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a b s t r a c t 

In this paper, we propose a novel method for projecting data from multiple modalities to a new sub- 

space optimized for one-class classification. The proposed method iteratively transforms the data from 

the original feature space of each modality to a new common feature space along with finding a joint 

compact description of data coming from all the modalities. For data in each modality, we define a sepa- 

rate transformation to map the data from the corresponding feature space to the new optimized subspace 

by exploiting the available information from the class of interest only. We also propose different regu- 

larization strategies for the proposed method and provide both linear and non-linear formulations. The 

proposed Multimodal Subspace Support Vector Data Description outperforms all the competing methods 

using data from a single modality or fusing data from all modalities in four out of five datasets. 

© 2020 The Authors. Published by Elsevier Ltd. 
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. Introduction 

In our surroundings, on a daily basis, we are exposed to infor-

ation from many different sources. Different sensors are used to

ather information about similar objects. Our brains usually per-

orm well in combining the information from different sources

o make a concise analysis of that particular entity. In order to

nalyze an entity, even a single source of information might be

nough, but to make some critical decisions it is important to com-

ine information from different sources in a systematic way. For

xample, if a person is walking in a crowd, the main information

o not hit anything comes from visual cues, but people can warn

ach other also by voice or even by touch, and this extra informa-

ion helps in understanding the environment in a better way. The

mell could help to avoid unpleasant spots, too. As another exam-

le, while watching a movie, only visual information of the scenes

ay not be enough to understand the whole scenario, but the au-

io and/or captions combined together with the visuals informa-

ion will provide the full information. 
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In machine learning techniques for predictive data modeling,

raining data are used to form a model that can accurately clas-

ify future instances into a predefined number of classes. In many

ases, data comes from sensors and can be further processed to

xtract different features. The term multimodal is used to describe

he data coming from different sensors (also referred to as mode

r modality), however, it is also used as a synonym to multi-view

hen different features are extracted from the same sensor or

hen there are multiple similar sensors, e.g., cameras. The aim of

ultimodal machine learning algorithms is to build models that

an process and relate information from more than one modality

or view). 

The examples of multimodal representations are prevalent in

ifferent application areas. In [1] , an active multimodal sensor sys-

em for target recognition and tracking is studied where informa-

ion from three different sensors (visual, infrared, and hyperspec-

ral) is used. In [2] , a framework for vehicle tracking with multi-

odal data (velocity and images) is proposed where the outcome

f velocity modality estimated by using a Kalman filter on the data

btained from motion sensors is fused with features learned from

mage modality by the color-faster R-CNN method. In [3] , a mul-

imodal data collection framework for mental stress monitoring is

tudied. In the proposed framework, physiological and motion sen-

or data of people under stress are collected. 
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The data in multimodal applications come from different

modalities, where each modality has its own statistical properties

and contains specific information. The different modalities usually

share high-level concepts and semantic information, and all to-

gether contain more information than any single-modal data [4] . If

we build a model separately for each modality, the relationship be-

tween the modalities cannot be exploited efficiently. In multimodal

subspace learning, the goal is to infer a shared latent representa-

tion, that can accurately model data from each original modality

and exploit the relationship between the modalities. 

In traditional multiclass machine learning, an adequate amount

of data are available for all the categories during training and,

hence, the algorithm takes advantage of all available training data

from all classes to train a model [5] . However, it is possible that

during the training, data are highly imbalanced, or the only data

available is from a single class. In such cases, one-class classifica-

tion techniques are used. It is useful in many different cases, such

as outlier detection, predicting specific events, or, in general, pre-

dicting a specific target class. While much effort has been put on

solving one-class classification tasks for data of a single modality

[6] , much less effort has been put on solving one-class multimodal

challenges in general, and we are not aware of any prior work in

the field of multimodal learning for one-class classification. In one-

class multimodal tasks, it is assumed that the only data available

is from a single class in many different modalities. 

In this paper, we propose a novel method for solving multi-

modal one-class classification tasks. The proposed method, Multi-

modal Subspace Support Vector Data Description (MS-SVDD), finds

a transformation for each modality along with defining a com-

mon model for all modalities in a lower-dimensional subspace op-

timized for one-class classification. The rest of the paper is orga-

nized as follows. In Section 2 , an overview of related work is pre-

sented. In Section 3 , the newly proposed MS-SVDD is derived and

discussed. In Section 4 , we present the experimental setup and re-

sults, and finally, in Section 5 , conclusions are drawn. 

2. Background and related work 

In this section, we briefly discuss the principles of multi-

modal learning, along with subspace learning. We also provide an

overview of traditional methods used for multiclass multimodal

data description and one-class unimodal data description. 

2.1. Multimodal learning 

The availability of many different modalities can be bliss if it in-

creases the performance of the machine learning model. However,

if the data description algorithm fails to make a strong connection

between the different available modalities, the performance can be

degraded. To ensure better performance of the model by combin-

ing data from different modalities, mainly two principles should be

ensured, i.e., consensus and complementary principles [7] : 

• Consensus principle aims at minimizing the disagreement be-

tween data available from different modes. Maximizing the

agreement will reduce the error rate, and better modeling of

data is achieved while combining data from different modali-

ties. 
• Complementary principle in the context of multimodal learn-

ing means that data from each modality may contain some

knowledge not contained by the other ones. So it is necessary

to exploit information from all the available modes to make an

accurate description of data. 

The multimodal machine learning techniques can be described

by three main properties: two-view vs. multi-view, linear vs. non-

linear, and unsupervised vs. supervised [8] . As the name indicates,
n two-view learning, the number of views is limited to two. In

ulti-view learning, the number of views is not limited. The dif-

erence between supervised and unsupervised learning is that, in

upervised learning, the information on output labels of the train-

ng data is taken into account when training the model, while in

nsupervised methods, the labels are not used to model the under-

ying structure or distribution of the data [9] . Linear techniques for

ultimodal subspace learning may be too simple to provide a rep-

esentative model. Hence, kernel methods are proposed to capture

on-linear patterns in data. 

The multimodal learning techniques have been mainly applied

n four applications domains [10] : i.e., audio-visual speech recog-

ition [11] , multimedia content indexing and retrieval [12] , un-

erstanding human multimodal behaviors [13] , and language and

ision media description [14] . Recently, there has been a rising

rend in applying multimodal machine learning algorithms also to

ther applications. For example, in [15] , a multimodal data fusion

echnique is used for the prediction of soybean yield from an un-

anned aerial vehicle. 

In multimodal learning, the main goal is to develop a pro-

ess of fusing information from various modalities. In [16] , the

usion strategies are divided into two different categories as

odel-agnostic and model-based approaches. In model-agnostic

pproaches, the fusion is either late, early, or hybrid. In early fu-

ion, the data or extracted features are fused together at the very

nitial phase of modeling. A new feature vector is usually formed

y concatenating all the available data from different modes, and

he model is trained with the new feature vector. In late fusion,

ultiple models are trained, and the fusion is done for scores gen-

rated by each model for the corresponding modality. The score

enerated by each model can be a threshold or some probability

sed in decision making. Hybrid fusion exploits the advantage of

oth early fusion and late fusion. Model-based approaches for fu-

ion explicitly fuses data during their construction, such as kernel-

ased approaches, graphical models, and neural networks. In this

ork, we present a model-based approach for data fusion. 

.2. Subspace learning 

In the current era of data science, where high-dimensional mul-

imodal big data are generated every minute in different industries,

here is a need to get the essential insights and mine knowledge in

his high-dimensional data. Subspace learning aims at representing

ata in a lower-dimensional space by keeping intact all the infor-

ation available in the original higher-dimensional space. 

Algorithms developed for linear subspace learning find a pro-

ection matrix for labeled training data (represented by vectors)

atisfying some optimality criteria. Principal Component Analysis

PCA) is one of the first subspace learning methods mentioned in

iterature. In PCA, a subspace is learned by orthogonally project-

ng data to a subspace so that the variance of data is maximized.

CA works only with a single mode of data, i.e., all data should

e in the same dimension. Another traditional subspace learning

ethod is Linear Discriminant Analysis (LDA), which finds a linear

ransformation by exploiting the class information. 

Analogous to PCA, but used for two-view learning, is canonical-

orrelation analysis (CCA) [17] . CCA is a classic and conventional

ethod for subspace learning, which aims at relating two sets of

ata by finding out the pairs of directions which provide a max-

mum correlation between the two sets. It has recently become

ne of the popular methods for unsupervised subspace learning

ecause of its generalization capability and has been used exten-

ively for multimodal data fusion and cross-media retrieval [18] . In

ubspace learning, state-of-the-art results are achieved by methods

hich have embraced some stimulus from conventional subspace

earning methods [19] . 
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As an extension of methods for linear transformation, kernel

ethods are introduced to describe nonlinear function or decision

oundaries. In kernel methods, the data are mapped to a typically

igher-dimensional kernel-space using a kernel function where it

xhibits linear patterns [20,21] . For example, in [22] , kernel-PCA

erforming a nonlinear form of PCA is proposed. 

.3. One-class classification 

In one-class classification, the parameters of the model are es-

imated using data from the positive class only because data from

he other classes are either not available at all or it is too diverse

n nature to be modeled statistically [23] . The positive class is also

alled the target class, and the data from the other classes, which

re not available during training, is called negative, or an outlier

lass. For example, a unimodal biometric system uses a single bio-

etric trait for verification or identification [24] . 

Support Vector Data Description (SVDD) [25] is among the most

idely used one-class classification methods used for anomaly de-

ection and other related applications. SVDD obtains a spherical

oundary around target data which can be made flexible by using

he kernel trick. The obtained boundary is used to detect outliers

uring the test, i.e., anything inside the closed boundary is classi-

ed as a target class and otherwise as an outlier. The Lagrangian

f SVDD is given as follows 

 = 

N ∑ 

i =1 

αi x 

T 
i x i −

N ∑ 

i =1 

N ∑ 

j=1 

αi x 

T 
i x j α j , (1) 

here x i is the input target training instance and maximizing

1) gives a set of αi corresponding to each instance. The instances

ith αi ≥ 0 define the data description. Other common one-class

lassification method is One-Class Support Vector Machine (OC-

VM) [26] . 

Techniques for enhancing the performance of one-class classi-

cation methods, mainly extensions of SVDD, can be categorized

nto four main categories: methods based on data structure, ker-

el issue, boundary shape, and non-stationary data [27] . As the

ame indicates, in the data structure category, the main focus is

n the structure of data. For example, in [28] , a confidence co-

fficient is associated with each training sample to deal with the

ncertainty of data. In kernel issue extensions, the main focus is

n reducing the complexity or proposing new kernels for one-class

lassification. For example, in [29] , a new kernel is proposed to im-

rove the accuracy of SVDD for time series classification. Propos-

ng changes in the boundary for enclosing the target data comes

nder the third category for improving one-class classification ac-

uracy. For example, in [30] , the ellipse shape is used for en-

apsulating target data instead of the traditional sphere used in

VDD. In [31] , it is shown that both SVDD and OC-SVM lead to

he same solution when exploiting the elliptical shape of the class.

he last category of algorithms for improving one-class classifier

erformance attempts to handle non-stationary data. For example

n [32] , Incremental-SVDD (I-SVDD) is proposed to handle non-

tationary or increasing data. Recently, in [33] , an algorithm de-

eloped for reducing the effect of uncertain data around the hy-

ersphere of SVDD achieved the state of the art result on many

CI [34] datasets. In this paper, we consider baseline SVDD com-

ined with multimodal subspace learning. However, in the future,

he method can be further extended using similar ideas. 

In the area of multimodal one-class classification, researchers

ave mainly focused on fusing the output labels of multiple mod-

ls trained for each type of feature independently, i.e., without

aking into account information from other feature types for one

odel [35] . 
. Multimodal subspace support vector data description 

MS-SVDD maps data from high-dimensional feature spaces to

 low-dimensional feature space optimized for one-class classifi-

ation. The optimized subspace is shared by data coming from all

odalities. MS-SVDD is an extension of Subspace Support Vector

ata Description (S-SVDD), which was proposed for unimodal data

n [36] . The main novelty of MS-SVDD is using the multimodal ap-

roach for one-class classification. Here, we first derive the linear

S-SVDD. Then we derive two non-linear versions using the ker-

el trick [20] and the Nonlinear Projection Trick (NPT) [37] , respec-

ively. 

.1. Linear MS-SVDD 

Let us assume that the items to be modelled are represented

y M different modalities. The instances in each modality m , m =
 , . . . , M, are represented by X m 

= [ x m, 1 , x m, 2 , . . . x m,N ] , x m,i ∈ R 

D m ,

here N is the total number of instances and D m 

is the dimen-

ionality of the feature space in modality m . MS-SVDD tries to find

 projection matrix Q m 

∈ R 

d×D m for each modality, which will

roject the corresponding instances to a lower ( d )-dimensional op-

imized subspace shared by all modalities. Thus, a feature vector

 m,i is projected to a d -dimensional vector y m,i as 

 m,i = Q m 

x m,i , ∀ m ∈ { 1 , . . . , M} , ∀ i ∈ { 1 , . . . , N} . (2)

o obtain a common description of all the data transformed from

heir corresponding modalities to the new common subspace, we

xploit Support Vector Data Description (SVDD) [25] to form a

losed boundary around the target class data in the new subspace.

he center and radius of the hypersphere are denoted by a ∈ R 

d 

nd R , respectively. Fig. 1 depicts the basic idea of the proposed

ethod. 

In order to find a compact hypersphere which encloses all the

arget data from all the modalities in the new subspace, we mini-

ize 

 (R, a ) = R 

2 

.t. 

 Q m 

x m,i − a ‖ 

2 
2 ≤ R 

2 , ∀ m ∈ { 1 , . . . , M} , ∀ i ∈ { 1 , . . . , N} . (3) 

By introducing slack variables ξm,i , such that most of the train-

ng data from all the modalities in the new common space should

ie inside the hypersphere, the above criterion becomes 

 (R, a ) = R 

2 + C 

M ∑ 

m =1 

N ∑ 

i =1 

ξm,i 

.t. 

‖ Q m 

x m,i − a ‖ 

2 
2 ≤ R 

2 + ξm,i , ξm,i ≥ 0 , 

∀ m ∈ { 1 , . . . , M} , ∀ i ∈ { 1 , . . . , N} . (4) 

he Lagrange function corresponding to (4) can be given as 

 = R 

2 + C 

M ∑ 

m =1 

N ∑ 

i =1 

ξm,i −
M ∑ 

m =1 

N ∑ 

i =1 

γm,i ξm,i −
M ∑ 

m =1 

N ∑ 

i =1 

αm,i 

(
R 

2 + ξm,i 

− x 

T 
m,i Q 

T 
m 

Q m 

x m,i + 2 a T Q m 

x m,i − a T a 

)
(5) 

he Lagrangian function should be maximized with respect to

m,i ≥ 0, and γ m,i ≥ 0 and minimized with respect to R , a , ξm,i ,

nd Q m 

. By setting the partial derivative to zero, we get 

∂L 

∂R 

= 0 ⇒ 

M ∑ 

m =1 

N ∑ 

i =1 

αm,i = 1 (6) 
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Fig. 1. Depiction of proposed MS-SVDD: Data from two modalities in their corresponding feature space are mapped to a common subspace, where positive class instances 

are enclosed inside a (hyper)sphere. 
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∂L 

∂a 
= 0 ⇒ a = 

M ∑ 

m =1 

N ∑ 

i =1 

αm,i Q m 

x m,i (7)

∂L 

∂ξm,i 

= 0 ⇒ C − αm,i − γm,i = 0 (8)

∂L 

∂Q m 

= 0 ⇒ Q m 

= 

(
a 

N ∑ 

i =1 

αm,i x 

T 
m,i 

)( N ∑ 

i =1 

αm,i x m,i x 

T 
m,i 

)−1 

(9)

It is clear from (6) –(9) that parameters α and Q are interre-

lated and cannot be jointly optimized. Hence we apply a two step

iterative optimization process where, in each step, we fix one pa-

rameter and optimize the other. Substituting (2), (6), (7) and (8) in

the Lagrangian function (5) , we get 

L = 

M ∑ 

m =1 

N ∑ 

i =1 

αm,i y 
T 
m,i y m,i −

M ∑ 

m =1 

N ∑ 

i =1 

M ∑ 

n =1 

N ∑ 

j=1 

αm,i y 
T 
m,i y n, j αn, j . (10)

We see that optimizing (10) for α corresponds to the traditional

SVDD applied in the subspace. Maximizing (10) for a particular set

of data will give us αm,i corresponding each sample. The value of

αm,i for corresponding sample defines its position with respect to

the hypersphere: 

• Samples with 0 < αm,i < C define the data description and lie

on the boundary of hypersphere, they are refered to as support

vectors. 
• Samples with αm,i = C are outside the boundary. 
• Samples with αm,i = 0 lie inside the boundary. 

In the second step, we fix α and update Q m 

for each modality.

For this step, we add a regularization term ω: 

L = 

M ∑ 

m =1 

N ∑ 

i =1 

αm,i x 

T 
m,i Q 

T 
m 

Q m 

x m,i 

−
M ∑ 

m =1 

N ∑ 

i =1 

M ∑ 

n =1 

N ∑ 

j=1 

αm,i x 

T 
m,i Q 

T 
m 

Q n x n, j αn, j + βω. (11)

The regularization term ω expresses the covariance of data from

different modalities in the new low-dimensional space, and β is a

regularization parameter for controlling the significance of ω. We

propose different settings for ω as 

ω 0 = 0 , (12)

ω 1 = 

M ∑ 

m =1 

tr 
(
Q m 

X m 

X 

T 
m 

Q 

T 
m 

)
, (13)
ψ  
 2 = 

M ∑ 

m =1 

tr 
(
Q m 

X m 

αm 

αT 
m 

X 

T 
m 

Q 

T 
m 

)
, (14)

 3 = 

M ∑ 

m =1 

tr (Q m 

X m 

λm 

λT 
m 

X 

T 
m 

Q 

T 
m 

) , (15)

 4 = 

M ∑ 

m =1 

M ∑ 

n =1 

tr (Q m 

X m 

X 

T 
n Q 

T 
n ) , (16)

 5 = 

M ∑ 

m =1 

M ∑ 

n =1 

tr (Q m 

X m 

αm 

αT 
n X 

T 
n Q 

T 
n ) , (17)

 6 = 

M ∑ 

m =1 

M ∑ 

n =1 

tr (Q m 

X m 

λm 

λT 
n X 

T 
n Q 

T 
n ) , (18)

here αm 

∈ R 

N in (14) and (17) is a vector having the elements

m, 1 , . . . , αm,N . Thus, αm 

has non-zero values for support vectors

nd outliers. λm 

∈ R 

N in (15) and (18) is a vector having the ele-

ents of αm 

that are smaller than C . Values of αm 

corresponding

o the outliers (i.e., αm,i = C) are replaced with zeros in λm 

. Thus,

m 

has non-zero values only for the support vectors. For ω 0 , the

egularization term becomes obsolete and it is not used in the op-

imization process. In ω 1 , the regularization term only uses repre-

entations coming from the respective modality and no represen-

ations from the other modalities are used to describe the vari-

nce of the positive class. In ω 2 , all support vectors, i.e., represen-

ations at the hypersphere boundary, and outliers are used to de-

cribe the class variance for the update of the corresponding Q m 

.

n ω 3 , only support vectors of the respective modality are used to

escribe the variance of the class to be modelled. In ω 4 , data from

ll the modalities are used to describe the covariance and regu-

arize the update of Q m 

. In ω 5 , the instances belonging to the hy-

ersphere boundary and outliers from all modalities are used to

escribe the covariance. In ω 6 , only the support vectors belonging

o class boundary from all modalities are used to update Q m 

and

escribe the covariance of the positive class. 

Note that the MS-SVDD formulation reduces to S-SVDD [36] if

ata from only one modality (M = 1) are taken into account for

ata description. In S-SVDD, a single projection matrix Q is de-

ermined for mapping the data X from higher-dimensional space

o a lower-dimensional space. A regularization term ψ , which ex-

resses the class variance in the low-dimensional space, is added

o the Lagrangian function of S-SVDD: 

 = tr (QX λλT X 

T Q 

T ) , (19)
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Algorithm 1: MS-SVDD optimization. 

Inputs : Z m 

for each m = 1 , . . . , M, // Input data from all 

modalities 

β , // Regularization parameter for controlling 

significance of ω 

η, // Learning rate parameter 

d, // Dimensionality of joint subspace 

C, // Regularization parameter in SVDD 

M // Total number of modalities 

Outputs : S m 

for each m = 1 , . . . , M, // Projection matrices for 

different modalities 

R , // Radius of hypersphere 

α // Defines the data description 

Z m 

= X m 

for linear and NPT case ( K m 

for kernel case) 

S m 

= Q m 

for linear and NPT case ( W m 

for kernel case) 

for m=1:M do 

Initialize S m 

via linear-PCA (kernel-PCA); 

end 

for iter = 1 : max _ iter do 

For each m , map Z m 

to Y m 

using Eq. (2) (Eq. (31)); 

Form Y by combining all Y m 

’s; 

Solve SVDD in the subspace to obtain α in Eq. (10); 

for m=1:M do 

Calculate �L using Eq. (21) (Eq. (31)) ; 

Update S m 

← S m 

− η�L; 

Orthogonalize and normalize S m 

using QR 

decomposition (eigendecomposition); 

end 

end 

For each m , compute Y m 

using Eq. (2) (Eq. (31)); 

Form Y by combining all Y m 

’s; 

Solve SVDD to obtain the final data description; 

t  

n

y

w  

d  

t  

i  

t  

I  

g

K

w  

k

 

t

L

here λ can take different forms as described in [36] . The regu-

arization terms, ω 0 , ω 1 , ω 2 , and ω 3 for MS-SVDD become equiva-

ent to the regularization terms proposed for S-SVDD when M = 1 .

ence, MS-SVDD is a more generalized form of S-SVDD, which can

orm a data description by considering data from multiple modali-

ies. 

We update Q m 

by using the gradient of L in (11) with respect

o Q m 

, 

 m 

← Q m 

− η
L, (20) 

here η is the learning rate parameter and the gradient of L is

alculated as 

∂L 

∂Q m 

= 2 

N ∑ 

i =1 

αm,i Q m 

x m,i x 

T 
m,i 

− 2 

N ∑ 

i =1 

N ∑ 

j=1 

M ∑ 

n =1 

Q n x n, j x 

T 
m,i αm,i αn, j + β
ω, (21) 

here 
ω is the derivative of the regularization term with respect

o Q m 

ω 0 = 0 , (22) 

ω 1 = 2 Q m 

X m 

X 

T 
m 

, (23)

ω 2 = 2 Q m 

X m 

αm 

αT 
m 

X 

T 
m 

, (24)

ω 3 = 2 Q m 

X m 

λm 

λT 
m 

X 

T 
m 

, (25)

ω 4 = 2 

M ∑ 

n =1 

(Q n X n X 

T 
m 

) , (26)

ω 5 = 2 

M ∑ 

n =1 

(Q n X n αn α
T 
m 

X 

T 
m 

) , (27)

ω 6 = 2 

M ∑ 

n =1 

(Q n X n λn λ
T 
m 

X 

T 
m 

) . (28)

We initialize the Q m 

using PCA. At every iteration, the projec-

ion matrix is orthogonalized and normalized so that 

 m 

Q 

T 
m 

= I , (29) 

here I is an identity matrix. We use QR decomposition

or orthogonalizing and normalizing the projection matrix Q m 

.

lgorithm 1 describes the overall MS-SVDD algorithm. 

.2. Non-linear MS-SVDD 

For non-linear mapping from the original feature spaces to a

ew shared feature space, we use two approaches. The first ap-

roach is based on the standard kernel trick [20] and the second

n the Nonlinear Projection Trick (NPT) [37] , which is used as a

omputationally lighter alternative to the kernel trick. 

.2.1. Non-linear MS-SVDD with standard kernel trick 

In the non-linear data description, the original data are mapped

o a kernel space F using a non-linear function φ( ·) such that

 m,i ∈ R 

D m → φ(x m,i ) ∈ F . The kernel space dimensionality can

ossibly be infinite. Then the data are projected from the kernel

pace to R 

d as 

 m,i = Q m 

φ(x m,i ) , ∀ i ∈ { 1 , . . . , N} . (30)

n order to calculate y m,i , we use the so-called kernel trick by ex-

ressing the projection matrix Q m 

as a linear combination of the
raining data representations of the respective modality in the ker-

el space F , leading to 

 m,i = W m 

�T 
m 

φ(x m,i ) = W m 

k m,i , ∀ i ∈ { 1 , . . . , N} , (31) 

here �m 

∈ R 

|F|×N is a matrix formed in F containing the training

ata representations of modality m , W m 

∈ R 

d×N is a matrix con-

aining the weights for �m 

needed to form Q m 

, and k m,i is the

 th column of the Gramian matrix, also called as the kernel ma-

rix, K m 

∈ R 

N×N , having elements equal to K m,i j = φ(x m,i ) 
T φ(x m, j ) .

n our experiments, we use the Radial Basis Function (RBF) kernel,

iven by 

 m,i j = exp 

(
−‖ x m,i − x m, j ‖ 

2 
2 

2 σ 2 

)
, (32) 

here σ > 0 is a hyperparameter and determines the width of the

ernel. 

The augmented version of the Lagrangian function now takes

he following form: 

 = 

M ∑ 

m =1 

N ∑ 

i =1 

αm,i k 

T 
m,i W 

T 
m 

W m 

k m,i 

−
M ∑ 

m =1 

N ∑ 

i =1 

M ∑ 

n =1 

N ∑ 

j=1 

αm,i k 

T 
m,i W 

T 
m 

W n k n, j αn, j + βω. (33) 
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The α’s are calculated optimizing (10) with W m 

’s fixed, i.e., apply-

ing SVDD in the subspace. In the second step, the α’s are fixed and

W m 

’s are updated with the gradient descent: 

W m 

← W m 

− η
L, (34)

where the gradient is calculated as 

∂L 

∂W m 

= 2 

N ∑ 

i =1 

αm,i W m 

k m,i k 

T 
m,i 

− 2 

N ∑ 

i =1 

N ∑ 

j=1 

M ∑ 

n =1 

W n k n, j k 

T 
m,i αm,i αn, j + β
ω. (35)

The gradient of the regularization term, 
ω, now takes the follow-

ing forms: 


ω 0 = 0 , (36)


ω 1 = 2 W m 

K m 

K 

T 
m 

, (37)


ω 2 = 2 W m 

K m 

αm 

αT 
m 

K 

T 
m 

, (38)


ω 3 = 2 W m 

K m 

λm 

λT 
m 

K 

T 
m 

, (39)


ω 4 = 2 

M ∑ 

n =1 

(W n K n K 

T 
m 

) , (40)


ω 5 = 2 

M ∑ 

n =1 

(W n K n αn α
T 
m 

K 

T 
m 

) , (41)


ω 6 = 2 

M ∑ 

n =1 

(W n K n λn λ
T 
m 

K 

T 
m 

) . (42)

We initialize the matrix W m 

for each mode using kernel-PCA.

We orthogonalize and normalize W m 

at every iteration so that 

W m 

�T 
m 

�m 

W 

T 
m 

= I . (43)

We decompose (43) using eigendecomposition as 

W m 

�T 
m 

�m 

W 

T 
m 

= V m 

�m 

V 

T 
m 

, (44)

where �T 
m 

�m 

is K m 

, �m 

is a diagonal matrix containing the eigen-

values of W m 

�T 
m 

�m 

W 

T 
m 

and V m 

contains the corresponding eigen-

vectors. After further simplification, the normalized projection ma-

trix ˆ W m 

can be computed as 

ˆ W m 

= (�
1 
2 
m 

) + V 

T 
m 

W m 

, (45)

where the + sign denotes pseudo-inverse. For notation simplicity,

we set W m 

= 

ˆ W m 

. 

3.2.2. Non-linear MS-SVDD with nonlinear projection trick 

The non-linear MS-SVDD using the kernel trick requires com-

puting the eigendecomposition (44) at every iteration. This is com-

putationally expensive and, therefore, we propose an alternative

non-linear approach using NPT [37] . Here, a non-linear mapping is

applied only at the beginning of the process, while the optimiza-

tion follows the linear MS-SVDD. In the NPT-based MS-SVDD, we

first compute kernel matrix K m 

using (32) . In the next step, the

computed kernel matrix is centralized as 

ˆ K m 

= (I − E N ) K m 

(I − E N ) (46)

where ˆ K m 

is the centralized kernel matrix and E N is N × N matrix

defined as 

E N = 

1 

1 N 1 

T 
N . (47)
N 
 N ∈ R 

N is a vector with each element having value of 1. The cen-

ralized matrix ˆ K m 

is decomposed by using eigendecomposition, 

ˆ 
 m 

= U m 

A m 

U 

T 
m 

, (48)

here A m 

contains the non-negative eigenvalues of the centered

ernel matrix and U m 

contains the corresponding eigenvectors. The

ata in the reduced dimensional kernel space is obtained as 

m 

= (A 

1 
2 
m 

) + U 

+ 
m ̂

 K m 

(49)

ince we consider NPT as a pure preprocessing step, we continue

y considering �m 

as our input data, i.e., we set X m 

= �m 

. Then

e follow the linear MS-SVDD. Note that in cases where the num-

er of training samples is high, this pre-processing step can be

ighly accelerated by following approximations, like the Nyström-

ased Approximate Kernel Subspace Learning method in [38] . 

.3. Test phase 

During the test phase, an instance x m ∗ ∈ R 

D m (the ∗ in subscript

enotes test instance) coming from modality m is projected to the

ommon d -dimensional subspace using (2) for the linear case. For

ernel case, first, the kernel vector is computed as 

 m ∗ = �T 
m 

φ(x m ∗) (50)

nd then projected to the common d -dimensional subspace using

31) . For NPT, first the kernel vector k m 

∗ is computed and then cen-

ralized as 

ˆ 
 m ∗ = (I − E N )[ k m ∗ − 1 

N 

K m 

1 N ] . (51)

he centralized kernel vector is mapped to 

m ∗ = (�T 
m 

) + ˆ k m ∗ (52)

nd then to d -dimensional subspace using (2) (for notation sim-

licity φm 

∗ is considered as x m 

∗ ). 

The decision to classify the test instance y m 

∗ as positive or neg-

tive is taken on the basis of its distance from the center of hyper-

phere, i.e., 

 y m ∗ − a ‖ 

2 
2 = y T m ∗y m ∗ − 2 

M ∑ 

k =1 

N ∑ 

i =1 

αk,i y 
T 
m ∗y k,i 

+ 

M ∑ 

k =1 

N ∑ 

i =1 

M ∑ 

n =1 

N ∑ 

j=1 

αk,i αn, j y 
T 
k,i y n, j . (53)

he representation y m 

∗ is assigned to the positive class when

 y m ∗ − a ‖ 2 
2 

≤ R 2 and to the negative class if ‖ y m ∗ − a ‖ 2 
2 

> R 2 ,

here R 2 is the distance from center a to any support vector on

he boundary, 

 

2 = v T v − 2 

M ∑ 

m =1 

N ∑ 

i =1 

αm,i y 
T 
m,i v + 

M ∑ 

m =1 

N ∑ 

i =1 

M ∑ 

n =1 

N ∑ 

j=1 

αm,i αn, j y 
T 
m,i y n, j , 

(54)

here v is any support vector in the training set with correspond-

ng α having value 0 < α < C . Since the items are represented by

 different modalities, the final decision for assigning the item to

 particular class (either positive or negative) can be taken using

ifferent strategies explained in Section 4.3 . 

.4. Complexity analysis 

The linear version of the proposed method has the following

ain steps: 1) Initializing the projection matrices via PCA, 2) map-

ing data from all modalities to a lower d -dimensional shared

pace, 3) SVDD for obtaining the α values and final data descrip-

ion for all data points coming from M different modalities, 4)
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omputing the gradient ( 
L ) for each modality, 5) updating the

rojection matrices and 6) QR decomposition for orthogonalizing

nd normalizing the projection matrices. We analyze each of these

teps and then compute the overall complexity of the algorithm: 

1. PCA of a matrix is computed by the eigenvalue decomposition

of its covariance matrix, so it involves two steps, i.e., comput-

ing the covariance matrix and then the eigenvalue decomposi-

tion of the obtained covariance matrix. The complexity of cal-

culating covariance matrix and corresponding eigenvalue de-

composition for a single modality is O 

(
ND m 

× min (N, D m 

) 
)

and

O 

(
D 

3 
m 

)
, respectively [39] . The complexity of computing PCA for

all modalities is O 

(
min (N 

2 D 1 , D 

2 
1 N) + D 

3 
1 
) + ( min (N 

2 D 2 , D 

2 
2 N) +

D 

3 
2 
) + · · · + ( min (N 

2 D M 

, D 

2 
M 

N) + D 

3 
M 

)
. We denote the sum of

dimensions of all modalities as 
D = D 1 + D 2 + · · · + D M 

and

similarly the sum of squared dimensions as 
D 2 = D 

2 
1 

+ D 

2 
2 

+
· · · + D 

2 
M 

(note that 
D 2 � = (
D ) 2 ) and sum of cubed di-

mensions as 
D 3 = D 

3 
1 

+ D 

3 
2 

+ · · · + D 

3 
M 

. Hence, the complex-

ity of initializing the projection matrices via PCA becomes

O 

(
min (N 

2 
D , 
D 2 N) + 
D 3 
)
. 

2. The complexity of mapping data from the original D m 

dimen-

sional space to a lower d -dimensional space is the complexity

of multiplying d × D m 

and D m 

× N , which has the complexity

of O 

(
dD m 

N 

)
. Repeating this for all modalities we get O 

(
d
D N 

)
3. The complexity of SVDD for N data points is O 

(
N 

3 
)

[40] . For

all data points coming from M different modalities it becomes

O 

(
M 

3 N 

3 
)
. 

4. The gradient 
L to update Q m 

is computed using (21) , where

the second term has the highest complexity (equally high as

regularization terms 4–6). Its complexity is O(2 dN 

2 D m 


D ) . As

this step is repeated for all modalities the total complexity be-

comes O(2 dN 

2 
D 
2 ) . 

5. Updating the projection matrices has O 

(
d
D 

)
complexity. 

6. The complexity of QR decomposition for a single modality is

O(d D m 

2 ) [41] . Thus, the overall complexity of QR decomposi-

tions for all the modalities is O(d
D 2 ) . 

Dropping the relatively lower intensive computational steps

nd adding the rest, the full complexity of the proposed method

educes to O 

(
min (N 

2 
D , 
D 2 N) + 
D 3 + M 

3 N 

3 
)
. Assuming that

he total number of samples M 

∗N is always greater than D and

 < < N , the time complexity of (a single iteration of) our pro-

osed algorithm in terms of the big O notation is O(N 

3 ) . In the

esting phase, each representation of a test sample in each modal-

ty is projected to the d -dimensional subspace and then its dis-

ance is compared to R . This has the total complexity of O(d
D +
d) . 

For the non-linear version with NPT, the kernel matrix K m 

is

rst formed which has the complexity of O(D m 

N 

2 ) . Then the ker-

el matrix is centralized and decomposed by using eigendecom-

osition. Both of these steps have the complexity of O(N 

3 ) . As

he data dimensionality in the remaining steps of the proposed

ethod changes from D m 

to N , the total complexity of the remain-

ng steps becomes O 

(
M N 

3 + M 

3 N 

3 
)
. Thus, the overall complexity

n terms of the big O notation remains at O 

(
N 

3 
)

for M < < N ,

hile in practice the computational complexity is higher (by a

calar multiplier c ) than for the linear version. Also for the non-

inear version with the standard kernel trick, the overall complex-

ty remains the same, but the kernel mapping is repeated at ev-

ry iteration and, thus, the scalar c becomes larger for the overall

raining process. The testing complexity of the non-linear methods

ncreases to O(N
D + dMN + Md) . 
. Experiments 

.1. Datasets and prepossessing 

To evaluate the proposed method, we performed different

ets of experiments over 5 datasets. Robot Execution Failures

ataset, Single Proton Emission Computed Tomography (SPECTF)

eart dataset, and Ionosphere dataset were downloaded from UC

rvine (UCI) machine learning repository [34] . Caltech-7 dataset

nd Handwritten dataset were downloaded from a repository for

ulti-view learning [42] . The details of datasets and experiments

re as follows. 

The first set of experiments was performed on the Robot Execu-

ion Failures dataset [43] . In Robot Execution Failures dataset, force

nd torque measurements are collected at regular intervals of time

fter a task failure is detected. The dataset is divided into five dif-

erent learning problems (LP) corresponding to different triggering

vents: 

• LP1: Failures in approach to grasp position 

• LP2: Failures in the transfer of a part 
• LP3: Position of the part after a transfer failure 
• LP4: Failures in approach to ungrasp position 

• LP5: Failures in motion with part 

The total number of instances and the distribution of the

lasses are given in Table 1 . All instances are given as 15 sam-

les collected at 315 ms regular time intervals for each sensor. For

his dataset, we consider all the instances belonging to the normal

lass as the target class and the remaining classes as the non-target

ata. Hence, we have two modalities (torque and force measure-

ents), and we consider the dataset as a one-class classification

roblem. 

The second set of experiments was performed SPECTF heart

ataset [44] . The SPECTF heart dataset consists of two sets of fea-

ures corresponding to rest and stress condition SPECTF images

f different subjects. The training set consists of 40 examples di-

gnosed as healthy heart muscle perfusions and 40 diagnosed as

athological perfusions. The test set consists of 15 instances of

ealthy heart muscle perfusions and 172 from instances diagnosed

s pathological perfusions. We convert this to a multimodal one-

lass classification problem by considering the rest and stress con-

itions as different modalities and by selecting the healthy heart

uscle perfusions as our target class. 

The third set of experiments was performed over the Caltech-7

ataset. We used Gabor feature and Wavelet moments as our two

ifferent modalities. The dataset contains 1474 total samples from

 different classes. We selected faces (435 samples) as our target

lass and the rest of the classes all together (1039 samples) as the

utlier class. 

We used Ionosphere dataset for the fourth set of experiments.

he categories in this dataset are described by two attributes per

ulse number resulting from the complex electromagnetic signal,

rocessed by an autocorrelation function. We used the two at-

ributes (real and complex) for each pulse as two different modal-

ties and the attribute “good” as our target class. The total number

f samples in this dataset is 351, out of which 225 are from the

arget class (good), and the rest of 126 samples are from outlier

lass (bad). 

For the fifth set of experiments, we used Handwritten dataset.

e considered the samples of numeral 0 as the target. In the

andwritten dataset, the total number of samples is 20 0 0, out of

hich 200 are from the target class. The rest of the 1800 sam-

les are considered as an outlier class. We used the Zernike mo-

ent (ZER) and morphological (MOR) features as our two different

odalities. 
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Table 1 

Robot execution failures dataset. 

Learning problem Instances Classes and distribution 

LP1 88 24% normal 19% collision 18% front collision 39% obstruction 

LP2 47 43% normal 13% front collision 15% back collision 11% collision to the right 19% collision to the left 

LP3 47 43% ok 19% slightly moved 32% moved 06% lost 

LP4 117 21% normal 62% collision 18% obstruction 

LP5 164 27% normal 16% bottom collision 13% bottom obstruction 29% collision in part 16% collision in tool 
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4.2. Experimental setup 

For the Robot Execution Failures dataset, Ionosphere dataset,

Caltech-7 dataset, and Handwritten dataset, we performed our ex-

periments on 70-30% split for training and testing sets. We se-

lected the 70-30% split randomly 5 times, keeping the distribution

of classes similar to the original data. To tune the hyperparame-

ters for final testing, we did 5-fold cross-validation on the training

set, where the (70%) training data are divided into 5 different sets,

and each time one set is used for validation while all the others

for training. The process was repeated 5 times until all the sets

have been used as validation sets. For SPECTF heart dataset, the

train and test sets are given with the dataset. We did 5-fold cross-

validation on the training set to optimize the hyperparameters. 

For all datasets, the models were trained by using samples from

the positive class only, while testing was carried out using all

the classes. The hyperparameters were selected from the following

ranges: 

• β ∈ { 10 −4 , 10 −3 , 10 −2 , 10 −1 , 10 0 , 10 1 , 10 2 , 10 3 , 10 4 } , 
• C ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, 
• σ ∈ { 10 −3 , 10 −2 , 10 −1 , 10 0 , 10 1 , 10 2 , 10 3 } , 
• d ∈ {1, 2, 3, 4, 5, 10, 20, 50, 100}, 
• η = 0 . 1 . 

Here, we restricted the dimension d of the shared subspace as

d < min { D 1 , . . . , D M 

} for a given dataset, where D m 

is the dimen-

sionality of modality m . For competing methods, the features from

different modalities were concatenated before training the model.

We also report the results of the competing methods by consider-

ing data from one modality at a time for training and testing. For

competing methods, the hyperparameters were selected from the

same ranges as mentioned above. 

4.3. Decision strategies 

During testing, after the common compact representation of

all modalities was formed, each representation (modality) of an

instance was mapped to the lower-dimensional subspace via

corresponding projection matrix and classified as described in

Section 3.3 . The following four strategies were used to decide the

final class for the instance: 

• Decision strategy 1 (also called the AND gate) : The test in-

stance is assigned the target label if the representations from

all modalities for that particular instance are classified to the

target class and the non-target label otherwise. 
• Decision strategy 2 (also called as the OR gate) : The final de-

cision is taken on the basis of the OR gate principle, i.e., if a

representation of an instance from any of the modalities is clas-

sified to the target class, the overall decision for that particular

instance is taken in favor of the target class. 
• Decision strategy 3: The final classification decision is made on

the basis of first modality, i.e., if the representation from the

first modality is assigned to a particular class, the overall clas-

sification is made following that. 
• Decision strategy 4: The overall decision is taken on the ba-

sis of the label assigned to the representation from the second

modality. 

It should be noted that for more than two modalities, different

ecision strategies, such as majority vote, might be more suitable. 

.4. Evaluation criteria 

One-class classification models can be evaluated using different

etrics. These metrics are decided on the basis of the goals of a

iven application. For example, in outlier detection, the focus is on

etecting negative instances accurately. The most common metrics

n one-class classification are true positive rate ( tpr ), and true neg-

tive rate ( tnr ). The former, also called as recall, sensitivity, or hit

ate, is the proportion of positive instances that is classified by the

rained model as positive correctly: 

 pr = 

t p 

p 
, (55)

here tp is the number of positive samples classified correctly and

 is the total number of positive samples in the test set. The latter,

nr , also called as specificity, is defined as 

 nr = 

t n 

n 

, (56)

here tn is the number of negative samples classified correctly and

 is the total number of negative samples in the test set. Accuracy

 accu ) is measured as the ratio of the number of correctly classified

nstances to the total number of instances: 

ccu = 

t p + t n 

p + n 

. (57)

recision ( pre ) measures the proportion of instances classified pos-

tive which really are positive: 

pre = 

t p 

t p + f p 
, (58)

here fp is the number of false positives. Another useful measure

s F1 measure, which is the harmonic mean of pre and tpr : 

 1 = 2 × pre × t pr 

pre + t pr 
. (59)

eometric mean ( gm ) is defined as the square root of the product

f sensitivity and specificity: 

m = 

√ 

t pr × t nr . (60)

m has been used by many researchers for imbalanced datasets.

ince it takes into consideration both sensitivity and specificity, we

pted to finetune hyperparameters based on the gm score on the

alidation data. 

.5. Experimental results and discussion 

In Tables 2–5 , we report the average of different evaluation met-

ics over the five data splits for Robot Execution Failures dataset,

altech-7 dataset, Ionosphere dataset, and Handwritten dataset, re-

pectively, for both linear and non-linear versions of the applied
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Table 2 

Test results for robot execution failures dataset. 

Linear Non-linear 

accu tpr tnr pre F1 gm accu tpr tnr pre F1 gm 

Proposed method 

MS-SVDD ω 2 ds 3 0.97 0.97 0.97 0.93 0.95 0.97 0.94 0.98 0.92 0.83 0.90 0.95 

MS-SVDD ω 5 ds 3 0.97 0.95 0.97 0.93 0.94 0.96 0.94 0.98 0.92 0.83 0.90 0.95 

Concatenated features 

S-SVDD ψ 1 0.66 0.89 0.57 0.46 0.60 0.71 0.94 0.84 0.98 0.95 0.89 0.91 

S-SVDD ψ 2 0.70 0.80 0.66 0.58 0.60 0.70 0.92 0.90 0.93 0.84 0.87 0.91 

S-SVDD ψ 3 0.66 0.78 0.61 0.46 0.56 0.67 0.93 0.93 0.93 0.85 0.89 0.93 

S-SVDD ψ 4 0.64 0.94 0.52 0.44 0.60 0.70 0.96 0.90 0.98 0.96 0.93 0.94 

OC-SVM 0.51 0.47 0.52 0.28 0.35 0.49 0.86 0.49 1.00 1.00 0.65 0.70 

SVDD 0.97 0.91 0.99 0.98 0.95 0.95 0.95 0.85 0.99 0.98 0.91 0.92 

Force measurements 

S-SVDD ψ 1 0.76 0.88 0.71 0.55 0.67 0.79 0.96 0.90 0.98 0.95 0.92 0.94 

S-SVDD ψ 2 0.77 0.94 0.71 0.56 0.70 0.82 0.96 0.90 0.98 0.95 0.92 0.94 

S-SVDD ψ 3 0.73 0.70 0.74 0.51 0.58 0.71 0.96 0.91 0.98 0.95 0.93 0.94 

S-SVDD ψ 4 0.76 0.85 0.72 0.54 0.66 0.78 0.93 0.82 0.98 0.95 0.84 0.88 

OC-SVM 0.50 0.53 0.49 0.29 0.37 0.51 0.86 0.49 1.00 1.00 0.65 0.70 

SVDD 0.97 0.90 0.99 0.98 0.94 0.95 0.97 0.92 0.99 0.98 0.95 0.96 

Torque measurements 

S-SVDD ψ 1 0.59 0.96 0.44 0.41 0.57 0.65 0.97 0.89 1.00 1.00 0.94 0.94 

S-SVDD ψ 2 0.61 0.94 0.48 0.42 0.57 0.67 0.71 0.66 0.73 0.51 0.54 0.51 

S-SVDD ψ 3 0.62 0.92 0.50 0.43 0.58 0.67 0.92 0.76 0.99 0.97 0.82 0.85 

S-SVDD ψ 4 0.61 0.96 0.48 0.42 0.58 0.68 0.76 0.76 0.76 0.76 0.71 0.66 

OC-SVM 0.52 0.59 0.49 0.31 0.40 0.53 0.84 0.58 0.94 0.81 0.66 0.73 

SVDD 0.90 0.95 0.88 0.76 0.84 0.91 0.91 0.88 0.92 0.81 0.84 0.90 

Table 3 

Test results for Caltech-7 dataset. 

Linear Non-linear 

accu tpr tnr pre F1 gm accu tpr tnr pre F1 gm 

Proposed method 

MS-SVDD ω 1 ds 1 0.91 0.96 0.89 0.78 0.86 0.92 0.94 0.98 0.92 0.85 0.91 0.95 

MS-SVDD ω 4 ds 1 0.91 0.95 0.89 0.78 0.86 0.92 0.94 0.95 0.94 0.88 0.91 0.95 

Concatenated features 

S-SVDD ψ 1 0.65 0.96 0.52 0.46 0.62 0.71 0.37 0.35 0.38 0.15 0.20 0.23 

S-SVDD ψ 2 0.67 0.92 0.57 0.48 0.63 0.72 0.66 0.69 0.64 0.39 0.48 0.53 

S-SVDD ψ 3 0.71 0.84 0.66 0.59 0.65 0.69 0.90 0.79 0.94 0.86 0.81 0.86 

S-SVDD ψ 4 0.62 0.96 0.47 0.46 0.61 0.66 0.87 0.61 0.97 0.91 0.72 0.76 

OC-SVM 0.22 0.47 0.12 0.18 0.26 0.22 0.86 0.53 1.00 0.99 0.69 0.73 

SVDD 0.92 0.94 0.91 0.81 0.87 0.93 0.96 0.94 0.97 0.93 0.94 0.95 

Gabor feature 

S-SVDD ψ 1 0.68 0.72 0.67 0.47 0.57 0.69 0.46 0.84 0.31 0.33 0.48 0.50 

S-SVDD ψ 2 0.68 0.72 0.67 0.47 0.57 0.69 0.54 0.78 0.44 0.46 0.52 0.50 

S-SVDD ψ 3 0.61 0.74 0.55 0.45 0.52 0.58 0.76 0.68 0.80 0.65 0.63 0.71 

S-SVDD ψ 4 0.70 0.74 0.68 0.49 0.59 0.71 0.78 0.39 0.94 0.80 0.46 0.55 

OC-SVM 0.43 0.53 0.40 0.27 0.36 0.45 0.79 0.55 0.89 0.69 0.61 0.70 

SVDD 0.76 0.70 0.78 0.57 0.63 0.74 0.74 0.92 0.67 0.55 0.68 0.78 

Wavelet moments 

S-SVDD ψ 1 0.70 0.73 0.68 0.50 0.59 0.69 0.54 0.44 0.58 0.22 0.26 0.24 

S-SVDD ψ 2 0.71 0.73 0.70 0.52 0.60 0.70 0.51 0.93 0.33 0.41 0.55 0.42 

S-SVDD ψ 3 0.50 0.93 0.33 0.38 0.54 0.50 0.79 0.38 0.96 0.65 0.44 0.51 

S-SVDD ψ 4 0.56 0.88 0.42 0.40 0.54 0.59 0.61 0.51 0.65 0.50 0.36 0.30 

OC-SVM 0.21 0.48 0.10 0.18 0.26 0.21 0.84 0.48 0.99 0.97 0.64 0.69 

SVDD 0.91 0.94 0.89 0.79 0.85 0.91 0.94 0.97 0.93 0.85 0.91 0.95 

m  

S  

f  

i  

[  

(  

p  

o  

b  

f  

t  

r  

s  

g

 

p  

e  

p  

n  

w  

r  

i  
ethods. In Table 6 , we report the results on the test set for the

PECTF heart dataset. In these tables, we only show the best per-

orming versions of the proposed method, along with all compet-

ng methods. We compare our results with OC-SVM [26] , SVDD

25] , and S-SVDD [36] . In S-SVDD, different regularization terms

 ψ ’s) were proposed and, hence, we compare MS-SVDD with all

roposed regularization terms of S-SVDD. We use kernel version

f the competing methods for non-linear comparisons. In these ta-

les, we report the best performing non-linear version of MS-SVDD

or corresponding datasets. To analyze the different regularization

erms and decision strategies for the proposed method, we also
eport the exhaustive results obtained by different settings in the

upplementary material in Tables 1–5 . The best results in terms of

m are reported as in bold formatting. 

For the Robot Execution Failures dataset ( Table 2 ), our pro-

osed method outperforms all the competing methods in the lin-

ar case. The results achieved by the linear version of the pro-

osed MS-SVDD method are overall best also compared to the

on-linear methods. Table 2 shows that using decision strategy 3

ith constraint ω 2 (all support vectors and outliers from the cor-

esponding modality considered for the update of the correspond-

ng Q m 

) yields the best overall results for the robot dataset. In the
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Table 4 

Test results for Ionosphere dataset. 

Linear Non-linear 

accu tpr tnr pre F1 gm accu tpr tnr pre F1 gm 

Proposed method 

MS-SVDD ω 2 ds 4 0.87 0.95 0.73 0.87 0.91 0.83 0.76 0.86 0.59 0.79 0.82 0.71 

MS-SVDD ω 1 ds 4 0.83 0.91 0.69 0.84 0.87 0.79 0.88 0.95 0.74 0.87 0.91 0.84 

Concatenated features 

S-SVDD ψ 1 0.69 0.88 0.32 0.69 0.77 0.53 0.49 0.37 0.69 0.55 0.39 0.28 

S-SVDD ψ 2 0.69 0.89 0.31 0.69 0.77 0.51 0.74 0.60 0.98 0.98 0.75 0.77 

S-SVDD ψ 3 0.58 0.63 0.48 0.66 0.62 0.51 0.72 0.77 0.62 0.83 0.77 0.63 

S-SVDD ψ 4 0.72 0.98 0.23 0.70 0.82 0.43 0.66 0.61 0.77 0.88 0.67 0.62 

OC-SVM 0.38 0.39 0.34 0.52 0.45 0.37 0.66 0.48 0.97 0.97 0.63 0.67 

SVDD 0.87 0.93 0.76 0.88 0.90 0.84 0.89 0.94 0.78 0.89 0.92 0.86 

Real 

S-SVDD ψ 1 0.81 0.99 0.50 0.78 0.87 0.69 0.54 0.36 0.86 0.67 0.43 0.46 

S-SVDD ψ 2 0.80 0.99 0.47 0.78 0.87 0.67 0.62 0.49 0.86 0.87 0.61 0.64 

S-SVDD ψ 3 0.81 0.99 0.49 0.78 0.87 0.68 0.68 0.63 0.78 0.86 0.70 0.68 

S-SVDD ψ 4 0.81 0.99 0.50 0.78 0.87 0.70 0.58 0.45 0.83 0.85 0.53 0.56 

OC-SVM 0.49 0.52 0.42 0.61 0.56 0.46 0.68 0.56 0.89 0.93 0.67 0.69 

SVDD 0.88 0.95 0.74 0.87 0.91 0.84 0.89 0.94 0.81 0.90 0.92 0.87 

Complex 

S-SVDD ψ 1 0.50 0.37 0.72 0.70 0.49 0.51 0.43 0.27 0.71 0.52 0.30 0.34 

S-SVDD ψ 2 0.47 0.35 0.69 0.67 0.46 0.49 0.66 0.56 0.83 0.85 0.68 0.68 

S-SVDD ψ 3 0.53 0.57 0.46 0.67 0.58 0.39 0.65 0.65 0.65 0.78 0.70 0.63 

S-SVDD ψ 4 0.50 0.38 0.72 0.70 0.49 0.52 0.63 0.64 0.62 0.76 0.69 0.62 

OC-SVM 0.40 0.31 0.57 0.56 0.40 0.42 0.66 0.59 0.78 0.84 0.69 0.67 

SVDD 0.77 0.89 0.55 0.79 0.83 0.70 0.79 0.91 0.58 0.80 0.85 0.72 

Table 5 

Test results for Handwritten dataset. 

Linear Non-linear 

accu tpr tnr pre F1 gm accu tpr tnr pre F1 gm 

Proposed method 

MS-SVDD ω 4 ds 4 0.98 0.99 0.98 0.90 0.93 0.98 0.99 0.99 1.00 0.98 0.98 0.99 

MS-SVDD ω 4 ds 1 0.98 0.90 0.99 0.89 0.89 0.94 0.98 0.95 0.99 0.91 0.93 0.97 

Concatenated features 

S-SVDD ψ 1 0.78 0.92 0.76 0.34 0.49 0.83 0.53 0.40 0.54 0.05 0.09 0.14 

S-SVDD ψ 2 0.82 0.88 0.81 0.40 0.54 0.84 0.62 0.66 0.61 0.18 0.25 0.44 

S-SVDD ψ 3 0.82 0.97 0.81 0.39 0.55 0.88 0.63 0.58 0.64 0.20 0.25 0.30 

S-SVDD ψ 4 0.84 0.92 0.83 0.42 0.56 0.87 0.71 0.39 0.75 0.08 0.13 0.17 

OC-SVM 0.50 0.51 0.50 0.12 0.19 0.49 0.95 0.51 1.00 1.00 0.68 0.71 

SVDD 0.95 0.93 0.95 0.69 0.79 0.94 0.95 0.92 0.96 0.74 0.81 0.94 

ZER 

S-SVDD ψ 1 0.55 0.92 0.51 0.18 0.30 0.68 0.59 0.41 0.61 0.06 0.10 0.24 

S-SVDD ψ 2 0.52 0.88 0.48 0.17 0.28 0.64 0.62 0.78 0.60 0.17 0.27 0.48 

S-SVDD ψ 3 0.50 0.96 0.45 0.19 0.31 0.63 0.57 0.61 0.57 0.31 0.20 0.37 

S-SVDD ψ 4 0.64 0.90 0.61 0.21 0.34 0.74 0.55 0.60 0.54 0.09 0.15 0.24 

OC-SVM 0.43 0.42 0.43 0.09 0.14 0.41 0.95 0.52 1.00 0.93 0.67 0.72 

SVDD 0.88 0.90 0.88 0.47 0.61 0.89 0.92 0.88 0.92 0.56 0.68 0.90 

MOR 

S-SVDD ψ 1 0.84 0.99 0.82 0.48 0.61 0.90 0.84 0.01 0.93 0.00 0.00 0.03 

S-SVDD ψ 2 0.92 0.99 0.91 0.66 0.76 0.95 0.58 0.44 0.60 0.43 0.22 0.20 

S-SVDD ψ 3 0.86 0.99 0.84 0.52 0.64 0.91 0.61 0.70 0.60 0.44 0.42 0.36 

S-SVDD ψ 4 0.84 0.99 0.82 0.48 0.61 0.90 0.25 0.67 0.20 0.27 0.14 0.04 

OC-SVM 0.54 0.45 0.55 0.13 0.18 0.39 0.99 0.87 1.00 1.00 0.93 0.93 

SVDD 0.93 0.91 0.93 0.75 0.78 0.92 0.99 0.96 1.00 1.00 0.98 0.98 
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non-linear case, the best performance for the proposed method is

achieved by using the kernel trick with either constraint type ω 2 

or ω 5 , both with decision strategy 3. 

We also notice that the first modality (force measurements)

is vital in taking the final decision as in both linear and non-

linear cases, the best results are obtained when the decision is

taken based on the first modality (decision strategy 3). The impor-

tance of the first modality is also evident from the results of the

competing methods as the best results are obtained when using

force measurements only. The results on the concatenated features
re slightly worse, and the results using the torque measurements

re clearly worse. Nevertheless, the proposed multimodal approach

as managed to boost the results by combining information from

oth modalities. 

For the Caltech-7 dataset, in the linear case, MS-SVDD performs

etter than all other methods with a single modality. Overall, only

VDD using concatenated features outperforms MS-SVDD and the

argin is small. In the non-linear case, MS-SVDD obtains the best

esults along with SVDD. In terms of tpr , MS-SVDD outperforms all

he other methods in the non-linear case while maintaining rea-



F. Sohrab, J. Raitoharju and A. Iosifidis et al. / Pattern Recognition 110 (2021) 107648 11 

Table 6 

Test results for SPECTF heart dataset. 

Linear Non-linear 

accu tpr tnr pre F1 gm accu tpr tnr pre F1 gm 

Proposed method 

MS-SVDD ω 0 ds 1 0.78 0.80 0.78 0.24 0.37 0.79 0.55 0.60 0.55 0.10 0.18 0.57 

MS-SVDD ω 2 ds 1 0.78 0.80 0.77 0.24 0.36 0.79 0.80 0.73 0.80 0.24 0.37 0.77 

Concatenated features 

S-SVDD ψ 1 0.71 0.53 0.73 0.15 0.23 0.62 0.77 0.60 0.78 0.20 0.30 0.69 

S-SVDD ψ 2 0.69 0.87 0.67 0.19 0.31 0.76 0.77 0.60 0.78 0.20 0.30 0.69 

S-SVDD ψ 3 0.66 0.93 0.64 0.18 0.31 0.77 0.77 0.60 0.78 0.20 0.30 0.69 

S-SVDD ψ 4 0.56 0.67 0.55 0.11 0.19 0.60 0.77 0.60 0.78 0.20 0.30 0.69 

OC-SVM 0.86 0.27 0.91 0.20 0.23 0.49 0.76 0.73 0.77 0.22 0.33 0.75 

SVDD 0.69 0.73 0.69 0.17 0.28 0.71 0.75 0.67 0.76 0.19 0.30 0.71 

Rest Mode 

S-SVDD ψ 1 0.50 0.73 0.48 0.11 0.19 0.59 0.46 0.87 0.42 0.12 0.20 0.61 

S-SVDD ψ 2 0.58 0.87 0.55 0.14 0.25 0.69 0.77 0.53 0.79 0.18 0.27 0.65 

S-SVDD ψ 3 0.40 0.80 0.37 0.10 0.18 0.54 0.79 0.47 0.81 0.18 0.26 0.62 

S-SVDD ψ 4 0.38 0.87 0.34 0.10 0.18 0.54 0.60 0.87 0.58 0.15 0.26 0.71 

OC-SVM 0.76 0.60 0.77 0.19 0.29 0.68 0.61 0.80 0.60 0.15 0.25 0.69 

SVDD 0.59 0.73 0.58 0.13 0.22 0.65 0.59 0.73 0.58 0.13 0.22 0.65 

Stress Mode 

S-SVDD ψ 1 0.53 0.47 0.53 0.08 0.14 0.50 0.68 0.73 0.67 0.16 0.27 0.70 

S-SVDD ψ 2 0.65 0.80 0.63 0.16 0.27 0.71 0.75 0.53 0.77 0.17 0.26 0.64 

S-SVDD ψ 3 0.73 0.67 0.73 0.18 0.28 0.70 0.70 0.73 0.70 0.17 0.28 0.72 

S-SVDD ψ 4 0.55 0.93 0.52 0.14 0.25 0.69 0.75 0.53 0.77 0.17 0.26 0.64 

OC-SVM 0.86 0.20 0.91 0.17 0.18 0.43 0.73 0.60 0.74 0.17 0.26 0.67 

SVDD 0.76 0.60 0.77 0.19 0.29 0.68 0.78 0.53 0.80 0.19 0.28 0.65 

Fig. 2. Hyperparameters sensitivity analysis for ω 0 ds 1. 
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onably good tnr . We also notice that both modalities are vital in

aking the final decision as the best performance of MS-SVDD is

btained by decision strategy 1 (AND gate). 

For Ionosphere dataset, only SVDD applied on concatenated

eatures or the first modality outperforms MS-SVDD in terms of

m . Nevertheless, the performance of MS-SVDD is competitive as

hown also by the top results obtained by the other performance

etrics such as F1 measure. In case of MS-SVDD, the second

odality (Complex) is found to be more vital for taking the final

ecision. 
For the Handwritten dataset, MS-SVDD outperforms all compet-

ng methods in both linear and non-linear cases. It is noticed that

ecision strategy 4 yields the best results in both linear and non-

inear cases for MS-SVDD, i.e., MOR features are more vital than

ER features. 

For SPECTF heart dataset, in both linear and non-linear cases,

he best results are achieved by MS-SVDD. We note that ω 0 (no

onstraint used) and ω 2 , where all support vectors and outliers

re used to describe the class variance for the update of the corre-

ponding Q m 

in decision strategy 1 yield the best overall results. 
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We compare the results for different variant of MS-SVDD in

Tables 1–5 of the supplementary material. Overall in all datasets,

NPT is found to be more robust than the kernel version. Linear MS-

SVDD is found to perform best over 2 datasets, similar to the NPT

version, which performs best on two datasets as well. The kernel

MS-SVDD performs best on one out of five datasets as compared to

linear and NPT version of MS-SVDD. All the relevant codes (imple-

mentation) for the proposed method are available online at [45] . 

We also carried out a sensitivity analysis of different hyperpa-

rameters for linear MS-SVDD over SPECTF heart dataset. To an-

alyze the sensitivity of MS-SVDD for each hyperparameter, we

fix the other hyperparameters to their optimal values and record

the performance with all the considered hyperparameter values.

Fig. 2 shows as an example the results for decision strategy 1

without any constraint. For the other decision strategies and con-

straints, we show the results in Figures 1–27 in the supplementary

material. We note a trend of increase in tpr and decrease in tnr

with the increase of value for hyperparameter C . We also noticed

that the performance of trained models are relatively less sensitive

to the hyperparameter β as compared to other hyperparameters.

For hyperparameter d , initially, there is a noticeable rise in the per-

formance of the trained model; however, after certain value, the

change seems to be very small. For hyperparameter η, we notice

that precision and F1 measure stay stable with changing its value. 

We also report the numerical training and testing time (in

milliseconds) in the supplementary material (Tables 1–10) for all

methods over all datasets used in the experiments. In the major-

ity of cases, the proposed method has a higher computational cost

than the competing methods, but generally, the difference is in the

fractions of a second, which is negligible for datasets used in this

work. It is also evident from the numerical results that the time

complexity of the proposed method is higher mainly in the train-

ing phase, while in the testing phase the difference is negligible.

This is as expected based on the complexity analysis in Section 3.4 .

5. Conclusion 

In this paper, a new multimodal one-class classification method

is proposed. The proposed method iteratively transforms data from

all the modalities to a new shared subspace optimized for data de-

scription in multimodal one-class classification tasks. We derived

linear and two different non-linear versions along with a selec-

tion of different regularization terms. According to the best of our

knowledge, this is the first work in the field of subspace learning

for multimodal one-class classification. We conducted experiments

comparing the different versions of MS-SVDD and performed com-

parisons against other one-class classification methods using either

concatenated representations or a single modality at a time. 

In most cases, linear and NPT version of MS-SVDD outper-

formed all the competing methods in our experiments. NPT turned

out to be more stable than the kernel version. We noticed that

the optimal decision strategy depends on the usefulness of differ-

ent modalities. If a particular modality is more informative than

other(s), then it is useful to use that particular modality for mak-

ing the final decision. Nevertheless, MS-SVDD can improve the re-

sults as compared to using a single modality only. If the modalities

are more balanced, the AND gate strategy seems to perform better.

MS-SVDD can be interpreted and used in many ways for differ-

ent one-class multimodal problems. It can be used for anomaly de-

tection and detection of a specific class such as speaker verification

and face recognition. In the future, we intend to try different ker-

nels and model-based decision strategies for the proposed method.

We also intend to propose changes in the boundary shape (other

than spherical) for enclosing the target data in subspace. There is

also room for research in other one-class classification techniques

for multimodal subspace learning. 
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