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a b s t r a c t

A directed dominating set in a directed graph D is a set S of vertices of V such that every
vertex u ∈ V (D) \ S has an adjacent vertex v in S with v directed to u. The directed
domination number of D, denoted by γ (D), is the minimum cardinality of a directed
dominating set in D. The directed domination number of a graph G, denoted Γd(G), is the
maximum directed domination number γ (D) over all orientations D of G. The directed
domination number of a complete graph was first studied by Erdős [P. Erdős On a problem
in graph theory, Math. Gaz. 47 (1963) 220–222], albeit in a disguised form. In this paper we
prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this
lemma, we obtain bounds on the directed domination number. In particular, if α denotes
the independence number of a graph G, we show that α ≤ Γd(G) ≤ α(1 + 2 ln(n/α)).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

An asymmetric digraph or oriented graph D is a digraph that can be obtained from a graph G by assigning a direction to
(that is, orienting) each edge of G. The resulting digraph D is called an orientation of G. Thus if D is an oriented graph, then for
every pair u and v of distinct vertices ofD, atmost one of (u, v) and (v, u) is an arc ofD. A directed dominating set, abbreviated
DDS, in a directed graph D = (V , A) is a set S of vertices of V such that every vertex in V \ S is dominated by some vertex of
S; that is, every vertex u ∈ V \ S has an adjacent vertex v in S with v directed to u. Every digraph has a DDS since the entire
vertex set of the digraph is such a set.

The directed domination number of a directed graph D, denoted by γ (D), is the minimum cardinality of a DDS in D. A DDS
of D of cardinality γ (D) is called a γ (D)-set. Directed domination in digraphs is well studied (cf. [1–10]).

The directed domination number of a graph G, denoted Γd(G), is defined in [11] as the maximum directed domination
number γ (D) over all orientations D of G; that is,

Γd(G) = max{γ (D)}

where the maximum is taken over all orientations D of G. The directed domination number of a complete graph was first
studied by Erdős [12] albeit in a disguised form. In 1962, Schütte [12] raised the question of given any positive integer k > 0,
does there exist a tournament Tn(k) on n(k) vertices in which for any set S of k vertices, there is a vertex uwhich dominates
all vertices in S. Erdős [12] showed, by probabilistic arguments, that such a tournament Tn(k) does exist, for every positive
integer k. The proof of the following bounds on the directed domination number of a complete graph is along identical lines
to that presented by Erdős [12]. This result can also be found in [10]. Throughout this paper, log is to the base 2 while ln
denotes the logarithm in the natural base e.
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Theorem 1 (Erdős [12]). For n ≥ 2, log n − 2 log(log n) ≤ Γd(Kn) ≤ log(n + 1).

In [11] this notion of directed domination in a complete graph is extended to directed domination of all graphs. In this
paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain
bounds on the directed domination number. In particular, if α denotes the independence number of a graph G, we show
that α ≤ Γd(G) ≤ α(1 + 2 ln(n/α)).

1.1. Notation

For notation and graph theory terminologies we in general follow [13]. Specifically, let G = (V , E) be a graph with
vertex set V of order n = |V | and edge set E of size m = |E|, and let v be a vertex in V . The open neighborhood of v is
NG(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is NG[v] = {v} ∪ NG(v). If the graph G is clear from context,
we simply write N(v) and N[v] rather than NG(v) and NG[v], respectively. For a set S ⊆ V , the subgraph induced by S is
denoted by G[S]. If A and B are subsets of V (G), we let [A, B] denote the set of all edges between A and B in G.

We denote the degree of v in G by dG(v), or simply by d(v) if the graph G is clear from context. The average degree in G
is denoted by dav(G). The minimum degree among the vertices of G is denoted by δ(G), and the maximum degree by ∆(G).
The parameter γ (G) denotes the domination number of G. The parameters α(G) and α′(G) denote the (vertex) independence
number and thematching number, respectively, of G, while the parameters χ(G) and χ ′(G) denote the chromatic number and
edge chromatic number, respectively, of G. The covering number of G, denoted by β(G), is the minimum number of vertices
that covers all the edges of G.

A vertex v in a digraphDout-dominates, or simply dominates, itself aswell as all verticesu such that (v, u) is an arc ofD. The
out-neighborhood of v, denoted N+(v), is the set of all vertices u adjacent from v in D; that is, N+(v) = {u | (v, u) ∈ A(D)}.
The out-degree of v is given by d+(v) = |N+(v)|, and themaximumout-degree among the vertices ofD is denoted by∆+(D).
The in-neighborhood of v, denoted N−(v), is the set of all vertices u adjacent to v in D; that is, N−(v) = {u | (u, v) ∈ A(D)}.
The in-degree of v is given by d−(v) = |N−(v)|. The closed in-neighborhood of v is the setN−

[v] = N−(v)∪{v}. Themaximum
in-degree among the vertices of D is denoted by ∆−(D).

1.2. Known results

We shall need the following inequality chain established in [11].

Theorem 2 ([11]). For every graph G on n vertices, γ (G) ≤ α(G) ≤ Γd(G) ≤ n − α′(G).

2. The Greedy Partition Lemma and its applications

In this section we present our key lemma, which we call the Greedy Partition Lemma, and apply it to obtain several
upper bounds on the directed domination number of a graph. In particular, using the Greedy Partition Lemma we present
an upper bound on the directed domination number of a graph in terms of its independence number and we establish
an upper bound on the directed domination number of a graph whose complement is d-degenerate. The Greedy Partition
Lemma is a generalization of earlier results by Caro [14,15], Caro and Tuza [16], and Jensen and Toft [17].

First we introduce some additional terminologies. Let G be a hypergraph and let P be a hypergraph property. Let
P(G) = max{|V (H)|:H is an induced subhypergraph of G that satisfies property P}. Let χ(G, P) be the minimum number
q such that there exists a partition V (G) = (V1, V2, . . . , Vq) such that Vi induces a subhypergraph having property P for all
i = 1, 2, . . . , q. For example, if P is the property of independence, then P(G) = α(G), while χ(G, P) = χ(G). If P is the
property of edge independence, P(G) = α′(G), while χ(G, P) = χ ′(G). If P is the property of being d-degenerate (recall that
a d-degenerate graph is a graph G in which every induced subgraph of G has a vertex with degree at most d), then P(G) is the
maximum cardinality of a d-degenerate subgraph and χ(G, P) is the minimum partition of V (G) into induced d-degenerate
graphs. For a subhypergraph H of a hypergraph G, we let G− H be the subhypergraph of Gwith vertex set V (G) \ V (H). We
are now in a position to state the Greedy Partition Lemma.

Lemma 3 (Greedy Partition Lemma). Let H be a class of hypergraphs closed under induced subhypergraphs. Let t ≥ 2 be an
integer and let f : [t, ∞) → [1, ∞) be a positive nondecreasing continuous function. Let P be a hypergraph property such that
for every hypergraph G ∈ H the following holds.
(a) If |V (G)| ≤ t, then χ(G, P) ≤ |V (G)|.
(b) If |V (G)| ≥ t, then P(G) ≥ f (|V (G)|).
Then for every hypergraph G ∈ H of order n,

χ(G, P) ≤ t +

∫ max(n,t)

t

1
f (x)

dx.

Proof. We proceed by induction on n. We first observe that the value of the given integral is always non-negative. If n ≤ t ,
then by condition (a), χ(G, P) ≤ n ≤ t , and the inequality holds trivially. This establishes the base case. For the inductive
hypothesis, assume that the inequality holds for every hypergraph inH with less than n vertices and letG ∈ H be of order n.
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As observed earlier, if n ≤ t , then the inequality holds trivially. Hence wemay assume that n > t . Let P(G) = z = |V (H)| be
the cardinality of the largest induced subhypergraph H of G that has property P . By condition (b), z ≥ f (n). If z ≥ n− t + 1,
then n − z = |V (G) \ V (H)| ≤ t − 1, and so by condition (a), χ(G − H, P) ≤ t − 1. Hence, χ(G, P) ≤ χ(G − H, P) + 1 ≤ t
and the inequality holds trivially. Therefore we may assume that z ≤ n − t , and so |V (G) \ V (H)| ≥ t . Thus applying the
inductive hypothesis to the induced subhypergraph G − H ∈ H , and using condition (b), we have that∫ n

t

1
f (x)

dx =

∫ n−z

t

1
f (x)

dx +

∫ n

n−z

1
f (x)

dx

≥ χ(G − H, P) − t +

∫ n

n−z

1
f (x)

dx

≥ χ(G − H, P) − t +

∫ n

n−z

1
f (n)

dx

= χ(G − H, P) − t + z/f (n)
≥ χ(G, P) − 1 − t + 1
≥ χ(G, P) − t,

which completes the proof of the Greedy Partition Lemma. �

We next discuss several applications of the Greedy Partition Lemma. For this purpose, we recall the Caro–Wei Theorem
(see [18,19]).

Theorem 4 (Caro–Wei Theorem). For every graph G, α(G) ≥
∑

v∈V (G)
1

1+dG(v)
.

We shall also need the following lemma.

Lemma 5. For k ≥ 1 an integer, let G be a graph with k ≥ α(G) and let D be an orientation of G. Let H be an induced subgraph
of G of order nH ≥ k and size mH , and let DH be the orientation of H induced by D. Then the following holds.

(a) mH ≥ nH (nH − k)/2k.
(b) ∆+(DH) ≥ (nH − k)/2k.

Proof. Since H is an induced subgraph of G, every independent set in H is an independent set in G. In particular, k ≥ α(G) ≥

α(H). Thus applying the Caro–Wei Theorem (see [18,19]), we have

k ≥ α(H) ≥

−
v∈V (H)

1
dH(v) + 1

≥
nH

dav(H) + 1
=

nH

(2mH /nH ) + 1
=

n2
H

2mH + nH

,

or, equivalently, mH ≥ nH (nH − k)/2k. This establishes Part (a). Part (b) follows readily from Part (a) and the observation
that

nH · ∆+(DH) ≥

−
v∈V (DH )

d+

DH
(v) = mH . �

2.1. Independence number

Using the Greedy Partition Lemma we present an upper bound on the directed domination number of a graph in terms
of its independence number. First we introduce some additional notation. Let α ≥ 1 be an integer and let Gα be the class of
all graphs G with α ≥ α(G). Since every induced subgraph F of G ∈ Gα satisfies α ≥ α(G) ≥ α(F), the class Gα of graphs is
closed under induced subgraphs.

Theorem 6. For α ≥ 1 an integer, if G ∈ Gα has order n ≥ α, then

Γd(G) ≤ α(1 + 2 ln(n/α)).

Proof. If α = 1, then G = Kn and by Theorem 1, Γd(G) ≤ log(n + 1) ≤ 1 + 2 ln n = α(1 + 2 ln(n/α)). Hence we may
assume that α ≥ 2, for otherwise the desired bound holds. We now apply the Greedy Partition Lemma with t = α and
with f (x) the positive nondecreasing continuous function on [α, ∞) defined by f (x) = (x − α)/2α + 1 where x ∈ [α, ∞).
Let P(G) = 1 + min{∆+(D)}, where the minimum is taken over all orientations D of G. Then, Γd(G) ≤ χ(G, P). To show
that the conditions of the Greedy Partition Lemma are satisfied, we consider an arbitrary graph H ∈ Gα , where H has
order |V (H)| = nH . If |V (H)| ≤ α, thenΓd(H) ≤ χ(H, P) ≤ α since in this caseH maybe the empty graph onα vertices. Thus
condition (a) of Lemma3 holds. If |V (H)| ≥ α andD is an arbitrary orientation ofH , then by Lemma5,∆+(D) ≥ (nH −α)/2α,
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and so |V (H)| ≥ P(H) ≥ (nH −α)/2α+1 = f (nH ). Therefore condition (b) of Lemma 3 holds. Hence by the Greedy Partition
Lemma,

Γd(G) ≤ α +

∫ n

α

1
(x − α)/2α + 1

dx

= α + 2α
∫ n

α

1
x + α

dx

= α + 2α ln((n + α)/2α)

≤ α + 2α ln(n/α)

= α(1 + 2 ln(n/α)). �

Observe that for every graph G of order n, we have χ(G) ≥ n/α(G) and dav(G) + 1 ≥ n/α(G). Hence as an immediate
consequence of Theorem 6, we have the following bounds on the directed domination number of a graph.

Corollary 1. Let G be a graph of order n. Then the following hold.
(a) Γd(G) ≤ α(G)(1 + 2 ln(χ(G))).
(b) Γd(G) ≤ α(G)(1 + 2 ln(dav(G) + 1)).

2.2. Degenerate graphs

A d-degenerate graph is a graph G in which every induced subgraph of G has a vertex with degree at most d. The property
of being d-degenerate is a hereditary property that is closed under induced subgraphs, as is the property of the complement
of a graph being d-degenerate. For d ≥ 1 an integer, let Fd be the class of all graphs Gwhose complement is a d-degenerate
graph. Thus the class Fd of graphs is closed under induced subgraphs. We shall need the following lemma.

Lemma 7. For d ≥ 1 an integer, let G ∈ Fd and let H be an induced subgraph of G of order nH . If D is an orientation of G and
DH is the orientation of H induced by D, then ∆+(DH) > (nH − 1)/2 − d.

Proof. Since G ∈ Fd, the graph G is the complement of a d-degenerate graph G. Let G have order n and size m, and
let G have size m. It is a well-known fact that we can label the vertices of the d-degenerate graph G with vertex labels
1, 2, . . . , n such that each vertex with label i is incident to at most d vertices with label greater than i, implying that
m ≤ dn − d(d + 1)/2. Therefore, m ≥ n(n − 1)/2 − dn + d(d + 1)/2. This is true for every graph G whose complement
is a d-degenerate graph. In particular, this is true for the induced subgraph H of G. Therefore if H has size mH , we have∑

v∈V (H) d
+

DH
(v) = mH ≥ nH(nH − 1)/2 − dnH + d(d + 1)/2. Hence, ∆+(DH) > (nH − 1)/2 − d. �

Theorem 8. For d ≥ 1 an integer, if G ∈ Fd has order n, then

Γd(G) ≤ 2d + 1 + 2 ln(n − 2d + 1)/2.

Proof. We apply the Greedy Partition Lemma with t = 2d + 1 and f (x) = (x − 1)/2 − d + 1 where x ∈ [2d + 1, ∞).
Let P(G) = 1 + min{∆+(D)}, where the minimum is taken over all orientations D of G. Then, Γd(G) ≤ χ(G, P). To show
that the conditions of the Greedy Partition Lemma are satisfied, we consider an arbitrary graph H ∈ Fd, where H has
order |V (H)| = nH . If |V (H)| ≤ 2d + 1, then Γd(H) ≤ χ(H, P) ≤ 2d + 1 since in this case H may be the empty graph on
2d + 1 vertices. Thus condition (a) of Lemma 3 holds. If |V (H)| ≥ 2d + 1 and D is an arbitrary orientation of H , then by
Lemma 7, ∆+(D) ≥ (nH − 1)/2 − d, and so |V (H)| ≥ P(H) ≥ (nH − 1)/2 − d + 1 = f (nH ). Therefore condition (b) of
Lemma 3 holds. Hence by the Greedy Partition Lemma,

Γd(G) ≤ 2d + 1 +

∫ n

2d+1

1
(x − 1)/2 − d + 1

dx

= 2d + 1 +

∫ n

2d+1


2

x − 2d + 1


dx

= 2d + 1 + 2
∫ n−2d+1

2

1
x
dx

≤ 2d + 1 + 2 ln(n − 2d + 1)/2. �

2.3. K1,m-free graphs

In this section, we establish an upper bound on the directed domination number of a K1,m-free graph, where a graph
is F-free if it does not contain F as an induced subgraph. We first recall the well-known bound for the usual domination
number γ , which was proved independently by Arnautov in 1974 and in 1975 by Lovász and by Payan.
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Theorem 9 (Arnautov [20], Lovász [21], Payan [22]). If G is a graph on n vertices with minimum degree δ, then γ (G) ≤

n(log(δ + 1) + 1)/(δ + 1).

We show that the above bound on γ is nearly preserved by the directed domination number Γd when we restrict our
attention to K1,m-free graphs. For this purpose, we shall need the following result due to Faudree et al. [23].

Theorem 10 ([23]). If G is a K1,m-free graph of order n with δ(G) = δ and α(G) = α, then α ≤ (m − 1)n/(δ + m − 1).

We shall prove the following result.

Theorem 11. For m ≥ 3, if G is a K1,m-free graph of order n with δ(G) = δ, then

Γd(G) < (2(m − 1)n ln(δ + m − 1))/(δ + m − 1).

Proof. If δ < (
√
e − 1)(m − 1), where e is the base of the natural logarithm, then δ < m − 1 and so (2(m − 1)n ln(δ +

m−1))/(δ+m−1) > n ln(δ+m−1) > n. Hencewemay assume that δ ≥ (
√
e−1)(m−1), for otherwise the desired upper

bound holds trivially. By Theorem 10, α ≤ (m − 1)n/(δ + m − 1). Substituting δ ≥ (
√
e − 1)(m − 1) into this inequality,

we get α ≤ (m − 1)n/((
√
e − 1)(m − 1) + m − 1) = (m − 1)n/(

√
e(m − 1)) = n/

√
e. Since the function x(1 + 2 ln(n/x))

is monotone increasing in the interval [1, n/
√
e ], we get, by Theorem 6, that

Γd(G) ≤ α(1 + 2 ln(n/α))

≤ ((m − 1)n/(δ + m − 1))(1 + 2 ln(n(δ + m − 1)/(m − 1)n))
= ((m − 1)n/(δ + m − 1))(1 + 2 ln((δ + m − 1)/(m − 1)))
= 2(m − 1)n(1/2 + ln((δ + m − 1)/(m − 1)))/(δ + m − 1)
= 2(m − 1)n(ln

√
e + ln((δ + m − 1)/(m − 1)))/(δ + m − 1)

< (2(m − 1)n ln(δ + m − 1))/(δ + m − 1),

as
√
e < m − 1. �

We observe that as a special case of Theorem 11, we have that if G is a claw-free graph of order n with δ(G) = δ, then
Γd(G) ≤ (4n(log(δ + 2)))/(δ + 2).

2.4. Nordhaus–Gaddum-type bounds

In this section we consider Nordhaus–Gaddum-type bounds for the directed domination of a graph. Let Gn denote the
family of all graphs of order n. We define

NGmin(n) = min{Γd(G) + Γd(G)}

NGmax(n) = max{Γd(G) + Γd(G)}

where the minimum andmaximum are taken over all graphs G ∈ Gn. Chartrand and Schuster [24] established the following
Nordhaus–Gaddum inequalities for thematching number: IfG is a graphonn vertices, then ⌊n/2⌋ ≤ α′(G)+α′(G) ≤ 2⌊n/2⌋.

Theorem 12. The following holds.
(a) c1 log n ≤ NGmin(n) ≤ c2(log n)2 for some constants c1 and c2.
(b) n + log n − 2 log(log n) ≤ NGmax(n) ≤ n + ⌈n/2⌉.

Proof. (a) By Ramsey’s theory, for all graphs G ∈ Gn we have max{α(G), α(G)} ≥ c log n for some constant c. Hence
by Theorem 2(a), Γd(G) + Γd(G) ≥ α(G) + α(G) ≥ c1 log n for some constant c1. Further by Ramsey’s theory there
exists a graph G ∈ Gn such that max{α(G), α(G)} ≤ d log n for some constant d. Hence by Theorem 6, Γd(G) + Γd(G) ≤

2d log n(1 + 2 log(n/d log n)) ≤ c2(log n)2 for some constant c2. This establishes Part (a).
(b) By Theorem 1, Γd(Kn) + Γd(K n) ≤ n+ log n− 2 log(log n). Hence, NGmax(n) ≥ n+ log n− 2 log(log n). By Theorem 2(b)
and by the Nordhaus–Gaddum inequalities for thematching number, we have that Γd(G)+Γd(G) ≤ 2n− (α′(G)+α′(G)) ≤

2n − ⌊n/2⌋ = n + ⌈n/2⌉. �

3. Two generalizations

In this section, we present two general frameworks of directed domination in graphs.

3.1. Directed multiple domination

For an integer r ≥ 1, a directed r-dominating set, abbreviated DrDS, in a directed graph D = (V , A) is a set S of vertices
of V such that for every vertex u ∈ V \ S, there are at least r vertices v in S with v directed to u. The directed r-domination
number of a directed graph D, denoted by γr(D), is the minimum cardinality of a DrDS in D. A DrDS of D of cardinality γr(D)
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is called a γr(D)-set. The directed r-domination number of a graph G, denoted Γd,r(G), is defined as the maximum directed
r-domination number γr(D) over all orientations D of G; that is, Γd,r(G) = max{γr(D)}, where the maximum is taken over
all orientations D of G. In particular, we note that Γd(G) = Γd,1(G).

Theorem 13. Let r ≥ 1 be an integer. Let G be a graph of order n with α(G) = α. Then the following hold.
(a) Γd,r(Kn) ≤ r log(n + 1).
(b) Γd,r(G) ≤ rα(1 + 2 ln(n/α)).

Proof. (a) By Theorem1,Γd(Kn) ≤ log(n+1). LetD1 be an orientation of Kn and let S1 be a γ (D1)-set. Then, |S1| ≤ log(n+1).
We now remove the vertices of the DDS S1 from D1 to produce an orientation D2 of Kn1 where n1 = n − |S|. Let S2 be a
γ (D2)-set. By Theorem 1, |S2| ≤ log(n1 +1) < log(n+1). We now remove the vertices of the DDS S2 from D2 to produce an
orientation D3 of Kn2 where n3 = n−|S1|− |S2| and we let S3 be a γ (D3)-set. Continuing in this way, we produce a sequence
S1, S2, . . . , Sr of sets whose union is a DrDS of Kn of cardinality

∑r
i=1 |Si| ≤ r log(n + 1). This is true for every orientation D

of Kn. Hence, Γd,r(Kn) ≤ r log(n + 1). This establishes Part (a).
(b) By Theorem 6, Γd(G) ≤ α(1 + 2 ln(n/α)). We first consider the case when α ≥ n/

√
e. Then, rα(1 + 2 ln(n/α)) > n

for r = 2. However the function x(1 + 2 ln(n/x)) is monotone increasing in the interval [1, n/
√
e ] and we may therefore

assume that α ≤ n/
√
e, for otherwise the desired result holds trivially.

Let D1 be an arbitrary orientation of G and let S1 be a DDS of G. We now remove the vertices of S1 from D1 to produce an
orientation D2 of the graph G1 = G − S1 where G1 has order n1 = n − |S|. Let α(G1) = α1. Since G1 is an induced subgraph
of G, we have α1 ≤ α. By Theorem 6, Γd(G1) ≤ α1(1 + 2 ln(n1/α1)) < α1(1 + 2 ln(n/α1)). Since α1 ≤ α ≤ n/

√
e, the

monotonicity of the function x(1+2 ln(n/x)) in the interval [1, n/
√
e ] implies that α1(1+2 ln(n/α1)) ≤ α(1+2 ln(n/α)).

Hence, Γd(G1) < α(1 + 2 ln(n/α)).
Let S2 be a γ (D2)-set, and so |S2| < α(1 + 2 ln(n/α)). We now remove the vertices of the DDS S2 from D2 to produce an

orientation D3 of G2 = G1 − S2 where n2 = n− |S1| − |S2| and we let S3 be a γ (D3)-set. Continuing in this way, we produce
a sequence S1, S2, . . . , Sr of sets whose union is a DrDS of G of cardinality

∑r
i=1 |Si| ≤ rα(1 + 2 ln(n/α)). This is true for

every orientation D of G. Hence, Γd,r(G) ≤ rα(1 + 2 ln(n/α)). This establishes Part (b). �

3.2. Directed distance domination

Let D = (V , A) be a directed graph. The distance dD(u, v) from a vertex u to a vertex v in D is the number of edges
on a shortest directed path from u to v. For an integer d ≥ 1, a directed d-distance dominating set, abbreviated DdDDS,
in D is a set U of vertices of V such that for every vertex v ∈ V \ U , there is a vertex u ∈ U with dD(u, v) ≤ d. The
directed d-distance domination number of a directed graph D, denoted by γ (D, d), is the minimum cardinality of a DdDDS in
D. The directed d-distance domination number of a graph G, denoted Γd(G, d), is defined as the maximum directed d-distance
domination number γd(D, d) over all orientations D of G; that is, Γd(G, d) = max{γ (D, d)}, where the maximum is taken
over all orientations D of G. In particular, we note that Γd(G) = Γd(G, 1).

An independent set U of vertices in D is called a semi-kernel of D if for every vertex v ∈ V (D) \ U , there is a vertex u ∈ U
such that dD(u, v) ≤ 2. For the proof of our next result we will use the following theorem due to Chvátal and Lovász [25].

Theorem 14 (Chvátal, Lovász [25]). Every directed graph contains a semi-kernel.

Theorem 15. For every integer d ≥ 2, γd(G, d) = α(G).

Proof. Let S be amaximum independent set inG and letD be an orientation obtained fromG by directing all edges in [S, V \S]
from S to V \ S and directing all other edges arbitrarily. Every directed d-distance dominating set must contain S since no
vertex of S is reachable in D from any other vertex of V (D). Hence, Γd(G, d) ≥ |S| = α(G). However if D∗ is an arbitrary
orientation of the graph G, then by Theorem 14 the oriented graph D∗ has a semi-kernel S∗. Thus, γ (D, d) ≤ |S∗

| ≤ α(G).
Since this is true for every orientation of G, we have that Γd(G, d) ≤ α(G). Consequently, γd(G, d) = α(G). �
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