18,170 research outputs found

    Odd Harmonious Labeling of Some Graphs

    Get PDF
    The labeling of discrete structures is a potential area of research due to its wide range of applications. The present work is focused on one such labeling called odd harmonious labeling

    A framework for forcing constructions at successors of singular cardinals

    Get PDF
    We describe a framework for proving consistency results about singular cardinals of arbitrary cofinality and their successors. This framework allows the construction of models in which the Singular Cardinals Hypothesis fails at a singular cardinal κ of uncountable cofinality, while κ^+ enjoys various combinatorial properties. As a sample application, we prove the consistency (relative to that of ZFC plus a supercompact cardinal) of there being a strong limit singular cardinal κ of uncountable cofinality where SCH fails and such that there is a collection of size less than 2^{κ^+} of graphs on κ^+ such that any graph on κ^+ embeds into one of the graphs in the collection

    Some colouring problems for Paley graphs

    Get PDF
    The Paley graph Pq, where q≡1(mod4) is a prime power, is the graph with vertices the elements of the finite field Fq and an edge between x and y if and only if x-y is a non-zero square in Fq. This paper gives new results on some colouring problems for Paley graphs and related discussion. © 2005 Elsevier B.V. All rights reserved

    On the number of unlabeled vertices in edge-friendly labelings of graphs

    Full text link
    Let GG be a graph with vertex set V(G)V(G) and edge set E(G)E(G), and ff be a 0-1 labeling of E(G)E(G) so that the absolute difference in the number of edges labeled 1 and 0 is no more than one. Call such a labeling ff \emph{edge-friendly}. We say an edge-friendly labeling induces a \emph{partial vertex labeling} if vertices which are incident to more edges labeled 1 than 0, are labeled 1, and vertices which are incident to more edges labeled 0 than 1, are labeled 0. Vertices that are incident to an equal number of edges of both labels we call \emph{unlabeled}. Call a procedure on a labeled graph a \emph{label switching algorithm} if it consists of pairwise switches of labels. Given an edge-friendly labeling of KnK_n, we show a label switching algorithm producing an edge-friendly relabeling of KnK_n such that all the vertices are labeled. We call such a labeling \textit{opinionated}.Comment: 7 pages, accepted to Discrete Mathematics, special issue dedicated to Combinatorics 201
    • …
    corecore