6,511 research outputs found

    Occupancy monitoring using environmental & context sensors and a hierarchical analysis framework

    Get PDF
    Saving energy in residential and commercial buildings is of great interest due to diminishing resources. Heating ventilation and air conditioning systems, and electric lighting are responsible for a significant share of energy usage, which makes it desirable to optimise their operations while maintaining user comfort. Such optimisation requires accurate occupancy estimations. In contrast to current, often invasive or unreliable methods we present an approach for accurate occupancy estimation using a wireless sensor network (WSN) that only collects non-sensitive data and a novel, hierarchical analysis method. We integrate potentially uncertain contextual information to produce occupancy estimates at different levels of granularity and provide confidence measures for effective building management. We evaluate our framework in real-world deployments and demonstrate its effectiveness and accuracy for occupancy monitoring in both low-and high-traffic area scenarios. Furthermore, we show how the system is used for analysing historical data and identify effective room misuse and thus a potential for energy saving

    Non-Invasive Ambient Intelligence in Real Life: Dealing with Noisy Patterns to Help Older People

    Get PDF
    This paper aims to contribute to the field of ambient intelligence from the perspective of real environments, where noise levels in datasets are significant, by showing how machine learning techniques can contribute to the knowledge creation, by promoting software sensors. The created knowledge can be actionable to develop features helping to deal with problems related to minimally labelled datasets. A case study is presented and analysed, looking to infer high-level rules, which can help to anticipate abnormal activities, and potential benefits of the integration of these technologies are discussed in this context. The contribution also aims to analyse the usage of the models for the transfer of knowledge when different sensors with different settings contribute to the noise levels. Finally, based on the authors’ experience, a framework proposal for creating valuable and aggregated knowledge is depicted.This research was partially funded by Fundación Tecnalia Research & Innovation, and J.O.-M. also wants to recognise the support obtained from the EU RFCS program through project number 793505 ‘4.0 Lean system integrating workers and processes (WISEST)’ and from the grant PRX18/00036 given by the Spanish Secretaría de Estado de Universidades, Investigación, Desarrollo e Innovación del Ministerio de Ciencia, Innovación y Universidades

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Environmental Sensing by Wearable Device for Indoor Activity and Location Estimation

    Full text link
    We present results from a set of experiments in this pilot study to investigate the causal influence of user activity on various environmental parameters monitored by occupant carried multi-purpose sensors. Hypotheses with respect to each type of measurements are verified, including temperature, humidity, and light level collected during eight typical activities: sitting in lab / cubicle, indoor walking / running, resting after physical activity, climbing stairs, taking elevators, and outdoor walking. Our main contribution is the development of features for activity and location recognition based on environmental measurements, which exploit location- and activity-specific characteristics and capture the trends resulted from the underlying physiological process. The features are statistically shown to have good separability and are also information-rich. Fusing environmental sensing together with acceleration is shown to achieve classification accuracy as high as 99.13%. For building applications, this study motivates a sensor fusion paradigm for learning individualized activity, location, and environmental preferences for energy management and user comfort.Comment: submitted to the 40th Annual Conference of the IEEE Industrial Electronics Society (IECON

    Machine learning for smart building applications: Review and taxonomy

    Get PDF
    © 2019 Association for Computing Machinery. The use of machine learning (ML) in smart building applications is reviewed in this article. We split existing solutions into two main classes: occupant-centric versus energy/devices-centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories: (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed, and compared; open perspectives and research trends are discussed as well. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building management systems. This is by considering all types of ML tools, buildings, and several categories of applications, and by structuring the taxonomy accordingly. The article ends with a summary discussion of the presented works, with focus on lessons learned, challenges, open and future directions of research in this field

    A multilevel window state model based on outdoor environmental conditions that captures behavioural variation at room and apartment levels

    Get PDF
    Occupants’ use of windows can influence the building energy demand, thermal conditions and indoor air quality. Researchers have made substantial efforts to develop probabilistic models to predict the window open/closed state. However, the hierarchical data structure and the heterogeneity in occupant behaviour have been generally neglected in previous modelling efforts. Multilevel modelling can provide an appropriate framework to handle this type of data structure and variability, but this method has rarely been used in the field. This study investigated room- and apartment-level variations in the effects of outdoor environmental variables on the window open state in low-energy apartment buildings in the UK using a multilevel modelling approach. The results showed that the room-level, rather than apartment-level, variation was statistically significant. Meanwhile, the room type (i.e., living room or bedroom) did not significantly affect the relationship between outdoor environmental variables and the window open state. The strength of this study is that the modelling accounted for the hierarchical structure of the data by simultaneously considering room-and apartment- level behavioural variations. By quantifying the significant diversity of occupant behaviour in the natural ventilation of residences, future research can more accurately estimate the variation in building energy and indoor air quality impacts
    corecore