8 research outputs found

    Complex-valued embeddings of generic proximity data

    Get PDF
    Proximities are at the heart of almost all machine learning methods. If the input data are given as numerical vectors of equal lengths, euclidean distance, or a Hilbertian inner product is frequently used in modeling algorithms. In a more generic view, objects are compared by a (symmetric) similarity or dissimilarity measure, which may not obey particular mathematical properties. This renders many machine learning methods invalid, leading to convergence problems and the loss of guarantees, like generalization bounds. In many cases, the preferred dissimilarity measure is not metric, like the earth mover distance, or the similarity measure may not be a simple inner product in a Hilbert space but in its generalization a Krein space. If the input data are non-vectorial, like text sequences, proximity-based learning is used or ngram embedding techniques can be applied. Standard embeddings lead to the desired fixed-length vector encoding, but are costly and have substantial limitations in preserving the original data's full information. As an information preserving alternative, we propose a complex-valued vector embedding of proximity data. This allows suitable machine learning algorithms to use these fixed-length, complex-valued vectors for further processing. The complex-valued data can serve as an input to complex-valued machine learning algorithms. In particular, we address supervised learning and use extensions of prototype-based learning. The proposed approach is evaluated on a variety of standard benchmarks and shows strong performance compared to traditional techniques in processing non-metric or non-psd proximity data.Comment: Proximity learning, embedding, complex values, complex-valued embedding, learning vector quantizatio

    Kernel PCA with the Nyström method

    Get PDF
    Kernel methods are powerful but computationally demanding techniques for non-linear learning. A popular remedy, the Nyström method has been shown to be able to scale up kernel methods to very large datasets with little loss in accuracy. However, kernel PCA with the Nyström method has not been widely studied. In this paper we derive kernel PCA with the Nyström method and study its accuracy, providing a finite-sample confidence bound on the difference between the Nyström and standard empirical reconstruction errors. The behaviours of the method and bound are illustrated through extensive computer experiments on real-world data. As an application of the method we present kernel principal component regression with the Nyström method

    Multimodal subspace support vector data description

    Get PDF
    Highlights • A novel method for transforming the multimodal data into a common feature space is proposed. • The shared subspace optimized for one-class classification yields better results than traditional concatenation of multimodal data for one-class classification. • Different regularization strategies along with linear and non-linear formulation provides more freedom of choice for optimizing a model according to specific evaluation metric.In this paper, we propose a novel method for projecting data from multiple modalities to a new subspace optimized for one-class classification. The proposed method iteratively transforms the data from the original feature space of each modality to a new common feature space along with finding a joint compact description of data coming from all the modalities. For data in each modality, we define a separate transformation to map the data from the corresponding feature space to the new optimized subspace by exploiting the available information from the class of interest only. We also propose different regularization strategies for the proposed method and provide both linear and non-linear formulations. The proposed Multimodal Subspace Support Vector Data Description outperforms all the competing methods using data from a single modality or fusing data from all modalities in four out of five datasets

    Multi-view Subspace Learning for Large-Scale Multi-Modal Data Analysis

    Get PDF
    Dimensionality reduction methods play a big role within the modern machine learning techniques, and subspace learning is one of the common approaches to it. Although various methods have been proposed over the past years, many of them suffer from limitations related to the unimodality assumptions on the data and low speed in the cases of high-dimensional data (in linear formulations) or large datasets (in kernel-based formulations). In this work, several methods for overcoming these limitations are proposed. In this thesis, the problem of the large-scale multi-modal data analysis for single- and multi-view data is discussed, and several extensions for Subclass Discriminant Analysis (SDA) are proposed. First, a Spectral Regression Subclass Discriminant Analysis method relying on the Graph Embedding-based formulation of SDA is proposed as a way to reduce the training time, and it is shown how the solution can be obtained efficiently, therefore reducing the computational requirements. Secondly, a novel multi-view formulation for Subclass Discriminant Analysis is proposed, allowing to extend it to data coming from multiple views. Besides, a speed-up approach for the multi-view formulation that allows reducing the computational requirements of the method is proposed. Linear and nonlinear kernel-based formulations are proposed for all the extensions. Experiments are performed on nine single-view and nine multi-view datasets and the accuracy and speed of the proposed extensions are evaluated. Experimentally it is shown that the proposed approaches result in a significant reduction of the training time while providing competitive performance, as compared to other subspace-learning based methods

    Efficient Vector Quantization for Fast Approximate Nearest Neighbor Search

    Get PDF
    Increasing sizes of databases and data stores mean that the traditional tasks, such as locating a nearest neighbor for a given data point, become too complex for classical solutions to handle. Exact solutions have been shown to scale poorly with dimensionality of the data. Approximate nearest neighbor search (ANN) is a practical compromise between accuracy and performance; it is widely applicable and is a subject of much research. Amongst a number of ANN approaches suggested in the recent years, the ones based on vector quantization stand out, achieving state-of-the-art results. Product quantization (PQ) decomposes vectors into subspaces for separate processing, allowing for fast lookup-based distance calculations. Additive quantization (AQ) drops most of PQ constraints, currently providing the best search accuracy on image descriptor datasets, but at a higher computational cost. This thesis work aims to reduce the complexity of AQ by changing a single most expensive step in the process – that of vector encoding. Both the outstanding search performance and high costs of AQ come from its generality, therefore by imposing some novel external constraints it is possible to achieve a better compromise: reduce complexity while retaining the accuracy advantage over other ANN methods. We propose a new encoding method for AQ – pyramid encoding. It requires significantly less calculations compared to the original “beam search” encoding, at the cost of an increased greediness of the optimization procedure. As its performance depends heavily on the initialization, the problem of choosing a starting point is also discussed. The results achieved by applying the proposed method are compared with the current state-of-the-art on two widely used benchmark datasets – GIST1M and SIFT1M, both generated from a real-world image data and therefore closely modeling practical applications. AQ with pyramid encoding, in addition to its computational benefits, is shown to achieve similar or better search performance than competing methods. However, its current advantages seem to be limited to data of a certain internal structure. Further analysis of this drawback provides us with the directions of possible future work

    Subspace Support Vector Data Description and Extensions

    Get PDF
    Machine learning deals with discovering the knowledge that governs the learning process. The science of machine learning helps create techniques that enhance the capabilities of a system through the use of data. Typical machine learning techniques identify or predict different patterns in the data. In classification tasks, a machine learning model is trained using some training data to identify the unknown function that maps the input data to the output labels. The classification task gets challenging if the data from some categories are either unavailable or so diverse that they cannot be modelled statistically. For example, to train a model for anomaly detection, it is usually challenging to collect anomalous data for training, but the normal data is available in abundance. In such cases, it is possible to use One-Class Classification (OCC) techniques where the model is trained by using data only from one class. OCC algorithms are practical in situations where it is vital to identify one of the categories, but the examples from that specific category are scarce. Numerous OCC techniques have been proposed in the literature that model the data in the given feature space; however, such data can be high-dimensional or may not provide discriminative information for classification. In order to avoid the curse of dimensionality, standard dimensionality reduction techniques are commonly used as a preprocessing step in many machine learning algorithms. Principal Component Analysis (PCA) is an example of a widely used algorithm to transform data into a subspace suitable for the task at hand while maintaining the meaningful features of a given dataset. This thesis provides a new paradigm that jointly optimizes a subspace and data description for one-class classification via Support Vector Data Description (SVDD). We initiated the idea of subspace learning for one class classification by proposing a novel Subspace Support Vector Data Description (SSVDD) method, which was further extended to Ellipsoidal Subspace Support Vector Data Description (ESSVDD). ESSVDD generalizes SSVDD for a hypersphere by using ellipsoidal data description and it converges faster than SSVDD. It is important to train a joint model for multimodal data when data is collected from multiple sources. Therefore, we also proposed a multimodal approach, namely Multimodal Subspace Support Vector Data Description (MSSVDD) for transforming the data from multiple modalities to a common shared space for OCC. An important contribution of this thesis is to provide a framework unifying the subspace learning methods for SVDD. The proposed Graph-Embedded Subspace Support Vector Data Description (GESSVDD) framework helps revealing novel insights into the previously proposed methods and allows deriving novel variants that incorporate different optimization goals. The main focus of the thesis is on generic novel methods which can be adapted to different application domains. We experimented with standard datasets from different domains such as robotics, healthcare, and economics and achieved better performance than competing methods in most of the cases. We also proposed a taxa identification framework for rare benthic macroinvertebrates. Benthic macroinvertebrate taxa distribution is typically very imbalanced. The amounts of training images for the rarest classes are too low for properly training deep learning-based methods, while these rarest classes can be central in biodiversity monitoring. We show that the classic one-class classifiers in general, and the proposed methods in particular, can enhance a deep neural network classification performance for imbalanced datasets

    Multi-view Data Analysis

    Get PDF
    Multi-view data analysis is a key technology for making effective decisions by leveraging information from multiple data sources. The process of data acquisition across various sensory modalities gives rise to the heterogeneous property of data. In my thesis, multi-view data representations are studied towards exploiting the enriched information encoded in different domains or feature types, and novel algorithms are formulated to enhance feature discriminability. Extracting informative data representation is a critical step in visual recognition and data mining tasks. Multi-view embeddings provide a new way of representation learning to bridge the semantic gap between the low-level observations and high-level human comprehensible knowledge benefitting from enriched information in multiple modalities.Recent advances on multi-view learning have introduced a new paradigm in jointly modeling cross-modal data. Subspace learning method, which extracts compact features by exploiting a common latent space and fuses multi-view information, has emerged proiminent among different categories of multi-view learning techniques. This thesis provides novel solutions in learning compact and discriminative multi-view data representations by exploiting the data structures in low dimensional subspace. We also demonstrate the performance of the learned representation scheme on a number of challenging tasks in recognition, retrieval and ranking problems.The major contribution of the thesis is a unified solution for subspace learning methods, which is extensible for multiple views, supervised learning, and non-linear transformations. Traditional statistical learning techniques including Canonical Correlation Analysis, Partial Least Square regression and Linear Discriminant Analysis are studied by constructing graphs of specific forms under the same framework. Methods using non-linear transforms based on kernels and (deep) neural networks are derived, which lead to superior performance compared to the linear ones. A novel multi-view discriminant embedding method is proposed by taking the view difference into consideration. Secondly, a multiview nonparametric discriminant analysis method is introduced by exploiting the class boundary structure and discrepancy information of the available views. This allows for multiple projecion directions, by relaxing the Gaussian distribution assumption of related methods. Thirdly, we propose a composite ranking method by keeping a close correlation with the individual rankings for optimal rank fusion. We propose a multi-objective solution to ranking problems by capturing inter-view and intra-view information using autoencoderlike networks. Finally, a novel end-to-end solution is introduced to enhance joint ranking with minimum view-specific ranking loss, so that we can achieve the maximum global view agreements within a single optimization process.In summary, this thesis aims to address the challenges in representing multi-view data across different tasks. The proposed solutions have shown superior performance in numerous tasks, including object recognition, cross-modal image retrieval, face recognition and object ranking
    corecore