
M. Marin, A. Crăciun (Eds.):
Working Formal Methods Symposium 2019 (FROM 2019)
EPTCS 303, 2019, pp. 107–119, doi:10.4204/EPTCS.303.8

c© L. Capra
This work is licensed under the
Creative Commons Attribution License.

An Operational Semantics of Graph Transformation Systems
Using Symmetric Nets

Lorenzo Capra
Dipartimento di Informatica

Università degli Studi di Milano
Milan, Italy

capra@di.unimi.it

Graph transformation systems (GTS) have been successfully proposed as a general, theoretically
sound model for concurrency. Petri nets (PN), on the other side, are a central and intuitive formalism
for concurrent or distributed systems, well supported by a number of analysis techniques/tools. Some
PN classes have been shown to be instances of GTS. In this paper, we change perspective presenting
an operational semantics of GTS in terms of Symmetric Nets, a well-known class of Coloured Petri
nets featuring a structured syntax that outlines model symmetries. Some practical exploitations of the
proposed operational semantics are discussed. In particular, a recently developed structural calculus
for SN is used to validate graph rewriting rules in a symbolic way.

1 Introduction

Graph transformation systems (GTS) are widely recognized as a general, well established formal model
for concurrency. Petri nets (PN) [14], on the other side, are a central model for concurrent or distributed
systems. Their success is due to several reasons, mostly, the fact that they can describe in a natural way
the evolution of systems whose states have a distributed nature (this maps to the notion of PN marking),
and the availability of a number of tools/techniques supporting the editing/analysis of PN models.

Petri nets are a reference model for any formalism meant to describe concurrent or distributed sys-
tems, including GTS. It is well known that GTS are a generalization of some PN classes, as shown by
Kreowsky in its pioneering work [13] using the double-pushout approach. Basically, the idea is to repre-
sent a marked PN as a graph with three different types of nodes (for places, transitions, and tokens) and
describe the firing of a PN transition thorough a rule (derivation). Since then, several encodings of PN
classes in terms of GTS have been presented, among which Place/Transitions nets, Condition/Event nets,
Elementary Net Systems, Consume-Produce-Read nets. Some net variants with extra features such as
read/reset/inhibitor arcs have been also encoded. It is impossible to exhaustively list all these proposals,
let us refer to [8] (and included references) for the earliest and [2],[10] for more recent ones.

In this paper we consider the relationship between GTS and PN from a new perspective: we provide
a formalization of Graph Transformation Systems (GTS) based on Symmetric Nets (SN)1 [6], a type
of Coloured Petri nets [12],[11] featuring a particular syntax that outlines model symmetries and is
exploited both in state-space based and structural analysis. The idea is simple: each rule (derivation)
of a GTS corresponds to a SN transition which is properly connected to a couple of SN places whose
marking encodes a graph. In the paper we refer to simple directed graphs, even if the approach might be
generalized to any category of (hyper)graphs.

The advantages of this approach are numerous, and the aim of the paper is to illustrate some of them
though some examples: we can exploit well established tools supporting the editing/analysis of SN, like

1formerly known as Well-formed Nets, or WN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/227965318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4204/EPTCS.303.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

108 An Operational Semantics of GTS

the GreatSPN package [1]; an operational interleaving semantics for GTS is provided in a natural way
building the state-transition system of a SN; a compact state-transition system -called symbolic reacha-
bility graph [7], in which states (markings) representing isomorphic graphs are folded, can be directly
derived once an initial symbolic graph encoding is set; some recent advances in SN (symbolic) structural
analysis [4], [3], implemented in the SNExpression tool (www.di.unito.it/~depierro/SNex) may
be exploited to check some conditions ensuring rule well-definiteness, validate rules, and verify their
potential concurrency; in particular, a fully automated calculus of symbolic structural relations in SN
models may be profitably used. All these concepts are instantiated on a few, though significant, exam-
ples of graph rewriting rules, and a simple GTS. All the examples used in the paper are available in
GreatSPN format at https://github.com/lgcapra/GTS-SN.

The GTS formalization based on SN may be considered as an alternative to classical approaches,
in particular the algebraic ones based on single and double pushout. The strengths of this new pro-
posal are a more intuitive definition of derivations, and the availability of well established tools for the
editing/validation/analysis of models. The relationship between SN rules and single/double pushout
derivations, however, is not treated in this paper, and deserves further investigations.

The balance of the paper is as follows: Section 2 introduces SN and related background notions;
Section 3 presents the encoding of a GTS as a SN, and its operational semantics; symbolic structural
conditions for rule well-definiteness are also set up; Section 4 shows an application of SN structural
calculus for verifying rule concurrency in a GTS; finally, Section 5 contains the conclusion and describes
ongoing work

2 Symmetric Nets

In this section we present the SN formalism and a few preliminary concepts and notations used in the
sequel. We let the reader refer to [14] and [6] for a complete treatment of Petri nets and SNs, respectively.

2.1 Multisets

A multiset (or bag) over a domain D is a map b : D→ N, where b(d) is the multiplicity of d in b. The
support b is the set {d ∈ D|b(d)> 0}: we write d ∈ b to mean d ∈ b. A multiset b may be denoted by a
weighted formal sum of b elements where coefficients represent multiplicities. The null multiset (over a
given domain), i.e., the multiset with an empty support, is denoted (with some overloading) /0. The set of
all bags over D is denoted Bag[D]. Let b1,b2 ∈ Bag[D]. The sum (b1 +b2) ∈ Bag[D] and the difference
(b1−b2) ∈ Bag[D] are defined as: (b1 +b2)(d) = b1(d)+b2(d); (b1−b2)(d) = max(0,b1(d)−b2(d)).
Also relational operators are defined component-wise, e.g., b1 < b2 if and only if ∀d, b1(d)< b2(d).
The scalar product k ·b1, k ∈N, is b′1 ∈ Bag[D], s.t. b′1(d) = k ·b1(d). Let b1 ∈ Bag[A], b2 ∈ Bag[B], and
so forth: the Cartesian product b1×b2× . . . ∈ Bag[A×B× . . .] is defined as (b1×b2× . . .)(〈a,b, . . .〉) =
b1(a) ·b2(b) · . . .

Multiset functions All the operators on multisets straightforwardly extend to functions mapping to
multisets. Let f1, f2 : D→ Bag[D′]; if op is a binary operator on bags, then f1 op f2 is defined as
f1 op f2 (a) = f1(a) op f2(a). Analogously if op is a unary operator: e.g., f1 is a function D→ 2D′

such that f1(a) = f1(a). As for relational operators, f1 < f2 if and only if ∀a, f1(a)< f2(a). With some
overloading, the symbol /0 will denote a constant null multiset function.
Let f1 : D→ Bag[A], f2 : D→ Bag[B], and so forth: the product f1× f2× . . . : D→ Bag[A×B× . . .] is

www.di.unito.it/~depierro/SNex
https://github.com/lgcapra/GTS-SN

L. Capra 109

defined: f1× f2× . . .(d) = f1(d)× f2(d)× In the following a function-tuple 〈 f1, f2, . . .〉 will denote
the function Cartesian product f1× f2× . . .
Let f : D→Bag[D′]: the transpose f t : D′→Bag[D] is defined as: f t(x)(y) = f (y)(x),∀x∈D′,y∈D; the
linear extension f ∗ : Bag[D]→ Bag[D′] is defined as f ∗(b) = ∑x∈b b(x) · f (x). The composition operator
is extended accordingly: let h : A→ Bag[B], g : B→ Bag[C], then g ◦ h : A→ Bag[C] is defined as
g◦h(a) = g∗(h(a)). For simplicity, we will use the same symbol for a function and its linear extension.

2.2 Symmetric Nets

Symmetric Nets (SN) 2 [6] are a high-level Petri Net formalism featuring a particular syntax for places,
transitions, and arc annotations: such syntax has been devised to make the symmetries present in model’s
structure and behaviour explicit. This formalism is thus convenient from the point of view of model
representation as well as from that of its analysis. Efficient methods have been proposed to perform
SN state-space based analysis [7], or structural analysis [4],[3]. Many of these algorithms have been
implemented in GreatSPN [1], whereas the most recent developments on structural analysis have been
implemented in SNexpression (www.di.unito.it/~depierro/SNex).

SN are a particular flavour of Colored Petri nets (PN), originally introduced in [11]. Like in any
Petri net, the SN underlying structure is a kind of (finite) directed bipartite graph, where the set of nodes
is P∪ T , P and T being non-empty, disjoint sets, whose elements are called places and transitions,
drawn as circles and bars, respectively. The former represent system state variables, whereas the latter
events causing (local) state changes: what characterizes Petri nets in fact is a distributed notion of state,
called marking. As in any high-level PN model, both places and transitions are associated with (colour)
domains. Edges are annotated by (colour) functions mapping the domain of the incident transition to the
domain of the incident place.

This section introduces the SN formalism exemplifying some key concepts by means of the models
used in the rest.

2.2.1 Colour Domains

SN places are associated with a color domain (cd) defining the type of tokens a place may hold. A color
domains is a Cartesian product of finite, non-empty, pair-wise disjoint basic color classes, denoted by
capital letters (e.g., C). Basic color classes may be partitioned into static subclasses (denoted by capital
letters with a subscript, e.g., C1), or, in alternative, circularly ordered.

The SN models defined later build on a single basic color class: N={ndi}. The place color domains
are N and E = N×N (or N2).

Transitions have a color domain as well, since they specify parametric events. The color domain of a
transition is implicitly determined by transition’s parameters (variables) that annotate incident edges and
transition’s guard, denoted in this paper by lower-case letters with a subscript, e.g. ci. By convention,
the letter used for a variable implicitly defines its type, i.e., the color class denoted by the corresponding
capital letter. Subscripts are used to distinguish variables of a given type associated with a transition. As
an example, the colour domain of transition R1 (Figure 1a) is N×N×N.

If no variable symbols surround a given transition, its domain is implicitly defined by a singleton
neutral color.

2Introduced with the name of Well-formed Nets, later renamed SNs.

www.di.unito.it/~depierro/SNex

110 An Operational Semantics of GTS

2.2.2 Transition guards

Transitions may have guards, consisting of boolean predicates defined on transition domains:

• [c1 = (6=)c2] is true when the same/a different color is assigned to c1 and c2;

• [c1 ∈ C j] is true when the color assigned to c1 belongs to subclass C j;

• [d(c1) = d(c2)] is true when the colors assigned to c1 and c2 belong to the same subclass.

A transition instance is a pair (t,b), where b (binding) is an assignment of colors to the transition’s
variables. For instance, a possible binding for R1 is n1 = nd2, n2 = nd1, n3 = nd3. A transition instance
is valid if it satisfies the transition’s guard. From now on with transition color domain we will mean the
set of valid transition instances.

A transition guard is omitted if and only if it is the constant true.

2.2.3 Marking

A marking m provides a distributed notion of system state. Formally, a marking maps every place to
a multiset on its domain: m(p) ∈ Bag[cd(p)] is the marking of place p. The elements of one such a
multiset are called tokens.

2.2.4 Arc Functions

An arc form a place p to a transition t is called input arc, whereas one in the opposite direction is called
output arc. A place and a transition may be also connected by an inhibitor arc, drawn with an ending
small circle instead of an arrow. Arcs are annotated by corresponding arc functions, denoted by I[p, t],
O[p, t] and H[p, t], respectively. An arc function is a map F : cd(t)→ Bag[cd(p)], formally expressed as
a linear combination:

F = ∑
i

λi.Ti, λi ∈ N, (1)

where Ti is a tuple (i.e., a Cartesian product) of class functions 〈 f1, . . . , fk〉.
A class-C function fi is a map cd(t)→ Bag[C], expressed in turn as a linear combination of functions

in an elementary set:
fi = ∑

h
αh.eh, αh ∈ Z, (2)

where (referring to class C) eh ∈ {c j,++c j,Cq,All}:

• c j (previously called variable) is actually a projection, i.e, given a tuple of colours in cd(t) maps
to the jth occurrence of color C; if class C is ordered, then ++c j denotes the successor mod|C| of
the element that c j maps to;

• Cq and All are diffusion (or constant) functions mapping any color in cd(t) to ∑x∈Cq 1 · x and
∑x∈C 1 · x, respectively.

Scalars αh in (2) must be such that no negative coefficients result from the evaluation of fi for any legal
binding of t. Both function-tuples and class-functions may be suffixed by a guard defined on cd(t),
acting as a filter: f [g](a) = f (a) if g(a), otherwise f [g](a) = /0. If t has an associated guard g(t) then we
assume g(t) implicitly spans over all surrounding arc functions.

AS an example of arc function, consider the function on the inhibitor arc connecting transition R2

to place Edge (Figure 1b). The transition’s domain is cd(R2) = N, because only variable n1 occurs in

L. Capra 111

incident edges. The evaluation of this function on a given ndi ∈ N results in the (multi)set composed of
all pairs with the first element equal to ndi and all pairs with the 2nd element equal to ndi and the first
one other than ndi.

The only basic class used in the SN models of the paper is neither partitioned nor ordered. Arc
functions, moreover, map to multisets with multiplicities ≤ 1. i.e., sets.

2.2.5 SN Execution

The interleaving semantics of a SN is fully defined by the firing rule. Assuming that missing arcs (of
any type) between SN nodes are arcs annotated by the null function /0, an instance (t,b) is enabled in
marking m iff:

• ∀p ∈ P: I[p, t](b)≤m(p)

• ∀p ∈ P, x ∈ H[p, t](b): H[p, t](b)(x)> m(p)(x)

An instance (t,b) enabled in m may fire by withdrawing from each input place p the bag I[p, t](b)
and adding to each output place p the bag O[p, t](b). We get a new marking m′, formally defined as:

∀p : m′(p) = m(p)− I[p, t](b)+O[p, t](b)

We say that m′ is reachable from m through (t,b), and this is denoted m[t,b > m′.
Once an initial marking m0 of a SN is set, it is possible to build the state-transition system (often

called reachability graph, or RG) describing a SN model’s behaviour. The RG is a (edge-labelled)
directed multi-graph inductively defined as follows: m0 ∈ RG; if m∈ RG, and m[t,b > m′, also m′ ∈ RG
and there is an edge 〈m,m′〉 with label (t,b).

If a symbolic initial marking is set, a quotient graph called symbolic reachability graph is directly
built, that retains all the information of the ordinary reachability graph. We will get to that later.

3 Encoding GTS in SN

In this section we show how to encode a Graph Transformation Systems through Symmetric nets. Graph
rewriting rules are formalized in terms of SN transitions connected to a couple of shared places. They
will be illustrated by a few examples. For the sake of simplicity we refer to simple directed graphs, even
if this approach may be extended to any category of (hyper)graphs.

A directed graph (form now on simply graph) is composed of a (finite) set N of nodes and a set
E ⊆ N×N of edges. A (total) morphism between graphs G1 = (N1,E1) and G2 = (N2,E2) is a pair of
functions fE : E1→ E2, fN : N1→ N2 such that ∀〈n1,n2〉 ∈ E1, fE(〈n1,n2〉) = 〈FN(n1),FN(n2)〉.

3.1 Graph encoding

The graph encoding through SN builds on a couple of places, Node and Edge, whose associated colour
domain are the basic colour class N = {ndi}, and the product E = N×N, respectively. We assume that
class N holds enough elements to cover all possible evolutions of a graph.

A graph G1 = (N1,E1) is straightforwardly encoded by a SN marking, denoted mG1 : letting l be an
injective labelling N1→ N, mG1(Node) = ∑n∈N1 1 · l(n), mG1(Edge) = ∑〈n1,n2〉∈E1 1 · 〈l(n1), l(n2)〉.

The other way round, a SN marking m is a graph-encoding if and only if both m(Node) and m(Edge)
are multisets whose elements have multiplicities≤ 1 (i.e., sets) and any colour ndi occurring in m(Edge)
also occurs in m(Node) (there are no dangling edges).

112 An Operational Semantics of GTS

3.2 Graph rewriting rules

A graph rewriting rule (or derivation) is formalized by a SN transition Ri properly connected to places
Node and Edge. The colour domain of Ri depends on how many variables (projections) ni occur on the
incident arcs and transition’s guard: in general, cd(Ri) = Nk, k > 0.

The idea is simple: the input arc functions I[Node,Ri], I[Edge,Ri] (assumed non both null), and the
inhibitor arc function H[Edge,Ri], when evaluated on an enabled instance of Ri in a graph-encoding
marking m, match a subgraph of the encoded graph which is rewritten according to the SN firing rule:
the matched subgraph is atomically removed from the encoded graph and replaced with the subgraph
yielded by evaluating the output arc functions on the same instance. Inhibitor arc functions, even if
not directly involved in the firing, play a crucial role both in the matching step and in setting structural
conditions for rule correctness, as explained below.

Some representative examples of rules are shown in Figure 1. Rule 1a allows the transitive closure
of a graph be incrementally computed. Rule 1b represents the removal of isolated nodes of a graph. Rule
1c may be used to derive a Kripke structure from a graph: in fact, a self-loop is created for nodes without
successors. Rule 1d transforms a self-loop involving node ndi into a pair of edges from/to nd j, where
nd j is a new node. Rule 1e is matched by a node ndi having as only successor nd j, which has no other
link but a self-loop: in that case nd j is removed, and a self-loop involving ndi is created. Finally, Rule 1f
translates a loop between ndi and nd j into a loop involving these two nodes and a newly inserted one.

3.3 Well defined Rules

We have to establish some conditions ensuring that a rewriting rule is well-defined, that is, any instance
of the rule (transition) rewrites a (simple) directed graph into another one. By exploiting the calculus
for SN introduced in [3], [4], it is possible to characterize these rules as structural conditions on the arc
functions annotating the corresponding transition, that may be checked in a fully symbolic and automated
way, e.g., by using the SNexpression (www.di.unito.it/~depierro/SNex) toolset.

The calculus for SN has been developed to check basic structural properties (conflict, causal connec-
tion, mutual exclusion) on SN without any net unfolding. It builds on the ability to solve in a symbolic
way expressions whose terms are the elements of a language L and involving a specific set of functional
operators (in this context, the difference, the composition, and the support). The terms of L are a small
extension of the SN arc functions, but the language restriction used here exactly matches SN arc func-
tions. The calculus has been implemented as a rewriting system that, given any structural expression,
reduces it to a normal form in L . In particular, if e≡ /0 then e→ /0.

In the following, the expressions W+[p, t] and W−[p, t] stand for O[p, t]−I[p, t] and I[p, t]−O[p, t],
respectively: they map any transition instance (t,b) to the (multi)set of coloured tokens that (upon its
firing) are added/withdrawn to/from place p.

Two type of terms are used: functions mapping to multisets, and their supports, mapping to sets. Ac-
cording to the type of operands, ’−’,’+’ will denote the multiset difference/sum or the set difference/sum.
The same for the Cartesian product. These equivalences are exploited (with an obvious overloading of
symbol ’ /0’):

F ≤ G⇔ F−G≡ /0; F ⊆ G⇔ F−G≡ /0.

www.di.unito.it/~depierro/SNex

L. Capra 113

(a) Rule 1 (b) Rule 2

(c) Rule 3
(d) Rule 4

(e) Rule 5 (f) Rule 6

Figure 1: Examples of graph rewriting rules

114 An Operational Semantics of GTS

Let R be the transition encoding a rule. The conditions below ensure that R is well defined:

1) H[Edge,R]≤ 〈All,All〉 ∧ H[Node,R]≤ 〈All〉
2) W+[Edge,R]≤ 〈All,All〉
3) W+[Node,R]≤ H[Node,R]

4) let NA = (〈n1 +n2〉 ◦O[Edge,R]−〈n1 +n2〉 ◦ I[Edge,R])− I[Node,R] : NA⊆ O[Node,R]

5) W+[Edge,R]− (〈NA,All〉+ 〈All,NA〉)⊆ H[Edge,R]

6) ((〈All−n1,n1〉+ 〈n1,All〉)◦W−[Node,R])−W−[Edge,R]⊆ H[Edge,R]

Conditions 1,2) are related to simplicity (these conditions alone, however, doesn’t ensure it); 1)
means that inhibitor arc functions map to multisets with multiplicities ≤ 1, i.e., we can only check for
the absence of nodes/edges in a graph-encoding; 2) means that new edges are inserted with multiplicity
1; 3) avoids node duplication. Conditions 4-6) avoid (among others) the creation of dangling edges, and
are a bit more complex, involving the composition operator: 4) means that the nodes incident to newly
added edges, but that do not exist yet (this set of nodes is denoted NA), must be contextually inserted: it
builds on the assumption that, in the current graph encoding, there are no dangling edges; 5) is related,
again, to simplicity: whenever a new edge is added, we must check its absence unless one of its incident
nodes belongs to the precomputed set NA; finally, 6) deals with node removal: the inhibitor arc function
must ensure that, for every withdrawn node, there are no edges incident to it, but for those edges that are
contextually removed by the rule.

A few remarks have to be done. In condition 4), the domain of projections n1,n2 is N×N, whereas
in 6) the domain of n1 is N. The use of support operator in 4-6) is due to the fact that a composition may
result in ordinary multisets, with multiplicities greater than one. The parametric set NA is computed by
separately considering the output and the input arc functions to/from place Edge, instead of considering
W+[Edge,R]: in fact, 〈n1 +n2〉 ◦O[Edge,R]−〈n1 +n2〉 ◦ I[Edge,R]⊆ 〈n1 +n2〉 ◦W+[Edge,R], therefore
the condition we set is more general.
Property 1. If a rule/transition R meets conditions 1-6), then the firing of any instance (R,b) in a graph-
encoding marking generates a graph-encoding marking.
The proof is just a direct consequence of the explanation above. We can easily check that all rules shown
in Figure 1 are well defined.

3.4 Bringing rules together

A Graph Transformation System (or GTS) may be very simply defined by bringing together a set of well-
defined rules (transitions) sharing places Node and Edge, and setting an initial graph-encoding marking.
The induced state-transition system corresponds to the SN reachability graph.

As an example, consider the SN in Figure 2. It comes from the combination of Rules 1,3) described
above. Given a graph G0 encoded by the initial marling mG0 , the derived RG describes the sequence
of transformations that G0 undergoes by applying either Rule 1 or Rule 3. The resulting RG has an
absorbing state, i.e. a dead home-state, which corresponds to the transitive closure of mG0 where nodes
without proper predecessors are sources/targets of self-loops.

Let mG0(Edge) = 〈nd1,nd2〉+ 〈nd1,nd3〉+ 〈nd4,nd1〉, and mG0(Node) = 〈nd1 + nd2 + nd3 + nd4〉:
the corresponding RG (built with the GreatSPN package) holds 16 nodes, one of which absorbing; this
final node encodes the graph

〈nd1,nd2〉+ 〈nd1,nd3〉+ 〈nd4,nd1〉+ 〈nd2,nd2〉+ 〈nd3,nd3〉+ 〈nd4,nd2〉+ 〈nd4,nd3〉

L. Capra 115

.

A Symbolic State-transition System During the construction of the SN reachability graph some mark-
ings encoding isomorphic graphs may be reached. Consider the example above: from the initial marking,
we can reach the two markings below 3 by firing R1 with the bindings n1 = nd4, n2 = nd1, n3 = nd2 and
n1 = nd4, n2 = nd1, n3 = nd3, respectively:

i) 〈nd1,nd2〉+ 〈nd1,nd3〉+ 〈nd4,nd1〉+ 〈nd4,nd2〉 ii) 〈nd1,nd2〉+ 〈nd1,nd3〉+ 〈nd4,nd1〉+ 〈nd4,nd3〉

Observe that i) and ii) are isomorphic since can be obtained from one another by swapping nd2 with
nd3. Recognizing isomorphic graph-encodings is for free in SN, if the initial marking is symbolic. A
symbolic marking m̂ [7] is an equivalence class of ordinary markings: {m1,m2} ⊆ m̂ if and only if they
correspond, up to a permutation on colour classes (preserving the possible partitions in subclasses)

A symbolic marking (or SM) is syntactically expressed using dynamic subclasses instead of ordinary
colours. Dynamic subclasses define parametric partitions of basic colour classes: each dynamic subclass
is associated with a colour class (or a static subclass, if the class is split) and has a cardinality. As an
example, the initial symbolic marking encoding (among others) graph G0 above is:

m̂0(Edge) = 〈znd1,znd23〉+ 〈znd4,znd1〉, m̂0(Node) = 〈znd1 + znd23 + znd4〉
where all symbols (dynamic subclasses) refer to class N, and |znd1|= |znd4|= 1, |znd23|= 2. This sym-
bolic marking represents six ordinary markings, including mG0 . A symbolic reachability graph (or SRG)
is directly built from an initial symbolic marking, by means of a symbolic firing rule (and a canonical
representative for SM). Skipping the technical details, a symbolic instance of R1 folding the two bindings
above is enabled in m̂0; this symbolic instance may fire, leading to a new symbolic marking representing
(among others) the ordinary markings i) and ii).

The SRG built (with the GreatSPN package) from m̂0 is a quotient-graph of the RG, retaining liveness
and safety properties: in the simple example we are considering, the SRG holds 9 nodes plus an absorbing
one, each encoding a class of isomorphic graphs. When huge graphs are encoded with SN, the reduction
achieved with the SRG in terms of generated states/arcs may be dramatic (e.g., a symbolic instance
of transition R1 may fold up to |N|3 ordinary instances), even if bringing a SM to a canonical form is
comparable to checking graph isomorphism.

4 Exploiting SN Structural Analysis: an example

In Section 3.3 we have established some conditions on arc functions making a SN transition specify a
well-defined graph rewriting rule. These conditions involve functional operators that can be solved in a
fully automated/symbolic way through the SNexpression tool, implementing the computation of a base
set of structural properties [9] directly on SN models, without any unfolding. Each structural property
may be expressed in terms of language L , which is a small extension of arc functions.

Let us discuss now about the exploitation of these properties for validating rules, e.g., to figure out
which rules of a GTS might concurrently apply. Concurrent graph rewriting issues have been widely
tackled in literature: we do not want to go into the details of a theoretical discussion, rather we aim at
showing the potential of SN structural analysis in this field.

Symbolic structural relations are computed by properly combining arc functions through some oper-
ators: transpose, sum, difference, support, and composition. A relation is a map R(t, t ′) : cd(t ′)→ 2cd(t)

3we refer to place Edge, because the marking of Node doesn’t change

116 An Operational Semantics of GTS

Figure 2: a simple GTS composed of Rules 1,3

that when applied to an instance c′ of t ′ gives the set of instances of t that are in such a relation with
(t ′,c′). Symbolic relations build on a couple of auxiliary ones, involving a pair place/transition, both
with arity cd(p)→ 2cd(t): Rb[t, p] = W−[p, t]

t
(Removed by), given a color c of p provides the set of

instances of t that withdraw c from p; Ab[t, p] = W+[p, t]
t

(Added by), given a color c of p provides the
set of instances of t that add c to p. Table 1 reports the definitions of base structural relations.

(Asymmetric) Structural Conflict: Two transition instances (t,c) and (t ′,c′) are in conflict in a given
marking m if the firing of the former disables the latter. The structural conflict (SC) relation defines the
necessary conditions that may lead to an actual conflict in some marking. The symbolic relation SC(t, t ′)
maps a an instance c′ of t ′ to the set of colour instances of t that may disable (t ′,c′): this happens either
because (t,c) withdraws a token from an input place which is shared by the two transitions, or because it
adds a token into an output place which is connected to t ′ through an inhibitor arc. These two cases are
reflected in the SC formula, which is is obtained by summing up over all shared input places and shared
output-inhibitor places. Observe that different instances of the same transition may be in conflict (auto
conflict): the same expression can be used, but one must subtract from the set of conflicting instances the
instance itself to which SC applies (using the identity function).
Structural Causal Connection: Two transition instances (t,c) and (t ′,c′) are in causal connection if
the firing of the former in a given marking m causes the enabling of the latter. The structural causal
connection (SCC) relation defines the necessary conditions that may lead to an actual causal connection
in some marking. The symbolic relation SCC(t, t ′), when applied to an instance c′ of t ′, provides the set
of instances (t,c) that may cause the enabling of (t ′,c′). This happens if some output places of t are input
places for t ′ and some input places of t are inhibitor places for t ′.

L. Capra 117

Table 1: Symbolic Structural relations in SN

SC(t, t ′) =
⋃

p Rb[t, p]◦ I[t ′, p] ∪ Ab[t, p]◦H[t ′, p]
SCC(t, t ′) =

⋃
p Ab[t, p]◦ I[t ′, p] ∪ Rb[t, p]◦H[t ′, p]

SME(t, t ′) =
⋃

p I[t, p]
t ◦H[t ′, p] ∪ H[t, p]

t ◦ I[t ′, p]

Structural Mutual Exclusion: Two transition instances (t,c) and (t ′,c′) are in (structural) mutual exclu-
sion (SME) if the enabling of (t ′,c′) in any m implies that (t,c) is not enabled, and viceversa. This
situation arises when a place p does exist which is input for t and inhibitor for t ′, and the number of
tokens (of any color) required in p for the enabling of t is greater than or equal to the upper bound on
the number of tokens (of the same color) in p imposed by the inhibitor arc connecting p and t ′. The
(symmetric) symbolic relation SME(t, t ′) maps an instance (t ′,c′) to the set of instances of t that are
surely disabled in any marking where (t ′,c′) is enabled. If all functions on input and inhibitor arcs were
mappings onto sets (i.e., on multisets with multiplicities ≤ 1), as in the SN models presented in this
paper, then the SME relation corresponds to the expression in Table 1, that applies also when t and t ′

coincide4.

Application example Structural relations can be used to validate the rules of a GTS formalized in
terms of SN. In particular, it is possible to check which rules may concurrently apply, in the event a true
concurrent semantics were used. Using the structural calculus for SN we can -in a way, parametrically
(i.e., symbolically) partition the set of instances of a given transition (rule) on the basis of a given relation
with the instances of the other (or even the same) rule(s).

In order to illustrate these concepts, let us consider the GTS in Figure 2. The two rules are potentially
in conflict due to place Edge, which is simultaneously an output place for one rule and an inhibitor place
for the other. Instead, there are no potential conflicts due to the sharing of input places, since we can
easily check that the expressions Rb[t, p] are null (by the way, a composition involving a null function
results in /0). As for the added by expressions, we got the following non-null entries 5 (in the sequel,
function supports are implicitly used):

Ab[R1,Edge] = 〈n1,All,n2〉 Ab[R3,Edge] = 〈n1〉[n1 = n2]

The first expression says that a color (token) 〈c1,c2〉 may be pushed into place Edge by any instance
of R1 (a triplet of colours) whose 1st and 3rd elements are equal to c1 and c2, respectively. The other
expression says that a color 〈c1,c2〉, with c1 = c2, may be pushed into place Edge by the instance 〈c1〉 of
R3. Then, according with Table 1 we obtain:

SC(R1,R3) = 〈n1,All,n2〉 ◦ 〈n1,All〉= 〈n1,All,All〉
SC(R3,R1) = 〈n1〉[n1 = n2]◦ 〈n1,n3〉= 〈n1〉[n1 = n3]

Again, the interpretation of these symbolic expressions is quite intuitive: SC(R1,R3) says that an instance
〈c1〉 of Rule 3 might be in conflict with (i.e., disabled by) any instance of Rule 1 having color c1 as first
element; SC(R3,R1) instead says that an instance 〈c1,c2,c3〉 of Rule 1, such that c1 = c3, might be in
conflict with the instance 〈c1〉 of Rule 3.

4we refer to [3] for a general treatment of SME
5all the calculus were done with SNExpression tool

118 An Operational Semantics of GTS

The SC relation, however, just outlines potential conflicts. The previous outcome may be refined by
computing SME: in fact, we observe that place Edge is both input and inhibitor for R1, and inhibitor for
R3. Then, according with Table 1 we obtain:

SME(R1,R3) = 〈All,n1,All〉+ 〈n1,All,All〉 SME(R3,R1) = 〈n1〉+ 〈n2〉

Notice that, according with the transpose rules and the relation’s symmetry: SME(R3,R1)
t = SME(R1,R3).

What is interesting, however, is that SC(R1,R3) ⊂ SME(R1,R3) and SC(R3,R1) ⊂ SME(R3,R1), i.e., po-
tentially conflicting instances of Rules 1 and 3 are in structural mutual exclusion. In other words, these
two rules are potentially concurrent.

The same check may be done on instances of the same rule. Consider R1: potential auto-conflicts
due to place Edge correspond to the symbolic expression:

SC(R1,R1) = 〈n1,All−n2,n2〉+ 〈n1,All−n1,n3〉[n1 = n2]+ 〈n2,All,n3〉[n1 6= n2]+ 〈n1,n2,n2〉[n2 6= n3]

The mutually exclusive instances of the same transition correspond to the symbolic expression:

SME(R1,R1) = 〈n2,All,n3〉+ 〈n1,All,n2〉+ 〈n1,n3,All〉+ 〈All,n1,n3〉

Also in this case, SC(R1,R1)⊂ SME(R1,R1), i.e., the instances of R1 are potentially concurrent. A similar
check may be done for R3 instances.

In general, checking whether the rules of a GTS may concurrently take place (possibly identifying
parametric concurrent subsets of rule instances) involves more complex calculations: think, e.g., of
indirect conflicts arising between non conflicting rule instances (R,b) and (R′,b′) enabled in marking
m : we fall in such a situation, e.g., if the firing of (R,b) triggers a sequence of causally connected rule
instances ending with an instance (R′′,b′′) which is actually in conflict with (disables) (R′,b′). Computing
the transitive closure of a structural relation [3] is necessary to recognize indirect conflicts.

5 Conclusions and ongoing work

We have presented a formalization of Graph Transformation Systems (GTS) based on Symmetric Nets
(SN), a type of Coloured Petri nets featuring a particular syntax that outlines model symmetries. Each
rule of a GTS corresponds to a transition of a SN which is properly connected to a couple of places
encoding a graph. The advantages of this approach are numerous: we can exploit well established tools
supporting the editing/analysis of SN, like the GreatSPN package; an operational interleaving semantics
for GTS is provided in a natural way building the state-transition system of a SN; a compact state-
transition system -called symbolic reachability graph, in which states (markings) representing isomorphic
graphs are folded, can be directly derived once an initial symbolic graph encoding is set; some recent
advances in SN (symbolic) structural analysis, implemented in the SNExpression tool, may be exploited
to check some conditions ensuring rule well-definiteness, to validate rules, and to check their potential
concurrency; in particular, a fully automated calculus of symbolic structural relations in SN models may
be profitably used. All these concepts have been instantiated on a few, though significant, examples
of graph rewriting rules, and a simple GTS. Throughout the paper we refer to the encoding of simple
directed graphs.

Ongoing work is in two main directions. The presented approach is general, we are therefore ex-
tending the class of encodable graphs to multigraphs (this extension is for free, it only requires that some

L. Capra 119

well-definiteness conditions on rules are relaxed), bipartite graphs, hypergraphs, and so forth. Some
SN features not used in the paper might be needed: for example (think of bi-or three-partite graphs),
partitioning the colour class of nodes in two or more subclasses

A more theoretical research line involves a comparison of the SN based approach with classical
approaches to GTS, in particular the algebraic ones based on single/double pushout. We are firmly
convinced that, under some quite general conditions, it is possible to characterize a SN rule as a pushout
(in particular, a dpo) derivation. The practical implications of such a relationship (when confirmed)
deserve further investigations.

References
[1] S. Baarir, M. Beccuti, D. Cerotti, M. De Pierro, S. Donatelli & G. Franceschinis (2009): The GreatSPN Tool:

Recent Enhancements. SIGMETRICS Perform. Eval. Rev. 36(4), pp. 4–9, doi:10.1145/1530873.1530876.
[2] P. Baldan, A. Corradini, F. Gadducci & U. Montanari (2010): From Petri Nets to Graph Transformation

Systems. ECEASST 26, doi:10.14279/tuj.eceasst.26.368.
[3] L. Capra, M. De Pierro & G. Franceschinis (2015): Computing structural properties of symmetric nets, pp.

125–140. 9259, Springer International Publishing, doi:10.1007/978-3-319-22264-6 9.
[4] L. Capra, M. De Pierro & G. Franceschinis (2005): A High Level Language for Structural Relations in

Well-Formed Nets. In: Proc. of the 26th Int. Conf. ATPN 2005, LNCS 3536, Springer, pp. 168–187,
doi:10.1007/11494744 11.

[5] L. Capra, M. De Pierro & G. Franceschinis (2013): A Tool for Symbolic Manipulation of Arc
Functions in Symmetric Net Models. In: Proceedings of the 7th International Conference on Per-
formance Evaluation Methodologies and Tools, ValueTools ’13, ICST, Torino, Italy, pp. 320–323,
doi:10.4108/icst.valuetools.2013.254407.

[6] G. Chiola, C. Dutheillet, G. Franceschinis & S. Haddad (1993): Stochastic well-formed colored nets
and symmetric modeling applications. IEEE Transactions on Computers 42(11), pp. 1343–1360,
doi:10.1109/12.247838.

[7] G. Chiola, C. Dutheillet, G. Franceschinis & S. Haddad (1997): A symbolic reachability graph for coloured
petri nets. Theoretical Computer Science 176(1), pp. 39 – 65, doi:10.1016/S0304-3975(96)00010-2.

[8] A Corradini (2006): Concurrent graph and term graph rewriting. pp. 438–464, doi:10.1007/3-540-61604-
7 69.

[9] C. Dutheillet & S. Haddad (1993): Conflict Sets in Colored Petri Nets. In: proc. of Petri Nets and Performance
Models, pp. 76–85, doi:10.1109/PNPM.1993.393433.

[10] H. Ehrig & J. Padberg (2003): Graph Grammars and Petri Net Transformations. pp. 496–536,
doi:10.1007/978-3-540-27755-2 14.

[11] K. Jensen (1997): Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1,
Basic Concepts. Monographs in Theoretical Computer Science, Springer-Verlag, 2nd corrected printing 1997.
ISBN: 3-540-60943-1., doi:10.1007/978-3-662-03241-1.

[12] K. Jensen & G. Rozenberg, editors (1991): High-level Petri Nets: Theory and Application. Springer-Verlag,
London, UK, doi:10.1007/978-3-642-84524-6.

[13] H.J. Kreowski (1980): A Comparison Between Petri-Nets and Graph Grammars. 100, pp. 306–317,
doi:10.1007/3-540-10291-4 22.

[14] W. Reisig (1985): Petri Nets: An Introduction. Springer-Verlag New York, Inc., New York, NY, USA,
doi:10.1007/978-3-642-69968-9.

http://dx.doi.org/10.1145/1530873.1530876
http://dx.doi.org/10.14279/tuj.eceasst.26.368
http://dx.doi.org/10.1007/978-3-319-22264-6_9
http://dx.doi.org/10.1007/11494744_11
http://dx.doi.org/10.4108/icst.valuetools.2013.254407
http://dx.doi.org/10.1109/12.247838
http://dx.doi.org/10.1016/S0304-3975(96)00010-2
http://dx.doi.org/10.1007/3-540-61604-7_69
http://dx.doi.org/10.1007/3-540-61604-7_69
http://dx.doi.org/10.1109/PNPM.1993.393433
http://dx.doi.org/10.1007/978-3-540-27755-2_14
http://dx.doi.org/10.1007/978-3-662-03241-1
http://dx.doi.org/10.1007/978-3-642-84524-6
http://dx.doi.org/10.1007/3-540-10291-4_22
http://dx.doi.org/10.1007/978-3-642-69968-9

	1 Introduction
	2 Symmetric Nets
	2.1 Multisets
	2.2 Symmetric Nets
	2.2.1 Colour Domains
	2.2.2 Transition guards
	2.2.3 Marking
	2.2.4 Arc Functions
	2.2.5 SN Execution

	3 Encoding GTS in SN
	3.1 Graph encoding
	3.2 Graph rewriting rules
	3.3 Well defined Rules
	3.4 Bringing rules together

	4 Exploiting SN Structural Analysis: an example
	5 Conclusions and ongoing work

