23 research outputs found

    Maximizing Happiness in Graphs of Bounded Clique-Width

    Full text link
    Clique-width is one of the most important parameters that describes structural complexity of a graph. Probably, only treewidth is more studied graph width parameter. In this paper we study how clique-width influences the complexity of the Maximum Happy Vertices (MHV) and Maximum Happy Edges (MHE) problems. We answer a question of Choudhari and Reddy '18 about parameterization by the distance to threshold graphs by showing that MHE is NP-complete on threshold graphs. Hence, it is not even in XP when parameterized by clique-width, since threshold graphs have clique-width at most two. As a complement for this result we provide a nO(cw)n^{\mathcal{O}(\ell \cdot \operatorname{cw})} algorithm for MHE, where \ell is the number of colors and cw\operatorname{cw} is the clique-width of the input graph. We also construct an FPT algorithm for MHV with running time O((+1)O(cw))\mathcal{O}^*((\ell+1)^{\mathcal{O}(\operatorname{cw})}), where \ell is the number of colors in the input. Additionally, we show O(n2)\mathcal{O}(\ell n^2) algorithm for MHV on interval graphs.Comment: Accepted to LATIN 202

    Parameterized Algorithms for Graph Partitioning Problems

    Get PDF
    In parameterized complexity, a problem instance (I, k) consists of an input I and an extra parameter k. The parameter k usually a positive integer indicating the size of the solution or the structure of the input. A computational problem is called fixed-parameter tractable (FPT) if there is an algorithm for the problem with time complexity O(f(k).nc ), where f(k) is a function dependent only on the input parameter k, n is the size of the input and c is a constant. The existence of such an algorithm means that the problem is tractable for fixed values of the parameter. In this thesis, we provide parameterized algorithms for the following NP-hard graph partitioning problems: (i) Matching Cut Problem: In an undirected graph, a matching cut is a partition of vertices into two non-empty sets such that the edges across the sets induce a matching. The matching cut problem is the problem of deciding whether a given graph has a matching cut. The Matching Cut problem is expressible in monadic second-order logic (MSOL). The MSOL formulation, together with Courcelle’s theorem implies linear time solvability on graphs with bounded tree-width. However, this approach leads to a running time of f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. The dependency of f(||ϕ||, t) on ||ϕ|| can be as bad as a tower of exponentials. In this thesis we give a single exponential algorithm for the Matching Cut problem with tree-width alone as the parameter. The running time of the algorithm is 2O(t) · n. This answers an open question posed by Kratsch and Le [Theoretical Computer Science, 2016]. We also show the fixed parameter tractability of the Matching Cut problem when parameterized by neighborhood diversity or other structural parameters. (ii) H-Free Coloring Problems: In an undirected graph G for a fixed graph H, the H-Free q-Coloring problem asks to color the vertices of the graph G using at most q colors such that none of the color classes contain H as an induced subgraph. That is every color class is H-free. This is a generalization of the classical q-Coloring problem, which is to color the vertices of the graph using at most q colors such that no pair of adjacent vertices are of the same color. The H-Free Chromatic Number is the minimum number of colors required to H-free color the graph. For a fixed q, the H-Free q-Coloring problem is expressible in monadic secondorder logic (MSOL). The MSOL formulation leads to an algorithm with time complexity f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. In this thesis we present the following explicit combinatorial algorithms for H-Free Coloring problems: • An O(q O(t r ) · n) time algorithm for the general H-Free q-Coloring problem, where r = |V (H)|. • An O(2t+r log t · n) time algorithm for Kr-Free 2-Coloring problem, where Kr is a complete graph on r vertices. The above implies an O(t O(t r ) · n log t) time algorithm to compute the H-Free Chromatic Number for graphs with tree-width at most t. Therefore H-Free Chromatic Number is FPT with respect to tree-width. We also address a variant of H-Free q-Coloring problem which we call H-(Subgraph)Free q-Coloring problem, which is to color the vertices of the graph such that none of the color classes contain H as a subgraph (need not be induced). We present the following algorithms for H-(Subgraph)Free q-Coloring problems. • An O(q O(t r ) · n) time algorithm for the general H-(Subgraph)Free q-Coloring problem, which leads to an O(t O(t r ) · n log t) time algorithm to compute the H- (Subgraph)Free Chromatic Number for graphs with tree-width at most t. • An O(2O(t 2 ) · n) time algorithm for C4-(Subgraph)Free 2-Coloring, where C4 is a cycle on 4 vertices. • An O(2O(t r−2 ) · n) time algorithm for {Kr\e}-(Subgraph)Free 2-Coloring, where Kr\e is a graph obtained by removing an edge from Kr. • An O(2O((tr2 ) r−2 ) · n) time algorithm for Cr-(Subgraph)Free 2-Coloring problem, where Cr is a cycle of length r. (iii) Happy Coloring Problems: In a vertex-colored graph, an edge is happy if its endpoints have the same color. Similarly, a vertex is happy if all its incident edges are happy. we consider the algorithmic aspects of the following Maximum Happy Edges (k-MHE) problem: given a partially k-colored graph G, find an extended full k-coloring of G such that the number of happy edges are maximized. When we want to maximize the number of happy vertices, the problem is known as Maximum Happy Vertices (k-MHV). We show that both k-MHE and k-MHV admit polynomial-time algorithms for trees. We show that k-MHE admits a kernel of size k + `, where ` is the natural parameter, the number of happy edges. We show the hardness of k-MHE and k-MHV for some special graphs such as split graphs and bipartite graphs. We show that both k-MHE and k-MHV are tractable for graphs with bounded tree-width and graphs with bounded neighborhood diversity. vii In the last part of the thesis we present an algorithm for the Replacement Paths Problem which is defined as follows: Let G (|V (G)| = n and |E(G)| = m) be an undirected graph with positive edge weights. Let PG(s, t) be a shortest s − t path in G. Let l be the number of edges in PG(s, t). The Edge Replacement Path problem is to compute a shortest s − t path in G\{e}, for every edge e in PG(s, t). The Node Replacement Path problem is to compute a shortest s−t path in G\{v}, for every vertex v in PG(s, t). We present an O(TSP T (G) + m + l 2 ) time and O(m + l 2 ) space algorithm for both the problems, where TSP T (G) is the asymptotic time to compute a single source shortest path tree in G. The proposed algorithm is simple and easy to implement

    Confronting intractability via parameters

    Full text link

    Algorithms for Fundamental Problems in Computer Networks.

    Full text link
    Traditional studies of algorithms consider the sequential setting, where the whole input data is fed into a single device that computes the solution. Today, the network, such as the Internet, contains of a vast amount of information. The overhead of aggregating all the information into a single device is too expensive, so a distributed approach to solve the problem is often preferable. In this thesis, we aim to develop efficient algorithms for the following fundamental graph problems that arise in networks, in both sequential and distributed settings. Graph coloring is a basic symmetry breaking problem in distributed computing. Each node is to be assigned a color such that adjacent nodes are assigned different colors. Both the efficiency and the quality of coloring are important measures of an algorithm. One of our main contributions is providing tools for obtaining colorings of good quality whose existence are non-trivial. We also consider other optimization problems in the distributed setting. For example, we investigate efficient methods for identifying the connectivity as well as the bottleneck edges in a distributed network. Our approximation algorithm is almost-tight in the sense that the running time matches the known lower bound up to a poly-logarithmic factor. For another example, we model how the task allocation can be done in ant colonies, when the ants may have different capabilities in doing different tasks. The matching problems are one of the classic combinatorial optimization problems. We study the weighted matching problems in the sequential setting. We give a new scaling algorithm for finding the maximum weight perfect matching in general graphs, which improves the long-standing Gabow-Tarjan's algorithm (1991) and matches the running time of the best weighted bipartite perfect matching algorithm (Gabow and Tarjan, 1989). Furthermore, for the maximum weight matching problem in bipartite graphs, we give a faster scaling algorithm whose running time is faster than Gabow and Tarjan's weighted bipartite {it perfect} matching algorithm.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113540/1/hsinhao_1.pd

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Order-Related Problems Parameterized by Width

    Get PDF
    In the main body of this thesis, we study two different order theoretic problems. The first problem, called Completion of an Ordering, asks to extend a given finite partial order to a complete linear order while respecting some weight constraints. The second problem is an order reconfiguration problem under width constraints. While the Completion of an Ordering problem is NP-complete, we show that it lies in FPT when parameterized by the interval width of ρ. This ordering problem can be used to model several ordering problems stemming from diverse application areas, such as graph drawing, computational social choice, and computer memory management. Each application yields a special partial order ρ. We also relate the interval width of ρ to parameterizations for these problems that have been studied earlier in the context of these applications, sometimes improving on parameterized algorithms that have been developed for these parameterizations before. This approach also gives some practical sub-exponential time algorithms for ordering problems. In our second main result, we combine our parameterized approach with the paradigm of solution diversity. The idea of solution diversity is that instead of aiming at the development of algorithms that output a single optimal solution, the goal is to investigate algorithms that output a small set of sufficiently good solutions that are sufficiently diverse from one another. In this way, the user has the opportunity to choose the solution that is most appropriate to the context at hand. It also displays the richness of the solution space. There, we show that the considered diversity version of the Completion of an Ordering problem is fixed-parameter tractable with respect to natural paramaters that capture the notion of diversity and the notion of sufficiently good solutions. We apply this algorithm in the study of the Kemeny Rank Aggregation class of problems, a well-studied class of problems lying in the intersection of order theory and social choice theory. Up to this point, we have been looking at problems where the goal is to find an optimal solution or a diverse set of good solutions. In the last part, we shift our focus from finding solutions to studying the solution space of a problem. There we consider the following order reconfiguration problem: Given a graph G together with linear orders τ and τ ′ of the vertices of G, can one transform τ into τ ′ by a sequence of swaps of adjacent elements in such a way that at each time step the resulting linear order has cutwidth (pathwidth) at most w? We show that this problem always has an affirmative answer when the input linear orders τ and τ ′ have cutwidth (pathwidth) at most w/2. Using this result, we establish a connection between two apparently unrelated problems: the reachability problem for two-letter string rewriting systems and the graph isomorphism problem for graphs of bounded cutwidth. This opens an avenue for the study of the famous graph isomorphism problem using techniques from term rewriting theory. In addition to the main part of this work, we present results on two unrelated problems, namely on the Steiner Tree problem and on the Intersection Non-emptiness problem from automata theory.Doktorgradsavhandlin
    corecore