic Information

<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#minorroad"/>
<owl:Thing rdf:about="#majorroad"/>
<owl:Thing rdf:about="#highway"/>

</oneOf>

7.3.2.2 Range Domain

Range domains define allowed intervals for values of attributes. Examples are
temperatures in kelvin, which must always be larger than zero, or the width of a
road those minimum value could be defined to be 2 meters and maximum value
could be set to 100 meters.

∀ r(road(r) → widthlargerthan(r,’2’) ∧ widthsmallerthan(r,’25’))

7.3.2.3 Functional Dependencies among Domain Constraints

A value of an attribute may reduce the valid domain for other attributes. E.g.
if it is given to which a building is located within a certain municipality, then
the possible zip codes that the building can belong are restricted to the ones
intersecting the municipality.

∀b(building(b) ∧ isinmunicipality(b,′ Smalltown′) →
isinzipcode(b,′ 1111′) ∨ isinzipcode(b,′ 2222′))

This type of relationship is called non-deterministic functional dependencies. A
constraint on butterfly valves and allowed sizes of connected pipes is another
example of this kind of domain constraint.

7.3.3 Format Constraints

A format constraint specifies consistency requirements that constrain a value
to some kind of format. An example is the use of road codes in Denmark.
These codes are used to unique identification of roads and their names in a
municipality. The specification states that road codes must consist of precisely
four characters, and each of the four characters must be one of the digits from
0 to 9. Thus, an allowed code is ”0034”, whereas ”34” is a disallowed code.

7.3 Constraints on Geographic Information 113

Order

Digit

in

Road Code included

Valuehas

Figure 7.6: Entity-relationship diagram of details of the road code format.

Figure 7.6 is an example of a conceptual model capturing the requirements for
the format of road codes.

• Road codes must have four digits

• Order, can have the values 0, 1, 2, or 3

• One digit included in a road code must be of the order 0

• One digit included in a road code must be of the order 1

• One digit included in a road code must be of the order 2

• One digit included in a road code must be of the order 3

• Value can have the value 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

Formulating formal constraints on the basis of conceptual models is properly
not the best seen in relation to specifying format constraints: It would require
that the conceptual model should be included in the conceptual model.

Another approach more suitable for specifying format constraints is to see them
as grammars restricting the value of an attribute. If the road code example is
used again the grammar could be:

〈road code〉::=〈symbol〉〈symbol〉〈symbol〉〈symbol〉
〈symbol〉::=0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

In the suggested approach the subsystem (the database or some software working
together with the database) will be responsible for the evaluation of the format
constraints, and the specified constraints will use what is called a user-defined
predicate to ensure format consistency, e.g.:

114 Constraints on Geographic Information

∀b(building(b) → hascorrectformat(b))

This approach ensures a loose coupling from the production software and makes
it possible to formulate the formal format constraints in a declarative style.
At the specification level the formal constraints must be formulated by natural
language.

7.3.4 Metric Constraints

A metric constraint specifies the consistency requirement for measures of length
and size. It could be a required minimum distance between buildings or a
minimum size of lakes. Metric constraints can be formulated for one object, e.g.
the minimum area of buildings, or for two objects, e.g. the minimum distance
between two forests.

Metric constraints require some sort of calculation to be evaluated, because the
required information is not necessarily is stored in the database. It is possible
to make this sort of calculation using predicate logic by introducing simple
arithmetic operators and building more complex expressions from them. This
approach results in complex formulas and may be difficult to implement in
production systems. A more sufficient approach is to leave the evaluation of
the formulas to the subsystems, e.g. databases or code written in traditional
imperative programming languages.

The execution of these calculations can be activated by including predicates in
the constraints, which are evaluated by subsystems. An example is a constraint
the stating that all lakes must be of an area larger than 100 m2, which can be
expressed by the following formula:

∀l1, l2(lake(l1) ∧ lake(l2) → distancemustbelargerthan(l1, l2, 2))

The distancemustbelargerthan(object, object, threshold) must be im-
plemented by the system and evaluated, when a lake is inserted in the database.

Some metric constraints may be computationally challenging. An example is a
constraint stating that the distance from a point on the boundary of a residen-
tial area to a building located inside the area must not exceed 50 meters. By
predicate logic this can be expressed as

7.3 Constraints on Geographic Information 115

∀ra(residentialarea(ra) ∧ ∀p(point(p) ∧ touch(p, ra) →
∃b(building(b) ∧ inside(b, ra) ∧ distancelessthan(p, b, 50))))

Seen from an implementation point of view this formula suggests that it should
be checked if all points on the boundary of residential areas are less than 50
meters away from at least one building inside the residential area.

If this problem is regarded as a continuous function defining the distance from
a point on the boundary to the nearest building, it can be realized that even
though the number of points on the boundary is infinite it is possible to solve
it computationally. The problem is, from is conceptual point of view, that
the points on the boundary are not included in the conceptual model, which
would require access to points at database level. A more operational approach
would be to introduce a predicate to be evaluated at application level and then
formulate the constraint in the following way:

∀ra(residentialarea(ra) → ∃s(set(s) ∧ ∀b(isin(b, s) ∧ (building(b) ∧
(inside(b, ra) ∧ hasdistancetoinnerpart(ra, s))))))

The hasdistancetoinnerpart must be evaluated by an algorithm at appli-
cation level, e.g. by requiring the intersection of the 50 meter buffers of the
buildings within an residential area to contain completely the residential area
(see Figure 7.7).

Area and Building Building buffer (50m) Buffer intersection

Figure 7.7: Strategy for evaluation of ”inner distance”.

The proposed approach suggests that constraints can be specified in a generic
constraint language, based on predicate logic and translated into one or more
tagged languages with two tasks: (i) implementing the user-defined predicates,
and (ii) executing the constraints when appropriate.

116 Constraints on Geographic Information

7.3.5 Temporal Constraints

Temporal constraints are applied in order to restrict the values of temporal
attributes and temporal relations among objects. As in the case of topologic
relations, predicates determining the binary relations between two time intervals
can be defined. Allen defines thirteen relations among time intervals, of which
twelve are pairwise inverse [Allen, 1983] (see Figure 7.8).

I before J and J after I

I meets J and J met-by I

I overlaps J and J overlapped-by I

I starts J and J started by I

I during J and J contains I

I finishes J and J finished-by I
I equals J

JI

J

I

I

I

I

I

I

Figure 7.8: Relations between two time intervals (after [Ohlbach, 2004])

The relations can be used to formulate constraints between events (see e.g.
[Campos and Hornsby, 2004]. Examples are: ”A bus must arrive before it can
leave from the bus station”, or ”The construction of walls must not begin before
the foundations have been finished”.

To capture the meaning of the second statement using predicate logic, a predi-
cate, interval(x), representing the fact that x is a time interval is introduced.

∀b, ws, f(building(b) ∧ setofwalls(ws) ∧ foundation(f) ∧ part− of(ws, b) ∧
part− of(f, b) → ∃i1, i1(interval(i1) ∧ interval(i2) ∧ constructedin(ws, i2) ∧

constructedin(f, i1) ∧ before(i1, i2)))

The life cycle of geographic entities can be described by a set of rules is called
life cycle rules, which are used to create and maintain references to entities.
The aim is to create a platform to define how much an entity can change before
it turns into another entity. Or in other words, to decide whether a transition
from one state to another is identity preserving.

Constraints can be applied to ensure that versioning of objects conforms to the
formulated life cycle rules. The idea is that if an entity changes from one state
to another and the identity is to be preserved, the database is updated inserting
a record using the same identifier as the representation of the entity had before
it was changed.

7.3 Constraints on Geographic Information 117

In a conceptual model the specification of details about versioning of objects in
the database is to be avoided. On the other hand access to concepts that can
be used to refer to preceding and proceeding versions of an object is needed.
Therefore, a number of predicates which can be used to determine if two objects
are representations of the same entity are introduced. If they are, it is said that
they are two versions of an object representing the same entity.

preceding version(A,B) is a predicate that holds true if A is the preceding
version of B.

preceding versions(A,B) is a predicate that holds true if A is one of the
preceding versions of B.

proceeding version(A,B) is a predicate that holds true if A is the proceeding
version of B.

proceeding versions(A,B) is a predicate that holds true if A is one of the
proceeding versions of B.

neighbor version(A,B) is a predicate that holds true if A is one of the pro-
ceeding versions of B or if B is one of the proceeding versions of A.

neighbor versions(A,B) is a predicate that holds true if A is one of the pro-
ceeding versions of B or if B is one of the proceeding versions of A.

current version(A) is a predicate that holds true if there is no B for which
it holds that it is the preceding version of A.

Proceeding vesions(A,B) can recursively be defined in the context of proceed-
ing version(A,B), as

∀a, b(proceeding versions(A,B) → preceding version(A,B) ∨
(preceding version(C, B) ∧ proceeding versions(A,C)))

and the neighbor version(A,B) can be defined as follows

∀a, b(neighbor version(a, b) →
preceding version(a, b) ∨ preceding version(b, a)

and the neighbor versions(a,b) can be defined as

118 Constraints on Geographic Information

∀a, b(neighbor versions(a, b) →
preceding versions(a, b) ∨ preceding versions(b, a)

Finally current version(A) can be defined as the following:

∀a(current version(a) → ¬∃bpreceding versions(a, b))

These predicates can be evaluated by the database management system, either
by creating views or as implemented functions. If for example the versioning of
objects is managed by taking snapshots each time changes are made to an object
and the valid time is recorded, then it can be evaluated if the state transactions
conform to the stated life cycle rules.

An example of a life cycle rule that describes some of the properties influencing
the identity of buildings is:”A building is regarded as the same as long as its
area is not extended or reduced considerably compared to the area the building
had before it was changed.”. This rule can be rewritten as a constraint by the
following rule:

∀b1, b2(building(b1 ∧ building(b2)) ∧ overlaplargerthan(b1, b2) →
neighbor version(b1, b2)))

The above expression can be read as: Ror all pairs of buildings which overlap
more than 70% it must hold that they are neighbor versions.

Sequential changes can be applied to an entity, e.g. a building may be extended
several times. If the above rule is changed to the following: ”A building is
regarded the same as long as its area is not extended or reduced considerably
compared to the area the building had when it was constructed”, then the
neighbor version must be substituted by the neighbor versions predicate:

∀b1, b2(building(b1 ∧ building(b2)) ∧ overlaplargerthan(b1, b2) →
neighbor versions(b1, b2)))

Another example of constraints that can be used to guard the intended meaning
of life cycle rules concerns the identity of roads. To the right in Figure 7.9 the
rerouting of a road is illustrated. The question is if the road is perceived as the

7.3 Constraints on Geographic Information 119

same as before the changes were made. A life cycle rule could state: ”When
roads are rerouted they are regarded as the same as long as the connections to
other roads do not change”, and thus it can be decided that they do.

Expressing this life cycle rule as a constraint requires an additional condition to
the one stating that road segments with the same start and end points must be
versions of the same object, namely that the two objects must also intersect. The
reason is that more than one road may start and end at the same intersection.

∀rs1, rs2(roadsegment(r1 ∧ roadsegment(rs2)) ∧ have− same− start−
point(rs1, rs2) ∧ have− same− end− point(rs1, rs2) ∧ intersects(rs1, rs2) →

neighbor versions(rs1, rs2))

ver.2

ver.1

ver.2

ver.1

Figure 7.9: Left: two overlapping buildings, right: two road segments with
identical start and end points.

Another life cycle rule concerning to change of the pavement or surface of a road
does not affect the identity.

Thus, there must not be two geometrically identical road segments with different
surface materials that are not versions of the same object.

∀rs1, rs2(roadsegment(r1 ∧ roadsegment(rs2)) ∧ equal(rs1, rs2) ∧
differentsurfacematerial(rs1, rs2) → neighbor versions(rs1, rs2))

If a road changes its name it is regarded as a new road:

∀rs1, rs2(roadsegment(r1 ∧ roadsegment(rs2)) ∧ equal(rs1, rs2) ∧
differentname(rs1, rs2) →6 neighbor versions(rs1, rs2))

120 Constraints on Geographic Information

7.3.6 Combining Different Types of Constraints

The categorization of constraints into five types is mostly relevant for presenta-
tion purposes. In reality, many constraints will include parts that are combina-
tions of two or more of the five types. Often topologic and metric constraints
are combined to form more complex expressions. An example is: ”Road seg-
ments that are not connected must be longer than 50 meters”. Here the word
”connected” indicates a topologic relationship, and the word ”longer” indicates
a metric constraint.

Constraints can also be included in compound statements using the ”or”/”and”
operators. In declarative language the ”and” operator is implicitly given by line
breaks, e.g. the statement ”All houses must have at least 1 floor and a height
larger than 3m” can be formalized by the following two statements:

∀bbuilding(b) → (numberoffloors(b) ≥ 1)

∀bbuilding(b) → (height(b) > 3)

The ”or” operator must be explicitly used: ”The length of a road segment must
be smaller than 2m or longer than 100m”

∀rroadsegment(r) → ((length(r) < 2) ∨ (length(r) < 100))

7.3.7 Auxiliary Predicates

To ease the formulation and the reading of constraints, it is suggested that
complex constraints are broken into smaller pieces by using auxiliary predicates
in the definition of concepts which can be used to form complex constraints.
Auxiliary predicates are especially useful when the same structure is used in
several constraints. To illustrate the application of auxiliary predicates the
above example of water supply systems can be concidered example. First, two
new predicates are defined, after which they are applied to a constraint.

(i) A connected pipe is defined as a set of all pipes having all their connection
points included in one connection:

connected− pipe(p) ≡
∀p(pipe(p)∧(∃p1, p2pipe(p1)∧pipe(p2)∧isconnected(p, p1)∧isconnected(p, p2)))

7.4 Summary 121

(ii) A terminated pipe is defined as a set of all pipes with only one connection
point included in a connection where the other connected to a pipe in one end
and to a terminator in the other end:

terminated− pipe(p) ≡
∀p(pipe(p)∧(∃p1, p2pipe(p1)∧pipe(p2)∧isconnected(p, p1)∧isconnected(p, p2)))

The definitions can be used to make the constraints much easier to read than if
the full expressions has been included instead. E.g. the two statements can be
included in a constraint which states that ”All pipes in service must either be a
terminated pipe or a connected pipe”:

∀p(pipe(p) ∧ inservice(p) → (connected− pipe(p) ∨ terminated− pipe(p)))

7.4 Summary

In this chapter constraints on geographic information have been discussed in
the context of formalization into first order predicate logic. It has been shown
by the examples that the majority of constraints can be specified in first order
logic.

122 Constraints on Geographic Information

Chapter 8

Formalizing Constraints on
Geographic Information

Abstract: This chapter deals with the formalization of constraints on geo-
graphic information. The specification language presented in Chapter 4 is ex-
tended by adding language elements which can be used to formulate complex
constraints on conceptual models, or more precisely on objects instantiated by
a conceptual model. Five types of constraints on geographic information are
identified, and the formalization of these into predicate logic is discussed. The
syntax and model-theoretic semantics of the constraint language is presented.
Furthermore, examples illustrating how constraints can be expressed formally
as GeoSML statements and automatically translated into SQL statements are
given.

124 Formalizing Constraints on Geographic Information

8.1 Introduction

An important aspect of the production of geographic information is to ensure
that the produced information is consistent and homogeneous. Data content
specifications are used to describe entities to be represented in a data collection,
and to evaluate whether the quality of the produced information is acceptable
or not. In the previous chapters we have discussed informal and semi-formal
specifications, and a markup language supporting a structured development of
specifications was introduced. As mentioned, parts of these specifications can
be implemented as constraints in production systems, and used to evaluate,
whether the produced information has the intended content. For this purpose
informal statements must be translated into a formal language.

Today constraints on geographic information are specified by cartographers and
topographers in natural language and subsequently hard-coded into the produc-
tion systems by programmers. There are several reasons why this approach is
infeasible to maintain. Firstly, products are defined or redefined on a regular ba-
sis, resulting in changes in the number and content of constraints. This requires
programming each time a new constraint is needed, or an existing should be
changed. Secondly, the sources of information change from being only collected
from aerial photos to including a variety of new sources, e.g. administrative
updates from municipalities, and changes posted on web pages. Information
from new sources is delivered in multiple structures and content, which makes
it impossible, or at least very difficult, to require that all information must pass
through a single application for validation. Thirdly, the existing approach re-
quires the constraints to be defined at implementation level, meaning that they
have to be redefined if changes to the database schema are introduced.

If there was a method cartographers and computer experts could use to de-
fine and maintain constraints in cooperation, the risk of misleading transla-
tions between specification and implementation languages would be reduced.
Such a method is suggested in this chapter: a constraint language built on
top of the grammar for conceptual models introduced in Section 4.4. The con-
straint language has three important properties, which make it able the solve
to problems listed above: (i) it is close to natural language, so that it is easy
to use, (ii) statements can be parsed and translated automatically into SQL,
which makes validation of information possible, and (iii) the formulation on the
basis of conceptual models ensures that statements are loosely coupled from
the actual database implementation. The constraint language in GeoSML is
an elaboration of the High Level Constraint Language developed in collabora-
tion with Mads Johnsen [Christensen and Johnsen, 2005], who as a part of his
master thesis project [Johnsen, 2005] specified and implemented a parser that
can automatically translate constraints into SQL. The parser is implemented in

8.1 Introduction 125

SWI-Prolog [Wielemak, 2007].

Constraints and integrity constraints are well-established topics within research
on conceptual modeling and databases, and other attempts to create constraint
languages can be found in the literature. The COLAN language [Bassiliades and Gray, 1995]
has properties similar to those of GeoSML, but works on a data model called
”P/FDM”, which is a functional data model built on Prolog, and it therefore
seems to be lacking a clear correspondence with the relational data model. Exist-
ing approaches to modeling geographic information are all restricted to express-
ing constraints as restrictions on binary relations between objects. Few attempts
to specify complex constraints for geographic information in context of concep-
tual models have been made. An example is Brisboa et al [Brisaboa et al.,],
where constraints are formulated by use of OCL 1 statements. OCL has a syntax
with a programming language style, which makes it difficult to use for product
specialists. Some geographic information systems offer functionality for speci-
fying constraints. An example is the ArcGIS software family, where some capa-
bilities of specifying topologic rules [Hoel et al., 2003] are available, but only a
predefined number of topologic relations can be included in the constraints.

The organization of the chapter is as follows. In the next section we present
the basic idea of introducing a formal constraint language, and the intended use
and role in production systems are discussed. Section 8.2 discusses the require-
ments for specifying constraints on geographic information, and it is shown how
constraints can be formalized in predicate logic. In Section 8.2.1 the properties
of the constraint language included in GeoSML are described. The mathemat-
ical details of Pierce algebras will not be presented in the thesis, but left to a
paper in preparation [Nilsson and Johnsen, 2007]. Section 8.6 is an elaborate
example that goes through the process of describing a conceptual model, writing
constraints in GeoSML, mapping the conceptual model to an implementation
model, and shows how constraints are translated into SQL.

1OCL is an acronym for the Object Constraint Language, and is an extension to UML.
See [Demuth et al., 2001] for a specification of OCL.

126 Formalizing Constraints on Geographic Information

8.2 Formalizing Constraints

This section presents a formal constraint language for specifying constraints on
geographic information. The language has four important properties:

1. A syntax close to natural language, which makes it easy to use.

2. Expressions are formulated in the context of the underlying conceptual
model, so that domain experts can intuitively formulate constraints. Hence
they build on terms from the business domain and ensure that constraints
are loosely coupled with the actual database implementation.

3. The language is based on formal semantics and has a number of well-
formed criteria. Thus, basic syntax checking can be performed.

4. Statements which can be parsed and translated automatically into SQL,
so that it is possible to embed the constraints in production systems and
enables validation of the produced information.

There are several reasons for the introduction of a new constraint language:

(1) Predicate logic is not very easy to read or write, and the relation to the
underlying conceptual model is not clear. The general idea of the constraint
language is to specify restrictions on object types included in the conceptual
model.

(2)The aim is to bridge the gap between constraints or business rules formulated
in natural language and their implementation by use of e.g. SQL. The constraint
language is designed to have syntax as close to natural language as possible, but
still with a clear and unambiguous underlying semantic model.

(3) By introducing a map between the conceptual model and the logical model,
changes in the low-level database schema can be accommodated in the map,
thus leaving the conceptual model and ultimately the GeoSML constraints un-
changed. The constraints can be updated by recompiling the constraints in the
context of the new mapping and schema.

8.2.1 Basic Constructs

The basic constructs used in the formulation of formal constraints in GeoSML
involve two top predicates: the all-must construct and the no-may construct.
An example of the all-must construct is:

8.2 Formalizing Constraints 127

all greenhouse must building

which specifies that ”all greenhouses must be buildings”, and means that it must
be checked if a taxonomy relationship in the conceptual model actually holds
between objects at database level. In general, the left-hand side of the ”must”
part specifies to which object type the constraint applies and the right-hand
side specifies restrictions on the object type.

All residential area must contain building

The above expression is another example of the all-must construct, but includ-
ing a relational path contain building on the right-hand side, which should
be understood as ”contain at least one building”, hence there is an implicitly
given existential, quantification just after the ”must” keyword. The correspond-
ing predicate logic formula including the existential quantified building object
at the right-hand side is as follows:

∀ a area(a) → ∃ b building(b) ∧ contain(a,b)

Using the no-may construct expresses class disjointness, meaning that the inter-
section between the sets on each side of the ”may” keyword must be empty. An
example of the no-may construct is:

no lake may contain building

The above constraint expresses that ”no lake may contain any building”.

The two basic forms can be extended to express more complex requirements for
the relations of the extensions of object types and the values of attributes. In
the following sections these extensions are introduced and explanatory examples
are given.

8.2.2 Paths

Paths of any length can be added to both sides of the ”must” and the ”may”
keywords in the all-must and no-may expressions respectively. This is simply
achieved by adding more relations and classes, and multiple paths can be bun-
dled by using the ”or” disjunction and the ”and” conjunction operators. The
only requirement is that the included paths must traverse predefined paths in
the conceptual model. The reason is that translating constraints into SQL re-
quires a map to accommodate relations between the conceptual model and the

128 Formalizing Constraints on Geographic Information

logical model. If paths in constraint do not follow the predefined relationships
in the conceptual model, then the parser will produce faulty SQL statements.
Four examples of adding paths and using compound statements are given below:

all area type residential must
contain building of-type residential

This first example states that ”residential areas must contain residential build-
ings”. Note that the constraint does not restrict buildings of other types than
residential to being within a residential area. To express this kind of restrictions
the no-may pattern must be issued:

no area of-type commercial must
contain building of-type residential

The above constraint expresses that ”commercial areas are not allowed to con-
tain residential buildings”.

Two statements that illustrate the usage of compound statements are:

All building has historicvalue and within cityborder must
have taxation-type reduced

which states that ”buildings of historical value and that are inside a city are
subject to a reduced taxation”.

All building within commercial area must
be owned-by company and type commercial

8.2.3 Alternative Quantifiers

As mentioned the object types in expressions on the right-hand side of the must
keyword are implicitly existential quantified. Other quantifications can also be
used in relational paths, but these need to be defined explicitly. There are three
ways to express alternative quantifications over sets:

• the All keyword expressing universal quantification

• the Solely keyword expressing limiting relations to a single object type

• one of the atleast, atmost, and exactly keywords expressing numerical
quantification

8.2 Formalizing Constraints 129

8.2.3.1 The all Keyword

The all keyword expresses universal quantification, i.e. that all objects with
some specified properties must participate in the relations issued just before the
all keyword. An example of the use of the all keyword is:

no area must contain all building

Expressing that ”no areas are allowed to contain every building”. By continuing
the path expression after the object type containing the all keyword, the objects
on the right-hand side of the all keyword can be further restricted by adding
relation paths to the class, e.g.:

No area must contain all building type residential

This constraint expresses that ”no areas should contain all buildings which are
of the type residential”.

8.2.3.2 The solely Keyword

The solely keyword limits the objects participating in a relation to being of a
particular type, e.g.:

all residential area must contain solely building type residential

This constraint expresses that ”all residential areas must contain solely residen-
tial buildings”. The ”solely” keyword expresses that residential areas must only
contain residential buildings and nothing else.

The solely keyword may also be used as an ”exclusive or” operator:

all area must contain solely building type ’residential’
or contain solely building type ’commercial’

which states that ”areas must either contain residential buildings or contain
commercial buildings, and not combinations of the two types”.

130 Formalizing Constraints on Geographic Information

8.2.3.3 The atleast, atmost, and exactly Keywords

Numerical quantifications are used to restrict the number of objects which are
allowed to participate in a relation. Examples of the use of numerical quantifiers
are:

All area type residential must contain exactly 3 building

which states that ”all residential areas must contain three and only three build-
ings”.

all area type residential must contain atleast 4 building of
type residential and contain atmost 1 building type commercial

which states that ”all residential areas must contain four residential buildings
or more, and no more than one commercial building”.

8.2.4 User-defined Variables

In natural language references to the same object may be implicitly given in two
parts of a sentence. This kind of sentences is called anaphora, also known as
donkey-sentences, after the most popular example of an anaphoric statement:
”All farmers that own a donkey beat it” [Benthem, 1986].

Constraints with anaphoric elements are difficult to formalize and to translate
into SQL. There are two reasons for these difficulties: first the used formalism
must be to able express that it is the same donkey, in the case of the donkey-
sentence, that the farmer owns and beats, second the scoping of the variables
that must be introduced to solve the first problem is not straight forward. A
constraint formalizing the donkey-sentence could be:

all farmer own donkey must beat donkey

it is tempting to translate this constraint into the following predicate formula:

∀xfarmer(x) ∧ ∃y(donkey(y) ∧ own(x, y)) → ∃y(donkey(y) ∧ beat(x, y))

but this does not really express the intended meaning, hence the statement
does not capture that it is the same donkey that is both owned and beaten
(the y is locally scoped on both sides of the implication). Therefore, we need

8.2 Formalizing Constraints 131

to introduce universal quantified variables and the scope of the variables must
reach both sides of the must keyword. The constraint with variables:

all farmer own donkey D must beat donkey D

which could be translated into the following expression:

∀x,D(farmer(x)donkey(D) ∧ own(x,D) → beat(x,D))

An example from the geographic information domain is the sentence : “All areas
intersected by a road segment must also contain a building which is intersected
by the road segment”. By use of variables it can be expressed in GeoSML as

all area intersectedby road R must
contain building intersectedby road R

Another example is:

All building B must equal building B

which expresses that ”all buildings must be equal to themselves”. It is the user-
defined variable ”B” that enables the designer to express that the two buildings
mentioned in the constraint should be the same.

8.2.5 Value Comparison

Simple value comparison of attributes can be included in constraints. Value
comparison is used to specify domain constraints. There are four keywords
supporting the specification of domain constraints: lessthan, greaterthan,
equalto, and oneof. The first three for range domains and the fourth for
coded value domains. Examples are:

all building must have height greaterthan 2

all roadsegment must have numberoflanes greaterthan 1

all building must have type oneof residential, commercial, industrial

132 Formalizing Constraints on Geographic Information

8.2.6 User-defined Predicates

Relationships and attributes indirectly given in the geographic information must
be calculated before they can be included in constraints. Implicit information
cannot be accessed by the constructs introduced in the previous sections, be-
cause implicit relations and attributes cannot be directly mapped from the con-
ceptual model, which prevents to the logical model the parser from producing
useful SQL statement.

The tool for including implicitly given information in the constraints is user-
defined predicates. The evaluation of these predicates is delegated to the un-
derlying database management system or to an application layer just ”above”
the database.

An example of a constraint with a user-defined predicate is as follows:

all building A hastype T touch Building B hastype T
must havezdifferencelargerthan(A,B,5)

This constraint states that neighboring buildings of the same type must have a
height difference of more than five meters.

If the height differences were stored in the database, e.g. by creating a view in-
cluding references to two touching buildings, and their mutual height difference,
and the view included a reference to the view in the conceptual model, then the
corresponding constraint could be something like:

all touchingbuildingwithzdiff firstbuilding building type T and
secondbuilding building type T must have value atleast 5.

Whether user-defined predicates or views should be used depends on the situ-
ation. The advantage of user-defined predicates is that they can be reused, if
they are implemented correctly, e.g. the havesdifferencelargerthan(a,b,z) can be
issued also for forests if an analogous constraint is needed. The advantage of
using views is that is minimized the need for variables.

8.2.7 Definitions

As illustrated in Section 8.2.7 constraints can be formulated more compactly to
enhance the readability if definitions of complex parts are separated in indepen-

8.3 Formal Description 133

dent definitions. To support formal definition GeoSML includes the is-defined-as
keyword, which keyword can be included in expressions of the form:

defined term is-defined-as expression

where expression is a path in the conceptual model including the optional
constructs presented in the above sections, e.g. numerical quantifications and
user-defined predicates. The example from Section 8.2.7 can then be reformu-
lated as:

(i) A connected pipe is defined as ”a pipe having all their connection points
included in a connection”:

connected-pipe is-defined-as pipe is-connected-to
atleast 2 pipe

(ii) A terminated pipe is defined as ”the pipes that connected to a pipe in one
end and to a terminator in the other end”:

terminated-pipe is-defined-as pipe is-connected-to exactly 1
pipe and is-connected-to exactly 1 terminator

The definitions can be used in constraints which are much easier to read than
if the full expressions were included instead. E.g. it can easily be stated that
”All pipes in service must either be a terminated pipe or a connected pipe”:

all pipe hasstatus ’in-service’ must connected-pipe
or terminated-pipe

8.3 Formal Description

In this section a formal definition of the constraint language explained in the
above sections is given. Both a concrete and an abstract syntax is given. The
concrete syntax serves as a reference to the constraint language, describing the
structure of allowed statements, while the constructs used in the abstract syntax
will be used in the semantics and the translation strategy of constraints. In this
thesis we will account for the formal semantics.

134 Formalizing Constraints on Geographic Information

8.3.1 Concrete Syntax

The following grammar defines the syntax of the constraint language embedded
in GeoSML.

〈expression〉::=all〈typeexp〉 must 〈typeexp〉 |
no 〈typeexp〉 may 〈typeexp〉

〈typeexp〉::=〈object typeID〉[〈reltype〉] |〈user-predicate〉 |〈vartypeexp〉
〈vartypeexp〉::=〈object typeID〉 〈variable〉 [〈reltype〉]
〈reltype〉::=〈relationID〉 [〈int quant〉] 〈typeexp〉 [〈operator〉 〈reltype〉] |

〈relationID〉 〈vartypeexp〉 [〈operator〉 〈reltype〉] |
〈attributeID〉 〈value〉 |
〈attributeID〉 〈numerical relation〉 〈integer〉 〈value〉

〈int quant〉::=all |solely | 〈numerical relation〉〈integer〉
〈operator〉::= and | or | andnot | ornot

〈numerical relation〉::=exactly |at least |at most

〈variable〉::= A | . . . |Z
〈integer〉::= 1 |2 | . . .

. . .

〈user-predicate〉::=〈user-predicate name〉〈parameter list〉
〈value〉::= . . .

The values in 〈object typeID〉, 〈relationshipID〉, 〈attributeID〉 and 〈value〉 de-
pend on the corresponding conceptual model, while values in 〈user-predicate〉
depend on the database model.

Statements made in the constraint language must conform to the above grammar
and to a number of other requirements which are not expressed in the grammar.
These requirements include amongst other the following items:

• Expressions must use paths that already exist in the conceptual model

• Each variable must appear at least twice.

• Occurrences of a variable must refer to the same type of class/attribute.

• Expressions are only allowed to start with a class expression.

8.3 Formal Description 135

• Expressions are not allowed to have compound operators on the left-hand
side of the expression.

A complete list of requirements for well-formed expressions can be found in
[Johnsen, 2005].

8.3.2 The Impact on the GeoSML Grammar

To include formal constraints at the conceptual level and to relate other specifi-
cation elements to formal constraints a few changes is made to the the grammar
needs to be extended. This is done by changing the constraint symbol to
include both natural language statements and formal constraints. Furthermore,
the 〈goalassign〉 symbol from the requirement modeling level is substituted by
adding alternative definitions to the d〈relexp〉. This is done by adding a def-
inition which relates curtain elements in domain and requirement models to
elements in conceptual models.

〈constraint〉::= [concerning (〈object typeID〉)*][Natural Language:]
〈statement〉 [Formal: 〈expression〉]

〈repexp〉::=〈entity typeID〉 is represented by 〈object typeID〉
using (〈selection rule〉)*
(instantiation rule)*
(〈life cycle rule〉)*
Attribute Values::=〈attributID〉 [has default value 〈value〉] is
determined by (〈representation rule〉*) |
〈drID〉 is represented by 〈crID〉
using (〈selection rule〉*)
(〈instantiation rule〉*)

〈selection rule〉::=〈statement〉
〈instantiation rule〉::=〈statement〉
〈life cycle rule〉::=〈statement〉
〈representation rule〉::=〈statement〉 |

〈drelement〉 is implemented by 〈conceptual element〉
〈conceptual element〉::=〈object typeID〉 |〈attribute typeID〉 |〈constraintID〉

|〈crID〉
〈drelement〉::=〈definitionID〉 |〈designationID〉 |〈assertionID〉 |〈entity typeID〉

|〈drID〉 |〈propertyID〉 |〈goalID〉

136 Formalizing Constraints on Geographic Information

8.4 Model-theoretic Semantics

This section is a formal specification of the model theoretic semantics for GeoSML.
The model uses the constructs introduced in the abstract syntax in Section 8.4.1
as a basis for the set-theoretic model. The model focuses on the two elemen-
tary forms and their extension into relation paths. Variables and user-defined
predicates will not be treated.

8.4.1 Abstract Syntax

To be able to describe the semantics of the constraint language, an abstract
grammar is introduced. This grammar introduces an abstraction between the
concrete syntax and the semantics which is defines in the following sections.

〈E〉::=allmust(〈CE〉,〈CE〉) | nomay(〈CE〉,〈CE〉)
〈CE〉::= class(Cid,〈RC〉) | varclass(Cid,Vid,〈RC〉) | 〈F〉 | 〈RC〉
〈RC〉::=exrelclass(Rid,〈CE〉) | allrelclass(Rid,〈CE〉) | solelyrelclass(Rid,〈CE〉)

| numrelclass(Int,〈Comp〉,Rid,〈CE〉) | attribute(Aid,〈Comp〉,Val)
| or(〈RC〉,〈RC〉) | and(〈RC〉,〈RC〉) | ornot(〈RC〉,〈RC〉) | andnot(〈RC〉,〈RC〉)
| []

〈F〉::= unarypredicate(Pid,Vid) | binarypredicate(Pid,Vid1,Vid2)

〈Comp〉::= eq | ge | le

8.4.2 Basic Form

Two basic sentence forms which are represented by the two predicates “allmust”
and “nomay” can be used to write constraints. The “allmust” defines a class
inclusion, meaning that the set on the left-hand side must be a subset of the set
on the right-hand side. The “nomay” defines that no elements in the left-hand
side set must be a member of the set on the right-hand side, therefore the in-
tersection between the two sets must be the empty set:

[[allmust(P,Q)]] = [[P]] ⊆ [[Q]]

8.4 Model-theoretic Semantics 137

[[nomay(P,Q)]] = [[P]] ∩ [[Q]] = ∅

8.4.3 Relational Paths

By a recursive definition of class expressions “CE” the basic forms can be ex-
tended with relational paths. The formal semantics of relational paths can be
defined by using the two-sorted Peirce Algebra suggested in [Brink et al., 1994].

Class expressions defined as a class and a relation contain a relation class (“RC”)
as the second argument:

[[class(Cid, RC)]] = {x|x ∈ Cid ∧ x ∈ [[RC]]}

A relation class can be a “simple” existentially quantified relational path (an
“exrelclass” construct in the abstract syntax). The interpretation of the “exrel-
class” is as follows:

[[exrelclass(Rid, CE)]] = {x|∃y, y ∈ [[CE]] ∧ (x, y) ∈ Rid}

which can be read as “For entities which there exists a relation Rid to an entity
of class CE”.

The class expression “CE” is either a class identifier or another relational path.
This construct introduces the recursive definition of class expressions and is
referred to as the “Peirce product” [Brink et al., 1994], which is an operator
taking two arguments: a binary relation and a set. The Peirce product returns
a set.

Relation expressions can take other forms than existentially quantified relational
paths. Quantification can also be achieved by using the solely keyword (“sole-
lyrelclass” in the abstract grammar). The meaning of this construct can be

138 Formalizing Constraints on Geographic Information

explained by a variation of the Peirce Product:

[[solelyrelclass(Rid, CE)]] = {x|∀y, y ∈ (x, y) ∈ Rid → y ∈ [[CE]]}

The “solelyrelclass” is similar to the “exrelclass”, except that it uses a universal
quantifier instead of an existential one. The set expression says: “All entities
which are related through the relation Rid to entities of solely class CE”.

The all keyword (“allrelclass” in the abstract syntax) is defined in the same
way but with the implication reversed:

[[allrelclass(Rid, CE)]] = {x|∀y, y ∈ [[CE]] → (x, y) ∈ Rid}

This can be read as “all entities related to all entities of class CE through Rid”.

The last types of quantifications allow relational paths to use numerical quan-
tifications. The meanings of these are:

[[numrelclass(eq,N,Rid, CE)]] =
{x|∃y, card({y|Rid(x, y) ∧ y ∈ [[CE]]}) = N)}

[[numrelclass(le, N,Rid, CE)]] =
{x|∃y, card({y|Rid(x, y) ∧ y ∈ [[CE]]}) < N)}

[[numrelclass(ge,N,Rid, CE)]] =
{x|∃y, card({y|Rid(x, y) ∧ y ∈ [[CE]]}) > N)}

The three numerical quantifications are very similar, except that there is a
difference in the comparison to the given integer ’N’. The top numerical quanti-
fied set expression can be read as “the set of entities to which exactly N entities
of class CE is related through Rid”.

8.4.4 Operators

To be able to specify compound statements, operators between relational paths
are allowed. The operators are ”and”, ”or”, ”andnot”, and ”ornot” in the
abstract syntax. The semantics is also expressed in set theory by using inter-

8.5 Translating GeoSML Constraints to SQL 139

sections and unions of sets:

[[and(P, Q)]] = [[P]] ∩ [[Q]]
[[or(P, Q)]] = [[P]] ∪ [[Q]]
[[andnot(P, Q)]] = [[P]] ∩ [[Q]]C

[[ornot(P, Q)]] = [[P]] ∪ [[Q]]C

8.4.5 Attribute Values

Finally, there is the option that a relational path could in fact be an attribute,
with the semantics seen below:

[[attribute(Aid, eq, value)]] = {x|Aid(x, value)}
[[attribute(Aid, le, value)]] = {x|∃y, Aid(x, y) ∧ y < value)}
[[attribute(Aid, ge, value)]] = {x|∃y, Aid(x, y) ∧ y > value)}

[[attribute(Aid, oneof, valueset)]] = {x|∃y, Aid(x, y) ∧ y ∈ valueset)}

8.5 Translating GeoSML Constraints to SQL

This section gives an overview of the process of translating GeoSML constraints
into SQL. Constraints are formulated in the context of a conceptual model.
Therefore, the compiler needs access to descriptions of the conceptual model,
a logical model of the database schema, and a mapping between the two. By
introducing a map between the conceptual model and the logical model, changes
in the low-level database schema can be accommodated in the map, thus leaving
the conceptual model and ultimately the constraints unchanged. The implemen-
tation of the constraints can be updated by recompiling the constraints in the
context of the new mapping and database schema. The syntax for conceptual
models is developed in Section 4.4 and the syntax for constraints is given in Sec-
tion 8.3. The following sections illustrate the logical schema, and the mapping
between the conceptual model and the logical model is specified. The syntax
for these two specification parts is straightforward and will not be explained in

140 Formalizing Constraints on Geographic Information

detail. The compiler that translates constraints into SQL is developed by Mads
Johnsen in Prolog using the SWI-Prolog toolkit [Wielemak, 2007]. Detailed
specifications of the translation process and the syntax of the logical model and
mappings between the conceptual model and the logical model are found in
[Johnsen, 2005].

Mapping

Building

PK buildingID

geometry

building_type

Area

PK areaID

geometry

AreaType

Residents

Company

PK companyID

company_name

FK1 buildingID

Contain

FK1 areaID

FK2 buildingID

Overlap

FK1 areaID

FK2 buildingID

Building

Residential

Area

contain

hasType

Area

Building

Type

n_ofF

Floors

Commercial

Area

n_ofRes

Residents

Touch

hasType

Residential

Area Type

usedby

Company

overlap

SQL StatementsLogical model

Conceptual model Formal Constraints

Select distinct areaID From Araa A

where exists

(Select * from Lake L, contain C

where....)

All area must contain building

No Lake must bewithin Lake

Translating

Validating

Constraining

Figure 8.1: Basic principle for the translation process

The principle for translating constraints is seen in Figure 8.1.

1. Develop a conceptual model

2. Specify formal constraints

3. Develop a logical model

4. Mapping between the conceptual and the logical model

5. Translating GeoSML constraints into SQL

8.6 Examples - Translation of Constraints

In the following section, example from Chapter 4 is continued by adding some
formal constraints to the conceptual model, developing a logical model for a
database that can persistently store information specified by the conceptual
model, and supplying a mapping between the conceptual model and the logical
model. Finally, the SQL statements produced by the parser are shown.

8.6 Examples - Translation of Constraints 141

8.6.1 Constraints

The five constraints included in the specification are formalized and added to
the conceptual model which results in the following specification:

Conceptual model My Small Topographic Map
Constraint concerning building:
Natural language: Buildings must not overlap
Formal: No building must overlap building
Constraint concerning building, area:
Natural language: Buildings must not overlap areas
Formal: No building must overlap area
Constraint concerning road_segment:
Natural language: Roads can either be high ways, major roads or
minor roads.
Formal: All roadsegment must type highway or major industrial or
minor
Constraint concerning Building:
Natural language: If two buildings of the same type is

neighbors then the z-difference between the two
buildings must be larger than 5 meters.

Formal: all Building A type T neighbor Building B
type T must havezdifferencelargerthan5(A,B)
Constraint concerning building, road_segment, area
Natural language: Road segments must not intersect areas,

unless there is a building within the area which is also
intersected by the road segment.

Formal all area intersect road_segment R must \\
contain building intersect road_segment R

8.6.2 Logical Data Model

To be able to translate GeoSML constraints into SQL, a map between the con-
ceptual and the logical model must be accommodated. A logical model defines
the layout of database tables and views and the relations among these, specified
by primary and foreign keys.

The parser expect spatial relations to be represented as tables or views on tables,
in proceeding versions foreign keys and functional relationships, like spatial

142 Formalizing Constraints on Geographic Information

relations, must be supported directly. Below, the GeoSML statements that
describe the logical model are listed.

table(Area,[areaID,geometry,areatype,residents])

table(Building,[buildingID,numoffloors,geometry,buildingtype])

table(Roadsegment,[roadsegmentID,roadtype,geometry,roadname])

table(baIntersect,[buildingID,areaID])

table(brIntersect,[buildingID,roadsegmentID])

table(baOverlap,[buildingID,areaID])

table(bbOverlap,[buildingID,buildingID])

table(Touch,[buildingID,buildingID])

function(havezdifferencelargerthan5,[[A,buildingID],[B,buildingID]],zdiff([A

buildingID],[B,buildingID])

The following list defines a mapping between the logical model above and the
conceptual model from the example on page 62.

classmap(area, Area,[],[areaID])

classmap(building, Building,[],[buildingID])

classmap(roadsegment, Roadsegment,[],[roadsegmentID])

valuemap(num of floors,numoffloors)

valuemap(building type,buildingtype)

valuemap(areatype,areatype)

valuemap(num of residents,residents)

valuemap(roadname,roadname)

valuemap(roadtype,roadtype)

relmap br intersect brIntersect, [buildingID],[roadsegmentID]

relmap ar intersect arIntersect, [areaID],[roadsegmentID]

relmap ba overlap baOverlap, [buildingID],[areaID]

relmap bb overlap bbOverlap, [buildingID],[buildingID]

relmap touch Touch, [buildingID],[buildingID]

relmap contain Contain, [areaID],[buildingID]

It is straight-forward to specify the two type of models. The description of
the logical model include two type of statements: table and function. The
table keyword describes tables in the database by the name of the tables and a
list of attributes for each table. The function keyword describes each function
implemented by the database system by the name of the function, a map between
variable in the formal constraint and the variables used in the database function,
and the expression calling the database function.

Mappings between a conceptual model and logical model are described by four

8.6 Examples - Translation of Constraints 143

three of statements: Classmap, relmap, valuemap, and type. A classmap re-
lates an object type to a table in the data base. This is done by four parameters:
The identifier of the object type, the name of the table, an optional condition
identifying the rows in the table, and a list of the attributes defining the pri-
mary key of the table. Relations in the conceptual model are mapped to the
logical model by the relmap keyword, taking 4 parameters: The identifier of the
relation in the conceptual model, the name of the table, a list identifying the
first primary key, and a list identifying the second primary key. The valuemap
is used to bind attributes in an object type to a column in a table. This is done
by two parameters: The identifier of the attribute type in the conceptual model
and the name of the column which store the value of the attribute.

Further details and a formal specification of the syntax for specifying logical
models and mappings among conceptual model can be found in [Johnsen, 2005].
It shall be noticed that minor changes are made compared to the definitions
made by Johnsen. This is due to the introduction of unique identifiers of object
types, attributes, and relationships in this thesis.

8.6.3 Generating SQL

Using the conceptual model, the logical model, and the mapping between the
two, the Prolog parser can produce SQL statements which implement the GeoSML
constraints from section 8.6. The translated constraints are built up as SQL
statements so that if the constraints are fulfilled, the execution of the translated
query will return an empty set of rows. The first example is the ”No building
must overlap building”, which is parsed into the following SQL query:

SELECT * FROM Building a WHERE EXISTS(
SELECT *
FROM bboverlap b
WHERE b.buildingID1 = a.buildingID
AND EXISTS(

SELECT *
FROM Building c
WHERE c.buildingID = b.buildingID2

The second example ”No building must overlap area” is analogous to the first
but constrain the relations among two tables. The constraint is parsed into the
following SQL query:

144 Formalizing Constraints on Geographic Information

SELECT * FROM Building a WHERE EXISTS(
SELECT *
FROM baOverlap b
WHERE b.buildingID = a.buildingID
AND EXISTS(

SELECT *
FROM Area c
WHERE c.areaID = b.areaID

The general idea is that every class and relation in the conceptual model corre-
spond to a table in the underlying database. The SQL expressions are built up
as nested SELECT-FROM-WHERE clauses. As seen, classes and relations are
no longer referred to by their names in the conceptual model; instead the actual
table names in the database model are used. A comparison is made with the set
of attributes that constitutes the primary key. Let us look at a more advanced
query, namely the one corresponding to the constraint: ”All buildings must type
commercial or type highresidential or type lowresidential”. The corresponding
SQL query to the constraint is:

SELECT * FROM Roadsegment a WHERE NOT(a.roadtype =
’highway’

OR
a.roadtype = ’major’
OR
a.building_type = ’minor’)

As seen, the general structure is the same as in the first query. The translation
of the operators in GeoSML is straightforward, since the used operators are
available in SQL. The relational paths are not parsed into any ”EXISTS” state-
ments, since the relational paths are actually properties of the building class,
resulting in much simpler SQL. A final example with user-defined variables and
predicates, namely the constraint stating: ”all building A type T touch building
B type T must havezdifference(A,B,5)”, will result in the following SQL code:

SELECT * FROM Building a
WHERE EXISTS(

SELECT * FROM Building b
WHERE (b.buildingID != a.buildingID)
AND EXISTS(

SELECT * FROM Touch c
WHERE (c.buildingID1 = a.buildingID)

8.6 Examples - Translation of Constraints 145

AND (c.buildingID2 = b.buildingID)
AND (b.type) = a.type
AND NOT (’zdiff’(a.buildingID,b.buildingID))))

The SQL follows the same structure as the other examples, although there are
some extra clauses in the innermost WHERE clause. The first of these expresses
that the two buildings should be different, due to the different variables used in
the constraints. The next clause expresses that the two buildings should be of
the same type. This is the translation of the ”T” variable. The third clause is
the translation of the user-defined predicate, we can see how the user-defined
predicate is translated straight into SQL.

A final example of translating constraints into SQL concerns the relation among
road segments, buildings, and areas. The formal constraint states that all area
intersect road R must
contain building intersect road R, which has the following SQL transla-
tion:

SELECT *
FROM Roadsegment a
WHERE EXISTS

SELECT *
FROM Area b
WHERE EXISTS(

SELECT *
FROM arIntersect c
WHERE c.roadID = a.roadID
AND c.areaID = b.areaID)

AND NOT EXISTS(
SELECT *
FROM Contain b
WHERE b.areaID = a.areaID
AND EXISTS

SELECT *
FROM Building c
WHERE c.buildingID = b.buildingID
AND EXISTS(

SELECT *
FROM brIntersect d
WHERE d.buildingID = c.buildingID
AND d.roadID = a.roadID))))

146 Formalizing Constraints on Geographic Information

This SQL statement returns the road segments which intersect an area and not
intersecting a building contained in that area.

8.7 Summary

The aim of the presented work is to enable product and production specialists
to write formal constraints that can automatically be implemented in produc-
tion software. We conclude that it is possible to define a language in which
constraints can be formulated by using a syntax with resemblance to natural
language. We believe that the constraint language in GeoSML has an expres-
siveness that can fulfill most requirements on writing constraints on geographic
information. Even though the specification of formal constraints using GeoSML
is quite easy to understand, it still requires some basic knowledge of the syntax
and what can actually be achieved.

8.7 Summary 147

3d

148 Formalizing Constraints on Geographic Information

Chapter 9

Conclusion

Abstract: This final chapter includes three sections. Section 9.1 gives a sum-
mary of the achieved results seen in the context of the design goals identified
in Chapter 3. Section 9.2 draws the conclusions that can be made from the
presented work and the elements of GeoSML are discussed and compared with
the overall hypothesis stated in Section 1.2.2. Section 9.3 lists suggestions for
future work.

150 Conclusion

9.1 Results

The main result obtained in this thesis is a framework for developing geographic
information specifications. This framework includes a specification language
which suggests a best-practice for developing and structuring specifications.
The language, which is called the Geographic Information Specification Markup
Language (GeoSML), provides a new principle for structuring and formalizing
geographic information specifications. The aim has been to define a method
which supports the development of geographic data collections – from the per-
ception of the initial idea until the information is captured and stored in a
database, and to provide a formal constraint language which is accessible for
non-programmers.

In Chapter 3 the following design goals were identified. These goals are: GeoSML
must provide the support for:

1. structuring of specifications written in natural language

2. cooperative design

3. separation of domain descriptions and design decisions

4. inclusion of requirements in the specification

5. incorporation of formal constraints in conceptual models

6. incorporation of quality reqirements in conceptual models

The following sections summarize the impact each of these design goals has had
on the design of GeoSML.

9.1.1 Structuring of Natural Language Specifications

The production of high-quality geographic information requires clear and un-
ambiguous specifications. A first step to achieve this is to provide a predefined
structure of natural language specifications.

The approach to reaching this design goal has been to regard a specification as
a set of statements. Each statement can be classified according to the roles it
plays in the interpretation process. GeoSML provides a classification scheme
that can be used to mark up statements according to these roles. The main

9.1 Results 151

part of this scheme is illustrated by the representation system in Figure 4.1 and
is concretized by the grammars for domain models, conceptual models, and the
mappings between the two (see pages 48, 57, and 68 respectively).

9.1.2 Support of Cooperative Design

The second design goal of GeoSML is to support cooperative design processes.
This design goal is motivated by the need for involving a variety of persons in
the design of a data collection, each providing a unique knowledge. Examples of
the required kind of persons are users of geographic information, cartographic
experts, information architects, and computing engineers, who must be able to
work together in the design process.

To achieve this goal, GeoSML includes a number of integrated views of the data
collection being developed. Each view provides a unique understanding of the
data collection, from user requirements, domain descriptions, over information
design to implementation considerations. These views are concretized by the
following modeling levels:

• Domain model

• Conceptual model

• Requirement model

• Logical model

• Mappings between these model types

9.1.3 Separation of Domain Descriptions and Design De-
cisions

The idea of separating descriptions of a domain and the design of a data collec-
tion is to force designers to distinct between descriptions of the reality, which
the data collection seeks to represent, and descriptions of how the entities within
the domain are represented in the data collection. This differentiation fails when
it is unclear if a statement describes the reality or some properties of the data
collection being developed.

152 Conclusion

The design goal is reached by introducing the notions of domain model and
conceptual model into the same framework, and providing mechanisms for
relating terms in two models by using the is-represented-by keyword.

9.1.4 Inclusion of Requirements in the Specification

The inclusion of requirements in the specification is motivated by the need for
gathering and structuring potential user’s needs, and to motivate the decisions
which lead to the design of the data collection. Integrating requirements into
the specification ensures that the design of a geographic data collection builds
on identified and acknowledged needs of the potential users.

To meet this design goal, the GeoSML framework was extended with the Require-
ment Model keyword and accompanied by several symbols for structuring re-
quirements in so-called refinement trees (see page 71). Furthermore, the ”leaves”
on the trees can be related to elements in a conceptual model and thus document
the motivation of each element. The relations between corresponding require-
ments and conceptual models are defined by the is implemented by relation.

9.1.5 Formal Constraints

A key design goal for GeoSML is to support the formalization of statements
included in a specification. It has been chosen to focus on the formalization of
constraints which produced information must comply.

The result is a formal constraint language that enables designers to express
formal constraints in the context of pre-existing conceptual model in a language
with a syntax that resembles natural language. In Chapter 8 it is also shown
how formal constraints can be translated into an ordinary query language like
SQL.

9.1.6 Quality Requirements

The quality of the information is important when the fitness for use is evaluated
against a given application. To enable such an evaluation the quality must be
known and well described. To ease the access and availability of quality descrip-
tions, a design goal of GeoSML is to include structured approaches when stating

9.2 Overall Conclusion 153

requirements for the quality of the produced information, and to integrate these
requirements directly into the specifications.

The solution has been to extend the conceptual modeling level in GeoSML with
elements for acceptable quality level (AQL) and Quality Element Requirement
(QER). AQL includes requirements for the completeness and accuracy of the
stored information. QER is the requirements for the quality parameters describ-
ing the quality of a data collection (see Chapter 6).

9.2 Overall Conclusion

This section accounts for the extent to which the main hypothesis, as stated in
Chapter 1, holds. The hypothesis will be presented and compared to the design
goals stated in Chapter 3 and the results as presented in the previous section.

The main hypothesis as it is formulated in Section 1.2.2 on page 3:

The knowledge embedded in natural language specification for
geographic information can be represented in formal computa-
tional structures.

To claim that the stated hypothesis holds, requires proofs that all the elements
in a geographic information specification can be represented by formal compu-
tational structures.

Many examples of formal statements have been given for the various types of
descriptions included in geographic information specifications. Although, it is
too far-reaching to say that proof is given that the hypothesis holds. First of
all, because GeoSML by nature is a semi-formal approach and natural language
statements are allowed, but also because it is difficult to account for all the pos-
sible type of statements that may be included in a specification. The focus in
the presented work has been on specifications for object-based geographic infor-
mation and primarily topographic data collections. Other kinds of geographic
information, such as raster images or terrain models, may require statements
which are not treated in this thesis.

However, the achieved results illustrate that the identified specification elements
within the domain of topographic mapping can be formalized. Throughout the
thesis it has been shown how various type of statements can be formalized by
first order predicate logic and traditional data modeling tools. Also, it has

154 Conclusion

been possible to develop a formal constraint language based on a subset of first
order predicate logic, which has a syntax resembling natural language. A formal
semantics for this language has been given, and a parser which can translate
the formal constraints into SQL is available.

The inclusion of natural-language based statements in GeoSML is motivated by
the design goal which requires GeoSML to support cooperative design processes,
i.e. that the language must include and integrate a number of views on the
data collection being developed. Views which are all required to include all
the information necessary to design high-quality data collections. The goals
requiring GeoSML to be formal and to support cooperative design are somehow
conflicting. On the one hand specifications need to be formal to be precise, on
the other hand persons with no particular training in writing formal statements
are important to the specification and design of data collections.

Despite of these two contradicting goals, GeoSML attempts to reach both design
goals. The aim has been to develop a specification language which primarily
focuses on formal aspects of specifying and still being operational and under-
standable for most of the persons involved in the design process. The approach
for closing the gap between natural language and formal specification has been
to introduce tools for organizing and structuring of natural language statements,
e.g the concern keyword which are used to explicitly point out the most im-
portant terms in a statement. The advantage of using the concern keyword
is that statements can be retrieved in a more predictive manner than using
free-text searches. Another example is the is implemented by keyword which
provides a mechanism for relating natural language statements in domain and
requirement models to formal constraints and other elements in a conceptual
model.

Finally, it must be concluded, which is not that surprising, that the creation
of geographic information still requires human interaction and intuition. For-
mal languages like GeoSML do not substitute skilful persons in the design and
production processes, who have an in-depth understanding of the nature of rep-
resenting geographic entities as map objects and the experience of interpreting
the source material – like arial photos, when designing and producing geographic
information.

We believe, that the principle on which GeoSML builds and the method for
developing formal and structured specifications, which it constitute, are impor-
tant tools for supporting the process of establishing high-quality geographic data
collections, both at the design level and when the information is created.

9.3 Future Work 155

9.3 Future Work

Even though the GeoSML framework includes a large number of facilities for
specifying geographic information, it is still a first iteration toward a specifica-
tion language designed to meet the requirements for structuring and formalizing
specifications especially suitable for the production of geographic information.
This section suggests projects that may be included in future iterations, in the
task of improving the usability and functionality of GeoSML.

Elaborated Examples
An elaboration of the examples in this thesis would properly help designers to
understand the intensions of GeoSML better. Developing such examples would
also help the identification of possible weaknesses of the framework and the re-
quirements to an improved version. Another result from developing more elab-
orated examples could be a step-by-step manual or a users guide for GeoSML,
which in a concrete manner describes the best-practice for developing geographic
information specification, suggested in this thesis.

Case Tool
Developing a case-tool will increase the useability of GeoSML and make GeoSML
even more accessible to non-programmers. Without a case tool it will be difficult
to handle the large amount of information required to describe e.g. topographic
maps.

An approach for developing a case tool is to redefine the context-free syntax
which has been used when defining GeoSML and bring it into the context of
UML or by changing the markups into an XML based one.

Development of Additional Parsers
To improve the capabilities of implementing GeoSML based specifications in
production software, the parser which has been developed to translate GeoSML
constraints into SQL statement could be extended or modified to target other
implementation languages. This could for example be ArcObject for the ArcGIS
family or MapBasic for MapInfo. Also, the generated code could target one
of the Java-based toolkits for checking the topology e.g. the Java Topology
Suite [Davids and Aquino, 2003].

Versioning of Specifications
It would be an advantages if GeoSML included mechanisms for versioning. This
subject is of great importance but has only briefly been touched upon in this
thesis. Versioning a specification should allow the definition of named versions
e.g. the 3.20 version of the TOP10DK specification. Such a versioning system
would require that transaction and valid time is recorded for each element in the

156 Conclusion

specifications and that a reliable numbering system for specification elements
is introduced. Introducing a versioning system would also give capabilities for
retrieving the changes made to a specification within a given time period.

There has been developed a first suggestion for a version system for the GeoSML
framework. A paper describing this system is under preparation.

The Constraint Language
It is believed that the expressiveness of the constraint language will cover most
needs for specifying formal constraints on conceptual models. Nevertheless, a
number of modifications and improvements can be made. One is to improve
the syntax so it would be even more natural language feel and look alike. This
could for example be done by allowing synonyms for relation names.

As it is, topologic relations must be specified at the conceptual level before they
can be incorporated in a constraint. This gives an overhead when new topologic
constraints are specified. First, a the relation must be included in the conceptual
model, then the relation to the logic model must be described, including creating
a view facilitating the topologic relation. Finally, the constraint can be specified
and translated into SQL. Is work flow could possible be simplified by introducing
predefined object types from which all other object types inherit from and then
specify a set of topologic relations to these predefined object types.

Bibliography

[Ackoff, 1962] Ackoff, R. (1962). Scientific method. page 179. John Wiley &
Sons.

[Allen, 1983] Allen, J. F. (1983). Maintaining knowledge about temporal inter-
vals. Commun. ACM, 26(11):832–843.

[Arango, 1989] Arango, G. (1989). Domain analysis: From art form to engi-
neering discipline. pages 152–159.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
and Patel-Schneider, P. F., editors (2003). The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press.

[Bassiliades and Gray, 1995] Bassiliades, N. and Gray, P. M. D. (1995). Colan:
a functional constraint language and its implementation. Data Knowl. Eng.,
14(3):203–249.

[Benthem, 1986] Benthem, J. V. (1986). Assays in Logical Sementics. Reidel
Publications.

[Bjørner, 1995] Bjørner, D. (1995). Software systems engineering - from domain
analysis to requirements capture - an air traffic control example. Technical
Report 48, Macau.

[Bjørner, 1999] Bjørner, D. (1999). A triptych software development paradigm:
Domain, requirements and software. towards a model development of a de-
cision support system for sustainable development. In Festschrift to Hans
Langmaack: Correct Systems Design: Recent Insight and Advances, volume
1710 of Lecture Notes in Computer Science, pages 29–60. Springer-Verlag.

158 BIBLIOGRAPHY

[Bjørner, 2003] Bjørner, D. (2003). What is a method? an essay on some aspects
of software engineering. In Programming Methodology, volume 9, pages 175–
203. Springer-Verlag, N.Y., New York.

[Bjørner, 2004] Bjørner, D. (2004). Train: The railway domain - a ”grand chal-
lenge” for computing science & transportation engineering. In IFIP Congress
Topical Sessions, pages 607–612.

[Bjørner, 2006b] Bjørner, D. (2005-2006b). Software Engineering vol 1, 2, and
3. Springer.

[Bjørner, 2006a] Bjørner, D. (2006a). On methods and software development.

[Booch et al., 1999] Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The
Unified Modeling Language Reference Manual. Object Technology Series.
Addison-Wesley, USA.

[Borges et al., 2001] Borges, K. A. V., Jr., C. A. D., and alberto H. F. Laender
(2001). Omt-g: An object-oriented data model for. GeoInformatica, 5(3):221–
260.

[Brink et al., 1994] Brink, C., Britz, K., and Schmidt, R. A. (1994). Peirce
algebras. Formal Aspects of Computing, 6(3):339–358.

[Brisaboa et al.,] Brisaboa, N., Mirbel, I., and Pernici, B. Constraints in spatio-
temporal databases: A proposal of classification.

[Campos and Hornsby, 2004] Campos, J. and Hornsby, K. (2004). Temporal
constraints between cyclic geographic events. In Proceedings of GeoInfo 2004.

[Casanova et al., 2002] Casanova, M., Straeten, R. V. D., and Wallet, T. (2002).
Automatic Constraint Generation for Ensuring Quality of Geographic Data.
In 3rd International Conference on Management Information Systems Incor-
porating GIS and Remote Sensing, Halkidiki, Greece.

[Casanova et al., 2000] Casanova, M., Wallet, T., and D’Hondt, M. (2000). En-
suring Quality of Geographic Data with UML and OCL. In in Proceedings of
the 3rd International Conference on The Unified Modeling Language, volume
1939 of Lecture Notes in Computer Science, pages 225–239. Springer.

[CE and W, 1949] CE, S. and W, W. (1949). The mathematical theory of com-
munication.

[Chen, 1976] Chen, P. P. (1976). The entity-relationship model - toward a uni-
fied view of data. TODS, 1(1):9–36.

[Chrisman, 1984] Chrisman, N. R. (1984). The Role of Quality Information in
the Long-Term Functioning of a Geographic Information System. Cartograph-
ica, 21(2&3):79–87.

BIBLIOGRAPHY 159

[Christensen and Johnsen, 2005] Christensen, J. V. and Johnsen, M. (2005).
Specifying formal constraints for geographic information.

[Clementini et al., 1993] Clementini, E., Felice, P. D., and van Oosterom, P.
(1993). A small set of formal topological relationships for end-user interaction.
In Abel, D. and Ooi, B. C., editors, Advances in Spatial Databases - Third
International Symposium SSD’93, number LNCS 692 in Lecture Notes in
Computer Science, pages 277–295. Springer-Verlag, Singapore.

[Cockburn, 2000] Cockburn, A. (2000). Writing Effective Use Cases. Addison
Wesley.

[Cockcroft, 1997] Cockcroft, S. (1997). A taxonomy of spatial data integrity
constraints. GeoInformatica, 1(4):327–343.

[D. Connolly et al., 2001] D. Connolly, F. v. H., I. Horrocks, D. L. M., Patel-
Schneider, P. F., and Stein, L. A. (2001). Daml+oil (march 2001) reference
description.

[Davids and Aquino, 2003] Davids, M. and Aquino, J. (2003). Java topology
suite version 1.4. Technical report, Vivid Solutions.

[Davis et al., 1993] Davis, R., Shrobe, H., and Szolovits, P. (1993). What is a
knowledge representation? AI Magazine, 14(1):17–33.

[Demuth et al., 2001] Demuth, B., Hussmann, H., and Loecher, S. (2001). OCL
as a specification language for business rules in database applications. In
Gogolla, M. and Kobryn, C., editors, UML 2001 - The Unified Modeling
Language. Modeling Languages, Concepts, and Tools. 4th International Con-
ference, Toronto, Canada, October 2001, Proceedings, volume 2185 of LNCS,
pages 104–117. Springer.

[Drummond, 1995] Drummond, J. (1995). Positional Accuracy. In Guptill, S. C.
and Morrsion, J. L., editors, Elements of Spatial Data Quality, chapter 3,
pages 31–58. Elsevier, England. The International Cartographic Association.

[Egenhofer and Herring, 1990] Egenhofer, M. J. and Herring, J. R. (1990). Cat-
egorizing binary topological relations between regions, lines, and points in
geographic databases. Technical report, University of Maine.

[Eir, 2004] Eir, A. (2004). Construction Informatics - issues in the engineering,
computer science, and ontology. PhD thesis, DTU.

[Elmasri and Navathe, 1996] Elmasri and Navathe, editors (1996). Fundamen-
tals of database systems. Addison Wesley.

[Elmasri et al., 1985] Elmasri, R., Weeldreyer, J., and Hevner, A. (1985). The
category concept: An extension to the entityrelationship model. Data &
Knowledge Engineering, 1:75–116.

160 BIBLIOGRAPHY

[Engels et al., 1992] Engels, G., Gogolla, M., Hohenstein, U., Hulsmann, K.,
Lohr-Richter, P., Saake, G., and Ehrich, H.-D. (1992). Conceptual modelling
of database applications using extended ER model. Data Knowledge Engi-
neering, 9:157–204.

[ESRI, 2003] ESRI (2003). Arcgis: Working with geodatabase topology. White
paper, ESRI.

[Fields, 1992] Fields, B. (1992). A guide to reading vdm specifications. Techni-
cal report, University of Manchester.

[Frank, 1998] Frank, A. (1998). Tiers of ontology and consistency constraints
in geographic information systems.

[Friss-Christensen, 2003] Friss-Christensen, A. (2003). Issues in the Conseptual
Modeling of Geographic Data. PhD thesis, Aalborg University, Department
of Computer Science.

[Friss-Christensen and Christensen, 2004] Friss-Christensen, A. and Chris-
tensen, J. V. (2004). A framework for modeling spatial data quality. In
SDH-2004, Liecester.

[Garshol, 2006] Garshol, L. M. (2006). Bnf and ebnf: What are they and how
do they work?

[Garvin, 1988] Garvin, D. A. (1988). Managing Quality: The Strategic and
Competitive Edge. Free Press.

[George et al., 1992] George, C., Haff, P., Havelund, K., Haxthausen, A. E.,
Milne, R., Nielsen, C. B., Prehn, S., and Wagner, K. R. (1992). RAISE
Specification Language. Prentice Hall International.

[Gesbert, 2004] Gesbert, N. (2004). Formalisation of geographical database
specifications. In ADBIS (Local Proceedings).

[Goodchild, 1995] Goodchild, M. F. (1995). Attribute Accuracy. In Guptill,
S. C. and Morrsion, J. L., editors, Elements of Spatial Data Quality, chapter 4,
pages 59–80. Elsevier, England. The International Cartographic Association.

[Goodchild and Gopal, 1989] Goodchild, M. F. and Gopal, S., editors (1989).
The Accuracy of Spatial Databases. Taylor & Francis.

[Goodwin, 2005] Goodwin, J. (2005). Experiences of using owl at the ordnance
survey. Proceedings of OWL: Expriences and Directions 2005.

[Guptill and Morrison, 1995] Guptill, S. and Morrison, J., editors (1995). Ele-
ments of Spatial Data Quality. Elsevier, England. The International Carto-
graphic Association.

BIBLIOGRAPHY 161

[Herring, 1991] Herring, J. R. (1991). The matematical modeling of spatial and
non-spatial information in geographic information systems. In Mark, D. M.
and Franks, A. U., editors, Congnitive and Linguistic Aspects of Geographic
Space, pages 313–350. Kluwer.

[Heuvelink, 1998] Heuvelink, G. B. M. (1998). Error Propagation in Environ-
mental Modelling in GIS. Research Monographs in Geogrpahical Information
Science. Taylor & Francis, UK.

[Hoel et al., 2003] Hoel, E., Menon, S., and Morehouse, S. (2003). Building
a robust relational implementation of topology. In Proceedings of the 8th
International Symposium on Spatial and Temporal Databases, Lecture Notes
in Computer Science, Santorini. SSTD, Springer-Verlag.

[ISO, 1994] ISO (1994). Quality management and quality assurance - Vocabu-
lary. Technical Report 8402, International Standardization Organization.

[ISO, 1996] ISO (1996). Information Technology - Syntactic Metalanguage -
Extended BNF. Draft ISO/IEC 14977:1996, International Standardization
Organization.

[ISO, 2001a] ISO (2001a). Geographic information - Quality evaluation proce-
dures. ISO/TC 211 19114, International Standardization Organization.

[ISO, 2001b] ISO (2001b). Geographic information - Quality principles.
ISO/TC 211 19113, International Standardization Organization.

[ISO, 2004] ISO (2004). Geographic information - rules for application schema.
ISO/TC 211 19109, International Standardization Organization.

[Jackson, 1995] Jackson, M. (1995). Software Requirementes & Specification -
a lexicon og pratice, principles and prejudices. Addison-Wesley.

[Jackson, 1997] Jackson, M. (1997). The meaning of requirements. Ann. Soft-
ware Eng., 3:5–21.

[Jackson, 2001] Jackson, M. (2001). Problem Frames, Analysing and structuring
software development problems. Addison-Wesley.

[Johnsen, 2005] Johnsen, M. (2005). A high level database interfase with appli-
cation to gis. Master’s thesis, DTU.

[Kainz, 1995] Kainz, W. (1995). Logical Consistency. In Guptill, S. C. and
Morrsion, J. L., editors, Elements of Spatial Data Quality, chapter 6, pages
109–138. Elsevier, England. The International Cartographic Association.

[KMS, 1999] KMS (1999). Top10DK Specification. National Survey and Cadas-
tre, Copenhagen. Version 3.1.0. In Danish.

162 BIBLIOGRAPHY

[Kolacny, 1969] Kolacny, A. (1969). Cartographic Information - a Fundamental
Concept in Term in Modern Cartography.

[Lambrix, 2000] Lambrix, P. (2000). Part-Whole Reasoning in an Object-
Centered Framework. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[Larman, 2001] Larman, C. (2001). Applying UML and Patterns: An Introduc-
tion to Object-Oriented Analysis and Design and the Unified Process. Prentice
Hall.

[Molenaar, 1998] Molenaar, M. (1998). An Introduction to the Theory of Spatial
Object Modelling for GIS. Taylor & Francis.

[Nilsson and Johnsen, 2007] Nilsson, J. F. and Johnsen, M. (2007). A high level
logico-algebraic constraint checking language compiling into database queries.
Forthcomming.

[Ohlbach, 2004] Ohlbach, H. J. (2004). Relations between fuzzy time intervals.
In Proceedings of 11th International Symposium on temporal representation
and reasoning, Tatihoui, Normandie, France (1st–3rd July 2004). greyc.

[Parasuraman et al., 1985] Parasuraman, A., Zeithaml, V., and Berry, L.
(1985). A conceptual model of service quality and its implications for fu-
ture research. Journal of Markedting, 49:41–50.

[Parent, 2004] Parent, C. (2004). Mads formalization.

[Parent et al., 1999] Parent, C., Spaccapietra, S., and Zimányi, E. (1999).
Spatio-temporal Conceptual Models: Data Structures + Space + Time. In in
Proceedings of the 7th International Symposium on Advances in Geographic
Information Systems, pages 26–33, Kansas City, USA.

[Parent et al., 1998] Parent, C., Spaccapietra, S., Zimányi, E., Donini, P.,
Plazanet, C., and Van-genot, C. (1998). Modeling Spatial Data in the MADS
Conceptual Model. In in Proceedings of the 8th International Symposium on
Spatial Data Handling, pages 138–150, Vancouver, Canada.

[Prieto-Diaz, 1990] Prieto-Diaz, R. (1990). Implementing faceted classification
for software reuse (experience report). In ICSE ’90: Proceedings of the
12th international conference on Software engineering, pages 300–304, Los
Alamitos, CA, USA. IEEE Computer Society Press.

[Rolland and Achour, 1998] Rolland, C. and Achour, C. B. (1998). Guiding
the construction of textual use case specifications. In Data & Knowledge
Engineering Journal, volume 25. Elsevier Science Publishers.

BIBLIOGRAPHY 163

[Ruschel et al., 2005] Ruschel, C., Iochpe, C., da Rocha, L. V., and Filho, J. L.
(2005). Designing geographic analysis processes on the basis of the conceptual
framework geoframe. In Chen, C.-S., Filipe, J., Seruca, I., and Cordeiro, J.,
editors, ICEIS, pages 91–97.

[S. et al., 2003] S., M., N., G., and D, S. (2003). A formal model for the spec-
ifications of geographic databases. In Proceeding of GeoPro : semantic pro-
cessing of Spatial data.

[Shlaer and Mellor, 1992] Shlaer, S. and Mellor, S. (1992). Object Lifecycles:
Modeling the World in States. Prentice Hall.

[Smith, 1996] Smith, B. (1996). Mereotopology: a theory of parts and bound-
aries. Data Knowl. Eng., 20(3):287–303.

[Smith, 2004] Smith, B. (2004). The role of foundational relations in the align-
ment of biomedical ontologies. In Proceedings of MEDINFO 2004, pages
444–448.

[Smith et al., 2004] Smith, M. K., Welty, C., and McGuinness, D. L. (2004).
The ontology web langauage - reference guide. Available online at:
http://www.w3.org/TR/owl-guide.

[Sowa, 2000] Sowa, J. F. (2000). Knowledge representation: logical, philosoph-
ical and computational foundations. Brooks/Cole Publishing Co., Pacific
Grove, CA, USA.

[Sutcliffe and Minocha, 1998] Sutcliffe, A. and Minocha, S. (1998). Scenario-
based analysis of non-functional requirements. In Fourth International
Workshop on Requirements Engineering: Foundation for Software Quality
(RESFQ).

[Tryfona and Jensen, 1999] Tryfona, N. and Jensen, C. S. (1999). Conceptual
data modeling for spatiotemporal applications. Geoinformatica, 3(3):245–268.

[van Lamsweerde, 2001] van Lamsweerde, A. (2001). Goal-oriented require-
ments engineering: A guided tour. RE’01 - 5th IEEE International Sym-
posium on Requirements Engineering, pages 249–263.

[van Lamsweerde et al., 1991] van Lamsweerde, A., Dardenne, A., Delcourt, B.,
and Dubisy, F. (1991). The kaos project: Knowledge acquisition in automated
specification of software. Proceedings AAAI Spring Symposium Series, Stan-
ford University, American Association for Artificial Intelligence, pages 59–62.

[Vangenot, 2004] Vangenot, C. (2004). Multi-represenation in spatial databases
using the mads conceptual model. ICA Workshop on Generalisation and
Multiple representation. Springer.

164 BIBLIOGRAPHY

[Varzi, 1996] Varzi, A. C. (1996). Parts, wholes, and part-whole relations: the
prospects of mereotopology. Data Knowl. Eng., 20(3):259–286.

[Veregin, 1999] Veregin, H. (1999). Data Quality Parameters. In Longley, P. A.,
Goodchild, M. F., Maguire, D. J., and Rhind, D. W., editors, Geographical
Information Systems: Principles and Technical Issues, volume 1, pages 177–
189. John Wiley & Sons, Inc., USA, 2 edition.

[Veregin and Hargitai, 1995] Veregin, H. and Hargitai, P. (1995). An Evaluation
Matrix for Geographical Data Quality. In Guptill, S. C. and Morrsion, J. L.,
editors, Elements of Spatial Data Quality, chapter 9, pages 167–188. Elsevier,
England. The International Cartographic Association.

[von Neumann and Morgenstern, 1947] von Neumann, J. and Morgenstern, O.
(1947). Theory of games and economic behaviour. Princeton University Press,
Princeton. 2nd edition.

[Wagner, 2002] Wagner, G. (2002). How to design a general rule markup lan-
guage? In Tolksdorf, R. and Eckstein, R., editors, XSW, volume 14 of LNI,
pages 19–37. GI.

[Wang et al., 2001] Wang, R. Y., Ziad, M., and Lee, Y. W. (2001). Data Quality.
The Kluwer International Series on Advances in Database Systems. Kluwer
Academic Publishers, USA.

[Wielemak, 2007] Wielemak, J. (2007). Swi-prolog 5.6 reference manual. Tech-
nical report, University of Amsterdam.

[Wikipedia, 2005] Wikipedia (2005). Land-use. Internet. Last vistied June
2005.

[Wikipedia, 2006] Wikipedia (2006). Binary relation. In Wikipedia.

[Worboys, 1995] Worboys, M. (1995). GIS: A Computing Perspective. Taylor
and Francis.

[Zeithaml et al., 1988] Zeithaml, V., Parasuraman, A., and Berry, L. (1988).
Delivering quality service: balancing customer perceptions and expectations.
Free Press, New York.

