8,504 research outputs found

    Grundy domination and zero forcing in Kneser graphs

    Get PDF
    In this paper, we continue the investigation of different types of (Grundy) dominating sequences. We consider four different types of Grundy domination numbers and the related zero forcing numbers, focusing on these numbers in the well-known class of Kneser graphs Kn,r. In particular, we establish that the Grundy total domination number γ t gr(Kn,r) equals 2r r for any r ≥ 2 and n ≥ 2r + 1. For the Grundy domination number of Kneser graphs we get γgr(Kn,r) = α(Kn,r) whenever n is sufficiently larger than r. On the other hand, the zero forcing number Z(Kn,r) is proved to be n r − 2r r when n ≥ 3r + 1 and r ≥ 2, while lower and upper bounds are provided for Z(Kn,r) when 2r + 1 ≤ n ≤ 3r. Some lower bounds for different types of minimum ranks of Kneser graphs are also obtained along the way.Fil: Bresar, Bostjan. University of Maribor; Eslovenia. Institute Of Mathematics, Physics And Mechanics Ljubljana; EsloveniaFil: Kos, Tim. Institute Of Mathematics, Physics And Mechanics Ljubljana; EsloveniaFil: Torres, Pablo Daniel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentin

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    Algorithmic aspects of disjunctive domination in graphs

    Full text link
    For a graph G=(V,E)G=(V,E), a set DVD\subseteq V is called a \emph{disjunctive dominating set} of GG if for every vertex vVDv\in V\setminus D, vv is either adjacent to a vertex of DD or has at least two vertices in DD at distance 22 from it. The cardinality of a minimum disjunctive dominating set of GG is called the \emph{disjunctive domination number} of graph GG, and is denoted by γ2d(G)\gamma_{2}^{d}(G). The \textsc{Minimum Disjunctive Domination Problem} (MDDP) is to find a disjunctive dominating set of cardinality γ2d(G)\gamma_{2}^{d}(G). Given a positive integer kk and a graph GG, the \textsc{Disjunctive Domination Decision Problem} (DDDP) is to decide whether GG has a disjunctive dominating set of cardinality at most kk. In this article, we first propose a linear time algorithm for MDDP in proper interval graphs. Next we tighten the NP-completeness of DDDP by showing that it remains NP-complete even in chordal graphs. We also propose a (ln(Δ2+Δ+2)+1)(\ln(\Delta^{2}+\Delta+2)+1)-approximation algorithm for MDDP in general graphs and prove that MDDP can not be approximated within (1ϵ)ln(V)(1-\epsilon) \ln(|V|) for any ϵ>0\epsilon>0 unless NP \subseteq DTIME(VO(loglogV))(|V|^{O(\log \log |V|)}). Finally, we show that MDDP is APX-complete for bipartite graphs with maximum degree 33

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    A Greedy Partition Lemma for Directed Domination

    Get PDF
    A directed dominating set in a directed graph DD is a set SS of vertices of VV such that every vertex uV(D)Su \in V(D) \setminus S has an adjacent vertex vv in SS with vv directed to uu. The directed domination number of DD, denoted by γ(D)\gamma(D), is the minimum cardinality of a directed dominating set in DD. The directed domination number of a graph GG, denoted Γd(G)\Gamma_d(G), which is the maximum directed domination number γ(D)\gamma(D) over all orientations DD of GG. The directed domination number of a complete graph was first studied by Erd\"{o}s [Math. Gaz. 47 (1963), 220--222], albeit in disguised form. In this paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain bounds on the directed domination number. In particular, if α\alpha denotes the independence number of a graph GG, we show that αΓd(G)α(1+2ln(n/α))\alpha \le \Gamma_d(G) \le \alpha(1+2\ln(n/\alpha)).Comment: 12 page
    corecore