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Abstract We study the best OSPF style routing problem in telecommunication net-
works, where weight management is employed to get a routing configuration with
the minimum oblivious ratio. We consider polyhedral demand uncertainty: the set of
traffic matrices is a polyhedron defined by a set of linear constraints, and a routing
is sought with a fair performance for any feasible traffic matrix in the polyhedron.
The problem accurately reflects real world networks, where demands can only be es-
timated, and models one of the main traffic forwarding technologies, Open Shortest
Path First (OSPF) routing with equal load sharing. This is an NP-hard problem as it
generalizes the problem with a fixed demand matrix, which is also NP-hard.

We prove that the optimal oblivious routing under polyhedral traffic uncertainty
on a non-OSPF network can be obtained in polynomial time through Linear Pro-
gramming. Then we consider the OSPF routing with equal load sharing under poly-
hedral traffic uncertainty, and present a compact mixed-integer linear programming
formulation with flow variables. We propose an alternative formulation and a branch-
and-price algorithm. Finally, we report and discuss test results for several network
instances.
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1 Introduction

Effective traffic engineering is important in today’s highly information dependent
economy. An operator manages network resources by applying protocols that estab-
lish the routing paths, according to several criteria. Hence, effective routing strate-
gies are crucial for improved customer satisfaction and an efficient use of network
resources. We consider networks with the Open Shortest Path First (OSPF) protocol,
where all routing paths are shortest paths according to a predefined metric, while en-
suring a “fair” allocation of the network resources, in the particular case when the
traffic demand is not known a priori. The “fairness” of a routing can be measured
by the maximum utilization (i.e., the fraction of capacity used by data flow) among
all links in the network. If data flow is distributed among the links in proportion to
their capacities such that none of them becomes the bottleneck link, then this measure
would be small and the routing is relatively fair.

OSPF is a link-state routing protocol developed for Internet Protocol (IP) networks
in which routers exchange information about the state of their adjacent links. A con-
nection between two nodes s and t of the network is routed along the shortest paths
from s to t composed of available links of the underlying network. These shortest
paths are determined based on a metric established prior to network operations. If a
tie occurs, i.e. if a node i of the path from s to t has more than one shortest path
from i to t , some network operators use the Equal Cost Multi-Path (ECMP) rule: the
traffic is equally divided among all the shortest paths. The traditional approach for de-
termining these metrics is to fix link weights in advance, based on some criteria such
as physical distance or the inverse of link capacity (De Giovanni et al. 2005). The
management of link weights that optimizes a design and routing criterion is the fo-
cus of the most recent references (Fortz and Thorup 2000; Holmberg and Yuan 2004;
Parmar et al. 2009; Pióro et al. 2002; Tomaszewski et al. 2005, and Wang et al. 2001).
Recently, the Telecommunications industry has tried to increase routing flexibility by
developing non-shortest path routing protocols. An example of such non-OSPF pro-
tocols is Multi-Path Label Switching (MPLS). We show in Sect. 3 that the problem
of finding an oblivious routing for MPLS networks is polynomially solvable.

Weight management under ECMP is NP-hard (Fortz and Thorup 2000; Pióro et
al. 2002; Wang et al. 2001) and the current technology does not support arbitrary
load sharing. In order to tackle this difficulty, either the single path routing assump-
tion or a couple of alternative strategies like the management of next hop selection
or edge-based traffic engineering have been used. We cite Bley and Koch (2002),
Lin and Wang (1993), and Tomaszewski et al. (2005) as examples for unsplit rout-
ing while we refer to Parmar et al. (2009), Sridharan et al. (2003), and Wang et al.
(2005) for the latter case. Broström and Holmberg (2005), De Giovanni et al. (2005),
Parmar et al. (2009), Pióro et al. (2002), and Tomaszewski et al. (2005) also show
mixed-integer modeling examples for incorporating the ECMP rule. Bley and Koch
(2002), Broström and Holmberg (2005), and Pióro et al. (2002) propose two-stage
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algorithms, which initially find an optimal routing scheme and then look for a metric
according to which all optimal paths are shortest paths. The main drawback of these
approaches is that not all configurations are guaranteed to be realized as shortest
paths. Although Wang et al. (2001) show that a specific class of routes can be con-
verted to shortest paths, still no complete description of admissible routing schemes is
available. Alternatively, De Giovanni et al. (2005), Fortz and Thorup (2000), Lin and
Wang (1993), Parmar et al. (2009), and Wang et al. (2001) consider the optimization
of a design criterion and the link metric, simultaneously.

We focus on a network problem with traffic uncertainty: as it is very difficult to
measure or predict the traffic demand over a network, considering some level of un-
certainty in the definition of demand matrices would strengthen the traffic engineering
efforts. In this setting, the traffic demand is not known a priori, but a set S of possible
traffic demands is given. The idea of “fairness” must adapt to the uncertainty in traffic
demands to provide a routing that is oblivious, i.e. it is provably “fair” irrespective
of a specific demand. Network optimization under traffic uncertainty has been a hot
topic in the past years. Duffield et al. (1999) consider an uncertainty model where
an upper bound for the incoming and outgoing demand of each node is defined, and
all demands within those bounds are allowed. Bertsimas and Sim (2003) introduce
an uncertainty model where all demands are allowed to take on a lower or an upper
value, while imposing a maximum number of demands that are at the upper value
simultaneously.

Ben-Ameur and Kerivin (2005) propose a very general uncertainty model,
whereby the set S of traffic demands is a polyhedron defined by a set of linear
inequalities. This polyhedral uncertainty model encloses as special cases the two
models described above. They formulate a semi-infinite linear programming (LP)
model where all demands are implicitly associated with a constraint. Rather than
solving the semi-infinite LP explicitly, they describe an iterative method that consid-
ers an initial set of demands. At each step, after solving the current LP, a separation
problem is solved to generate a traffic demand that cannot be routed; this demand is
added to the set of constraints, and the algorithm continues until the separation gives
no new demand, proving that all demands in the polytope are satisfied.

Some network routing problems aim at minimizing the maximum congestion. Ap-
plegate and Cohen (see Applegate and Cohen 2003 and references therein) study an
oblivious routing problem with very limited information on traffic demands: they
assume that all demands that admit a feasible routing—within the network link
capacities—are possible. More recently, Belotti and Pınar (2008) study a routing
problem with box and ellipsoidal uncertainty representations: in the former case, all
traffic demands are assumed to have lower and upper bounds, while in the second
case the mean-covariance information on demands is available. The set S is defined
as the intersection of a box, or an ellipsoid, with the set of all demands that admit a
routing within the network capacity. They consider a non-OSPF routing, where paths
are not constrained to be shortest w.r.t. any metric, and compare it with an OSPF
routing where the weight of each link is heuristically fixed at a value inversely pro-
portional to its capacity. One of their open questions addresses oblivious routing for
OSPF networks: how to modify the link weights (the only degree of freedom for
such networks) to optimize the routing performance, and hence to provide a better
comparison with non-OSPF routing protocols?
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We extend the work by Belotti and Pınar (2008) in two directions. First, we address
the first part of this question by considering an OSPF network where the weights,
uniquely defining the routing paths, are decision variables. Second, we consider the
general polyhedral uncertainty, instead of two special cases (box and ellipsoid) of
traffic uncertainty, and we seek the most “fair” routing for this general demand set. In
the non-OSPF case, we prove that the problem can be modeled with linear program-
ming and hence is polynomially solvable. For the OSPF case, we present two compact
mixed-integer linear programming models, and use the second in a branch-and-price
algorithm. Finally, we provide an answer to the second part of the question above,
by comparing the oblivious performance of OSPF and MPLS on a set of real-world
network topologies.

Although the single parts of our problem (oblivious performance, polyhedral de-
mand uncertainty, and OSPF routing) have been investigated in the past, encompass-
ing all of them in one framework is important from the application standpoint and
requires ad-hoc models and algorithms. To the best of our knowledge, this is the first
work that models and proposes an efficient algorithm for this combination of prob-
lems.

The rest of the paper is organized as follows. In Sect. 2 we give some basic notation
and explain the performance measure we use in our models to assess the goodness
of different routings. In Sect. 3, we introduce the optimization models for oblivious
routing with general demand uncertainty. We incorporate OSPF routing into our mod-
els in Sect. 4. Section 5 discusses our branch-and-price algorithm, and in Sect. 6 we
describe the computational comparison between the oblivious OSPF routing and the
oblivious MPLS routing. We give some final remarks in Sect. 7.

2 Basic definitions and measures of performance

Consider the undirected graph G = (V ,E). Edges {h, k} ∈ E are also referred to as
links. For each link {h, k}, the directed pairs (h, k) and (k,h) are called the arcs of G.
We denote the set of arcs of G by A. Each link {h, k} is assigned a capacity chk , which
is available for the total flow on {h, k} in both directions. Consider a set of directed
source-sink pairs, Q = {(s, t) : s, t ∈ V, s �= t}. The traffic demand from the source
node s ∈ V to the sink node t ∈ V is dst . The traffic matrix (TM) d = (dst )(s,t)∈Q is
the traffic flow between all directed pairs in Q. Although d is a vector, the term traffic
matrix is ubiquitous in the Telecommunications literature, and we shall use the term
matrix throughout to refer to vector d .

We denote the fraction of dst routed on the arc (h, k) by f st
hk . Then f =

(f st
hk)(h,k)∈A,(s,t)∈Q defines a routing if it satisfies the following conditions:

∑

k:{h,k}∈E

(
f st

hk − f st
kh

) =
⎧
⎨

⎩

1 if h = s

−1 if h = t

0 otherwise
∀h ∈ V, (s, t) ∈ Q (1)

0 ≤ f st
hk ≤ 1 ∀(h, k) ∈ A, (s, t) ∈ Q. (2)

Let us denote the set of all routings on G as �. Given a demand d , we say that
f ∈ � is feasible w.r.t. d if the capacity of none of the links is overloaded, that is,
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if
∑

(s,t)∈Q dst (f
st
hk + f st

kh) ≤ chk ∀{h, k} ∈ E. The traffic load assigned by f ∈ �

to {h, k} ∈ E for the TM d is denoted L
f
d (hk) = ∑

(s,t)∈Q dst (f
st
hk + f st

kh), and its

utilization is U
f
d (hk) = L

f
d (hk)/chk . The fairness of a routing f for a TM d can be

defined as its maximum link utilization, and we denote it MaxUf
d :

MaxUf
d = max{h,k}∈E

U
f
d (hk).

Then, the problem of finding a routing with the minimum MaxUf
d , for a fixed TM d ,

is defined as BESTd = minf ∈� {MaxUf
d } and modeled as

min r (3)

s.t. r ≥
∑

(s,t)∈Q

dst (f
st
hk + f st

kh)/chk ∀{h, k} ∈ E (4)

f ∈ �. (5)

Here, r is the maximum ratio between total flow on a link and the link capacity. We
omit constraint

∑
(s,t)∈Q dst (f

st
hk +f st

kh) ≤ chk ∀{h, k} ∈ E, because it is equivalent to
r ≤ 1, and r is minimized. If an optimal solution has r > 1, then no routing is feasible
for d .

3 Oblivious routing under polyhedral demand uncertainty

Let us consider now a different scenario: the traffic matrix is not known a priori, and
a set D of possible matrices is given. The optimal oblivious routing problem may
consist in finding the best routing configuration for all demands in D. However, we
disregard those demands that do not admit any routing within the network capacity
(chk){h,k}∈E and instead define a set F (D) of routable demands, i.e. those demands
for which there exists at least one feasible routing. Our scope is hence to determine
the best routing that supports all d ∈ F (D) in the most balanced way. For uncer-
tain demands, it yields a conservative strategy with a worst case approach where
the “goodness” of a routing f is measured by the maximum link utilization ratio it
achieves over F (D), i.e., maxd∈F (D) MaxUf

d . However, a more common measure of
fairness is the closeness of each f to optimality for any TM d ∈ F (D) (Applegate
and Cohen 2003; Belotti and Pınar 2008). It is called the oblivious ratio of f on the
set F (D) and defined as

ORf
D = max

d∈F (D)

MaxUf
d

BESTd

.

The problem of finding the routing with the best oblivious ratio for all demands in
F (D) is

min
f ∈�

max
d∈F (D)

max{h,k}∈E U
f
d (hk)

BESTd

. (6)
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As BESTd does not depend on {h, k}, max{h,k}∈E U
f
d (hk)

BESTd
can be written as

max{h,k}∈E
U

f
d (hk)

BESTd
. Then, we can swap the two max functions in (6) and get

min
f ∈�

max{h,k}∈E
max

d∈F (D)

U
f
d (hk)

BESTd

. (7)

In the sequel, we can model (7) as the following mathematical model:

min r (8)

s.t. r ≥ max
d∈F (D)

∑
(s,t)∈Q dst (f

st
hk + f st

kh)/chk

BESTd

∀{h, k} ∈ E (9)

f ∈ � (10)

where (9) implies that for each link {h, k} ∈ E and routing f ∈ �, we have a max-
imization problem over F (D). Hence the definition of D is important in modeling
and solving (8)–(10).

Although here d is not known, it should not be considered as a variable of the
optimization model (8)–(10). It is instead a variable of the inner optimization problem
on the right-hand side of constraint (9). Due to the max operator in constraint (9), the
model (8)–(10) is equivalent to a semi-infinite optimization model with one constraint
(4) for each d ∈ F (D).

The oblivious routing problem has been investigated before (e.g., Azar et al. 2003;
Bienkowski et al. 2003; Borodin and Hopcroft 1985; Gupta et al. 2006; Räcke 2002;
Valiant and Brebner 1981). Most of the above mentioned works dwell upon algo-
rithmic approaches, while Applegate and Cohen (2003) and Belotti and Pınar (2008)
resort to mathematical programming models. Below we extend the models in these
two references for a general demand uncertainty model.

Another remark is useful here. In recent works on network design with uncertainty
in the traffic demand, there has been an interest towards the set D′ ⊆ D of so-called
dominant demands (see Oriolo 2008), which are defined as those that suffice to de-
scribe the entire uncertainty set. Then, routing all demands in D′ implies that all
demands in D are also routable. For instance, in network design problems where ca-
pacity has to be installed to accommodate a set of uncertain traffic demands, it is easy
to prove that a demand d ′ dominates all d such that d ≤ d ′. Oriolo (2008) gives a
necessary and sufficient condition for dominance between traffic demands. The idea
of dominance is difficult to apply here because the objective function of the inner op-
timization problem is nonlinear w.r.t. d . Hence, it remains an open question to prove
whether, for two demands d and d ′ with d ≤ d ′, a relationship can be established

between
MaxUf

d′
BESTd′ and

MaxUf
d

BESTd
.

Bearing in mind that the demand uncertainty can be modeled in various ways,
we will consider the case of polyhedral uncertainty (Ben-Ameur and Kerivin 2005):
traffic demand matrices are not known but are supposed to belong to a polyhedron
defined by a set of linear inequalities, for instance modeling the capacity of routers or
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bounds on the traffic flow between some node pairs. Consequently, we consider the
general traffic uncertainty model

D = {d = (dst )(s,t)∈Q : Ad ≤ a, d ≥ 0} (11)

as a set of H inequalities, with A ∈ R
H×|Q| and a ∈ R

H . We assume w.l.o.g. that D

is bounded and non-empty, and prove that the above semi-infinite optimization model
can be reduced to a finite LP problem by LP duality. First, we can write (9) as

max
d∈F (D)

⎧
⎨

⎩
∑

(s,t)∈Q

dst (f
st
hk + f st

kh) − rchkBESTd

⎫
⎬

⎭ ≤ 0 ∀{h, k} ∈ E. (12)

The left-hand side of (12) is the following maximization problem Phk for each
{h, k} ∈ E:

(Phk) max
∑

(s,t)∈Q

dst (f
st
hk + f st

kh) − rchkω (13)

s.t.
∑

j :{s,j}∈E

(gst
sj − gst

js) = dst ∀(s, t) ∈ Q (14)

∑

j :{i,j}∈E

(gst
ij − gst

j i) = 0 ∀i ∈ V \ {s, t}, (s, t) ∈ Q (15)

∑

(s,t)∈Q

(gst
ij + gst

j i) ≤ cijω ∀{i, j} ∈ E (16)

ω ≤ 1 (17)
∑

(s,t)∈Q

ast
z dst ≤ az ∀z = 1,2, . . . ,H (18)

gst
ij ≥ 0 ∀(i, j) ∈ A, (s, t) ∈ Q (19)

dst ≥ 0 ∀(s, t) ∈ Q (20)

where ω = BESTd and the traffic polytope D is defined by the inequalities (18) and
(20). Applegate and Cohen (2003) assume that, at an optimum of the inner optimiza-
tion problem (9), BESTd = 1 and hence at least one of the arcs will be used to its
full capacity for the worst case demand. However, as Belotti and Pınar (2008) show,
this is not a valid assumption if D is bounded. They give an example of the case
where dst ≤ α

min{h,k}∈E chk

|Q| ∀(s, t) ∈ Q with α < 1. Then none of the links would be
used totally even if all demands were routed on the link with the minimum capacity,
implying BESTd < 1.

Another remark is in order. Although we omit the capacity constraint in model
(3)–(5), where d is known and r is the objective function (because d does not ad-
mit a feasible routing if the optimal r > 1), this is no longer the case here. The de-
mand polyhedron D is broadly defined, and may contain demands that do not admit
a feasible routing. Nevertheless, we are interested in measuring the performance of
a specific routing on F (D), by ensuring that both BESTd and the oblivious ratio are
computed on F (D). In order to add a notion of demand feasibility to the model, we
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need to intersect D with the set of those demands that admit at least one feasible rout-
ing. We do so in model (13)–(20) with ω and (17), which we interpret as an additional
constraint to the polyhedron of demands to exclude the non-routable ones.

For a given r and routing f , Phk is a linear programming problem, which admits
a dual DPhk for each link {h, k} ∈ E. Consider the dual variables πst

hk , σ st
i,hk , ηij,hk ,

χhk , and λhk
z of constraints (14)–(18). Let


st
i,hk =

⎧
⎪⎨

⎪⎩

πst
hk if i = s

0 if i = t

σ st
i,hk otherwise

∀i ∈ V, (s, t) ∈ Q,

then DPhk is as follows:

(DPhk) min χhk +
H∑

z=1

azλ
hk
z (21)

s.t. 
st
i,hk − 
st

j,hk + ηij,hk ≥ 0 ∀(i, j) ∈ A, (s, t) ∈ Q (22)

−πst
hk +

H∑

z=1

ast
z λhk

z ≥ f st
hk + f st

kh ∀(s, t) ∈ Q (23)

−
∑

{i,j}∈E

cij ηij,hk + χhk = −rchk (24)

ηij,hk ≥ 0 ∀{i, j} ∈ E (25)

χhk ≥ 0 (26)

λhk
z ≥ 0 ∀z = 1,2, . . . ,H. (27)

We use DPhk and the duality theorems to reduce (9) to an equivalent set of linear
inequalities. Duality allows to eliminate the maximization inner problem, in par-
ticular the max term in (12) by replacing it with the objective and constraint of
its dual. This procedure, first proposed by Soyster (1973), is well known in the
general framework of robust optimization (see e.g. Ben-Tal and Nemirovski 1999;
Bertsimas and Sim 2004), and is commonly used in the robust network design liter-
ature, for instance by Altın et al. (2007), Applegate and Cohen (2003), Belotti and
Pınar (2008), and Bertsimas and Sim (2003).

Let us offer the following interpretation of the objective (21): χhk is defined in (24)
as the surplus in a hypothetical constraint

∑
{i,j}∈E cij ηij,hk ≥ rchk , and is penalized

in the objective function. If we intended to include non-routable demands as well,
thus considering D rather than F (D), constraint (17) would disappear and so would
χhk , leaving a model with the equality constraint

∑
{i,j}∈E cij ηij,hk = rchk and an

objective function
∑H

z=1 azλ
hk
z weighing the tight constraints of D that define the

“critical” traffic demand d for an edge {h, k}, i.e., the demand that makes edge {h, k}
most loaded. Restricting to F (D) adds a penalization term χhk that is nonzero if the
critical demand is at the boundary of the (polyhedral) set of routable demands.
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Proposition 1 For the polyhedral traffic uncertainty model where D = {d =
(dst )(s,t)∈Q : Ad ≤ a, d ≥ 0}, constraint (9) for each {h, k} ∈ E can be replaced
with the equivalent inequality system (22)–(27) and the inequality

−χhk −
H∑

z=1

azλ
hk
z ≥ 0. (28)

Proof Suppose D is subject to polyhedral uncertainty. For each link {h, k} ∈ E con-
sider the following LP problem:

{min 0 : (22), (23), (24), (25), (26), (27), (28)}. (29)

Then the proof follows directly from a simple application of the strong duality the-
orem with gst

ij , dst , and ω as the dual variables for the constraints (22)–(24), respec-
tively. �

Let Shk = {(r, f,
hk, ηhk,χhk, λ
hk) : (22)–(28)} where 
hk = (
st

i,hk)i∈V,(s,t)∈Q,

ηhk = (ηij,hk){i,j}∈E , and λhk = (λhk
z )1≤z≤H .

Corollary 1 Assuming that the traffic demand set D is subject to polyhedral uncer-
tainty, solving the following LP yields the optimal oblivious unconstrained routing on
G = (V ,E):

min r (30)

s.t. f ∈ � (31)

(r, f,
hk, ηhk,χhk, λ
hk) ∈ Shk ∀{h, k} ∈ E. (32)

Consequently, the optimal oblivious ratio for MPLS routing under general traffic
uncertainty can be computed in polynomial time by solving the LP problem (30)–
(32).

4 Modeling OSPF routing

Open Shortest Path First (OSPF) protocols route a demand on the shortest path be-
tween its source and destination according to a given metric. This metric is usually
fixed in advance, for instance as the inverse of its capacity, and the shortest paths are
computed accordingly. We consider OSPF routing with the goal of minimizing the
oblivious ratio r defined in (7).

As there can be more than one shortest path between a pair of nodes, one could
consider unsplittable routing such that each demand is routed on a unique path. How-
ever, using multiple paths may improve the fairness of work load distribution. Con-
sider Fig. 1; the numbers on each link are its weight and capacity, respectively. For
example, the link {A,B} is assigned two units of weight and 12 units of capacity,
which is available for the traffic in both directions.
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Fig. 1 Example for splittable vs. unsplittable routing

Consider traffic matrix d with dAC = 8 and dCA = 4. There are three shortest paths
from A to C and vice versa. With unsplittable routing, we would have the situation
shown in Fig. 1a where {A,C} is used to its full capacity while the other links are left
idle. If we allow splittable routing, then we could have the case in Fig. 1b where the
utilization of each link is around 50%. The latter routing is more balanced since all
links use almost equal fractions of their capacities. We include ECMP in our routing
model, so that flow entering a node i is split evenly among all shortest paths between
i and t .

4.1 Variables and parameters

Below we present two models for OSPF routing. The OSPF protocol is implemented
by a technology where link weights are integer and vary between 1 and �max, which
equals 65535 and is an input of the problem.1 Integer variables θij define the weight
used at each arc (i, j). We define ρt

i as the shortest path distance from i to t according
to the metric defined by the θij variables. We model ECMP constraints with variables
ϕst

i giving the fraction of flow that, after entering node i, is split among different
outgoing arcs due to the ECMP rule. For example, in Fig. 1b, for node B and the
demand from A to C we have ϕAC

B = 0.25 because the portion of flow from A to B is
equally split on the two shortest paths from B to C. Similarly, ϕCA

C = 1/3 since there
are three shortest paths from C to A.

4.2 Flow formulation

To model OSPF routing, we must ensure that all demands are routed on the corre-
sponding shortest paths. We use binary variables yt

ij to indicate if the arc (i, j) is on

1Network nodes in OSPF communicate through packets where the link weight is stored in a field of two

bytes, or 16 bits; hence it is integer and ranges between one and 65535 = 216 − 1. The value of �max
depends on the protocol: for instance, in two versions of the IS-IS protocol it is 63 and 224 −1, respectively.
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a shortest path from i to t , i.e., if it is a Shortest Path arc (SP arc) for t . Constraints

f st
ij ≤ yt

ij ∀(i, j) ∈ A, (s, t) ∈ Q (33)

ensure that flow only occurs on shortest path arcs, whereas constraints

yt
ij + ρt

j − ρt
i + θij ≥ 1 ∀(i, j) ∈ A, t ∈ V (34)

−yt
ij − ρt

j − ρt
i + θij

2�max
≥ −1 ∀(i, j) ∈ A, t ∈ V (35)

model OSPF routing. The Bellman conditions ρt
j − ρt

i + θij ≥ 0, imposing non-
negative reduced cost of arc (i, j) for the set of shortest paths destined at t , are
dominated by constraints (34), and therefore are omitted. If yt

ij = 1, then (i, j) is
an SP arc for all demands destined at t and hence the Bellman condition must be sat-
isfied with equality, as imposed by (34) and (35). If an arc (i, j) is not an SP arc with
destination t according to weights θ , then its reduced cost must be at least 1 since
we require θij ≥ 1. Since for each link {i, j} ∈ E we have (i, j) ∈ A and (j, i) ∈ A,
we use 2�max in the denominator as mentioned in Holmberg and Yuan (2004). For
the Bellman condition on arc (j, i), we have ρt

i ≥ ρt
j − θji , hence for arc (i, j) we

have ρt
j − ρt

i + θij ≤ θji + θij ≤ 2�max. Finally, the ECMP rule is implemented as
follows:

f st
ij ≤ ϕst

i ∀(i, j) ∈ A, (s, t) ∈ Q (36)

1 + f st
ij − ϕst

i ≥ yt
ij ∀(i, j) ∈ A, (s, t) ∈ Q (37)

with the variable bounds

1 ≤ θij ≤ �max integer ∀(i, j) ∈ A (38)

yt
ij ∈ {0,1} ∀(i, j) ∈ A, t ∈ V (39)

0 ≤ ϕst
i ≤ 1 ∀i ∈ V, (s, t) ∈ Q. (40)

Constraints (36) and (37) impose that if demand dst is routed via some node i, then
all arcs originating at i and contained in some shortest path to t should share the total
flow accumulated at i equally. Now let FOSPF = {(f,ρ, θ, y,ϕ) : (33)–(40)}.

Corollary 2 The solution of the following linear MIP is the optimal oblivious OSPF
routing on G = (V ,E) with equal load sharing under polyhedral demand uncer-
tainty:

min r (41)

s.t. f ∈ � (42)

(r, f,
hk, ηhk,χhk, λ
hk) ∈ Shk ∀{h, k} ∈ E (43)

(f,ρ, θ, y,ϕ) ∈ FOSPF . (44)
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The flow formulation (41)–(44) that models OSPF with ECMP needs 2|E|(|V | +
1) + |V |3 additional variables, of which 2|E||V | are binary and 2|E| are integer.
Even for medium sized networks, our formulations can get very large and require
an excessive solution time on an MILP solver. An ad-hoc formulation and solution
method are therefore needed.

4.3 Alternative formulation

We present now a model for OSPF routing that replaces flow variables with a set of
variables each corresponding to a subgraph of G.

A Shortest Paths Graph (SPG) is a directed acyclic subgraph of G, whose arcs are
called SP arcs, for which only one node t , called root, has no outgoing arcs. For at
least one metric θ , all and only directed paths from any node i to t within the SPG
are the shortest ones on G according to θ . Note that θ uniquely identifies an SPG T

rooted at a given node t . If there are multiple shortest paths from a node s ∈ V \ {t}
to t , then T includes all of them—thus an SPG is, in general, not a tree.

In our formulation, an SPG T defines the routing paths of all demands whose
destination is t . Since each SPG defines a routing configuration for its root node,
we want exactly one SPG to be used for each t ∈ V . We model this requirement via
binary variables τ t

T , which indicate whether T is used to route all traffic flow ending
at t or not. We define �t as the set of SPGs with destination t and �ij as the set of
SPGs containing arc (i, j). We ensure that a single SPG is used for each destination
by the constraint

∑

T ∈�t

τ t
T = 1 ∀t ∈ V. (45)

Moreover, the inequality

f st
ij ≤

∑

T ∈�t∩�ij

τ t
T ∀(i, j) ∈ A, (s, t) ∈ Q (46)

relates the τ variables to flow variables. Constraint (46) is analogous to (33) of the
flow formulation—note that we replace each yt

ij variable with
∑

T ∈�t∩�ij
τ t
T . If some

flow from s to t is routed on arc (i, j), then an SP arc in an SPG T rooted at t is used.
Hence the sum on the right-hand side of (46) must be 1, which ensures that the SPG
for t contains (i, j). The OSPF constraints change as follows:

∑

T ∈�t∩�ij

τ t
T + ρt

j − ρt
i + θij ≥ 1 ∀t ∈ V, (i, j) ∈ A (47)

−
∑

T ∈�t∩�ij

τ t
T − ρt

j − ρt
i + θij

2�max
≥ −1 ∀t ∈ V, (i, j) ∈ A, (48)

and are analogous to (34) and (35), respectively. The summations in (47) and (48) are
one only for the SP arcs whose reduced cost is zero. We also add ECMP constraints

f st
ij ≤ ϕst

i ∀(i, j) ∈ A, (s, t) ∈ Q (49)
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1 + f st
ij − ϕst

i ≥
∑

T ∈�t∩�ij

τ t
T ∀(i, j) ∈ A, (s, t) ∈ Q (50)

and the variable bounds

1 ≤ θij ≤ �max integer ∀(i, j) ∈ A (51)

τ t
T ∈ {0,1} ∀t ∈ V,T ∈ �t (52)

0 ≤ ϕst
i ≤ 1 ∀i ∈ V, (s, t) ∈ Q. (53)

For the clarity of notation, let T (�) = {(f,ρ, θ, τ,ϕ) : (45)–(53)} where � =⋃
t∈V �t = ⋃

(i,j)∈A �ij . Flow and SPG formulations are analogous, and the differ-
ence is how one tries to solve them. Since SPGs are defined by the weight metric θ ,
which is also a variable of our model, we know neither the number nor the structure
of SPGs explicitly in advance. Hence the sets �t and �ij are implicitly defined.

By combining the oblivious routing model (Corollary 1) with the flow or the SPG
models, we model OSPF routing under ECMP rule with minimum oblivious ratio.

5 A branch-and-price algorithm for exact solution

The number of paths in G = (V ,A) depends on the structure of the graph, and it can
grow exponentially with |V |. So do the number of variables in the SPG formulation.
Hence we have developed a branch-and-price (B&P) algorithm. This method, intro-
duced by Barnhart et al. (1998), is an efficient approach to solve problems with a large
number of variables. Based on the branch-and-bound (B&B) scheme, it starts with a
restricted LP relaxation (RLP0) with fewer variables than the original problem, and
applies column generation to solve the problem at each node of the B&B tree. The
subproblem in a B&P node (RLPcurr ) is optimal when no new columns are added
to the problem, and branching occurs if the integrality conditions are not satisfied by
the current solution. An application of the B&P algorithm for the design of Virtual
Private Networks (VPN) can be found in Altın et al. (2007).

We summarize our B&P in Algorithm 1 and describe it in detail in the rest of this
section; we use the terms SPG T destined at t and τ t

T variable interchangeably.

5.1 Initialization

Our B&P algorithm begins with a restricted formulation RLP0, defined with a subset
of all possible SPGs. An optimal solution for RLP0 is feasible but in general not
optimal for the original problem:

(RLP0) min r (54)

s.t. f ∈ � (55)

(r, f,
hk, ηhk,χhk, λ
hk) ∈ Shk ∀{h, k} ∈ E (56)

(f,ρ, θ, τ,ϕ) ∈ T (�0) (57)
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Algorithm 1 B&P algorithm
Require: undirected graph G = (V ,E), traffic polytope D, link capacity vector c;
Ensure: optimal oblivious ratio for OSPF routing and (G,D, c);

Initialize:
Find an initial set �0 of SPGs;
�̃ ← �0; // �̃ : current set of SPGs
S ← {root}; // S : set of unevaluated B&P nodes, root : root node of the B&P

tree
UB ← ∞;

while S �= ∅ do
nb ∈ argminn∈SLB(n);
S ← S\{nb};
repeat

Optimize: Get z∗(nb, �̃); // optimal value of RLPcurr

Price:
for all t ∈ V do

Search for a new SPG T̂ destined at t ;
if τ t

T̂
has a promising reduced cost then

�̃ = �̃ ∪ T̂ ; // update the current set of SPGs
Update RLPcurr ;

until no new T̂ can be found
if current LP is feasible then

Let z∗
ub(nb) be the upper bound obtained by approximation;

if z∗
ub(nb) < UB then

UB ← z∗
ub(nb);

if the current optimal solution is not integral then
Branch:

Select a fractional τ̄ t
T variable and branch;

Create two child nodes {nr, nl} and let S = S ∪ {nr, nl};
Extract B&P nodes that are fathomed by bound or infeasibility from S.

where �0 = ⋃
t∈V �0

t = ⋃
(i,j)∈A �0

ij is the initial set of SPGs. RLP0 is feasible if
there exists a metric for which at least one variable τ in RLP0 corresponds to a SPG,
for every node t ∈ V in �0. This ensures that each t is reachable from every other
node of V . We construct �0 using an initial metric. Each arc may have weight equal
to one or proportional to the physical distance between its two endpoints. We use
an inverse capacity rule: the weight of each arc is proportional to the inverse of its
capacity. Note that |�0| = |V | as we have one τ t

T variable for each t in RLP0.

5.2 Pricing

In each B&P node, we have a restricted formulation RLPcurr derived from RLP0 by
adding branching rules and generating new τ variables. The B&P node is solved by
applying column generation to RLPcurr : at each iteration, after solving RLPcurr , a
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pricing procedure is used to find a set of new τ variables with negative reduced costs,
thus corresponding to routing strategies that may improve the configuration.

Let ζt , νst
ij , υt

ij , ςt
ij , and κst

ij be the dual variables of the constraints (45), (46),
(47), (48), and (50), respectively. In a B&P node (nb) other than the root node, we
also have to take into account the set B of branching rules applied at all B&P nodes
on the path from (nb) to the root node. We do not describe such branching rules
here: a detailed description is in Sect. 5.4. Suffice it for now to denote as B

ij
t the

subset of branching rules involving τ variables corresponding to SPGs containing
(i, j) and destined at t . Let us also denote with μk the dual variable of a branching
rule k ∈ B = ⋃

t∈V,{i,j}∈E B
ij
t . The reduced cost of each τ t

T variable is

redt
T = −ζt −

∑

(i,j)∈T

⎡

⎢⎣υt
ij − ςt

ij +
∑

s∈V \{t}
(νst

ij − κst
ij ) +

∑

k∈B
ij
t

μk

⎤

⎥⎦ . (58)

The B&P algorithm has an initial set �0 of SPGs. As we generate new τ variables,
we include the corresponding SPGs in our model. While redt

T is nonnegative for all
SPGs within the current formulation, if a new τ t

T̂
with a negative reduced cost is

found, the current solution may improve if all demands destined at t are routed on T̂ .
To determine such SPGs we solve a shortest path problem for each destination

node t ∈ V with arc metric α on an auxiliary graph Gaux(t, α), where

αij = −ῡt
ij + ς̄ t

ij −
∑

s∈V \{t}
(ν̄st

ij − κ̄st
ij ) −

∑

k∈B
ij
t

μk ∀(i, j) ∈ A.

Two important issues should be handled with care at this stage. First, the solution
of the pricing problem must comply with the definition of an SPG, i.e., ECMP rout-
ing and integer arc weights must be ensured. Second, there is no guarantee that α is
nonnegative and that Gaux(t, α) has no negative cycles. Therefore we cannot use the
well known shortest path algorithms of Djikstra or Bellman-Ford to solve the pric-
ing problem. As a result, for each destination node t , we solve the pricing problem,
which is a single-node OSPF routing problem, to determine promising SPGs using
the following MIP model PRt :

(PRt ) z∗
t = min

∑

(i,j)∈A

αij yij (59)

s.t. f ∈ � (60)

f s
ij ≤ ϕs

i ∀(i, j) ∈ A, s ∈ V \{t} (61)

1 + f s
ij − ϕs

i ≥ yij ∀(i, j) ∈ A, s ∈ V \{t} (62)

− yij −
(

ρj − ρi + θij

2�max

)
≥ −1 ∀(i, j) ∈ A (63)

yij + ρj − ρi + θij ≥ 1 ∀(i, j) ∈ A (64)

0 ≤ ϕs
i ≤ 1 ∀i ∈ V, s ∈ V (65)
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1 ≤ θij ≤ �max integer ∀(i, j) ∈ A (66)

yij ∈ {0,1} ∀(i, j) ∈ A (67)

ρi ≥ 0 ∀i ∈ V (68)

where the binary variable yij indicates if (i, j) is an SP arc for t whereas f, ϕ, ρ, and
θ retain their definitions made in the original master problem. Since PRt contains the
OSPF and the ECMP constraints, its solution is an SPG T̂ defined w.r.t. some metric
θ and its cost is z∗

t = ∑
(i,j)∈T̂

αij . If z∗
t < ζ̄t , we have a new routing configuration

whose inclusion could improve the current solution of the original problem. Hence
we update the current set of SPGs by including T̂ = {(i, j) ∈ A : y∗

ij = 1} with des-
tination t . We solve the pricing problem for all nodes t ∈ V at each call of the Price
routine in Algorithm 1.

5.3 Generating an upper bound

At each node nb of the B&P tree, we price τ variables and reoptimize the updated
RLPcurr problem until we cannot identify new SPGs. At this point, a lower bound
LB(nb) on the optimal oblivious ratio r(nb) is given. A feasible solution of the orig-
inal master problem would give an upper bound (UB) on the optimal oblivious ratio
r∗ that helps cut off a part of the B&P tree. We have implemented a simple rounding
method, that starts from an optimal solution of RLPcurr and optimal values τ̄ t

T of
the SPG variables. For each t ∈ V , we pick the SPG T ∗ with maximum τ̄ t

T ∗ among
the SPGs destined at t . Then we round these τ t

T ∗ variables to 1 and solve the origi-
nal master problem. If this routing strategy is viable, i.e., if the corresponding LP is
feasible, we have an upper bound zub(nb) on the optimal oblivious ratio r∗.

5.4 Branching

We use a branching rule that exploits the problem structure to partition the solution
space without complicating the pricing problem. As we have mentioned in Algo-
rithm 1, we use τ̄ t

T variables to determine the restrictions we impose in each branch-
ing step. However, we do not base our branching rule on the dichotomy of these
variables. Such an approach would not be efficient since the algorithm might get
stuck to the same set of SPGs and loop. Suppose that we use a branching rule such
that τ t

T = 0 in one branch and τ t
T = 1 in the other. The former condition means that

the SPG T cannot be used for the destination node t . Nevertheless, it is possible that
PRt finds an SPG T̃ with exactly the same set of arcs of T , i.e., T̃ ≡ T . We create
two subdivisions of the current problem based on an arc (i∗, j∗) being or not being
an SP arc for the demand ds∗t∗ of the pair (s∗, t∗). The procedure for selecting the
quadruple (i∗, j∗, s∗, t∗) is explained in Procedure 2.

After branch selection, we partition the solution space by creating two new nodes
such that either of the following conditions holds:

– (i∗, j∗) is not an SP arc for the pair (s∗, t∗), i.e.,

f s∗t∗
i∗j∗ = 0 (69)
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Procedure 2 Branch selection.
Require: τ̄ t

T values in the solution of RLPcurr ;
Ensure: The quadruple (h∗, k∗, s∗, t∗); // (s∗, t∗) ∈ Q, (h∗, k∗) ∈ A

Take the most fractional τ̄ t
T ∗ , let t∗ ← t and T1 ← T ∗;

Find the second most fractional τ̄ t∗
T∗ , let T2 ← T∗;

found ← FALSE;
for all (h, k) ∈ A do

if (h, k) ∈ T ∗ ∪ T∗ and (h, k) /∈ T ∗ ∩ T∗ then
if f̄ st

hk > 0 and (h, k, s, t) is not used in upper branches then
if deg(h) > 1 then

(h∗, k∗, s∗, t∗) ← (h, k, s, t);
found ← TRUE;
BREAK;

if found = FALSE then
for all (h, k) ∈ A do

for all (s, t) ∈ Q do
if f st

hk > 0 and (h, k, s, t) is not used in upper branches then
(h∗, k∗, s∗, t∗) ← (h, k, s, t);
found ← TRUE;
BREAK;

if found = FALSE then
STOP; //fathom the current B&P node

– (i∗, j∗) is an SP arc for the pair (s∗, t∗), i.e.,

f s∗t∗
i∗j∗ ≥

⎧
⎨

⎩

1
deg(s∗) if i∗ = s∗
∑

(k,i∗)∈A f st
ki∗

deg(i∗)−1 if i∗ ∈ V \ {s∗, t∗}
(70)

where deg(i∗) is the number of arcs incident to i∗.

The right hand side of (70) in both cases is the ratio of total outflow for node i∗
to the maximum number of outgoing SP arcs that can be incident to it in any routing
f ∈ �. Namely, for s∗ all outgoing arcs incident to it can be SP arcs whereas for any
other node i∗ ∈ V \{s∗, t∗}, in order for (i∗, j∗) to be an SP arc, we must have at least
one incoming arc and at most deg(i∗) − 1 outgoing arcs. Hence in the most splitted
case all arcs departing from node i∗ would be SP arcs and the total flow accumulated
in i∗ will be splitted evenly among them according to the ECMP routing rule.

Given the current B&P node nb and its associated relaxation RLPcurr , we create
two new nodes nr and nl by adding the constraints (69) and (70) to the current re-
stricted problem as well as the corresponding pricing problems PRt∗ . Additionally,
we impose either of the constraints

• do not use SPGs containing arc (i∗, j∗) for t∗, i.e.,
∑

T ∈�̃t∗∩�̃i∗j∗

τ t∗
T = 0 (71)
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• do not use SPGs not containing arc (i∗, j∗) for t∗, i.e.,
∑

T ∈�̃\(�̃t∗∩�̃i∗j∗ )

τ t∗
T = 0 (72)

to create nr and nl , respectively. The dual variables of these constraints are considered
in the pricing problem discussed above.

Proposition 2 Suppose that (i, j) is an SP arc for the pair (s, t). Then the fraction
of dst routed on (i, j) satisfies the condition

f st
ij ≥ 1

deg(s) ∗ ∏
l∈V \{s,t}:deg(l)≥2(deg(l) − 1)

. (73)

Proof Let SPst = {(s, j), (j, k), (k,h), . . . , (l, t)} be a shortest path from s to t and
o(i) be the number of arcs directed away from node i and contained in some shortest
path for the pair (s, t). Clearly, for any f ∈ � and each i ∈ V \ {s, t} with some traffic
inflow, we must have deg(i) ≥ 2 and 1 ≤ o(i) ≤ deg(i) − 1. Moreover, deg(s) ≥ 1,
deg(t) ≥ 1, and deg(s) ≥ o(s) ≥ 1.

Initially, for the source node s, ECMP rule imposes that f st
sj = 1/o(s) ≥

1/deg(s) ∀f ∈ �. Next, consider node j for which f st
sj > 0. Since f ∈ � and

j ∈ V \ {s, t}, we know that
∑

(j,i)∈A f st
ji = ∑

(i,j)∈A f st
ij . Then due to the ECMP

rule

f st
jk = f st

sj + ∑
(i,j)∈A:i �=s f st

ij

o(j)
≥ 1

o(j)deg(s)
+

∑
(i,j)∈A:i �=s f st

ij

o(j)

≥ 1

(deg(j) − 1)deg(s)

since (j, k) ∈ SPst . Similarly, consider the SP arc (k,h) ∈ SPst . Then, for f ∈ � and
node k, the ECMP rule ensures that

f st
kh = f st

jk + ∑
(i,k)∈A:i �={s,j} f st

ik

o(k)

≥ 1

o(k)(deg(j) − 1)deg(s)
+

∑
(i,k)∈A:i �={s,j} f st

ik

o(k)

≥ 1

(deg(k) − 1)(deg(j) − 1)deg(s)
.

Finally, for the arc (l, t) ∈ SPst , we will have

f st
lt ≥ 1

deg(s)
∏

i∈N (SPst )
(deg(i) − 1)

where N (SPst ) is the set of nodes incident to some SP arcs in SPst . In the worst
case, dst may visit all nodes in V before it reaches its destination node t . This can
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hold true for any pair of nodes i and j such that (i, j) is an SP arc, which leads to the
desired conclusion. �

In our computational experiments, we have used (73) rather than (70). This is
mainly because unlike (70), the inequalities (73) ensure that the flow on an SP arc
(i, j) is positive, and fewer nonzeros are introduced in the constraint matrix. We have
observed an improvement in the performance of the B&P algorithm for the set of
instances we have worked on. However, using (70) and (73) together would be useful
especially for more dense or larger instances since neither of them dominates the
other one all the time.

6 Computational experiments

In order to test our models as well as the B&P algorithm, we have considered two well
known demand uncertainty definitions. The common property of these approaches is
that we do not make any assumption about the distribution of the traffic demands or
how pairwise demands are correlated with each other. For the rest of this section we
let W ⊆ V be the set of demand and/or supply nodes, which we call terminal nodes.
Moreover, Q = {(s, t) : s, t ∈ W,s �= t} is the set of directed demand pairs with flow
demands dst .

6.1 Hose model

This uncertainty model has been introduced by Duffield et al. (1999) within the con-
text of Virtual Private Network (VPN) design. Here, the focus is on the outgoing
and incoming demands of terminal nodes: the set of possible demands is defined by
bounds on the total flow each terminal node can exchange with the other terminals:

D =
{
d ∈ R

|Q|
+ :

∑

t∈W\{s}
dst ≤ b+

s ,
∑

t∈W\{s}
dts ≤ b−

s , ∀s ∈ V

}
(74)

where b−
s and b+

s are the ingress and egress capacities of the terminal node s ∈ W ,
respectively. This is more known as the asymmetric Hose model, and there is a sym-
metric version where an upper bound is given on the sum of all traffic demands orig-
inating or ending in s.

6.2 Bertsimas-Sim (BS) uncertainty model

Consider the case where lower and upper bounds are given for the pairwise demands.
In several Network Design problems under uncertainty, considering only this bound-
ing box allows for a very conservative solution, which assumes that all demands can
get their peak levels simultaneously. To overcome this problem, a positive integer �

is used to scale the trade off between the robustness of the model and the conser-
vatism level of the solution. This is the robust optimization approach discussed by
Bertsimas and Sim (2003, 2004). For our problem, � is the maximum number of
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pairs whose demands would change simultaneously within their uncertainty limits so
as to affect the solution adversely. Let us assume that demand dst ranges between d ′

st

and d ′
st + d̂st (where d̂st > 0) and that not more than � demands may differ from their

nominal value d ′
st simultaneously. We can define each demand as dst = d ′

st + βst d̂st ,

where βst is a binary variable, and impose that
∑

(s,t)∈Q βst ≤ �. Since βst = dst−d ′
st

d̂st
,

if we relax integrality of β , the BS uncertainty model defines the polyhedral set of
possible demands as follows:

D =
{
d ∈ R

|Q| : d ′
st ≤ dst ≤ d ′

st + d̂st∀(s, t) ∈ Q;
∑

(s,t)∈Q

dst − d ′
st

d̂st

≤ �

}
. (75)

6.3 Computational results

We have performed numerical experiments on instances of various sizes with two
purposes: to assess the quality of our formulations and of the B&P algorithm and to
compare OSPF and MPLS routing mechanisms. The MPLS oblivious performance
ratio under general demand uncertainty is found by solving the linear program (30)–
(32). Denote with zmpls and zospf the oblivious performance ratios for MPLS routing
and OSPF routing with ECMP, respectively. As MPLS is not restricted to route de-
mands on shortest paths, zmpls ≤ zospf for a given polyhedron of demands. Fortz and
Thorup (2000) compare the optimal OSPF routing with the optimal MPLS routing for
a fixed traffic demand and state that their performances almost match in this case. We
provide below the results of experimental campaign that generalizes the comparison
to a scenario of demand uncertainty.

We have collected the information (network topology, V and E) of some instances
from the IEEE literature (bhvac, pacbell, eon, metro, and arpanet), and from the
Rocketfuel project (Springs et al. 2004) (Exodus (Europe), Abovenet (US), VNSL
(India), Telstra (Australia)). For the latter, the current link weights (w) and the num-
ber of data packets entering and leaving each node are available. For these instances
we have assumed that the weight metric w obeys the inverse capacity weight set-
ting where the weight of each link is inversely proportional to its capacity, i.e.,
cij = 1/wij ∀{i, j} ∈ E. Due to the scarce availability of traffic demand data, we
have used the Gravity model (Applegate and Cohen 2003) to generate the demand
polyhedra D for all instances. We assume that a demand dst is proportional to the
product of a repulsion term Rs and an attraction term At , associated with the source
and the destination, respectively. These parameters may correspond to the total ob-
served outgoing and incoming traffic for each node, respectively, or the population
of the city each node refers to. The uncertainty polyhedron is constructed around a
base demand d̄ = (d̄st )(s,t)∈Q where d̄st = βRsAt , and β is computed such that d̄ is
routable and to choose how close d̄ is to the boundary of the feasibility region. We
define a parameter ς ∈ [0,1] such that β = ςυ∗ with

υ∗ = maxυ (76)

s.t.
∑

j :{s,j}∈E

(gst
sj − gst

js) = υRsAt ∀(s, t) ∈ Q (77)
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∑

j :{i,j}∈E

(gst
ij − gst

j i) = 0 ∀i ∈ V \ {s, t}, (s, t) ∈ Q (78)

∑

(s,t)∈Q

(gst
ij + gst

j i) ≤ cij ∀{i, j} ∈ E (79)

gst
ij ≥ 0 ∀(i, j) ∈ A, (s, t) ∈ Q. (80)

This is equivalent to fixing a direction (the half-line d̄st = βRsAt , β ≥ 0) on which
d̄ must lie, and solving the LP above to find the most critical demand value, which
is on the boundary of the feasibility region. Then, ς scales this value so that d̄ is an
interior point of the demand polyhedron if ς < 1. As a result, (dst )(s,t)∈Q is a feasible
traffic matrix for the current topology such that the maximum congestion is no more
than ς .

For the Hose and BS uncertainty models, we have determined the set of terminal
nodes W among the busiest nodes, i.e., those with large Ri and Ai parameters. Our in-
stances are dense since in all but two cases we have |W |/|V | ≥ 0.33. We have created
four variants of each instance using a different value for the uncertainty parameter p ∈
{1.1, 2, 5, 20} for the BS model. We set d ′

st = d̄st /p and d̂st = (p − 1
p
)d̄st . We refer

to each BS instance using the label (name,p), e.g., (nsf,2) is the nsf instance with p =
2. Larger p values imply higher variation in demand estimates, and hence an expect-
edly larger oblivious ratio. We have chosen � such that �/|Q| ∈ {0.07,0.15} in all
but one instance. We have randomly picked a subset S of W such that |S| = �|W |/2�.
Then we have used b+

s = (
∑

(s,t)∈Q d̄st )/1.1 ∀s ∈ S, b+
s = 1.1(

∑
(s,t)∈Q d̄st ) ∀s ∈

W\S, b−
s = 1.1(

∑
(s,t)∈Q d̄st ) ∀s ∈ S, and b−

s = (
∑

(s,t)∈Q d̄st )/1.1 ∀s ∈ W\S as the
maximum out- and inflow capacities of the terminal nodes in the Hose model. It is
worth noting that the uncertainty set is asymmetric in this case, which is believed to
complicate the problem based on the VPN design literature (Altın et al. 2007).

The numbers of variables and constraints are at most O(|V |5) and O(|V |6), re-
spectively, in both the flow and the initial SPG formulations. For instance, with BS
uncertainty there are 635,654 constraints and 177,843 variables (74 general integer
and 1110 binary) in the flow model of the eon instance whereas we have 485,760 con-
straints and 127,601 variables (100 general integer and 1000 binary) for the arpanet
case. We provide some statistics on our Branch-and-Price algorithm in Table 1. In
the table, p is the uncertainty level parameter for the BS case (an entry 1.1–20 in this
column means the B&P statistics are the same for all values of p); |�| is the number
of τ variables, i.e., SPGs generated; depth is the maximum depth of the B&P tree (0
meaning the problem was solved at the root node); max-rows is the maximum num-
ber of rows in an LP solved in any B&P node, and #LPs is the total number of LP
problems solved.

We have used AMPL to model the flow formulation and the MPLS routing and
solved them with the Cplex 9.1 MIP solver. The B&P algorithm is implemented in
C using MINTO (Savelsbergh et al. 1994) and Cplex 9.1 as LP solver. We have set a
two hours time limit both for AMPL and MINTO. Our test results are summarized in
Tables 2 and 3 with:

– the instance characteristics, i.e., the name of the instance, the numbers of nodes,
arcs, and terminals, as well as the value of p for the BS case;
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Table 1 Sample B&P statistics
Instance p |�| depth max-rows #LPs

BS model

Exodus 1.1–20 7 0 5353 1

nsf 1.1 8351 70 5955 8101

2 6308 60 5945 5921

5 9312 46 5931 4676

20 3882 27 5912 2630

VNSL 1.1 3 0 2191 1

2 579 20 2211 694

5 359 20 2211 308

20 622 25 2216 477

metro 1.1 20 1 78,010 7

Telstra 1.1 7 0 179,351 1

2 7 0 179,351 1

5 381 19 179,370 302

20 2288 34 179,385 2129

Pacbell 1.1 61 1 44,780 14

2 51 2 44,781 12

5 48 0 44,779 7

20 46 0 44,779 6

bhvac 1.1–20 11 0 127,017 1

Hose model

Exodus 7 0 5353 1

VNSL 35 22 2213 93

example 1265 65 7239 2358

bhvac 33 0 127,017 7

– the solution zspg and CPU time tspg of the B&P algorithm;
– the solution zf low and CPU time tf low of the flow formulation;
– the solution zmpls and CPU time tmpls for the MPLS routing.

All run times are given in seconds.
The OSPF routing problem we focus on is clearly different from the regular OSPF

routing with fixed link metric. Applegate and Cohen (2003) call this more compli-
cated routing effort as best OSPF style routing and mention that it is highly non-
trivial. Therefore, some instances could not be solved to optimality at the end of
2 hours time limit. Those cases for which we could find a feasible but not an optimal
solution are indicated by a ∗ next to this upper bound. If no feasible solution is avail-
able, then the best lower bound obtained by solving the associated LP relaxation is
given in parentheses. A “NoI” means that we do not even have a feasible solution for
the LP relaxation. Finally, we label with MA the Telstra instance in Table 3, which
MINTO could not solve due to excessive memory requirements.
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Table 2 Results for the BS uncertainty model

Instance N E W p zspg tspg zf low tf low zmpls tmpls

Exodus 7 12 7 1.1 1 0.06 1 0.05 1 0.05

2 1 0.05 1 0.04 1 0.05

5 1 0.05 1 0.04 1 0.04

20 1 0.04 1 0.04 1 0.04

nsf 8 20 5 1.1 1.168* 2 h 1.05* 2 h 1.013 0.37

2 2.045* 2 h 1.556 3821.53 1.44 0.75

5 3.808* 2 h 1.904 94.33 1.423 0.98

20 3.936* 2 h 1.976 241.10 1.462 1.05

VNSL 9 22 3 1.1 1.066 4.02 1.066 0.19 1 0.02

2 1.066 23.56 1.066 0.14 1 0.02

5 1.066 14.67 1.066 0.22 1 0.02

20 1.066 9.24 1.066 0.30 1 0.02

example 10 30 4 1.1 1 0.11 (1) 2 h 1 0.28

2 1 0.15 1 1900.19 1 0.41

5 2.25* 2 h 1.82* 2 h 1.034 0.55

20 2.575* 2 h 3.269* 2 h 1.079 0.78

metro 11 84 5 1.1 4.357* 2 h (1) 2 h 1 92.97

2 (1.211) 2 h (1.211) 2 h 1.210 450.96

5 (2.192) 2 h (1.299) 2 h 1.299 4642.34

20 (1.648) 2 h (1.306) 2 h 1.302 3577.76

bhvac 19 44 11 1.1 1 109.63 (1) 2 h 1 81.18

2 1 120.03 (1.001) 2 h 1 23

5 1 41.32 (1) 2 h 1 44.23

20 (1.706) 2 h (1.001) 2 h 1.443 1130.53

Abovenet 19 68 5 1.1 1 12.78 1 60.78 1 12.48

2 1 13.58 2.243* 2 h 1 35.95

5 1 13.92 2.687* 2 h 1 54.06

20 1 16.31 5.357* 2 h 1 46.35

Telstra 44 88 7 1.1 1 1.75 1 0.50 1 0.16

2 1 1.79 1 0.41 1 0.16

5 2.075* 2 h 1.054 2.56 1 0.16

20 2.081* 2 h 1.886 2.39 1.283 0.18

pacbell 15 42 7 1.1 1.667* 2 h 1.283* 2 h 1.014 70.93

2 1.868* 2 h (1.249) 2 h 1.249 134

5 (1.521) 2 h (1.489) 2 h 1.488 174.29

20 (1.565) 2 h (1.541) 2 h 1.54 159.54

eon 19 74 15 1.1 (1) 2 h NoI 2 h NoI 2 h

2 (1) 2 h NoI 2 h 4.433* 2 h

5 (4.718) 2 h NoI 2 h NoI 2 h

20 (6.411) 2 h NoI 2 h 6.87* 2 h

arpanet 24 100 10 1.1 (1.313) 2 h NoI 2 h 1.017 492.85

2 (1.922) 2 h NoI 2 h 4.4* 2 h

5 (4.993) 2 h NoI 2 h NoI 2 h

20 (5.799) 2 h NoI 2 h NoI 2 h
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Table 3 Results for the hose uncertainty model

Instance N E W zspg tspg zf low tf low zmpls tmpls

Exodus 7 12 7 1 0.04 1 0.05 1 0.03

nsf 8 20 5 4* 2 h 2 2730.38 1.517 0.40

VNSL 9 22 3 1.066 8.77 1.066 0.30 1 0.16

example 10 30 4 2.7* 2 h 2.2* 2 h 1.079 0.42

metro 11 84 5 (1.437) 2 h (1.302) 2 h 1.302 1657.83

bhvac 19 44 11 (2.853) 2 h (1.515) 2 h (1.515) 2 h

Abovenet 19 68 5 (1.116) 2 h (1.116) 2 h 1.045 326.13

Telstra 44 88 7 2.081* MA 1.925 1.22 1.283 0.08

pacbell 15 42 7 (1.544) 2 h (1.543) 2 h 1.543 59.13

eon 19 74 15 (6.857) 2 h NoI 2 h NoI 2 h

arpanet 24 100 10 (5.85) 2 h NoI 2 h NoI 2 h

The zspg , zf low , and zmpls columns provide relative performance measures for all
routings. They indicate how much each routing deviates from the optimal oblivious
routing for the corresponding D. Hence, as specified in our models, these values are
at least 1 where larger numbers imply larger deviation from the best possible routing
tailored for that instance. A value of 1 means that by using our optimization tools we
find a perfectly oblivious routing, which is the best tailored for any feasible traffic
matrix in D.

Table 2 shows the results for the BS case for 11 instances of 4 different uncer-
tainty levels. As expected, oblivious ratios never get smaller as the variability in-
creases. MINTO and Cplex could solve 19 and 17 of these 44 instances to optimality
in 2 hours, respectively. In the remaining cases neither MINTO nor Cplex is clearly
superior to the other. Cplex outperforms MINTO for the nsf instances. For example,
Cplex solves the flow formulation of (nsf,5) in 94 seconds whereas the B&P algo-
rithm stops with a B&P tree of 46 maximum depth yielding a loose upper bound
after solving 4676 LP problems. On the other hand, our B&P method finds the per-
fectly oblivious OSPF routing for (example,1.1), (bhvac,1.1), (bhvac,2), (bhvac,5),
(Abovenet,2), (Abovenet,5), and (Abovenet,20) in around one minute. Cplex could
only find very loose upper bounds for the Abovenet instances and just lower bounds
for the remaining four. A specialized algorithm as our B&P is hence necessary for
this type of problem, although this problem has considerable memory requirements
with mid-to-large network instances.

A comparison of the OSPF and MPLS routings based on our test results should
be made in two stages. In the first part, we focus on the 24 instances for which we
could find an optimal solution and compare the gap for the oblivious ratios. In 15 of
them we could find the perfectly oblivious routings with both routing protocols. For
the remaining 9, the oblivious ratio of our OSPF routing is 5.4% to 47% larger than
that of the oblivious MPLS routing. An important observation here is that the gap
between two alternatives does not improve with p and the deviation for OSPF at un-
certainty level p is almost never less than the one for a smaller p for any network. For
example, consider the nsf instance for which the oblivious MPLS routing performs
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Fig. 2 The change in optimal solutions of the best OSPF style, MPLS, and inverse capacity OSPF routings
for the nsf network with different values of p

Fig. 3 Comparison of the best OSPF style routing with MPLS and OSPF under inverse capacity weight
setting for the nsf network for different values of p

strictly better in all of the four uncertainty levels. A comparison of the three routing
technologies, namely our best OSPF style routing, MPLS routing, and OSPF under
inverse capacity weight setting with ECMP, is provided in Fig. 2.

First, notice the significant difference between the best OSPF style routing and the
OSPF in inverse capacity weight environment. This is a very good example to depict
the benefit of using weight management. As is clear from Fig. 2, weight management
resulted in an improvement in the OSPF performance. A more concrete comparison
of the three routing alternatives is given in Fig. 3, which shows the gaps between
the optimal performance ratios. Inverse capacity OSPF routing is almost 100% worse
than best OSPF in all higher uncertainty levels for the nsf network, while the gap
between best OSPF and MPLS increases with p from 8% to 30%. Finally, due to the
increasing demand uncertainty, the performances of MPLS, best OSPF, and inverse
capacity OSPF routings degrade by 32%, 43.6%, and 60.4%, respectively. The degra-
dation in oblivious ratio with uncertainty is already expected. Additionally, these ob-
servations certify that the effect is more significant for both OSPF routing strategies.

Finally, we compare the best upper bounds we obtain for the OSPF routing with
the optimal solutions for MPLS. The gaps are more variable for those instances and
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range from 3.7% to 335.7%. Just like the previous comment, the deviation is larger
for more uncertain as well as more difficult instances.

Table 3 shows the test results with the Hose model. It is apparent from the running
times that these optimization problems are more difficult than those with the BS un-
certainty model. For the instances eon and arpanet we could not even solve the root
relaxations in two hours.

The solution times for the SPG and flow formulations are comparable for rela-
tively smaller instances like Exodus and VNSL where the optimal oblivious ratios are
found. Exodus is solved to optimality at the root node of the B&P tree using the initial
set of SPGs whereas for VNSL, depth of the B&P tree is 22 and the optimal solution
is obtained after solving 93 LP problems and generating 26 new SPGs. The B&P
algorithm had to stop due to excessive memory requirements for Telstra and because
of time limit for nsf and example providing upper bounds on the optimal oblivious
ratios of our best OSPF style routing. These bounds are worse than the bounds pro-
vided by the flow formulation under the same settings, although the SPG formulation
gives better lower bounds at the end of 2 hours for the remaining 6 instances.

The difference between the OSPF and MPLS routings is more evident for the
Hose model. For Exodus we could find the perfectly oblivious routing with both pro-
tocols. However, a comparison between the optimal solutions of the instances nsf,
VNSL, example, and Telstra shows that the difference between the two alternatives
are 31.8%, 6.6%, 85.4%, and 50%, respectively. In brief, the average gap between
the optimal solutions of the two routing schemes is 34.8% for the Hose model and
6.5% for the BS model. While the Hose model relies on the estimates for the total
inflow and outflow capacities of the routers, for the BS case we need an estimate for
the lower and upper bounds on the individual demands. This suggests that the defin-
ition of the traffic polyhedra D is looser in the former.2 Hence, we believe that these
average deviations between the two protocols support our remark that degradation of
the network performance due to increased uncertainty is higher for OSPF routing.

Our final comment is about the benefit of considering a polyhedra of demands
rather than a single traffic matrix d̄ of average demands. To make such a comparison

we use
MaxUf ∗

d̄

BEST d̄
, where f ∗ is the optimal oblivious OSPF routing in a given instance

and BEST d̄ is the maximum link utilization of the most fair routing, say fd̄ , for the
average demand d̄ . First, such a comparison does not provide additional information
in those instances where we could find the perfectly oblivious routing. We already
know that the most fair routing for any traffic matrix in D is attained in such cases.
Hence we focus on the remaining examples and we have observed that it is not possi-
ble to make a conclusion that is valid for all cases. For example, in the VNSL instances
the optimal routing for d̄ is different than f ∗, while the opposite happens for nsf. This
means that if we optimize just for the mean demand and the current demand turns out
to be a different one, then we might have fd̄ perform significantly worse than f ∗.
Thus, optimizing just for the mean demands does not ensure the fair allocation of
work load in all cases.

2Based on how we have determined b+
s and b−

s as well as d ′
st and d̂st for the Hose and BS instances

respectively given the same average pairwise demand estimates d̄st .
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7 Conclusions

Current traffic engineering efforts are mostly based on the efficient use of network re-
sources so as to route a given traffic matrix. In practice the demands are not likely to
be known exactly. We have proposed two mixed-integer models obtained by a duality-
based reformulation for our problem. The first is a compact formulation based on flow
variables. Because this model gets large very rapidly even for medium sized prob-
lems, we have proposed an alternative formulation and solved it with a branch&price
(B&P) algorithm supported by cutting planes.

From the tests performed with our models and the B&P algorithm on two traffic
uncertainty definitions, the Hose and the BS model, we have observed that it pays
to create a specialized B&P algorithm especially for the BS uncertainty case. These
tests also prove that an efficient optimization of OSPF weights leads to a substan-
tial improvement in the network performance in terms of link utilization. Although
the shortest-path constraints limit such a performance behind that of more advanced
routing technologies such as MPLS, the gap between the two routing protocols can
be decreased even for scenarios where traffic demands are very uncertain.

References

Altın A, Amaldi E, Belotti P, Pınar MÇ (2007) Provisioning virtual private networks under traffic uncer-
tainty. Networks 20(1):100–115

Applegate D, Cohen E (2003) Making intra-domain routing robust to changing and uncertain traffic de-
mands: Understanding fundamental tradeoffs. In: Proceedings of SIGCOMM ’03, pp 313–324

Azar Y, Cohen E, Fiat A, Kaplan H, Räcke H (2003) Optimal oblivious routing in polynomial time. In:
Proceedings of the 35th ACM symposium on the theory of computing 383–388

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998) Branch-and-price: column
generation for solving huge integer programs. Oper Res 46:316–329

Belotti P, Pınar MÇ (2008) Optimal oblivious routing under linear and ellipsoidal uncertainty. Optim Eng
9(3):257–271

Ben-Ameur W, Kerivin H (2005) Routing of uncertain traffic demands. Optim Eng 3:283–313
Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25:1–13
Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program, Ser B 98:43–

71
Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52:35–53
Bienkowski M, Korzeniowski M, Räcke H (2003) A practical algorithm for constructing oblivious routing

schemes. In: Proceedings of SPAA 2003, pp 24–33
Bley A, Koch T (2002) Integer programming approaches to access and backbone IP network planning. In:

Modeling, simulation and optimization of complex processes. Springer, Berlin, pp 87–110
Borodin A, Hopcroft JE (1985) Routing, merging, and sorting on parallel models of computation. J Comput

Syst Sci 30(1):130–145
Broström P, Holmberg K (2005) Design of IP/OSPF networks using a Lagrangean heuristic on an in-graph

based model. In: Proceedings of INOC 2005, vol B3, p 702
De Giovanni L, Fortz B, Labbé M (2005) A lower bound for the Internet protocol network design problem.

In: Proceedings of INOC 2005, B2, pp 401–408
Duffield N, Goyal P, Greenberg A, Mishra P, Ramakrishnan K, van der Merive JE (1999) A flexible model

for resource management in virtual private networks. In: Proceedings of ACM SIGCOMM, pp 95–
108

Fortz B, Thorup M (2000) Internet traffic engineering by optimizing OSPF weights. In: Proceedings of
IEEE INFOCOM 2000, pp 519–528

Gupta A, Hajiaghayi MT, Räcke H (2006) Oblivious network design. In: Proceedings of ACM-SIAM,
pp 970–979



422 A. Altın et al.

Holmberg K, Yuan D (2004) Optimization of Internet protocol network design and routing. Networks
43(1):39–53

Lin FY, Wang JL (1993) Minimax open shortest path first routing algorithms in networks supporting SMDS
service. In: Proceedings of IEEE int conf communications (ICC), vol 2, pp 666–670

Oriolo G (2008) Domination in traffic matrices. Math Oper Res 33(1):91–96
Parmar A, Ahmed S, Sokol J (2009) An integer programming approach to the OSPF weight setting prob-

lem. Available for download at http://www2.isye.gatech.edu/~sahmed/publications.html
Pióro M, Szentesi Á, Harmatos J, Jüttner A, Gajowniczek P, Kozdrowski S (2002) On open shortest path

first related network optimization problems. Perform Eval 48:201–223
Räcke H (2002) Minimizing congestion in general networks. In: FOCS, vol 43, pp 43–52
Savelsbergh MWP, Sigismondi GC, Nemhauser GL (1994) A functional description of MINTO, a Mixed

INTeger Optimizer. OR Lett 15:47–58
Soyster AL (1973) Convex programming with set-inclusive constraints and applications to inexact linear

programming. Oper Res 21(5):1154–1157
Springs N, Mahajan R, Wetherall D, Anderson T (2004) Measuring ISP topologies with Rocketfuel.

IEEE/ACM Trans Netw 12(1):2–16
Sridharan A, Guérin R, Diot C (2003) Achieving near-optimal traffic engineering solutions for current

OSPF/IS-IS networks. In: IEEE INFOCOM 2003, San Francisco, CA
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