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Real-time computation of distance to dynamic
obstacles with multiple depth sensors

Flacco Fabrizio and Alessandro De Luca

Abstract—We present an efficient method to evaluate distances
between dynamic obstacles and a number of points of interests
(e.g., placed on the links of a robot) when using multiple depth
cameras. A depth-space oriented discretization of the Cartesian
space is introduced that represents at best the workspace mon-
itored by a depth camera, including occluded points. A depth
grid map can be initialized off line from the arrangement of the
multiple depth cameras, and its peculiar search characteristics
allows fusing on line the information given by the multiple sensors
in a very simple and fast way. The real-time performance of the
proposed approach is shown by means of collision avoidance
experiments where two Kinect sensors monitor a human-robot
coexistence task.

Index Terms—RGB-D Perception; Distance Computation; Sen-
sor Fusion; Collision Avoidance; Motion Control of Manipula-
tors; Physical Human-Robot Interaction

I. INTRODUCTION

THE most common approach for an artificial system to
perceive the real world is by vision [1], one goal being to

let a robot see the environment in the same way (e.g., stereo
or in motion) as we do. Apart from perception capabilities,
humans have also a huge information background that allows
recognizing objects and estimating qualitatively spatial infor-
mation, such as regions of free space or relative distances.
Computer vision methods are being combined with machine
learning techniques, using large information databases (say,
from Google) to recognize objects and reconstructing the envi-
ronment for different purposes and goals. Unfortunately, with
the available computing power of standard robotic systems,
most of these approaches are not suitable for hard real-time
applications that require fast and reliable detection of dynamic
objects, such as in human-robot collision avoidance.

Recently, there has been a spread in the use of depth (RGB-
D) camera sensors, like the Microsoft Kinect [2], as a mean to
provide 3D information about the environment in a compact
form and at low cost. In these devices, each pixel in the 2D
sensor image is associated to the shortest distance between the
camera and an object point along the projection ray through
that pixel, namely a depth information. However, points along
the same ray that are behind the objects (i.e., with a greater
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Fig. 1. Illustration of the gray area generated by a single depth sensor (with
a human, a robot, and a table in the environment).

depth) will remain unobserved, and may belong to the free
space or not. At a given time, the collection of all these
Cartesian points related to a view by the RGB-D sensor is
called gray area (Fig. 1).

To reduce the gray area, multiple views of the same scene
can be acquired [3]. By combining the depth information
from different points of view it is possible to decrease the
amount of unobserved space. In some applications one can
use a single camera that moves around the scene (as for
object reconstruction [4]), while multiple (depth) cameras are
simultaneously needed in other cases, in order to monitor a
dynamic environment. In general, the latter situation includes
all applications with moving objects (e.g., robots, humans).

When dealing with multiple dynamic obstacles, a basic re-
quirement in applications using RGB-D sensors is the on-line
estimation of distances between the obstacles and some control
points (or points of interest), where a control point may either
belong to a real object (e.g., attached to a robot link) or be a
virtual one. Interested applications include: augmented reality,
where simulated objects have to interact with a real environ-
ment [5]; virtual fixtures in tele-manipulation, where objects
and shapes should generate force feedback to the operator via
a haptic device [6]; collision avoidance of a robot moving in
a dynamic environment cluttered with obstacles [7]; object
recognition, when a mobile robot has to be distinguished
from other moving objects [8]; simultaneous localization and
mapping (SLAM), where a map of the environment is built
and used to localize the pose of a moving camera [9]; and
human-robot collaboration, when a robot and a human have
to share a common workspace, possibly getting in physical
contact and exchanging forces [10].

A most desirable characteristic of methods that evaluate
time-varying distances is real-time performance. In fact, too
slow updates of estimated distances could easily impair the
correct behavior of an application, e.g., obstacles will not be
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avoided or virtual fixtures badly simulated. In this respect,
a common misconception is to consider as the upper bound
for the rate of distance evaluation simply the camera frame
rate (usually, 30 Hz). However, in the case of dynamic agents,
control points may continue to move (in a commanded way)
during the time interval between two camera frame acquisi-
tions, while scene information is not updated. Thus, actual
distances may still change faster than the video rate and their
evaluation should be updated as fast as possible.

The actual bottleneck in the distance evaluation process
based on multiple depth cameras is not in the distance com-
putation itself, which usually requires few simple equations,
but is the on-line merging of data coming from all sensors
in a common representation, which allows then computing
distances easily. One of the favorite approaches for estimating
distances from depth sensor data uses the cloud of points that
are obtained by projecting the depth image in the Cartesian
space [11], and often relies on the availability of open libraries
such as the Point Cloud Library (PCL) [12], possibly speeded
up using parallel processing on GPU [13]. While this approach
suits the natural reasoning about distances in Cartesian space,
it does not fully exploit the information associated to pixels in
RGB-D sensors. For instance, occluded points in space, which
should be considered part of an obstacle, are not taken into
account directly, requiring an extra computational load.

In [14], the point cloud information coming from multiple
depth cameras is clustered in objects, which are represented
as convex hulls; then, the convex hull representation is used
to compute distances between the robot and the obstacles. As
an alternative, an octree representation [15] is used in [16].
The main drawback of these methods is the time wasted in
order to represent (dynamic) obstacles in the Cartesian space,
whereas all information needed for computing distances is
already available in the so-called depth space of the sensors.
Moreover, the geometry about rays of projection associated
to each pixel is lost in this way, an information that can be
used instead to speed up the sensor integration process. A
different idea is explored in [17], where information merged
from multiple Kinect sensors is used to improve the tracking
of a human and then to compute distances from the robot to
a bubble model representation of the human. Good real-time
performance is achieved, but the method does not evaluate
distances to obstacles other than the human. For instance,
collision with an object carried by the human will not be
considered.

We have presented in [7], and more recently improved
in [18], a different approach that evaluates point-to-object
distances working in the depth space of the sensor. This
results in a large improvement of the overall computation time.
Moreover, the method allows a correct consideration of the
pixel frustum in the Cartesian space, i.e., of the portion of a
pyramid left after its top part has been cut off by a (skewed)
plane. Despite of its merits, a straightforward extension to
multiple cameras is not possible because every camera has
its own depth space.

In this paper, while inheriting from [7] the idea of using
directly the depth space, we propose a new method that
allows an efficient data fusion from multiple depth sensors

with real-time performance. The main ingredients are: i) the
introduction of a discretization of the Cartesian space that we
call Depth grid; ii) a method to compute the shortest distance
between an occupied cell of the depth grid and a control
point; iii) an off-line procedure that creates the depth grid
map relations between the different cameras; iv) a fast on-
line method to check whether a cell in the grid is free or not,
taking into account the data from all depth cameras. The basic
assumptions under which the proposed method is applied are:

1) at least one camera monitors the whole space of interest;
2) the relative pose between all cameras does not change

over time.
The paper is organized as follows. In Sec. II, the math that

rules a depth space is recalled. The depth grid is introduced in
Sec. III, while in Sec. IV we show how to compute the distance
between a cell of this grid and a Cartesian point. Sections V
and VI present, respectively, the off-line phase needed to build
a map based on the depth grid and the on-line phase where the
depth grid map is used for computing distances. In Sec. VII,
we consider a human-robot collision avoidance problem as
a possible application of the presented method. Experimental
results using a KUKA LWR-IV robot are reported in Sec. VIII
(and in the accompanying video).

II. DEPTH SPACE

A RGB-D sensor provides a 2D color image and a depth
image. The depth image represents the perceived environment
in the depth space, a non-homogeneous 2.5-dimensional space
where two elements are the coordinates of the projection of
an observed Cartesian point on the sensor plane and the third
element is the depth of this point, namely its distance to the
sensor plane along a ray. The depth sensor is modeled as a
pin-hole camera with two sets of parameters: the intrinsic
parameters (the focal length f , the size sx and sy of a
pixel, the coordinates cx and cy of the focal axis in the
image plane) model the projection of a Cartesian point on
the image plane, while the extrinsic parameters (a rotation
matrix R and a translation vector t) specify the pose of the
sensor frame Cs with respect to a reference (world) frame Cr.
The representation in the sensor frame of a Cartesian point
CrP =

(
Crx Cry Crz

)T
expressed in the reference frame

is
CsP =

(
Csx Csy Csz

)T = R CrP + t, (1)

while its projection DP =
(
px py dp

)T
in the depth space

is given by

px =
Csxfsx
Csz

+ cx, py =
Csyfsy
Csz

+ cy, dp = Csz. (2)

In the reverse direction, a point in the depth space is mapped
in the Cartesian (sensor) space as

Csx =
(px − cx) dp

fsx
, Csy =

(py − cy) dp
fsy

, Csz = dp. (3)

Starting from the depth image of the environment, when
a point sensed in the depth space is mapped back to the
Cartesian space it represents only the closest point of an object
to the image plane along the projection ray. However, another
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simple information is coded in the depth space, namely that
all Cartesian points generated by (3) with depth greater than
dp compose the uncertain gray area (see Fig. 1). Without
extra information, this gray area should be considered (in a
conservative way) as part of the perceived object.

Indeed, the image plane of the depth sensor is discretized
in pixels, and each pixel contains a single depth information.
For a given point DP =

(
px py dp

)T
in the depth space,

only its pixel discretization DP̄ =
(
p̄x p̄y dp

)T
will be

considered, with the truncation p̄i = bpic, i = x, y.

III. DEPTH GRID

Data coming from multiple depth sensors should be merged
in a common space, in order to infer if a 3D region is
free or not. A natural choice is the Cartesian space, which
is common to all cameras, and the most popular approach
performs a workspace discretization using a Cartesian grid
(also referred to as voxel grid) of cells with fixed size (Fig. 2a).
This discretization is the one used, e.g., in [16], [19], where
an octree provides a hierarchical way to represent the grid
with different resolutions. Then, the information coming from
the different depth cameras is fused to distinguish free from
occupied cells. Despite its simple structure, the main drawback
of this Cartesian grid is that it is not ‘pixel oriented’, namely
the pixel discretization of the depth image is not used. For
instance, many pixels may be represented in the same cell,
resulting in a loss of resolution. Moreover, the information
contained in the depth along the ray of projection of a
pixel is not exploited. This is particularly important, because
knowledge of the Cartesian region that belongs to the same
pixel can speed up the process.

(a) (b)

Fig. 2. Workspace discretization with Cartesian grid (a) or Depth grid (b).

Based on these considerations we introduce the Depth grid,
see Fig. 2b. We have assumed that at least one of the depth
camera covers the whole space we are interested to monitor
(space of interest). We refer to this sensor as the principal
(or master) camera. All other cameras will monitor in general
only a region of the space of interest (and some extra space
that will be discarded). Clearly, each camera will contribute
only for that region.

The reference frame of the depth grid is set on the frame
of the principal camera (we use a prime to denote data in the
principal depth space, e.g., D

′
P ). The shape of the depth grid

is ruled by the pin-hole model (2-3) of the principal camera.
Just as for the depth space, for a cell in the depth grid the first
two coordinates

(
ḡx ḡy

)
∈ N × N represent a pixel in the

image plane. Thus, the quantization is intrinsically given by
the pixel dimension. The third coordinate ḡd ∈ N is related
to a depth d by means of a suitable discretization function

ḡd = r(d). The function r(d) may take into account that the
depth sensor has higher resolution for lower depths, varying
then the depth quantization linearly with the depth value. For
the sake of simplicity, we use here a fixed quantization ∆d.
Considering that the grid starts from a minimum depth dmin
(according to the workspace to be monitored), we have

ḡd = r(d) =
⌊
d− dmin

∆d

⌋
. (4)

The peculiar characteristics of this grid are that: i) all
cells belonging to the same ray of projection (associated to
a pixel of the principal camera) have the same first two
coordinates; ii) given an object point observed by the principal
depth camera D′Ō =

(
ōx ōy do

)T
, the coordinates of

the associated cell in the depth grid are straightforwardly(
ḡx ḡy ḡd

)
=
(
ōx ōy r(do)

)
.

IV. EVALUATION OF POINT-TO-CELL DISTANCE

The second needed ingredient is a method to compute the
shortest distance between a generic cell of the depth grid and
a control point. For this, we use the approach in [7], [18].

Consider the cell
(
ōx ōy ōd

)
, with ōd = r(do), associ-

ated to the object point O and the point of interest P , which
is represented in the depth space as DP =

(
px py dp

)T
,

using eqs. (1) and (2). In order to evaluate the Cartesian
distance between the obstacle point O and the point of interest
P , we take into account the pixel dimension by considering
the edge of the cell

(
ōx ōy

)
nearest to

(
px py

)
:

ôx =





ōx px < ōx
ōx + 1 px > ōx + 1
px otherwise,

ôy =





ōy py < ōy
ōy + 1 py > ōy + 1
py otherwise.

(5)

The depth covered by the cell spans from d1 = dmin + ōd ∆d
to d2 = dmin + (ōd + 1)∆d. The surface nearest to the point
P has depth

ôd '





d1 dp < d1

d2 dp > d2

dp otherwise.
(6)

Thus, we assume ôd = dp when the depth of the point of
interest is between d1 and d2. This is not the nearest surface,
but the difference is negligible.

Finally, the distance D(P ,O) is evaluated as

vx =
(ôx − cx) ôd − (px − cx) dp

fsx

vy =
(ôy − cy) ôd − (py − cy) dp

fsy

vz = ôd − dp

D(P ,O) ' DD(DP ,D Ô) =
√
v2
x + v2

y + v2
z .

(7)

An illustrative example of distances between a cell of the depth
grid and three points of interest is shown in Fig. 3.
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P1
image plane

D(P1, O)

P2 D(P2, O)

P3

D(P3, O)

Fig. 3. Depth space distance evaluation from a cell of the depth grid to three
points of interest. Three possible cases are shown of points of interest whose
depth is within the depth spanned by the cell (P 1), before the cell (P 2), or
beyond the cell (P 3). The pixel dimension is taken into account, in order to
consider the real frustum associated to the pixel.

V. OFF-LINE PHASE: BUILDING THE DEPTH GRID MAP

The depth grid is built considering only the principal cam-
era, and maintains its useful properties only for this camera.
Having a depth grid for each camera is not a solution for
merging information from multiple cameras, since each grid
would create a different representation of the Cartesian space.
The idea is to use then the depth grid as a map between the
depth space of the principal camera and the depth spaces of
the other cameras. In this map, each cell contains a reference
to depth pixels of other cameras that monitor the same cell
(i.e., part of the cell is projected in those pixels). In this
phase, no specific assumption is made on the presence of
static or dynamic obstacles in the environment, and no depth
information from the sensors is used. The only needed data
are the intrinsic and extrinsic parameters of the cameras.

Assume there are l depth cameras, in addition to the
principal one. Each cell of the depth grid map has an
associated list of pixels, each pixel being represented by(
D{k}

p̄x
D{k}

p̄y
D{k}

dstart
)
, where

(D{k}
p̄x,

D{k}
p̄y
)

are
the pixel coordinates in the kth image plane where the cell
is projected, with k ∈ {1, . . . , l}, and D{k}

dstart is the
minimum depth of the cell in the kth camera frame. The latter
information is needed to infer whether camera k is seeing an
object before the cell, thus if the kth camera is assuming that
the cell is part of an object. An illustration of the mapping for
a single depth grid cell and an additional depth camera D{1}

is given in Fig. 4.

�
ḡx ḡy ḡd

�
=

�
1 1 1

�

D{1}
p̄x,D

{1}
p̄y

D
{1} dstart

D{1}

Fig. 4. Illustration of the off-line mapping between cell (1 1 1) in the depth
grid and the additional depth camera D{1}.

When the relative pose of the cameras remains constant
(e.g., all cameras are stationary or are mounted on board of

the same vehicle), as we have assumed and as it is common in
many robotic applications, the depth grid map does not change.
Therefore, it can be computed completely off line. One can
consider this as a third phase of the calibration process of
a monitoring system, determining: i) intrinsic parameters; ii)
extrinsic parameters; and iii) depth grid map, i.e., the relation
between the depth spaces of the cameras.

Note that, in our framework, the issue about decay of
resolution and the associated larger uncertainty at higher
depths are not addressed for secondary cameras.

VI. ON-LINE PHASE: DISTANCE EVALUATION
USING THE DEPTH GRID MAP

During the execution of a task, we have a depth grid map
initialized off line and a point of interest P (or many of them),
projected in the depth point of the principal camera D′P =(
px py dp

)T
. We would like to evaluate on line the distance

of P to the obstacles in the environment, inferring information
from all depth cameras. At each time step1, we use the last
available depth image of each camera.

Depending on the application, we may be interested in the
whole monitored space or wish to consider only a region
close to the point of interest. In the former case, all pixels of
the principal depth image have to be evaluated. In the latter,
we consider a Cartesian region of surveillance S, made by a
cube of side 2ρ centered in P , where the possible presence
of obstacles should be detected. The associated region of
surveillance in the image plane has its size specified by

xs = ρ
fsx
dp − ρ

, ys = ρ
fsy
dp − ρ

. (8)

Thus, the distance evaluation should be applied to all pixels
in the depth image plane within the region of surveillance

SD′ =
[
px − xs

2 , px + xs

2

]
×
[
py − ys

2 , py + ys

2

]

× [dp − ρ, dp + ρ] .
(9)

Only those pixels in the principal camera that belong to the
region of surveillance (9) will be evaluated. The choice of a
specific size for the region of surveillance is indeed a trade
off between computational burden and the need of monitoring
a larger region, e.g., in order to start a robot reaction earlier.

Consider a pixel
(
s̄x s̄y

)
of interest in the image plane of

the principal camera, and let do be the measured depth infor-
mation at this pixel. Different decisions are taken, depending
on the relative values of d0 and dp, the depth of the control
point in the principal camera. For illustration, in Fig. 5 we
use a simplified planar representation limited to row s̄y of
the image plane. All cells of the depth grid associated to the
pixel

(
s̄x s̄y

)
should be taken into account in the distance

evaluation. However, thanks to the peculiar features of the
depth grid, this will not be strictly necessary.

The following situations should be considered:
i) If the observed obstacle and the related occluded points

are outside the region of surveillance, do > dp + ρ, we

1Images are updated at a common frame rate for all cameras. As already
mentioned, distance to obstacles can and should be computed at a faster rate,
in order to consider also the possible motion of the point of interest.
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!"#$%&'(#)%&

*+),-+(&.+/),&

row s̄y

s̄x

Fig. 5. Illustration of the depth grid associated to row s̄y of the image plane.
Cells associated to the pixel (s̄x s̄y) are highlighted in bold blue.

conclude, without using other cameras, that no obstacle
should be considered for these grid cells. The distance
evaluation continues to the next pixel.

ii) If the observed obstacle is in the region of surveillance
and do ≥ dp (Fig. 6), we determine, again without using
other cameras, the smallest distance to the obstacle by
eqs. (5–7), with

(
ōx ōy

)
=
(
s̄x s̄y

)
and ôd = do.

!"#$%&'(#)%&

*+),-+(&.+/),&

row s̄y

s̄x

do

D(P,O)

Fig. 6. Distance evaluation when do ≥ dp.

iii) Finally, if do < dp, information from the other cameras
is needed (Fig. 7). First, the nearest cell in the depth
grid

(
s̄x s̄y r(dp)

)
is considered, and the presence of

an obstacle has to be confirmed using the other cameras.
If this presence is not confirmed by other cameras, we

!"#$%&'(#)%&

*+),-+(&.+/),&

row s̄y

s̄x

do

Fig. 7. Distance evaluation when do < dp.

proceed checking other cells in both directions along
the third component (ray direction) in the grid, setting
r(dp) + j, j = 1, . . . ,

⌊
ρ

∆d

⌋
and j = −1, . . . ,

⌊
do−dp

∆d

⌋
,

until the possible confirmation of the presence of an
obstacle. If a cell is confirmed to be part of an obstacle,
eqs. (5–7) are used to compute the distance.

For the core step of confirming the presence of an obstacle
in a cell, a very simple procedure is used. Thanks to the
information stored in the depth grid map, we know in advance
which pixels of the other cameras monitor the current cell.
Camera k confirms the presence of an obstacle if the current
depth measure D{k}

do in the pixel
(
D{k}

p̄x
D{k}

p̄y

)
asso-

ciated to the cell verifies D{k}
do <

D{k}
dstart. The existence

of an obstacle is considered only if all involved cameras do
confirm its presence.

While by using information from multiple sensors one can
decrease the amount of gray area, it is still not possible to
remove in general the possibility of having occluded points.
Thus, a correct positioning of the cameras is crucial [3].
However, we remark that our approach uses only a two-
dimensional scan, with (part of) the third dimension being
considered only when needed, contrary to the classical case
of Cartesian grids, where a three-dimensional scan is always
needed2.

As described in [18], depending on the specific application,
one could be interested in finding only the minimum distance,
in which case an even smarter scanning process is possible, or
in collecting distances generated by all obstacles. The second
approach is used in the following application example.

VII. APPLICATION EXAMPLE:
ROBOT COLLISION AVOIDANCE

Collision avoidance of a robot moving in a dynamic environ-
ment is one of the applications in which multiple depth sensors
are convenient. The use of our integration method preserves
real-time performance, while producing the usual benefits of
multiple cameras. In fact, in this application the presence of
gray (unobserved) areas typically result in undesired behav-
iors. Without additional information, occluded points must be
considered as part of an obstacle for safety reasons, especially
when the robot is sharing its workspace with humans. The
drawback of this conservative approach is that the robot avoids
collisions also with ‘shadows’ of obstacles.

Figure 8 shows an example of an extreme situation, with a
human moving far from a robot, but between the robot and
a single depth camera, in such a way that the generated gray
area falls close to the robot. With this partial information, the
robot would abandon its task so as to avoid a shadow obstacle
which is in fact not there. A similar problem is caused by
the presence of the robot in the scene. Obviously, the robot
has to be removed from the depth image captured by the
camera, otherwise it would try to avoid itself just as any other
obstacle. As a result, actual obstacles that are behind the robot
(from a single camera view) are not visible and will not be
avoided (see Fig. 9). Because of the critical real-time aspects of
human-robot interaction, the above two major problems were
the main motivations for extending our efficient depth-space
based approach for collision avoidance to the case of multiple
depth sensors.

Since part of the image is being removed (to avoid a
fictitious robot self-collision), this should be taken into account
during the distance evaluation. With reference to the pixel
example in Sec. VI, a fourth case has to be considered:
iv) If the robot has been removed at depth dr, the only certain

information from the principal camera is that there are no
obstacles up to a depth dr. The possible presence of an
obstacle behind the robot has to be verified using the

2In the case of methods using octrees, the hierarchical structure of the
octree allows to simplify the search for occupied cells, but data insertion in
the structure requires (in principle) a complete three-dimensional scan.
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Fig. 8. Small distances to a shadow obstacle are obtained when the human
moves between the camera (placed inside the circle in the top left picture)
and the robot, even when still far away from it. Evaluated distances from
control points on the robot links are represented by robot-to-human lines in
the monitor frame. Here and in the following Fig. 9, the larger image is a low-
quality magnification of the screen in the smaller image, which is presented
to highlight the camera view.

Fig. 9. In this screenshot of an experiment, the human hand is right behind
the robot and thus is not detected. As a result, a collision may occur.

other cameras, checking only the grid cells with third
coordinates between r(dr)+1 and r(dr)+

⌊
ρ

∆d

⌋
(Fig. 10).

!"#$%&'(#)%&

*+),-+(&.+/),&

row s̄y

s̄x

dr

Fig. 10. Distance evaluation when a robot part is present at depth dr .

While in some applications, e.g., in collision checking,
retrieving the information on distance to obstacles would be
sufficient, for collision avoidance we need to compute also
the normalized direction from the control point to the nearest
point on the frustum. This unit vector is simply given by

V (DP ,DÔ) =

(
vx vy vz

)T

DD(DP ,DÔ)
. (10)

When implementing a reactive control scheme for robot col-
lision avoidance, neither the minimum distance obstacle point
alone nor the mean of the distances to all detected obstacles
are convenient choices. In fact, using a reaction method based
on minimum distance could drive a robot control point toward
a second object, which would become then the nearest one
pushing thus the robot back toward the first object, with an
undesirable oscillating effect due to switchings. On the other

hand, the mean distance depends on the global topology of
obstacles, being affected by the ratio of the numbers of near
to far obstacles. This is also undesirable, since the presence of
a close object should always provide the same robot reaction,
no matter if other obstacles are near or far. Based on this
qualitative analysis, we propose to use eqs. (7) and (10) in a
hybrid method as in [7] with

Dhybrid(P ) = Dmin(P ) = minDÔ∈SD
DD(DP ,DÔ) < ρ

V hybrid(P ) = V mean(P ) =

∑
DÔ∈SD

V (DP ,DÔ)
N

,

(11)
where N is now the number of object points detected by the
multiple depth sensor system inside the surveillance area SD.
Use of (11) allows the robot to react to the nearest object
in terms of intensity, while considering all objects in the
surveillance area for choosing the direction of reaction.

VIII. EXPERIMENTAL RESULTS

To illustrate the practical effectiveness and real-time per-
formance of the proposed method, we have run experiments
on a 7R KUKA LWR-IV robot. The LWR is controlled using
the Fast Research Interface (FRI), which allows commanding
desired joint positions at high frequency rates —500 Hz in our
experiments (T = 2 ms). All techniques have been developed
in C++, on a Intel Core i7-2600 CPU 3.4GHz with 8Gb of
RAM.

Fig. 11. Points of view of the two depth cameras used in the experiments
(infrared images).

Two Kinect cameras are used to monitor the robot
workspace from different points of view, as shown in Fig. 11,
placed at a relative distance of about 4 m. The image plane
of each sensor is composed by 640 × 480 pixels captured at
30 Hz. The robot workspace being monitored is [−1.5, 1.5]×
[−1.5, 1.5]×[−0.5, 1.5] [m], with origin at the robot base. The
principal camera is the Kinect placed on the right, meeting
the robot workspace at a distance dmin = 0.2882 m. With
∆d = 0.01 m as quantization, the resulting depth grid has
640× 480× 343 cells.

The performed experiments are fully reported in the ac-
companying video. We show first how the double sensor
arrangement, in combination with the proposed depth space
fusion method, solves both problems raised in Sec. VII.
Figure 12 illustrates that when an obstacle (the human arm)
is placed between the principal camera and the robot being
still far from the robot, the second camera does not confirm
the presence of an obstacle —all the distance lines to the
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shadow obstacle that were present in Fig. 8 have disappeared.
Similarly, when the principal camera is not able to see an
obstacle that is hidden by the robot, the processing of the
depth data by the second camera with the proposed method
allows to detect the obstacle (Fig. 13).

Fig. 12. Thanks to the fusion of information coming from the two depth
sensors, the problem of a false detected obstacle when using a single camera
shown in Fig. 8 is solved. Here and in the following Fig. 13, the larger image
is a low-quality magnification of the screen in the smaller image, which is
presented to highlight the camera view.

Fig. 13. The second camera allows detecting obstacles that the principal
camera is not able to see, avoiding the dangerous situation of Fig. 9.

When multiple Kinect sensors are used to monitor the same
space, the structured infrared textures used by each device
to infer the depth of the objects overlap, making it harder
to distinguish which infrared points belong to the correct
texture. This interference produces noise on the depth images,
as shown in the top part of Fig 14. To cope with this, we used
the method by [20] with a motor producing a small vibration in
one of the sensors. In this way, the vibrating Kinect continues
to see correctly its own texture (emitter and receiver move
together), while the other sensors are no longer affected by
the infrared points of the vibrating device that are seen just as
unfocused lines (bottom part of Fig. 14).

In the collision avoidance experiment, the robot executes a
continuous task by moving its end-effector at a nominal speed
of 40 cm/s through the six vertex points of an hexagon in
the vertical plane. A human enters in the robot workspace
and carries objects around, getting very close to the robot and
interfering with its Cartesian or joint trajectories. Collisions
are avoided by reactive robot motions, while the end-effector
task resumes as soon as it becomes feasible again.

Using the two depth sensors, the proposed method is used
to evaluate on line the distances between 9 control points
(including the end-effector) placed along the robot body and
every static or dynamic obstacle in the workspace. Following
our method in [7], the evaluated distance between the robot
end-effector and the obstacles is used to generate a repulsive
velocity to avoid collision, while distances between the other

Fig. 14. Screenshots of depth maps of two Kinect cameras monitoring the
same space. Due to interference of infrared textures, the depth images display
noise effects(in the form of black spots) [top], which are reduced when one
of the two sensors is vibrating [bottom].

points of interest and the obstacles are used to generate and
impose virtual Cartesian constraints that the robot cannot
violate, exploiting also its redundant degrees of freedom. The
algorithm is able to aggregate the distance information from
multiple obstacle points, without any further assumption (e.g.,
on the number of obstacles or on human presence). The
whole algorithm is performed at around 300 Hz (ten times the
current sensor frame rate), a result that is currently beyond
the capability of other state-of-the-art methods. Figure 15
shows a portion of this experiment. The high performance
achieved with the proposed approach for the safe and long-
term coexistence of human and robot can be appreciated better
in the accompanying video.

IX. CONCLUSIONS AND FUTURE WORK

A new method for distance evaluations in dynamic environ-
ments has been presented that fuses efficiently the information
of multiple depth cameras. Excellent real-time performance
is obtained by introducing in the monitored workspace a
convenient depth grid, which can be initialized off line from
the arrangement of the multiple cameras and then easily
searched in the on-line phase of distance computation. The
method has been successfully tested using two depth sensors
in human-robot collision avoidance experiments, where both
the robot and the human were moving fast and the overall
algorithm was running every 3.3 ms. In view of the obtained
linear growth of computations with the number of cameras,
more depth sensors can be accommodated to cover complex
environments crowded with dynamic obstacles and agents.

Current work aims at removing the two basic assumptions in
Sec. I. When the workspace of interest is covered by multiple
cameras, and not every camera has part of its field of view in
common with a single master camera, an independent depth
grid map can be computed off line for each camera as if it
were the principal one. In the on-line phase, the current camera
playing the principal role is chosen according to the position
of the control points, and the related depth grid map is used
for fusing sensor information. Considering relative motions
between cameras is somewhat harder, and we will work on
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Fig. 15. Collision avoidance experiment. Screenshots of robot and human during motion [top]. End-effector trajectory (in red) and evaluated distances (in
blue for the end-effector, in green for the other control points) [middle]. Evolution in time of the repulsive action applied to the end-effector [bottom-left]
and of the evaluated distances for the other 8 points on the robot body [bottom-right].

developing a description of the depth grid map as a function
of the position of the moving cameras.
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