32,899 research outputs found

    Novel Two-dimensional Carbon Allotrope with Strong Electronic Anisotropy

    Full text link
    Two novel two-dimensional carbon allotropes comprised of octagons and pentagons are proposed based on the first-principles calculations. The two carbon allotropes, named OPG-L and OPG-Z, are found to have distinct properties. OPG-L is metallic, while OPG-Z is a gapless semimetal. Remarkably, OPG-Z exhibits pronounced electronic anisotropy with highly anisotropic Dirac points at the Fermi level. A tight-binding model is suggested to describe the low-energy quasiparticles, which clarifies the origin of the anisotropic Dirac points. Such an anisotropic electronic characteristic of OPG-Z is expected to have wide implications in nano-electronics.Comment: 6 pages, 5 figures (accepted by Physical Review B

    Estrogen activation of microglia underlies the sexually dimorphic differences in Nf1 optic glioma-induced retinal pathology

    Get PDF
    Children with neurofibromatosis type 1 (NF1) develop low-grade brain tumors throughout the optic pathway. Nearly 50% of children with optic pathway gliomas (OPGs) experience visual impairment, and few regain their vision after chemotherapy. Recent studies have revealed that girls with optic nerve gliomas are five times more likely to lose vision and require treatment than boys. To determine the mechanism underlying this sexually dimorphic difference in clinical outcome, we leveraged Nf1 optic glioma (Nf1-OPG) mice. We demonstrate that female Nf1-OPG mice exhibit greater retinal ganglion cell (RGC) loss and only females have retinal nerve fiber layer (RNFL) thinning, despite mice of both sexes harboring tumors of identical volumes and proliferation. Female gonadal sex hormones are responsible for this sexual dimorphism, as ovariectomy, but not castration, of Nf1-OPG mice normalizes RGC survival and RNFL thickness. In addition, female Nf1-OPG mice have threefold more microglia than their male counterparts, and minocycline inhibition of microglia corrects the retinal pathology. Moreover, pharmacologic inhibition of microglial estrogen receptor-β (ERβ) function corrects the retinal abnormalities in female Nf1-OPG mice. Collectively, these studies establish that female gonadal sex hormones underlie the sexual dimorphic differences in Nf1 optic glioma–induced retinal dysfunction by operating at the level of tumor-associated microglial activation

    Gate-controlled Guiding of Electrons in Graphene

    Full text link
    Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronics, including magnetic focusing and lensing. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogs of optical devices having both positive and negative indices of refraction. Here, we use gate-controlled density with both p and n carrier types to demonstrate the analog of the fiber-optic guiding in graphene. Two basic effects are investigated: (1) bipolar p-n junction guiding, based on the principle of angle-selective transmission though the graphene p-n interface, and (2) unipolar fiber-optic guiding, using total internal reflection controlled by carrier density. Modulation of guiding efficiency through gating is demonstrated and compared to numerical simulations, which indicates that interface roughness limits guiding performance, with few-nanometer effective roughness extracted. The development of p-n and fiber-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices.Comment: supplementary materal at http://marcuslab.harvard.edu/papers/OG_SI.pd

    Laser Based Mid-Infrared Spectroscopic Imaging – Exploring a Novel Method for Application in Cancer Diagnosis

    Get PDF
    A number of biomedical studies have shown that mid-infrared spectroscopic images can provide both morphological and biochemical information that can be used for the diagnosis of cancer. Whilst this technique has shown great potential it has yet to be employed by the medical profession. By replacing the conventional broadband thermal source employed in modern FTIR spectrometers with high-brightness, broadly tuneable laser based sources (QCLs and OPGs) we aim to solve one of the main obstacles to the transfer of this technology to the medical arena; namely poor signal to noise ratios at high spatial resolutions and short image acquisition times. In this thesis we take the first steps towards developing the optimum experimental configuration, the data processing algorithms and the spectroscopic image contrast and enhancement methods needed to utilise these high intensity laser based sources. We show that a QCL system is better suited to providing numerical absorbance values (biochemical information) than an OPG system primarily due to the QCL pulse stability. We also discuss practical protocols for the application of spectroscopic imaging to cancer diagnosis and present our spectroscopic imaging results from our laser based spectroscopic imaging experiments of oesophageal cancer tissue

    SGTA regulates the cytosolic quality control of hydrophobic substrates

    Get PDF
    Hydrophobic amino acids are normally shielded from the cytosol and their exposure is often used as an indicator of protein misfolding to enable the chaperone-mediated recognition and quality control of aberrant polypeptides. Mislocalised membrane proteins (MLPs) represent a particular challenge to cellular quality control, and, in this study, membrane protein fragments have been exploited to study a specialised pathway that underlies the efficient detection and proteasomal degradation of MLPs. Our data show that the BAG6 complex and SGTA compete for cytosolic MLPs by recognition of their exposed hydrophobicity, and the data suggest that SGTA acts to maintain these substrates in a non-ubiquitylated state. Hence, SGTA might counter the actions of BAG6 to delay the ubiquitylation of specific precursors and thereby increase their opportunity for successful post-translational delivery to the endoplasmic reticulum. However, when SGTA is overexpressed, the normally efficient removal of aberrant MLPs is delayed, increasing their steady-state level and promoting aggregation. Our data suggest that SGTA regulates the cellular fate of a range of hydrophobic polypeptides should they become exposed to the cytosol

    Trajectory-Based Off-Policy Deep Reinforcement Learning

    Full text link
    Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient estimates, and frequently get stuck in local optima. This work addresses these weaknesses by combining recent improvements in the reuse of off-policy data and exploration in parameter space with deterministic behavioral policies. The resulting objective is amenable to standard neural network optimization strategies like stochastic gradient descent or stochastic gradient Hamiltonian Monte Carlo. Incorporation of previous rollouts via importance sampling greatly improves data-efficiency, whilst stochastic optimization schemes facilitate the escape from local optima. We evaluate the proposed approach on a series of continuous control benchmark tasks. The results show that the proposed algorithm is able to successfully and reliably learn solutions using fewer system interactions than standard policy gradient methods.Comment: Includes appendix. Accepted for ICML 201

    RANK/RANKL/OPG pathway: genetic associations with stress fracture period prevalence in elite athletes

    Get PDF
    Context: The RANK/RANKL/OPG signalling pathway is important in the regulation of bone turnover, with single nucleotide polymorphisms (SNPs) in genes within this pathway associated with bone phenotypic adaptations. Objective: To determine whether four SNPs associated with genes in the RANK/RANKL/OPG signalling pathway were associated with stress fracture injury in elite athletes. Design, Participants, and Methods: Radiologically confirmed stress fracture history was reported in 518 elite athletes, forming the Stress Fracture Elite Athlete (SFEA) cohort. Data were analysed for the whole group, and were sub-stratified into male and cases of multiple stress fracture group. Genotypes were determined using proprietary fluorescence-based competitive allele-specific PCR assays. Results: SNPs rs3018362 (RANK) and rs1021188 (RANKL) were associated with stress fracture injury (p<0.05). 8.1% of stress fracture group and 2.8% of the non-stress fracture group were homozygote for the rare allele of rs1021188. Allele frequency, heterozygotes and homozygotes for the rare allele of rs3018362 were associated with stress fracture period prevalence (p<0.05). Analysis of the male only group showed 8.2% of rs1021188 rare allele homozygotes to have suffered a stress fracture while 2.5% of the non-stress fracture group were homozygous. In cases of multiple stress fractures, homozygotes for the rare allele of rs1021188, and individuals possessing at least one copy of the rare allele of rs4355801 (OPG) were shown to be associated with stress fracture injury (p<0.05). Conclusions: The data support an association between SNPs in the RANK/RANKL/OPG signalling pathway and the development of stress fracture injury. The association of rs3018362 (RANK) and rs1021188 (RANKL) with stress fracture injury susceptibility supports their role in the maintenance of bone health, and offers potential targets for therapeutic interventions
    • …
    corecore