1,850 research outputs found

    Automated data reduction workflows for astronomy

    Full text link
    Data from complex modern astronomical instruments often consist of a large number of different science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. The efficiency of data reduction can be improved by using automatic workflows to organise data and execute the sequence of data reduction steps. To realize such efficiency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Reflex includes novel concepts to increase the efficiency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow engine, the overall design choices and methods can also be applied to other environments for running automated science workflows.Comment: 12 pages, 7 figure

    A systematic approach to the Planck LFI end-to-end test and its application to the DPC Level 1 pipeline

    Full text link
    The Level 1 of the Planck LFI Data Processing Centre (DPC) is devoted to the handling of the scientific and housekeeping telemetry. It is a critical component of the Planck ground segment which has to strictly commit to the project schedule to be ready for the launch and flight operations. In order to guarantee the quality necessary to achieve the objectives of the Planck mission, the design and development of the Level 1 software has followed the ESA Software Engineering Standards. A fundamental step in the software life cycle is the Verification and Validation of the software. The purpose of this work is to show an example of procedures, test development and analysis successfully applied to a key software project of an ESA mission. We present the end-to-end validation tests performed on the Level 1 of the LFI-DPC, by detailing the methods used and the results obtained. Different approaches have been used to test the scientific and housekeeping data processing. Scientific data processing has been tested by injecting signals with known properties directly into the acquisition electronics, in order to generate a test dataset of real telemetry data and reproduce as much as possible nominal conditions. For the HK telemetry processing, validation software have been developed to inject known parameter values into a set of real housekeeping packets and perform a comparison with the corresponding timelines generated by the Level 1. With the proposed validation and verification procedure, where the on-board and ground processing are viewed as a single pipeline, we demonstrated that the scientific and housekeeping processing of the Planck-LFI raw data is correct and meets the project requirements.Comment: 20 pages, 7 figures; this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins

    Efficient illumination independent appearance-based face tracking

    Get PDF
    One of the major challenges that visual tracking algorithms face nowadays is being able to cope with changes in the appearance of the target during tracking. Linear subspace models have been extensively studied and are possibly the most popular way of modelling target appearance. We introduce a linear subspace representation in which the appearance of a face is represented by the addition of two approxi- mately independent linear subspaces modelling facial expressions and illumination respectively. This model is more compact than previous bilinear or multilinear ap- proaches. The independence assumption notably simplifies system training. We only require two image sequences. One facial expression is subject to all possible illumina- tions in one sequence and the face adopts all facial expressions under one particular illumination in the other. This simple model enables us to train the system with no manual intervention. We also revisit the problem of efficiently fitting a linear subspace-based model to a target image and introduce an additive procedure for solving this problem. We prove that Matthews and Baker’s Inverse Compositional Approach makes a smoothness assumption on the subspace basis that is equiva- lent to Hager and Belhumeur’s, which worsens convergence. Our approach differs from Hager and Belhumeur’s additive and Matthews and Baker’s compositional ap- proaches in that we make no smoothness assumptions on the subspace basis. In the experiments conducted we show that the model introduced accurately represents the appearance variations caused by illumination changes and facial expressions. We also verify experimentally that our fitting procedure is more accurate and has better convergence rate than the other related approaches, albeit at the expense of a slight increase in computational cost. Our approach can be used for tracking a human face at standard video frame rates on an average personal computer

    Optimization of Planck/LFI on--board data handling

    Get PDF
    To asses stability against 1/f noise, the Low Frequency Instrument (LFI) onboard the Planck mission will acquire data at a rate much higher than the data rate allowed by its telemetry bandwith of 35.5 kbps. The data are processed by an onboard pipeline, followed onground by a reversing step. This paper illustrates the LFI scientific onboard processing to fit the allowed datarate. This is a lossy process tuned by using a set of 5 parameters Naver, r1, r2, q, O for each of the 44 LFI detectors. The paper quantifies the level of distortion introduced by the onboard processing, EpsilonQ, as a function of these parameters. It describes the method of optimizing the onboard processing chain. The tuning procedure is based on a optimization algorithm applied to unprocessed and uncompressed raw data provided either by simulations, prelaunch tests or data taken from LFI operating in diagnostic mode. All the needed optimization steps are performed by an automated tool, OCA2, which ends with optimized parameters and produces a set of statistical indicators, among them the compression rate Cr and EpsilonQ. For Planck/LFI the requirements are Cr = 2.4 and EpsilonQ <= 10% of the rms of the instrumental white noise. To speedup the process an analytical model is developed that is able to extract most of the relevant information on EpsilonQ and Cr as a function of the signal statistics and the processing parameters. This model will be of interest for the instrument data analysis. The method was applied during ground tests when the instrument was operating in conditions representative of flight. Optimized parameters were obtained and the performance has been verified, the required data rate of 35.5 Kbps has been achieved while keeping EpsilonQ at a level of 3.8% of white noise rms well within the requirements.Comment: 51 pages, 13 fig.s, 3 tables, pdflatex, needs JINST.csl, graphicx, txfonts, rotating; Issue 1.0 10 nov 2009; Sub. to JINST 23Jun09, Accepted 10Nov09, Pub.: 29Dec09; This is a preprint, not the final versio

    Winners and loosers in the European Monetary Union: A neural network analysis of spatial industrial shifts

    Get PDF
    The forthcoming creation of a single European currency area will likely have far reaching impacts on the competitive position of European industries, as a result of a decline in transaction costs and currency risks for intra-European trade. These impacts will take place independent of the question whether the 15 EU countries form an Optimum Currency Area or not. The generally expected gains of trade from an integrated European market may therefore not be Pareto-optimal, as a monetary union may have significant distributional impacts on individual countries and regions. Then there will be winners and losers. This paper addresses the welfare impacts of a single European currency area by investigating industrial changes and shifts in location that may take place after the introduction of the EURO, based on the idea that fixed exchange rated in the EMU will be reflected in a decline in transportation costs and industrial clustering. The empirical analysis uses an extensive data set on industrial production, interest rates and exchange rates in the various European countries. Two policy scenarios are envisaged, with a retrospective (backcasting) scenario on the likely effects of (i) a fixed exchange rate in the past and (ii) a fixed exchange linkage with the US dollar. Next, a neural network analysis is developed to trace for the two above mentioned scenarios the foreseeable and likely welfare effects of a single monetary union. It is concluded that the introduction of the EMU- according to the two past scenarios ? would have worsened for most European countries the industrial competitiveness.

    Real-Time Trigger and online Data Reduction based on Machine Learning Methods for Particle Detector Technology

    Get PDF
    Moderne Teilchenbeschleuniger-Experimente generieren während zur Laufzeit immense Datenmengen. Die gesamte erzeugte Datenmenge abzuspeichern, überschreitet hierbei schnell das verfügbare Budget für die Infrastruktur zur Datenauslese. Dieses Problem wird üblicherweise durch eine Kombination von Trigger- und Datenreduktionsmechanismen adressiert. Beide Mechanismen werden dabei so nahe wie möglich an den Detektoren platziert um die gewünschte Reduktion der ausgehenden Datenraten so frühzeitig wie möglich zu ermöglichen. In solchen Systeme traditionell genutzte Verfahren haben währenddessen ihre Mühe damit eine effiziente Reduktion in modernen Experimenten zu erzielen. Die Gründe dafür liegen zum Teil in den komplexen Verteilungen der auftretenden Untergrund Ereignissen. Diese Situation wird bei der Entwicklung der Detektorauslese durch die vorab unbekannten Eigenschaften des Beschleunigers und Detektors während des Betriebs unter hoher Luminosität verstärkt. Aus diesem Grund wird eine robuste und flexible algorithmische Alternative benötigt, welche von Verfahren aus dem maschinellen Lernen bereitgestellt werden kann. Da solche Trigger- und Datenreduktion-Systeme unter erschwerten Bedingungen wie engem Latenz-Budget, einer großen Anzahl zu nutzender Verbindungen zur Datenübertragung und allgemeinen Echtzeitanforderungen betrieben werden müssen, werden oft FPGAs als technologische Basis für die Umsetzung genutzt. Innerhalb dieser Arbeit wurden mehrere Ansätze auf Basis von FPGAs entwickelt und umgesetzt, welche die vorherrschenden Problemstellungen für das Belle II Experiment adressieren. Diese Ansätze werden über diese Arbeit hinweg vorgestellt und diskutiert werden

    An OpenEaagles Framework Extension for Hardware-in-the-Loop Swarm Simulation

    Get PDF
    Unmanned Aerial Vehicle (UAV) swarm applications, algorithms, and control strategies have experienced steady growth and development over the past 15 years. Yet, to this day, most swarm development efforts have gone untested and thus unimplemented. Cost of aircraft systems, government imposed airspace restrictions, and the lack of adequate modeling and simulation tools are some of the major inhibitors to successful swarm implementation. This thesis examines how the OpenEaagles simulation framework can be extended to bridge this gap. This research aims to utilize Hardware-in-the-Loop (HIL) simulation to provide developers a functional capability to develop and test the behaviors of scalable and modular swarms of autonomous UAVs in simulation with high confidence that these behaviors will prop- agate to real/live ight tests. Demonstrations show the framework enhances and simplifies swarm development through encapsulation, possesses high modularity, pro- vides realistic aircraft modeling, and is capable of simultaneously accommodating four hardware-piloted swarming UAVs during HIL simulation or 64 swarming UAVs during pure simulation
    • …
    corecore