53 research outputs found

    On Improving Performance of Victim Macrocell Users in LTE HetNets with Closed Access Femtocells

    Get PDF
    Todays wireless and cellular networks demand a minimum data rate requirements for its users, as the users have apparently become dependent on mobile networks with the advent smartphones, tablets, and other wireless gadgets. These high expectations from users have given rise in traf- c demand. Cellular operators are also looking for solutions to eradicate the network issues like call drops, choppy videos, and slow downloads. All of these trends will continue and have fuelled the interest of researchers in wireless and cellular networks. In order to attain the high data de- mand from users, operators are deploying new solutions in a coverage prone and highly populated cell areas. 3rd Generation Partnership Project (3GPP) introduced Heterogeneous networks (Het- Nets) in LTE-Advanced (Long Term Evolution - Advanced) for improving the experience of mobile users. The HetNets launched new network topologies, which are cost-e ective and also improves the data rate of mobile users. However, dense deployment of these new network nodes can also bring a lot of challenges i.e., interference control and management of new network nodes. Hence, 3GPP speci ed various interference mitigation technologies, which includes ICIC (Intercell inter- ference coordination), Enhanced Intercell interference coordination (eICIC), and Further Enhanced Intercell interference coordination (feICIC). In this thesis, we focus on the cross-tier interference between Macrocell and Femtocell, and the performance enhancement of Victim Macrocell users. We also proposed a centralized algorithm, which provides coordination between interfering Femtocell (Closed Access Mode) and Macrocell, and o er a joint Almost Blank Subframe (ABSF) and power control scheme for Femtocell muting. The two prime metric discussed in our thesis are; a) attuning the transmission power during ABSF for Femtocell and then calculating the number of ABSF re- quired, and b) determining appropriate subframes for muting an arbitrary Femtocell. Centralized algorithm tracks the state of Macrocell users. A Macrocell user is referred as Victim Macrocell user if the signal-to-interference-plus-noise ratio (SINR) value of Macrocell user degrades from the required threshold value. In this work, we performed only Femtocell muting to show the e ect of dense deployment of Femtocells on Macrocell users. During ABSF muting Femtocell automatically adjusts its transmission power depending upon the level of interference su ered by Victim Macrocell users, which also minimizes the unnecessary degradation in Femtocell users performance. In order to increase the favorable chances of scheduling Victim Macrocell users during ABSF by its serving Macrocell, the centralized algorithm mutes Femtocells in a round robin fashion and eradicates un- necessary Femtocell muting. Our proposed scheme, RrMute compared with various other schemes and the simulation results show that RrMute enhances the performance of Victim Macrocell users, while simultaneously not jeopardizing the performance of Femtocell users

    A Study about Heterogeneous Network Issues Management based on Enhanced Inter-cell Interference Coordination and Machine Learning Algorithms

    Get PDF
    Under the circumstance of fast growing demands for mobile data, Heterogeneous Networks (HetNets) has been considered as one of the key technologies to solve 1000 times mobile data challenge in the coming decade. Although the unique multi-tier topology of HetNets has achieved high spectrum efficiency and enhanced Quality of Service (QoS), it also brings a series of critical issues. In this thesis, we present an investigation on understanding the cause of HetNets challenges and provide a research on state of arts techniques to solve three major issues: interference, offloading and handover. The first issue addressed in the thesis is the cross-tier interference of HetNets. We introduce Almost Blank Subframes (ABS) to free small cell UEs from cross-tier interference, which is the key technique of enhanced Inter-Cell Interference Coordination (eICIC). Nash Bargain Solution (NBS) is applied to optimize ABS ratio and UE partition. Furthermore, we propose a power based multi-layer NBS Algorithm to obtain optimal parameters of Further enhanced Inter-cell Interference Coordination (FeICIC), which significantly improve macrocell efficiency compared to eICIC. This algorithm not only introduces dynamic power ratio but also defined opportunity cost for each layer instead of conventional zero-cost partial fairness. Simulation results show the performance of proposed algorithm may achieve up to 31.4% user throughput gain compared to eICIC and fixed power ratio FeICIC. This thesis’ second focusing issue is offloading problem of HetNets. This includes (1) UE offloading from macro cell and (2) small cell backhaul offloading. For first aspect, we have discussed the capability of machine learning algorithms tackling this challenge and propose the User-Based K-means Algorithm (UBKCA). The proposed algorithm establishes a closed loop Self-Organization system on our HetNets scenario to maintain desired offloading factor of 50%, with cell edge user factor 17.5% and CRE bias of 8dB. For second part, we further apply machine learning clustering method to establish cache system, which may achieve up to 70.27% hit-ratio and reduce request latency by 60.21% for Youtube scenario. K-Nearest Neighbouring (KNN) is then applied to predict new users’ content preference and prove our cache system’s suitability. Besides that, we have also proposed a system to predict users’ content preference even if the collected data is not complete. The third part focuses on offloading phase within HetNets. This part detailed discusses CRE’s positive effect on mitigating ping-pong handover during UE offloading, and CRE’s negative effect on increasing cross-tier interference. And then a modified Markov Chain Process is established to map the handover phases for UE to offload from macro cell to small cell and vice versa. The transition probability of MCP has considered both effects of CRE so that the optimal CRE value for HetNets can be achieved, and result for our scenario is 7dB. The combination of CRE and Handover Margin is also discussed

    Radio resource management strategies for interference mitigation in 4G heterogeneous wireless networks

    Get PDF
    The new era of mobile communications is dictated by the user demand for robust and high speed connections, data hungry applications and seamless connectivity. Operators and researchers all over the world are challenged to fulfill these requirements by providing enhanced coverage, increased capacity and efficient usage of the scarce spectrum. The introduction of the fourth generation systems (4G), LTE and LTE-A, have set the initiative for a technology evolution that offers new possibilities and is able to satisfy the user requirements and overcome the imposed challenges. However, and despite the improvements brought by the LTE and LTE-A systems, there are certain constraints that still need to be surpassed. LTE for example adopts innovating technologies, such as Orthogonal Frequency Division Multiplexing Access (OFDMA) that improves the spectral efficiency and reduces the Intra-Cell Interference. Nevertheless, Inter-Cell Interference (ICI) remains a constraining factor that can degrade the system capacity and limit the overall performance of the network. On that respect, Inter-Cell Interference Coordination (ICIC) techniques are adopted with target the interference mitigation. One of the limitations of these techniques is that follow static configurations lacking of flexibility and adaptation on network changes. Moreover, LTE-A employs enhanced and new techniques and involves alternative strategies. A promising solution lies on the introduction of Heterogeneous Networks (HetNets), which are networks that include low power small cells under the already existing macro cellular network and exploit several other technologies, such as WiFi. HetNets can further improve the network capacity, enhance the coverage and provide higher speed data transfer. However, due to the heterogeneous nature of the network, traditional methods for the user association, resource allocation and interference mitigation may not always be suitable since their design was based on homogeneous deployments. As such, new and enhanced methods are introduced, such as enhanced ICIC (eICIC), with their accompanied requirements and challenges. Motivated by the abovementioned aspects, this thesis has been focused on the study of ICIC and eICIC schemes, the identification of the related challenges, the enhancement of existing schemes and the proposal of novel solutions. In particular in the initial stages of the work, ICIC techniques have been studied and analyzed. A distributed algorithm that performs dynamic channel allocation has been developed for homogeneous deployments and extended later on to include heterogeneous networks. The solution has been optimized with the use of the Gibbs Sampler, while the setting of algorithm related parameters has been addressed through a detailed analysis. Moreover, a possible implementation of the solution has been presented in detail. The efficiency of the proposed schemes has been demonstrated through simulations and comparisons with benchmark schemes. In the next steps, the work has targeted eICIC techniques with purpose the investigation and analysis of the main constraining issues related to the user association, resource management and interference mitigation. Novel eICIC schemes that aim a better resource management and the overall capacity improvement have been developed and presented in detail, while the performance of the solutions has been shown through simulations and comparisons with reference schemes. Moreover, an optimized eICIC solution has been implemented based on genetic algorithms. Simulation results and comparisons with reference schemes have demonstrated the efficiency of the solution, while the selected configurations are discussed and analyzed.La nueva era de las comunicaciones móviles viene marcada por la demanda de los usuarios por conseguir conexiones robustas de alta velocidad que permitan soportar aplicaciones de datos de elevados requerimientos. El cumplimiento de estos requisitos conlleva la necesidad de mejorar la cobertura, incrementar la capacidad y utilizar el espectro eficientemente. La introducción de los sistemas de cuarta generación (4G), LTE y LTE-A, ha dado lugar a una tecnología que ofrece nuevas posibilidades y es capaz de satisfacer las necesidades de los usuarios y superar los retos impuestos. Sin embargo, y a pesar de las mejoras introducidas por estos sistemas, hay ciertas limitaciones que todavía tienen que ser superadas. LTE, por ejemplo, adopta tecnologías tales como OFDMA que mejora la eficiencia espectral y reduce la interferencia intracelular. Sin embargo, la interferencia intercelular (ICI) sigue siendo un factor limitante que puede degradar la capacidad del sistema y limitar el rendimiento global de la red. En ese sentido, se requieren técnicas de coordinación de interferencias intercelulares (ICIC) con el objetivo de mitigar dicha interferencia. Una de las limitaciones de estas técnicas es que siguen configuraciones estáticas que carecen de flexibilidad y capacidad de adaptación a los cambios de la red. Por otra parte, LTE-A introduce nuevas mejoras, como las redes heterogéneas (HetNets), que son redes que incluyen pequeñas células de baja potencia conjuntamente con la red macrocellular y también pueden explotar diferentes tecnologías, como WiFi. Las HetNets pueden mejorar aún más la capacidad de la red, mejorar la cobertura y facilitar la transferencia de datos de mayor velocidad. Sin embargo, debido a la naturaleza heterogénea de la red, los métodos tradicionales para la asociación de usuarios, asignación de recursos y reducción de la interferencia pueden no ser siempre adecuados, ya que su diseño se basó en despliegues homogéneos. En este sentido, es preciso introducir técnicas mejoradas de ICIC, denominadas en inglés eICIC (enhanced-ICIC), que involucran nuevos requerimientos y retos. En base a todos estos aspectos, esta tesis se ha centrado en el estudio de los sistemas de ICIC y eICIC en redes celulares, incluyendo la identificación de los retos relacionados con la mejora de los sistemas existentes y la propuesta de soluciones novedosas. En particular, en las etapas iniciales de la tesis se han estudiado y analizado las técnicas ICIC, y se ha desarrollado un algoritmo distribuido que realiza la asignación dinámica de canales para despliegues homogéneos, ampliándose posteriormente para su utilización en redes heterogéneas. La solución opera de forma optimizada mediante el uso de la técnica denominada Gibbs Sampler, mientras que el ajuste de parámetros relacionado con el algoritmo se ha abordado a través de un análisis detallado basado en simulaciones. Por otra parte, una posible implementación de la solución se ha presentado en detalle. La eficiencia de los esquemas propuestos se ha demostrado a través de simulaciones y comparaciones con sistemas de referencia. En los siguientes pasos, el trabajo se ha centrado en las técnicas eICIC con el propósito de investigar y analizar los principales problemas relacionadas con la asociación de usuarios, gestión de recursos y mitigación de la interferencia. A partir de aquí se han desarrollado nuevos esquemas de eICIC que tienen como objetivo una mejor gestión de los recursos y la mejora general de la capacidad. El rendimiento de las soluciones se ha demostrado a través de simulaciones y comparaciones con sistemas de referencia. Por otra parte, se ha propuesto una solución eICIC optimizada basada en algoritmos genéticos. La eficacia de dicha solución se ha demostrado mediante simulaciones, a la vez que se han analizado las diferentes configuraciones seleccionadas por el proceso de optimización.Postprint (published version

    Towards UAV Assisted 5G Public Safety Network

    Get PDF
    Ensuring ubiquitous mission-critical public safety communications (PSC) to all the first responders in the public safety network is crucial at an emergency site. The first responders heavily rely on mission-critical PSC to save lives, property, and national infrastructure during a natural or human-made emergency. The recent advancements in LTE/LTE-Advanced/5G mobile technologies supported by unmanned aerial vehicles (UAV) have great potential to revolutionize PSC. However, limited spectrum allocation for LTE-based PSC demands improved channel capacity and spectral efficiency. An additional challenge in designing an LTE-based PSC network is achieving at least 95% coverage of the geographical area and human population with broadband rates. The coverage requirement and efficient spectrum use in the PSC network can be realized through the dense deployment of small cells (both terrestrial and aerial). However, there are several challenges with the dense deployment of small cells in an air-ground heterogeneous network (AG-HetNet). The main challenges which are addressed in this research work are integrating UAVs as both aerial user and aerial base-stations, mitigating inter-cell interference, capacity and coverage enhancements, and optimizing deployment locations of aerial base-stations. First, LTE signals were investigated using NS-3 simulation and software-defined radio experiment to gain knowledge on the quality of service experienced by the user equipment (UE). Using this understanding, a two-tier LTE-Advanced AG-HetNet with macro base-stations and unmanned aerial base-stations (UABS) is designed, while considering time-domain inter-cell interference coordination techniques. We maximize the capacity of this AG-HetNet in case of a damaged PSC infrastructure by jointly optimizing the inter-cell interference parameters and UABS locations using a meta-heuristic genetic algorithm (GA) and the brute-force technique. Finally, considering the latest specifications in 3GPP, a more realistic three-tier LTE-Advanced AG-HetNet is proposed with macro base-stations, pico base-stations, and ground UEs as terrestrial nodes and UABS and aerial UEs as aerial nodes. Using meta-heuristic techniques such as GA and elitist harmony search algorithm based on the GA, the critical network elements such as energy efficiency, inter-cell interference parameters, and UABS locations are all jointly optimized to maximize the capacity and coverage of the AG-HetNet

    ENERGY EFFICIENCY VIA HETEROGENEOUS NETWORK

    Get PDF
    The mobile telecommunication industry is growing at a phenomenal rate. On a daily basis, there are continuous inflow of mobile users and sophisticated devices into the mobile network. This has triggered a meteoric rise in mobile traffic; forcing network operators to embark on a series of projects to increase the capacity and coverage of mobile networks in line with growing traffic demands. A corollary to this development is the momentous rise in energy bills for mobile operators and the emission of a significant amount of CO2 into the atmosphere. This has become worrisome to the extent that regulatory bodies and environmentalist are calling for the adoption of more “green operation” to curtail these challenges. Green communication is an all-inclusive approach that champions the cause of overall network improvement, reduction in energy consumption and mitigation of carbon emission. The emergence of Heterogeneous network came as a means of fulfilling the vision of Green communication. Heterogeneous network is a blend of low power node overlaid on Macrocell to offload traffic from the Macrocell and enhance quality of service of cell edge users. Heterogeneous network seeks to boost the performance of LTE-Advanced beyond its present limit, and at the same time, reduce energy consumption in mobile wireless network. In this thesis, we explore the potential of heterogeneous network in enhancing the energy efficiency of mobile wireless network. Simulation process sees the use of a co-deployment of Macrocell and Picocell in cluster (Hot spot) and normal scenario. Finally, we compared the performance of each scenario using Cell Energy Efficiency and the Area Energy Efficiency as our performance metricfi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Optimisation de la gestion des interférences inter-cellulaires et de l'attachement des mobiles dans les réseaux cellulaires LTE

    Get PDF
    Driven by an exponential growth in mobile broadband-enabled devices and a continue dincrease in individual data consumption, mobile data traffic has grown 4000-fold over the past 10 years and almost 400-million-fold over the past 15 years. Homogeneouscellular networks have been facing limitations to handle soaring mobile data traffic and to meet the growing end-user demand for more bandwidth and betterquality of experience. These limitations are mainly related to the available spectrumand the capacity of the network. Telecommunication industry has to address these challenges and meet exploding demand. At the same time, it has to guarantee a healthy economic model to reduce the carbon footprint which is caused by mobile communications.Heterogeneous Networks (HetNets), composed of macro base stations and low powerbase stations of different types, are seen as the key solution to improve spectral efficiency per unit area and to eliminate coverage holes. In such networks, intelligent user association and interference management schemes are needed to achieve gains in performance. Due to the large imbalance in transmission power between macroand small cells, user association based on strongest signal received is not adapted inHetNets as only few users would attach to low power nodes. A technique based onCell Individual Offset (CIO) is therefore required to perform load balancing and to favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is addedto users’ Reference Signal Received Power (RSRP) measurements and hence inducing handover towards different eNodeBs. As Long Term Evolution (LTE) cellular networks use the same frequency sub-bands, mobile users may experience strong inter-cellxv interference, especially at cell edge. Therefore, there is a need to coordinate resource allocation among the cells and minimize inter-cell interference. To mitigate stronginter-cell interference, the resource, in time, frequency and power domain, should be allocated efficiently. A pattern for each dimension is computed to permit especially for cell edge users to benefit of higher throughput and quality of experience. The optimization of all these parameters can also offer gain in energy use. In this thesis,we propose a concrete versatile dynamic solution performing an optimization of user association and resource allocation in LTE cellular networks maximizing a certainnet work utility function that can be adequately chosen. Our solution, based on gametheory, permits to compute Cell Individual Offset and a pattern of power transmission over frequency and time domain for each cell. We present numerical simulations toillustrate the important performance gain brought by this optimization. We obtain significant benefits in the average throughput and also cell edge user through put of40% and 55% gains respectively. Furthermore, we also obtain a meaningful improvement in energy efficiency. This work addresses industrial research challenges and assuch, a prototype acting on emulated HetNets traffic has been implemented.Conduit par une croissance exponentielle dans les appareils mobiles et une augmentation continue de la consommation individuelle des données, le trafic de données mobiles a augmenté de 4000 fois au cours des 10 dernières années et près de 400millions fois au cours des 15 dernières années. Les réseaux cellulaires homogènes rencontrent de plus en plus de difficultés à gérer l’énorme trafic de données mobiles et à assurer un débit plus élevé et une meilleure qualité d’expérience pour les utilisateurs.Ces difficultés sont essentiellement liées au spectre disponible et à la capacité du réseau.L’industrie de télécommunication doit relever ces défis et en même temps doit garantir un modèle économique pour les opérateurs qui leur permettra de continuer à investir pour répondre à la demande croissante et réduire l’empreinte carbone due aux communications mobiles. Les réseaux cellulaires hétérogènes (HetNets), composés de stations de base macro et de différentes stations de base de faible puissance,sont considérés comme la solution clé pour améliorer l’efficacité spectrale par unité de surface et pour éliminer les trous de couverture. Dans de tels réseaux, il est primordial d’attacher intelligemment les utilisateurs aux stations de base et de bien gérer les interférences afin de gagner en performance. Comme la différence de puissance d’émission est importante entre les grandes et petites cellules, l’association habituelle des mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptée dans les HetNets. Une technique basée sur des offsets individuelles par cellule Offset(CIO) est donc nécessaire afin d’équilibrer la charge entre les cellules et d’augmenter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette offset est ajoutée à la valeur moyenne de la puissance reçue du signal de référence(RSRP) mesurée par le mobile et peut donc induire à un changement d’attachement vers différents eNodeB. Comme les stations de bases dans les réseaux cellulaires LTE utilisent les mêmes sous-bandes de fréquences, les mobiles peuvent connaître une forte interférence intercellulaire, en particulier en bordure de cellules. Par conséquent, il est primordial de coordonner l’allocation des ressources entre les cellules et de minimiser l’interférence entre les cellules. Pour atténuer la forte interférence intercellulaire, les ressources, en termes de temps, fréquence et puissance d’émission, devraient être alloués efficacement. Un modèle pour chaque dimension est calculé pour permettre en particulier aux utilisateurs en bordure de cellule de bénéficier d’un débit plus élevé et d’une meilleure qualité de l’expérience. L’optimisation de tous ces paramètres peut également offrir un gain en consommation d’énergie. Dans cette thèse, nous proposons une solution dynamique polyvalente effectuant une optimisation de l’attachement des mobiles aux stations de base et de l’allocation des ressources dans les réseaux cellulaires LTE maximisant une fonction d’utilité du réseau qui peut être choisie de manière adéquate.Notre solution, basée sur la théorie des jeux, permet de calculer les meilleures valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance à appliquer au niveau temporel et fréquentiel pour chaque cellule. Nous présentons des résultats des simulations effectuées pour illustrer le gain de performance important apporté par cette optimisation. Nous obtenons une significative hausse dans le débit moyen et le débit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains respectivement. En outre, on obtient un gain important en énergie. Ce travail aborde des défis pour l’industrie des télécoms et en tant que tel, un prototype de l’optimiseur a été implémenté en se basant sur un trafic HetNets émulé

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version
    corecore