9,388 research outputs found

    Object Tracking in Video Images based on Image Segmentation and Pattern Matching

    Get PDF
    The moving object tracking in video pictures [1] has attracted a great deal of interest in computer vision. For object recognition, navigation systems and surveillance systems [10], object tracking is an indispensable first-step. We propose a novel algorithm for object tracking in video pictures, based on image segmentation and pattern matching [1]. With the image segmentation, we can detect all objects in images no matter whether they are moving or not. Using image segmentation results of successive frames, we exploit pattern matching in a simple feature space for tracking of the objects. Consequently, the proposed algorithm can be applied to multiple moving and still objects even in the case of a moving camera. We describe the algorithm in detail and perform simulation experiments on object tracking which verify the tracking algorithm‘s efficiency. VLSI implementation of the proposed algorithm is possible. The conventional approach to object tracking is based on the difference between the current image and the background image. However, algorithms based on the difference image cannot simultaneously detect still objects. Furthermore, they cannot be applied to the case of a moving camera. Algorithms including the camera motion information have been proposed previously, but, they still contain problems in separating the information from the background. The proposed algorithm, consisting of four stages i.e. image segmentation, feature extraction as well as object tracking and motion vector determination [12]. Here Image Segmentation is done in 3 ways and the efficiency of the tracking is compared in these three ways, the segmentation techniques used are ―Fuzzy C means clustering using Particle Swarm Optimization [5],[6],[17]”, ”Otsu’s global thresholding [16]”, ”Histogram based thresholding by manual threshold selection”, after image segmentation the features of each object are taken and Pattern Matching [10],[11],[20] algorithm is run on consecutive frames of video sequence, so that the pattern of extracted features is matched in the next frame , the motion of the object from reference frame to present frame is calculated in both X and Y directions, the mask is moved in the image accordingly, hence the moving object in the video sequences will be tracked

    Indexing, browsing and searching of digital video

    Get PDF
    Video is a communications medium that normally brings together moving pictures with a synchronised audio track into a discrete piece or pieces of information. The size of a “piece ” of video can variously be referred to as a frame, a shot, a scene, a clip, a programme or an episode, and these are distinguished by their lengths and by their composition. We shall return to the definition of each of these in section 4 this chapter. In modern society, video is ver

    Machine vision and the OMV

    Get PDF
    The orbital Maneuvering Vehicle (OMV) is intended to close with orbiting targets for relocation or servicing. It will be controlled via video signals and thruster activation based upon Earth or space station directives. A human operator is squarely in the middle of the control loop for close work. Without directly addressing future, more autonomous versions of a remote servicer, several techniques that will doubtless be important in a future increase of autonomy also have some direct application to the current situation, particularly in the area of image enhancement and predictive analysis. Several techniques are presentet, and some few have been implemented, which support a machine vision capability proposed to be adequate for detection, recognition, and tracking. Once feasibly implemented, they must then be further modified to operate together in real time. This may be achieved by two courses, the use of an array processor and some initial steps toward data reduction. The methodology or adapting to a vector architecture is discussed in preliminary form, and a highly tentative rationale for data reduction at the front end is also discussed. As a by-product, a working implementation of the most advanced graphic display technique, ray-casting, is described

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Music Maker – A Camera-based Music Making Tool for Physical Rehabilitation

    Full text link
    The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.National Science Foundation (IIS-0308213, IIS-039009, IIS-0093367, P200A01031, EIA-0202067 to M.B.); National Institutes of Health (DC-03663 to E.S.); Boston University (Dudley Allen Sargent Research Fund (to A.L.)
    corecore