11,823 research outputs found

    Catalytic and communicating Petri nets are Turing complete

    Get PDF
    In most studies about the expressiveness of Petri nets, the focus has been put either on adding suitable arcs or on assuring that a complete snapshot of the system can be obtained. While the former still complies with the intuition on Petri nets, the second is somehow an orthogonal approach, as Petri nets are distributed in nature. Here, inspired by membrane computing, we study some classes of Petri nets where the distribution is partially kept and which are still Turing complete

    Symmetric and Asymmetric Asynchronous Interaction

    Get PDF
    We investigate classes of systems based on different interaction patterns with the aim of achieving distributability. As our system model we use Petri nets. In Petri nets, an inherent concept of simultaneity is built in, since when a transition has more than one preplace, it can be crucial that tokens are removed instantaneously. When modelling a system which is intended to be implemented in a distributed way by a Petri net, this built-in concept of synchronous interaction may be problematic. To investigate this we consider asynchronous implementations of nets, in which removing tokens from places can no longer be considered as instantaneous. We model this by inserting silent (unobservable) transitions between transitions and some of their preplaces. We investigate three such implementations, differing in the selection of preplaces of a transition from which the removal of a token is considered time consuming, and the possibility of collecting the tokens in a given order. We investigate the effect of these different transformations of instantaneous interaction into asynchronous interaction patterns by comparing the behaviours of nets before and after insertion of the silent transitions. We exhibit for which classes of Petri nets we obtain equivalent behaviour with respect to failures equivalence. It turns out that the resulting hierarchy of Petri net classes can be described by semi-structural properties. For two of the classes we obtain precise characterisations; for the remaining class we obtain lower and upper bounds. We briefly comment on possible applications of our results to Message Sequence Charts.Comment: 27 pages. An extended abstract of this paper was presented at the first Interaction and Concurrency Experience (ICE'08) on Synchronous and Asynchronous Interactions in Concurrent Distributed Systems, and will appear in Electronic Notes in Theoretical Computer Science, Elsevie

    Augmenting High-Level Petri Nets to Support GALS Distributed Embedded Systems Specification

    Get PDF
    Part 9: Embedded Systems and Petri NetsInternational audienceHigh-level Petri net classes are suited to specify concurrent processes with emphasis both in control and data processing, making them appropriate to specify distributed embedded systems (DES). Embedded systems components are usually synchronous, which means that DES can be seen as Globally-Asynchronous Locally-Synchronous (GALS) systems. This paper proposes to include in high-level Petri nets a set of concepts already introduced for low-level Petri nets allowing the specification of GALS systems, namely time domains, test arcs and priorities. Additionally, this paper proposes external messages and three types of (high-level) asynchronous communication channels, to specify the interaction between distributed components based on message exchange. With these extensions, GALS-DES can be specified using high-level Petri nets. The resulting models include the specification of each component with well-defined boundaries and interface, and also the explicit specification of the asynchronous interaction between components. These models will be used not only to specify the system behavior, but also to be the input for model-checking tools (supporting its verification) and automatic code generation tools (supporting its implementation in software and hardware platforms), giving a contribution to the model-based development approach and hardware-software co-design of DES based on high-level Petri nets

    Towards a Petri net Model for Graph Transformation Systems

    Get PDF
    Graph transformation systems (GTS) have been successfully proposed as a general, theoretically sound model for concurrency. Petri nets (PN), on the other side, are a central and intuitive formalism for concurrent or distributed systems, well supported by a number of analysis techniques/tools. Some PN classes have been shown to be instances of GTS. In this paper, we change perspective presenting an operational semantics of GTS in terms of Symmetric Nets, a well-known class of Coloured Petri nets featuring a structured syntax that outlines model symmetries. Some practical exploitations of the proposed operational semantics are discussed. In particular, a recently developed structural calculus for SN is used to validate graph rewriting rules in a symbolic way

    From Formal Specifications to Ready-to-Use Software Components: The Concurrent Object-Oriented Petri Net Approach

    Get PDF
    CO-OPN (Concurrent Object Oriented Petri Net) is a formal specification language for modelling distributed systems; it is based on coordinated algebraic Petri nets. In this paper we describe a method for generating an executable prototype from a CO-OPN specification. We focus our discussion on the generation of executable code for CO-OPN classes. CO-OPN classes are defined using Petri Nets. The main problems arise when implementing synchronization and non-determinism of CO-OPN classes in procedural languages. Our method proposes a solution to these problems. Another interesting aspect of our method is the easy integration of a generated prototype into any existing system. This paper focuses on the generation of Java code that fulfils the Java Beans component architecture, however our approach is also applicable to other object-oriented implementation languages with a component architecture

    On Synchronous and Asynchronous Interaction in Distributed Systems

    Full text link
    When considering distributed systems, it is a central issue how to deal with interactions between components. In this paper, we investigate the paradigms of synchronous and asynchronous interaction in the context of distributed systems. We investigate to what extent or under which conditions synchronous interaction is a valid concept for specification and implementation of such systems. We choose Petri nets as our system model and consider different notions of distribution by associating locations to elements of nets. First, we investigate the concept of simultaneity which is inherent in the semantics of Petri nets when transitions have multiple input places. We assume that tokens may only be taken instantaneously by transitions on the same location. We exhibit a hierarchy of `asynchronous' Petri net classes by different assumptions on possible distributions. Alternatively, we assume that the synchronisations specified in a Petri net are crucial system properties. Hence transitions and their preplaces may no longer placed on separate locations. We then answer the question which systems may be implemented in a distributed way without restricting concurrency, assuming that locations are inherently sequential. It turns out that in both settings we find semi-structural properties of Petri nets describing exactly the problematic situations for interactions in distributed systems.Comment: 26 pages. An extended abstract of this paper appeared in Proceedings 33rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2008), Torun, Poland, August 2008 (E. Ochmanski & J. Tyszkiewicz, eds.), LNCS 5162, Springer, 2008, pp. 16-3

    Vérification efficace de systèmes à compteurs à l'aide de relaxations

    Get PDF
    Abstract : Counter systems are popular models used to reason about systems in various fields such as the analysis of concurrent or distributed programs and the discovery and verification of business processes. We study well-established problems on various classes of counter systems. This thesis focusses on three particular systems, namely Petri nets, which are a type of model for discrete systems with concurrent and sequential events, workflow nets, which form a subclass of Petri nets that is suited for modelling and reasoning about business processes, and continuous one-counter automata, a novel model that combines continuous semantics with one-counter automata. For Petri nets, we focus on reachability and coverability properties. We utilize directed search algorithms, using relaxations of Petri nets as heuristics, to obtain novel semi-decision algorithms for reachability and coverability, and positively evaluate a prototype implementation. For workflow nets, we focus on the problem of soundness, a well-established correctness notion for such nets. We precisely characterize the previously widely-open complexity of three variants of soundness. Based on our insights, we develop techniques to verify soundness in practice, based on reachability relaxation of Petri nets. Lastly, we introduce the novel model of continuous one-counter automata. This model is a natural variant of one-counter automata, which allows reasoning in a hybrid manner combining continuous and discrete elements. We characterize the exact complexity of the reachability problem in several variants of the model.Les systèmes à compteurs sont des modèles utilisés afin de raisonner sur les systèmes de divers domaines tels l’analyse de programmes concurrents ou distribués, et la découverte et la vérification de systèmes d’affaires. Nous étudions des problèmes bien établis de différentes classes de systèmes à compteurs. Cette thèse se penche sur trois systèmes particuliers : les réseaux de Petri, qui sont un type de modèle pour les systèmes discrets à événements concurrents et séquentiels ; les « réseaux de processus », qui forment une sous-classe des réseaux de Petri adaptée à la modélisation et au raisonnement des processus d’affaires ; les automates continus à un compteur, un nouveau modèle qui combine une sémantique continue à celles des automates à un compteur. Pour les réseaux de Petri, nous nous concentrons sur les propriétés d’accessibilité et de couverture. Nous utilisons des algorithmes de parcours de graphes, avec des relaxations de réseaux de Petri comme heuristiques, afin d’obtenir de nouveaux algorithmes de semi-décision pour l’accessibilité et la couverture, et nous évaluons positivement un prototype. Pour les «réseaux de processus», nous nous concentrons sur le problème de validité, une notion de correction bien établie pour ces réseaux. Nous caractérisions précisément la complexité calculatoire jusqu’ici largement ouverte de trois variantes du problème de validité. En nous basant sur nos résultats, nous développons des techniques pour vérifier la validité en pratique, à l’aide de relaxations d’accessibilité dans les réseaux de Petri. Enfin, nous introduisons le nouveau modèle d’automates continus à un compteur. Ce modèle est une variante naturelle des automates à un compteur, qui permet de raisonner de manière hybride en combinant des éléments continus et discrets. Nous caractérisons la complexité exacte du problème d’accessibilité dans plusieurs variantes du modèle

    An Operational Semantics of Graph Transformation Systems Using Symmetric Nets

    Get PDF
    Graph transformation systems (GTS) have been successfully proposed as a general, theoretically sound model for concurrency. Petri nets (PN), on the other side, are a central and intuitive formalism for concurrent or distributed systems, well supported by a number of analysis techniques/tools. Some PN classes have been shown to be instances of GTS. In this paper, we change perspective presenting an operational semantics of GTS in terms of Symmetric Nets, a well-known class of Coloured Petri nets featuring a structured syntax that outlines model symmetries. Some practical exploitations of the proposed operational semantics are discussed. In particular, a recently developed structural calculus for SN is used to validate graph rewriting rules in a symbolic way

    Internet enabled modelling of extended manufacturing enterprises using the process based techniques

    Get PDF
    The paper presents the preliminary results of an ongoing research project on Internet enabled process-based modelling of extended manufacturing enterprises. It is proposed to apply the Open System Architecture for CIM (CIMOSA) modelling framework alongside with object-oriented Petri Net models of enterprise processes and object-oriented techniques for extended enterprises modelling. The main features of the proposed approach are described and some components discussed. Elementary examples of object-oriented Petri Net implementation and real-time visualisation are presented
    • …
    corecore