16 research outputs found

    Robust network design under polyhedral traffic uncertainty

    Get PDF
    Ankara : The Department of Industrial Engineering and The Institute of Engineering and Science of Bilkent Univ., 2007.Thesis (Ph.D.) -- Bilkent University, 2007.Includes bibliographical references leaves 160-166.In this thesis, we study the design of networks robust to changes in demand estimates. We consider the case where the set of feasible demands is defined by an arbitrary polyhedron. Our motivation is to determine link capacity or routing configurations, which remain feasible for any realization in the corresponding demand polyhedron. We consider three well-known problems under polyhedral demand uncertainty all of which are posed as semi-infinite mixed integer programming problems. We develop explicit, compact formulations for all three problems as well as alternative formulations and exact solution methods. The first problem arises in the Virtual Private Network (VPN) design field. We present compact linear mixed-integer programming formulations for the problem with the classical hose traffic model and for a new, less conservative, robust variant relying on accessible traffic statistics. Although we can solve these formulations for medium-to-large instances in reasonable times using off-the-shelf MIP solvers, we develop a combined branch-and-price and cutting plane algorithm to handle larger instances. We also provide an extensive discussion of our numerical results. Next, we study the Open Shortest Path First (OSPF) routing enhanced with traffic engineering tools under general demand uncertainty with the motivation to discuss if OSPF could be made comparable to the general unconstrained routing (MPLS) when it is provided with a less restrictive operating environment. To the best of our knowledge, these two routing mechanisms are compared for the first time under such a general setting. We provide compact formulations for both routing types and show that MPLS routing for polyhedral demands can be computed in polynomial time. Moreover, we present a specialized branchand-price algorithm strengthened with the inclusion of cuts as an exact solution tool. Subsequently, we compare the new and more flexible OSPF routing with MPLS as well as the traditional OSPF on several network instances. We observe that the management tools we use in OSPF make it significantly better than the generic OSPF. Moreover, we show that OSPF performance can get closer to that of MPLS in some cases. Finally, we consider the Network Loading Problem (NLP) under a polyhedral uncertainty description of traffic demands. After giving a compact multicommodity formulation of the problem, we prove an unexpected decomposition property obtained from projecting out the flow variables, considerably simplifying the resulting polyhedral analysis and computations by doing away with metric inequalities, an attendant feature of most successful algorithms on NLP. Under the hose model of feasible demands, we study the polyhedral aspects of NLP, used as the basis of an efficient branch-and-cut algorithm supported by a simple heuristic for generating upper bounds. We provide the results of extensive computational experiments on well-known network design instances.Altın, AyƟegĂŒlPh.D

    Lying Your Way to Better Traffic Engineering

    Full text link
    To optimize the flow of traffic in IP networks, operators do traffic engineering (TE), i.e., tune routing-protocol parameters in response to traffic demands. TE in IP networks typically involves configuring static link weights and splitting traffic between the resulting shortest-paths via the Equal-Cost-MultiPath (ECMP) mechanism. Unfortunately, ECMP is a notoriously cumbersome and indirect means for optimizing traffic flow, often leading to poor network performance. Also, obtaining accurate knowledge of traffic demands as the input to TE is elusive, and traffic conditions can be highly variable, further complicating TE. We leverage recently proposed schemes for increasing ECMP's expressiveness via carefully disseminated bogus information ("lies") to design COYOTE, a readily deployable TE scheme for robust and efficient network utilization. COYOTE leverages new algorithmic ideas to configure (static) traffic splitting ratios that are optimized with respect to all (even adversarially chosen) traffic scenarios within the operator's "uncertainty bounds". Our experimental analyses show that COYOTE significantly outperforms today's prevalent TE schemes in a manner that is robust to traffic uncertainty and variation. We discuss experiments with a prototype implementation of COYOTE

    OSPF routing with optimal oblivious performance ratio under polyhedral demand uncertainty

    Get PDF
    We study the best OSPF style routing problem in telecommunication networks, where weight management is employed to get a routing configuration with the minimum oblivious ratio. We consider polyhedral demand uncertainty: the set of traffic matrices is a polyhedron defined by a set of linear constraints, and a routing is sought with a fair performance for any feasible traffic matrix in the polyhedron. The problem accurately reflects real world networks, where demands can only be estimated, and models one of the main traffic forwarding technologies, Open Shortest Path First (OSPF) routing with equal load sharing. This is an NP-hard problem as it generalizes the problem with a fixed demand matrix, which is also NP-hard. We prove that the optimal oblivious routing under polyhedral traffic uncertainty on a non-OSPF network can be obtained in polynomial time through Linear Programming. Then we consider the OSPF routing with equal load sharing under polyhedral traffic uncertainty, and present a compact mixed-integer linear programming formulation with flow variables. We propose an alternative formulation and a branch-and-price algorithm. Finally, we report and discuss test results for several network instances. © 2009 Springer Science+Business Media, LLC

    Robust routing under dynamic traffic demands

    Get PDF
    In order to provide service reliability with reasonable quality, it is essential for the network operator to manage the traffic flows in the core network. Managing traffic in the network is performed as routing function. In the traditional traffic management, network operator can tune routing parameters to simply manage the traffic. But traditional routing methods are not designed to handle the sudden fluctuations in the traffic. As a result, this may apparently lead to the traffic congestions in some parts of the core network, leaving other part underutilized. In this thesis we explore issues related to the routing robustness in the face of traffic demand variations. We investigate different routing methods for efficient routing using maximum link utilization (MLU) as a performance metric. The primary advantage of using link utilization is its ease to compute the network performance on real network data and synthetic data. Overloaded links might result in Quality of Service degradation (e.g. larger packet delay, packet losses etc.), so MLU might be a useful measure of network performance. For the experimentation, we have used unique data from the real operational network available in the public domain and the random data for large network topology instances. Furthermore, we propose a simple routing algorithm called Robust Routing Technique (RRT) to implement a robust routing mechanism. This mechanism allows network operator to satisfy the networking goals such as load balancing, routing robustness to the range of traffic demand matrices, link failures or to the traffic changes caused by uncertain traffic demands. Simulation experiments with real network topologies and random topologies demonstrate that our routing solution is simple (for routing) and flexible (for forwarding). K-Shortest path implementation in RRT can be extended for Multi Protocol Label Switching. Finally, we evaluate the performance of robust routing under dynamic traffic demands. We formulate the problem as a multi commodity flow problem using linear programming. We use congestion ratio to define the robust routing performance. We provide a variant to the existing robust routing mechanisms by modelling traffic demand due to Distributed Denial of service attacks or worms. Simulation results are compared with the popular OSPF traffic engineering algorithm to provide effectiveness to the proposed routing scheme. Simulation results are compared with the popular OSPF traffic engineering algorithm to provide effectiveness to the proposed routing scheme

    Aspects of proactive traffic engineering in IP networks

    Get PDF
    To deliver a reliable communication service over the Internet it is essential for the network operator to manage the traffic situation in the network. The traffic situation is controlled by the routing function which determines what path traffic follows from source to destination. Current practices for setting routing parameters in IP networks are designed to be simple to manage. This can lead to congestion in parts of the network while other parts of the network are far from fully utilized. In this thesis we explore issues related to optimization of the routing function to balance load in the network and efficiently deliver a reliable communication service to the users. The optimization takes into account not only the traffic situation under normal operational conditions, but also traffic situations that appear under a wide variety of circumstances deviating from the nominal case. In order to balance load in the network knowledge of the traffic situations is needed. Consequently, in this thesis we investigate methods for efficient derivation of the traffic situation. The derivation is based on estimation of traffic demands from link load measurements. The advantage of using link load measurements is that they are easily obtained and consist of a limited amount of data that need to be processed. We evaluate and demonstrate how estimation based on link counts gives the operator a fast and accurate description of the traffic demands. For the evaluation we have access to a unique data set of complete traffic demands from an operational IP backbone. However, to honor service level agreements at all times the variability of the traffic needs to be accounted for in the load balancing. In addition, optimization techniques are often sensitive to errors and variations in input data. Hence, when an optimized routing setting is subjected to real traffic demands in the network, performance often deviate from what can be anticipated from the optimization. Thus, we identify and model different traffic uncertainties and describe how the routing setting can be optimized, not only for a nominal case, but for a wide range of different traffic situations that might appear in the network. Our results can be applied in MPLS enabled networks as well as in networks using link state routing protocols such as the widely used OSPF and IS-IS protocols. Only minor changes may be needed in current networks to implement our algorithms. The contributions of this thesis is that we: demonstrate that it is possible to estimate the traffic matrix with acceptable precision, and we develop methods and models for common traffic uncertainties to account for these uncertainties in the optimization of the routing configuration. In addition, we identify important properties in the structure of the traffic to successfully balance uncertain and varying traffic demands

    An origin-based model for unique shortest path routing

    Get PDF
    Link weights are the main parameters of shortest path routing protocols, the most commonly used protocols for IP networks. The problem of optimally setting link weights for unique shortest path routing is addressed. Due to the complexity of the constraints involved, there exist challenges to formulate the problem in such a way based on which a more efficient solution algorithm than the existing ones may be developed. In this paper, an exact formulation is first introduced and then mathematically proved correct. It is further illustrated that the formulation has advantages over a prior one in terms of both constraint structure and model size for a proposed decomposition method to solve the problem

    Information Procurement and Delivery: Robustness in Prediction Markets and Network Routing.

    Full text link
    In this dissertation we address current problems in information procurement and delivery. Uncertainty commonly reduces the efficacy of information procurement systems, such as prediction markets, and information delivery systems, such as Internet backbone networks. We address the problems of uncertainty by designing robust algorithms and protocols that function well under uncertainty. Telecommunication backbone networks are used for delivering information across the Internet. Current backbone networks mostly employ protocols that include sender-receiver based congestion control. However, as protocols that do not have congestion control available become more prevalent, the network routers themselves must perform congestion control. In order to maximize network throughput, routing policies for backbone networks that take into account router based congestion control must be devised. We propose a mathematical model that can be used to design improved routing policies, while also taking into account existing flow management methods. Our model incorporates current active congestion control methods, and takes into account demand uncertainty when creating routing policies. The resulting routing policies tended to be at least 20% better than those currently used in a real world network in our experiments. Prediction markets are information aggregation tools in which participants trade on the outcome of a future event. One commonly used form of prediction market, the market scoring rule market, accurately aggregate the beliefs of traders assuming the traders are myopic, meaning they do not consider future payoffs, and are risk neutral. In currently deployed prediction markets neither of these assumptions typically holds. Therefore, in order to analyze the effectiveness of such markets, we look at the impact of non-myopic risk neutral traders, as well as risk averse traders on prediction markets. We identify a setting where non-myopic risk neutral traders may bluff, and propose a modified prediction market to disincentivize such behavior. Current prediction markets do not accurately aggregate all risk averse traders' beliefs. Therefore, we propose a new prediction market that does. The resulting market exponentially reduces the reward given to traders as the number of traders increases; we show that this exponential reduction is necessary for any prediction market that aggregates the beliefs of risk averse traders.Ph.D.Industrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/75962/1/sdimitro_1.pd

    Robust Routing mechanisms for intradomain Traffic Engineering in dynamic networks

    Full text link
    International audienceInternet traffic is highly dynamic and difficult to predict in current network scenarios. This makes of traffic engineering (TE) a very challenging task for network management and resources optimization. We study the problem of intradomain routing optimization under this traffic uncertainty. Recent works have proposed robust optimization techniques to tackle the problem, conceiving the robust routing (RR) approach. RR copes with traffic uncertainty in an off-line preemptive fashion, computing a single static routing configuration that is optimized for traffic variations within some predefined uncertainty set. Despite achieving routing reliability with relatively low performance loss, RR presents various drawbacks and conception problems as it is currently proposed. This paper brings insight into the different robust routing shortcomings, introducing new mechanisms that improve previous proposals and alleviate these problems. Among others, we propose and evaluate new optimization objectives to attain better global performance from an end-to-end quality of service perspective

    Analyse und Optimierung von Hybriden Software-Defined Networks

    Get PDF
    Hybrid IP networks that use both control plane paradigms - distributed and centralized - promise the best of two worlds: programmability and flexible control of Software-Defined Networking (SDN), and at the same time the reliability and fault tolerance of distributed routing protocols like Open Shortest Path First (OSPF). Hybrid SDN/OSPF networks typically deploy OSPF to assure care-free operation of best effort traffic, while SDN can control prioritized traffic. This "ships-passing-in-the-night" approach, where both control planes are unaware of each other's configurations, only require hybrid SDN/OSPF routers that can participate in the domain-wide legacy routing protocol and additionally connect to a central SDN controller. This mode of operation is however known for a number of challenges in operational networks, including those related to network failures, size of forwarding tables, routing convergence time, and the increased complexity of network management. There are alternative modes of hybrid operation that provide a more holistic network control paradigm, either through an OSPF-enabled SDN controller, or a common network management system that allows the joint monitoring and configuration of both control planes, or via the partitioning of the legacy routing domain with SDN border nodes. The latter mode of operation offers to some extent to steer the working of the legacy routing protocol inside the sub-domains, which is new. The analysis, modeling, and evaluative comparison of this approach called SDN Partitioning with other modes of operation is the main contribution of this thesis. This thesis addresses important network planning tasks in hybrid SDN/OSPF networks and provides the according mathematical models to optimize network clustering, capacity planning, SDN node placement, and resource provisioning for a fault tolerant operation. It furthermore provides the mathematical models to optimize traffic engineering, failure recovery, reconfiguration scheduling, and traffic monitoring in hybrid SDN/OSPF networks, which are vital network operational tasks.Hybride IP-Netzwerke, die beide Control-Plane-Paradigmen einsetzen - verteilt und zentralisiert - versprechen das Beste aus beiden Welten: Programmierbarkeit und flexible Kontrolle des Software-Defined Networking (SDN) und gleichzeitig die ZuverlĂ€ssigkeit und Fehlertoleranz von verteilten Routingprotokollen wie Open Shortest Path First (OSPF). Hybride SDN/OSPF-Netze nutzen typischerweise OSPF fĂŒr die wartungsarme Bedienung des Best-Effort-Datenverkehrs, wĂ€hrend SDN priorisierte Datenströme kontrolliert. Bei diesem Ansatz ist beiden Kontrollinstanzen die Konfiguration der jeweils anderen unbekannt, wodurch hierbei hybride SDN/OSPF Router benötigt werden, die am domĂ€nenweiten Routingprotokoll teilnehmen können und zusĂ€tzlich eine Verbindung zu einem SDN-Controller herstellen. Diese Arbeitsweise bereitet jedoch bekanntermaßen eine Reihe von Schwierigkeiten in operativen Netzen, wie zum Beispiel die Reaktion auf Störungen, die GrĂ¶ĂŸe der Forwarding-Tabellen, die benötigte Zeit zur Konvergenz des Routings, sowie die höhere KomplexitĂ€t der Netzwerkadministration. Es existieren alternative Betriebsmodi fĂŒr hybride Netze, die einen ganzheitlicheren Kontrollansatz bieten, entweder mittels OSPF-Erweiterungen im SDN-Controller, oder mittels eines ĂŒbergreifenden Netzwerkmanagementsystems, dass das Monitoring und die Konfiguration aller Netzelemente erlaubt. Eine weitere Möglichkeit stellt das Clustering der ursprĂŒnglichen RoutingdomĂ€ne in kleinere SubdomĂ€nen mittels SDN-Grenzknoten dar. Dieser neue Betriebsmodus erlaubt es zu einem gewissen Grad, die Operationen des Routingprotokolls in den SubdomĂ€nen zu steuern. Die Analyse, Modellierung und die vergleichende Evaluation dieses Ansatzes mit dem Namen SDN-Partitionierung und anderen hybriden Betriebsmodi ist der Hauptbeitrag dieser Dissertation. Diese Dissertation behandelt grundlegende Fragen der Netzplanung in hybriden SDN/OSPF-Netzen und beinhaltet entsprechende mathematische Modelle zur Optimierung des Clusterings, zur KapazitĂ€tsplanung, zum Platzieren von SDN-Routern, sowie zur Bestimmung der notwendigen Ressourcen fĂŒr einen fehlertoleranten Betrieb. Desweiteren enthĂ€lt diese Dissertation Optimierungsmodelle fĂŒr Traffic Engineering, zur Störungsbehebung, zur Ablaufplanung von Konfigurationsprozessen, sowie zum Monitoring des Datenverkehrs in hybriden SDN/OSPF-Netzen, was entscheidende Aufgaben der Netzadministration sind
    corecore