1,418 research outputs found

    Performance of Ceriporiopsis SP. in the Treatment of Black Liquor Wastewater

    Full text link
    High amounts of black liquor wastewater are generated from bioethanol production by using oil palm empty fruit bunches. It contains an alkaline solution (NaOH), so it is quite toxic for aquatic ecosystems if discharged directly into waters. Black liquor has been treated by coagulation method, and it still needs additional treatment. This study aimed to determine degradation of black liquor wastewater by selected white-rot fungi (WRF). Five different strains of WRF have been tested for their ability to decolorize black liquor on agar and liquid media. Out of five fungi studied, two fungi, Ceriporiopsis sp. and Phanerochaete chrysosporium, showed the capacity to grow more than 50% on agar medium. In liquid medium, the percentage of decolorization of 15,000 ppm coagulated and diluted black liquor ranged from 70 to 89% at 30 days depending on the fungal strain. Ceriporiopsis sp. showed the better ability to decolorize black liquor than P. chrysosporium. The performance of Ceriporiopsis sp was evaluated regarding decolorization of black liquor, chemical oxygen demand (COD), and mycelial dry weight both in coagulated black liquor and original black liquor. The color of original and coagulated black liquor can be decolorized up to 90.13 and 86.85%, respectively. COD in original and coagulated black liquor was reduced up to 70.17 and 40.09%, respectively. The presence of coagulant Poly Aluminum Chloride (PAC) inhibited degradation of black liquor by fungus. The result demonstrated that Ceriporiopsis sp has a potential alternative to treat black liquor wastewater

    The Effect of Pretreatment by using Electron Beam Irradiation on Oil Palm Empty Fruit Bunch

    Get PDF
    Oil palm empty fruit bunch (OPEFB) is a potential type of lignocellulosic biomass for second-generation bioethanol production. The pretreatment process is an important process in the series of processes to produce bioethanol. This research aims to study the effects of pretreatment process by using electron beam irradiation to OPEFB’s characterization as raw materials for the hydrolysis reaction to produce monomer sugars which will be fermented into ethanol. The untreated and treated OPEFB are characterized in terms of their physical and chemical properties. Analysis results of the compositional analysis by using NREL/TP-510-42618 method show that after pretreatment by using electron beam irradiation, OPEFB's total lignin content is changed little while its cellulose and hemicellulose contents tend to decrease with increasing irradiation dose. X-ray diffraction (XRD) analysis shows that there is a decrease of crystallinity compared to untreated OPEFB, except for 200-kGy irradiated OPEFB. The highest decrease of crystallinity was shown by 300-kGy irradiated OPEFB. Further, crystallite sizes of treated OPEFBs are not significantly different from the untreated, except for the 200-kGy irradiated OPEFB. Irradiation pretreatment also increases specific surface area, pore volume, and pore size. The IR spectra analysis show the absorption of cellulose, hemicellulose, and lignin.Received: 07 January 2015; Revised:15 May 2015; Accepted: 17 May 2015

    Effect of Combining Electron Beam Irradiation and Alkaline Pretreatments of OPEFB for Enzymatic Hydrolysis and Fermentation of Ethanol

    Get PDF
    The effect of pretreatment process from the combination of electron beam irradiation and alkaline to Oil Palm Empty Fruit Bunch (OPEFB) was studied. The combination of pretreatment method was considered as an alternative way to increase glucose yield. In this study, OPEFB was pretreated using Electron Beam Irradiation (EBI) at 100 kGy and 300 kGy and followed by chemical pretreatment. In chemical pretreatment, irradiated OPEFB was reacted with sodium hydroxide 6% and 10% in stirred vessel at 4 bars and 150 oC for 30 min. The effectiveness of pretreatment was evaluated by calculating the composition of chemical component using National Renewable Energy Laboratory (NREL) Method. The samples which were hydrolyzed using enzymes with the addition of 30 FPU of Cellic®CTec2 per gram of pretreated biomass resulted high glucose in the amount of 9.86%. The fermentation process using Saccharomyces cereviceae obtained the highest ethanol concentration for 5.36% at 72h. The combination of the two pretreatment methods gave an effect on the weight loss, chemical composition, structure, and enzymatic hydrolysis produc

    Biocoversion of oil palm empty fruit bunch by Aspergillus niger EB4 under solid-state fermentation

    Get PDF
    Oil palm empty fruit bunch (OPEFB) is an abundant lignocellulosic waste material generated from the palm oil industry. In this study, a locally isolated strain Aspergillus niger EB4 was cultivated on a pre-treated OPEFB as substrate to produce cellulase in the solid-state fermentation (SSF) process. The cellulase recovered was then subjected to a saccharification process. The strain was grown on the pre-treated OPEFB in a 250 ml Erlenmeyer flask and a 192 L tray cabinet bioreactor, at 80% moisture content and incubated for nine days under a static condition. The activities of the crude cellulase extract in the tray bioreactor were 19.02 ± 0.85, 6.36 ± 0.38 and 4.56 ± 0.26 U/g for β-glucosidase, CMCase and FPase, respectively on day 6 of fermentation. These results were similar to the results obtained from the flask experiment. The results demonstrated the feasibility of solid substrate fermentation of the OPEFB in both flask and tray cabinet bioreactor for the cellulase production. The enzymatic hydrolysis of OPEFB at 5% (w/v) was performed by utilizing the partially purified and crude cellulase incubated at 40°C for seven days. The partially purified cellullases hydrolyzed the pre-treated OPEFB and released 7.7 g/l of reducing sugar which corresponded to a 15% conversion

    Disruption of Oil Palm Empty Fruit Bunches by Microwave-assisted Oxalic Acid Pretreatment

    Get PDF
    Developing an effective pretreatment for the conversion of lignocellulosic biomass to ethanol is an important effort in reducing the cost of this process. Microwave-assisted pretreatment is considered a green technology that can effectively break down lignocellulosic structures. The objective of this study was to investigate the most effective temperature for microwave-assisted oxalic acid pretreatment regarding the structural characteristic changes of oil palm empty fruit bunches (OPEFB) fibers. The fibers were subjected to microwave-assisted oxalic acid pretreatment at 160"“200 °C with 2.5 minutes heating time and a liquid to solid ratio of 10. The effectiveness of the pretreatment was determined based on its delignification selectivity, morphological characteristics, and functional group changes. Microwave irradiation of OPEFB fibers at 180 ºC was effective in increasing the cellulose content by 24%. This pretreatment resulted in 1.82 delignification selectivity. More than 50% of the hemicellulose of the OPEFB was removed after this treatment, which was confirmed by a decrease of the absorption bands of functional groups at 1732 cm-1. The increase of pretreatment temperature disrupted the morphological structure of the OPEFB and removed its hemicellulose but did not change its functional groups and lignin content.

    Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties

    Get PDF
    The prioritization of agroindustry fiber wastes as raw materials in development of composites has become a challenge to obtain higher value-added products with targeted applications. In this study, natural fiber-reinforced polymer matrix composites were elaborated using two fiber sizes (605 μm and 633 μm) of oil palm empty fruit bunch (OPEFB) and acrylic thermoplastic resin. In doing so, resin and fibers were mixed at room temperature by maintaining filler content of 42 wt. % for all formulations. In addition, thermomechanical compression moulding was used as composite manufacturing process at four processing temperatures (80, 100, 120, and 140°C). All formulations were subsequently exposed to salt fog spray aging for 330 hours. The effects of accelerated aging process on mechanical, spectrophotometric, and thermogravimetric characteristics were studied. On the whole, results have shown feasibility to use a facile method to elaborate composites based on waterborne acrylic matrix and OPEFB fibers. After salt spray testing, it was observed detectable levels of Aspergillus spp. of fungi in all samples, as a result of phylogenetic organization of microbial activity. Tensile behavior of composites was significantly influenced by processing temperature and fiber size. In broad terms, their overall mechanical properties were improved by the increase of temperature. Additionally, infrared spectroscopy results showed important bands mainly associated to biodegradation of cellulose, hemicellulose, and lignin. On the other hand, two degradation stages were mainly identified in thermogravimetric evaluation. Noteworthy, aging had no significant effect on the thermal properties of composites.Fil: Valle, Vladimir. Escuela Politécnica Nacional; EcuadorFil: Aguilar, Alex. Escuela Politécnica Nacional; EcuadorFil: Kreiker, Jeronimo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro Experimental de la Vivienda Económica; ArgentinaFil: Raggiotti, Barbara Belen. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil. Centro de Investigación, Desarrollo y Transferencia de Materiales y Calidad; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cadena, Francisco. Facultad de Ingeniería Química y Agroindustrial; Ecuado

    UTILIZATION OF OIL PALM EMPTY FRUIT BUNCHES AS MULCH IN COMMUNITY OWNED OIL PALM PLANTATIONS (CASE STUDY IN SIMARDONA VILLAGE, NORTH SUMATRA)

    Get PDF
    Solid Waste Oil Palm Empty Fruit Bunches have high nutrients, which significantly determine oil palm growth rate and production. Each nutrient has its role and can show specific symptoms in plants if their availability in the soil is very lacking. Dry oil palm land and the difficulty of procuring chemical fertilizers for the community that owns oil palm plantations in Simardona Village are expected to be overcome by the use of OPEFB. Utilization of Oil Palm Empty Bunches as Mulch was done manually in 4 research scenarios. Scenario 1 uses 2 kg of chemical fertilizers plus 250 kg of OPEFB, scenario 2 uses 2 kg of chemical fertilizers plus 300 kg of OPEFB, scenario 3 uses 2 kg of chemical fertilizers plus 350 kg of OPEFB, and scenario 4 uses 2 kg of chemical fertilizers plus 400 kg of OPEFB.The results obtained are that the humidity or moisture has increased from a value of 1 to 4. Therefore, it can be seen that the effect obtained from the use of more OPEFB makes the humidity higher. The calculation of the total cost of using OPOPEFB as mulch is obtained from the sum of the price of chemical fertilizers, the price of OPOPEFB, and workers' wages. The total cost after utilization of TKKS is IDR854,000.00. The total cost before using TKKS was IDR441,600,000. The difference in costs before and after the utilization of TKKS is IDR412,400.00, an increase in costs of 48%. The cost of using TKKS is higher than before using TKKS. The total harvest obtained before the use of OPEFB is 2,000 kg or IDR4,900,000. Meanwhile, after using OPEFB, the total yield obtained was 2,700 kg or IDR6,615,000. Production income increased by 26%

    The Growth of Oil Palm Seedlings using a Combination Medium of Organic Oil Palm Empty Fruit Bunch and NPK Fertilizer at Main Nursery

    Get PDF
    Oil palm (Elaeis guineensis Jacq.) holds a very strategic role in the Indonesia economy. Plants that have reached the economical age of 25 years need to be replanted using qualified oil palm seedling. The qualified seedling is obtained through proper fertilization. The combination of NPK fertilizer and organic material of oil palm empty fruit bunches (OPEFB) which has been given a cellulolytic bacterial consortium can provide sufficient nutrients for the growth of oil palm seedlings. The study aimed to determine the effect of giving a combination of OPEFB organic material, cellulolytic bacterial consortium, and NPK fertilizer on the growth of oil palm seedling (Elaeis guineensis Jacq.) at main nursery. This experiment used a single factor experiment arranged in a Completely Randomized Design (CRD). The treatments were a 100% NPK, a OPEFB compost, a 50% NPK + OPEFB compost, a 50% NPK + OPEFB + Cellulolytic bacterial consortium, and a OPEFB + cellulolytic bacterial consortium. The results showed that the application of inorganic fertilizers combined with organic fertilizers (a OPEFB compost and a OPEFB + cellulolytic bacterial consortium) had a good effect on each parameter. Giving organic fertilizer without inorganic fertilizer had not affected plant growth on all parameters. Application of a OPEFB compost and a OPEFB + cellulolytic bacterial consortium can reduce the use of inorganic fertilizers by 50%
    corecore