12,961 research outputs found

    Cognitive Reasoning for Compliant Robot Manipulation

    Get PDF
    Physically compliant contact is a major element for many tasks in everyday environments. A universal service robot that is utilized to collect leaves in a park, polish a workpiece, or clean solar panels requires the cognition and manipulation capabilities to facilitate such compliant interaction. Evolution equipped humans with advanced mental abilities to envision physical contact situations and their resulting outcome, dexterous motor skills to perform the actions accordingly, as well as a sense of quality to rate the outcome of the task. In order to achieve human-like performance, a robot must provide the necessary methods to represent, plan, execute, and interpret compliant manipulation tasks. This dissertation covers those four steps of reasoning in the concept of intelligent physical compliance. The contributions advance the capabilities of service robots by combining artificial intelligence reasoning methods and control strategies for compliant manipulation. A classification of manipulation tasks is conducted to identify the central research questions of the addressed topic. Novel representations are derived to describe the properties of physical interaction. Special attention is given to wiping tasks which are predominant in everyday environments. It is investigated how symbolic task descriptions can be translated into meaningful robot commands. A particle distribution model is used to plan goal-oriented wiping actions and predict the quality according to the anticipated result. The planned tool motions are converted into the joint space of the humanoid robot Rollin' Justin to perform the tasks in the real world. In order to execute the motions in a physically compliant fashion, a hierarchical whole-body impedance controller is integrated into the framework. The controller is automatically parameterized with respect to the requirements of the particular task. Haptic feedback is utilized to infer contact and interpret the performance semantically. Finally, the robot is able to compensate for possible disturbances as it plans additional recovery motions while effectively closing the cognitive control loop. Among others, the developed concept is applied in an actual space robotics mission, in which an astronaut aboard the International Space Station (ISS) commands Rollin' Justin to maintain a Martian solar panel farm in a mock-up environment. This application demonstrates the far-reaching impact of the proposed approach and the associated opportunities that emerge with the availability of cognition-enabled service robots

    Classifying Compliant Manipulation Tasks for Automated Planning in Robotics

    Get PDF
    Many household chores and industrial manufacturing tasks require a certain compliant behavior to make deliberate physical contact with the environment. This compliant behavior can be implemented by modern robotic manipulators. However, in order to plan the task execution, a robot requires generic process models of these tasks which can be adapted to different domains and varying environmental conditions. In this work we propose a classification of compliant manipulation tasks meeting these requirements, to derive related actions for automated planning. We also present a classification for the sub-category of wiping tasks, which are most common and of great importance in service robotics. We categorize actions from an object-centric perspective to make them independent of any specific robot kinematics. The aim of the proposed taxonomy is to guide robotic programmers to develop generic actions for any kind of robotic systems in arbitrary domains

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this eld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Cognition-enabled robotic wiping: Representation, planning, execution, and interpretation

    Get PDF
    Advanced cognitive capabilities enable humans to solve even complex tasks by representing and processing internal models of manipulation actions and their effects. Consequently, humans are able to plan the effect of their motions before execution and validate the performance afterwards. In this work, we derive an analog approach for robotic wiping actions which are fundamental for some of the most frequent household chores including vacuuming the floor, sweeping dust, and cleaning windows. We describe wiping actions and their effects based on a qualitative particle distribution model. This representation enables a robot to plan goal-oriented wiping motions for the prototypical wiping actions of absorbing, collecting and skimming. The particle representation is utilized to simulate the task outcome before execution and infer the real performance afterwards based on haptic perception. This way, the robot is able to estimate the task performance and schedule additional motions if necessary. We evaluate our methods in simulated scenarios, as well as in real experiments with the humanoid service robot Rollin’ Justin

    GRASP News Volume 9, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory

    Real-time computation of distance to dynamic obstacles with multiple depth sensors

    Get PDF
    We present an efficient method to evaluate distances between dynamic obstacles and a number of points of interests (e.g., placed on the links of a robot) when using multiple depth cameras. A depth-space oriented discretization of the Cartesian space is introduced that represents at best the workspace monitored by a depth camera, including occluded points. A depth grid map can be initialized off line from the arrangement of the multiple depth cameras, and its peculiar search characteristics allows fusing on line the information given by the multiple sensors in a very simple and fast way. The real-time performance of the proposed approach is shown by means of collision avoidance experiments where two Kinect sensors monitor a human-robot coexistence task

    Context-aware Mission Control for Astronaut-Robot Collaboration

    Get PDF
    Space robot assistants are envisaged as semi-autonomous co-workers deployed to lighten the workload of astronauts in cumbersome and dangerous situations. In view of this, this work considers the prospects on the technology requirements for future space robot operations, by presenting a novel mission control concept for close astronaut-robot collaboration. A decentralized approach is proposed, in which an astronaut is put in charge of commanding the robot, and a mission control center on Earth maintains a list of authorized robot actions by applying symbolic, geometric, and context-specific filters. The concept is applied to actual space robot operations within the METERON SUPVIS Justin experiment. In particular, it is shown how the concept is utilized to guide an astronaut aboard the ISS in its mission to survey and maintain a solar panel farm in a simulated Mars environment
    • …
    corecore