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Abstract

Unmanned Aerial Vehicle (UAV) swarm applications, algorithms, and control

strategies have experienced steady growth and development over the past 15 years.

Yet, to this day, most swarm development efforts have gone untested and thus unim-

plemented. Cost of aircraft systems, government imposed airspace restrictions, and

the lack of adequate modeling and simulation tools are some of the major inhibitors

to successful swarm implementation. This thesis examines how the OpenEaagles

simulation framework can be extended to bridge this gap. This research aims to

utilize Hardware-in-the-Loop (HIL) simulation to provide developers a functional ca-

pability to develop and test the behaviors of scalable and modular swarms of au-

tonomous UAVs in simulation with high confidence that these behaviors will prop-

agate to real/live flight tests. Demonstrations show the framework enhances and

simplifies swarm development through encapsulation, possesses high modularity, pro-

vides realistic aircraft modeling, and is capable of simultaneously accommodating

four hardware-piloted swarming UAVs during HIL simulation or 64 swarming UAVs

during pure simulation.
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AN OPENEAAGLES FRAMEWORK EXTENSION FOR

HARDWARE-IN-THE-LOOP SWARM SIMULATION

I. Introduction

Unmanned Aerial Vehicle (UAV) swarms show promising potential in various ap-

plications such as surveillance and reconnaissance, counter swarm defense, search

and rescue, surrogate communication relay, and rapid geography mapping [43, 48].

Although the use of swarms for such applications is possible in theory, actual imple-

mentation and successful deployment proves costly and highly challenging. In recent

years, modeling and simulation has proven itself to be an important initial phase in

the development process that mitigates cost and sets the foundation for successful

deployment. The need for a simulation environment to test and develop UAV swarms

is paramount to their realization in real-world applications.

Many multi-agent simulation frameworks already exist that could potentially, after

some modification, meet the requirements necessary to model UAV swarm behaviors.

However, many of these require significant source code development and overhaul in

order to simulate only simple aspects of a swarm or a specific swarm scenario. It is

desirable that a swarm simulation framework be complete enough to simulate simple

aspects of a UAV swarm—such as vehicle types, positions, and control inputs—while

providing developers a workspace or “playground” to insert their sensor packages and

swarming algorithms. A framework with built-in reusable and applicable functionality

reduces overhead and upfront workload, allowing developers to concentrate on swarm

development instead of simulation development.

1



Unfortunately, the diversity and complexity of UAV swarms will not allow swarm

developers to circumvent simulation development altogether. It is impossible to create

a general purpose or “one-size-fits-all” solution that accounts for every potential as-

pect of a swarm. Instead, more benefit is gleaned from identifying, categorizing, and

incorporating common patterns, configurations, and constructs as well as widely-

accepted processes, protocols, structures, and architectures that have already proven

successful. Additionally, the framework must implement useful code that will remain

unchanged by users (the swarm developers), while providing extensibility (i.e. can be

extended/overridden). This thesis explores ways to establish such a framework for

UAV swarm development.

In addition, a technique known as hardware-in-the-loop (HIL) enhances simula-

tions by incorporating hardware embedded systems that control actual UAVs. Specif-

ically, the simulation provides sensor information (e.g. position, attitude, velocity) to

the hardware autopilot in exchange for control information (i.e. stick, rudder, throt-

tle) from the autopilot back to the simulation. HIL simulation alleviates the need

to make assumptions about autopilot performance and forces the simulation to ac-

count for timing and bandwidth constrains associated with communication protocols,

firmware implementations, processor speed limitations, and onboard applications in-

tegrated into the autopilot. Incorporating the actual hardware device used aboard

real flights increases confidence that swarms in live flight testing will behave as mod-

eled in simulation. Thus the swarm simulation framework explored in this thesis is

constructed to accommodate HIL.

1.1 Research Objective

Ultimately, the objective of this work is to demonstrate a simulation framework

utilizing HIL that allows developers to develop and test the behaviors of scalable and

2



modular swarms of autonomous UAVs in simulation with high confidence that these

behaviors will propagate to real/live flight tests. This research effort seeks not to

invent a new framework, but instead extend an existing one that will accommodate

swarm behaviors as described above. Specifically, the intent of this effort is not to

develop swarm algorithms, but define a space where swarm developers can develop and

test their own. This thesis leverages existing technologies and research advancements

in the fields of simulation, swarm control theory, visualization (computer graphics),

flight dynamics, serial and link layer communications, and HIL integration.

1.2 Overview

The remainder of this thesis is outlined as follows: Chapter II provides context

for this research effort to include justification for pursuing a swarm simulation frame-

work as well as elicitation of its requirements, relevant design considerations, and

an introduction to the OpenEaagles simulation framework. Chapter III outlines how

OpenEaagles is extended to accommodate swarm behavior development and HIL sim-

ulation. The proposed swarm simulation framework is put to the test in Chapter IV

where a swarm development scenario is used to demonstrate its capabilities and limi-

tations. This chapter reveals that high-rate data translations between simulation and

hardware devices induce a bottleneck to swarm scalability during HIL simulation.

Lastly, Chapter V closes with a final assessment of the swarm simulation framework

and recommendations for future work.

3



II. Background

The design and implementation of any software framework demands a deep un-

derstanding of requirements the software must satisfy. This chapter elicits those

requirements by first examining why a swarm simulation framework is necessary and

what past swarm development efforts have taught us about the common elements of

a swarm. Lastly, current technologies and design considerations relevant to the im-

plementation of a swarm simulation framework—many of which serve as foundational

components of the proposed framework—are discussed followed by the introduction

of the OpenEaagles simulation framework.

2.1 Why UAV Swarms?

If you are reading this paper, you may be asking yourself, “Why are UAV swarms

useful or important?” Unfortunately, the current widespread use of UAV swarms only

exists in the imagination of visionary thinkers of the future, and thus no true measure

of utility has been established. With the development of microcomputers, artificial

intelligence, wireless network communications, and the exploration of autonomous

flight, only recently has technology matured enough to make such visions a reality.

This section attempts to address why swarms are important by exploring opinions and

advice from experts in relevant fields such as disaster relief and military strategy. But

first, what are UAV swarms? As described by the PennWell Aerospace and Defense

Media Group, “UAV swarms are groups of UAVs that work together to accomplish

goals, communicating with each other and assisting other members of the swarm in

tasks” [15]. The general consensus in UAV swarm utility is the ability to do more

with less. That is, require fewer operators to accomplish large and complex missions

cheaper, faster and more efficiently with fewer mistakes.

4



Kumar [23] cites search and rescue as one promising area that swarms would ob-

viously have an advantage over single aerial vehicles. A swarm could autonomously

coordinate and cover more ground faster and with only a single operator. Imagine

dozens of UAVs, combing an area, relaying information not only to the operator,

but amongst each other, coordinating the prevention of duplicate coverage. Swarms

configured to perform search and rescue missions have a greater probability of find-

ing victims than a single aircraft. Additionally, the autonomous coordination of the

UAVs frees the operator to make higher level strategic decisions such as diverting the

swarm (or parts of the swarm) to a higher priority area based on new external intelli-

gence received. This should benefit recovery efforts after natural disasters, ultimately

expediting rescue response time and treatment of victims.

In military applications, swarms could play an integral role in both offensive and

defensive measures during warfare. Scharre [43] argues that large numbers of UAVs

have several potential advantages in combat, including combat dispersion, swarm

resiliency, graceful degradation, and enemy defense saturation. These advantages

are evident when considering swarm attacks on current air defense systems, such

as surface-to-air missile (SAM) sites, which are typically postured to engage only

a few sequential targets at a time. Current SAM sites are not designed to defend

against overwhelming numbers of air vehicles attacking in unison and often rely on

missiles that are equipped with expensive payloads, guidance systems and sensors—

swarms prove economic dominance by drawing out million dollar missiles from the

enemy arsenal for the price of UAVs worth a few thousand dollars. Such factors

grant swarms the advantage in combat. Armed swarming UAVs will be inexpensive

and disposable, providing an economical and more reliable means of defeating enemy

defense systems. Chung [23] suggests that the only army big enough to stop a swarm

is another swarm.
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Besides saving lives during search and rescue operations and destroying enemy

defenses on the battlefield, UAV swarms show promising opportunities in other areas

to enable coordinated actions and effects previously thought impossible. We will only

realize and expand upon the true value of those opportunities once swarming behav-

iors have been developed, tested, and put into practice. The next section explains the

need for simulation as a bridge between the idea of swarms and their implementation

in the real world.

2.2 The Need for a Simulation Framework

Swarm configurations vary widely—from simple and orderly (such as a grid form-

ation) to highly dynamic and seemingly chaotic (such as a flock of UAVs forming

a tight ball and traveling as one while avoiding collisions). To develop and test

such a wide range of swarm configurations, modeling and simulation is necessary.

Bypassing the modeling and simulation phase of the development process is costly.

Live UAV flight testing comes with many associated resource requirements. Some of

these include the inherent cost of the physical components such as the ground station,

vehicle, fuel, and sensor packages.

Additionally, extrinsic factors such as restricted airspace limit live flight testing.

The U.S. has the busiest, most complex airspace in the world [1] and developing and

testing real UAV swarms in this congested domain presents challenges for both the

FAA and aviation community—the cost of which is made evident in the following

example: An 18-month trial testing UAVs for agricultural utility (which concluded

in June 2015) required a variety of small UAVs with price tags ranging anywhere

from $9K to $100K depending on the sensor packages needed as well as an additional

average operating cost of $30 to $50 per hour. Furthermore, the costly and lengthy

government approval process ultimately resulted in tight restrictions where each UAV
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had to remain within line of sight, always below 400 feet AGL, and weigh less than 2

kilograms [14]. This example demonstrates some of the challenges of real UAV flight

testing that are easily mitigated in simulation. Simulating the air vehicles and sensor

packages not only greatly reduces monetary costs, but also opens the exploration of

tests outside the limitations of government imposed restrictions.

Alternatively, system developers turn to modeling and simulation. While some

existing simulators do support UAV swarms to a limited extent, most rely on hefty

assumptions that do not translate well to real flight. Corner [11] provides a survey of

many relevant swarm and network simulators and simulation frameworks. While all

provide isolated modeling of specific UAV swarm aspects such as animated particle

swarming, UAV/target interactions, and statistical simulation of ad-hoc networking

between swarm nodes, none provides an accurate and comprehensive flight simula-

tion environment ready to model a variety of airframes configured with customized

autonomous behaviors. As a result, swarm development continues to flourish only in

theory.

Developers have already proposed swarm-centric solutions for performing missions

such as multi-target detection and localization [3, 12, 33], multi-target tracking [27],

persistent sensing [40], and reconnaissance/surveillance [42]. Some have even shown

how UAV swarms can enable tracking of environmental conditions such as the move-

ment of harmful ocean debris [41] and contaminant cloud boundaries [44]. However,

such swarm behaviors thus far remain unimplemented. A simulation framework ca-

pable of robust and accurate modeling of UAV swarms is necessary to overcome the

above assumptions and challenges. By providing a means to accurately simulate UAV

swarms, swarm developers can initialize, run, and rerun a variety of tests at a frac-

tion of the time and cost of real flight testing without its limitations. Only then can

developers prove or disprove the viability of swarm-centric solutions.
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2.3 Current State of UAV Swarm Simulation

The use of UAV swarms in real-world applications is a relatively new concept.

Only in the past few decades have we toyed with the idea and began dabbling with

its implementation. During that time, many pioneers have tested theory by advanc-

ing control strategies, algorithms, and simulations necessary to make UAV swarms

a reality. Here, we will examine many of those efforts, some of which serve as a

foundation for the proposed swarm simulation framework.

2.3.1 Study of Swarms.

People have studied different aspects of swarms, trying to answer questions like

“How can we control swarms?” and “Of the different swarm control strategies, which

one is the best?” Of course the answer to the latter is, It depends! As seen in Figure 1,

there are a variety of control strategies that could prove more or less suited for dif-

Centralized Coordination 
 

Swarm elements communicate 
with a centralized planner which 
coordinates all tasks. 

Hierarchical Coordination 
 

Swarm elements are controlled by 
“squad” level agents, who are in turn 
controlled by higher-level controllers. 

Coordination by Consensus 
 

All swarm elements communicate to one 
another and use “voting” or auction-based 
methods to converge on a solution. 

Emergent Coordination 
 

Coordination arises naturally by 
individual swarm elements reacting to 
one another, like in animal swarms. 

Figure 1. Swarm Control Models. (Originally presented in [43] and reproduced as an element
of the public domain.)
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ferent scenarios. A swarm using emergent coordination is more resilient during an

attack mission—achieving graceful degradation when taking on enemy fire—than one,

for example, using centralized coordination where the enemy only needs to destroy

the lead UAV to take out the entire swarm. But how do we know if implementing

and applying swarms with emergent coordination to accomplish offensive actions is

feasible? And if it is, will it prove more beneficial than using other means?

Many swarm developers model their algorithms and control strategies in simula-

tion to answer these questions. Some use robust high fidelity simulation environments

while others use simple mathematical models and visualize results using software

like the popular MathWorks R© tool, Matlab. Table 1 shows a list of various swarm

studies that have taken place over the past 15 years. As you can see, a wide variety

of approaches were used to model the algorithms or swarm control strategies stud-

ied. When comparing modeling approaches of these studies, a few notable patterns

emerge. First, simulation complexity is inversely related to the quantity of UAVs sim-

ulated. Simulations with higher complexity modeled fewer UAVs (∼3) while simple

simulations were capable of modeling many more (+30). This makes intuitive sense

since high fidelity modeling requires more processor resources to compute the finer

detailed characteristics of aerodynamics, sensing, and environmental effects. It is also

worth noting that studies using complex modeling relied on foundational tools such

as highly matured flight simulators and simulation frameworks rather than custom

tools built for a specific purpose. By using accurate tools that are widely used and

in constant development by the community, swarm developers gain confidence and

trust that those tools are adequately validating or disproving their hypotheses.

This does not mean all swarm development efforts require such accuracy. Although

many of the studies listed in Table 1 validate hypotheses using only simple models

in conjunction with many assumptions, the results from those studies do provide a
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Cooperative
Control [37]

2002 Both 8 C Y Y N N N Simulink/
MultiUAV

Matlab Plots and
AVDS playback

Wide Area
Search [8]

2002 2D 8 S N Y N N Y Matlab and
Simulink

Matlab

SEAD and
Target ID [20, 21]

2003/5 3D 32 S Y Y N N Y Custom Command Line
Feedback

Target Locating
and Tracking [25]

2005 2D U VS N N N N Y Custom, Java
programming

Rectangular grid
with GUI controls

General Flocking
Algorithms [34]

2006 Both 150 U U U N N Y Unspecified 2D/3D Graphical
Plots

Vehicle Routing
Problem [30]

2007 Both 640 S N Y N N N SPEEDUS Map Overlayed
with Data

Search and
Destroy [32]

2007 2D 65 S Y Y N N N SWARMFARE Script
Visualization

Formation Flight
[19]

2010 3D 3 VC Y N N N N X-Plane/Matlab/
Simulink

3D GUI with
Matlab Scripting

Flocking and
Comm Range [24]

2011 3D 10 S Y N N N Y Unspecified 2D Graphical
Plots

Search and
Attack [9]

2012 2D 50 VS Y Y N N N SWARM
Simulation

2D Map GUI

Swarm-vs-Swarm
[17]

2013 3D 100 C Y Y N N N MASON 3D GUI

Point ISR
Flocking [28]

2014 3D 10 S N Y N N Y Matlab Matlab Plots

Formation Flight
[49]

2014 3D 4 VC Y N N N N FlightGear/
Matlab/Simulink

Matlab Plots and
Flight Sim GUI

Flocking for Drag
Reduction [29]

2014 2D 15 VS N N N N Y Matlab Matlab Plots

VS (Very Simple) - modeling using only discrete/incremental 2D positioning; models typically move in a linear fashion

S (Simple) - modeling using discrete/incremental 2D or 3D positioning

C (Complex) - modeling using mathematical equations for continuous 3D positioning, accounting for the six degrees of freedom

VC (Very Complex) - using fully functional flight dynamics models, accounting for aerodynamics and environmental effects such as
gravity and weather conditions

U (Unspecified) - no functionality/attribute specified

10



wealth of knowledge. However, when moving from simulation to real-world flight test-

ing, comprehensive and accurate simulations are necessary. For example, Hexmoor [25]

explores how a bidding process can enable coordinated multi-target tracking. The

developers in this study follow a detailed experiment to test theory in simulation.

However, the simulated environment consists of small shapes of different colors and

sizes (representing the UAVs and targets) that move with only two degrees of free-

dom (i.e. vertically and horizontally) across a small rectangular grid. The study does

produce some meaningful conclusions about the bidding process, but is hardly a test

of how the process will translate to a real swarm of UAVs.

Another notable observation is that of all the studies, half relied on custom built

simulators and only two did not use an existing framework or tool set as a foundation

for the modeling environment. Also notice that almost half of the simulations re-

lied exclusively on Matlab/Simulink for data generation and/or interpretation. This

indicates the need for common simulation tools that are accurate and easy to use.

Swarm developers are less likely to explore certain swarm behaviors if there are no

tools available to test their theories or the tools are too complicated to use. Also,

custom-built tools often rely on simple designs and too many assumptions to reach

valid conclusions about swarm control algorithms/strategies under observation. A

swarm simulation framework should serve as a common tool that is easy enough

to extend and implement custom scenarios, but accurate enough to provide useful

results.

Lastly, note that none of the studies implemented hardware-in-the-loop (HIL) or

swarm ground control station (GCS) functionality, which reflects the current state of

UAV swarm research. That is, current swarm control algorithms and strategy are not

yet mature enough to warrant testing of such advanced functional swarm components.
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Nonetheless, as discussed in later sections, implementing these are largely beneficial

when transitioning from theory to actual UAV swarm flight testing.

2.3.2 Essential Simulation Components.

Studies in Table 1 represent the current approaches to simulating UAV swarms.

Each study addresses a specific aspect of swarm behavior development, but does not

provide a comprehensive solution capable of translating directly to real-world behav-

iors. The objective of this thesis is to propose a framework design that accommodates

HIL simulation in addition to all components necessary for accurately modeling UAV

swarms—thus providing a comprehensive solution. This section outlines three essen-

tial simulation components (entities, subsystems, and views) that are common to all

swarm simulations while the next section introduces technologies developed in the

hobbyist community that make up the remaining components necessary to enable

accurate HIL simulation of swarms.

Entities. The first simulation components evident among all swarm simulations

are software defined entities. Many of the swarm studies in Table 1 simulate not

only UAVs, but also external players and targets. For example, Gaerther’s study [17]

requires a distinction between allied and enemy UAVs to show how two separate

swarms will interact with each other. In this case, two different entity types (i.e. allied

and enemy UAVs) are required. Additionally, many of the scenarios require target

entities. Software defined entities enable the modeling of various “players” that are

critical to swarm development in simulation.

Systems and Subsystems. All scenarios modeled in Table 1 indicate that

swarming UAV entities (potentially non-UAV entities as well) must interact with

their environment and each other. Modeling corresponding sensory and communi-

cation functions in simulation necessitates the incorporation of entity systems and
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Figure 2. Example UAV Hardware Architecture. A UAV is comprised of many subsystems;
in simulation, developers should have the ability to model these as needed. (Originally presented in
[47] and reproduced as an element of the public domain.)

subsystems. The example UAV hardware architecture depicted in Figure 2 supports

this claim by showing real UAV systems and subsystems, such as onboard sensors and

communication interfaces that collect and exchange information with operators and

other UAVs. Sensors, such as Global Positioning System (GPS) receivers, cameras,

and inertial measurement units (IMUs) capture external input (e.g. position, speed,

imagery, attitude, etc.) necessary for the autonomous decision making that is inherent

with swarm behaviors. This sensory information is then processed and transmitted

not only over communication links to operators on the ground and other UAVs,

but also to other components onboard the UAV. Since information gathering and

dissemination is the primary objective of most UAV missions [13], these systems and

subsystems are vital to both real and simulated UAV operations.

Views. Another important simulation component evident in all swarm scenarios

is a view or visual interface to the simulation. Simulation data is difficult to interpret
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without a means to visualize and interact with it. For example, it is much easier

and intuitive to detect when an aircraft is performing a specific maneuver (e.g. nose-

high stall or barrel roll) by observing its motion in 3D space rather than analyzing

a table of time, position, velocity, and attitude measurements. At a minimum, a

visual interface to the simulation must be capable of receiving simulation data and

translating it to a meaningful visual representation of the swarm. Some useful as-

pects of visually representing a swarm are rendering of the UAVs in 3D space as

well as recording and speed-controlled playback. 3D rendering should include the

ability to pan, tilt, zoom, and rotate views around the swarm or individual UAVs

in the swarm. Some visualization frameworks provide “fly by” and “follow” views

which enhance simulation analysis. Other information that the view should readily

visualize are individual aircraft state parameters (e.g. altitude, speed, roll/pitch/yaw

angles), flight paths (i.e. contrails behind UAVs showing position at previous times),

and UAV relationships (e.g. separation and altitude differences between UAVs). To

address these requirements, the swarm simulation framework should accommodate

many different views.

2.3.3 Hobbyist Community.

Many drone hobbyists find UAVs fun and exciting to “play with” in their spare

time. They share what they have tried on blogs and other public forums, helping

each other solve drone related problems. DIY Drones (http://diydrones.com/) is a

prime example of such public forum in which amateurs from all over the world come

together to share their custom UAV designs. This open source community provides

a wealth of knowledge and experience derived from a vast pool of collective efforts,

testing new ideas through trial and error. Through such efforts, many useful tools

and techniques have emerged that are relevant to swarm simulation.
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The community has produced remote control (RC) aircraft, GCS software, auto-

pilot hardware/firmware, high-throughput/low-overhead communication protocols,

and flight simulators that, when used together, provide a variety of capabilities.

Table 2 lists some of the tools available in the hobbyist community today.

Table 2. Hobbyist Community Tools

Type Tools

RC Aircraft
with FDM

HiLStar17F/EasyStar, Zagi flying wing, Sig Rascal 110,
Viper X-10, Multiplex TwinJet, Early Bird glider

Ground Control
Station

MAVProxy, QGroundControl, Mission Planner, APM Planner

Autopilot OpenPilot, FlexiPilot, ArduPilotMega, SLUGS, Pixhawk/PX4,
MatrixPilot/UAVDevBoard, SMACCMPilot, Armazila, Aerob

Communication
Protocol

MAVLink, UAVCAN

Flight
Simulator

XPlane, FlightGear, Microsoft Flight Simulator, GEFS Online,
AeroSimRC, JSBSim

Airframe. Table 2 lists a small sampling of aircraft available for swarm develop-

ment. However, there are a plethora of airframes in various sizes and configurations

both in the hobbyist community and US Department of Defense that could poten-

tially integrate into UAV swarms (Figure 3). One challenge when simulating such

UAVs is implementing accurate flight dynamics models (FDM). The FDM used in

this thesis is the open source JSBSim software library which is the same FDM used

in FlightGear. It has been in constant development by professionals in the fields

of aerospace and software engineering since 1996 [5] and relies on aircraft definition

files for valid flight characteristic data. The Sig Rascal 110 aircraft model—which

has been in widespread use and development in the hobbyist community for nearly

4 years—serves as the airframe used to demonstrate the proposed swarm simulation

framework.

Autopilot. As defined by the American Heritage Dictionary, “an autopilot is

a navigation mechanism, as on an aircraft, that automatically maintains a preset
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Figure 3. Diverse Airframes. Small UAVs come in a large variety of shapes, sizes, and config-
urations. The airframe used in this thesis is the Sig Rascal 110 ARF seen in the top row, second
from the left.

course” [36]. In the context of small UAVs, the autopilot does much more. Fulfilling

the flight management system (FMS) responsibilities, the autopilot serves as the

brain of the UAV and provides supervisory control over other subsystem components.

UAV autopilots translate sensor data into output signals that drive the throttle and

servos connected to the control surfaces of the UAV, ultimately controlling airspeed,

altitude, and heading [39]. Most UAV autopilots provide a minimum of altitude,

direction, and position (loiter) hold while some provide the additional functionality

of waypoint (i.e. point-to-point) navigation. The autopilot is a critical component of

UAVs within a swarm, as it provides stable flight and the ability to navigate. The

PX4 flight stack—a Pixhawk autopilot firmware implementation with many onboard

applications—is one of many autopilots used in the hobbyist community today and

is used in this thesis to demonstrate HIL simulation.
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HIL Simulation. Hardware-in-the-Loop is a form of real-time simulation with

the addition of a real component in the loop [22] which allows developers to test

the performance of real hardware and collect data without taking the risk of loosing

any real vehicles [7]. This is important when developing resource intensive swarming

behaviors because simulated components can perform very different to the actual

components due to any assumptions made about the hardware. By integrating the

hardware device into the simulation, the physical component will provide the most

realistic feedback. Additionally, since the hardware embedded system runs in real-

time, the simulation, when utilizing HIL, must also run in real time.

HIL simulation is used profusely through the hobbyist community. This method

not only provides hobbyists the ability to practice flight maneuvers with the real

hardware autopilot without the risk of crashing the actual UAV, but also allows them

to fine-tune autopilot parameters before installing the hardware on an aircraft. The

general setup for flying a UAV in the hobbyist community is as follows. An operator

uses a radio controller in conjunction with GCS software to communicate with an air

vehicle’s autopilot over a communication protocol like MAVLink—a high through-

put low-overhead protocol used for communicating with small unmanned vehicles. In

manual mode, the operator may provide manual inputs for absolute control over the

UAV or switch to another mode, allowing the autopilot to provide partially or fully

automated flight; namely, stable flight and point-to-point navigation. HIL simulation

replaces the actual UAV with a simulated model. Using this technique, the GCS typ-

ically serves as the HIL interface, pulling modeled UAV data (e.g. altitude, attitude,

speed, etc) from simulation and sending it to the hardware autopilot in a format

the autopilot can understand. In turn, the GCS routes autopilot generated control

signals back to the simulation (Figure 4). A major objective of this research effort

is to extend this HIL system development approach to support the development of
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Figure 4. Hardware-in-the-Loop. The setup on the left shows how small UAVs are typically
controlled in the hobbyist community—an operator provides manual RC inputs while passing com-
mands and updating parameters via GCS (both over radio). On the right, the operator controls the
simulated vehicle in the same manner. However, the embedded system (i.e. hardware autopilot)
communicates with the simulator over a serial/USB connection, with the GCS acting as an interface
between the two.

swarm behaviors in simulation that are more likely to transition to real world flight

tests with high confidence.

Ground Control Station. A ground control station (GCS) is an interface that

provides human operators control of unmanned vehicles in the air or in space. The

traditional role of GCSs in UAV operations (especially in the hobbyist community)

involves updating UAV autopilot parameters and waypoints while displaying teleme-

try data received from the UAV [16]. As previously mentioned, GCS software used in

the hobbyist community, such as QGroundControl and Mission Planner, also serves

as a HIL interface. FlightGear (flight simulator) and QGroundControl are both open

source software packages and are used in this thesis to test and develop a hardware

interface to the Pixhawk autopilot for HIL simulation in the swarm simulation frame-

work.
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2.3.4 Simulation-Chaining.

The architecture of existing flight simulation software could enable a scalable

swarm simulation solution called simulation-chaining. XPlane and FlightGear are

both flight simulators that already provide realistic flight dynamics modeling of var-

ious aircraft types, integrate HIL with existing hardware autopilot flight stacks, and

provide network interfacing for simulation input/output (I/O). Simulation-chaining

is a term defined here as the integration of multiple flight simulator instances over

a network and is described here to point out an alternative approach to providing

HIL simulation of UAV swarms and the challenges encountered during its implemen-

tation that necessitated the exploration of extending the OpenEaagles simulation

framework.

The design of simulation-chaining is simple: install existing flight simulation soft-

ware on two or more computers and add a swarm interface to each, allowing them

to communicate across a network (Figure 5). As long as the simulation environment

and coordinate system is the same across all flight simulators, individual UAVs can

project neighboring UAVs into their environment after receiving information about

them over the network. A script could initialize swarm scenarios while a separate tool

intercepts/stores/interprets the network traffic (i.e. swarm data) for visualization of

the UAVs swarming together. This design requires no further development of flight

simulation. Flight simulators such as XPlane and FlightGear allow custom vehicle

models, contributing to airframe modularity. They also provide interactive views,

though only of a single aircraft, which could prove useful when studying the behavior

of each swarming UAV individually. Autopilot HIL implementation is accomplished

through 3rd-party GCS software which could integrate into the swarm interface.

To evaluate the feasibility of this solution, a simple application was built to

interface multiple instances of FlightGear 3.4.0 (simulating a Sig Rascal 110) and
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Figure 5. Simulation-Chaining. Each computer runs a unique instance of the simulation,
broadcasting its UAV’s simulated telemetry data over a network while simultaneously receiving and
processing the telemetry from other simulations.

QGroundControl v2.3.0 over a network. The first challenge in designing the swarm

interface was to extract telemetry data from the simulation. An option in Flight-

Gear enabled an output stream of UDP packets containing user specified informa-

tion about the simulation. This allowed the swarm interfaces to recognize neighbor-

ing UAVs. Hardware autopilots (Pixhawks) were connected to the simulators via

QGroundControl to enable HIL. In this setup, sets of waypoints programmed into

the Pixhawk autopilots provided path planning information (in lieu of actual swarm

behavior) which the Pixhawks used to navigate the simulated UAVs. After success-

fully sim-chaining two simulators together, this setup (Figure 6) successfully enabled

two UAVs to recognize each other as if they were flying together in the same virtual

environment.

This design accurately models flight dynamics, accommodates HIL, enables inter-

actions among multiple UAVs, and provides a visual interface of the swarm. However,

it has a few inherent design flaws. First, the developer must manage each flight simu-

lator instance. This becomes a difficult task when modeling larger numbers of UAVs,

especially when initializing complex swarm configurations, resulting in low usability.

Also, the implementation of UAV subsystem functionality (e.g. communication and
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Figure 6. Simulation-Chaining using FlightGear. Two simultaneously executing instances
of FlightGear broadcast simulation state via UDP packets. After intercepting these packets, the
swarm interface of each instance is able to project its neighboring UAV into its environment as if
they are flying together.

sensor systems) must reside in the swarm interface which does not translate grace-

fully to real aircraft implementation. Lastly, this design does not accommodate the

simulation of targets as required in many of the swarm scenarios listed in Table 1.

Although simulation-chaining exhibits high potential in many areas, experimentation

revealed significant pitfalls necessitating the exploration of an alternative design.

2.4 Quality Attributes

As with any software architecture or design, it is important to explore the rele-

vant software quality attributes. This section focuses on four specific attributes that

enhance and promote swarm development: modularity, reusability, usability, and

scalability.
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During the development process, swarm developers must be able to add, modify,

and remove swarm components easily without adversely impacting other parts of the

simulation. Therefore, high modularity—which is the quality of a system consisting

of various parts that separate cleanly and fit together well [35]—should be present

throughout the framework. A modular design simplifies testing of various swarm

configurations and scenarios, to include different combinations of targets, air vehicles,

swarm algorithms, autopilots, and other systems/subsystems.

To enable productive development and compliment framework modularity, swarm

simulation components should be reusable. Reusability defines the capability for com-

ponents and subsystems to be suitable for use in other applications and in other sce-

narios. Reusability minimizes the duplication of components and also the implemen-

tation time [45]. This quality attribute is important because it promotes developing

swarm behaviors over building tools (that enable modeling of swarm behaviors) that

may already exist. If custom tools, designs, or documentation are necessary to model

a swarm scenario, reusability should be considered to prevent future duplication of

work.

In addition to reusability and as required in any software framework, the swarm

simulation framework should also exhibit high usability , which defines how well the

framework meets the requirements of the developer by being intuitive, resulting in a

good overall user experience [45]. As seen in the simulation-chaining example from

the previous section, if developers find the simulation framework difficult to use or

administer, they will abandon it for a more user-friendly alternative. The proposed

framework provided tools should be easy to understand and use such that the cost of

learning the tools is less than that of pursuing other framework solutions.

Lastly, the framework should be scalable in order to accommodate various swarm

sizes and complexities. Scalability is the ability of a system to either handle increases
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in load without impact on the performance of the system, or the ability to be readily

enlarged [45]. The inherent nature of UAV swarms (i.e. strength in numbers) requires

high scalablity, since low scalability limits what developers can test and experiment

with. For example, how does a developer know how a swarm of 200 UAVs will behave

if the simulation only has a capacity to model two?

2.5 OpenEaagles

Thus far, we have seen previous approaches, common and essential elements,

technologies, techniques, and relevant considerations of simulating UAV swarms. This

section introduces the OpenEaagles simulation framework, which this thesis extends

to address swarm simulation requirements. The description below, found on the

OpenEaagles homepage (www.openeaagles.org), summarizes some key distinctions

that make OpenEaagles a prime candidate framework foundation:

OpenEaagles is a multi-platform simulation framework targeted to help
simulation engineers and software developers rapidly prototype and build
robust, scalable, virtual, constructive, stand-alone, and distributed sim-
ulation applications... OpenEaagles is an acronym that stands for the
Open Extensible Architecture for the Analysis and Generation of Linked
Simulations. It is a mature software framework as it has been in active
development for over a decade. [26]

Additionally, the framework has a modular architecture, enables easy initializa-

tion and configuration of simulations that interface with a mature and trusted FDM

(JSBSim, the same FDM used in FlightGear), and offers built-in functionalities that

promote the configuration of swarms for behavior modeling.

2.5.1 Model View Controller Design Pattern.

OpenEaagles is an object oriented framework, written in C++, and follows the

Model View Controller (MVC) design pattern. Each simulation instance is composed

23

www.openeaagles.org


Station

Simulation

System

Player

TENAHLADIS

Network I/O

Graphics

Device I/O

Controls & Displays
Interface

Real-time
Functions

Environments

Cycles, Frames
Phases

Simulation Time

*

*

1

*

*

*

Figure 7. OpenEaagles Design Pattern [26]. OpenEaagles follows the Model View Controller
(MVC) design pattern. The tree of Players and Systems on the right provides the model, the
Graphics and I/O objects on the left provide view(s), and the Station and Simulation both serve
as controllers.

of various objects in a tree data structure (Figure 7). The model comprises Player and

System objects, a variety of optional graphics and I/O interfaces provides customized

view(s), and a Station object sits at the root of the tree and interfaces with the

Simulation object to fulfill simulation controller functions.

Model. Each simulation instance has one Simulation object. The Simulation has

Players, and Players have Systems. Players represent the entities modeled (e.g. UAVs

and targets) while the Systems represent devices, utilities, and tools (e.g. radios,

dynamics models, sensors) used by the entities. Developers can subclass each Player

and System class for customization. Figure 8 shows some UAV systems relevant

to swarms and how they can be subclassed in OpenEaagles. This simple design,

using both inheritance and polymorphism, allows for modeling of unlimited swarm

configurations.
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Figure 8. UAV System Hierarchy. UAV systems and subsystems can be grouped by func-
tional role (circled beneath). In OpenEaagles, these systems are implemented with parent/child
relationships using inheritance to provide benefits such as scalability and code reusability.

Furthermore, each System has a method called getOwnship which returns a pointer

to the owning Player. Players have the method getSimulation and Simulations have

the method getStation. Since the Station object has access to the entire tree and each

object can reach back to the Station, any object can access any other object directly.

This gives Players and Systems the ability to interact with each other.

View. To view simulation data, OpenEaagles includes a graphics package that

leverages OpenGL. With this, developers can design and implement custom views

showing various information about Player(s) such as their attitude, airspeed, fuel con-

sumption, location on a map, or a visual of surrounding terrain. The framework also

contains packages that enable networking over distributed simulation architectures

such as Distributed Interactive Simulation (DIS), High-Level Architecture (HLA),

and Test and Training Enabling Architecture (TENA). These packages meet a wide

range of custom visualization requirements without the overhead of developing custom

tools.

Controller. As mentioned previously, the Station and Simulation objects pro-

vide simulation control. The Station interfaces with devices, graphics, and network
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objects and provides control over refresh rates, priorities, and thread stack sizes. The

Simulation controls simulation specific parameters (e.g. reference points, time of day,

Earth models, etc.) and provides thread management over both time-critical and

non-time-critical tasks. Specifically, the Simulation object allows developers to spec-

ify the number of time-critical and background threads which are assigned Players

in round-robin fashion such that each thread processes a subset of Players. Time-

critical thread(s) are reserved for performing tasks that must remain synchronized

with real-time while the non-time-critical thread(s) allow other tasks to run in the

background without blocking or interfering with time-critical tasks. The distinction

between the two is especially important when modeling in real-time, such as when

hardware autopilots are used in HIL simulation. Because the hardware autopilots

execute in real-time, the simulation must also execute in real-time to provide corre-

sponding simulation data in sync with the real-time control signals received from the

autopilot. Additionally, multithreading in OpenEaagles can be useful when simulating

large numbers of Players because threads are distributed across multiple CPU cores

(if present) and process Player tasks concurrently. However, such parallel processing

does require overhead that is less advantageous when modeling fewer Players.

2.5.2 Base Classes.

At the foundation of OpenEaagles are its base classes (Figure 9). All objects are

of type Object which contains the methods ref and unref used for memory manage-

ment. Each Component object may hold other components (i.e. subcomponents)

in a PairStream list. Each OpenEaagles tree data structure takes advantage of this

component/subcomponent relationship, giving the framework its scalability. The tree

is updated via updateTC and updateData methods, corresponding to the previously

mentioned time-critical and non-time-critical threads respectively. Specifically, these
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Figure 9. OpenEaagles Base Classes [26]. All objects in OpenEaagles are of type Object.
Some objects are also Component objects which hold a PairStream of other components, enabling
a tree structure of subcomponents.

update methods are called upon at the root of the simulation tree. The root’s update

methods in turn call upon corresponding update methods of any subcomponents,

which subsequently calls the update methods of their subcomponents until the entire

tree has been updated. Updates reoccur at the specified refresh rate.

Simulation synchronization is accomplished through the use of frames. A frame in

OpenEaagles is defined as the period in which all updateTC methods in the simulation

tree are called. Time-critical tasks from a single frame must not begin until after

the completion of all time-critical tasks from the previous frame. Additionally, the

minimum duration of each frame is defined by the specified frame rate (e.g. 20 ms

assuming a 50 Hz refresh rate).

2.5.3 Eaagles Definition Language.

In addition to understanding the basic building blocks and structure of OpenEaagles,

its use requires familiarity with the Eaagles Definition Language (EDL) which is used

to initialize and configure each simulation and gives users complete control over the
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Figure 10. Example EPP File. This simple text file provides developers the ability to specify
reusable swarm configurations. This particular definition includes network settings imported from
the networkSetup.epp file using the “#include” syntax and defines a simulation with a single player
entity—an Aircraft of type F-16A.

initial size, configuration, and state of the simulation tree as well as its refresh rate.

EDL files allow developers to dynamically customize the initial simulation state. With

a simple plaintext file, users can define objects and their corresponding attributes.

This includes the relationship between components and subcomponents. Developers

can either define objects and/or attributes directly in the EDL file, or decompose

configurations into Eaagles Pre-Processed (EPP) subfiles—a makeEdl batch script

in turn merges the EPP files together into a single EDL file. This decomposition

technique is powerful in that it allows reuse of configuration settings.

The example EPP file shown in Figure 10 demonstrates how a simulation tree

is defined. This particular tree, after OpenEaagles parses it, will hold three top

level objects: a Station, Simulation, and Aircraft. As you can see, a number of

attributes and initial conditions are also defined, such as the origin of the simulation

(37.0◦N, -116.0◦W) as well as the player’s ID (101), aircraft type (F-16A), initial

offset from the origin, etc. Network configurations are defined in a separate EPP file,
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namely networkSetup.epp found in the io directory. As seen in this example, using the

#include syntax enables reusability—“write once, use many”. For a comprehensive

description of the Eaagles Definition Language, see Basic Package Classes Slides

under the Documentation section of the OpenEaagles website [26].

2.5.4 Main Methods.

The strength of OpenEaagles comes from its existing building blocks. With

the exception of the Main class, a fully operational multi-agent flight simulation in

OpenEaagles requires no additional source code. Existing player, dynamics model,

and system classes provide everything a developer needs to build complex large-scale

models of UAV formations. However, the Main class requires the implementation

of three specific methods before it can translate EDL files into simulation trees and

update them at specified refresh rates. Developers must implement the createObj,

builder, and main methods before executing any simulation. Figure 11 shows the

parsing process used by these methods.

The createObj method takes in, as a parameter, a character string. If the string

matches the name of one of the defined objects, this method creates an instance of

that object and returns it to the parser. In turn, the parse applies any attributes

specified in the EDL file using “slots” defined in the object’s class. The createObj

method enables fine control over which objects are available for parsing and how the

parser will instantiate them.

Next, developers must implement the builder method by passing the createObj

method as well as the EDL file name to the parser. A pointer to the Station object

of the simulation tree is returned by the parse which the builder method passes to

the main method. Lastly, developers must implement the main method such that it

iterates simulation updates as needed. For HIL simulation, this method must execute
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Figure 11. Eaagles Definition Language Parsing. 1) A batch script converts Eaagles Prepro-
cessed (.epp) files into a single Eaagles Definition Language (.edl) file. 2) The builder method in the
Main class calls upon the lcParser method by passing it the file name of the .edl file as well as the
createObj method from the Factory class as parameters. 3) In turn, the Parser uses the createObj
method to convert the .edl file into a simulation parse tree. A pointer to the root of this tree is
returned to the main method for simulation execution.

in real-time, providing periodic updates in sync with the system clock time and at a

refresh rate matching that which is required by the hardware embedded system. The

implemented logic in the main method should account for waits or delays necessary

to align “simulation time” with “real-time”.

2.5.5 Extending Built-in Functionality.

OpenEaagles contains many packages with built-in functionality that already

satisfies a variety of swarm simulation requirements (Figure 12). By extending these

packages, developers can implement custom vehicles, sensors, flight dynamics, and

autopilots. For example, a developer could subclass the already existing AirVehicle

class into an UnmannedAirVehicle class that contains subsystems specific to auto-

nomous aircraft. This grants great flexibility in modeled different swarm configura-

tions.
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Figure 12. OpenEaagles Package Hierarchy. Packages with a white/clear background indicate
the use of 3rd party open source tools. (Originally presented in [26] and reproduced as an element
of the public domain.)

Three classes within these packages that are specifically relevant to swarm develop-

ment efforts include the AirVehicle, Pilot, and AerodynamicsModel . The AirVehicle

is a subclass of type Player that holds subsystems. Again, developers can extend it

to a UAV subclass, implementing functionality specific to UAVs in a swarm. The

Pilot is a generic object that provides control (e.g. throttle position) over a Player

object. In the context of swarm modeling, the Pilot can be extended to an Autopi-

lot subclass, implementing controls specific to the control surfaces of the modeled

aircraft. The AerodynamicsModel is the AirVehicle System that provides the air-

craft its flight characteristics. In other words, the AerodynamicsModel defines what

“kind” of aircraft the AirVehicle will model. By extending the AerodynamicsModel,

developers can use built-in, 3rd-party, or custom FDMs. OpenEaagles already con-

tains a JSBSim interface, called JSBSimModel, that extends the AerodynamicsModel

class. Since JSBSim provides realistic flight modeling, Players that use this FDM will

inherit such realistic flight behavior.
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2.6 Summary

UAV swarms show tremendous potential. To realize this potential, swarm develop-

ers need a tool that allows them to accurately model and test their swarm theories, al-

gorithms and control strategies using hardware-in-the-loop. Although previous swarm

simulation approaches fell short of satisfying such need, commonalities among them

revealed essential simulation components necessary for any swarm simulation frame-

work. Additionally, many tools and techniques developed in the hobbyist community

prove highly relevant to the design of a successful swarm simulation framework. An

implementation of simulation-chaining showed one approach that applies tools from

the hobbyist community toward simulating swarms, but was found to be fraught

with inherent design flaws which resulted in poor usability and modularity. Finally,

OpenEaagles was introduced as a modular and scalable solution which is extended to

create the HIL capable swarm simulation framework introduced next.
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III. Framework Design and Analysis

The OpenEaagles simulation framework was chosen for this effort because of how

well it met requirements explored in the previous chapter. Those requirements con-

tinue to guide an extension of OpenEaagles here to accommodate the simulation of

swarms using hardware-in-the-loop (HIL). This chapter is organized as follows. First,

a swarm simulation component serving as the sandbox for swarm development is

defined. Next, the OpenEaagles extension (i.e. proposed swarm simulation frame-

work) is described. Lastly, the framework assessments portion outlines assumptions,

limitations, and intended measures of framework demonstrations, followed by the

scenario use in the demonstrations.

3.1 Swarm Algorithm Placement

Before extending OpenEaagles to enable swarm behaviors, the space for swarm

algorithm placement must be defined. Should swarm algorithms be integrated into

existing UAV systems or confined to a standalone component that interfaces with

such systems? This section first defines a functionally isolated unit that encapsulates

swarm algorithms, then argues where this unit should reside.

Onboard Control Agent. During a traditional UAV mission, a ground control

station provides operators the ability to pass path planning information to the auto-

pilot which directs it where to fly (Figure 13). However, the nature of swarming UAVs

requires autonomous path planning without operator input—individual UAVs must

act autonomously. This is possible when each UAV has an intelligent agent onboard

for independent decision making (i.e. without external intervention). Agents are

considered intelligent and capable of autonomous behavior if they are proactive (goal-

directed behavior), reactive (respond to change), and have social abilities (interact
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Figure 13. UAV Mission Overview. This graphic depicts a typical UAV mission where a
GCS (shown here as Mission Control) communicates mission parameters and guidance information
to UAVs in the field while in return receiving sensor information captured during the mission.
(Originally presented in [10] and reproduced as an element of the public domain.)

with other agents) [46]. The term Onboard Control Agent (OCA) is used in this

thesis to refer to the functional component that provides such capability.

To implement swarm behavior in both simulation and real aircraft, the OCA must

have a thread to execute on, access to data necessary for autonomous decision making,

and the ability to provide the autopilot with path planning information. To satisfy

these requirements, only two locations make sense. The OCA may reside within the

autopilot integrated with the flight management system (FMS) or external to the

autopilot as a standalone component. Considering the differences between these two

approaches is especially important when implementing a hardware-in-the-loop (HIL)

simulation framework.

Integrated OCA. Since the autopilot already has access to sensor data and is

capable of executing code, it serves as a natural first choice for swarm algorithm

placement. Furthermore, with the OCA and autopilot integrated, path planning

information is generated and communicated internally, thus providing some inherent

benefits.

First, the autopilot and OCA often require similar outer-loop sensory information

to perform their corresponding functional roles. Integrating them together in the
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same component (i.e. software class) simplifies data management and obviates du-

plicate information shared between two separate components. By integrating them

together, the OCA can interact with the autopilot FMS by calling upon attributes

and methods directly, instead of implementing interfaces between separate compo-

nents. Additionally, this approach simplifies the transition from HIL simulation to

real flight testing because the OCA already resides in the autopilot hardware and

does not require implementation on a separate hardware device.

Unfortunately, from a software development perspective, these benefits come with

significant drawbacks. Co-locating the autopilot and OCA induces tight coupling

between the two which reduces modularity—for example, swapping to a different

autopilot design or platform would require an OCA implementation specific to the

new autopilot. Furthermore, integrating OCA functionality into the autopilot requires

high understanding/familiarity of autopilot implementation details. Instead of simply

interfacing with an autopilot (i.e. passing it waypoints in exchange for controlled flight

through those waypoints), developers must modify the autopilot code base or firmware

(for HIL) to house the OCA without impacting FMS functionality.

In addition to these implementation specific shortfalls, another setback to such

an integrated approach involves resource utilization. The CPU(s) of an autopilot

is a finite resource already dedicated to specific tasks (e.g. providing stable flight

and point-to-point navigation). When sharing a processor, the autopilot and OCA

must compete for execution time. Computationally heavy swarm algorithms may

consume enough CPU cycles to starve or disrupt autopilot FMS execution, thus

risking forfeiture of stable flight.

Standalone OCA. An alternative approach is to separate OCA functionality

into its own component. This approach alleviates the drawbacks of the integrated

approach because the autopilot and OCA are separate components that no longer
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compete for the same CPU cycles. Such an approach requires that we encapsulate

functionality between the two components, thus increasing modularity. With only

a simple interface, various OCA implementations can pair with different autopilots

without requiring significant changes—developers can now add swarm algorithms

without impacting FMS execution or learning complex autopilot implementation de-

tails.

While some trade-offs are made for these advantages, they are relatively minor.

Consider a HIL simulation where the OCA is implemented on a dedicated hardware

device, such as a Raspberry Pi. Combining the autopilot with such an OCA would

require the implementation of an interface or communication protocol between the

two. Fortunately, many low-overhead high-throughput protocols currently exist that

would satisfy this requirement. Ultimately, this modular approach is adopted as the

approach presented in this work.

3.2 Communication Flow

Thus far, we have established three specific simulated UAV systems required for

swarm development: flight dynamics models (FDM) to define UAV flight character-

istics and motion through the simulated environment, autopilots for stable flight and

navigation, and OCAs for swarm algorithm encapsulation. Additionally, the visual

interface to the simulation must have access to aircraft information generated by the

FDMs to provide a 3D view of swarm behaviors. Determining the flow of information

between these simulation components helps define how they will fit together in the

framework structure.

The functional roles of these four simulation components dictate how they will

interact and what information they will share. The OCA has the primary role of

autonomous decision making and path planning—based on its reactivity, proactivity,
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Figure 14. Communication Diagram of Swarm Simulation Components. Swarm behavior
originates in the OCAs and manifests as path planning information derived from measurement data
processed by swarm algorithms. Autopilots translate the path information from the OCAs and
measurement data received from the FDMs into flight control signals, forming a feedback loop.
Simulation views are subsequently generated by interpreting measurement data from the FDMs.
Note that each OCA requires measurement data from multiple FDMs to accommodate its social
abilities.

and social ability—which requires an input of sensor and communication data. The

role of the autopilot is to provide flight control signals to the aircraft for stable flight

and navigation, which requires path planning information and a feedback loop of

aircraft measurement data. The role of the FDM is to model aircraft measurement

data as time progresses and flight control signals are received. Lastly, the visual

interface to the simulation requires aircraft measurement data. Matching the required

component inputs to corresponding outputs results in the feedback loops and flow

of information necessary for swarm behavior modeling. This communications flow,

summarized in Figure 14, is implemented in the swarm simulation framework design.

3.3 Extending OpenEaagles

Recall from the previous chapter how OpenEaagles enables scalable and modular

multi-entity simulations. This section describes the extensions required to enable

swarm behavior modeling and HIL simulation.
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3.3.1 Enabling Swarm Behaviors.

As previously described, the autopilot provides stable flight and point-to-point

navigation while the OCA provides autonomous decision making. But how do they

work together to enable swarm behaviors? Within a swarm, the OCA embedded in

each simulated UAV intelligently performs path planning “on the fly.” This means

the destination path of the UAV is constantly changing based on the proactivity, reac-

tivity, and social abilities of the OCA. The medium for communicating this dynamic

path information to the autopilot are pointing vectors, which are translated into sets

of waypoints. In other words, autopilots are capable of autonomously navigating

through preset waypoints, and by dynamically updating these waypoints, the OCA

gains control of where the autopilot navigates to. Furthermore, because the path is

constantly changing, the autopilot only requires a single dynamic waypoint to follow,

like “chasing a carrot on a stick.” Using such dynamic waypoint following (DWF)

technique, the OCA controls the autopilot and enables swarm behaviors.

In OpenEaagles, the autopilot and OCA are subsystems of the UAV player entity.

To accommodate DWF, autopilot classes must have methods that set and update the

dynamic waypoint. Therefore, a top-level abstract class containing these methods

is necessary. Such a class enforces DWF in any autopilot subclass while allowing

custom autopilot design at the base class level, thus retaining autopilot modularity.

Figure 15 shows the three subsystems (FDM, OCA, and autopilot) of a UAV that

enable the simulation of swarm behaviors. The FDM models the aircraft, accept-

ing flight control inputs while producing simulated remote measurement/telemetry

data. The OCA houses the swarm algorithms necessary for intelligent autonomous

behavior—this is where swarm developers will spend most of their time. With sensor

inputs from other UAV subsystems (not shown in Figure 15) as well as inputs from

other neighboring UAVs, the OCA can make decisions and perform path planning
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Figure 15. UAV Systems Communication Diagram. In swarm simulations, the OCA re-
ceives measurement data (i.e. telemetry) from the FDM of its corresponding UAV as well as data
from neighboring UAVs. Swarm algorithms implemented in the OCA translate this data into au-
tonomous path planning information passed to the autopilot in the form of waypoints (i.e. dynamic
waypoint). Subsequently, the autopilot continuously navigates the simulated aircraft toward the
dynamic waypoint. These interactions result in simulated swarm behaviors.

independent from external intervention, thus enabling swarm behaviors. Lastly, the

autopilot continuously accepts path planning information in the form of a dynamic

waypoint from the OCA and drives the FDM to fly the modeled aircraft toward that

waypoint via flight control signals.

3.3.2 Enabling Hardware-in-the-Loop.

To accommodate HIL simulation, OpenEaagles must interface with hardware

devices. To maintain the design pattern and system/subsystem relationships used

in OpenEaagles, the system objects corresponding to the hardware devices act as

hardware interfaces instead of functional components (Figure 16). Such interfaces

manage serial connections to the devices as well as translate and route signals be-

tween the simulation and the device. For example, the Autopilot hardware interface

object continues to communicate with the FDM and OCA as before, but instead of

converting input (i.e. telemetry and waypoints) directly into output (i.e. flight control

signals), it passes that input to a hardware device (such as a Pixhawk) in a format the
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Figure 16. UAV Systems Communication Diagram (with HIL). When implementing HIL
simulation, hardware devices provide system functionality directly to the simulation via hardware
interfaces. In this example, a Pixhawk and Rasberry Pi provide autopilot and OCA functionality
respectively while the Autopilot and OCA system objects serve as interfaces to those hardware
devices. (The Raspberry Pi is shown here for demonstration purposes only. No OCA hardware
interface is implemented in this thesis.)

device can understand. The device performs the autopilot behavior with the given

input signals and responds with flight control commands that the Autopilot object

translates to FDM-readable control signals.

Some challenges associated with serial connection management include the accom-

modation of high baud rates (required in HIL simulation) and asynchronous communi-

cation with hardware devices. HIL simulation requires real-time execution at specific

refresh rates (e.g. Pixhawk PX4 flight stack requires HIL SENSOR and HIL GPS

packet updates at 50Hz and 10Hz respectively). The time-critical thread must up-

date the entire simulation tree within each interval period of the highest refresh rate

to provide valid data. Additionally, send and receive streams from the hardware

device communicate data in parallel and at different rates, which requires careful

management of serial traffic.
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3.3.3 The Swarm Simulation Framework.

Swarm behavior modeling using HIL simulation is accomplished by extending

OpenEaagles as shown in Figure 17. The OpenEaagles default AirVehicle class con-

tains slots for specifying a pilot and dynamics model. Therefore, any subclass of

AirVehicle may contain such systems or subclasses of those systems (e.g. autopilot

and JSBSimModel). The UAV subclass is necessary to uniquely identify UAVs from

other AirVehicle entities during simulation run-time and implement an additional slot

for specifying the OCA.

From such a design, UAV players now contain all three systems necessary to ac-

commodate swarm behaviors: SwarmAutopilot (autopilot), JSBSimModel (FDM),

and OnboardControlAgent (OCA). Each autopilot class extends from a SwarmAu-

topilot parent class that enforces DWF functionality. SwarmAutopilot subclasses

may either provide autopilot functionality directly (fully simulated) or serve as an

interface to corresponding hardware devices (HIL). By subclassing the SwarmAutopi-

lot class and providing a corresponding hardware interface, developers can integrate

any hardware autopilot (e.g. ArduPilotMega, OpenPilot, Armazila, etc.). Similarly,

swarm algorithm developers can implement swarm behaviors in OnboardControlAgent

objects or provide the interface to corresponding hardware devices (e.g. Raspberry

Pi) where development takes place. For this effort, PixhawkAP will serves as the

hardware interface to the Pixhawk autopilot.

Using public methods, the OCA pulls telemetry directly from the FDM and sets

the dynamic waypoint of the autopilot while the autopilot sets the controls (i.e. rud-

der, stick, throttle) of the FDM. The final swarm simulation framework design pro-

vides a modular, scalable, and accurate means of comprehensive swarm behavior

modeling while accommodating HIL simulation as a means of approaching an actual

operational configuration.
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Figure 17. Swarm Framework Class Diagram. OpenEaagles (shown in white) is the foun-
dation for the proposed swarm simulation framework (shown in gray). All Player subclasses have
DynamicsModel and Pilot subsystems. The AirVehicle subclass, UAV, is necessary to accommo-
date an OnboardControlAgent subsystem for swarm behavior implementation. The OnboardControl-
Agent encapsulates swarm behavior development and imposes DWF by pushing waypoints to the
SwarmAutopilot . SwarmAutopilot subclasses either implement a simulated autopilot or serve as an
interface to a hardware autopilot during HIL simulation. As show at the bottom left, JSBSimModel
is the built-in OpenEaagles interface to the popular open source flight dynamics model, JSBSim.
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3.4 Framework Assessments

Both qualitative and quantitative analysis are used to assess how the framework

accommodates realistic modular and scalable UAV swarms in HIL simulation. This

section outlines assumptions and limitations of the analysis performed, specific focus

areas of the analysis, and the swarm development scenario wherein the framework

capabilities will be demonstrated.

3.4.1 Assumptions and Limitations.

UAVs are typically categorized as either fixed-wing aircraft or rotorcraft, each of

which have distinctive characteristics that pose separate challenges in designing au-

tonomous behavior [4]. Although the swarm simulation framework proposed here can

extend to both categories in theory, this thesis focuses exclusively on small fixed-wing

UAVs with wingspans of less than 10 feet. Currently, this framework does not account

for weather related effects such as precipitation and wind or gusty flight conditions.

Although the framework can accommodate many different aircraft models, autopilots

(which can now be either purely simulated or interfaces to hardware embedded sys-

tems), and swarming algorithms, the demonstrations in the next chapter implement

swarm behaviors with only the following configurations:

• Aircraft model: unofficial (i.e. untested) model of the Sig Rascal 110 airframe

found on github.com [18]

• Simulated autopilot: custom software autopilot implemented and tuned to con-

trol the Rascal model—stick and rudder controls (with constant 100% throttle)

provide heading and altitude holds when given a waypoint or set of waypoints
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• HIL autopilot: Pixhawk with PX4 firmware (px4fmu-v2 default.px4) set to con-

trol the Rascal model using default settings provided in QGroundControl during

device initialization/setup

• Swarm algorithm: implementation of Reynolds Flocking rules using separation,

alignment, and cohesion vectoring as detailed by Brundage [6]

Limitations of scalability are measured for the above configurations. However,

these measurements are restricted to the platform used in this effort—an HP Elite-

Book 8560w with a 2.20 GHz Intel R© CoreTM i7-2670QM CPU, 16.0 GB of RAM, and

a 64-bit operating system (Windows 7 Professional with Service Pack 1). Addition-

ally, the scope of this thesis will not cover virtual or physical clustering as a means of

scaling swarm simulations beyond the capabilities of a single platform. Instead, sim-

ulations will use multithreading with seven time-critical threads and one background

thread distributed across eight CPU cores. Time-critical threads will process FDM

and autopilot tasks while the background thread will process OCA tasks.

As previously discussed, some UAV configurations have complex communication

systems and onboard sensor packages requiring simulation. Although the proposed

framework can accommodate these complexities, the final proof of concept imple-

mented here will not apply such communications and sensor processing, but instead

assume entities within the simulation have direct access (handles/pointers) to in-

stances of other entities, calling upon their publically available attributes directly.
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3.4.2 Qualitative Measures.

The ability to easily add and remove components within a swarm during the de-

velopment process is crucial to effective and efficient swarm development. As swarm

components are added, modified, and removed from the simulation tree, the frame-

work will be assessed on ease of integration, interoperability between simulation com-

ponents, and encapsulation of swarm behaviors.

To provide realistic simulations of swarm behaviors with high confidence those

behaviors will transition to real flight tests, the flight dynamics model (i.e. JSBSim)

used should model accurate aircraft flight characteristics. Observations on aircraft

performance—including cruise airspeed, stall speed, responsiveness, and the accom-

plishment of various maneuvers—should provide strong indications of the accuracy

of aircraft behavior modeling and ultimately increase confidence on swarm behavior

accuracy. For example, if a real aircraft is rated with a maximum airspeed of 60 knots

when flying straight and level, a similar simulated flight of the same aircraft should

result in similar airspeeds. Qualitative analysis of individual aircraft behaviors will be

assessed by providing specific control inputs (e.g. right stick) and comparing resulting

behaviors to that of expected outcomes (e.g. roll to the right).

3.4.3 Quantitative Measures.

Having shown how the proposed framework achieves scalability, we can now assess

the quality attribute during HIL simulation. Because hardware devices external to

the simulation execute in real-time, the simulation must do the same or risk invaliding

the simulation. However, as the swarm size grows, so does the size of the simulation

tree and consequently the quantity of operations required (within a specific time

frame) to update and advance the simulation in real-time. To assess framework

scalability during HIL simulation, two performance metrics will be used: 1) duration
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Figure 18. Simulation Run-time Graph. Each of the three processes require a 50 Hz refresh
rate with 20 ms frames. Arrows indicate the duration of each simulation tree update. Green updates
finish before the end of their current frame and thus enter a brief wait until the next frame begins
while red updates do not.

of simulation tree updates measured in milliseconds to indicate whether real-time is

achieved, and 2) maximum swarm size (i.e. UAV count) to indicate overall limitations

of framework scalability.

Update Duration. The refresh rate, also known as the frame rate, of the sim-

ulation determines the minimum duration between the start of each simulation tree

update. When the duration of an update, dt, is less than the duration of the frame,

the simulation waits until the end of the current frame before preceding to the next

and is able to remain synchronized with real-time. However, when dt is greater than

the duration of the frame, the next update will not begin until the current one finishes

which causes the simulation to drift away from real-time synchronization.

Figure 18 shows three example processes, each executing a different simulation.

Process A always finishes updating the simulation tree prior to the end of each frame,

thus entering a brief wait between every update. The second update for Process B

extends past its corresponding frame, but the duration of the following update is

short enough to recovers real-time execution. For Process C, all updates exceed the

frame duration, wherein the cumulative effect causes the simulation to diverge away

from real-time execution.
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Figure 19. Sample Performance Graph. This update duration frequency distribution graph
shows the wait times of a 1 second simulation with a frame rate of 50 Hz. The majority of updates
lasted 14 to 16 ms, indicating real-time execution, but also high processor utilization (distributions
closer to 20 ms indicate high utilization while distributions closer to 0 ms indicate low utilization
and thus more room for the simulation of additional swarming UAVs).

Simulations demonstrated in this thesis are assessed for real-time execution by

recording the duration of each simulation tree update during the first 10 minutes of

each simulation run. Update durations are rounded up to the nearest integer value

in milliseconds (e.g. 2.0324 ms is rounded up to 3 ms) and plotted as a frequency

distribution graph. The shape and position of simulation update duration distri-

butions should provide strong indications of simulation performance. For example,

Figure 19 depicts a sample distribution of a simulation with a 50 Hz frame rate and

total duration of approximately 1 second. The corresponding duration for each of

the 50 simulation tree updates show that the majority of updates lasted between 14

and 16 ms. One of the updates lasted the entire refresh period (i.e. 20 ms) while four

updates lasted longer than the refresh period indicating real-time simulation was not

achieved during those update periods.

A 50 Hz frame rate (i.e. 20 ms frames) is used to satisfy requirements of the

hardware device used in this thesis—the Pixhawk autopilot requires a minimum 50 Hz

stream of measurement data during HIL simulation. Thus, real-time execution is

considered achieved during updates with a duration less than or equal to 20 ms.

Furthermore, because some updates lasting longer than 20 ms are recoverable (e.g. the

second update for Process B in Figure 18), the ratio of real-time updates will be

monitored. Specifically, percent of real-time execution, Prt, is calculated as
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Prt =
nrt

ntotal

(1)

where nrt denotes the number of updates that lasted 20 ms or less, and ntotal is the

number of updates evaluated. In this way, the Prt for the example in Figure 19 is
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50
, or 92.0%. For this work, Prt ≥ 90% is considered optimal, 90% > Prt ≥ 70% is

considered acceptable, and Prt < 70% is unacceptable.

Max Swarm Size. Framework scalability is ultimately assessed in this thesis by

determining the maximum swarm size while maintaining real-time execution in accor-

dance with the Prt metric above. Additionally, scalability of purely simulated swarms

(i.e. using only simulated autopilots) is compared to that of swarms fully configured

for HIL (i.e. using only Pixhawk autopilots). Such comparison will indicate the dif-

ference in resource requirements between simulated autopilots and the processing of

hardware interface data streams.

3.4.4 Swarm Development Scenario.

The following scenario is used to demonstrate the capabilities and limitations of

the swarm simulation framework: Imagine you are a swarm developer and wish to

understand the behavior of a swarm of UAVs programmed with Reynolds flocking

rules. Specifically, you want to understand how such a swarm will interact with three

piloted aircraft. Will they merge into a tight formation and then drift off in a random

direction? Will they split into smaller formations, each following one of the piloted

UAVs? Or will they crash into each other and fall to the ground?

The next chapter walks through the steps a developer may take when applying

the proposed swarm simulation framework to answering these questions. Four demon-

strations are presented, each of which builds off the previous demonstration to show

capabilities and limitations of the framework. The first demonstration introduces the
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swarm algorithm and shows how to implement it in the OCA of a single UAV. The

next demonstration expands upon the first by applying the swarm algorithm to mul-

tiple UAVs, increasing the swarm size until an upper limit is reached (i.e. until the

processor cannot update the entire simulation tree within the 20 ms refresh period,

assuming a 50 Hz real-time refresh rate). The third demonstration incorporates a

single Pixhawk autopilot for HIL simulation. Finally, the fourth demonstration ex-

pands HIL simulation to multiple devices, increasing the device count until an upper

limit is reached.

The scenario described here will constitute the domain used in the experiment

presented in the next chapter. Three navigating (non-swarming) UAVs serve as “pi-

loted” aircraft and continuously fly three distinct patterns through 10 common way-

points. The waypoints are distributed within a 4.5 by 3.4 nautical mile rectangular

grid at various altitudes ranging from 13,700 to 14,300 feet MSL (Figure 20). The

navigating UAVs are designated as N1, N2, and N3 which fly the routes shown in

Figure 21. Swarming UAVs programmed with Reynolds flocking rules are added to

the environment and monitored.

Framework demonstrations use the above scenario to demonstrate the OCA swarm

development sandbox in which developers can apply and test swarm algorithms in

customized configurations with high confidence that resulting swarm behaviors will

translate to real world flight, thus validating or disproving the swarm control strategy

under development without risking physical aircraft. All referenced code can be found

at https://github.com/derekworth/SwarmSim.
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Figure 20. Scenario Common Waypoint Field. Each simulation contains 10 common way-
points that are distributed within a 20 square mile region with the origin directly below WP10, at
approximately 39.0084648◦N, -104.8887177◦W, and 0 feet MSL.
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Figure 21. UAV Paths. UAVs in navigation mode repeat their respective pre-programmed paths
through the 10 common waypoints while swarming UAVs determine their path using Reynolds
Flocking rules and information gathered about neighboring UAVs.

50



Flight Dynamics Model. As previously mentioned, the FDM used for this

proof of concept is JSBSim with an XML-defined Sig Rascal 110 ARF aircraft model

(Figure 22)—which “is based on the Rascal110 from FlightGear, and adapted for

use in the ArduPilot test system” [18]. Although JSBSim accommodates virtually

any aircraft model, the Sig Rascal was chosen because it is an archetypal air frame

with widespread use and development in the hobbyist and drone communities. It

falls in the small fixed-wing UAV class with a single propeller, traditional controls

configuration (ailerons, rudder, elevator), and wingspan of 9.17 feet.

Figure 22. Sig Rascal 110 ARF Model.

SIMDIS. To view the dynamic interactions of the swarm behaviors under devel-

opment, Distributed Interactive Simulation (DIS) is enabled using the OpenEaagles

network class, DisNetIO, and configured to broadcast DIS packets over the localhost

loopback network interface. Such packets are intercepted and translated by a set of

software tools known as SIMDISTM, which provide 3D interactive graphical and video

display of simulation data produced by the simulation demonstrations. Figure 23

shows the primary tools pertinent to the scenario described above. SIMDIS serves

as the visual interface for all demos in this thesis. For visualization purposes only,

UAVs rendered in SIMDIS appear as MQ-1 Predators due to a limited availability of

icon models. This detail has no impact on the UAV flight characteristics, which are

defined by the Sig Rascal 110 FDM (i.e. simulations consist of UAVs that fly like Sig

Rascals, but look like Predators).
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Figure 23. SIMDIS Overview. SIMDIS intercepts and interprets the DIS packets broadcasted
by the simulation. The Range Tool on the left provides ranging information (i.e. difference in
altitude, slant range, etc.) between two or more entities while the Super Form on the right provides
view customization (i.e. adding/removing labels, data tables, local grids, etc.) and the ability to
focus the view on a specific entity. The main window provides point-and-click interactivity, allowing
users to pan, tilt, and zoom freely while the simulation is running.

3.5 Summary

This chapter showed how OpenEaagles can be extended to simulate swarms of

UAVs using hardware-in-the-loop and described a swarm development scenario that

will be used in the next chapter to assess the limitations and capabilities of the

proposed framework.
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IV. Design Demonstrations/Results

This chapter presents four demonstrations to highlight the capabilities and limi-

tations of the proposed swarm simulation framework. Each demonstration consists of

a setup followed by observations made during and after implementation. Both qual-

itative (observations made on framework reusability, usability, and modularity) and

quantitative (performance measurements assessing scalability) analysis are conducted

for each demonstration.

4.1 Applying Reynolds Flocking Rules

In this demonstration, simple Reynolds flocking rules (separation, alignment, and

cohesion) as detailed by Brundage [6] are introduced and implemented in the onboard

control agent (OCA) to provide a basic swarm behavior and demonstrate swarm

development encapsulation within the OCA. A single swarming UAV with visible

Reynolds vectors are implemented as well as three non-swarming UAVs.

4.1.1 Setup.

Autopilot. Only simulated autopilots are used in this demonstration to test

Reynolds-based swarm behaviors. The simulated autopilot class (SimAP), which ex-

tends the SwarmAutopilot class for dynamic waypoint following (DWF) functionality,

utilizes proportional, integral, and derivative (PID) gain control logic to generate com-

manded roll, pitch, and yaw outputs with constant maximum throttle. Specifically,

the simulated autopilot steers the aircraft in the heading of the next waypoint using

roll and yaw controls while waypoint altitude is achieved using pitch controls. Gains

are adjustable and specified in Eaagles Definition Language (EDL) files and tuned for

the Sig Rascal 110 model for stable flight and navigation. The default OpenEaagles
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Navigation class is used to provide heading information and course correction. The

navigation system of the “piloted” (non-swarming) UAVs are programmed with the

10 common waypoints and continuously cycle through them in their corresponding

pattern order.

Calculating Reynolds Vectors. Swarm algorithms (i.e. Reynolds rules) reside

in the OCA. Alignment and cohesion vectors steer swarming UAVs together while

separation vectors prevent them from colliding into each other (Figure 24). The

OCA calculates alignment and cohesion vectors (vect A and vect C) by averaging

the velocity and position vectors respectively of surrounding UAVs, while calculating

the separation vector (vect S) by averaging the negation of all surrounding UAV

position vectors within a desired separation distance as follows, where ~p represents

a position vector, ~pi the vector pointing from the origin UAV to a neighboring UAV,

n the quantity of neighboring UAVs within the pre-defined range, and DS the desired

separation which is set to 1000 meters for all swarming UAVs:

~pi = ~puav − ~pneighbor i (2)

vect S =

∑n
i=1 ~pi ×

{
DS
‖~pi‖

}2

n
(3)

The dynamic waypoint vector (vect X) is calculated by summing the three Reynolds

vectors after multiplying them by corresponding scale factors. Scale factors used here

are 0.5, 10.0, and 1.0 for the separation, alignment, and cohesion vectors respectively.

Finally, the dynamic waypoint vector is directly translated into a waypoint (i.e. lati-

tude, longitude, and altitude offsets from the current position of the swarming UAV)

and passed to the autopilot for autonomous navigation. For visualization of the vec-

tors, four “dummy” Player entities are added to the simulation tree whose positions
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Figure 24. Reynolds Flocking Rules. Separation steers to avoid crowding local flockmates,
alignment steers toward the average heading of local flockmates, and cohesion steers to move toward
the average position of local flockmates. (Originally presented in [38] and reproduced as an element
of the public domain.)

are updated by the OCA and correspond to the four vectors. The OCA recalculates

the vectors once every simulation tree update resulting in a smooth and continuous

visualization of the Reynolds flocking rules.

4.1.2 Observations.

Accuracy of Simulation. During the design and tuning of the autopilot, qual-

itative analysis showed accuracy and responsiveness of flight control inputs to the

Sig Rascal FDM. Preset flight control inputs were configured to induce specific flight

maneuvers. The simulated UAV performed as expected and thus increased confi-

dence in the accuracy of the FDM. Figure 25 shows some of the resulting maneuvers

performed.

Quality Attributes. After establishing the UAV, OnboardControlAgent , and

SwarmAutopilot classes, the framework provided strong usability. SimAP (extending

SwarmAutopilot) contained three additional methods corresponding to the aircraft

roll, pitch, and yaw controls (throttle remained constant at 100%). The Onboard-

ControlAgent interacted with the SimAP by calling upon the setWaypoint method

inherited from SwarmAutopilot and also contained three methods, corresponding to

the three Reynolds vectors which easily encapsulated the development and final im-

plementation of the swarm algorithm. Integrating a single implementation of the
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Figure 25. Flight Maneuvers. Several different flight maneuvers were performed to test yaw,
pitch, roll, and throttle control accuracy and responsiveness of the Sig Rascal 110 FDM.

autopilot class (i.e. SimAP) into both the navigating and swarming UAVs without

modification demonstrates code reusability.

Swarm Behavior. Simulation shows visual representation of Reynolds vectors

and corresponding dynamic waypoint. Figure 26 highlights each vector (indicated

with black arrows). The separation vector points opposite to UAV N2—the only

UAV withing desired separation range. The alignment vector points to the average

direction of travel for the three navigating UAVs. The cohesion vector points to

the average position of the three navigating UAVs. Lastly, the dynamic waypoint

vector points to the sum of the three scaled Reynolds vectors. The vectors update

every simulation refresh period and therefore provide a smooth and detailed outline

of vector history as indicated by the simulated residual trail following each vector.

This unnecessarily high OCA refresh rate is for demonstration purposes only and a

lower refresh rate is used in subsequent demonstrations. As anticipated, the swarming
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Figure 26. Simulated Reynolds Vectors. The separation vector (top left) shows the combined
repulsive “force” of any surrounding UAVs within its desired separation range—only UAV N2. The
alignment vector (top right) shows the average velocity vectors of surrounding UAVs. The cohesion
vector (bottom left) points to the average position of surrounding UAVs. The dynamic waypoint
vector (bottom right) is derived from summing these three vectors together.

UAV continuously “chased after” the dynamic waypoint, vect X, demonstrating the

ability of the OCA to direct the autopilot.

Performance Analysis. During a 10-minute simulation of the single swarming

UAV interacting with the three navigating UAVs, all 30,000 updates (i.e. one update

every 20 ms) were recorded. Figure 27 shows the frequency distribution of simula-

tion update durations, wherein the Prt is 100% and the majority of updates lasted

approximately 4 ms. Such results indicate low resource utilization and demonstrate

an ability to accommodate additional swarming UAVs.
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Figure 27. Performance Graph - Single Swarming UAV. This graph shows the update
durations recorded after each simulation tree update during a 10-minute simulation of a single
swarming UAV and three navigating UAVs (simulated autopilots only).

4.2 UAV Swarms with Simulated Autopilots

This demonstration extends the previous one by inserting additional swarming

UAVs to determine the maximum swarm size (with simulated autopilots) capable of

executing in real-time.

4.2.1 Setup.

UAV subsystems (OnboardControlAgent and SimAP) and the “piloted” UAV

configuration (three UAVs navigating through 10 common waypoints) used in the

previous demonstration are included here. However, the four “dummy” player en-

tities (visually representing dynamic waypoint and Reynolds vectors) are removed.

Swarming UAVs are randomly positioned within two nautical miles of the scenario

origin. The quantity of swarming UAVs is increased until an upper limit is reached

(i.e. the maximum swarm size that still executes in real-time). Anticipating a polyno-

mial growth, O(n2), in peer-to-peer velocity and position vector queries for dynamic

waypoint calculations, the OCA refresh rate is reduced from the unnecessarily high

frequency of 50 Hz to 0.2 Hz to more accurately measure the impact of simulating

additional UAVs.
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4.2.2 Observations.

Increasing swarm size progressively lengthened update durations resulting in an

eventual lag behind real-time execution. Table 3 lists the percent of real-time exec-

ution (Prt) values for 10-minute simulations of various swarm sizes while Figure 28

shows their performances, measured in recorded update durations. The observed

maximum swarm size capable of an acceptable Prt value was 64 swarming UAVs

(Figure 29). Although real-time execution limits the swarm size, larger swarms can

be accurately simulated outside real-time. Figure 30 shows the behavior of a much

larger swarm which executed about five times slower than real-time.

Table 3. Percent Real-time Execution

Swarm Size Prt

1 100.0%
10 100.0%
20 100.0%
30 100.0%
40 100.0%
50 99.9%
60 97.3%
61 91.5%
62 78.5%
63 74.1%
64 74.4%
65 67.3%
66 52.0%
67 30.4%
70 21.8%
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Figure 28. Swarm Size Performance Comparison. Each of the above simulations lasted for a
duration of 10 minutes. During execution, the duration of each simulation tree update was recorded.
Blue bars reflect updates finishing within their 20 ms frame (i.e. real-time execution achieved) while
red bars indicate the number of updates extending past the 20 ms frame (i.e. updates lagging behind
real-time).
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Figure 29. Real-time Swarms. This figure shows the gradual increase in swarm size until an
upper limit capable of executing in real-time was achieved. Experimentation resulted in a maximum
size of 64 swarming UAVs (depicted in the bottom right).

Figure 30. Large Swarm. Shown here are multiple views of 240 swarming UAVs. After randomly
positioning the swarming UAVs within two nautical miles of the common waypoint field, they merge
together (top left) to eventually form a tight spherical formation (bottom right) that loiters near
the three “piloted” UAVs without any collisions.
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4.3 Applying Hardware-in-the-Loop Simulation

This demonstration transitions the previous demonstrations from swarms us-

ing purely simulated autopilots to simulations with hardware autopilot integration

(i.e. hardware-in-the-loop). Specifically, a hardware interface to the Pixhawk autopi-

lot platform, designated PixhawkAP, was implemented such that it passes simulated

UAV telemetry information from the FDM to the Pixhawk in exchange for flight con-

trol signals returned to the FDM. Additionally, it sends dynamic waypoint updates

from the OCA to the Pixhawk. SimAP for the swarming UAV was replaced with Pix-

hawkAP. The configuration for the navigating UAVs remained unchanged. Finally,

the dynamic waypoint and Reynolds vector visuals are enabled for the swarming

UAV.

4.3.1 Setup.

Preparing the Pixhawk for HIL. Before incorporating the Pixhawk for HIL

simulation, the ‘px4fmu-v2 default.px4’ flight stack was installed using QGround-

Control v2.3.0. QGroundControl also served as the HIL interface between Flight-

Gear v3.4.0 (running the same Sig Rascal 110 FDM) and a Pixhawk autopilot during

parameter tuning. To increase flight stability while swarming, the FW P LIM MAX

parameter (positive pitch limit) was changed from its default value of 45.0 to 15.0.

FW P RMAX POS and FW P RMAX NEG (maximum positive and negative pitch

rates) were both changed from their default value of 60.0 to 10.0. All other parameters

remained unchanged from their default values. The Pixhawk is armed and set to Auto

mode prior to simulated flight using QGroundControl which sets its base mode set

to 189 (corresponding to HIL, stabilized, guided, auto, and custom modes enabled;

safety armed; testing and manual input disabled). Additionally, the Pixhawk safety
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Figure 31. Pixhawk Hardware Setup. A single Pixhawk autopilot is connected to the simu-
lation over USB (COM Port 5). The safety switch (i.e. button at the end of the extending wire)
illuminates solid red when safety is disabled. The multi-color LED flight status indicator (covered
with yellow tape in the image) illuminates solid green indicating system armed, GPS lock acquired,
and ready to fly. Additionally, it flashes green when receiving waypoints. Any other light pattern
during simulation indicates an error condition.

switch must be installed and toggled to illuminate solid red. The final setup is shown

in Figure 31.

To test the Pixhawk’s ability to accommodate DWF, a single waypoint was pro-

grammed into the Pixhawk and periodically updated to various locations mid-flight

(Figure 32). The Pixhawk followed the waypoint as it dynamically changed (i.e. per-

formed DWF) as anticipated, confirming its utility in the swarm scenario. For the

purpose of this and the next demonstration, all HIL mode initialization for the Pix-

hawk is accomplished through QGroundControl paired with an instance of Flight-

Gear. Once HIL simulation with DWF is established, the Pixhawk is disconnected

from QGroundControl and connected to the swarm simulation framework via a Pix-

hawkAP hardware interface.

Hardware Requirements. HIL integration of the Pixhawk autopilot requires

a serial connection over USB, MAVLink communications (sending and receiving

streams), and translation of telemetry and waypoint data flowing between the Pix-

hawk autopilot and simulation (i.e. FDM and OCA). A serial connection to the

63



Figure 32. Dynamic Waypoint Following with QGroundControl. QGroundControl acts
as the hardware interface between simulation (i.e. FlightGear pictured on the left) and a Pixhawk
autopilot. Yellow circles indicate dynamics waypoint updates while yellow arrows (starting from the
top-right) show the order in which the updates took place. The line highlighted in red indicates the
actual UAV flight path.

Pixhawk was established using the CSerial application program interface (API) [2].

A C++ version of the MAVLink common message library [31] provides the capabil-

ity to encode/decode messages to and from the Pixhawk. The MAVLink common

message set found at https://pixhawk.ethz.ch/mavlink/ details the MAVLink

message requirements used by the Pixhawk and thus guided the code development of

data translation logic implemented in the PixhawkAP class.

Timing. Table 4 summarizes necessary MAVLink message traffic (from the per-

spective of the simulation) during HIL simulation along with message rates and sizes.

To enable HIL mode, the Pixhawk requires a steady supply of valid measurement data

packed into HIL SENSOR and HIL GPS MAVLink messages, streamed in at 50 Hz

and 10 Hz respectively. Additionally, the Pixhawk requires HEARTBEAT messages

streamed in at 1 Hz. To accommodate each corresponding message transmission rate

in real-time, the PixhawkAP synchronizes each rate with the computer’s system clock.
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Table 4. HIL MAVLink Message Traffic

Msg ID Message Direction Size (Bytes) Rate
0 HEARTBEAT both 17 1 Hz
39 MISSION ITEM send 45 as needed
40 MISSION REQUEST receive 12 as needed
44 MISSION COUNT send 12 as needed
46 MISSION ITEM REACHED receive 10 as needed
47 MISSION ACK receive 11 as needed
91 HIL CONTROLS receive 50 37 Hz
107 HIL SENSOR send 72 50 Hz
113 HIL GPS send 44 10 Hz
253 STATUSTEXT receive 59 as needed

Data Buffers. Because the CSerial API does not accommodate interrupts,

polling is used to read data from the serial buffer in 128 byte blocks. Specifically,

during each simulation frame, the PixhawkAP interface queries the number of bytes

waiting in the serial buffer. If more than 128 bytes are waiting, the PixhawkAP en-

ters a loop and continuously pulls data from the buffer, 128 bytes at a time, until

the buffer contains less than 128 bytes—only then does the PixhawkAP break out

of the loop and continue processing the remaining time-critical tasks for that frame.

As long as the PixhawkAP interface reads data from the buffer faster than the Pix-

hawk can write to it, no bytes are dropped. Lastly, waypoints are programmed onto

the Pixhawk using the waypoint protocol (detailed at http://qgroundcontrol.org/

mavlink/waypoint_protocol).

4.3.2 Observations.

Quality Attributes. Use of the Pixhawk autopilot for DWF requires no famil-

iarity with its code base. Instead, it requires an understanding of how it behaves.

In other words, in order to use the Pixhawk, swarm developers must understand

“what” it does and not “how” it does it. Such encapsulation of implementation de-

tails greatly simplifies its integration into HIL simulation while promoting usability

and modularity. In this case, DWF requires the exchange of waypoints (generated
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by the OCA—this is where swarm development takes place) and measurement data

(generated by the FDM) for control signals (generated by the Pixhawk). For exam-

ple, the Pixhawk sends HIL CONTROLS messages containing roll, pitch, yaw, and

throttle controls only after receiving HIL SENSOR and HIL GPS messages (while

in HIL mode) containing acceleration, gyroscope, magnetometer, pressure, temper-

ature, position, velocity, and course over ground measurements. Subsequently, it

autonomously drives the simulated air vehicle toward waypoints (latitude, longitude,

and altitude) specified by MISSION ITEM messages.

However, such interaction with the Pixhawk does require intimate knowledge of

how it communicates. The PixhawkAP interface must accurately read and translate

measurement data from the FDM and waypoints from the OCA into MAVLink mes-

sages the Pixhawk can understand. Otherwise, the Pixhawk will respond with anoma-

lous control signals or no signals at all. To accomplish accurate data translations

between the simulation and the Pixhawk, detailed API documentation is essential.

Limited documentation results in loss in development productivity. Fortunately, the

MAVLink common message set provides the translation details necessary to commu-

nicate accurate simulation state information to the Pixhawk while accepting control

signal in return.

Performance Analysis. Analysis of update durations shows the HIL simula-

tion maintained real-time execution (Figure 33). However, simulations with a single

swarming UAV driven by a Pixhawk autopilot averaged update durations similar to

that of simulations with 38 swarming UAVs driven by simulated autopilots, indicating

a substantial reduction in scalability when transitioning to HIL simulation—which is

caused mostly by the high rate of simulation-to-MAVLink data translations when

generating and sending HIL SENSOR and HIL GPS messages.
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Figure 33. Performance Graph - Single Swarming UAV (HIL). This graph shows the up-
date durations of a 10-minute simulation consisting of one swarming UAV integrated with a Pixhawk
autopilot (for HIL simulation) and three navigating UAVs with simulated autopilots. The smaller of
the two local peaks (at approximately 17 ms) indicates periodic increases in resource utilization out-
side the main refresh period—namely the generation and transmission of 10 Hz HIL GPS MAVLink
messages.

To provide control signals (i.e. HIL CONTROLS) to the simulation, the Pix-

hawk requires accurate measurement data streamed in at high rates (50 Hz for

HIL SENSOR and 10 Hz for HIL GPS messages). The generation of each HIL SENSOR

message requires many costly multiplication operations associated with magnetometer

calculations as well as pressure and temperature conversions. Timestamps taken be-

fore and after the sendHilSensor method call indicated the translation process—which

included pulling measurement data from the FDM, converting it to a HIL SENSOR

MAVLink message, and sending the message over the serial link to the Pixhawk—took

approximately 11 ms to complete. Similarly, HIL GPS messages require many mul-

tiplication operations and external method calls. Timestamps taken before and after

the sendHilGps method call indicated the translation process took approximately

7 ms to generate and send each HIL GPS message.

Figure 33 shows two peaks—a large peak at 11 ms and a smaller one at approxi-

mately 17 ms. The decrease in average wait times from using a simulated autopilot to

incorporating a Pixhawk in HIL simulation (indicated by the larger peak) is due to the

HIL SENSOR messages generated every refresh period while the smaller peak results

from a periodic (10 Hz) increase in resource utilization that occurs outside the 50 Hz

frame rate. In other words, most updates lasted approximately 11 to 13 ms because a
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Figure 34. Reynolds Vectors with HIL Simulation. The Pixhawk autopilot provides flight
control signals to swarming UAV P1’s FDM, ultimately driving it to continuously follow the dynamic
waypoint (which the OCA updates every five seconds). The red line indicates P1’s instantaneous
direction of travel.

HIL SENSOR message is generated and sent every frame (which takes approximately

11 ms), while the majority of remaing updates last 17 to 19 ms because every five

frames, a HIL GPS message is generated and sent (which takes approximately 7 ms)

in addition to the HIL SENSOR message.

Behavior. Because PixhawkAP extends SwarmAutopilot, PixhawkAP seamlessly

replaces SimAP in the swarming UAV (re-designated as P1). When the OCA sets

the dynamic waypoint using the setWaypoint method, PixhawkAP forwards that

waypoint over USB to the Pixhawk using the waypoint protocol. The exchange of

measurement data for control signals takes place as mentioned above. Figure 34

shows the resulting behavior of incorporating the Pixhawk autopilot in HIL simula-

tion using the swarm simulation framework—P1 behaves similar to S1 from the first

demonstration, chasing vect X, thus confirming a successful hardware-in-the-loop im-

plementation that is directed by the onboard control agent.
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Figure 35. Multi-Pixhawk Hardware Setup. The laptop shown here (right) is the platform
used throughout this thesis. Each Pixhawk (left) is connected to a USB 2.0 hub (top center) which
is connected to a USB 2.0 port on the side of the laptop.

4.4 UAV Swarm with Hardware Autopilots

This final demonstration expands HIL simulation to multiple swarming UAVs

integrated with Pixhawk autopilots. Additional swarming UAVs are added to the

simulation until a maximum swarm size is reached (i.e. largest swarm size with an

acceptable Prt value).

4.4.1 Setup.

The setup from the single HIL demonstration is used here with the dynamic way-

point and Reynolds vector visuals removed. Parameters from the previous demonstra-

tion are copied to additional Pixhawk autopilots. HIL mode is initialized separately

for each individual Pixhawk using QGroundControl. Each Pixhawk is connected over

USB 2.0 (Figure 35) and automatically assigned a virtual COM port. COM port

associations between the PixhawkAP interfaces and corresponding Pixhawk autopi-

lots are defined in an EDL file. Similar to the second demonstration, swarming UAVs

are randomly positioned within two nautical miles of the scenario origin.
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Figure 36. Swarm Size Performance Comparison (HIL). The graphs above show a linear
degradation of simulation performance as more Pixhawk autopilots are added.

4.4.2 Observations.

Performance Analysis. The update duration distributions for up to six swarm-

ing UAVs in HIL simulation are shown in Figure 36 with corresponding Prt values

listed in Table 5. Acceptable Prt values were observed in swarms with up to four

UAVs simultaneously interfacing with Pixhawk autopilots in HIL simulation.

Table 5. Percent Real-time Execution (HIL)

Swarm Size Prt

1 94.3%
2 86.7%
3 80.5%
4 74.9%
5 54.8%
6 46.1%

Behavior. The various swarm sizes demonstrated similar behavior to that of the

same size using only simulated autopilots. The UAVs merged together into a tight

formation and loitered within the common waypoint field, near the three navigating

UAVs. Figure 37 shows the coordinated behaviors for different swarm sizes. Although

a maximum size of only four swarming UAVs could execute in HIL simulation with an
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Figure 37. Swarming During HIL Simulation. The swarming UAVs (highlighted in red) are
driven by Pixhawk autopilots during HIL simulation and behave similar to swarming UAVs driven
by simulated autopilots from the second demonstration.

acceptable Prt value, swarms of size five and six also demonstrated stable Reynolds

flocking behavior.

4.5 Summary

The four demonstrations explored in this chapter stepped through various stages

of swarm behavior development and modeling using the proposed swarm simulation

framework. Simple Reynolds flocking rules served as the swarm algorithm while

their implementation showcased how OCA encapsulation paired with DWF promotes

and facilitates swarm behavior development. The ability to add, remove, and in-

terchange different components (e.g. swapping SimAP with PixhawkAP) without

adversely impacting other components or interactions within the framework demon-

strates strong modularity. Additionally, the framework successfully accommodated

61 swarming UAVs configured with purely simulated autopilots and four swarming

UAVs integrated with Pixhawk hardware autopilots, all while remaining synchronized

with real-time.
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V. Conclusions and Future Work

This thesis presented an extension to the OpenEaagles simulation framework that

enabled the testing and development of scalable, modular, and realistic UAV swarms

in simulation using hardware-in-the-loop (HIL). The OpenEaagles simulation tree

hierarchy promotes high modularity and scalability for swarm component integra-

tion. As demonstrated in Chapter IV, the use of onboard control agents (OCA)

paired with dynamic waypoint following (DWF) facilitates swarm development encap-

sulation, ultimately providing a “sandbox” wherein developers can implement and test

swarm algorithms and control strategies before applying them to real aircraft. Fur-

thermore, JSBSim—a trusted flight dynamics model (FDM) already integrated into

OpenEaalges—provides realistic aircraft modeling for high confidence that simulated

swarm or UAV behaviors will transition to real flight tests.

However, when incorporating hardware devices for HIL simulation, the maxi-

mum swarm size was only four UAVs due to the amount of processing required to

translate data between hardware and the simulation—namely generating and send-

ing HIL SENSOR and HIL GPS MAVLink messages. The maximum swarm size was

much larger when utilizing only simulated autopilots, which shows the framework is

capable of high scalability. Furthermore, the framework is capable of accommodating

an unlimited swarm size when unimpeded by real-time constraints. To achieve high

scalability during HIL simulation, many potential optimization steps are available.

For example, consider an implementation outside the simulation of a high-speed,

specialized, intermediate translator that takes in raw simulation data and outputs

MAVLink messages required by the Pixhawk (i.e. HIL SENSOR and HIL GPS mes-

sages). Such a translator would only require a stream of datagrams containing the raw

FDM data from the simulation, which would take almost no time to generate, thus

alleviating the need to perform such costly data translations within the simulation.
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Additionally, with some careful thread optimization and task management, such

translation tasks could be distributed more efficiently across multiple CPU cores and

executed in parallel for increased performance. Although the default thread manage-

ment within OpenEaagles is simple, easy to use, and effective in most situations, a

more tailored thread management scheme could provide performance enhancements

in this specific context.

One main benefit of establishing HIL simulation in OpenEaagles is preexisting

interfaces to distributed simulation architectures (i.e. DIS, HLA, and TENA). Such

tools not only allow sharing of simulation views across a network, but also allow

multiple simulation instances to bridge together which has potential to scale the

swarm simulation framework into a distributed system. Imagine multiple instances

of the simulation implemented in this thesis networked together to form a larger

cluster or distributed system of HIL simulation nodes. Five nodes would result in a

swarm size of at least 20 UAVs, all driven by Pixhawk autopilots.

Another follow-on this research effort could take is implementing hardware inter-

faces to the OCA such that each hardware OCA can interact outside of the simulation

with the OCAs from other UAVs (e.g. via a wireless connection, thus emulating re-

alistic UAV peer-to-peer communications). Migrating such interactions outside the

simulation continues to improve confidence that the observed behaviors will transition

to real flight testing while alleviating computational requirements of the simulation

environment, thus allowing those resources to be dedicated toward increased scala-

bility.

The highly modular architecture of the proposed framework also allows for the

implementation of swarm control stations (SCS) such that developers can inject pa-

rameters and swarm control algorithms mid-mission directly into the OCAs in a

simulated swarm and thus transcend from simply controlling single UAVs individu-
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ally (i.e. using a traditional ground control station) to flying entire swarms as single

organic entities. With an infinitely configurable simulation comprised of players, sys-

tems, and subsystems, as well as customizable I/O interfaces and graphics libraries,

the possibilities are endless.

5.1 Final Remarks

As technology continues to advance, UAV swarms become more feasible and rele-

vant to real-world applications. Over the past 15 years, great strides have taken place

to make UAV swarms a reality. Many have pursued the understanding and devel-

opment of swarm applications, theory, and control strategies. However, most swarm

behaviors remain unimplemented due to high implementation costs and regulated

airspace constraints during development. This thesis shows that a swarm simula-

tion framework can enable development and testing of swarm behaviors outside the

bounds of such limitations. Bottom line: swarm development is difficult and ex-

pensive, and without a successful simulation framework to affordably and efficiently

validate swarm behaviors, applications of UAV swarms will continue to exist only in

the realm of theory.
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