
From Formal Specifications to Ready-to-Use Software Components: The Concur-
rent Object Oriented Petri Net Approach

Stanislav Chachkov
Software Engineering Laboratory

Swiss Federal Institute of Technology Lausanne
1015 Lausanne, SWITZERLAND

Stanislav.Chachkov@epfl.ch

Didier Buchs
Software Engineering Laboratory

Swiss Federal Institute of Technology Lausanne
1015 Lausanne, SWITZERLAND

Didier.Buchs@epfl.ch

Abstract

CO-OPN (Concurrent Object Oriented Petri Net) is a
formal specification language for modelling distributed
systems; it is based on coordinated algebraic Petri nets. In
this paper we describe a method for generating an execut-
able prototype from a CO-OPN specification. We focus our
discussion on the generation of executable code for CO-
OPN classes. CO-OPN classes are defined using Petri Nets.
The main problems arise when implementing synchroniza-
tion and non-determinism of CO-OPN classes in procedur-
al languages. Our method proposes a solution to these
problems. Another interesting aspect of our method is the
easy integration of a generated prototype into any existing
system. This paper focuses on the generation of Java code
that fulfils the Java Beans component architecture, however
our approach is also applicable to other object-oriented im-
plementation languages with a component architecture.

1. Introduction

Developing complex reactive software systems re-
quires modelling tools that can capture the properties of the
system to develop as well as the structure of the interactions
that will be necessary between the software and its environ-
ment.

In this paper, we present a formal framework for the
development of distributed systems from the modelling
phase to the implementation. The approach we propose has
adopted the object-oriented paradigm as a structuring prin-
ciple. We have devised a general formalism that can express
both abstract and concrete aspects of systems, with empha-
sis on the description of concurrency and abstract data
types. This approach, called Concurrent Object-Oriented
Petri Nets (CO-OPN)[5][2], extends its object-based prede-
cessor [11]. A coordination layer [14] has been developed
on top of this formalism in order to be able to deal with a
distributed architecture.

In order to produce an implementation from the CO-
OPN model we will describe the automatised mapping tech-

niques that we can use to produce programming language
code. Apart from the problem of producing programs that
respect the CO-OPN model and its particularities (non-de-
terminism, atomicity of the events, modularity induced by
Object-Oriented structure,...) we are also particularly inter-
ested to match the usual programming principles used in the
target language. In this paper we will use the Java notion of
component architecture, the JavaBeans model[13]. It is also
necessary, in order to cope with incremental refinement of
the automatically generated prototype by the developer, to
be able to interconnect the produced components with other
components or with standard libraries (for instance the
Swing Java user interface libraries). We achieve this by in-
troducing transparently the support for transactions and
non-determinism, and by fulfilling the rules of the target
component model.

In this paper we will first briefly explain how to start
from a diagram establishing the interconnection of the ap-
plication to the outside world elements and how to produce
step by step a model that will be used to derive automatical-
ly a program. The elements, composing the whole system,
can be for instance a lift with its components: motors, cabin,
doors, and the controlling software. This example will serve
to illustrate in this paper our techniques.

The paper is organized as follows. In Section 2, we dis-
cuss the model of the lift system that we can produce using
CO-OPN. In section 3, we present our basic mapping meth-
od for generating OO code from CO-OPN and the problem
of implementing synchronization and non-determinism in
Java. In section 4, we discuss how to integrate components
in classically produced software.

2. Modelling with CO-OPN

CO-OPN is an object-oriented modelling language,
based on Algebraic Data Types (ADT), Petri nets, and
IWIM coordination models [7]. Hence, CO-OPN specifica-
tions are collections of ADT, class and context (i.e. coordi-
nation) modules [11]. Syntactically, each module has the
same overall structure; it includes an interface section de-
fining all elements accessible from the outside, and a body

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

section including the local aspects private to the module.
Moreover, class and context modules have convenient
graphical representations which are used in this paper,
showing their underlying Petri net model. Low-level mech-
anisms and other features dealing specifically with object-
orientation, such as sub-classing and sub-typing, are out of
the scope of this paper, and can be found in [2] [5].

2.1 The lift control problem

In order to present a concrete example of modelling, we
chose to study a simple but non-trivial example of reactive
system, a lift control system. The aim of this study is to
elaborate a CO-OPN specification and explain how to gen-
erate the corresponding controller in Java. First of all, we
will explain the steps that can lead to the CO-OPN model of
the lift controller.

Figure 1: The actors (real life view)

 The lift problem entities, composing the whole system
(figure 1) can be, for instance, the users, the cabin, the
doors, the motors and the controlling software. Moreover,
sensors are attached to some entities. In order to simplify
the system, calling buttons have a similar effect in the cabin
and at the floors.

For such a system we are interested in a first approach
to determine the components and their various interactions.
This is, for instance, described in the UML collaboration di-
agram of figure 2. The main concepts that are used to ex-
press the structure and the behaviour of the system:

• a coordination model for describing the relations be-
tween the system components,

• object orientation for the structure and content of the
system,

• causality relations for the dynamic aspects that must
be reflected with non-deterministic and concurrent
behaviours.

2.2 Introduction to coordination

In this part the various concept of CO-OPN will be in-
troduced in the necessary order for modelling the lift control
system. As we use a top-down strategy for modelling, we
will first start by presenting the interface of the system giv-
en by the top-level coordination entity called LiftSystem
context.

A useful approach for building systems composed of
many computing entities is to use the high-level concept of
coordination programming [15]. The term coordination
theory refers to theories about how coordination can occur
in various kinds of systems. We state that coordination is
managing dependencies among activities.Taking a step fur-
ther in this direction, it appears that coordination patterns
are likely to be applied from the start of the design phase of
the software development. This fact gave birth to the notion
of coordination development [7]. This process involves the
use of specific coordination models and languages, adapted
to the specific needs encountered during the design phase as
expressed in the lift example.

Figure 2: The actors and their interaction (control-
ler view)

Coordination models can be categorised as either exog-
enous or endogenous. Exogenous coordination models sep-
arate computation and coordination tasks by devoting
different modules to different concerns, while endogenous
models provide coordination primitives that must be incor-
porated within computation tasks. Coordination models can
also be categorised as either control- or data-driven. Con-
trol-driven models tend to centre around the notion of
processing or flow of control, while data-driven models are
essentially concerned with what happens to data. The IWIM
(Idealized Workers, Idealized Managers) is a general coor-
dination model which can be exactly characterised with the
following two keywords: exogenous and control-driven.
Probably the most known IWIM model is Darwin [16].

Due to their intrinsic nature, IWIM models are particu-
larly well suited for the coordination of software elements

cabin

buttons

door

1st floor

3rd floor

2nd floor

motorliftsystem
controler

sensor

sensor

calling
button

building

user

user

XVHU
�EXWWRQV� VHQVRUV

&RQWUROHU

GRRUV PRWRU

RSHQ'RRUV

FORVH'RRUV
GRRUV&ORVHG

PRWRU6WRS

FDOO��QXPEHU� DUULYH$W�QXPEHU�
VWRSSHG

PRWRU8S��PRWRU'RZQ

during the design phase [6]. The coordination layer of CO-
OPN [7] [5] [6] is a coordination language based on a IWIM
model, suited for the formal coordination of object-oriented
systems. CO-OPN context modules define the coordination
entities, while CO-OPN classes (and objects) define the ba-
sic coordinated entities of a system.

2.3 Coordination with contexts

In figure 3 we can see the interface of the LiftSys-
tem controller context, with the input (black rectangle) and
output events of this context (white rectangle).

Figure 3: The Controller context

This black box contains sub-components that interact
to provide the controller behaviour. The controller sub-
components are two objects which are instances of the
classes Cabin and Building as depicted in figure 4. In this
picture the directed arcs between methods or gates are used
to define strong synchronization between events. In CO-
OPN, it means that the firing of synchronized events is
atomic.

Figure 4: The static components instances inside
the Controller context

The cabin component is devoted to managing the
cabin movement, and it is also used as the main interface
with the outside world through the LiftSystem context.
The myHouse component collects the requests to the spe-
cific floor object. The floor objects, one object for each
floor in the building, are instantiated by means of the build-
ing’s init method that must be called before any other
method.

Before explaining the components, we will quickly
give an outline of the way values can be defined in CO-
OPN, using algebraic data types.

2.4 ADT modules

CO-OPN ADT modules define data types by means of
algebraic specifications. Each module introduces one or
more sorts (i.e. names of data types), along with generators
and operations on those sorts. The properties of the opera-
tions are given in the body of the module, by means of pos-
itive conditional equational axioms. Operations are partial
deterministic functions.

For example, figure 5 describes the ADT module defin-
ing one sort, the direction, three generators: UP, DOWN,
STOP, and two operations on this sort: opposite _ and
way from _ to _. The first three axioms give the def-
inition of the opposite direction, while the last two axioms
compute the direction for going from one floor to another.
Having the ADT, it is possible to describe the dynamic
components of a CO-OPN specification: the classes.

2.5 Modelling classes

In this subsection we will show more detail on the
classes that compose the LiftControl system, and using
this example explain the main elements of a CO-OPN mod-
el. The Building class encapsulates instances of the class
Floors. Each floor object stores information on whether
the floor is requested for a stop or not.

CO-OPN classes are described by means of modular al-
gebraic Petri nets with particular parameterized external
transitions which are the methods of the class. The behav-
iour of transitions are defined by so-called behavioural ax-
ioms, similar to the axioms in an ADT. A method call is

LiftSystem
open

close

modify _ : direction

closed

pressed _ : number

arriveAt _ : number

init

LiftSystem

cabin: CabinmyHouse: Building

open closemodify_: direction

closed pressed_: numberarriveAt _: numberinit

ADT Direction;
Interface
Use Number;
Sort direction;
Generators

UP, DOWN, STOP: -> direction;
Operations

opposite _ : direction -> direction;
wayFrom _ to _ : number, number-> direction;

Body
Axioms

(opposite STOP) = STOP;
(opposite UP) = DOWN;
(opposite DOWN) = UP;
(n > m) = true => (wayFrom n to m) = DOWN;
(n > m) = false => (wayFrom n to m) = UP;

Where
n ,m : number;

End Direction;

Figure 5: The Direction ADT

achieved by synchronizing external transitions, according
to the fusion of transitions technique. The axioms have the
following shape:
Cond => eventname With synchro : pre -> post

In which the terms have the following meaning:
• Cond is a set of equational conditions — the guard;
• eventname is the name of the methods with the al-

gebraic term parameters;
• synchro is the synchronization expression defining

the policy of transactional interaction of this event
with other events, the dot notation is used to express
events of specific objects and the synchronization op-
erators are the sequence, the simultaneity and the
non-determinism.

• Pre and Post are the usual Petri Net flow relations
determining what is consumed and what is produced
in the object state places.

CO-OPN provides tools for the management of graph-
ical and textual representations. Figure 7 shows the partial
class description net corresponding to a simple class
Floors in a textual form, the equivalent graphical de-
scription (the Petri Net plus additional informations con-
cerning the interface) is depicted in figure 7.

This floor class provides methods to modify, in differ-
ent ways, the state of the floors. For instance, the method
StopWasRequested highlighted in figure 7 is fireable if
a stop is requested at the specified floor n, the effect of the
firing of this method is to put the floor in the state not re-
quested. The new method creates new instances of the

Floors class with FloorNumber n false.

Figure 7: The Floors class graphical description

We will explain the behaviour of the cabin when the
event closed (door closed) is received. The direction of
the movement of the cabin in the lift system must be defined
according to the floors that have been requested. In figure 8
two cases are formalised.

The first case is when the lift rests at the same floor.
The second case is when the lift has already a destination,
and therefore continues to move.

3. Translation of CO-OPN to programming
languages

3.1 Introduction

The generation process takes a CO-OPN specification
as a parameter and produces a set of Java classes. The object
structure of a CO-OPN specification is preserved by the
generated code. One of our primary goals was to find a “nat-
ural” mapping between CO-OPN and Java. In such a map-
ping, standard CO-OPN features like methods or gates are
associated to standard Java features, methods or events, re-
spectively. As a result, the interface part of a generated Java
component is similar to the interface of the corresponding
CO-OPN component, and as a consequence is also easy to
understand/use by a human programmer. Because the pro-
duced Java classes satisfy the requirements of a Java com-
ponent, namely JavaBeans, they are easy to use in a
development tool.

Some powerful aspects of CO-OPN, such as atomic
concurrent synchronizations or non-determinism, do not
have a direct equivalent in Java, consequently they are non-
trivial to implement. These aspects are, as much as possible,
hidden in private parts of the generated code.

Finally, the structure of the code is designed so that it

Class Floors;
Interface
Use Number, Booleans;
Type floor;
Methods

stopWasRequested _ : number;
stopWasNotRequested _ : number;

(...)
Creation new _ : number;

Body
Place floorNumber _ _ : number, boolean;
Axioms

stopWasRequested n::
floorNumber n true -> floorNumber n false;

(n = nb) = false =>
stopWasNotRequested n::
floorNumber nb b -> floorNumber nb b;

(...)
new n:: -> floorNumber n false;

Where
n, nb : number; b : boolean;

End Floors;

Figure 6: The Floors class textual description,
omissions are indicated by (...)

Floors

stopWasRequested n
n, true n, false

stopWasNotRequested n(n = nb) = false
nb, b

upRequested n(nb > n) = true nb, true

upNotRequested n((nb > n) = false) | nb, b

downRequested n(n > nb) = true
nb, true

downNotRequested n((n > nb) = false) | nb, b

stopWillBeRequested n
n, b n, true

stopNotWillBeRequested n(nb = n) = false nb, b

position n
n, b

new n
n, false

((not b) = true)

((not b) = true)

is easy to change the implementation in a modular way as
justified in [9] and initially proposed in [8]. Because of a
lack of space, this aspect will not be discussed further.

3.2 Code generation for ADT

The lift specification uses some ADTs. One of them is
List (Figure 9) which is used by Building class to store
a list of floors. In CO-OPN types and functions are dissoci-
ated. An ADT module can declare some types and some
functions. In general, there is no reason to associate a par-
ticular function to a particular type. To avoid this choice
two hierarchies of classes are built for each ADT module.
The first one is the class hierarchy representing sorts and
terms. The purpose of this hierarchy is to build the represen-
tation of values. The second one is the class hierarchy rep-
resenting the operations. The purpose of this one is the
implementation of the functional part of the ADT.

Before going into a detailed explanation of the generat-
ed classes and related hierarchies, we will discuss Figure
10. It provides a synthetic view of the generated classes, and
how they are related, for the example of the List ADT. We
see (in a UML-like notation) the classes representing sorts
and terms in the right part, and the class implementing the
operations and generators in the left part. The next sub-sec-

tions are dedicated to these two parts.

Figure 10: Synthetic view

3.3 Class hierarchy representing sorts and terms

For each sort, we define an interface representing it in
the Java prototype. This interface mainly defines “test” and
“inverse” methods, allowing the analysis of the syntactic
structure of terms. The purpose of test methods is to find the
generator used to build a term, while inverse methods allow
one to retrieve the parameters of a term generator (i.e. sub-
terms). For optimization purposes, objects that implement
this interface should be immutable.

Figure 11 shows the interface corresponding to the sort
list (figure 9). We can see two test methods, namely
isempty and isadd, and two inverse methods, corre-
sponding to the two parameters of the generator add. Read-
ers should note that the original CO-OPN names are
translated into valid Java indentifiers. For instance, we use
the identifier add for the CO-OPN name _’_ and empty for
[]. The translation is derived from annotations bound to the
original CO-OPN modules.

Along with the sort interface seen above, we produce a
standard implementation based on the syntactic representa-
tion. To achieve this goal, we first define an empty marker
interface for syntactic representations. For instance, Figure
12 shows such a marker for the lists.

Then, we define one class for each generator. Values

Class Cabin;
Interface
Use Number; Direction;
Type cabin;
Gates

modify _: direction; close;
(...)
Methods closed; arriveAt _ : number;

(...)
Body
Use Door;
Places

move _ : direction; stopped _ : boolean;
door _ : door; localisation _ : number;

Initial
stopped true; move STOP;
door open; localisation 1;

Axioms
ax1: closed::

move STOP,door p -> move STOP,door closed;
ax2: (! d = STOP) & this = Self =>
closed With this . modify (d)::

move d, stopped b, door p ->
move d, stopped not (b), door closed;

(...)
Where

this : cabin; p : door;
b : boolean; d : direction;

End Cabin;

Figure 8: The Cabin class textual partial descrip-
tion

ADT List;
Interface
Sort list;
Generators

[] : -> list;
_ ’ _ : floor, list -> list;

Operations
_ : list -> natural;
head _ : list -> floor;
tail _ : list -> list;

Body
Axioms

(# []) = 0;
(# (f ’ l)) = (succ (# l));
(...)

Where f : floor; l : list;
End List;

Figure 9: List ADT (partial)

list

listSyntactic

listSyntacticaddlistSyntacticempty

ListImpl

ListImpl
Axiomatic

1 0..*

1 0..*

are represented as syntactic trees, where nodes are instances
of those “generator” classes. In the case of the Lists, we pro-
duce two classes listSyntacticempty and
listSyntacticadd. Figure 13 details the class recording
non-empty lists. The reader can observe how the test and in-
verse methods are implemented.

3.4 Hierarchy of classes representing operations

Besides the class hierarchy allowing the representation
of values, we must define classes implementing the various
functions of each CO-OPN module. Actually, each class
implementing the functional part of the ADT module in-
cludes factory methods that correspond to generators, meth-
ods implementing the functions defined in the module and
methods implementing the native CO-OPN equality predi-
cate on terms (one method per sort). Actually, for each ADT
module, we produce an abstract class, that defines the sig-
nature of methods corresponding to functions and genera-
tors found in the module. Also, a default implementation of
the equality method, based on a syntactic comparison, is
provided. Figure 14 shows the abstract implementation

The default implementation of this class is based on the
syntactic representation of values and on the axioms of the
ADT. For each operation in ADT, we orient the axioms into
a set of rewrite rules [10]. The core of the associated method
is mainly a multiple choice between a set of applicable axi-
om. Undefined cases throw exceptions.

Figure 15 shows a fragment of the default axiomatic
implementation of the lists highlighting the operation
“size”. We see that both of the two axioms defining this
operation in the ADT (see figure 9) are represented by two
if-statements in the Java method. If no axioms apply, a
COOPNNoSemanticsException is thrown, signalling that
the operation is undefined on given parameters (it never oc-
curs for the size method).The reader can observe how the
test method “isadd” is used.

3.5 Specific class principles

Syntactically and structurally CO-OPN Classes and
ADT modules are rather similar (that is also true for CO-
OPN contexts). Those similarities include: object structure,
separation of module in public and private part, operations
defined by axioms. Those similarities allow us to reuse
some concepts and also code from the ADT part of the pro-
totype generator. Nevertheless, CO-OPN classes and ADTs

public interface list{
public boolean isempty();
public boolean isadd();
public array getaddChild1();
public floor getaddChild2();

}

Figure 11 : Interface list

public interface listSyntactic
extends list{}

Figure 12: Syntactic Representation of lists

class listSyntacticadd
implements listSyntactic {

private list arg1;
private floor arg2;

public listSyntacticadd(list arg1,
floor arg2) {

this.arg1=arg1;
this.arg2=arg2;

}
public boolean isempty(){return false;}
public boolean isadd(){return true;}

public list getaddChild1(){return arg1;}
public floor getaddChild2(){return arg2;}

}

Figure 13: Syntactic non-empty lists

public abstract class ListImpl{
public abstract list empty();
public abstract list

add(list arg1, floor arg2);
public abstract floor head(list arg1);
public abstract list tail(list arg1);
public abstract natural

size(list arg1);
public boolean COOPNEquals(list arg1,

list arg2){
//syntactic equality, details omitted

}}

Figure 14: Abstract implementation of lists

public class ListImplAxiomatic
extends ListImpl{

public natural size(list arg1){
if (arg1.isempty())
return NaturalsImpl._0();

if (arg1.isadd())
return
NaturalsImpl.succ(size(tail(arg1)));

 throw new COOPNNoSemanticsException();
 }}

Figure 15: Axiomatic representation

are very different entities as illustrated in figure 16. Basical-
ly, this difference comes from the fact that a CO-OPN class
is an encapsulated Petri Net (state based behaviour) with
transitions (non-deterministic) working as a predicate,
where an ADT is a definition of a set of functions (deter-
ministic). In both modules, the meaning of the axioms are
rather different, for ADTs, each axiom is a property that
must be satisfied by the operations, while for classes, each
axiom defines behaviour that can be followed by the meth-
od.

Figure 16: Methods vs. operations

3.5.1 Translation of CO-OPN elements in Java

In table 1 we summarize the relation between the CO-
OPN elements and the Java concepts that are used for the
translation. Basically, there is one-to-one mapping between
CO-OPN and Java classes, one Java class is generated for
one CO-OPN class.

3.5.2 States

First of all, CO-OPN objects have an identity and asso-
ciated state. Object identity is represented by the object’s
reference algebra [5]. Object state is represented using the
well known concept of Petri Net place. Place elements can
be either ADT values or object references. Places are in the
private part of a CO-OPN object. The methods of an object
deal with places through their pre- and post-conditions.

3.5.3 Methods

A method of a CO-OPN object behaves as one or more
transitions of the underlying Petri Net. In contrary to the
ADT operations, the execution of a method of a CO-OPN
object depends not only on method parameters but also on
object state. This dependency is expressed by method pre/
post-conditions. A successful method execution results in a
change to an object’s state expressed by a method’s post-
condition. The execution of a method can also depend on
other methods — due to the synchronization mechanism.
Synchronizations expand the method-state dependency
through the set of CO-OPN objects.

3.5.4 Concurrent synchronization

Like an ADT operation can rely on other operations, a
class method can use other methods in order to fulfil re-
quested services. The semantics of those interactions differ
significantly. Intuitively, a method synchronizing with an-
other method is like the notion of fusion of transitions.
Moreover a CO-OPN class method can synchronize with
many other methods. In this case the composed synchroni-
zation request is built using synchronization operations. A
more detailed description of this concept will be given in
sub-section 3.9.

3.5.5 Non-determinism

Finally, a very important aspect of CO-OPN methods is
the non-determinism. Remember that ADT operations are
deterministic partial functions. CO-OPN methods, like clas-
sic PN transitions, allow non-determinism. There are two
kinds of non-determinism to consider: non-deterministic
choice between matching values in places and non-deter-
ministic choice between fireable transitions. In other words:
given a state and a synchronization request there may be
many possible ways to fulfil it. There are some program-
ming languages, like Prolog, that support non-determinism,
but the majority do not. We use nested transactions [4] for
the implementation of both non-determinism and concur-
rent synchronization.

3.6 Translating an interface of a class

The rules used to translate an interface of a CO-OPN
class to Java are similar to those for translating from ADTs.

The name of a Java class is the name of the CO-OPN
class type (and not the name of the module). This approach
corresponds to the Java notion of type — identical to the
class. The full name includes also the package that is iden-
tical to the CO-OPN package name. The methods of a Java
class are the same as those of its CO-OPN peer.

The figure 17 represents a part of Java class corre-

Table 1: Mapping between CO-OPN and Java
Classes

CO-OPN Class Java Class/Bean

Type Class name

Method Method

Gate Event

Creation Method Static factory method

Places Instance variable “state”

Initial State Default Constructor

Axiom Part of corresponding method body

Static Object Static final variable

3DUDPV 5HVXOWV
$'7

RSHUDWLRQ

$'7�)XQFWLRQ

2EMHFW�0HWKRG

([HFXWLRQ

([HFXWLRQ

RN���IDLOXUHPHWKRG3DUDPV

V\QF

6WDWH

SODFHV

PHWKRGV

sponding to the CO-OPN class cabin (see figure 8 for
comparison).

In order to interact, CO-OPN class has to provide an in-
terface. In CO-OPN, the only way for objects (and also con-
texts) to communicate is by synchronization. From the
operational point of view, the synchronization mechanism
can be viewed as a generalization of the “rendezvous” or
transaction mechanism found in other synchronous ap-
proaches. The usual way to communicate between objects
in Java is the exchange of messages (also called method in-
vocation). Although CO-OPN synchronization and Java
method invocations have different semantics, it is a very at-
tractive and natural way to represent the former by the lat-
ter.

For a Java client interacting with a CO-OPN class or
context, there are two important points to deal with:

• First, a synchronization can result either in success or
in failure, depending on system state and synchroni-
zation parameters. This can be easily represented by
the Java exception mechanism. Successful synchro-
nization corresponds to normal method return, and
failed ones to a method execution throwing an excep-
tion. A special exception class is defined to represent
such a case (COOPNMethodNotFirableExcep-
tion).

• Second, CO-OPN synchronizations are transactional.
If a part of a synchronization fails then the whole syn-
chronization fails and the system state remains un-
changed. For this reason, an additional parameter is
required to call a CO-OPN method, namely a transac-
tion descriptor represented by a CoopnTransac-
tion object.

Here is an example of a Java client synchronizing with
the closed method of a CO-OPN object Cabin:
Cabin cab = new Cabin();
CoopnTransaction T = new

CoopnTransaction();
try{ cab.closed(T);

T.commit();
}catch(COOPNMethodNotFirableException e){}

In this code fragment, we first create a new cabin ob-
ject and a new transaction descriptor T. A new cabin in-
stance is initialized as its CO-OPN specification. Then we

invoke the closed method with T as parameter. If the syn-
chronization succeeds T.commit() commits the change
of Cabin state. Else if the synchronization fails the excep-
tion is thrown and the state of Cabin remains unchanged.

The example shows some advantages of our approach:
a CO-OPN object is created and used in a standard way, i.e.
like any “normal” Java object. We prefer to keep the trans-
action descriptor visible to the client — the possibility to
commit or abort the synchronization may be useful if the
client is a transactional object itself. Otherwise it is easy to
hide transactional aspects from the client by encapsulating
them in generated object methods. The try-catch block is
optional: COOPNMethodNotFirableException is a
sub-class of RuntimeException.

3.7 Body

A simplified view of a method of CO-OPN class is that
a method is similar to ADT operation with some additional
parameters, namely values in places and synchronizations
with other objects. Method code is obtained by compiling
all axioms that define it, in the same way ADT axioms are
compiled. A method succeeds if all of its inputs satisfy at
least one of its axioms (see figure 18). Unlike in an ADT,
more than one class axiom is allowed to match.

Figure 18: method evaluation scheme

If we look closer inside the axioms, this corresponds to
the following ordered schema (figure 19): 1. check axiom
parameters, 2. evaluate preconditions, 3. execute synchroni-
zation, 4. apply post-conditions, 5. exit the axiom with a
“success” status. Some of those steps can fail. If one of
those steps fails we leave the axiom with the “failure” sta-
tus. If there is another axiom in the method definition, then
it is tried next, otherwise method execution fails and an ex-
ception is thrown

3.8 Object states

Each CO-OPN class defines zero or more places that
can contain multisets of ADT values, object references or
tuples of them. In order to evaluate an axiom, a method has
to search for values in places that match the preconditions
and then remove matching values. Evaluating the post-con-
ditions requires one to create new values and put them in

public class cabin{
public void

closed(CoopnTransaction T)...
public void

arriveAt(CoopnTransaction T,
number n)...

}

Figure 17: An example of an interface of a gen-
erated Java class

��
��
�
�

��
��

�	

�����

�����
IDLO

RN

��	��

RN

IDLO

�������

corresponding places. Pre/post-conditions of an axiom can
be defined on one or several places, including the possibili-
ty to take/put several distinct values from the same place.
An implementation of a place has to verify these two condi-
tions:

• A token is taken/put at most once
• A pre/post-condition can take/put several tokens

from/to the same place.

Figure 19: Axiom evaluation scheme

In our implementation the state of one CO-OPN object
(all places) is maintained in one instance variable called
state. Iterators (figure 20) are used to evaluate pre-condi-
tions. Those iterators allow one to obtain all combinations
of values that the precondition have to match. Values that
are pointed to by an iterator are locked: they become una-
vailable for other iterators. If the current combination of
values does not satisfy the pre-condition, the evaluator asks
for the next combination.

Figure 20: State and StateIterator structure

Then the iterator unlocks the values that no longer be-
long to the current combination, computes a new combina-
tion, locks new values, and returns them. Unlocked values
become available for others iterators (at this level resources
are allocated to the concurrent events). At the end of a suc-
cessful synchronization, locked values are removed from
places. If the synchronization is cancelled, the correspond-
ing locks are removed and old values restored in places.

3.9 Synchronizations

Synchronizations are the most original part of the CO-
OPN formalism and, perhaps, the most challenging aspect

that must be managed efficiently and in a clear way.

3.9.1 Three kinds of synchronizations

Synchronizations are used by CO-OPN objects to com-
municate. An object can accept or refuse a synchronization.
If the system has enough resources to satisfy the synchroni-
zation request then the synchronization is accepted. If the
system does not have sufficient resources, the synchroniza-
tion is refused. Synchronizations can be simple or they can
be combined using three operators: simultaneity, sequence
or alternative. A “sim” synchronization succeeds if both its
left and its right part can succeed simultaneously (concur-
rently). A “seq” succeeds if it is possible to synchronize first
with its left part then with its right part. Resources that are
produced by the left part become available for the right part.
“Alt” succeeds if its left or its right part succeeds.

3.9.2 Resource sharing

There are two types of resource sharing with synchro-
nizations (figure 21). Two synchronizations occurring si-
multaneously have to share the same state (resources). The
resources produced by the successful execution of one of
many simultaneous synchronizations are not seen by others.
If the whole “sim” succeeds the resources produced by its
branches are merged together to form a new system state.

Figure 21: View of the resource sharing for simul-
taneity and sequence

For sequential synchronizations: If the first synchroni-
zation composing a “seq” succeeds, then the second syn-
chronization can use produced resources. Alternative
synchronizations are seen as multiple axioms.

3.9.3 Representation and management of synchroniza-
tions and states

As explained earlier, CO-OPN synchronizations are
represented by method calls. An object that wants to syn-
chronize with a method ’m’ of an object ’o’ simply invokes
method ’m’ of object ’o’ with some parameters including
the transaction descriptor. In order to find the correct initial
state, the callee object has to know the synchronization con-
text of the call. For example: if one object participates more
that once in a composed synchronization it has to know
which part of the resources can be used for the new initial

pa
ra

m
s Axiom

pl
ac

es

pl
ac

esob
je

ct
s

ok next axiom

success

success

success

match parameters

match preconditions

exec. syncronizations

apply postconditions

fa
il

cabin State StateIterator
Creates >

close()
arriveAt() add()

remove()

iterator(plList)
next()

remove()

hasNext()
0..*

post b

post a

pre b

pre a

a

b

a // b

pre a+pre b post a+post b

post apre a
a

pre b post b
b

a .. b

state and which part must be shared with previous invoca-
tions. This is achieved using CoopnTransaction — the
transaction identifier that is always present in method pa-
rameters.

CoopnTransaction, together with State, play a
very important role in implementation of concurrent syn-
chronizations and non-determinism. In fact, each Coopn-
Transaction object represents a node in a nested
transaction tree. CoopnTransaction tree structure re-
flects exactly the structure of a synchronization tree and de-
scribes the synchronization context of the call.

At the end of each successful synchronization, the in-
formation about the produced and the consumed resources
are saved together with an associated CoopnTransac-
tion. When a CO-OPN object receives a new synchroni-
zation request, it can compute the new state by comparing
all previously saved CoopnTransactions with the new
one.

Figure 22: Relation between the class managing
object states

The State object has to be modified accordingly. In
fact, the State object must keep separately each interme-
diary change of the object state together with the associated
synchronization context. The objects do not need to know in
which synchronization context they will be called later, be-
cause they can always recompute initial state for any syn-
chronization. The simple State is thus replaced by a
multiset of states called MultiState. Given a synchroni-
zation context represented by a CoopnTransaction,
the MultiState computes the initial State for the call.
This State is then used by a pre/post condition computa-
tions. Figure 22 illustrates the structure and relation be-
tween the various representations of an object state.

3.9.4 Nested transactions for synchronizations

CO-OPN synchronizations are atomic. As we have
seen earlier, the method succeeds only if all of the requested
synchronizations succeed. In order to execute a method, we
try to execute all of the synchronizations sequentially, one
by one. If a method needs to request two synchronizations,
there is the situation when the first synchronization suc-
ceeds and the second fails. In this case, in order to leave the
system state unchanged, we have to cancel the results of the
execution of the first synchronization. Also, in order to min-
imize space requirements, it is useful to notify participants
of a successfully executed, complex synchronization that

there is no longer any need to conserve multiple intermedi-
ary states.

Nested transactions implemented by CoopnTrans-
action together with MultiState brings us a solutions
to these problems. Each synchronization is executed within
a transaction. If a synchronization contains sub-synchroni-
zations they are executed in nested transactions. Aborting a
transaction will also abort all its nested sub-transactions,
and committing a transaction commits all nested sub-trans-
actions. To implement those commit and abort operations
each node of the synchronization tree has an associated
transaction manager — the corresponding MultiState
object. To cancel the results of a synchronization it is nec-
essary to remove the corresponding intermediary sub-state
element from MultiState. The abort method of
CoopnTransaction serves this purpose. On the other
hand, the commit method of CoopnTransaction in-
forms all participants of a composed synchronization that
they have no longer need to conserve intermediary states.

3.10 Non-determinism

Methods of CO-OPN classes may be non-deterministic
in data and control dimensions. Data non-determinism oc-
curs when a precondition takes values from places. It is pos-
sible that many different values match the precondition
requirements. Control non-determinism occurs when more
that one method’s axiom can apply (like in figure 23).

Figure 23: Non-determinism due to axiom multi-
plicity.

In both cases of non-determinism, it is necessary to
choose one of the many matching possibilities. Sometimes,
later in the execution of a synchronization, we will figure
out that the choice was wrong. In that case, we have to abort
any intermediary changes, return to the choice point and
look for another possibility. The use of transactions allows
us to abort intermediary changes, but do not solve the prob-
lem of returning to the choice point. The reason for this is
simple: choice points are represented by precise locations in
execution paths. Returning to a choice point means restor-
ing the state of program execution.

There is two possible cases. First, the last choice point
is in a parent synchronization. In this case it is sufficient to
go back in the execution path — for example by throwing
an exception. Second, the last choice point is in one of the

Cabin

closed()
arriveAt()

State StateIterator

add()
remove()

iterator(plList)
next()

remove()

hasNext()

SyncMutiState

State pre(Sync)

post(Sync, State)

commit()

AxiomNondet

put
getA

getBa _

b _

put @

put @

getA
@

getB

@

previously evaluated “sibling” synchronizations. In this
case the execution should continue in a method that was al-
ready completed. Such an operation can be implemented us-
ing some stack manipulations, but in Java the execution
stack is completely hidden from the user. We propose a pure
language-based solution.

3.10.1 Non-deterministic Java

We choose to apply to Java the Prolog execution model
(enter-exit-fail-redo) of Warren[17]. Suppose that you can
extend Java language to have some methods with two “en-
try points”: enter and redo, and two possibilities to leave a
method: exit or fail. “Enter” is like the standard java method
call. Enter a method means just execute it from the begin-
ning. The method does some work and then successfully ex-
its. So “exit” is like the normal return statement. Otherwise,
if the work can not be done, the method fails. The “fail” can
be implemented using the Java exception mechanism. The
second entry point — “redo” — can be used only when a
method was already entered and successfully exited in the
same execution context. “Redoing” a method means exe-
cute it from the last exit point or, using Java terms, from the
last return instruction. That will inform the method that the
last choice was refused and it is necessary to look for anoth-
er possibility to execute its work. As we have full control
over the state of our objects, some simple code-rewrite rules
are sufficient to implement those four primitives. The
State class is used to save the local variables and the ’id’
of the last exit point for the possible redo(s).

Figure 24: User interface of the Lift.

3.11 Contexts

In CO-OPN contexts are configuration entities that al-
lows the creation of systems by connecting together objects
(by the means of synchronizations) and by connecting ob-
jects with the external world. Context interfaces are like the
object's ones — composed of gates and methods. Contexts
have no proper state. They contain named instances and
also connections represented like synchronization-only ax-
ioms: “required WITH provided”. Contexts are static enti-
ties — they do not have a type nor an instantiation
mechanism. They can just be reused through inheritance.

One context is represented in Java by one class. The Java in-
terface of CO-OPN contexts is similar to those of CO-OPN
classes. An implementation of a context is similar to a CO-
OPN class implementation, however the data non-deter-
minism does not occur in contexts.

4. Integration of generated code into an appli-
cation

In order to facilitate the integration of generated code
into a larger software system, the component architecture of
CO-OPN (presented in section 2.3) is translated to a Java
component architecture, namely JavaBeans [13].

The CO-OPN component interaction is based on two
complementary mechanisms: methods and gates.

A gate is, in some sense, the opposite of a method: a
method represents a provided service, where a gate repre-
sents a required service. The role of a context is to resolve
required services by provided ones that are connected by
synchronization expressions. At the top-level englobing
context, methods and gates represent services provided and
required by the system. We choose to represent CO-OPN
gates (of both classes and contexts) by JavaBean events. A
synchronization with a gate (or service request) is repre-
sented by event firing. Connection axioms in a context,
which route service requests to service providers, are repre-
sented by event handlers. Those handlers implement the
EventListener interface of corresponding gate and ex-
ecute synchronizations with connected methods. Mapping
CO-OPN methods to Java methods and CO-OPN gates to
Java events is very useful in practice: this allows one to eas-
ily integrate CO-OPN context translation in a software sys-
tem using existing tools. One step further would be to map
CO-OPN components into the more complex EJB (Enter-
prise Java Beans)[12] components.

4.1 Example of integration: Lift applet

The Lift Applet is composed of three layers: Interface,
Interconnection and Command. The Interface layer visual-
izes an interactive and animated user interface (figure 24).
The Command layer is represented by a ListSystem
JavaBean generated from corresponding context. The Inter-
connection layer links together user interface and command
layer.

The Interface is composed of a hierarchical tree of
graphical objects (images). The user can put in motion some
parts of the interface by assigning them a speed. Detectors
are used to find object positions (an event is emitted for se-
lected positions). Selecting an interface object also emits an
event.

 The code generator produces a standalone collection of
JavaBeans representing specification modules and a few

support classes (like CoopnTransaction or Coopn-
MethodNotFirableException).

The final step is the construction of the Interconnection
layer. It consists of connecting Interface events to methods
of the Command layer and vice versa. Because the control
object, corresponding to CO-OPN context, was generated
with respect to the standard JavaBean conventions, it can be
easily integrated into a software system using standard mar-
ket tools, like JBuilder.

5. Future work and conclusions

In this paper, we presented a code generation technique
for CO-OPN specifications (i.e. for coordinated algebraic
Petri nets), which is actually an extended synthesis (for the
translation of the gates into the events) of the partial tech-
niques we used until now [6]. These techniques are based on
an implementation of a transaction mechanism and the im-
plementation of non-determinism. As a direct application,
we provide JavaBeans standard components that can be eas-
ily integrated into any kind of applications.

We applied our techniques on a medium-sized exam-
ple. The lift system example was developed from a UML
model and we found, by animation of the prototype, several
significant errors. Our web site (http://lglwww.epfl.ch) con-
tains the complete source code of the presented examples as
well as the supporting tools.

In the future, we would like to improve our work into
two directions: the first is to be able to guarantee the cor-
rectness of the translation from CO-OPN to programming
languages. The idea is to use the natural decomposition of
our implementation into transactional support, non-deter-
minism and object oriented structure in order to factorize
the correctness proof. The second direction is to improve
the translation in order to cover more cases; incremental
prototyping (i.e. the replacement by hand-written code, now
studied only for ADT); distributed applications and mobili-
ty. In addition, we will also develop an extended version of
the translation in which not only local competitive concur-
rency (with respect to resource acquisition) is supported but
also concurrency between distributed entities.

Acknowledgments

We wish to thank Shane Sendall for his careful reading
and remarks on this paper. We also thank the anonymous
referees for their pertinent comments about the readability
of the paper.

References

[1] R. Ben-Natan, "CORBA: a Guide to Common Object Re-
quest Broker Architecture", MacGraw-Hill, 1995.

[2] Didier Buchs and Nicolas Guelfi, ‘‘A Formal Specification
Framework for Object-Oriented Distributed Systems,’’ IEEE
TSE, vol. 26, no. 7, July 2000, pp. 635-652.

[3] G. Weikum, "Principles and Realization Strategies of Mul-
tilevel Transaction Management", ACM Transactions of
Database Systems, Vol 16, No 1, pp 132-180, 1991.

[4] J.E.B. Moss, “Nested Actions: an Approach to Reliable Dis-
tributed Computing”, PhD thesis, Technical Report MIT/
LCS/TR-260, MIT Laboratory for Computer Science, 1981.

[5] Olivier Biberstein, Didier Buchs, and Nicolas Guelfi. Ob-
ject-oriented nets with algebraic specifications: The CO-
OPN/2 formalism. In G. Agha and F. De Cindioand G.Ro-
zenberg, editors, Advances in Petri Nets on Object-Orienta-
tion, LNCS. Springer-Verlag, 2001.

[6] Didier Buchs and Mathieu Buffo. Rapid prototyping of for-
mally modelled distributed systems. In Frances M. Tits-
worth, editor, Proc. of the Tenth International Workshop on
Rapid System Prototyping RSP’99. IEEE, june 1999.

[7] Mathieu Buffo. Experiences in coordination programming.
In Proc. of the workshops of DEXA’98 (Int. Conf. on Data-
base and Expert Systems Applications). IEEE , aug 1998.

[8] Christine Choppy and Stéphane Kaplan. Mixing abstract
and concrete modules: Specification, development and pro-
totyping. In 12th International Conference on Software En-
gineering, pages 173–184, Nice, March 1990.

[9] Didier Buchs and Jarle Hulaas. Evolutive prototyping of
heterogeneous distributed systems using hierarchical alge-
braic Petri nets. In Proceedings of the Int. Conf. on Systems,
Man and Cybernetics, Beijing, China, October 1996. IEEE.

[10] Ph. Schnoebelen. Refined compilation of pattern-matching
for functionnal languages. Science of Computer Program-
ming, pages 11:133-159, 1988.

[11] Olivier Biberstein and Didier Buchs. Structured algebraic
nets with object-orientation. In Proc.of the first int. work-
shop on “Object-Oriented Programming and Models of
Concurrency” within the 16th Int. Conf. on Application and
Theory of Petri Nets, Torino, Italy, June 26-30 1995.

[12] Sun Microsystems: Enterprise Java Beans Spec, V2.0 (Oc-
tober 2000).

[13] Sun Microsystems: JavaBeans spec. v1.01 (July, 1997).
[14] Mathieu Buffo and Didier Buchs. A coordination model for

distributed object systems. In Proc. of the Second Int. Conf.
on Coordination Models and Languages COORDINA-
TION’97, vol. 1282 of LNCS, pp. 410–413. Springer , 1997.

[15] Nicholas Carriero and David Gelernter. How to Write Par-
allel Programs. MIT Press, Cambridge and London, 1990.

[16] Jeff Kramer, Jeff Magee, Morris Sloman, and Naranker Du-
lay. Configuring object-based distributed programs in rex.
IEEE Software Engineering Journal, 7(2):139–149, 1992.

[17] D.H.D.Warren, L.M.Pereira, F.C.N.Pereira. Prolog—The
Language and its Implementation Compared with LISP. In
ACM SIGPLAN Notices, Vol. 12, No. 8, pp 109-115, 1977.

