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Abstract Several different models have been defined in literature for the def-
inition of 3D scenes that include a geometrical representation of objects to-
gether with a semantical classification of them. Such semantical characteriza-
tion encapsulates important details about the object properties and behavior
and often includes spatial relations that are defined only implicitly or through
natural language, such as “an external access shall be in touch with the build-
ing only when it is classified as a direct access”. The problem of ensuring
the coherence between geometric and semantic information is well known in
literature. Many attempts exist which try to extent the OCL to allow the rep-
resentation of spatial integrity constraints in an UML model. However, this
approach requires a deep knowledge of the OCL formalism and the implemen-
tation of ad-hoc procedures to validate the constraints specified at conceptual
level. Therefore, a new approach is needed that helps designers to define com-
plex OCL constraints and at the same time allows the automatic generation of
the code to test them on a given dataset. The aim of this paper is to propose a
set of predefined templates to express on the classes of an UML data model, a
family of 3D spatial integrity constraints based on topological relations; all this
without requiring the knowledge of any formal language by domain experts
and supporting their automatic translation into validation procedures.
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1 Introduction

Many different models exist in literature for representing 3D spatial data and in
particular 3D city models, such as CityGML [14], Inspire Annex 3 Building [5]
or the Building Theme of the Italian National Core (in Italian, “Edificato”).
Besides to the geometrical characterization of objects, which essentially refers
to the ISO geometric types [15], such models provide a semantical characteri-
zation of objects which encapsulates important meanings and spatial relations.
Some examples of them are reported in Sect. 3 in form of integrity constraints.

In general, each data collection C, representing an instance of one of the
above cited models, consists of a set of objects {o1, o2, ...} which has to satisfy
two kinds of constraints in order to correctly represent a given scene about a
real urban context. The first set of properties, defining the topological consis-
tency, regards the correctness of the vector representation (i.e., points, curves,
surfaces and solids) that describes the spatial objects o1, o2, ... inside the data
collection. From a mathematical point of view, these properties derive from
the point-set topology and their objective is to ensure the consistency of the
data collection as a whole. For this purpose the data collection is represented
by means of a topological model (containing primitives like nodes, edges and
faces) with a geometrical realization (i.e., nodes as vertices, edges as curve
segments and faces as patches). In this way each object oi is represented by a
geometry gi, which in turn is a set of primitives inside the topological model.
The satisfaction of these properties is a necessary condition in order to enable
any kind of processing regarding the data collection. The reader can find in [11]
an approach for checking topological consistency based on sets of axioms de-
fined on a topological model. Since such consistency is invariant with respect
to the application context, the approach proposed in [11] can be applied to any
data collection, without customization.

The second set of properties, defining the semantic consistency, is specified
by the domain experts. As a consequence, such properties can change accord-
ingly to the considered application context and they might be applied only to
a subset of objects in the collection. They are usually specified at conceptual
level by means of a set of integrity constraints that frequently includes spa-
tial properties, like topological relations. However, they are often not formally
integrated in the model but are implicitly specified or expressed in natural
language. Therefore, ad hoc procedures have to be implemented in order to
validate and ensure the satisfaction of such constraints. This introduces a gap
between the conceptual design of a spatial dataset and its implementation on
GIS systems. Conversely, the ability to define spatial integrity constraints at
conceptual level allows designers to abstract from the implementation details
and to apply one common constraint framework. In this paper we focus on
this second type of properties and on the testing of the semantic consistency.

The Standard ISO TC211 19109 “Rules for application schema” [17] rec-
ommends the use of the OCL [22] formalism for specifying spatial integrity
constraints at conceptual level. Sect. 2 will discuss several approaches that
have been proposed in literature to automatically translate spatially-enhanced



A Template-based Approach for of 3D Topological Constraints 3

OCL constraints into validation procedures. However, the use of generic OCL
constraints has several limitations as deeply discussed in [23]. In particular, it
introduces a great complexity both in the conceptual modeling, since a deep
knowledge of the OCL language is required by the domain experts, and in
the implementation phase, since complex ad-hoc procedures have to be imple-
mented to treat all cases and it is more difficult to optimize such procedures.

This paper follows the approach proposed in [23] that promotes the def-
inition of spatial integrity constraints inside conceptual models through the
use of predefined topological constraint templates. Thanks to these templates
the designer can specify topological integrity constraints in a straightforward
manner, without the need for a deep knowledge of the OCL language. More-
over, since their structure is known, such constraints can be automatically
translated into optimized SQL queries or procedures in other programming
languages, in order to verify the semantic consistency of any spatial data col-
lection. More specifically, this paper extends the work in [23] to the 3D space,
in particular as regards to surfaces and volumes, and it completes the work in-
troduced in [2] through the definition of a wide range of topological templates
that potentially capture all common requirements in the definition of a 3D
spatial scene. Some testing scenarios are presented in Sect. 3 which originate
from the building model of CityGML (LoD3), the INSPIRE Annex 3 Build-
ing, and the Italian National Core, but the approach can be easily adapted to
other generic 3D spatial models.

The contribution of the paper is presented in Sect. 5 where we illustrate
a set of templates that can be instantiated for representing 3D topological
constraints at conceptual level with reference to the geometric model described
in Sect. 4. These templates can be automatically translated into validation
procedures by taking advantages of their mathematical geometric formulation.
Finally, some hints about a possible general technique for their translation
towards SQL procedures are provided in Sect. 6. The choice to implement the
validation procedures as SQL queries is particularly useful in the common case
where validation tests have to be performed on a huge amount of 3D spatial
objects that are quite simple (i.e., in a city model, not in a building model).
However, the proposed template mechanism is general enough to be easily
implemented using other programming languages or technologies.

2 Related Work

As mentioned in the introduction, two kinds of consistency check can be dis-
tiguished: topological consistency, which deals with the validation of the vector
representation of a set of objects, and semantic consistency, which refers to the
checking of spatial integrity constraints based on the semantic characterization
of the same set of objects.

Topological consistency – Several works are available in literature which
regard the validation of topological consistency in a 3D city model. For in-
stance, in [11] the authors provide a set of axioms to achieve topological con-
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sistency of 3D models. The efficiency of the proposed method stems from its
locality: in most cases, a dataset can be decomposed into simple components
on which basic consistency checks can be performed, then the axioms can
be combined to obtain constraints for aggregation of components. With the
aim to preserve topological consistency, in [19] and [7] the authors propose the
construction of a topological structure that is maintained on top or together
with geometric information. Conversely, with reference to the ISO data types,
in [18] the author presents a methodology to validate solids against the geo-
metric definition of the ISO Standard 19107.

As regards to CityGML, in [21] the authors define the quality requirements
for a general CityGML specification in terms of geometric/topological consis-
tency and provide a suite of essential checking tools to ensure such quality.
In [25] the authors define a set of axioms which regards the validation of a
dataset based on a CityGML model. In particular, they define the concept of
valid geometry using the definition of spatial data types provided in [14], and
a set of axioms which check the compliance of the dataset w.r.t the types.
Semantic Consistency Given a set of valid geometries, additional semantic
rules can be defined which are mainly determined by the application context.
In [12] the authors provide an overview of CityGML and how it covers the ge-
ometrical, topological and semantic aspects of 3D city models. In particular,
they highlight how the semantic taxonomy can consistently traverse all the
five level of detail (LoD). In [24] the authors distinguish the semantic model of
CityGML (e.g., buildings, water bodies, transportation, vegetation) from the
geometry model (based on the ISO Standard 19107 [15]) and analyse how to
achieve their correspondence. The term coherence is used to describe consis-
tent relationships between spatial and semantic entities. Coherence evaluation
could be performed by explicitly representing aggregation relations in the se-
mantic model as spatial aggregations, but contrarily to our paper, the authors
do not provide any hint about how such constraints can be checked.

Semantic rules are usually defined in terms of OCL [22] statements which
refer to the UML class diagram defining the model. The use of OCL [22] for
the specification of spatial constraints has been investigated also in [8] where
the authors try to integrate the 9 Intersection Model into OCL. The obtained
model is called OCL9IM and provides an expressive language adapted to pre-
cisely model alphanumerical and topological constraints. They also investigate
the possibility to translate OCL9IM into SQL by providing an extension of the
tool named OCL2SQL [6]. In [27] the author provides a set of domain-specific
constraints for a Climate City Campus Database described using CityGML.
Examples of constraints are the distance between buildings and trees, or be-
tween aquatic plant and water. Such constraints are specified in OCL and
translated into ad-hoc spatial queries for Oracle. The approach is similar to
the one proposed in this paper, however we propose to instantiate constraints
by means of templates that can be automatically translated into SQL spa-
tial queries, without any effort for generating new code in each specific case.
In [28] the authors present a methodology to model and implement 3D geo-
constraints based on four steps: natural language, geometric/topological ab-
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stractions, UML/OCL formulations and SQL implementation. However, also
in this case constraints have to be defined using complex and ad-hoc OCL
formulas, while SQL implementations have to be manually implemented.

The fundamental difference between the template approach proposed in
this paper and the generic spatial OCL approach proposed in literature is
the following one: instead of augmenting the OCL language with new spatial
operators and implementing a generic translator of OCL expressions into a
chosen target technology, a set of spatially oriented templates with parameters
are defined and an optimized implementation of them is specified for a set of
target technologies.

3 Motivating Example

This section illustrates some examples of 3D spatial integrity constraints among
buildings and its constituent parts which can be useful in the definition of a 3D
city model. Some of these constraints are taken from the Italian National Core
and others from CityGML and Inspire, but several other integrity constraints
can be defined in other models.
Example 1 In a city model all buildings shall be disjoint or touch each other.
Moreover, if a building consists of only one (homogeneous) part, it shall be
represented by a unique solid element. Otherwise, if it is composed by several
individual structures, it shall be modeled as a set of solid parts, such that all
these parts touch each other to form a composite solid, see Fig. 1. With refer-
ence to CityGML, each building part must be related to exactly one building
and it must touch it.

CompositeSolid

Solid 1 Solid 2

_AbstractBuilding

BuildingPart Building

*

consistsOf

BuildingPart

*

Fig. 1 Example of a building composed of two parts that touch each other.

Example 2 In the conceptual specification of the Italian National Core the
following integrity constraint is defined between the UML class representing
buildings (Building) and the one representing accesses to buildings (Access):
“an external access shall be in touch with a building only when it is classified
as direct” (see Fig. 2). This means that only the solid representing an access
(instance of class Access) having type attribute equal to direct shall be in touch
with the solid representing a building (instance of class Building).
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Building Access

Geometry: GM_Solid
Geometry: GM_Solid

Type: {direct, indirect}

Building (B23)

Access (A3)

type = direct

Fig. 2 Example of building and external access that touch each other.

Example 3 With reference to the CityGML and/or the INSPIRE building
model, the outer facade of a building can be differentiated semantically us-
ing a set of surface types with a special function, like wall, roof, ground, and
so on, as illustrated in Fig. 3. Clearly, the following constraint is implicitly
defined: “if a building is represented by both a solid and a set of boundary
surfaces, these surfaces have to touch the boundary of the solid”.

WallSurfaces

RoofSurface

GroundSurface

_AbstractBuilding
*

* _BoundarySurface

boundedBy

RoofSurface

WallSurface

CeilingSurface

GroundSurface

Fig. 3 Example of boundary surfaces of a building.

The last but more common example regards the relation that exists be-
tween the outer shell of a building and its openings (i.e., doors and windows).

Example 4 Different representations can be adopted for modeling openings: in
the simplest case, a building can be represented by a solid and its openings are
surfaces that have to touch the solid. Conversely, in a more elaborated model,
such as CityGML LOD3, openings are surfaces that can be related to one of
the boundary surfaces representing the building outer shell. Moreover, since
boundary surfaces have a precise semantic meaning, openings like doors and
windows can be found only on roof and/or wall surfaces. In particular, if the
geometric location of an opening topologically lays within a boundary surface
component, then it must be represented as a hole within that surface: the
opening surface must be embraced by a set of surfaces defining the building
boundary. For instance, in Fig. 4 taken from [14], the window surface has to
be embraced by some wall surfaces, the outer ceiling surface and the outer
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floor surface. Notice that the opening surface must not be contained in any
boundary surface. In this case the integrity constraint is implicitly defined by
a conjunction of properties.
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Surface
_BoundarySurface

*

0..1

opening

_Opening

Window Door Window

Window

Fig. 4 Example of building with an opening.

4 Geometric Model

This section introduces the geometric model used in the remainder of the
paper for the definition of spatial integrity constraints. We will refer to the
3D geometric types described in the ISO Standard 19136 GML [16], which in
turn are compliant with the ISO Standard 19107 Spatial Schema [15]. More
specifically, this section formalizes the set of considered GML spatial data
types and the set of topological relations existing between them, defined in
terms of the well-known 9-intersection model [10].

4.1 Spatial Data Types

The 3D spatial data types considered in this paper are taken from the ones
formalized in the ISO Standard 19136 GML, since they provide a conformant,
partial implementation of the ISO Standard 19107 Spatial Schema.

The geometric model of GML consists of primitives, which may be com-
bined to form complexes, composite or aggregate geometries. For each dimen-
sion, there is a root class representing a type of primitive: a zero-dimensional
object is a point, a one-dimensional object is a curve, a two-dimensional ob-
ject is a surface, and a three-dimensional object is a solid. These root classes
describe the common properties shared by all their subclasses, each of which
explicitly prescribe the representation details for generating their instances.
Among all general properties, each abstract class provides the concept of
boundary, interior and exterior as available methods. These concepts define
a partition of the space, in which an object is embedded, producing three
point sets that are used to formally specify a reference set of topological re-
lations. The boundary, interior and exterior are formally defined in the point
sets topology and in [16] each class exactly provides a specific definition for
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them. Intuitively, the boundary separates the interior of an object from the
outer space, which represents its exterior.
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gml::AbstractGeometry

GM_Object

gml::AbstractGeometryPrimitive

GM_Primitive

GM_OrientablePrimitive

GM_OrientableCurve GM_OrientableSurface

gml::Solid

GM_Solid

gml::Curve

GM_Curve

gml::Surface

GM_Surface

gml::AbstractCurveSegment

GM_CurveSegment

gml::AbstractSurfacePatch

GM_SurfacePatch

gml::PolyhedralSurface

GM_PolyhedralSurface

gml::PolygonPatch

GM_Polygon

gml::LineString

gml::LineStringSegment

GM_LineString

gml::Polygon

gml::AbstractGeometryAggregate

GM_Aggregate

...

1..*

0..1

...

0..1

1..*

0..1

1

gml::Ring

GM_Ring

gml::LinearRing

MultiPolygon

gml::MultiSurface

GM_MultiSurface

Fig. 5 Hierarchy of spatial data types considered in the paper. The name with the prefix
gml is the class contained in the ISO Standard 19136 GML, while the name in the small
coloured box is the corresponding class in the ISO Standard 19107.

In this paper, we focus on a subset of GML data types which are the most
commonly used during the representation of a 3D urban scene. The chosen
classes make the approach sufficiently generic without unnecessarily increas-
ing the complexity of the treatment. In particular, the paper considers: (i)
line-strings as implementation of curves (ii) polyhedral surfaces and polygons
as implementations of surfaces, and (iii) solids defined by means of closed poly-
hedral surfaces. Fig. 5 shows the hierarchy of considered data types, reporting
both the name used in the GML specification (with prefix gml::) and the
name of the corresponding class in the ISO Standard 19107 (inside the small
coloured inner box). Notice that GML specifies some complementary spatial
geometry components, which are not part of the implemented standard (e.g.,
gml::Polygon and gml::LineString), together with some implementation restric-
tions which are also valid here.

Definition 1 (Curve) A Curve is a 1-dimensional geometric primitive rep-
resenting the continuous image of a line. A curve is composed of one or more
curve segments which are connected to one another, so that the end point of a
segment is the start point of the next one, except for the last one. Each curve
segment within a curve represents an homogeneous portion of the curve and
may be described using a different interpolation method.
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The boundary of a curve is given by the set of points at either end of the
curve. In case the two end points coincide, the curve forms a cycle and is said
to be closed. The property to be a “continuous image” ensures that the curve
is continuous and connected, namely no branchings are allowed inside a curve.

In the ISO Standard 19107, the class GM Curve is defined as an orientable
primitive, namely it carries an orientation property which reflects the orienta-
tion in which the curve is traversed. This property is useful when the curve is
used as a boundary of an object, since the surface being bounded is the one on
the left of the oriented curve. In GML, the orientation of the gml:Curve class
is implicitly fixed to positive, and this assumption also holds here.

Each segment of a curve can be defined by a different interpolation method.
In this paper, we consider as possible interpolation only the linear one, namely
we assume as possible implementation of a curve only the LineString class.
Notice that in the ISO Standard 19107, the class GM LineString is intended
as a kind of curve segment, which combines into a single object a sequence of
segments, each one consisting in two positions joined by a straight line (i.e.,
linear interpolation). This class is implemented in GML by the corresponding
class gml:LineStringSegment, while the name gml:LineString is used to denote an
additional subtype of GM Curve that consists only of GM LineString segments.
In the following, we use the term LineString in the sense defined in GML.

Definition 2 (LineString) A LineString is a special subtype of GM Curve
that consists of a sequence of segments with linear interpolation. More specifi-
cally, each segment inside a linestring is defined by a pair of ordered positions
joined by a straight line.

Before discussing the considered 2-dimensional objects, we introduce the
concept of LinearRing which will be used for defining the boundary of a poly-
gon. The class gml:LinearRing has been added in GML as a convenience subtype
of GM Ring for denoting a simple ring described by a single closed line-string.

Definition 3 (LinearRing) A LinearRing is a LineString which is closed and
simple. A LineString is closed if it is a cycle (i.e., the start and the end vertices
coincide) and it is simple if it does not pass through the same point twice with
the exception of the two end nodes (i.e., it does not have self-intersection and
self-tangency).

A 2-dimensional object is generically represented by the concept of surface.
As stated for curves, also the GM Surface class is considered an orientable
primitive in the ISO Standard 19107, while its implementation in GML is
given by the class gml:Surface whose orientation is implicitly set to positive.
The orientation of a surfaces defines an “up” direction, which, if the surface is
not a cycle, is the side of the surface from which the exterior boundary appears
counterclockwise.

Definition 4 (Surface) A Surface is a 2-dimensional geometric primitive
representing a continuous region of a plane. A surface is defined by one or more
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patches, each one representing a homogeneous portion of the plane using a
uniform interpolation method. The boundary of a surface is the set of oriented,
closed curves (rings) that delineate its limits. The exterior boundary is the one
that separates the surface from the infinite space, while the interior boundaries
separate the object from other bounded objects.

A surface is said to be simple when it consists of a single patch. GML
defines a special kind of simple surface which is called Polygon.

Definition 5 (Polygon) A polygon is a special surface that is defined by a
single surface patch with additional constraints, called PolygonPatch. A Poly-
gonPatch is a surface patch defined by a set of boundary curves that are Lin-
earRings and an underlying surface to which these curves adhere. The curves
shall be coplanar and the polygon shall use planar interpolation at its interior.

Notice that the class GM Polygon defined in the ISO Standard 19107 is
a subclass of GM SurfacePatch which is implemented in GML by the class
gml:PolygonPatch. Conversely, the class gml:Polygon has been defined in GML
as a convenience subclass of GM Surface. In the following we will use the term
Polygon to denote the concept defined in GML.

This paper considers another surface implementation, admitted by both
the ISO Standard 19107 and GML: the PolyhedralSurface, which is also defined
using the concept of PolygonPatch and will be used in the definition of solids.

Definition 6 (PolyhedralSurface) A PolyhedralSurface is a surface com-
posed of PolygonPatches connected along their boundary curves. For each pair
of patches that touch, the common boundary shall be described as a finite col-
lection of LineStrings. Each of these LineStrings shall be part of the boundary
of at most 2 PolygonPatches.

The 3-dimensional geometric type considered in this paper is related to the
notion of Solid. In the ISO Standard 19107, the extent of a solid is defined
by means of boundary surfaces, called shells, each of which is composed of
orientable surfaces connected in a topological cycle. In particular, in a 3D space
each solid is limited by one external boundary surface and zero or more internal
boundary surfaces. In this paper, we consider a specialization of such generic
notion of solid, which is characterized by only one external boundary surface
which is a PolyhedralSurface, and zero internal boundaries. It follows that such
kind of solid object has no holes (i.e., enclaves). This does not constitute a
great limitation since a solid with holes can be replaced by a set of adjacent
solids obtained by splitting it [26] into two or more parts. This simplification
is required by the model in [9] for the specification of topological relations in
3D. As we will see, it keeps simple the specification of topological relations
involving solids without reducing the generality of the model.

Definition 7 (Solid) A Solid is a 3-dimensional object whose extent is de-
fined by a boundary surface, called shell, which is a closed PolyhedralSurface.
With reference to the generic definition of solid contained in the standard, this
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boundary surface defines the external boundary of the solid, while no internal
boundary surfaces are allowed.

Among all possible combinations of geometric primitives provided by the
standard, this paper considers only the GM MultiSurface which is an aggregate
class containing only instances of orientable surfaces. An aggregate is an arbi-
trary collection of geometric objects of a specified type without any additional
constraint about its internal structure. Moreover, since this paper considers
only a subset of all possible surface types, the multi-surface aggregation is
further restricted to be composed only of Polygon instances.

Definition 8 (MultiPolygon) A MultiPolygon is an unstructured set of poly-
gons. No further constraints are defined for a MultiPolygon element.

MultiPolygon can be considered a generalization of PolyhedralSurface, since
no particular constraints are required.

4.2 Topological Relations

The 9-intersection model [10] is the most common model for defining binary
topological relations. It specifies the topological relation R existing between
two objects A and B considering the intersection between their interior (A◦,
B◦), boundary (∂A, ∂B) and exterior (A−, B−).

R(A,B) =

A◦ ∩B◦ A◦ ∩ ∂B A◦ ∩B−
∂A ∩B◦ ∂A ∩ ∂B ∂A ∩B−
A− ∩B◦ A− ∩ ∂B A− ∩B−


The topological relations described above apply to primitive types and

can be extended to aggregate geometries by imposing some constraints on
their components, as formalized in [13] and done in available systems such
as PostGIS. For instance, the polygons composing a MultiPolygon (as defined
in [13]) cannot overlap. Such constraints do not reduce the expressive power of
the type, namely the kind of representable objects, since each generic aggregate
can be translated into one that satisfies the given constraints.

In [9] the authors generalize the model to a 3D space. In order to preserve
the same properties of 2D relations, in [9] a major assumption is made: the
interior, boundary and exterior of volumes are simply connected such that the
volume boundary separates the interior from the exterior. Since the volume
boundary must be simply connected, the volume cannot have any holes in its
interior. This assumption is in accordance with the definition of solid given
in Def. 7, where we state that a solid can have only an external boundary
but no internal boundaries. Clearly, through a surface external boundary it
is always possible to describe solids which are n-tori or donuts. Starting from
this model the extension of the definitions to composite/complex solids can be
done, by specifying for each relation between two composite/complex solids the
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Table 1 3D topological relations between solids (V), surfaces (S), curves (C). Possible topo-
logical relations are disjoint (DJ), touch (TC), in (IN), contains (CN), equal (EQ), overlap
(OV). The matrix patterns are specified as 1st row− 2nd row− 3rd row. Used symbols are:
T = not empty, F = empty, ∗ = any result, T = always not empty for the considered com-
bination of geometric types, T� = not empty when the geometries, for which the boundary
is considered, are not cycles (e.g., rings are cycles), empty otherwise, T∂ = not empty, but
in the case in which the boundary of the first geometry (e.g., a solid) is equal to the second
one (e.g. a surface). Finally, AT denotes the transpose of a matrix A.

Rel. Definition Geom. Matrix Pattern

DJ A ∩B = ∅

V/V F F T − F F T − T TT
V/S F FT− F F T − T T�T
V/C F FT− F FT− T T�T
S/V, C/V DJ(V/S)T , DJ(V/C)T

S/S, C/C F F T − F F T� − T T�T
S/C F FT− F F T� − T T�T
C/S DJ(S/C)T

TC
(A◦ ∩B◦ = ∅) ∧
(A ∩B 6= ∅)

V/V F F T − F T T − T TT
V/S F FT− T ∗ T∂ − ∗ ∗T ∪

F FT− F T T − T ∗T
V/C F FT− T ∗T− ∗ ∗T ∪

F FT− F TT− T ∗T
S/V, C/V TC(V/S)T , TC(V/C)T

S/S, C/C F T T − ∗ ∗ ∗ − T ∗T ∪
F F T − T ∗ ∗ − T ∗T ∪
F F T − F T ∗ −T ∗T

S/C F TT− ∗ ∗ ∗ − T ∗T ∪
F FT− T ∗ ∗ − T ∗T ∪
F FT− F T ∗ −T ∗T

C/S TC(S/C)T

IN
(A ∩B = A) ∧
(A◦ ∩B◦ 6= ∅)

V/V T F F − T ∗ F − T TT
S/S, C/C T F F − ∗ ∗ F − T T�T
S/V T ∗ F − ∗ ∗ F −TTT
C/V T ∗ F − ∗ ∗ F −TTT
C/S T ∗ F − ∗ ∗ F −TT�T

CN
(A ∩B = B) ∧
(A◦ ∩B◦ 6= ∅)

V/V IN(V/V)T

S/S, C/C IN(S/S)T , IN(C/C)T

V/S IN(S/V)T

V/C IN(C/V)T

S/C IN(C/S)T

EQ A = B V/V, S/S, C/C T F F − F T F − F FT

OV
(A◦ ∩B◦ 6= ∅) ∧
(A ∩B 6= A) ∧
(A ∩B 6= B)

V/V T T T − T T T − T TT
V/S T ∗T− T ∗ T∂ − T ∗T
V/C T ∗T− T ∗T− T ∗T
S/S, C/C T ∗ T − ∗ ∗ ∗ − T ∗T
S/C T ∗T− ∗ ∗ T∂ − T ∗T
S/V, C/V, C/S OV(V/S)T , OV(V/C)T , OV(S/C)T

corresponding set of expressions that have to be satisfied on their components.
However, this is out of the scope of this paper.

As stated in the previous section, the paper concentrates only on 3D data
types which are more useful in the description of city models, i.e.: solid (de-
noted as V ), surfaces (denoted as S), which can be Polygons, PolyhedralSurfaces
or MultiPolygons, and curves (denoted as C), namely LineStrings. Table 1 re-
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ports the formal definition of the topological relations considered in the sequel:
they are the relations usually implemented in current GIS systems. For each
relation the table shows a name, together with the specification of the pair
of geometric types to which it applies, and the corresponding configurations
of the 9-intersection matrix representing the scenes where the relation exists;
table caption contains more details on the formalism used for representing
matrix configurations.

5 Constraint Templates

This section introduces the template-based approach proposed in this paper
for the definition of 3D spatial constraints. For each template, we define both
its syntax, containing a set of parameters to be specified, and a precise se-
mantics expressed in the OCL language. The translation of each template in
the corresponding OCL constraint gives a clear idea about the complexity in-
volved in the specification of the latter with respect to the simplicity of using
the former. As discussed in Sect. 2, such spatial constraint templates allow
not only to define a constraint in a easy way, but also to obtain optimized
implementation for them with respect to a set of target technologies.

The approach includes two main families of constraints: topological and
part-whole constraints. The former ones allow to prescribe the existence of a
topological relation between the instances of two classes (see Sect. 5.1), while
the latter ones allow to describe a composition relation between each instance
of a class and a set of instances of the another class (see Sect. 5.2).

5.1 Topological Constraints

A topological constraint between two classes uses the topological relations in
Sect. 4.2 for defining conditions on their geometric attributes whose possible
types have been specified in Sect. 4.1. A topological constraint template has a
fixed logical structure and a set of parameters that allow together to describe
the majority of the situations characterizing a 3D city model. In particular,
two categories of topological constraints can be identified based on the chosen
logical structure: existential topological constraints and universal topological
constraints. The first ones prescribe that given an object of the constrained
class, there exist at least an object in the constraining class such that the pre-
scribed constraint is satisfied. Conversely, the second ones require that given
an object of the constrained class, the prescribed constraint has to be satisfied
for each object in the constraining class. For both categories there exists a
basic version and several variants each one characterized by an additional set
of parameters. In particular, while the basic version of a constraint allows to
specify the involved (constrained and constraining) classes, the related spatial
attributes, and the required topological relations; a variant may also allow to
specify functions to be applied on geometries, or selections on the constrained
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and/or the constraining class, or to add an association role between the con-
strained class and constraining one, that limits the constraint satisfaction to
the pairs of instances linked through the given association role. The remain-
der of this section formalizes all available topological constraint templates by
providing both its parametric syntax and the corresponding OCL semantics.

5.1.1 Basic Existential Topological Constraint

The basic existential topological constraint requires that, given an object x
belonging to the constrained class X, there exists at least an object y of the
constraining class Y such that the given disjunction of topological relations is
satisfied between their geometric attributes g and f , given as parameters.

Definition 9 (Basic existential topological constraint (TCb∃)) Let X be
a constrained class with a spatial attribute g, Y be a constraining class with a
spatial attribute f and {rel1| . . . |relk} a disjunction of topological relations. A
basic existential topological constraint (TCb∃) requires that for each object x of
X there exists an object y of Y such that one of the relations rel1, . . . , reln is
satisfied between x.g and y.f . The semantics of this constraint is represented
by means of the following OCL expression.

TCb∃(X, g, {rel1| . . . |relk}, Y, f)
context X
inv: Y.allinstances→

exists(a : Y | self.g.check({rel1, . . . , relk}, a.f))

The OCL statement describing the template semantics is characterized by
two parts: the context and the invariant. The context defines the situation
to which the constraint is applied and in this case it is represented by the
constrained class X. The invariant specifies a condition that must to be true
for all instances (i.e., objects) of the context class. Namely in this template,
the invariant is evaluated for each object of X and it checks that among all
objects of the class Y , there is at least an object such that one of the specified
topological relation holds between its geometric attribute f and the attribute
g of the currently evaluated object of X. As regards to the constraint syntax:

– allistances is an OCL keyword returning all objects of the class on which
it is applied. In this case, it returns the set of objects belonging to the
constraining class Y .

– self is an OCL keyword specifying the current instance of the context
class which has to be evaluated by the invariant. In this case, it returns
the currently considered object of the constrained class X.

– exists is an OCL operator on collections of the form C → exists(v : T |
boolExpr(v)) which checks if for at least one element of the collection C
the boolean expression boolExpr evaluates to true. The variable v is called
iterator, since it is used to iterate among all elements of C, while T denotes
the types of such elements.
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– check verifies that at least one of the topological relation in {rel1, . . . , relk}
is satisfied between the two given geometries: a.check({rel1, . . . , relk}, b)
≡def a.rel1(b) ∨ · · · ∨ a.relk(b). The semantics of a.reli(b) has been defined
in Tab. 1.

The following example shows how the template TCb∃ can be applied to the
example in Sect. 3 regarding the relation between a building and its parts.

Example 5 Referring to the Ex. 1 in Sect. 3, a basic existential topological
constraint can be defined between all instances of the class BuildingPart and
an instance of the class Building. More specifically, given an instance x of
BuildingPart there exists an instance a of Building such that x touches a:

TC b
∃(BuildingPart, lod3Solid, {TC},Building, lod3Solid)

Accordingly with CityGML, this example assumes that both classes have a
geometric property called lod3Solid which represents their extent. Fig. 6 shows
a graphical representation of such constraint. In the graphical representation
the constraint specification is contained in a comment icon and an arrow rep-
resents the direction of the constraint starting from the constrained class and
ending onto the constraining class. In order to distinguish this arrow from the
one used in UML for depicting an association, it is drawn in blue.
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Fig. 6 Example of existential spatial constraint between a main building and its parts.

5.1.2 Existential Topological Constraint with Selection

A variant of the basic existential topological constraint is the one that allows to
specify a selection on the instances of the constrained and/or the constraining
class, which are considered during the evaluation of the topological constraint.

Definition 10 (Existential topological constraint with selection (TCσ∃ ))
Let X be a constrained class with a spatial attribute g, Y be a constraining
class with a spatial attribute f and {rel1 | · · · | relk} a disjunction of topologi-
cal relations. An existential topological constraint with selection (TCσ∃ ) allows
to express selection conditions for X or Y or both. When a selection σ1 is
specified on X, the constraint is applied only to those instances of X that
satisfies σ1; while, when a selection σ2 is specified on Y , only those instance
of Y that satisfies the selection σ2 can be considered for testing the required
topological relations.
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TCσ∃ (X,σ1(X), g, {rel1| . . . |relk}, Y, σ2(X,Y ), f)
context X
inv: σ1(self) implies(Y.allinstances→

exists(a : Y | σ2(self, a) ∧
(self.g.check({rel1, . . . , relk}, a.f)))

The selection clause σ1(X) is a propositional formula defined as: σ1 ≡
[not](α1 lop . . . lop αn), where αi is an atomic formula of the form (X.a opX.b),
or (X.a op cost), or (X.a is null), or (X.a is not null), orX.isTypeOf(T ).
The two variables a and b denote attributes of the class X, op ∈ {=, >,≥, <,≤
, 6=} and const is a constant value different from null. The attributes involved
in the formulas can be any attribute of the class X except for the geometric
ones. The function isTypeOf() is an OCL predefined operation which checks if
the current object is an instance of a specified class. This is particularly useful
when the current objects belong to a class that is the root of a hierarchy.

The selection clause σ2(X,Y ) is a propositional formula similar to σ1(X),
but one of the atomic formulas αi can also be (X.a op Y.c) or (X.r1 = Y.r2),
namely it can involve attributes of X (a in the formula) and Y (c in the
formula) or a role of X (r1 in the formula) and a role of Y (r2 in the formula),
that can only be compared for equality.

Inside the OCL constraint specification, σ1(self) and σ2(self, a) indicate
the expressions that are obtained by replacing x with self and y with a in
σ1(x) and σ2(x, y), respectively. They can be substituted by the value true if
no selections are required. Since the constraint is applied only to the instances
of X that satisfy σ1, a logical implication is used in the invariant through
the OCL operator implies. In case the current instance of X satisfies σ1 (i.e.,
σ1(self)=true), the existential condition is evaluated by searching, among all
instances of Y , the presence of at least one object that satisfies the selection σ2
and whose geometric attribute is in one of the required topological relations.

The following example shows the application of the template TCσ∃ for the
formalization of the integrity constraint presented in Sect. 3 that comes from
the conceptual specification of the Italian National Core.

Example 6 Referring to Ex. 2 in Sect. 3, an existential topological constraint
with selection can be defined between all instances of the class Access that are
classified as “direct” and an instance of the class Building. More specifically,
given an instance a of Access which is “direct”, there exists an instance b of
Building such that a.geometry touches b.geometry:

TCσ
∃ (Access, x.type = “direct”, geometry, {TC},Building, true, geometry)

This example assumes that both classes have a geometric property called ge-
ometry which represents their 3D representation. Fig. 7 shows a graphical rep-
resentation of such constraint.

The example below includes some selection conditions in order to represent
the relation between an opening and the surface that contains it.
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Fig. 7 Example of existential topological constraint between a direct access and its building.

Example 7 With reference to the CityGML data model, we require that the
surface of an Opening (lod3MultiSurface) shall be contained into a Boundary-
Surface (see Fig. 8). However, not all kinds of boundary surface can contain a
window or a door: it is reasonable to assume that only an instance of Roof-
Surface or of WallSurface can contain a window or a door. This requirement
can be expressed by means of an integrity constraint using a selection on the
surface type as follows.

TCσ
∃ ( Opening, true, lod3MultiSurface, {IN}, BoundarySurface,
y.IsTypeOf(RoofSurface,WallSurface), lod3MultiSurface)
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Fig. 8 Example of existential topological constraint with selection between an opening and
the boundary surface of its building.

5.1.3 Existential Topological Constraint with Spatial Function

This variant of the basic existential topological constraint allows to specify
some spatial functions that have to be applied on the geometric attribute of
the constrained, or the constraining class, or both. In this way, the constraint
is verified on the geometric value produced by the spatial function, instead
of on the geometric attribute itself. Examples of spatial functions commonly
used in the specification of topological constraints, are the ones that return
the boundary or the planar projection of a geometry.

Definition 11 (Existential topological constraint with spatial func-
tion (TCs∃)) Let X be a constrained class with a spatial attribute g, Y be a
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constraining class with a spatial attribute f and rel1, . . . , reln a disjunction of
topological relations. An existential topological constraint with spatial function
(TCs∃) allows to apply a spatial function s1() on the geometric attribute g
of X, and/or s2() on the geometric attribute f of Y , in order to obtain the
spatial values on which the topological relations have to be evaluated.

TCs∃(X, g, s1(), {rel1| . . . |reln}, Y, f, s2())
context X
inv: Y.allinstances→

exists(a : Y | self.g.s1().check({rel1, . . . , relk}, a.f.s2()))

Functions s1() and s2() are any spatial function that can be applied to the
geometric attribute of X and Y , respectively. If s1() (or s2()) is null in the
template, then the function is not inserted in the OCL invariant, i.e. g.s1() is
equal to g (or f.s2() is equal to f). ut

The following example makes use of a spatial function for constraining the
geometry of an opening to the building solid.

Example 8 The existential topological constraint using the function boundary
is particularly useful for expressing the constraint existing between an opening
(e.g., window) and the solid representing a building. In particular, in the exam-
ple of data model presented in Fig. 9, which comes from CityGML, windows
are represented as surfaces having their boundary that lies completely inside
the boundary of the solid representing a building. Therefore, it is necessary
to ensure that such surface boundary is contained in the solid boundary of a
building by means of the following constraint.

TCs∃(Window, lod3MultiSurface, boundary(),
{IN},Building, lod3Solid, boundary())
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Fig. 9 Example of existential topological constraint with application of a spatial function
on the geometric attribute.
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5.1.4 Generic Existential Topological Constraint

Clearly, the two variants presented before can be combined obtaining a generic
existential topological constraint with the following form, where unused selec-
tions can be replaced by the value true, and unused spatial functions by the
value null.

TC ∗∃(X,σ1(x), g, s1(), {rel1|..|reln}, Y, σ2(x, y), f, s2())
context X
inv: σ1(self) implies(Y.allinstances→

exists(a : Y | σ2(self, a) ∧
self.g.s1().check({rel1, . . . , reln}, a.f.s2())))

5.1.5 Existential Topological Constraint based on a Chain of Roles

In some cases it is necessary to specify a spatial constraint based on an associa-
tion that links the constrained class with the constraining one. The existential
constraint presented in this section allows to consider as available instances
of the constraining class, only the objects that can be reached from the con-
strained object through a chain of roles r1, . . . rn.

Definition 12 (Existential topological constraint with roles (TCr∃))
Let X be a constrained class with a spatial attribute g, Y be a constraining
class with a spatial attribute f and {rel1| . . . |reln} a disjunction of topological
relations. An existential topological constraint with roles (TCr∃) allows to spec-
ify a chain of roles r1, . . . , rn, so that the available objects of the constraining
class are only those that can be reached from the constrained object through
such chain.

TCr∃(X,σ1(X), (r1, . . . , rn), g, s1(), {rel1| . . . |reln}, Y, σ2(X,Y ), f, s2())
context X
inv: σ1(self) implies (self.r1 →

collect(b1 | b1.r2)→ · · · → collect(bn−1 | bn−1.rn)→
exists(a : Y | σ2(self, a) ∧

self.g.s1().check({rel1, . . . , reln}, a.f.s2())))

Notice that the TCr∃ constraint is defined starting from the generic existen-
tial topological constraint in order to provide a maximum degree of flexibility
in its definition and in particular to allow its combination with all the vari-
ants described before. The main difference between TC∗∃ and TCr∃ is in the
collection of objects of the constraining class: while in the former it is repre-
sented by all instances of the class Y , in the latter it is obtained starting from
the current object of X and traversing the chain of links. The collect is an
OCL operator on collections of the form C → collect(v : T | expr(v)) which
starting from the available collection C derives a different collection contain-
ing the objects returned by the expression expr evaluated on the objects of
C. In the invariant, the statement self.r1 → collect(b1 | b1.r2) starts from
the collection C of objects obtained by navigating the role r1 from the current
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object of X (C = self.r1), and produces a new collection containing all the
objects reachable by applying the role r2 to the objects in C. Supposing that
only two roles are specified in the chain, then the class C is the intermediate
class used in the navigation for reaching the objects of the class Y starting
from the object of X.

Example 9 The existential spatial constraint based on a chain of roles can
be used to model an additional application-specific constraint regarding the
BuildingInstallation class of CityGML (see Fig. 10), which would require that
the objects of this class that are classified as chimney (class=’chimney’) must
have a projection in 2D that is contained in at least one of the BoundarySurfa-
ces of the Building it belongs to and that the BoundarySurface is instance
of the class GroundSurface.

TCr∃(BuildingInstallation, class = ‘chimney’,
( abstractBuilding, boundedBy),
lod3Geometry, planarProjection(), {IN},
BoundarySurface, isTypeOf(GroundSurface),

lod3MultiSurface, planarProjection())

In the example, the function planarProjection() is used. It simply drops the
third coordinate from the input geometry g. The role abstractBuilding is used
for navigating the association that links BuildingInstallation to AbstractBuilding.
It is the OCL syntax for the navigation of association without role names.
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Fig. 10 Example of existential topological constraint with a chain of roles between an
installation on a building and the boundary surfaces of its building.
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5.1.6 Basic Universal Topological Constraint

The second kind of considered logical structure is the universal one which
replaces the existential quantification with a universal one, similarly to what
have been proposed in [4]. In this kind of constraints it is required that given
an object x of the constrained class X, the constraint has to be satisfied for
all object y of the constraining class Y .

Definition 13 (Basic universal topological constraint (TCb∀)) Let X
be a constrained class with a geometric attribute g, Y be a constraining class
with a geometric attribute f and {rel1 | · · · | reln} a disjunction of topological
relations. A basic universal topological constraint (TCb∀) requires that one of
the topological relations rel1, . . . , reln exists between the geometry of the con-
strained object x.g and the geometry y.f of all the objects y of the constraining
class Y .

TCb∀(X, g, {rel1| . . . |reln}, Y, f)
context X
inv: Y.allinstances→

forall(a : Y | self.g.(check({rel1, . . . , relk}, a.f))

The OCL invariant describing TCb∀ is similar to the one defined for the basic
existential topological constraint in Sect. 5.1.1. The only difference regards the
use of the collection operator forall in place of the corresponding operator
exists. As the name suggests, this operator checks if the specified expression
holds for all elements of the collection to which it has been applied.

The TCb∀ constraint is meaningful only for some kinds of topological rela-
tions, for instance disjoint or touch, as illustrated in the following examples.

Example 10 A typical usage for the universal spatial constraint is for estab-
lishing that every building must be disjoint from or be in touch with each
other building:

TCb∀(Building, lod3Solid, {TC, DJ}, Building, lod3Solid)

Clearly, when the same class is used both as constrained and constraining
class, the test is performed by considering for each object of the class, all the
other objects of the same class excluding itself.

5.1.7 Universal Topological Constraint with Selection

Selection conditions can be applied on both the constraining and the con-
strained class with the same meaning and considerations made for the corre-
sponding existential variant presented in Sect. 5.1.2.

Definition 14 (Universal topological constraint with selection (TCσ∀ ))
Let X be a constrained class with a geometric attribute g, Y be a constraining
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class with a geometric attribute f and {rel1 | · · · | reln} a disjunction of topo-
logical relations. A universal topological constraint with selection (TCσ∀ ) allows
one to express selection conditions for X or Y or both. When a selection σ1
is specified on X, the constraint is applied only to those instances of X that
satisfies σ1; while, when a selection σ2 is specified on Y , only those instance
of Y that satisfies the selection σ2 can be considered for testing the required
topological relations.

TCσ∀ (X,σ1(X), g, {rel1| . . . |reln}, Y, σ2(X,Y ), f)
context X
inv: σ1(self) implies (Y.allinstances→

select(a : Y | σ2(self, a)) →
forAll(b : Y | self.g.check({rel1, . . . , relk}, a.f)))

In the case of a universal constraint, the selection condition σ2 applied
to the constraining class Y cannot be placed in conjunction with the check
of the topological relations. Conversely, it is required to extract from the set
of all objects of Y only those that satisfy the selection and then check only
on them the topological relations. For this reason, the select operator has
been applied in order to retrieve the considered set of constraining objects. It
has the form C → select(v : T | boolExpr(v)) and produces a subset of C
containing only the elements that satisfy the defined boolean expression.

Example 11 With reference to the CityGML data model (see Fig. 11), we can
specify by using the following additional constraint that an object represent-
ing an instance of Window (subclass of Opening) must be disjoint from any
surface representing an object of both the GroundSurface class and the Outer-
CeilingSurface class:

TCσ∀ (Window, true, lod3MultiSurface, {DJ}, BoundarySurface,
(y.isTypeOf(GroundSurface) ∨ y.isTypeOf(OuterCeilingSurface)),
lod3MultiSurface)
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Fig. 11 Example of universal topological constraint with a selection between a window
opening and the boundary surfaces of kind ground or outer ceiling.
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5.1.8 Universal Topological Constraint with Spatial Functions

Spatial functions can be applied to the geometric attribute of both the con-
straining and the constrained class with the same meaning and considerations
made for the corresponding existential variant presented in Sect. 5.1.3.

Definition 15 (Universal topological constraint with spatial func-
tions (TCs∀)) Let X be a constrained class with a geometric attribute g,
Y be a constraining class with a geometric attribute f and {rel1| . . . |{reln}
a disjunction of relations. A universal topological constraint with spatial func-
tions (TCs∀) allows to apply a spatial function s1() on the geometric attribute
g of X, and/or a spatial function s2() on the geometric attribute f of Y .
TCs∀(X, g, s1(), {rel1| . . . |reln}, Y, f, s2())
context X
inv: Y.allinstances→

forall(a : Y | self.g.s1().check({rel1, . . . , relk}, a.f.s2()))

Examples of this type of constraint can be obtained every time it is necessary to
specify a condition on the boundary or on the planar projection of a geometric
attribute of a class in a universal topological constraint.

5.1.9 Generic Universal Topological Constraint

As done in Sect. 5.1.4 for the existential topological constraint, it is possi-
ble to generalize also the universal one by combining the two variants previ-
ously described which allow the definition of both selections on the constrained
and constraining objects, and spatial functions on the involved geometric at-
tributes. Also in this case, unused selection conditions can be replaced by the
value true, while unused spatial functions with the value null.

TC ∗∀(X,σ1(x), g, s1(), {rel1|..|reln}, Y, σ2(x, y), f, s2())
context X
inv: σ1(self) implies(Y.allinstances→

select(a : Y | σ2(self, a))→
self.g.s1().check({rel1, . . . , relk}, a.f.s2()))

5.1.10 Universal Topological Constraint based on a Chain of Roles

The final kind of universal topological constraint proposed in this paper is the
one that allows to specify a chain of r1 . . . rn roles.

Definition 16 (Universal topological constraint with roles (TCr∀)) Let
X be a constrained class with a geometric attribute g, Y be a constraining class
with a geometric attribute f , {rel1| . . . |reln} be a disjunction of topological
relations, and r1, . . . , rn be a chain of association roles that links the class X
to the class Y . A universal topological constraint with roles (TCr∀) considers as
available objects of the constraining class, only the objects that can be reached
from the constrained object through the chain of roles r1. . . . rn.
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TCr∀(X,σ1(X), (r1, . . . , rn), g, s1(), {rel1| . . . |reln}, Y, σ2(X,Y ), f, s2())
context X
inv: σ1(self) implies (self.r1 →

collect(b2 | b2.r2)→ · · · → collect(bn | bn.rn)→
select(a : Y | σ2(self, a))→

forall(b : Y | self.g.s1().check({rel1, . . . , reln}, b.f.s2())))

The OCL invariant uses a construction similar to the one applied in Sect. 5.1.5
to retrieve the set of constraining objects starting from the chain of roles. Given
such set of retrieved constrained objects, an eventual selection is applied on
them and finally the topological check is performed.

This template can be applied to model some conditions regarding the open-
ings in CityGML.

Example 12 The existential spatial constraint with a binding to a chain of as-
sociation roles can be used to model the conditions characterizing the openings
in CityGML. In particular, let us consider the model in which each window
(or door) of a building has to be embraced inside the outer boundary of the
building itself, see Fig. 4. This condition can be represented through this pair
of constraints:

TCr∀(Building, true, (boundedBy, opening), lod3Solid, boundary(), {CN},
Opening, true, lod3MultiSurface, boundary())

TCr∀(Building, true, (boundedBy, opening), lod3Solid, boundary(), {TC},
Opening, true, lod3MultiSurface, null)

The second constraints ensures that each instance of Opening does not inter-
sect the solid representing the building volume.

5.2 Part-whole Constraint

The Part-whole constraints are a family of integrity constraints that involve
two classes of the schema where the first class Cwhole represents the instances
of the composed objects and the second one Cpart represents the instances of
the composing objects [3]. Usually an association between them Apw (with
roles: whole and parts) is used for denoting the group of parts p ∈ Cpart that
compose a given whole w ∈ Cwhole.

The Part-whole constraint is usually composed of two sections: (i) the first
one requires the satisfaction of a condition by the parts with respect to the
whole; (ii) the second one constraints the whole with respect to the parts.
The first constraint can be specified by using one of the previous template,
by prescribing for example that the geometry g of each part must be spatially
contained into the geometry f of one whole:

TCb∃(Cpart, g, {IN},Cwhole, f )
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or, when the association Apw exists the template based on the chain of roles
can be used:

TCr∀(Cpart, true, (whole), g, null, {IN},Cwhole, true, f, null )

Therefore, no additional templates are necessary for the first part of the
Part-whole constraint. On the other hand, the second part cannot be expressed
by using the previously defined templates, since it usually requires the speci-
fication of a spatial predicate that involves one whole and a set of parts parts,
requiring that the spatial union of the parts is spatially equal to the whole.
Thus, a new template has to be defined.

Definition 17 (Composed-of constraint (PW])) Let Cwhole be a con-
strained class with a geometric attribute g, Cpart be a constraining class with a
geometric attribute f . A composed-of constraint (PW]) requires that for each
x ∈ Cwhole there must exist a set of parts P ⊆ Cparts, such that the spatial
union of the parts is spatially equal to the whole.
PW](Cwhole, g, Cparts, f )
context Cwhole
inv: self.g.check({EQ}, Cparts.allInstances.f→

select(a : GM Object | self.g.check({CN,EQ}, a))→
iterate(b : GM Object, acc : GM Object = ∅ | acc.gUnion(b)))

The function a.gUnion(b) computes the geometric 3D union of the geometries
a and b.

Example 13 This template can be applied to specify some requirements of the
Italian National Core regarding the relationships between the class Building
and the class VolumetricUnit. A building is subdivided into volumetric units,
each one characterized by a uniform eaves height (z-value). In particular, we
can express by a constraint PW] that the solid of each building is always the
composition of a set of solids representing instances of the class VolumetricUnit
(see Fig. 12).

PW](Building, geometry,VolumetricUnit, geometry )
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Fig. 12 Example of part-whole constraint between a building and a set of volumetric units.

By exploiting the association Apw, the following variant of the PW] tem-
plate can be introduced, where instead of selecting the parts by testing whether
their geometry is contained inside the geometry of the whole, the association
is used to link a whole to its parts.
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Definition 18 (Composed-of constraint based on the association (PW r
]))

Let Cwhole be a constrained class with a geometric attribute g, Cpart be a con-
straining class with a geometric attribute f , and Apw be an association linking
each whole with its parts through the role parts. A composed of constraint
based on the association Apw (PW r

]) requires that for each w ∈ Cwhole the set
of parts that can be obtained by navigating the role w.parts must satisfy the
following property: the spatial union of the set parts shall be spatially equal
to the whole w.

PW r
](Cwhole, parts, g, Cparts, f )

context Cwhole
inv: self.g.check({EQ}, self.parts.f →

iterate(b : GM Object, acc : GM Object = ∅ | acc.gUnion(b)))

Similarly to what have been done for the topological constraints, from the
PW] template we can obtain the variants with selections and spatial functions
producing the template PW σ

] and PW s
] , respectively.

In the following section the problem of testing the satisfaction of the set
of constraints defined on a given UML data model is discussed. In particular,
we give some hints about a possible implementation of the templates in SQL
(the chosen platform is PostgreSQL with PostGIS). This is one of the possible
implementations, other technologies can be applied for the constraints valida-
tion, for instance systems like SpatialHadoop of the big data family could be
used instead of PostgreSQL [20].

6 SQL Implementation of Templates

This section gives some hints about the possibility to automatically translate
the constraint templates presented in Sect. 5 into SQL executable procedures.
The general idea is that such SQL procedures can be instantiated and exe-
cuted on a relational database implementing the UML classes through a set of
relational tables. The relational schema can been obtained by following some
mapping rules that guarantee the ability to represent all possible states of
the objects describing an instance of the given UML classes. For example,
each constrained class X (constraining class Y ) is represented by a table T X
(T Y ) containing all its non multi-value properties as columns with the same
name. Conversely, multi-value properties and n−n associations are represented
through additional tables. Notice that X and Y are generic class names that
will be actually instantiated with specific class names, when corresponding
tables are created.

The remainder of this section shows the implementation for the templates
TC∗∃, TC∗∀, TCr∀ and PW] by providing for each of them the corresponding
SQL query that is able to extract all the tuples containing objects of the con-
strained class that violate the constraint. The implementations for the other
templates can be easily derived from these representative examples. In the
SQL queries, parameters are written in italics: X and Y generically denote
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the class names, while the tuple variables x and y) are used to refer to a tuple
of the constrained table T X or constraining table T Y , respectively. Fs1 and
Fs2 are the PostGIS functions corresponding to s1() and s2(), respectively,
the function F∪ represents the implementation in PostGIS of the union of two
geometries in 3D. Each function Freli(g, f) denotes the test required to check
the existence of the topological relation reli between g and f in 3D. Currently
available GIS systems usually provide support for testing 2D topological rela-
tions, while the support for the corresponding 3D functions is quite limited.
Anyway, starting from the formal definition of topological relations given in
Sect. 4.2, it is possible to reduce such tests to a set of tests performed on ele-
mentary object components (such as the boundary, the planar interior parts,
and so on). It follows that these 3D functions can be implemented by com-
bining a set of basic operations commonly available in GIS systems, such as
ST DumpPoints(), ST Boundary(), ST 3DIntersection() and the various 2D
topological relations provided by PostGIS, together with a limited set of ad-
hoc custom implementations. Notice that such ad-hoc implementations have
to be done only once for all constraint templates and they can be replaced by
standard implementations as soon as they become available. As a future work,
we will prove the feasibility of such derivation.

SQL implementation for TC∗∃
TC∗∃(X,σ1(x), g, s1(), {rel1| . . . |reln}, Y, σ2(x, y), f, s2())
SQL query
SELECT x.* FROM T X as x
WHERE σ1(x) AND

NOT EXISTS( SELECT 1 FROM T Y as y
WHERE σ2(x,y) AND

(Frel1(Fs1(x.g), Fs2(y.f)) OR...OR
Freln(Fs1(x.g), Fs2(y.f))))

SQL implementation for TC∗∀
TC∗∀(X,σ1(x), g, s1(), {rel1|..|reln}, Y, σ2(x, y), f, s2())
SQL query
SELECT x.* FROM T X as x
WHERE σ1(x) AND

EXISTS( SELECT 1 FROM T Y as y
WHERE σ2(x,y) AND

NOT(Frel1(Fs1(x.g), Fs2(y.f)) OR...OR
Freln(Fs1(x.g), Fs2(y.f))))
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SQL implementation for TC r
∀

TC r
∀(X,σ1(x), (r1, .., rm), g, s1(), {rel1|..|reln}, Y, σ2(x, y), f, s2())

SQL query
SELECT x.* FROM T X as x
WHERE σ1(x) AND EXISTS

(SELECT 1 FROM T Y as y
JOIN Tm−1 as ym−1 ON ym−1.rm = y.ID
JOIN ... JOIN T1 as y1 ON y1.r2 = y2.ID

WHERE x.r1 = y1.ID AND σ2(x,y) AND
NOT(Frel1(Fs1(x.g),Fs2(y.f)) OR ... OR

Freln(Fs1(x.g),Fs2(y.f))))

SQL implementation for PW]
PW](Cwhole, g, Cpart, f)
SQL query
SELECT x.* FROM T Cwhole as x, T Cpart as y
WHERE FCN(x.g, y.f) OR FEQ(x.g, y.f)
GROUP BY x.ID
HAVING NOT FEQ(x.g, F∪(y.f))

For example, the query for testing the first constraint of Ex. 12 can be
obtained by instantiating the SQL query TC r

∀, obtaining the following:

SQL Query
SELECT x.*
FROM T Building as x
WHERE true AND EXISTS

(SELECT 1
FROM V Opening as y JOIN V BoundarySurface as y1

ON y1.opening=y.ID
WHERE x.boundedBy = y1.ID AND true AND

NOT(FCN(ST Boundary(x.lod3Solid),
ST Boundary(y.lod3MultiSurface)))

7 Conclusions and future work

This paper proposes an approach to deal with the problem of specifying spatial
integrity constraints at conceptual level in 3D city models written in UML. In
particular, the approach uses a set of predefined constraint templates, which
allow the model designers to specify semantic properties without using OCL
directly. The use of such templates not only eases the modeling activity, but
also avoids the use of custom ad-hoc implementation for each single constraint,
opening the way to more optimized validation procedures.

The proposed topological constraint templates have been defined with ref-
erence to a set of 3D geometric types compliant with the ISO Standard 19107,
and a set of 3D topological relations defined by means of the well-known
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9-intersection model. Each template is characterized by a logical structure
(existential or universal) and a topological structure given by a disjunction of
topological relations that have to be checked between pair of geometries. Some
extensions of the basic template forms have been provided which include the
possibility to define selections on both the constrained and the constraining
classes, apply spatial functions on the geometric attributes, or use a chain of
association roles in order to identify the desired constraining instances.

For each defined template, the paper provides its formalization in OCL,
giving a clear idea about the different level of complexity between the use of the
templates and of the direct use of the OCL language. Moreover, some examples
are described which refers to CityGML, Inspire and the Italian National Core.

Finally, the paper provides some hints about the feasibility of the imple-
mentation of these templates using the current technology, by choosing Post-
GIS as representative system. In particular, it shows an example of SQL query
that can be automatically generated by one instantiated OCL template.

Regarding to the expressiveness of the proposed framework, we can observe
that the set of the defined templates does not cover the set of all possible OCL
expressions that can be specified on a given UML class diagram. However,
although the proposed framework contains only six templates: (i) two tem-
plate for expressing existential topological constraints (TC∗∃ and TCr∃); (ii)
two template for expressing universal topological constraints (TC∗∀ and TCr∀);
(iii) two additional template for expressing part-whole constraints (PW ∗] and
PW r

]); it is able to specify the most interesting constraints of the considered
UML class diagrams (i.e., CityGML, Inspire and the Italian National Core).
In particular, we can express:

– all the possible existential and universal constraints testing a disjunction
of the topological relations in Tab. 1 involving two geometric attributes g
and f of two classes X and Y of the given class diagram;

– all the variants of this first set of constraints that can be obtained by
selecting the constrained objects and the constraining objects by means of
predicates on their local properties (attributes and roles) and/or predicates
that specify join conditions between X and Y ;

– all the variants produced by introducing geometric functions that can mod-
ify the geometries before testing the topological relations;

– all the variants produced by pruning the constraining object by means of
a chain of association roles;

– all the constraints expressing a geometric composition (based on the geo-
metric union), with all the variants obtained by introducing selection con-
ditions and spatial functions;

– the partition constraint between a class Cwhole and a class Cpart by means of
a composition constraint PW](Cwhole, g, Cpart, f), plus a TCb∃(Cpart, f, {IN |
EQ}, Cwhole, g) on the parts, for expressing their geometric containment in
a whole, and a TCb∀(Cpart, f, {DJ}, Cpart, f), for expressing the geometric
disjunction among the parts.
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Possible extensions of the set of constraints regards: (i) the introduction
of selection condition depending on non local properties, (ii) the introduction
of geometric functions on set of geometries, (iii) the introduction of geometric
functions that compute distance-based properties. Every extension to the set
of templates requires to specify the semantics of the template by an OCL
expressions, the parameters of the template and the corresponding translation
in the target technology (i.e. SQL in PostGIS, for example).

Future work will regard: (i) providing a detailed and formal demonstration
about the possibility of implementing the 3D topological relations presented
in Sect. 4.2 by combining a set of basic functions commonly available in GIS
systems, such as PostGIS, together with a very restricted set of custom proce-
dures; (ii) the extension of the templates to other cases, as specified above; (iii)
the implementation of validator tools for city data stored in spatial DBMS;
(iv) the testing of the proposed approach on huge datasets using a map-reduce
framework, as done in [20] for 2D spatial constraint templates, (v) the exten-
sion of the proposed approach for the definition of integrity constraints on
multi-accuracy spatial datasets [1].
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