
Symmetric and Asymmetric

Asynchronous Interaction

Rob van Glabbeek1

NICTA, Sydney, Australia

University of New South Wales, Sydney, Australia

Ursula Goltz2 Jens-Wolfhard Schicke3

Institute for Programming and Reactive Systems
TU Braunschweig

Braunschweig, Germany

Abstract

We investigate classes of systems based on different interaction patterns with the aim of achieving dis-
tributability. As our system model we use Petri nets. In Petri nets, an inherent concept of simultaneity
is built in, since when a transition has more than one preplace, it can be crucial that tokens are removed
instantaneously. When modelling a system which is intended to be implemented in a distributed way by a
Petri net, this built-in concept of synchronous interaction may be problematic. To investigate the problem
we assume that removing tokens from places can no longer be considered as instantaneous. We model this
by inserting silent (unobservable) transitions between transitions and their preplaces. We investigate three
different patterns for modelling this type of asynchronous interaction. Full asynchrony assumes that every
removal of a token from a place is time consuming. For symmetric asynchrony, tokens are only removed
slowly in case of backward branched transitions, hence where the concept of simultaneous removal actu-
ally occurs. Finally we consider a more intricate pattern by allowing to remove tokens from preplaces of
backward branched transitions asynchronously in sequence (asymmetric asynchrony).
We investigate the effect of these different transformations of instantaneous interaction into asynchronous
interaction patterns by comparing the behaviours of nets before and after insertion of the silent transitions.
We exhibit for which classes of Petri nets we obtain equivalent behaviour with respect to failures equivalence.
It turns out that the resulting hierarchy of Petri net classes can be described by semi-structural properties.
In case of full asynchrony and symmetric asynchrony, we obtain precise characterisations; for asymmetric
asynchrony we obtain lower and upper bounds.
We briefly comment on possible applications of our results to Message Sequence Charts.

Keywords: reactive systems, Petri nets, distributed systems, asynchronous interaction, equivalence notions

1 Email: rvg@cs.stanford.edu
2 Email: goltz@ips.cs.tu-bs.de
3 Email: drahflow@gmx.de

Electronic Notes in Theoretical Computer Science 229 (2009) 77–95
www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.06.040
1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81986826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rvg@cs.stanford.edu
mailto:goltz@ips.cs.tu-bs.de
mailto:drahflow@gmx.de
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

a b

⇒

ττ

a b

Fig. 1. Transformation to the symmetrically asynchronous implementation

1 Introduction

In this paper, we investigate classes of systems based on different asynchronous in-

teraction patterns with the aim of achieving distributability, i.e. the possibility to

execute a system on spatially distributed locations, which do not share a common

clock. As our system model we use Petri nets. The main reason for this choice

is the detailed way in which a Petri net represents a concurrent system, including

the interaction between the components it may consist of. In an interleaving based

model of concurrency such as labelled transition systems modulo bisimulation se-

mantics, a system representation as such cannot be said to display synchronous or

asynchronous interaction; at best these are properties of composition operators, or

communication primitives, defined in terms of such a model. A Petri net on the

other hand displays enough detail of a concurrent system to make the presence

of synchronous communication discernible. This makes it possible to study asyn-

chronous communication without digressing to the realm of composition operators.

In a Petri net, a transition interacts with its preplaces by consuming tokens. An

inherent concept of simultaneity is built in, since when a transition has more than

one preplace, it can be crucial that tokens are removed instantaneously, depending

on the surrounding structure or—more elaborately—the behaviour of the net.

When modelling a distributed system by a Petri net, this built-in concept of

synchronous interaction may become problematic. Assume a transition t on a loca-

tion l models an activity involving another location l′, for example by receiving a

message. This can be modelled by a preplace s of t such that s and t are situated

in different locations. We assume that taking a token can in this situation not be

considered as instantaneous; rather the interaction between s and t takes time. We

model this effect by inserting silent (unobservable) transitions between transitions

and their preplaces. We call the effect of such a transformation of a net N an

asynchronous implementation of N .

An example of such an implementation is shown in Figure 1. Note that a can be

disabled in the implementation before any visible behaviour has taken place. This

difference will cause non-equivalence between the original and the implementation

under branching time equivalences.

Our asynchronous implementation allows a token to start its journey from a place

to a transition even when not all preplaces of the transition contain a token. This

design decision is motivated by the observation that it is fundamentally impossible

to check in an asynchronous way whether all preplaces of a transition are marked—it

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9578

could be that a token moves back and forth between two such places.

We investigate different interaction patterns for the asynchronous implementa-

tion of nets. The simplest pattern (full asynchrony) assumes that every removal

of a token from a place is time consuming. For the next pattern (symmetric asyn-

chrony), tokens are only removed slowly when they are consumed by a backward

branched transition, hence where the concept of simultaneous removal actually oc-

curs. Finally we consider a more intricate pattern by allowing to remove tokens from

preplaces of backward branched transitions asynchronously in sequence (asymmetric

asynchrony).

Given a choice of interaction pattern, we call a net N asynchronous when there is

no essential behavioural difference between N and its asynchronous implementation

I(N). In order to formally define this concept, we wish to compare the behaviours

of N and I(N) using a semantic equivalence that fully preserves branching time,

causality and their interplay, whilst of course abstracting from silent transitions.

By choosing the most discriminating equivalence possible, we obtain the smallest

possible class of asynchronous nets, thus excluding nets that might be classified as

asynchronous merely because a less discriminating equivalence would fail to see the

differences between such a net and its asynchronous implementation. To simplify

the exposition, here we merely compare the behaviours of N and I(N) up to failures

equivalence [6]. This interleaving equivalence abstracts from causality and respects

branching time only to some degree. However, we conjecture that our results are in

fact largely independent of this choice and that more discriminating equivalences,

such as the history preserving ST-bisimulation of [21], would yield the same classes

of asynchronous nets. Using a linear time equivalence would give rise to larger

classes; this possibility is investigated in [19].

Thus we investigate the effect of our three transformations of instantaneous

interaction into asynchronous interaction patterns by comparing the behaviours of

nets before and after insertion of the silent transitions up to failures equivalence. We

show that in the case of full asynchrony, we obtain equivalent behaviour exactly for

conflict-free Petri nets. Further we establish that symmetric asynchrony is a valid

concept for N-free Petri nets and asymmetric asynchrony for M-free Petri nets, where

N and M stand for certain structural properties; the reachability of such structures

is crucial. For symmetric asynchrony we obtain a precise characterisation of the

class of nets which is asynchronously implementable. For asymmetric asynchrony

we obtain lower and upper bounds.

In the concluding section, we discuss the use of our results for Message Sequence

Charts, as an example how they may be useful for other models than Petri nets.

When interpreting basic Message Sequence Chart as Petri nets, the resulting Petri

nets lie within the class of conflict-free and hence N-free Petri nets. The more

expressive classes give insights in the effect of choices in non-basic MSCs.

This is an extended abstract; for sake of brevity most proofs are omitted. They

are contained in the full version of this paper [8], as well as in [19].

The paper is structured as follows. In Section 2 we establish the necessary basic

notions. In Section 3 we introduce the fully asynchronous transformation and give

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–95 79

a semi-structural characterisation of the resulting net class. In Section 4 we re-

peat those steps for the symmetrically asynchronous transformation. Furthermore

we describe how the resulting net class relates to the classes of free-choice and ex-

tended free choice nets. In Section 5 we introduce the asymmetrically asynchronous

transformation. We give semi-structural upper and lower bounds for the resulting

net class and relate it to simple and extended simple nets. In the conclusion in

Section 6 we compare our findings to similar results in the literature.

2 Basic Notions

We consider here 1-safe net systems, i.e. places never carry more than one token, but

a transition can fire even if pre- and postset intersect. To represent unobservable

behaviour, which we use to model asynchrony, the set of transitions is partitioned

into observable and silent (unobservable) ones.

Definition 2.1

A net with silent transitions is a tuple N = (S,O,U, F,M0) where
• S is a set (of places),
• O is a set (of observable transitions),
• U is a set (of silent transitions),
• F ⊆ S × T ∪ T × S (the flow relation) with T := O ∪ U (transitions) and
• M0 ⊆ S (the initial marking).

Petri nets are depicted by drawing the places as circles, the transitions as boxes,

and the flow relation as arrows (arcs) between them. When a Petri net represents

a concurrent system, a global state of such a system is given as a marking, a set of

places, the initial state being M0. A marking is depicted by placing a dot (token)

in each of its places. The dynamic behaviour of the represented system is defined

by describing the possible moves between markings. A marking M may evolve into

a marking M ′ when a nonempty set of transitions G fires. In that case, for each

arc (s, t) ∈ F leading to a transition t in G, a token moves along that arc from s to

t. Naturally, this can happen only if all these tokens are available in M in the first

place. These tokens are consumed by the firing, but also new tokens are created,

namely one for every outgoing arc of a transition in G. These end up in the places

at the end of those arcs. A problem occurs when as a result of firing G multiple

tokens end up in the same place. In that case M ′ would not be a marking as defined

above. In this paper we restrict attention to nets in which this never happens. Such

nets are called 1-safe. Unfortunately, in order to formally define this class of nets,

we first need to correctly define the firing rule without assuming 1-safety. Below we

do this by forbidding the firing of sets of transitions when this might put multiple

tokens in the same place.

Definition 2.2 Let N = (S,O,U, F,M0) be a net. Let M1,M2 ⊆ S.

We denote the preset and postset of a net element x by •x := {y | (y, x) ∈ F} and

x• := {y | (x, y) ∈ F} respectively. A nonempty set of transitions G ⊆ (O∪U), G �=
∅, is called a step from M1 to M2, notation M1 [G〉N M2, iff

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9580

• all transitions contained in G are enabled, that is

∀t ∈ G. •t ⊆ M1 ∧ (M1 \
•t) ∩ t• = ∅ ,

• all transitions of G are independent, that is not conflicting :

∀t, u ∈ G, t �= u. •t ∩ •u = ∅ ∧ t• ∩ u• = ∅ ,

• in M2 all tokens have been removed from the preplaces of G and new tokens

have been inserted at the postplaces of G:

M2 =

(
M1 \

⋃
t∈G

•t

)
∪

⋃
t∈G

t• .

To simplify statements about possible behaviours of nets, we use some abbrevi-

ations.

Definition 2.3 Let N = (S,O,U, F,M0) be a net with silent transitions.

• −→N ⊆ P(S)×P(O)×P(S) is defined by M1
G

−→N M2 ⇔ G⊆O∧M1[G〉N M2

•
τ

−→N ⊆ P(S) × P(S) is defined by M1
τ

−→N M2 ⇔ ∃t ∈ U. M1 [{t}〉N M2

• =⇒N ⊆ P(S) × O∗ × P(S) is defined by M1
t1t2···tn=====⇒N M2 ⇔

M1
τ

−→
∗

N
{t1}
−→N

τ
−→

∗

N
{t2}
−→N

τ
−→

∗

N · · ·
τ

−→
∗

N
{tn}
−→N

τ
−→

∗

N M2

where
τ

−→
∗

N denotes the reflexive and transitive closure of
τ

−→N .

We write M1
G

−→N for ∃M2. M1
G

−→N M2, M1 �

G
−→N for �M2. M1

G
−→N M2 and

similar for the other two relations.

A marking M1 is said to be reachable iff there is a σ ∈ O∗ such that M0
σ

=⇒ M1.

The set of all reachable markings is denoted by [M0〉N .

We omit the subscript N if clear from context.

As said before, here we only want to consider 1-safe nets. Formally, we restrict

ourselves to contact-free nets where in every reachable marking M1 ∈ [M0〉 for all

t ∈ O ∪ U with •t ⊆ M1

(M1 \
•t) ∩ t• = ∅ .

For such nets, in Definition 2.2 we can just as well consider a transition t to be

enabled in M iff •t ⊆ M , and two transitions to be independent when •t ∩ •u = ∅.

In this paper we furthermore restrict attention to nets for which •t �= ∅, and •t and

t• are finite for all t ∈ O ∪ U . We also require the initial marking M0 to be finite.

A consequence of these restrictions is that all reachable markings are finite, and it

can never happen that infinitely many independent transitions are enabled. Hence-

forth, we employ the name τ -nets for nets with silent transitions obeying the above

restrictions, and plain nets for τ -nets without silent transitions, i.e. with U = ∅.

Our nets with silent transitions can be regarded as special labelled nets, defined

as in Definition 2.1, but without the split of T into O and U , and instead equipped

with a labelling function � : T → Act ∪{τ}, where Act is a set of visible actions and

τ �∈ Act an invisible one. Nets with silent transitions correspond to labelled nets

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–95 81

in which no two different transitions are labelled by the same visible actions, which

can be formalised by taking �(t) = t for t ∈ O and �(t) = τ for t ∈ U .

To describe which nets are “asynchronous”, we will compare their behaviour

to that of their asynchronous implementations using a suitable equivalence rela-

tion. As explained in the introduction, we consider here branching time semantics.

Technically, we use failures equivalence, as defined below.

Definition 2.4 Let N = (S,O,U, F,M0) be a τ -net, σ ∈ O∗ and X ⊆ O.

<σ,X> is a failure pair of N iff

∃M1. M0
σ

=⇒ M1 ∧ M1 �

τ
−→ ∧∀t ∈ X. M1 �

{t}
−→ .

We define F (N) := {<σ,X> | <σ,X> is a failure pair of N}.
Two τ -nets N and N ′ are failures equivalent, N ≈F N ′, iff F (N) = F (N ′).

A τ -net N = (S,O,U, F,M0) is called divergence free iff there are no infinite

chains of markings M1
τ

−→ M2
τ

−→ · · · with M1 ∈ [M0〉.

3 Full Asynchrony

As explained in the introduction, we will examine in this paper different possible as-

sumptions of how asynchronous interaction between transitions and their preplaces

takes place. In this section, we start with the simple and intuitive assumption

that the removal of any token by a transition takes time. This is implemented by

inserting silent transitions between visible ones and their preplaces.

Definition 3.1 Let N = (S,O, ∅, F,M0) be a plain net.

The fully asynchronous implementation of N is defined as the net

FI(N) := (S ∪ Sτ , O, U ′, F ′,M0) with

Sτ := {st | t ∈ O, s ∈ •t} ,

U ′ := {ts | t ∈ O, s ∈ •t} and

F ′ := (F ∩ (O × S)) ∪ {(s, ts), (ts, st), (st, t) | t ∈ O, s ∈ •t} .

It is not hard to see that implementations of contact-free nets are contact-free

and implementations are always divergence free; in fact an implementation of a

plain net is always a divergence free τ -net.

Whereas in a plain net N for any sequence of observable transitions σ ∈ O∗ there

is at most one marking M with M0
σ

=⇒ M , in its fully asynchronous implementation

FI(N) there can be several such markings. These markings M ′ differ from M in

that some tokens may have wandered off into the added invisible transitions on the

incoming arcs of visible ones.

As a consequence, a visible transition t that is enabled in M need not be enabled

in M ′—we say that in FI(N) t can be refused after σ. This may occur for instance

for the net N of Figure 2, namely with σ = ε (the empty sequence), M the initial

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9582

N :

a b

FI(N) : τ

a

τ

b

Fig. 2. A net which is not failures equivalent to its fully asynchronous implementation

marking of N , M ′ the marking of FI(N) obtained by firing the rightmost invisible

transition, and t = a.

When this happens, we have <σ, {t}> ∈ F (FI(N)) \ F (N), so the nets N

and FI(N) are not failures equivalent. If, on the other hand, the wandering off of

tokens into τ -transitions never disables a transition that would be enabled otherwise,

then there is no essential behavioural difference between N and FI(N), and they

are equivalent in any reasonable behavioural equivalence that abstracts from silent

transition firings. In that case, N could be called fully asynchronous.

Definition 3.2

The class of fully asynchronous nets respecting branching time equivalence is defined

as FA(B) := {N | FI(N) ≈F N}.

As for any plain net N we have F (N) ⊆ F (FI(N)) [8], the class of nets FA(B)

can equivalently be defined as FA(B) := {N | F (FI(N)) ⊆ F (N)}.

It turns out that there exists a quite structural characterisation of those nets

which are failures equivalent to their fully asynchronous implementation.

Definition 3.3

A plain net N = (S,O, ∅, F,M0) has a partially reachable conflict iff ∃t, u ∈ O.

t �= u ∧ •t ∩ •u �= ∅ and ∃M ∈ [M0〉.
•t ⊆ M ∨ •u ⊆ M .

The nets N of Figures 2 and 3, for instance, have a partially reachable conflict.

Theorem 3.4 A plain net N is in FA(B) iff N has no partially reachable conflict.

Proof. See [19] or [8]. �

4 Symmetric Asynchrony

For investigating the next interaction pattern, we change our notion of asynchronous

implementation of a net. We only insert silent transitions wherever a transition has

multiple preplaces. These are the situations where the synchronous removal of

tokens is really essential.

Definition 4.1 Let N = (S,O, ∅, F,M0) be a net. Let Ob = {t | t ∈ O, |•t| > 1}.
The symmetrically asynchronous implementation of N is defined as the net

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–95 83

N :

a b

SI(N):
ττ

a b

Fig. 3. The transition a can be refused in SI(N) by firing the left τ .

SI(N) := (S ∪ Sτ , O, U ′, F ′,M0) with

Sτ := {st | t ∈ Ob, s ∈ •t} ,

U ′ := {ts | t ∈ Ob, s ∈ •t} and

F ′ := F ∩
(
(O × S) ∪ (S × (O \ Ob))

)
∪ {(s, ts), (ts, st), (st, t) | t ∈ Ob, s ∈ •t} .

An example is shown in Figure 3.

As for the fully asynchronous case, an implementation of a plain net is always a

divergence-free τ -net.

Again, the only difference in behaviour between the original net and its imple-

mentation is that observable transitions can potentially be refused in the imple-

mentation, as in Figure 3. This yields a concept of a symmetrically asynchronous

net.

Definition 4.2

The class of symmetrically asynchronous nets respecting branching time equivalence

is defined as SA(B) := {N | SI(N) ≈F N}.

Again we have F (N) ⊆ F (SI(N)) for any plain net N [8]. We now show that

plain nets can be implemented symmetrically asynchronously with respect to failure

equivalence exactly when they do not contain reachable structures of the form shown

in Figure 3.

Definition 4.3

A plain net N = (S,O, ∅, F,M0) has a partially reachable N iff ∃t, u ∈ O. t �= u

∧ •t ∩ •u �= ∅ ∧ |•u| > 1 ∧ ∃M ∈ [M0〉N . •t ⊆ M ∨ •u ⊆ M .

Theorem 4.4 A plain net N is in SA(B) iff N has no partially reachable N.

Proof. See [19] or [8]. �

The following proposition shows that the current class of nets strictly extends

the one from the previous section.

Proposition 4.5 FA(B) � SA(B).

Proof. A net without partially reachable conflict surely has no partially reachable

N. The inequality follows from the example in Figure 2. �

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9584

It turns out that our class of nets SA(B) is strongly related to the following

established net classes [2,3].

Definition 4.6 Let N = (S,O, ∅, F,M0) be a plain net.

(i) N is free choice, N ∈ FC , iff ∀p, q ∈ S. p �= q ∧ p• ∩ q• �= ∅ ⇒ |p•| = |q•| = 1.

(ii) N is extended free choice, N ∈ EFC , iff ∀p, q ∈ S. p• ∩ q• �= ∅ ⇒ p• = q•.

(iii) N is behaviourally free choice, N ∈ BFC , iff ∀u, v ∈ O. •u ∩ •v �= ∅ ⇒
(∀M1 ∈ [M0〉.

•u ⊆ M1 ⇔ •v ⊆ M1).

The above definition of a free choice net is in terms of places, but the notion can

equivalently be defined in terms of transitions:

N ∈ FC iff ∀t, u ∈ T. t �= u ∧ •t ∩ •u �= ∅ ⇒ |•t| = |•u| = 1.

Both conditions are equivalent to the requirement that N must be N-free, where N

is defined as in Definition 4.3 but without the reachability clause. Also the notion

of an extended free choice net can equivalently be defined in terms of transitions:

N ∈ EFC iff ∀t, u ∈ T. •t ∩ •u �= ∅ ⇒ •t = •u.

This condition says that N may not contain what we call a pure N: places p, q and

transitions t, u such that p ∈ •t ∩ •u, q ∈ •u and q �∈ •t.

In [3] it has been established that FC � EFC � BFC . In fact, the inclu-

sions follow directly from the definitions, and Figure 4 displays counterexamples to

strictness.

The class of free choice nets is strictly smaller than the class of symmetrically

asynchronous nets respecting branching time equivalence, which in turn is strictly

smaller than the class of behavioural free choice nets. The class of extended free

choice nets and the class of symmetrically asynchronous nets respecting branching

time equivalence are incomparable.

Proposition 4.7 FC � SA(B) � BFC, EFC � SA(B) and SA(B) � EFC.

Proof. The first inclusion follows because a partially reachable N is surely an N, and

also the second inclusion follows directly from the definitions. The four inequalities

follow from the examples in Figure 4. The first net is unmarked and thus trivially

in SA(B). The second ones symmetrically asynchronous implementation has the

additional failure <ε, {a, b}> and hence this net is not in SA(B). �

In Figure 5 the relations between our semantically defined net class SA(B), the

structurally defined classes FC , EFC , and the more behaviourally defined class

BFC are summarised. These relations may be interpreted as follows.

Starting at the top of the diagram, free choice nets are characterised structurally,

enforcing that for every place, a token therein can choose freely (i.e. without inquir-

ing about the existence of tokens in any other places) which outgoing arc to take.

This property makes it possible to implement the system asynchronously. In partic-

ular, the component which holds the information represented by a token can choose

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–95 85

a b a b

p q

a b c

N /∈ FC N /∈ FC N /∈ FC

N /∈ EFC N ∈ EFC N /∈ EFC

N ∈ SA(B) N /∈ SA(B) N /∈ SA(B)
N ∈ BFC N ∈ BFC N ∈ BFC

Fig. 4. Differences between various classes of free-choice-like nets

FC

EFC SA(B)

BFC

�
�

�

�

#

Fig. 5. Overview of free-choice-like net classes

arbitrarily when and into which of multiple asynchronous output channels to for-

ward said information, without further knowledge about the rest of the system. As

this decision is solely in the discretion of the sending component and not based upon

any knowledge of the rest of the system, no synchronisation with other components

is necessary.

The difference between SA(B) and FC is that in SA(B) the quantification over

the places is dropped, making the requirement more straightforward: Every token

can choose freely which outgoing arc to follow. Thus, SA(B) allows for non-free-

choice structures as long as these never receive any tokens.

This also explains why BFC includes SA(B). Since SA(B) guarantees that

all transitions of a problematic structure are never enabled, transitions in such

structures are never enabled while others are disabled.

The incomparability between the left and the right side of the diagram stems

from the conceptual allowance of slight transformations of the net before evaluating

whether it is free choice or not. Extended free choice nets and behavioural free choice

nets were proposed as nets that are easily seen to be behaviourally equivalent to free

choice nets, and hence share some of their desirable properties: in [2,3] constructions

can be found to turn any extended free choice net into an equivalent free choice net,

and any behavioural free choice net into an extended free choice net. 1 Applied on

the last two nets in Figure 4 these constructions yield:

For the second net of Figure 4, a τ -transition is introduced, which collects both

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9586

τ

a b

p q

a b c

Fig. 6. Transformed nets from Figure 4

tokens and then marks a single postplace from which the two original transitions

are enabled. Hence the choice between the two transitions is centralised in the

newly introduced place and thus free again. In the definition of our symmetrically

asynchronous implementation SI, we do not allow any insertion of such “helping” τ -

transitions, as it seems unclear to us how much computing power should be allowed

in possibly larger networks of such transitions. This becomes especially problematic

if these networks somehow track part of the global status of the net inside themselves

and thus make quite informed decisions about what outgoing transition to enable.

5 Asymmetric Asynchrony

As seen in the previous section, the class of symmetrically asynchronous nets is

quite small. It precludes the implementation of many real-world behaviours, like

waiting for one of multiple inputs to become readable, a Petri net representation of

which will always include non free-choice structures.

Therefore we propose a less strict definition of asynchrony such that actions

may depend synchronously on a single predetermined condition. In a hardware

implementation the places which earlier could always forward a token into some

silent transitions must now wait until they receive an explicit token removal signal

from their posttransitions.

To this end we introduce a static priority over the preplaces of each transition.

Every transition first removes the token from the most prioritised preplace and

then continues along decreasing priority. To formalise this behaviour in a Petri

net we insert a silent transition for each incoming arc of every transition. These

silent transitions are forced to execute in sequence by newly introduced buffer places

between them. In the final position of this chain, the original visible transition is

executed. An example of this transformation is given in Figure 7.

Definition 5.1 Let N = (S,O, ∅, F,M0) be a plain net.

Let g ⊆ (S × O) × (S × O) be a relation on F ∩ (S × O) such that for each t ∈ O

g ∩ (•t × {t}) is a total order on •t × {t}. Let ≤t
g be the total order on •t given by

p ≤t
g s iff ((p, t), (s, t)) ∈ g.

1 In [2,3] the nature of the equivalence between the original and transformed net is not precisely specified.
However, it can be argued that whereas the transformation from EFC-nets to FC-nets preserves branching
time as well as causality, the transformation from BFC-nets to EFC-nets preserves branching time only:
the third net of Figure 4 is interleaving bisimulation equivalent with its EFC-counterpart in Figure 6, but
whereas the original net can perform the transitions a and c concurrently (in one step), the transformed
net cannot.

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–95 87

p q s

a b

⇒

p q s

τ

a τ

b

Fig. 7. Transformation to asymmetric asynchrony; g such that p <b
g s <b

g q.

We write mint
g for the ≤t

g-minimal element of •t and (s − 1)tg for the next place in
•t that is ≤t

g-smaller than s.

We define a set of silent transitions as X := {ts | t ∈ O, s ∈ •t}.
Let h : X → X ∪ O be the function

h(ts) =

{
t iff s = mint

g

ts otherwise

The asymmetrically asynchronous implementation with respect to g of N is defined

as the net AIg := (S ∪ Sτ , O, U ′, F ′,M0) with

Sτ := {st | t ∈ O, s ∈ •t, s �= mint
g} ,

U ′ := h(X) \ O = {ts | t ∈ O, s ∈ •t, s �= mint
g} and

F ′ := F ∩ (O × S)

∪ {(s, h(ts)) | t ∈ O, s ∈ •t}

∪ {(ts, st) | t ∈ O, s ∈ •t, s �= mint
g}

∪ {(st, h(tp)) | t ∈ O, s ∈ •t, s �= mint
g, p = (s − 1)tg} .

As before, we are interested in the relationship between nets and their possible

implementations. The definition of asymmetric asynchrony however allows different

implementations for the same net.

We define a net to be asymmetrically asynchronous if any of the possible imple-

mentations simulates the net sufficiently.

Definition 5.2

The class of asymmetrically asynchronous nets respecting branching time equivalence

is defined as AA(B) := {N | ∃g. AIg(N) ≈F N}.

As before, we have F (N) ⊆ F (AIg(N)) for any plain net N and any priority

relation g [8]. Additionally we would like to obtain a semi-structural characterisation

of AA(B) in the spirit of Theorems 3.4 and 4.4. Unfortunately we didn’t succeed

in this, but we obtained structural upper and lower bounds for this net class.

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9588

p q r s

t u v

x y

p q r s

t u v

x y

N /∈ AA(B) N ∈ AA(B)

Fig. 8. Nets which have a left and right border reachable M, but no left and right reachable M

Definition 5.3

A net N = (S,O, ∅, F,M0) has a left and right reachable M iff ∃t, u, v∈O ∃p∈•t∩•u

∃q ∈ •u∩ •v. t �= u∧ u �= v ∧ p �= q ∧ ∃M1,M2 ∈ [M0〉.
•t∪ •u ⊆ M1 ∧

•v ∪ •u ⊆ M2.

A net N = (S,O, ∅, F,M0) has a left and right border reachable M iff ∃t, u, v ∈ O

∃p∈ •t∩ •u ∃q∈ •u∩ •v. t �= u∧u �= v∧p �= q∧∃M1,M2∈ [M0〉.
•t ⊆ M1∧

•v ⊆ M2.

Theorem 5.4 A plain net N in AA(B) has no left and right reachable M.

A plain net N which has no left and right border reachable M is in AA(B).

Proof. See [19] or [8]. �

Figure 8 shows two nets, each with a left and right border reachable M but no

left and right reachable M, that thus fall in the grey area between our structural

upper and lower bounds for the class AA(B). In this case the first net falls outside

AA(B), whereas the second net falls inside. The crucial difference between these

two examples is the information available to u about the execution of y.

There exists an implementation for the right net, namely by u taking the tokens

from r, q and s in that order. The first token (from r) conveys the information that

y was executed, and thus t is not enabled. Collecting the last token (from s) could

fail, due to v removing it earlier. Even so, removing the tokens from r and q did

not disable any transition that could fire in the original net. In the left net such an

implementation will not work.

The following proposition says that our class of symmetrically asynchronous nets

strictly extends the corresponding class of asymmetrically asynchronous nets.

Proposition 5.5 SA(B) � AA(B).

Proof. A net which has no partially reachable N also has no left or right border

reachable M. The inequality follows from the example in Figure 3. �

As before, our class AA(B) is related to some known net classes [3].

Definition 5.6 Let N = (S,O, ∅, F,M0) be a plain net.

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–95 89

(i) N is simple, N ∈ SPL, iff ∀p, q ∈ S. p �= q ∧ p• ∩ q• �= ∅ ⇒ |p•| = 1 ∨ |q•| = 1.

(ii) N is extended simple, N ∈ ESPL, iff ∀p, q ∈S. p• ∩ q• �= ∅ ⇒ p• ⊆ q• ∨ q• ⊆ p•.

Extended simple nets appear in [2] under the name asymmetric choice systems.

Note that simple is equivalent to M-free, where M is as in Definition 5.3 but without

the reachability clauses. Clearly, we have FC � SPL � ESPL and EFC � ESPL,

whereas EFC � SPL and SPL � EFC : the inclusions follow immediately from

the definitions, and the first two nets of Figure 4 provide counterexamples to the

inequalities.

The class of asymmetrically asynchronous nets respecting branching time equiv-

alence strictly extends the class of simple nets, whereas it is incomparable with the

class of extended simple nets.

Proposition 5.7 SPL � AA(B), AA(B) � ESPL and ESPL � AA(B).

Proof. The inclusion is straightforward, and the inequalities follow from the coun-

terexamples in Figure 4 (the second one) and Figure 9. The missing tokens in the

latter example are intended. As no action is possible there will not be any additional

implementation failures. �

The relations between the classes SPL, ESPL and AA(B) are summarised in

Figure 10. Similarly to what we did in Section 4, we now try to translate Figure 10

into an intuitive description.

The basic intuition behind SPL is that for every transition there is only one

preplace where conflict can possibly occur. Whereas in SPL that possibility is

determined by the static net structure, in AA(B) reachability is also considered.

Similar to the difference between FC and EFC there exists a difference between

ESPL and SPL which originates from the fact that ESPL allows small transforma-

tions to a net before testing whether it lies in SPL. Again our class AA(B) does

not allow such “helping” transformations.

6 Conclusion and Related Work

We have investigated the effect of different types of asynchronous interaction, using

Petri nets as our system model. We propose three different interaction patterns:

fully asynchronous, symmetrically asynchronous and asymmetrically asynchronous.

An asynchronous implementation of a net is then obtained by inserting silent (un-

observable) transitions according to the respective pattern. The pattern for asym-

metric asynchrony is parametric in the sense that the actual asynchronous imple-

a b c

Fig. 9. N ∈ AA(B), N /∈ ESPL

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9590

SPL

ESPL AA(B)

�
�

#

Fig. 10. Overview of asymmetric-choice-like net classes

mentation of a net depends on a chosen priority function on the input places of

a transition. For each of these cases, we investigated for which types of nets the

asynchronous implementation of a net changes its behaviour with respect to failures

equivalence (in the case of asymmetric asynchrony, the ‘best’ priority function may

be used). It turns out that we obtain a hierarchy of Petri net classes, where each

class contains those nets which do not change their behaviour when transformed

into the asynchronous version according to one of the interaction patterns. This

is not surprising because later constructions allow a more fine-grained control over

the interactions than earlier ones.

We did not consider connections from transitions to their postplaces as relevant

to determine asynchrony and distributability. This is because we only discussed

contact-free nets, where no synchronisation by postplaces is necessary. In the spirit

of Definition 3.1 we could insert τ -transitions on any or all arcs from transitions to

their postplaces, and the resulting net would always be equivalent to the original.

Although we compare the behaviour of a net and its asynchronous implementa-

tions in terms of failures equivalence, we believe that the very same classes of nets

are obtained when using any other reasonable behavioural equivalence that respects

branching time to some degree and abstracts from silent transitions—no matter if

this is an interleaving equivalence, or one that respects causality. We would get

larger classes of nets, for example for the case of full asynchrony including the net

of Figure 2, if we merely required a net N and its implementation to be equivalent

under a suitably chosen linear time equivalence. This option is investigated in [19].

The central results of the paper give semi-structural characterisations of our se-

mantically defined classes of nets. Moreover, we relate these classes to well-known

and well-understood structurally defined classes of nets, like free choice nets, ex-

tended free choice nets and simple nets.

To illustrate the potential interpretation of our results in other models of dis-

tributed systems, we give an example.

Message sequence charts (MSCs), also contained in UML 2.0 under the name

sequence diagrams, are a model for specifying interactions between components

(instances) of a system. A simple kind are basic message sequence charts (BMSCs)

as defined in [13], where choices are not allowed. A Petri net semantics of BMCSs

with asynchronous communication and a unique sending and receiving event for each

message will yield Petri nets with unbranched places (see for instance [10]). Hence in

this case the resulting Petri nets are conflict-free and therefore fully asynchronously

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–95 91

i1 i2

m

a b

alt

a m! m? b

i1 i2

Fig. 11. An MSC and a potential implementation as Petri net, which has an N.

implementable according to Theorem 3.4.

However in extended versions of MSCs, e.g. in UML 2.0 or in live sequence

charts (LSCs, see [11]), inline expressions allow to describe choices between possible

behaviours in MSCs. Consider for example the MSC given in Figure 11 and a naive

Petri net representation. The instances i1 and i2 can either communicate or execute

their local actions. Obviously, this requires some mechanism in order to make sure

that the choice is performed in a coherent way (see e.g. [7] for a discussion of this

type of problem). In the Petri net representation, we find a reachable N, hence

with Theorem 4.4 the net does not belong to the class SA(B) of symmetrically

asynchronously implementable nets. However, the net is M-free, and thus does

belong to the class AA(B) of asymmetrically asynchronously implementable nets.

By giving priority to the collection of the message token (choosing the appropriate

function g in our notion of implementation), it can be assured that instance i2 does

not make the wrong choice and gets stuck (however it is still not clear whether the

message will actually be consumed).

The obvious question is whether the naive Petri net interpretation we have

given is conform with the intended semantics of the alt-construct (according to the

informal UML semantics the alternatives always have to be executed completely; in

LSCs it is specified explicitly whether messages are assured to arrive). However, on

basis of a maybe more elaborate Petri nets semantics, it could be discussed what

types of MSCs can be used to describe physically distributed systems, in particular

which type of construct for choices is reasonable in this case.

Another model of reactive systems where we can transfer our results to are

process algebras. When giving Petri net semantics to process algebras, it is an

interesting question to investigate which classes of nets in our classification are

obtained for certain types of operators or restricted languages, and to compare the

results with results on language hierarchies (as summarised below).

We now give an overview on related work. A more extensive discussion is con-

tained in [19]. We start by commenting on related work in Petri net theory.

The structural net classes we compare our constructions to were all taken from

[3], where Eike Best and Mike Shields introduce various transformations between

free choice nets, simple nets and extended variants thereof. They use “essential

equivalence” to compare the behaviour of different nets, which they only give in-

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9592

formally. This equivalence is insensitive to divergence, which is also relied upon in

their transformations. As observed in Footnote 1, it also does not preserve concur-

rency. They continue to show conditions under which liveness can be guaranteed

for some of the classes.

In [1], Wil van der Aalst, Ekkart Kindler and Jörg Desel introduce two extensions

to extended simple nets, by allowing self-loops to ignore the discipline imposed by

the ESPL-requirement. This however assumes a kind of “atomicity” of self-loops,

which we did not allow in this paper. In particular we do not implicitly assume that

a transition will not change the state of a place it is connected to by a self-loop,

since in case of deadlock, the temporary removal of a token from such a place might

not be temporary indeed.

In [18] Wolfgang Reisig introduces a class of systems which communicate using

buffers and where the relative speeds of different components are guaranteed to

be irrelevant. The resulting nets are simple nets. He then proceeds introducing

a decision procedure for the problem whether a marking exists which makes the

complete system live.

The most similar work to our approach we have found is [12], where Richard

Hopkins introduces the concept of distributable Petri Nets. These are defined in

terms of locality functions, which assign to every transition t a set of possible ma-

chines or locations L(t) on which t may be executed, subject to the restriction that

a set of transitions with a common preplace must share a common machine. A

plain net N is distributable iff for every locality function L that can be imposed on

it, it has a “distributed implementation”, a τ -net N ′ with the same set of visible

transitions, in which each transition is assigned a specific location, subject to three

restrictions:

• the location of a visible transition t is chosen from L(t),

• transitions with a common preplace must have the same location

• and there exists a weak bisimulation between N and N ′, such that all τ -transitions

involved in simulating a transition t from N reside on one of the locations L(t).

The last clause enforces both a behavioural correspondence between N and N ′ and

a structural one (through the requirement on locations). Thus, as in our work, the

implementation is a τ -net that is required to be behaviourally equivalent to the

original net. However, whereas we enforce particular implementations of an original

net, Hopkins allows implementations which are quite elaborate and make informed

decisions based upon global knowledge of the net. Consequently, his class of dis-

tributable nets is larger than our asynchronous net classes. As Hopkins notes, due

to his use of interleaving semantics, his distributed implementations do not always

display the same concurrent behaviour as the original nets, namely they add concur-

rency in some cases. This does not happen in our asynchronous implementations.

Another branch of related work is in the context of distributed algorithms. In

[5] Luc Bougé considers the problem of implementing symmetric leader election in

the sublanguages of CSP obtained by either allowing all guards, only input guards

or no communication guards at all in guarded choice. He finds that the possibility

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–95 93

of implementing it depends heavily on the structure of the communication graphs,

while truly symmetric schemes are only possible in CSP with input and output

guards.

Quite a number of papers consider the question of synchronous versus asyn-

chronous interaction in the realm of process algebras and the π-calculus. In [4]

Frank de Boer and Catuscia Palamidessi consider various dialects of CSP with

differing degrees of asynchrony. In particular, they consider CSP without output

guards and CSP without any communication based guards. They also consider

explicitly asynchronous variants of CSP where output actions cannot block, i.e.

asynchronous sending is assumed. Similar work is done for the π-calculus in [17] by

Catuscia Palamidessi, in [16] by Uwe Nestmann and in [9] by Dianele Gorla. A rich

hierarchy of asynchronous π-calculi has been mapped out in these papers. Again

mixed-choice, i.e. the ability to combine input and output guards in a single choice,

plays a central role in the implementation of truly synchronous behaviour. It would

be interesting to explore the possible connections between these languages and our

net classes.

In [20], Peter Selinger considers labelled transition systems whose visible actions

are partitioned into input and output actions. He defines asynchronous implemen-

tations of such a system by composing it with in- and output queues, and then

characterises the systems that are behaviourally equivalent to their asynchronous

implementations. The main difference with our approach is that we focus on asyn-

chrony within a system, whereas Selinger focusses on the asynchronous nature of

the communications of a system with the outside world.

Finally, there are approaches on hardware design where asynchronous interaction

is an intriguing feature due to performance issues. For this, see the papers [14] and

[15] by Leslie Lamport. In [15] he considers arbitration in hardware and outlines

various arbitration-free “wait/signal” registers. He notes that nondeterminism is

thought to require arbitration, but no proof is known. He concludes that only

marked graphs can be implemented using these registers. Lamport then introduces

“Or-Waiting”, i.e. waiting for any of two signals, but has no model available to

characterise the resulting processes. The used communication primitives bear a

striking similarity to our symmetrically asynchronous nets.

References

[1] W.M.P. van der Aalst, E. Kindler & J. Desel (1998): Beyond asymmetric choice: A note on some
extensions. Petri Net Newsletter 55, pp. 3–13.

[2] E. Best (1987): Structure theory of Petri nets: The free choice hiatus. In W. Brauer, W. Reisig &
G. Rozenberg, editors: Advances in Petri Nets 1986, LNCS 254, Springer, pp. 168–206.

[3] E. Best & M.W. Shields (1983): Some equivalence results for free choice nets and simple nets and on
the periodicity of live free choice nets. In G. Ausiello & M. Protasi, editors: Proceedings 8th Colloquium
on Trees in Algebra and Programming (CAAP ’83), LNCS 159, Springer, pp. 141–154.

[4] F.S. de Boer & C. Palamidessi (1991): Embedding as a tool for language comparison: On the CSP
hierarchy. In J.C.M. Baeten & J.F. Groote, editors: Proceedings 2nd International Conference on
Concurrency Theory (CONCUR ’91), Amsterdam, The Netherlands, LNCS 527, Springer, pp. 127–141.

[5] L. Bougé (1988): On the existence of symmetric algorithms to find leaders in networks of
communicating sequential processes. Acta Informatica 25(2), pp. 179–201.

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9594

[6] S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating sequential processes.
Journal of the ACM 31(3), pp. 560–599.

[7] T. Gehrke, U. Goltz & H. Wehrheim (1999): Zur semantischen Analyse der dynamischen Modelle
von UML mit Petri-Netzen. In E. Schnieder, editor: Proceedings 6th Symposium on Development and
Operation of Complex Automation Systems.

[8] R.J. van Glabbeek, U. Goltz & J.-W. Schicke (2008): Symmetric and asymmetric asynchronous
interaction. Technical Report 2008-03, TU Braunschweig.

[9] D. Gorla (2006): On the relative expressive power of asynchronous communication primitives. In
L. Aceto & A. Ingólfsdóttir, editors: Proceedings 9th International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS ’06), LNCS 3921, Springer, pp. 47–62.

[10] P. Graubmann, E. Rudolph & J. Grabowski (1993): Towards a petri net based semantics definition for
message sequence charts. In Proceedings 6th SDL Forum (SDL ’93).

[11] D. Harel & R. Marelly (2003): Come, Let’s Play. Springer.

[12] R.P. Hopkins (1991): Distributable nets. In Advances in Petri Nets 1991, LNCS 524, Springer, pp.
161–187.

[13] International Telecommunication Union (1996): Message sequence chart. Standard ITU-T Z.120.

[14] L. Lamport (1978): Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM 21(7), pp. 558–565.

[15] L. Lamport (2003): Arbitration-free synchronization. Distributed Computing 16(2-3), pp. 219–237.

[16] U. Nestmann (2000): What is a ‘good’ encoding of guarded choice? Information and Computation 156,
pp. 287–319.

[17] C. Palamidessi (1997): Comparing the expressive power of the synchronous and the asynchronous
pi-calculus. In Conference Record of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’97), ACM Press, pp. 256–265.

[18] W. Reisig (1982): Deterministic buffer synchronization of sequential processes. Acta Informatica 18,
pp. 115–134.

[19] J.-W. Schicke (2008): Studienarbeit: Asynchronous Petri net classes.

[20] P. Selinger (1997): First-order axioms for asynchrony. In Proceedings 8th International Conference on
Concurrency Theory (CONCUR ’97), Warsaw, Poland, LNCS 1243, Springer, pp. 376–390.

[21] W. Vogler (1993): Bisimulation and action refinement. Theoretical Computer Science 114(1), pp.
173–200.

R. van Glabbeek et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–95 95

	Introduction
	Basic Notions
	Full Asynchrony
	Symmetric Asynchrony
	Asymmetric Asynchrony
	Conclusion and Related Work
	References

