
Kateryna Chumachenko

MULTI-VIEW SUBSPACE LEARNING FOR
LARGE-SCALE MULTI-MODAL DATA

ANALYSIS

Faculty of Information Technology and Communication Sciences
Master of Science Thesis

August 2019

i

ABSTRACT

Kateryna Chumachenko: MULTI-VIEW SUBSPACE LEARNING FOR LARGE-SCALE MULTI-
MODAL DATA ANALYSIS
Master of Science Thesis
Tampere University
Master’s Degree Programme in Information Technology
Major: Data Engineering and Machine Learning
August 2019

Dimensionality reduction methods play a big role within the modern machine learning tech-
niques, and subspace learning is one of the common approaches to it. Although various methods
have been proposed over the past years, many of them suffer from limitations related to the uni-
modality assumptions on the data and low speed in the cases of high-dimensional data (in linear
formulations) or large datasets (in kernel-based formulations). In this work, several methods for
overcoming these limitations are proposed.

In this thesis, the problem of the large-scale multi-modal data analysis for single- and multi-
view data is discussed, and several extensions for Subclass Discriminant Analysis (SDA) are
proposed. First, a Spectral Regression Subclass Discriminant Analysis method relying on the
Graph Embedding-based formulation of SDA is proposed as a way to reduce the training time,
and it is shown how the solution can be obtained efficiently, therefore reducing the computational
requirements. Secondly, a novel multi-view formulation for Subclass Discriminant Analysis is
proposed, allowing to extend it to data coming from multiple views. Besides, a speed-up approach
for the multi-view formulation that allows reducing the computational requirements of the method
is proposed. Linear and nonlinear kernel-based formulations are proposed for all the extensions.

Experiments are performed on nine single-view and nine multi-view datasets and the accu-
racy and speed of the proposed extensions are evaluated. Experimentally it is shown that the
proposed approaches result in a significant reduction of the training time while providing compet-
itive performance, as compared to other subspace-learning based methods.

Keywords: subspace learning, kernel methods, dimensionality reduction, spectral regression,
subclass discriminant analysis

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

The work in this thesis was conducted in the Multimedia Research Group in the Depart-
ment of Computing Sciences in the Faculty of Information Technology and Communica-
tion Sciences in Tampere University in 2019.

I would like to express my sincere gratitude to Prof. Moncef Gabbouj, Assoc. Prof.
Alexandros Iosifidis and Dr. Jenni Raitoharju for giving me the opportunity to work as a
research assistant within the group and providing constant guidance and support through-
out the work process.

Besides, I would like to thank all the members of Multimedia Research Group for creating
such a nice and motivational work atmosphere.

In addition, I would like to thank my family for their support throughout my studies and my
life in general.

Tampere, 1st August 2019

Kateryna Chumachenko

iii

CONTENTS

1 Introduction . 1

2 Theoretical Background . 4

2.1 Subspace Learning . 4

2.2 Linear and Nonlinear Learning . 5
2.2.1 Kernel Trick . 5
2.2.2 Nonlinear Projection Trick . 6

2.3 Subspace Learning Methods . 7
2.3.1 Linear Discriminant Analysis . 7
2.3.2 Clustering-based Discriminant Analysis 8
2.3.3 Kernel Clustering-based Discriminant Analysis 9
2.3.4 Graph Embedding Framework . 10
2.3.5 Marginal Fisher Analysis . 11
2.3.6 Subclass Graph Embedding Framework 12
2.3.7 Subclass Marginal Fisher Analysis 14
2.3.8 Subclass Discriminant Analysis . 15
2.3.9 Kernel Subclass Discriminant Analysis 16

2.4 Multi-view Learning . 16
2.4.1 Multi-view Extensions to Linear Discriminant Analysis 17

2.5 Speed-up Approaches . 19
2.5.1 Spectral Regression Discriminant Analysis 20
2.5.2 Kernel Regression . 21
2.5.3 Approximate Kernel Regression . 22
2.5.4 Nyström-based Approximate Kernel Subspace Learning 22
2.5.5 Incremental Learning . 24

3 Proposed Methods . 27

3.1 Spectral Regression Subclass Discriminant Analysis 27

3.2 Speeding Up the Eigendecomposition Step 28

3.3 Multi-view Subclass Discriminant Analysis 32

3.4 Speeding Up the Eigendecomposition Step: Multi-view Case 34

4 Experimental Evaluation . 38

4.1 Single-view Datasets . 39

4.2 Multi-view Datasets . 41

4.3 Results . 45

5 Conclusions . 50

References . 52

iv

LIST OF FIGURES

1.1 Subclass data when projected to LDA subspace and SDA subspace 3

2.1 Linear decision boundary vs. nonlinear decision boundary. 5
2.2 Data before and after LDA projection. 7
2.3 Marginal Fisher Analysis graphs adjacency relationships. 12

4.1 Example of images from Jaffe dataset. 39
4.2 Example of images from Cohn-Kanade dataset. 40
4.3 Example of images from Extended Yale-B dataset. 40
4.4 Example of images from SoF dataset. 41
4.5 Example of images from Caltech-101 dataset. 43
4.6 Example of images from NUS-WIDE dataset. 43

v

LIST OF TABLES

3.1 Structure of the between-class Laplacian matrix in SDA. 29
3.2 Structure of the between-class Laplacian matrix in multi-view SDA. 35

4.1 Summary of single-view datasets. 42
4.2 Summary of multi-view datasets. 45
4.3 Classification results of linear methods in single-view datasets: accura-

cy/number of clusters per class. 46
4.4 Classification results of linear methods in single-view datasets: training

time (in sec). 46
4.5 Classification results of kernel methods in single-view datasets: accura-

cy/number of clusters per class. 47
4.6 Classification results of kernel methods in single-view datasets: training

time (in sec). 47
4.7 Classification results of linear methods in multi-view datasets: accura-

cy/number of clusters per class. 48
4.8 Classification results of linear methods in multi-view datasets: training time

(in sec). 48
4.9 Classification results of kernel methods in multi-view datasets: accura-

cy/number of clusters per class. 49
4.10 Classification results of kernel methods in multi-view datasets: training time

(in sec). 49

vi

LIST OF ABBREVIATIONS

CDA Clustering Discriminant Analysis

KCDA Kernel Clustering Discriminant Analysis

KSDA Kernel Subclass Discriminant Analysis

KSMFA Kernel Subclass Marginal Fisher Analysis

LDA Linear Discriminant Analysis

MFA Marginal Fisher Analysis

MvMDA Multi-view Modular Discriminant Analysis

NPT Nonlinear Projection Trick

PCA Principal Component Analysis

RBF Radial Basis Function

SDA Subclass Discriminant Analysis

SGE Subclass Graph Embedding

SMFA Subclass Marginal Fisher Analysis

SMvDA Standard Multi-view Discriminant Analysis

SRDA Spectral Regression Discriminant Analysis

fastSDA Fast Subclass Discriminant Analysis

mvSDA Multi-view Subclass Discriminant Analysis

1

1 INTRODUCTION

Availability of the large amounts of data in the modern world dictates the development
of new technologies for processing and analysing it, giving rise to the field of machine
learning. In the past years, machine learning has been applied to solve problems in
many subject areas, including image processing [38, 61], audio and speech analysis [3,
20], human action recognition [17], etc. In many areas, such as face recognition or object
detection, machine learning-based methods are the dominant approach to solving prob-
lems [45, 47, 48, 51]. Although the presence of rich data from different sources allows
improving the accuracy of the algorithms, it also raises issues related to their compu-
tational requirements. In this thesis, we study a subfield of machine learning, namely,
subspace learning, and propose several extensions for speeding-up and improving the
accuracy of existing methods.

The goal of machine learning is to estimate the parameters of a mathematical model to
perform a specific task without using explicit instructions, but relying on the patterns in the
data, from which it learns. The data, in this case, is represented by a matrix or a tensor,
i.e., multiple samples described by one or multiple features. Intuitively it might seem that a
larger amount of features should result in better accuracy of the model, which is true only
up to a certain point: when the dimensionality of data becomes too high, the accuracy of
the model drops, as the data representation becomes sparse, i.e., there are not enough
samples to capture enough possible combinations of the features. This phenomenon is
known as the ’curse of dimensionality’. Another limitation that comes with high dimen-
sionality is the high computational complexity that results in low processing speed. These
issues resulted in the formation of a research area referred to as dimensionality reduction.

Dimensionality reduction methods aim to find such a representation of data that would
result in a lower dimensionality than that of original data while preserving the ’meaning-
fulness’ of data. The ’meaningfulness’ can be defined by different criteria, e.g., some
methods seek representation with the highest variance, while others a representation,
where data belonging to different classes lies far from each other, while classes are com-
pact.

Machine learning methods can be divided into supervised and unsupervised ones. Su-
pervised machine learning, also referred to as ’learning with a teacher’, relies on the
ground truth labels present for all data samples in the training set. Examples of super-
vised machine learning problems are regression and classification. Unsupervised learn-
ing methods do not rely on the ground truth labels of data but try to find certain patterns

2

in the data. Clustering is one of the examples of unsupervised learning. In this thesis, we
focus on supervised dimensionality reduction methods that aim at classification problems.

One of the common dimensionality reduction approaches is subspace learning, which
aims to find a projection subspace of a lower dimensionality for the data while ensuring
that a certain criterion holds for the data projected onto the subspace. Examples of
subspace learning methods include Principal Component Analysis (PCA) [16], Linear
Discriminant Analysis (LDA) [57, 60], Subclass Discriminant Analysis (SDA) [66], etc.
Linear Discriminant Analysis is one of the most well-known subspace learning methods
designed primarily for classification problems. LDA defines an optimal projection space
as the one where the distances between the different class means are maximal, while the
classes are compact. The solution is based on the assumption that each class follows a
unimodal Gaussian distribution. Several limitations come from this assumption:

• limited dimensionality of the learned space, as it is limited by the rank of the between-
class scatter matrix, which is bounded by the number of classes - 1

• poor performance on multi-modal datasets, as LDA assumes that data of each class
follows a unimodal Gaussian distribution

• high computational complexity in high-dimensional datasets, as the solution is given
by the eigendecomposition of a large matrix.

Multiple approaches to overcoming these limitations have been proposed [13, 26, 27, 28,
66]. One of the proposed approaches is the Subclass Discriminant Analysis, that relaxes
the assumptions on the unimodal distribution of each class by representing it with several
subclasses and formulating the criterion accordingly. This allows to obtain better perfor-
mance on the real-world data, which does not generally follow unimodal distributions, and
potentially obtain higher dimensionality, as the rank of the between-class scatter matrix
becomes higher, as shown in the next chapters. The benefits of using SDA can be seen
from Fig. 1.1, where the data of class 2 follows 2 disjoint distributions. As the means of
two classes lie close to each other, LDA fails to find a subspace that would discriminate
the classes well, while SDA succeeds, as can be seen from the figure.

However, the limitation of the high computational complexity remains valid, as the solu-
tion still requires an eigendecomposition of a large matrix. To overcome this limitation,
multiple solutions have been proposed over the past years, including incremental learn-
ing solutions [34], approximate solutions [24], and speed-up solutions [9, 25, 29, 30, 59].
In this thesis, a speed-up extension for overcoming this limitation is proposed.

So far we have considered the methods that rely on one representation of a set of sam-
ples. Such methods are known as single-view methods. Inspired by the human percep-
tion of the world, that is not only based on one source of information but on a combi-
nation of the audio, visual, and tactile signals, etc., various multi-view learning methods
have been proposed [10, 32, 63, 64, 67]. Such methods refer to the problems where
multiple descriptions of the same set of samples are available. These descriptions can
come from different domains, e.g., in the problem of the classification of a video based

3

Figure 1.1. Subclass data when projected to LDA subspace and SDA subspace

on its audio and visual signals, or from different features of the same domain, e.g., in the
problem of the classification of audio signal based on MFCC and ZCR. Different views
can be also represented by the same type of features that are obtained from different
data corresponding to the same sample, e.g., in the problem of person re-identification
from multiple cameras.

Multiple extensions of LDA to multi-view problems have been proposed [10, 32, 65], but
they mostly assume unimodality of classes in each view. In this thesis, an approach for
overcoming this limitation by introducing a multi-view extension to Subclass Discriminant
Analysis is proposed, and it is shown how the solution can be obtained in a fast and
efficient way [15].

In order to address the issues of already existing methods as outlined earlier, we formu-
late the research problem of this work as the development of a method that would satisfy
the following requirements:

• relax the assumptions of unimodality of each class

• be computationally efficient in both linear and non-linear formulations

• have the possible dimensionality higher than the number of classes −1

• be able to extend to multi-view data.

This thesis is organized as follows: in chapter 2, the previous work relevant to the further
development of the proposed extensions is described, including the relevant subspace
learning methods, kernel methods, and speed-up approaches. In chapter 3, the pro-
posed extensions for Subclass Discriminant Analysis are described. In chapter 4, the
experimental setup along with the datasets used for evaluation of the methods are de-
scribed and the results are reported. In chapter 5, conclusions are made regarding the
proposed approaches.

4

2 THEORETICAL BACKGROUND

2.1 Subspace Learning

In this section, the related work in the area of subspace learning is described. The goal of
subspace learning methods is to find a subspace of lower dimensionality, projection onto
which would result in the low-dimensional data while satisfying some criterion defined for
the original data. Let X = [x1,x2, ...,xN] be a set of N D-dimensional vectors in some
space RD, and let each vector xi correspond to a class label ci. Using these notations,
we can define the problem of dimensionality reduction as finding a feature space, defined
by the projection matrix W, such that its dimensionality is smaller than that of original
space, and data belonging to different classes lies far from each other when projected
onto it, while samples of the same class lie close to each other.

Prevailing part of the subspace learning methods find such a feature space by optimiz-
ing the Fisher-Rao’s criterion [19, 46], that is defined over two symmetric positive semi-
definite matrices, referred to as within-class scatter matrix Sw and between-class scatter
matrix Sb:

J (W) = argmin
W

Tr(WTSwW)

Tr(WTSbW)
. (2.1)

In other words, we want to minimize the within-class scatter of the data and maximize the
between-class scatter while ensuring the orthogonality of the projection matrix.

The solution to the optimization problem in (2.1) is obtained by solving a generalized
eigendecomposition problem [31]:

Sww = λSbw, (2.2)

and the projection matrix W is obtained by choosing the eigenvectors corresponding to
minimal eigenvalues. The data in the feature space is obtained by a linear projection:

yi = WTxi. (2.3)

Differences between various subspace learning methods primarily lie in the definitions of
the between-class and the within-class scatter matrices. Further in this chapter, we will
focus on different approaches taken in this area.

5

2.2 Linear and Nonlinear Learning

Being based on a linear projection, linear subspace learning approach described in the
previous section assumes linear separability of data and cannot take into account possi-
ble nonlinearities that are often present in the real-world data. An example of such data is
outlined in Fig. 2.1. To address this issue, multiple approaches have been taken, includ-
ing kernel methods, neural network-based methods, random projections-based methods,
etc. In this section, we focus on two of the commonly used approaches: a kernel-based
approach that allows to learn the nonlinear decision boundaries without explicitly mapping
the data to the nonlinear space, and the Nonlinear Projection Trick approach.

Figure 2.1. Linear decision boundary vs. nonlinear decision boundary.

The idea of the two approaches lies in the following: rather than finding a linear projection
of the data in X ∈ RD directly, our goal is to first map it to some nonlinear feature space
F . The nonlinear feature space is defined by some nonlinear function ϕ(), i.e., ϕ(xi) ∈ F .
The dimensionality of F depends on the choice of the nonlinear function and can be
infinite. A linear projection is then defined in F , i.e. yi = WTϕ(xi).

2.2.1 Kernel Trick

The explicit mapping of each sample in X to its image ϕi = ϕ(xi) raises issues related to
the arbitrary dimensionality of F , which can be infinite. To address this issue and avoid
the explicit learning of nonlinear function ϕ() and mapping of X to Φ = ϕ(X) directly,
kernel functions can be used. A kernel function k() is defined over a pair of samples in
X and maps their inner product in RD to the corresponding inner product of their images
in F : k(x1,x2) = ϕ(x1)

Tϕ(x2). Thus, formulation of the subspace learning problem in a
way that only relies on the inner products of data, rather than on the data directly, allows
obtaining an efficient nonlinear solution.

6

The kernel matrix K of size N × N is, therefore, defined as Kij = k(xi,xj). It is trivial
to see that since k(xi,xj) = ϕ(xi)

Tϕ(xj),K = ΦTΦ, where Φ = [ϕ(x1), ϕ(x2), ..., ϕ(xN)].
The kernel matrix K is generally assumed to be non-singular, while in the case of a
singular matrix it is generally regularized as K

′
= K + δI, where δ is a regularization

parameter. According to the Representer Theorem [49], W can be represented as a
linear combination of data in F :

W = ΦA. (2.4)

Hence, yi = WTϕ(xi) = ATΦTϕ(xi) = ATki.

2.2.2 Nonlinear Projection Trick

Although kernel methods are widely used in machine learning problems where nonlin-
earity is required, there exist many optimization problems which are impossible to for-
mulate solely with inner products, making the application of kernel trick impossible. For
such problems, an approach referred to as Nonlinear Projection Trick (NPT) has been
proposed [35]. In NPT, data samples are mapped to a nonlinear space of reduced di-
mensionality, referred to as effective space, directly.

Consider the eigendecomposition of a centered kernel matrix K:

K = UΛUT , (2.5)

where U is the matrix containing the eigenvectors of K corresponding to eigenvalues in
Λ, and Λ is a diagonal matrix of eigenvalues of K in decreasing order. The centering of
K can be achieved as follows: [50]

K = (I−EN)K(I−EN), (2.6)

EN =
1

N
1N1TN , (2.7)

where 1N ∈ RN is a vector of ones. The feature representation Y in the effective sub-
space is then obtained as

Y = Λ
1
2UT . (2.8)

Subsequently, any vector from the space of original dimensionality can be projected to
the effective space as

y = Λ− 1
2UTk, (2.9)

where k is the kernel representation corresponding to the vector x. By selecting the first
n eigenvectors of K, n < N , feature representation of reduced dimensionality can be
obtained. Utilization of NPT allows applying linear methods directly on the NPT-projected
data without requiring a formulation that is based on the inner products.

7

2.3 Subspace Learning Methods

In this section, relevant subspace learning methods are discussed. First, we focus on the
commonly used Linear Discriminant Analysis, followed by the Graph Embedding frame-
work and its extensions, and several commonly-used subclass-based methods. Further,
we consider multi-view problems and methods relevant to the area, followed by the dis-
cussion of some of the speed-up approaches.

2.3.1 Linear Discriminant Analysis

One of the most well-known supervised subspace learning methods is Linear Discrimi-
nant Analysis (LDA) [60] that seeks to find such a projection space, projection onto which
would result in data of different classes lying far from each other, while samples of the
same class being mapped close to each other. An example of the desired projection can
be seen in Fig 2.2.

Figure 2.2. Data before and after LDA projection.

In LDA, each class is assumed to follow a unimodal Gaussian distribution and the objec-
tive of class separation is achieved by minimizing the Fisher-Rao’s criterion (2.1), where
the within-class scatter matrix is defined as

Sw =

C∑
i=1

Ni∑
j=1

(xij − µi)(xij − µi)
T , (2.10)

and the between-class scatter matrix is defined as:

Sb =

C∑
i=1

(µi − µ)(µi − µ)T , (2.11)

where C is the number of classes, µ is the mean of data, µi is the mean of class i, Ni is
the number of samples in class i and xij is the j’th sample of class i.

8

Being a simplistic method, LDA has a number of limitations. The first limitation lies in
the fact that the maximal dimensionality of the learned projection space is equal to the
rank of the between-class scatter matrix, which is bounded by the number of classes,
i.e., for the classification problem of C classes, maximal dimensionality of the learned
subspace is equal to C − 1. Another limitation of LDA lies in the assumption that each
class follows a unimodal Gaussian distribution, which is generally not the case in the
real-world problems, resulting in limited performance of the method.

2.3.2 Clustering-based Discriminant Analysis

One of the first approaches to overcoming the limitations of LDA on unimodality of classes
was proposed in Clustering-based Discriminant Analysis (CDA) [13]. The method was
first applied to a facial expression recognition problem, later extending to other subject
areas. Inspired by the idea that facial expression data is not unimodal due to varying
lighting or posture conditions, CDA proposes to represent the data of one class with
several clusters. The clusters within each class are assumed to be known, as obtained
by some clustering algorithm. CDA optimizes the following criterion:

J (W) = argmax
W

Tr(WT R̂W)

Tr(WT ĈW)
, (2.12)

R̂ =
C−1∑
i=1

C∑
l=i+1

zi∑
j=1

zl∑
h=1

(µ
(i)
j − µ

(l)
h)(µ

(i)
j − µ

(l)
h)T , (2.13)

Ĉ =

C∑
i=1

zi∑
j=1

Ni,j∑
s

(xs − µ(i)
j)(xs − µ(i)

j)T , (2.14)

where µ
(i)
j represents the mean of class i and subclass j, zi represents the number of

subclasses in class i, Ni,j is the number of elements in j’th subclass of i’th class, C is
the total number of classes, and xs represents the s’th sample of subclass j in class i.
The solution of (2.12) is obtained by solving the eigendecomposition problem

R̂w = λĈw, (2.15)

and selecting the eigenvectors corresponding to maximal eigenvalues.

9

2.3.3 Kernel Clustering-based Discriminant Analysis

In order to address the possible nonlinearity of the problem, the kernelization of CDA
(KCDA) was proposed [40]. The solution to KCDA is obtained by optimizing

J (W) = argmax
W

Tr(WTBW)

Tr(WTVW)
, (2.16)

B =

C−1∑
i=1

C∑
l=i+1

zi∑
j=1

zl∑
h=1

(ψi,j −ψl,h)(ψi,j −ψl,h)T , (2.17)

V =
C∑
i=1

zi∑
j=1

Ni,j∑
k=1

(ϕ(xi,j
k)−ψi,j)(ϕ(xi,j

k)−ψi,j)T , (2.18)

where C is the number of classes, zi is the number of clusters in class i, Ni,j is the
number of elements in j’th cluster of i’th class. xi,j

k is the k’th sample of the j’th cluster
of the i’th class, ψi,j is the center of the j’th cluster of the i’th class in the transformed
space.

The solution to (2.16) is given by the eigendecomposition problem

λVv = Bv. (2.19)

Let us assume that there exist such coefficients αr,s
t , (r = 1, ..., C; s = 1, ..., zr; t =

1, ..., Nr,s), so that v =
∑C

r=1

∑zi
s=1

∑Ni,j

t=1 αr,s
t ϕ(xr,s

t). Then the eigensystem in (2.19)
is transformed to

λSVα = SBα, (2.20)

where the element of SV corresponding to the column of αr,s
t and the row of ϕT (xm,n

p) is
equal to

S
(αr,s

t ,ϕT (xm,n
p))

V =
C∑
i=1

zi∑
j=1

Ni,j∑
k=1

ϕT (xm,n
p)(ϕ(xi,j

k −ψ
i,j))(ϕ(xi,j

k −ψ
i,j))Tϕ(xr,s

t). (2.21)

An extensive derivation of (2.20) and (2.21) can be found in [40]. Similarly, the element
of SB corresponding to the column of αr,s

t and the row of ϕT (xm,n
p) is equal to

S
(αr,s

t ,ϕT (xm,n
p))

B =
C−1∑
i=1

C∑
l=i+1

zi∑
j=1

zl∑
h=1

ϕT (xm,n
p)(ψi,j −ψl,h))(ψi,j −ψl,h)Tϕ(xr,s

t), (2.22)

ψi,j =

∑Ni,j

k=1 ϕ(x
i,j
k)

Ni,j
. (2.23)

By substituting (2.23) into (2.21) and (2.22), it is easy to see that only the inner product
of the data points in the kernel space is required, so the kernel trick can be utilized.

10

2.3.4 Graph Embedding Framework

A general framework for unifying various dimensionality reduction methods has been
proposed [52], where different subspace learning algorithms are considered from a graph
embedding perspective. Data is described using the undirected weighted graph G =

{X,W} with vertex set X and similarity matrix W, where each vertex in X corresponds
to a data sample. For each pair of vertices in X, W measures their similarity by means
of some similarity criterion, e.g., Gaussian similarity. Then, the diagonal degree matrix D

and the Laplacian matrix L are defined as

L = D−W,

Dii =
∑
j ̸=i

Wij ,
(2.24)

i.e., the degree matrix D at position (i, i) has the value of the sum of all values of W
across i’th row or column, as W is symmetric. The goal of graph embedding is therefore
to find such a low-dimensional representation relationship among the vertices in X that
incorporates the similarity relationship outlined in G in the best way.

The algorithm relies on two graphs: intrinsic graph and penalty graph. The intrinsic graph
is the graph G itself, and the penalty graph, referred to as Gp = {X,Wp}, represents
the similarity characteristics of the data that are desired to be suppressed in the learned
space. X is the same set of vertices as in G, and Wp shows the similarity of vertex pairs
from X that are to be suppressed.

Let us define a low-dimensional representation of vertices in X as y = [y1, ...,yi]. Then,
the objective function can be defined as follows:

y∗ = argmin
yTBy=d

∑
i ̸=j

||yi − yj ||2Wij = argmin
yTBy=d

yTLy, (2.25)

where d is a constant and B is the constraint matrix, typically B = Lp = Dp−Wp, where
Dp is a diagonal degree matrix as defined in 2.24.

Assuming that y = XTω, i.e., low-dimensional representation of data can be obtained via
linear projection, the objective function (2.25) can be reformulated as

ω∗ = argmin
ωTXBXTω=d

or ωTω=d

∑
i

||ωTxi − ωTxj ||2Wij = argmin
ωTXBXTω=d

or ωTω=d

ωTXLXTω, (2.26)

where ω is the projection vector.

11

The kernelized formulation of the method can be obtained similarly, assuming that ω =∑
i αiϕ(xi):

a∗ = argmin
aTKBKT a=d
or aTKa=d

∑
i

||aTKi − aTKj ||2Wij = argmin
aTKBKT a=d
or aTKa=d

aTKLKTa, (2.27)

where Ki is the i’th column of the kernel matrix K.

Solutions of (2.25), (2.26) and (2.27) can be obtained by solving the generalized eigen-
decomposition problem

L̂v = λB̂v, (2.28)

where L̂ is either L, XLXT or KLK, and B̂ is I, B, K, XBXT or KBK.

2.3.5 Marginal Fisher Analysis

Besides providing a new framework for representing various dimensionality reduction al-
gorithms, the graph embedding framework can be used for the development of new al-
gorithms, such as Marginal Fisher Analysis (MFA) [52]. In MFA, the intrinsic graph is
designed to preserve the intra-class compactness and the penalty graph is designed to
provide the inter-class separability. More specifically, intrinsic graph preserves the intra-
class adjacency relationship by connecting each sample to it’s kInt closest neighbors
within the class as defined by some similarity measure, such as Gaussian similarity based
on the Euclidean distance. The penalty graph illustrates the marginal point adjacency re-
lationship and connects the marginal point pairs of different classes. The example of such
relationships can be seen in Fig. 2.3.

Thus, the intrinsic graph adjacency matrix W can be formed by setting Wij = Wji = 1

if xi is among the kInt nearest neighbors of xj and they belong to the same class, and 0
otherwise. The penalty graph adjacency matrix Wp can be formed by setting Wp

ij = 1 if
the pair (i, j) is among the kPen shortest pairs among the set {(i, j), i ∈ πc, j /∈ πc}. The
Marginal Fisher Criterion can then be defined as

ω∗ = argmin
ω

ωTX(D−W)XTω

ωTX(Dp −Wp)XTω
, (2.29)

which is a special case of the linearization of the graph embedding framework, where
B = Dp −Wp, and, therefore, can be solved accordingly.

The kernelization of MFA is obtained similarly by optimizing

a∗ = argmin
a

aTK(D−W)KTa

aTK(Dp −Wp)KTa
, (2.30)

ω =

N∑
i=1

aiϕ(xi). (2.31)

12

Figure 2.3. Marginal Fisher Analysis graphs adjacency relationships.

It should be noted that the projection into the feature space might result in different sets of
nearest kInt neighbors of the same class and kPen neighbors of a different class of each
sample, resulting in different intrinsic and penalty graphs [52]. Based on the formulation
of the Euclidean distance between two samples in the feature space

D(xi, xj) =
√
k(xi, xi) + k(xj , xj)− 2k(xi, xj), (2.32)

the optimal projection for a new data sample x is obtained as

F (x,a∗) = λ
n∑

i=1

a∗i k(x,xi),

λ = (a∗TKa∗)
− 1

2 .

(2.33)

2.3.6 Subclass Graph Embedding Framework

Subclass Graph Embedding (SGE) framework has been proposed as an extension to the
GE framework incorporating subclass information of the data [41]. Similarly to GE, the
framework is based on the representation of data from a graph embedding perspective.
SGE defines an affinity matrix P that is a block matrix with different blocks corresponding

13

to different subclasses, where Pij(q, p) denotes the value at (q, p) position of the block
corresponding to i’th class and j’th subclass. The first objective is the minimization of
the within-class scatter and it is defined as:

argmin
V

(Tr(VTXLintX
TV)), Lint = Dint −Wint, (2.34)

Wint = diag(W1
int, ...,W

c
int), Wi

int = diag(Pi1, ...,Pidi). (2.35)

The degree intrinsic matrix Dint, defined similarly to GE framework, takes values:

Dint(
i−1∑
s=0

j−1∑
t=0

nst + q,
i−1∑
s=0

j−1∑
t=0

nst + q) =
∑
p

Pij(q, p), (2.36)

where diag() represents the block-diagonal matrix of corresponding blocks, Pij is the
block of P corresponding to the j’th subclass of the i’th class, and nst is the number of
samples in class s and subclass t, and di is the number of subclasses in class i.

Let us define the matrix Q, where Qlh
ij denotes the similarity between the mean vectors

of different subclasses µij and µlh, where µij is the mean of the j’th subclass of the i’th
class. The second objective is then the maximization of the between-class scatter and is
defined as:

argmax
V

(Tr(VTXLpenX
TV)), Lpen = Dpen −Wpen, Dpen = 0 (2.37)

Wpen =

⎛⎜⎜⎜⎜⎜⎜⎝
W1,1

pen W1,2
pen ... W1,c

pen

W2,1
pen W2,2

pen ... W2,c
pen

...

Wc,1
pen Wc,2

pen ... Wc,c
pen

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.38)

where the matrices on the main diagonal are given by

Wi,i
pen = diag(Wi1, ...,Widi), Wij =

(
∑

ω ̸=i

∑dω
t=1Q

ωt
ij)

(nij)2
enijenijT , (2.39)

where enij is the vector of ones of length nij . The off-diagonal blocks are given as follows:

Wi,l =

⎛⎜⎜⎜⎜⎜⎜⎝
Wl1

i1 Wl2
i1 ... Wldl

i1

Wl1
i2 Wl2

i2 ... Wldl
i2

...

Wl1
idi

Wl2
idi

... Wldl
idi

⎞⎟⎟⎟⎟⎟⎟⎠ , i ̸= l, Wlh
ij =

Qlh
ij

nijnlh
enijenlhT . (2.40)

The solution is then given by the eigendecomposition problem

XLintX
Tv = λXLpenX

T . (2.41)

14

SGE framework provides an extension to the Graph Embedding framework, allowing to
reformulate the existing subclass-based methods, including CDA, LDA, PCA [16], and
SDA that is discussed further. In addition, SGE allows developing new methods as out-
lined in the next section.

2.3.7 Subclass Marginal Fisher Analysis

To overcome limitations of Marginal Fisher Analysis related to the assumptions on the
distribution of data, an extension incorporating subclass information has been proposed
relying on SGE framework. This method is referred to as Subclass Marginal Fisher Anal-
ysis (SMFA) [42], and as MFA, it defines the intrinsic and penalty graph matrices relying
on the nearest neighbor information of the graph vertices. The intrinsic graph matrix Pij

and the penalty graph matrix Wi,l
pen are defined as follows:

Pij(q, p) =

⎧⎨⎩1, if p ∈ NkInt
(q) or q ∈ NkInt

(p)

0, otherwise
, (2.42)

Wi,l
pen(q, p) =

⎧⎨⎩1, if i ̸= l and (p ∈MkPen
(q) or q ∈MkPen

(p))

0,otherwise
, (2.43)

where Pij(q, p) is the value at the (q, p) position of the i’th class and j’th subclass,
Wi,l

pen(q, p) refers to the value at (q, p) position of the penalty matrix, where q belongs
to the i’th class, p belongs to the l’th class, NkInt

(q) refers to the kInt nearest neighbors
of sample q, and MkPen

refers to the kPen nearest neighbor samples of q outside class i.
The nearest neighbors are selected based on the Gaussian similarity.

It can be noted that in SMFA the penalty graph matrix is designed in a way to ensure inter-
class separability, while intrinsic graph matrix ensures the intra-subclass compactness.
We can also note that the penalty graph matrix does not exploit the subclass information,
avoiding the constraints between subclasses of the same class.

SMFA offers another advantage compared to LDA and CDA - the maximal dimensionality
of the projection space is defined by the parameter kPen hence offering much larger
potential dimensionality than that of LDA or CDA. On the other hand, SMFA requires
careful selection of the parameters of kInt and kPen to ensure the generalizability of the
method, while neither CDA nor LDA requires such an extensive parameter search.

15

2.3.8 Subclass Discriminant Analysis

Another approach to overcome the limitations caused by the assumptions on the uni-
modality of the data were introduced in Subclass Discriminant Analysis (SDA) [66]. Sim-
ilarly to CDA and SMFA, the method uses a data representation where the data of the
same class consists of several subclasses, that are assumed to be known and can be ob-
tained by some clustering algorithm. The differences from CDA lie in the definitions of the
between-class scatter matrix, where the prior probabilities of each subclass are added.
Then, instead of minimizing the within-class scatter, SDA minimizes the total scatter of
the matrix, which implicitly results in minimization of the within-class scatter, given that
between-class scatter is maximized. The total scatter matrix and the between-class scat-
ter matrix are defined as

St =
N∑
q=1

(xq − µ)(xq − µ)T , (2.44)

Sb =
C−1∑
i=1

C∑
l=i+1

di∑
j=1

dl∑
h=1

pijplh(µij − µlh)(µij − µlh)
T , (2.45)

where i and l are the class labels, j and h are the subclass labels, N is the total number
of samples in X, µ is the mean of data, pij =

Nij

N , where Nij is the number of samples in
subclass j of class i.

Instead of solving the minimization problem similar to (2.1), the objective of SDA can be
reformulated into the maximization problem, and the definitions of the total scatter and
between-class scatter can be reformulated relying on the graph embedding framework:

J (W) = argmax
W

Tr(WTSbW)

Tr(WTStW)
, (2.46)

Sb = XLbX
T , (2.47)

Lb(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N−Nci
N2Nch

, if zi = zj = h

0, if zi ̸= zj , ci = cj

− 1
N2 , if ci ̸= cj

, (2.48)

where Nc is the number of samples in class c, ci is the class label of xi, zi is the subclass
label of xi, and Nch is the number of samples in subclass h of class c. It is trivial to see
that for the mean-centered data definition of the total scatter becomes St = XXT . It
can be seen that the solution to SDA is now obtained by solving an eigendecomposition
problem

LbX
Tv = λXTv. (2.49)

16

2.3.9 Kernel Subclass Discriminant Analysis

The reformulations outlined in the previous section allow to simplify the formulation of the
kernelized form of the algorithm and assist us in the development of further extensions
[12]. The total scatter and between-class scatter of mean-centered data in F can be
defined as

Skt =

N∑
i=1

(ϕi − ϕ̄)(ϕi − ϕ̄)T = ΦΦT , (2.50)

Skb =

C−1∑
i=1

C∑
l=i+1

di∑
j=1

dl∑
h=1

pijplh(ϕ̄ij − ϕ̄lh)(ϕ̄ij − ϕ̄lh)
T

= ΦLbΦ
T ,

(2.51)

where ϕ̄ij is the mean of the subclass j of class i in F , and ϕ̄ is the mean of the data in
F . The solution to the kernelized formulation of SDA (KSDA) is then obtained by optimiz-
ing the objective function (2.46), which is solved by the generalized eigendecomposition
problem

ΦLbΦ
TΦa = λΦΦTΦa => (2.52)

KLbKa = λKKa => LbKa = λKa. (2.53)

It can be noted that the solutions to the eigendecomposition problems (2.49) and (2.53)
suffer from the limitations related to the high computational complexity in the cases of
high-dimensional data and a large number of samples, respectively. In this work, a solu-
tion to overcoming this limitation is proposed.

2.4 Multi-view Learning

In some problems, description of the same instances of data can be available from differ-
ent domains or feature types. Exploitation of such enriched information can potentially in-
crease the performance of the machine learning algorithm. Different feature types can be
represented by images, text, audio features, etc., and are referred to as views. It should
be noted that multiple views do not necessarily come from multiple/different sources/sen-
sors, as multiple different features can be extracted from the same source, e.g., MFCC
features, pitch histogram, or RMS energy can describe the same audio file.

In the cases of multi-view data, one of the approaches is to concatenate the feature sets
from different modalities and perform the subspace learning using traditional single-view
methods. However, this can result in poor performance in the cases where the different
modalities are represented by different distributions, or when some of the modalities are
more useful than others. Therefore, a better approach to solving such problems lies in

17

finding a common projection space for all the modalities, projection onto which would
result in the best separability of the data of different classes, as defined by some cri-
terion. Such an approach is referred to as multi-view or multi-modal learning [55]. In
addition, multi-view methods allow to address the situation where the data from one of
the views becomes unavailable during testing, while utilization of concatenated features
is impossible in such scenario.

2.4.1 Multi-view Extensions to Linear Discriminant Analysis

Let us consider data of V views X = diag(X1,X2, ...,XV). We are looking for V pro-
jection matrices Wv of dv × N dimensionality that project the data Xv from the views
v = [1, ..., V] to the latent space, such that a certain criterion is satisfied in that space.
Generally, we want to keep distinct classes far from each other, while keeping the data
compact.

In this section, we focus on several multi-view extensions to Linear Discriminant Analysis
that are based on a generalized framework for multi-view subspace learning that has
been recently proposed in [10]. Besides proposing extensions to LDA, this framework
allows reformulating many of the existing methods.

Optimization criterion to be satisfied in the latent space is defined via the Fisher-Rao’s
criterion:

J (W) = argmax
W

Tr(WTPW)

Tr(WTQW)
, (2.54)

which is solved by the generalized eigendecomposition problem

PW = ρQW, (2.55)

W =

⎛⎜⎜⎜⎜⎜⎜⎝
W1

W2

...

WV

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.56)

where Wv is the projection matrix of the view v. P and Q are referred to as inter-view and
intra-view covariance matrices. After finding W, the feature vectors for the data of the v’th
view Xv in the latent space are obtained as Yv = WT

v Xv. The inter-view and intra-view
covariance matrices P and Q can be defined using the graph embedding framework as
follows:

P = XLbX
T , (2.57)

18

Q = XLwX
T , (2.58)

X =

⎛⎜⎜⎜⎝
X1 0 ... 0

0 X2 ... 0

0 0 ... XV

⎞⎟⎟⎟⎠ , (2.59)

Lb =

⎛⎜⎜⎜⎜⎜⎜⎝
Lb11 Lb12 ... LbV 1

Lb12 Lb22 ... LbV 2

...

Lb1V Lb2V ... LbV V

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.60)

Lw =

⎛⎜⎜⎜⎜⎜⎜⎝
Lw11 0 ... 0

0 Lw22 ... 0

...

0 0 ... LwV V

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.61)

where Lwii is the within-class Laplacian matrix, Lbij is the between-class Laplacian ma-
trix, i and j are the view labels, and V is the number of views. This way, by exploiting
different definitions of the between-class and within-class Laplacian matrices, new meth-
ods can be formulated.

In this section, we focus on two extensions of Linear Discriminant Analysis formulated
using this framework - Multi-view Modular Discriminant Analysis (MvMDA) and Standard
Multi-view Discriminant Analysis (SMvDA), the differences in which lie in the definitions
of the between-class Laplacian matrix. Multi-view Modular Discriminant Analysis aims at
maximizing the distance between the means of different classes wiyhin different views,
thus considering the samples of the specific view. The between-class Laplacian matrix is
defined as:

L̂bij = 2

C∑
p=1

C∑
q=1

(
1

N2
p

epe
T
p −

1

NpNq
epe

T
q). (2.62)

SMvDA instead maximizes the distances between the classes from all views and defines
the between-class Laplacian matrix as

L∗
bij =

⎧⎪⎪⎨⎪⎪⎩
2
∑C

p=1

∑C
q=1
q ̸=p

(V
N2

p
epe

T
p − 1

NpNq
epe

T
q), if i = j

−2
∑C

p=1

∑C
q=1
q ̸=p

1
NpNq

epe
T
q , if i ̸= j

, (2.63)

where i and j are views, C is the number of classes, and ep is N -dimensional class
vector with ones at the positions of instances of class p and zeros elsewhere.

19

Both of the SMvDA and MvMDA define the within-class Laplacian matrix similarly to
single-view LDA:

Lwii = I−
C∑
c=1

1

Nc
ece

T
c , (2.64)

where C is the total number of classes, i is the view label, c is the class label, and I is the
identity matrix.

The kernelized formulation of both methods can be obtained similarly by optimizing

J (A) = argmax
ATKA=I

Tr(ATPkA)

Tr(ATQkA)
, (2.65)

Pk = KLbK
T , (2.66)

Qk = KLwK
T , (2.67)

where Lb is defined using L∗
bij or L̂bij and K is a block-diagonal matrix having Kv as its

v’th block. This problem is solved by the eigendecomposition problem

PkA = ρQkA. (2.68)

A non-parametric version of MvMDA was also proposed in [11].

As can be seen from the formulations, being extensions of LDA, both of these methods
suffer from the same limitation related to the assumption of unimodality of data of each
class in each view. In this work, an approach for overcoming this limitation is proposed by
introducing a multi-view extension to Subclass Discriminant Analysis that allows taking
into account multiple distributions potentially present in data of one class in each view.

2.5 Speed-up Approaches

Most of the subspace learning methods rely on optimizing the Fisher-Rao’s criterion that
is solved by eigendecomposition of the scatter matrix or Laplacian matrix in the cases that
rely on graph embeddings. Eigendecompositon of the scatter matrix suffers from high
computational complexity in situations where the data is high-dimensional, and eigende-
compositions of Laplacian matrix and of the scatter matrix in the kernelized forms are
slow for large-scale datasets. In this section, we focus on several speed-up approaches
taken in this area.

20

2.5.1 Spectral Regression Discriminant Analysis

An efficient solution to Linear Discriminant Analysis was proposed by introducing Spectral
Regression [8]. Following the graph embedding framework, the between-class scatter of
LDA can be formulated as

Sb = X̂LbX̂
T , (2.69)

Lb =

⎛⎜⎜⎜⎜⎜⎜⎝
L
(1)
b 0 ... 0

0 L
(2)
b ... 0

...

0 0 ... L
(c)
b

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.70)

where X̂ is centered data matrix sorted according to class labels, L(k)
b is Nk ×Nk matrix

with elements equal to 1
Nk

, and Nk is the number of elements in class k. The solution to
LDA is then given by optimizing

J (W) = argmax
W

Tr(WTSbW)

Tr(WTSwW)
,

equivalent to argmax
W

Tr(WTSbW)

Tr(WTStW)
,

(2.71)

where St = X̂X̂
T

for the mean-centered data. Exploiting (2.69), the solution to (2.71) is
obtained by solving the eigendecomposition problem

X̂LbX̂
Tw = λX̂X̂

T
w, (2.72)

which is the main computational bottleneck of LDA.

By setting X̂Tw = t, the solution to (2.72) is obtained by solving the eigendecomposition
problem Lbt = λt:

X̂LbX̂
Tw = X̂Lbt = X̂λt = λX̂t = λX̂X̂Tw. (2.73)

Therefore, instead of solving the eigendecomposition problem in (2.72), we can solve
the eigendecomposition problem Lbt = λt and find such w so that X̂Tw = t. In reality,
such w might not always exist, but can be approximated using least squares regression.
Generally, regularized least squares regression is used, as for high-dimensional data,
X̂Tw = t is underdetermined:

W = argmin
W

||WTX−T||22, (2.74)

(XXT + αI)W = XTT , (2.75)

21

W = (XXT + αI)−1XTT , (2.76)

where α is a regularization parameter and T = [t1, ..., td]
T .

Such formulation is beneficial, as the eigendecomposition of Lb can be solved trivially
by following a fast process. It can be observed from (2.70) that the matrix Lb is block-
diagonal, hence, its eigenpairs are the union of the eigenpairs of its blocks. In addition,
L
(k)
b has a vector of ones as its eigenvector that corresponds to the eigenvalue zero,

and the rank of L
(k)
b is one. Therefore, Lb has as many eigenvectors corresponding

to non-zerp eigenvalues as there are blocks in the matrix, i.e., C. These eigenvectors
correspond to the eigenvalue of one and follow a specific structure [7]:

ui = [0, ..., 0 ∑p−1
i=1 Ni

, 1, ..., 1
Np

, 0, ..., 0 ∑C
i=p+1 Ni

]T , (2.77)

where p is the class label, Np is the number of samples in class p and C is the number of
classes.

As 1 is the eigenvalue of Lb that is repeated for the eigenvectors ui, any C linearly inde-
pendent eigenvectors in the space spanned by ui can be selected as eigenvectors of Lb.
At the same time, we can notice that the vector of ones is the eigenvector of Lb, while it is
orthogonal to X̂ [8]. Therefore, the vector of ones can be selected as the first eigenvector,
and the rest eigenvectors from ui can be orthogonalized from it. The vector of ones can
then be removed.

By following this process, a solution to LDA is obtained with a linear-time complexity
with respect to N or d, while the eigendecomposition-based approach has the cubic-time
complexity in relation to min(d,N), where N is the number of samples, and d is the
dimensionality of the data.

2.5.2 Kernel Regression

Kernelized formulation of the Spectral Regression approach was proposed in [9]. In the
kernel formulation of LDA, an objective can be defined based on the graph embedding
framework similarly to the linear case described in the previous section. The solution is
therefore given by the eigendecomposition problem KLbKa = λKKa, which is equivalent
to solving the eigendecomposition problem of Lbt = λt given Ka = t:

KLbKa = KLbt = λKt = λKKa. (2.78)

Kernel regression is then applied to obtain a:

W∗ = argmin
W

||WTΦ−T||22, (2.79)

22

A = argmin
A

||ATΦTΦ−T||22 = argmin
A

||ATK−T||22, (2.80)

A = (KKT + αI)−1KTT , (2.81)

where α is the regularization parameter. Here we can note that Lb has exactly the same
structure as in the linear case, hence the eigendecomposition step in (2.78) can be solved
by following exactly the same fast process as the one described for the linear case.

2.5.3 Approximate Kernel Regression

An approach for accelerating of kernel regression further has been proposed in [24, 30].
The idea lies in the substitution of the kernel matrix with an approximate kernel matrix,
constructed from the inner products of data in the feature space with a set of r reference
vectors Ψ in F , (r < N).

Reference vectors Ψ in F correspond to the prototype vectors in RD, which can be se-
lected randomly from the training set; created randomly from the same distribution as the
training data; obtained from clustering all data and selecting the centroids of the clus-
ters; in the cases of subclass-based methods, i.e., SDA, CDA, or SMFA - centers of the
subclasses.

Following this approach, W is represented by a linear combination of reference vectors
Ψ as W = ΨA. Then, (2.80) becomes

A∗ = argmin
A

||ATΨTΦ−T||22 = argmin
A

||AT K̂−T||22, (2.82)

where K̂ = ΨΦ.

Then,
A = (K̂K̂T + αI)−1K̂TT , (2.83)

where α is a regularization parameter. It should be noted that in the case Ψ = Φ, the
problem becomes equivalent to (2.81).

2.5.4 Nyström-based Approximate Kernel Subspace Learning

An approach to efficient subspace learning in the nonlinear feature space based on
Nyström-based approximation has been proposed in [23]. Revisiting the Nonlinear Pro-
jection Trick, we can notice that in order to obtain the feature space of reduced dimen-
sionality n < N , eigendecomposition of the kernel matrix K can be applied, keeping n

leading eigenvalues and corresponding eigenvectors.

23

The optimal approximation of K is then given as

K ≈ ŶT Ŷ = (Λ
1
2

(n)U
T
(n))

T (Λ
1
2

(n)U
T
(n)), (2.84)

where Λ(n) is the diagonal matrix of n largest eigenvalues of K, U(n) is the matrix of
eigenvectors corresponding to the eigenvalues in Λ(n), and Y(n) is the data in the effec-
tive n-dimensional space.

We can note that this solution requires still the construction and eigendecomposition of K.
As an approach to overcome this limitation, the Nyström method suggests the utilization
of a subset of training samples to calculate the approximate kernel matrix. Let KNn be the
RN×n matrix corresponding to the dot products of training data with n reference vectors,
and Knn - the kernel matrix of dot products of reference vectors with each other. Then,
the kernel matrix K can be approximated as

K ≈ KNnK
−1
nnK

T
Nn. (2.85)

Although by following this approach the computational burden of the full kernel matrix
calculation is omited, the eigendecomposition cost is still substantial. An approach to
overcoming this limitation was proposed in [23]. We can note that the kernel matrix K

can be approximated as follows:

K ≈ KNnK
−1
nnK

T
Nn = (K

− 1
2

nn KT
Nn)

T (K
− 1

2
nn KT

Nn) = ŶT Ŷ, (2.86)

where Y(n) is the data in the effective n-dimensional space. It can be observed that
when the Knn is an n-rank matrix, the matrices ŶŶT and ŶT Ŷ are symmetrizable ma-
trix products, hence, they have the same leading n eigenvalues. Since ŶŶT is of n × n

dimensions, applying eigendecomposition to it allows obtaining Λ(n) with less computa-
tional cost than by approximating K as ŶT Ŷ and applying eigendecomposition to it. After
obtaining the eigenvectors, the n-dimensional vector can be obtained by

ŷ = Λ
− 1

2

(n)Λ
−1
n UT

nKNnk = WTϕ(x), (2.87)

and the projection matrix can then be obtained as

W = ΦKNnUnΛ
−1
n Λ

− 1
2

(n) . (2.88)

Following this approach allows obtaining the subspace determined by n maximal eigen-
values of the optimal approximation of K, while substantially reducing both the memory
and time complexities.

24

2.5.5 Incremental Learning

In real-world problems, the situation is often such that the dataset is not available at
once at the beginning of training, but becomes available in chunks. A naive approach
to solving such problems would be to retrain the model every time new data is available,
resulting in significant training time requirements. Other approaches propose to update
the previously trained model by incorporating newly obtained data. Such approaches
are referred to as incremental learning. As an example, let us consider an incremental
solution for LDA [44].

Sequential Incremental LDA

LDA model can be represented by a discriminant eigenspace Ω = (Sw,Sb,µ, N), where
Sw and Sb are the within-class and between-class scatter matrix as defined in 2.10 and
2.11, µ is the mean vector and N is the number of samples. Let M be the number
of classes. Suppose that the new (N + 1)th sample y corresponding to a class label
k is added to the dataset. The problem can then be formulated as finding an updated
discriminant eigenspace Ω

′
= (Sw

′
,Sb

′
,µ

′
, N + 1). The mean of the new data can be

obtained as follows:
µ

′
=

Nµ+ y

N + 1
, (2.89)

In the case, where the class label k of a new sample y represents a new class, i.e.,
k = M + 1, the between-class scatter matrix is defined as follows:

Sb
′
=

M∑
c=1

nc(µc − µ
′
)(µc − µ

′
)T + (y − µ′

)(y − µ′
)T

=

M+1∑
c=1

n
′
c(µc − µ

′
)(µc − µ

′
)T ,

(2.90)

where nc is the number of samples in class c prior to the addition of a new sample, n
′
c is

a number of samples of class c after addition of a new sample, n
′
c = nc if 1 ≤ c ≤ M ,

n
′
c = 1 if c = M +1, µc = y if c = M +1. The within-class scatter matrix does not change

in this case:

Sw
′
=

M∑
c=1

Σc +Σk =
M∑
c=1

Σc = Sw. (2.91)

In the case when y belongs to some already presented class, i.e., k < M :

Sb
′
=

M∑
c=1

n
′
c(µ

′
c − µ

′
)(µ

′
c − µ

′
)T , (2.92)

25

µ
′
k =

nkµk + y

nk + 1
, (2.93)

Sw
′
=

M∑
c=1,c ̸=k

Σc +Σ
′
k, (2.94)

where Σ
′
k is an updated covariance matrix of class k,

Σ
′
k = Σk +

nk

nk + 1
(y − µ′

k)(y − µ
′
k)

T , (2.95)

where Σk is the covariance matrix of class k before the addition of a new sample, nk is the
number of samples in class k, and µ

′
k is an updated mean of class k. After obtaining the

updated within-class scatter matrix, between-class scatter matrix, the projection matrix
can be obtained by following the procedure of LDA.

Chunk Incremental LDA

In addition to the Sequential Incremental LDA, where the samples are added one by one,
the Chunk Incremental LDA has been proposed [44], providing a solution to the problem,
where multiple new samples are added to the training data simultaneously. Let Yt be a
chunk of data samples at a time point t. Consider each chunk to be represented by a set
of data samples {y1, ...,yL}, where L is the number of data samples in a chunk, L ≥ 1.
The problem can be formulated as finding an updated eigenspace Φ = (Sw

′
,Sb

′
,µ

′
, N +

L), similarly to the sequential case.

Considering the case where the samples of a new chunk belong to already existing
classes, let lc be the number of new samples in class c, and M be the total number
of classes. Then, n

′
c = nc + lc, N + L =

∑M
c=1 n

′
c =

∑M
c=1(nc + lc). Hence,

µ
′
c =

ncµc + lcµyc

nc + lc
, (2.96)

µ
′
=

Nµ+ Lµy

N + L
, (2.97)

where µyc is the mean of class c in the new chunk, µc is the mean of class c prior to

addition of a new chunk, and µy =
∑L

j=1 yj

L . The updated between-class scatter matrix,
hence, can be defined as:

Sb
′
=

M∑
c=1

n
′
c(µ

′
c − µ

′
)(µ

′
c − µ

′
)T . (2.98)

26

The updated within-class scatter matrix becomes [44]:

Sw
′
=

M∑
c=1

Σ
′
c, (2.99)

Σ
′
c = Σc +

ncl
2
c

nc + lc
(Dc) +

n2
c

(nc + lc)2
(Ec) +

lc(lc + 2nc)

(nc + lc)2
(Fc), (2.100)

Dc = (µyc − µc)(µyc − µc)
T , (2.101)

Ec =

lc∑
j=1

(ycj − µc)(ycj − µc)
T , (2.102)

Fc =

lc∑
j=1

(ycj − µyc)(ycj − µyc)
T , (2.103)

where ycj is the j’th sample of class c in the new chunk.

Taking into account the possibility of a new class being introduced in a new data chunk,
without loss of generality, we can assume that a new chunk consists of lM+1 new sam-
ples belonging to class M + 1. Thus, the updated between-class scatter matrix can be
formulated as:

Sb
′
=

M∑
c=1

n
′
c(µc − µ

′
)(µc − µ

′
)T + lM+1(µy − µ

′
)(µy − µ

′
)T

=
M+1∑
c=1

n
′
c(µc − µ

′
)(µc − µ

′
)T ,

(2.104)

where n
′
c is the updated amount of elements in class c. In this case, the within-class

scatter matrix can be reformulated as:

Sw
′
=

M∑
c=1

Σc +ΣM+1 =

M+1∑
c=1

Σ
′
c, (2.105)

ΣM+1 =

lM+1∑
i=1

(yi − µyM + 1)(yi − µyM + 1)
T , (2.106)

where µyM + 1 is the mean of the new class in the new chunk.

Another approach to solving the problems of online learning through incremental sub-
space learning relies on incremental regression, and various solutions were proposed for
different subspace learning methods [25].

27

3 PROPOSED METHODS

Having reviewed the related works in the area, we can now formulate several extensions.
Firstly, we will formulate a solution to SDA via Spectral Regression. From this formulation,
we will show how the solution can be obtained following a much faster process, relying on
the structure of the between-class Laplacian matrix. Secondly, we will propose a novel
criterion for extending the SDA into multi-view problems. We will further show how the
solution to this criterion can be obtained by following a fast process similar to the one
described for single-view SDA.

3.1 Spectral Regression Subclass Discriminant Analysis

In the previous chapter, we have considered how Spectral Regression can be used to
obtain a solution for Linear Discriminant Analysis in a fast manner. Previously, Spectral
Regression has not been exploited to solve Subclass Discriminant Analysis criterion,
although this solution is straightforward and can be described as follows:

1. Create a between-class Laplacian scatter matrix according to (2.48)

2. Solve the eigendecomposition problem and create the matrix T out of the obtained
vectors

Lbt = λt (3.1)

3. Regress T to W following (2.76)

4. Orthogonalize W such that WTW = I

Equivalently, for the kernel case, the method can be formulated as follows:

1. Create a between-class Laplacian scatter matrix according to (2.48)

2. Solve the eigendecomposition problem (3.1) and create the matrix T out of the
obtained vectors

3. Regress T to A according to (2.81) or (2.83)

4. Orthogonalize A such that ATKA = I

28

It should be noted that the target vectors t are the same for the linear and non-linear
cases. The exploitation of such formulation is beneficial as it allows to solve the resulting
eigendecomposition problem by following a fast and straightforward process, as we will
see further.

3.2 Speeding Up the Eigendecomposition Step

As mentioned earlier, subspace learning methods suffer from high computational com-
plexity when the dimensionality of data is high, and in the kernelized methods, when the
number of instances is high. In this section, a speed-up approach for Subclass Discrim-
inant Analysis that allows overcoming this limitation and applying the method on large-
scale high-dimensional data is presented. The proposed approach relies on substitution
of the computationally intensive eigendecomposition step in (2.76) by a straightforward
process that is dictated by the specific structure of between-class Laplacian matrix. Here
and further, we assume that the data is mean-centered and the subclass label of each
instance is known. We also assume that the data is sorted according to these labels from
the first subclass of the first class to the last subclass of the last class.

Let us consider a binary classification problem with both classes containing 2 subclasses.
Let the first subclass of the first class contain 3 samples, and the second subclass 5
samples. Let the first subclass of the second class contain 4 samples and the second 5
samples. The structure of Lb can be observed from Tab. 3.1 and the structure of corre-
sponding eigenvectors from (3.2), where c corresponds to the class label, z to subclass
label and ri to i’th random value.

We can see that the matrix consists of blocks, where each diagonal block corresponds
to instances of a certain class. In Tab. 3.1, different blocks are highlighted with different
colors for the sake of clarity, and v1, v2, v3, and v4 are positive constant values corre-
sponding to the instances within the first and second subclass of the first and second
class, respectively. v5 is a constant negative value, showing the relations between in-
stances of different classes.

Within each of the class blocks, a block structure showing the subclass structure of a
class can be seen: the blocks corresponding to the instances of the same subclass
have positive constant values, while the values corresponding to instances of different
subclasses of the same class are zeros. The values corresponding to different classes
are negative constant values. For data of C classes and Z subclasses in each class, the
rank of Lb is equal to C ∗Z − 1, the matrix has the same amount of nonzero eigenvalues.

The specific block structure of Lb dictates the specific structure of its eigenvectors: C − 1

eigenvectors corresponding to the largest eigenvalues show the structure, from which
the class label of each instance can be inferred, and the values at positions of the same
class share the same value, and the values between classes are different. The rest
of the eigenvectors show the subclass structure, where each eigenvector is responsible

29

Table 3.1. Structure of the between-class Laplacian matrix in SDA.

v1 v1 v1 0 0 0 0 0 v5 v5 v5 v5 v5 v5 v5 v5 v5

v1 v1 v1 0 0 0 0 0 v5 v5 v5 v5 v5 v5 v5 v5 v5

v1 v1 v1 0 0 0 0 0 v5 v5 v5 v5 v5 v5 v5 v5 v5

0 0 0 v2 v2 v2 v2 v2 v5 v5 v5 v5 v5 v5 v5 v5 v5

0 0 0 v2 v2 v2 v2 v2 v5 v5 v5 v5 v5 v5 v5 v5 v5

0 0 0 v2 v2 v2 v2 v2 v5 v5 v5 v5 v5 v5 v5 v5 v5

0 0 0 v2 v2 v2 v2 v2 v5 v5 v5 v5 v5 v5 v5 v5 v5

0 0 0 v2 v2 v2 v2 v2 v5 v5 v5 v5 v5 v5 v5 v5 v5

v5 v5 v5 v5 v5 v5 v5 v5 v3 v3 v3 v3 0 0 0 0 0

v5 v5 v5 v5 v5 v5 v5 v5 v3 v3 v3 v3 0 0 0 0 0

v5 v5 v5 v5 v5 v5 v5 v5 v3 v3 v3 v3 0 0 0 0 0

v5 v5 v5 v5 v5 v5 v5 v5 v3 v3 v3 v3 0 0 0 0 0

v5 v5 v5 v5 v5 v5 v5 v5 0 0 0 0 v4 v4 v4 v4 v4

v5 v5 v5 v5 v5 v5 v5 v5 0 0 0 0 v4 v4 v4 v4 v4

v5 v5 v5 v5 v5 v5 v5 v5 0 0 0 0 v4 v4 v4 v4 v4

v5 v5 v5 v5 v5 v5 v5 v5 0 0 0 0 v4 v4 v4 v4 v4

v5 v5 v5 v5 v5 v5 v5 v5 0 0 0 0 v4 v4 v4 v4 v4

for a certain class. In this eigenvector, the values corresponding to instances of the
same subclass of that class share the same value, while the values are different between
subclasses and the values at the positions corresponding to other classes are 0.

Moreover, we can observe that eigenvectors showing the subclass structure of classes
with a smaller number of instances correspond to bigger eigenvalues, and in the cases
where multiple classes have an equal number of instances, eigenvectors that correspond
to these classes merge. This means that in such eigenvectors structure of both classes
can be observed, and the values corresponding to the other classes are zero. Such
eigenvectors are repeated the number of times equal to the number of classes that have
the same amount of elements.

30

In addition, we can observe that Lb is a constant sum block matrix [21], meaning that
each of its rows and columns sums up to the same constant value. Being a constant sum
block matrix, Lb is guaranteed to have a vector of ones as its eigenvector corresponding to
eigenvalue 0 [21]. In addition, we can observe that for the data with a subclass structure,
the eigenvectors maximizing the criterion (2.46) are those with the block structure as
described.

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

r1 r3 0 c = 1, z = 1

r1 r3 0 c = 1, z = 1

r1 r3 0 c = 1, z = 1

r1 r4 0 c = 1, z = 2

r1 r4 0 c = 1, z = 2

r1 r4 0 c = 1, z = 2

r1 r4 0 c = 1, z = 2

r1 r4 0 c = 1, z = 2

r2 0 r5 c = 2, z = 1

r2 0 r5 c = 2, z = 1

r2 0 r5 c = 2, z = 1

r2 0 r5 c = 2, z = 1

r2 0 r6 c = 2, z = 2

r2 0 r6 c = 2, z = 2

r2 0 r6 c = 2, z = 2

r2 0 r6 c = 2, z = 2

r2 0 r6 c = 2, z = 2

. (3.2)

Due to the described properties of Lb, its eigendecomposition can be avoided and substi-
tuted with a much faster process: first, we select a vector of ones as its first eigenvector
and then create Z ∗ C − 1 eigenvectors of random values following the structure as de-
scribed earlier, and orthogonalize them following the Gram-Shmidt process [22]. In the
end, we remove the vector of ones since it is useless as it maps data instances to the
same points. The process is described in detail in Algorithm 1.

31

Algorithm 1: Target vectors calculation, single-view case

Function getSingleviewTargets(class_labels,cluster_labels,C,Z,N):

Input: class_labels : N × 1 vector with class labels;

cluster_labels : N × 1 vector with the cluster labels;

Z : number of clusters in each class;

C : number of classes;

N : number of elements;

%class-level vectors;

T ← N × (C − 1) matrix with random values at positions of different classes, such

that values are repeated within the class in one column, but distinct between

classes and columns;

L← unique numbers of elements in each class sorted in ascending order;

%cluster level vectors;

for l← iterate through L do

k ← list of classes with l elements;

m← length(k);

Tclust← N × m ∗ (Z − 1) matrix with random values at positions of all

subclasses of classes in k, such that the values are shared within the subclass

in one column, but distinct between subclasses and columns. Values at

positions of other classes are 0s;

T ← append Tclust as columns on the right;

end

T ← append N×1 vector of ones as a column on the left;

Orthogonalize T ;

remove the first column of T ;

return T

32

3.3 Multi-view Subclass Discriminant Analysis

As mentioned in the previous chapter, machine learning methods can take advantage
of projecting multi-view data to some latent space and performing further analysis there.
However, data within each view can be multi-modal as well, while most of the proposed
methods rely on the assumption of its unimodality. To address this issue, a multi-view ex-
tension to Subclass Discriminant Analysis, the Multiview Subclass Discriminant Analysis
(MvSDA), is proposed.

We seek to find a projection space, projection onto which would result in different classes
being far from each other while keeping all data samples close to each other. To achieve
this, we maximize the distance between the means of subclasses of different classes,
while minimizing the total scatter of the mean-centered data. The total scatter is therefore
defined as

St =

V∑
i=1

N∑
k=1

yi
ky

i
k
T = YYT = WTXXTW, (3.3)

where yi
k is the k’th sample of view i in the latent space. The between-class scatter

matrix is defined as

Sb =
V∑
i=1

V∑
j=1

C∑
p=1

C∑
q=1
q ̸=p

dp∑
l=1

dq∑
h=1

piplp
j
qh(µ

i
pl − µ

j
qh)(µ

i
pl − µ

j
qh)

T

=
V∑
i=1

V∑
j=1

WT
i XiL

mv
bij X

T
j Wj = WTXLmv

b XTW,

(3.4)

X =

⎛⎜⎜⎜⎜⎜⎝
X1 0 ... 0

0 X2 ... 0

0 0 ... XV

⎞⎟⎟⎟⎟⎟⎠ , (3.5)

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W1

W2

...

WV

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.6)

33

Lmv
b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lmv
b11 Lmv

b21 ... Lmv
bV 1

Lmv
b12 Lmv

b22 ... Lmv
bV 2

...

Lmv
b1V Lmv

b2V ... Lmv
bV V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.7)

Lmv
bij =

⎧⎪⎪⎨⎪⎪⎩
2
∑C

p=1

∑C
q=1
q ̸=p

∑dp

l=1

∑dq

h=1

V Nj
qh

Ni
plN

2 e
i
ple

i
pl

T − 1
N2 e

i
ple

j
qh

T
, if i = j

−2
∑C

p=1

∑C
q=1
q ̸=p

∑dp

l=1

∑dq

h=1
1

N2 e
i
ple

j
qh

T
, otherwise

, (3.8)

where i and j are view labels, p and q are class labels, l and h are subclass labels, pipl =
N i

pl

N is the prior of the subclass l of class p in the view i, µi
pl is the mean of the subclass l

of class p in view i, eipl is the vector of length N with ones at positions corresponding to
subclass l of class p in view i and zeros elsewhere.

The optimal projection space is then obtained by optimizing the Fisher-Rao’s criterion:

J (W) = argmax
WT

i Wi=I,i=1,...,V

Tr(WTXLbX
TW)

Tr(WTXXTW)
, (3.9)

where X and W are defined as in (3.5) and (3.6), respectively, and K is centered. Equiv-
alently, solution to the kernel version of the method is obtained by optimizing

J (A) = argmax
ATKA=I

Tr(ATKLbK
TA)

Tr(ATKKTA)
, (3.10)

where K is a block-diagonal matrix having Kv as its v’th block:

K =

⎛⎜⎜⎜⎜⎜⎝
K1 0 ... 0

0 K2 ... 0

0 0 ... KV

⎞⎟⎟⎟⎟⎟⎠ (3.11)

The solution to (3.9) is obtained by solving the eigendecomposition problem LbX
Tv =

λXTv. Similarly, the solution to (3.10) is given by LbKa = λKa. The solution can be
obtained following Spectral Regression similarly to the process described in section 3.1.

34

3.4 Speeding Up the Eigendecomposition Step: Multi-view
Case

The proposed criterion for MvSDA can be solved by following a fast process similar to the
one defined for single-view case, based on the structure of the between-class Laplacian
matrix Lmv

b . Let us consider an example of multi-view data of two views and two classes,
where each class is represented by two subclasses. Let the first subclass of the first class
in the first view contain 2 samples and the second subclass of the first class 2 samples as
well. Let the first subclass of the second class contain 3 samples and second subclass
4 samples. In the second view, let the first subclass of the first class contain 2 samples
and the second subclass 2 samples. The second class contains 4 samples in the first
subclass and 3 samples in the second subclass.

In this case, the between-class Laplacian matrix has the structure outlined in Tab. 3.2,
where v1, v2, v3, v4, v5, v6, v7, and v8 are the positive constant values, and v9 is the
constant negative value corresponding to positions that correspond to instances of differ-
ent classes. The structure of the eigenvectors corresponding to this Laplacian matrix is
outlined in (3.12), where c, z, and v are the class, subclass, and view labels, respectively,
and ri is the i’th random value.

Similarly to the single-view case, we can notice that Lmv
b is a constant sum block matrix,

having a vector of ones as its eigenvector, corresponding to the eigenvalue zero. From
(3.2), we can observe the block structure of the matrix, and notice that the bigger blocks
correspond to different views, and the structure within each diagonal view block is similar
to that of the single-view case. In the inter-view blocks we can see the blocks correspond-
ing to different classes. Due to this block structure, we can observe the similar structure
in the eigenvectors of Lmv

b .

Here and further we assume that all classes have the same number of subclasses equal
to Z. Then, for the problem of C classes and V views, the rank of Lmv

b is equal to
C ∗ Z ∗ V − 1, resulting in the same amount of nonzero eigenvalues.

The first C−1 eigenvectors have class block structure similar to the one in the single-view
case, and the block structure is repeated across the positions corresponding to differ-
ent views. The rest of the eigenvectors show the subclass structure of different classes
across all the views, similarly to the single-view case. For a certain class, eigenvector
showing its subclass structure, has the same constant value at positions correspond-
ing to instances of the same subclass in one view and the values are different between
subclasses. The values corresponding to the rest of the classes are 0s.

Similarly to the single-view case, we observe that the eigenvectors corresponding to
classes having an equal number of elements merge together, and such eigenvectors
are repeated as many times as there are merged classes. In addition to that, the classes
with a smaller number of elements correspond to bigger eigenvalues.

35

Table 3.2. Structure of the between-class Laplacian matrix in multi-view SDA.

v1 v1 0 0 v9 v9 v9 v9 v9 v9 v9 0 0 0 0 v9 v9 v9 v9 v9 v9 v9

v1 v1 0 0 v9 v9 v9 v9 v9 v9 v9 0 0 0 0 v9 v9 v9 v9 v9 v9 v9

0 0 v2 v2 v9 v9 v9 v9 v9 v9 v9 0 0 0 0 v9 v9 v9 v9 v9 v9 v9

0 0 v2 v2 v9 v9 v9 v2 v9 v9 v9 0 0 0 0 v9 v9 v9 v9 v9 v9 v9

v9 v9 v9 v9 v3 v3 v3 0 0 0 0 v9 v9 v9 v9 0 0 0 0 0 0 0

v9 v9 v9 v9 v3 v3 v3 0 0 0 0 v9 v9 v9 v9 0 0 0 0 0 0 0

v9 v9 v9 v9 v3 v3 v3 0 0 0 0 v9 v9 v9 v9 0 0 0 0 0 0 0

v9 v9 v9 v9 0 0 0 v4 v4 v4 v4 v9 v9 v9 v9 0 0 0 0 0 0 0

v9 v9 v9 v9 0 0 0 v4 v4 v4 v4 v9 v9 v9 v9 0 0 0 0 0 0 0

v9 v9 v9 v9 0 0 0 v4 v4 v4 v4 v9 v9 v9 v9 0 0 0 0 0 0 0

v9 v9 v9 v9 0 0 0 v4 v4 v4 v4 v9 v9 v9 v9 0 0 0 0 0 0 0

0 0 0 0 v9 v9 v9 v9 v9 v9 v9 v5 v5 0 0 v9 v9 v9 v9 v9 v9 v9

0 0 0 0 v9 v9 v9 v9 v9 v9 v9 v5 v5 0 0 v9 v9 v9 v9 v9 v9 v9

0 0 0 0 v9 v9 v9 v9 v9 v9 v9 0 0 v6 v6 v9 v9 v9 v9 v9 v9 v9

0 0 0 0 v9 v9 v9 v9 v9 v9 v9 0 0 v6 v6 v9 v9 v9 v9 v9 v9 v9

v9 v9 v9 v9 0 0 0 0 0 0 0 v9 v9 v9 v9 v7 v7 v7 v7 0 0 0

v9 v9 v9 v9 0 0 0 0 0 0 0 v9 v9 v9 v9 v7 v7 v7 v7 0 0 0

v9 v9 v9 v9 0 0 0 0 0 0 0 v9 v9 v9 v9 v7 v7 v7 v7 0 0 0

v9 v9 v9 v9 0 0 0 0 0 0 0 v9 v9 v9 v9 v7 v7 v7 v7 0 0 0

v9 v9 v9 v9 0 0 0 0 0 0 0 v9 v9 v9 v9 0 0 0 0 v8 v8 v8

v9 v9 v9 v9 0 0 0 0 0 0 0 v9 v9 v9 v9 0 0 0 0 v8 v8 v8

v9 v9 v9 v9 0 0 0 0 0 0 0 v9 v9 v9 v9 0 0 0 0 v8 v8 v8

36

Hence, we can follow a similar procedure of creation of eigenvectors: we select the vector
of ones as our first eigenvector, and obtain the rest by creating vectors of random values
following the described structure and orthogonalizing them following the Gram-Schmidt
process. The vector of ones is then removed as being useless. The process is described
in more details in Algorithm 2.

c z v⎛⎜⎜⎝

⎞⎟⎟⎠

r1 r5 r9 r13 0 0 0 1 1 1

r1 r5 r9 r13 0 0 0 1 1 1

r1 r6 r10 r14 0 0 0 1 2 1

r1 r6 r10 r14 0 0 0 1 2 1

r2 0 0 0 r17 r21 r25 2 1 1

r2 0 0 0 r17 r21 r25 2 1 1

r2 0 0 0 r17 r21 r25 2 1 1

r2 0 0 0 r18 r22 r26 2 2 1

r2 0 0 0 r18 r22 r26 2 2 1

r2 0 0 0 r18 r22 r26 2 2 1

r2 0 0 0 r18 r22 r26 2 2 1

r3 r7 r11 r15 0 0 0 1 1 2

r3 r7 r11 r15 0 0 0 1 1 2

r3 r8 r12 r16 0 0 0 1 2 2

r3 r8 r12 r16 0 0 0 1 2 2

r4 0 0 0 r19 r23 r27 2 1 2

r4 0 0 0 r19 r23 r27 2 1 2

r4 0 0 0 r19 r23 r27 2 1 2

r4 0 0 0 r19 r23 r27 2 1 2

r4 0 0 0 r20 r24 r28 2 2 2

r4 0 0 0 r20 r24 r28 2 2 2

r4 0 0 0 r20 r24 r28 2 2 2

. (3.12)

37

Algorithm 2: Target vectors calculation, multi-view case

Function getMultiviewTargets(class_labels,cluster_labels,V ,C,Z,N):

Input: class_labels : V ∗N × 1 vector with class labels;

cluster_labels : V ∗N × 1 vector with the cluster labels;

V : number of views;

Z : number of clusters in each class;

C : number of classes; N : number of elements;

%class-level vectors;

T ← V ∗N × (C − 1) matrix with random values at positions of different classes,

such that values are repeated within the class in one column, but distinct between

views, classes, and columns;

L← unique numbers of elements in each class sorted in ascending order;

%cluster level vectors;

for l← iterate through L do

k ← list of classes with l elements;

m← length(k);

Tclust← V ∗N × m ∗ (V ∗ Z − 1) matrix with random values at positions of all

subclasses of classes in k, such that the values are shared within the subclass

in one column, but distinct between subclasses, views, and columns. Values at

positions of other classes are 0s;

T ← append Tclust as columns on the right;

end

T ← append N × 1 vector of ones as a column on the left ;

Orthogonalize T ;

remove the first column of T ;

return T

38

4 EXPERIMENTAL EVALUATION

In this chapter, the experiments that were performed in order to evaluate the proposed
extensions are presented. The approaches are evaluated on nine single-view datasets
and seven multi-view datasets, but due to resampling of some of the multi-view datasets,
we obtain nine subsets for the multi-view case as well. In single-view methods, the pro-
posed speed-up approach is compared with several clustering-based approaches that
rely on eigendecomposition, namely, SDA, CDA, and SMFA. Comparison is done also
with Spectral Regression Discriminant Analysis (SRDA). In addition, the results are com-
pared with Spectral Regression Subclass Discriminant Analysis in order to evaluate the
performance obtained by creating target vectors using the proposed approach based on
eigendecomposition. In the multi-view case, the proposed approach is compared with
other multi-view methods, namely SMvDA and MvMDA, and the proposed single-view
approach, where the features from different views are concatenated.

In the experiments, we assume that the subclass labels of all instances are known, and
we obtain them with k-means clustering in RD. For the multi-view datasets, clustering is
performed in each view separately. Same subclass labels are used for all the methods,
and for the kernel formulations of the algorithms. For the kernel formulations, we exploit
the Gaussian RBF kernel function:

K(xi, xj) = exp(−||xi − xj ||22
2σ2

), (4.1)

where we set the Gaussian scale σ to the mean Euclidean distance between the vectors.

The dimensionality of the projection space is determined by the rank of the between-class
Laplacian matrix Lb or Lmv

b , equal to C ∗ Z − 1 and V ∗ C ∗ Z − 1, respectively, where V

is the number of views, C is the number of classes, and Z is the number of subclasses
in each class. After projection, classification is done with k-Nearest Neighbors algorithm
with k=5.

All the hyperparameters are selected with grid search. These include the kInt and kPen

parameters in SMFA and KSMFA, that were selected from the range of [2..14] with step
3 for kInt and [20..100] with step 20 for kPen. The regularization parameter in SRDA was
selected from the set of {10−4, 10−3, 10−2, 0, 1, 101, 102}. Regularization was applied to
all kernel single-view methods and all multi-view methods with regularization parameter
selected from the same set. For efficient matrix inversion, Cholesky decomposition was
used for efficient matrix inversion.

39

Approximate kernel regression was used for large datasets of over 2500 samples, and
prototypes were selected by selecting 1500 random vectors from the training data. For
kernel SDA, SMFA, and CDA, Nyström-based approximate kernel regression was used
with cardinality of 1000, due to infeasible computational requirements of eigendecompo-
sition of the full matrix.

5-fold stratified cross-validation was applied to obtain the training, testing, and validation
splits. 60% of the data was selected for training, 20% - for validation, i.e., hyperparameter
tuning, and 20% - for testing. The results are reported for the models trained on the
training set and tested on the testing set. All experiments were performed on a computer
with 4-core Intel i7-4800Q CPU and 32 GB of RAM.

4.1 Single-view Datasets

In order to validate the proposed approach, we perform experiments on nine single-view
datasets. One of the datasets is a large-scale facial recognition dataset, four are facial
image datasets and the rest are datasets of different domains, used to prove the applica-
bility of the proposed approach on various data types.

The Jaffe dataset [39] consists of images of ten Japanese female models with seven dif-
ferent facial expressions: anger, happiness, fear, disgust, sadness, surprise and neutral.
The dataset includes 213 images. The example image can be seen in Fig. 4.1.

Figure 4.1. Example of images from Jaffe dataset.

The second facial image dataset is the BU dataset [62], containing 700 samples and 7
facial expression classes. Another facial image dataset is the extended Cohn-Kanade
dataset [33], containing the same 7 facial expressions and 245 images, example of which
can be seen in Fig. 4.2.

40

Figure 4.2. Example of images from Cohn-Kanade dataset.

The Extended Yale-B [36] dataset poses the problem of face recognition of 38 individuals,
where each individual has 64 images taken under different positions, view angles, illumi-
nation conditions, etc. The dataset contains 2432 grayscale images. An example can be
seen in Fig. 4.3.

Figure 4.3. Example of images from Extended Yale-B dataset.

In order to evaluate the proposed approach on the large-scale problems, we utilize one
large-scale facial image dataset. The SoF dataset [2] consists of images of 66 male and
4 female people, resulting in a total of 42,592 images. The images were taken under
various illumination conditions and various occlusions, for example, glasses. Example
images from the SoF dataset can be seen in Fig. 4.4. In all the facial image datasets
mentioned above, the features were obtained by rescaling the image to 30×40 pixel size
and flattening to obtain a 1×1200 vector.

41

Figure 4.4. Example of images from SoF dataset.

Other datasets used in this work are meant to show the applicability of the methods on
various types of data. The Ionosphere dataset [53] poses the problem of classification
of radar data sequences to the ones containing certain evidence of a certain type of
structure in the ionosphere and the ones containing no evidence, hence defining a binary
classification problem. Data is represented by radar measurements, where each sample
is a 34-dimensional vector and there are 351 samples in the dataset.

Another application area evaluated in this work is the recognition of handwritten digits.
For this purpose, the Semeion dataset [6] was used. The dataset contains 1593 images
of handwritten digits produced by 80 people. Each person has written each digit twice:
with a normal handwriting style and with fast handwriting. The images are binarized and
rescaled to 16x16 pixels, and further flattened to obtain 1x256 vectors.

The MONKS-2 dataset [58] is a classical dataset that was initially proposed as a bench-
mark for evaluation of different learning algorithms, the subject area of which is an artifi-
cially constructed area of robot recognition based on their features. Each sample of the
data is represented by 6 discrete features and there are 2 classes in the dataset.

The Pima Indians Diabetes dataset [54] poses the problem of diabetes diagnosis based
on other health attributes of the patient, therefore defining a binary classification problem.
The dataset has information on 768 patients, along with the information on the number of
pregnancies the patient had, BMI, insulin level, age. Table 4.1 outlines the summary of
all single-view datasets used in this work.

4.2 Multi-view Datasets

In order to evaluate the proposed Multi-view Subclass Discriminant Analysis approach,
experiments on nine multi-view datasets were conducted. In order to show the applica-
bility of the proposed approach on various data types, the selected datasets include sev-
eral human action recognition datasets using various sensors, visual object classification
datasets, handwritten digit recognition dataset, and one audio classification dataset [37].

42

Table 4.1. Summary of single-view datasets.

Dataset Dimensionality Number of
classes

Number of
samples Subject area

Jaffe 1200 7 213
facial expression

recognition

Cohn-Kanade 1200 7 245
facial expression

recognition

BU 1200 7 700
facial expression

recognition

Yale-B 1200 20 2432 object recognition

Ionosphere 34 2 351 radar data analysis

Semeion 256 10 1593
handwritten digits

recognition

MONKS-2 6 2 169
robot recognition

(artificially created)

Pima 8 2 768 action recognition

SoF 1200 112 42592 face recognition

The first dataset used is the Handwritten digits dataset [5]. The dataset poses the prob-
lem of image-based handwritten digit recognition from multiple views, therefore defining
a multiclass classification problem with 10 classes. Each sample is described from 6 dif-
ferent views: Fourier coefficients of length 128, Karhunen-Love coefficients of length 64,
Zernike moments of length 47, morphological features of length 6 and profile correlations
of length 76. The dataset consists of 2000 samples extracted from a collection of Dutch
utility maps. Prior to extraction of the features, the images were binarized.

The Caltech-101 dataset [18] poses a problem of image-based object classification based
on the features extracted from six views: Histogram of Oriented Gradients features of
length 1984, GIST features of length 512, Gabor features of length 48, wavelet moments
of length 40, CENTRIST features of length 254 and local binary patterns features of
length 1928. The classes of the initial dataset are largely imbalanced, causing the cre-
ation of two distinct datasets with 7 and 20 classes each, further referred to as Caltech-
101-7 and Caltech-101-20. Caltech-101-7 contains 1474 images of 7 classes: face,
motorbikes, dollar bill, garfield, snoopy, stop sign and windsor chair. Caltech-101-20 con-
tains 2386 images of 20 classes: face, leopards, motorbikes, binocular, brain, camera,
car side, dollar bill, ferry, garfield, hedgehog, pagoda, rhino, snoopy, stapler, stop sign,
water lilly, windsor chair, wrench, and yin-yang. Several example images can be seen in
FIg. 4.5.

Another object recognition dataset is the NUS-WIDE dataset [14] containing images of 31
classes: bear, bird, boat, book, car, cat, computer, coral, cow, dog, elk, fish, flags, flower,

43

Figure 4.5. Example of images from Caltech-101 dataset.

fox, horse, leaf, plane, rocks, sand, sign, statue, sun, tiger, tower, toy, train, tree, vehicle,
whales, and zebra. The subset of 11288 samples was selected for the experiments,
preserving the class balance. Each sample is described from 5 different views: wavelet
texture of length 129, edge distribution of length 74, color correlation of length 145, color
moments of length 226 and color histogram of length 65. Several example images from
the dataset can be seen in Fig. 4.6.

Figure 4.6. Example of images from NUS-WIDE dataset.

In order to evaluate the proposed method on action recognition problems, one of the se-
lected datasets is the Human Action Recognition Using Smartphones (HARS) dataset

44

(HARS) [4]. This dataset contains data collected from the accelerometer and gyroscope
of the smartphone attached to the waist of a person. The person is performing one of
the activities: walking, walking upstairs, walking downstairs, sitting, standing, lying. The
data was collected from 20 people of various age groups in the range of 19-48 years.
The 3-axial angular velocity and acceleration are captured at the rate of 50 Hz and fur-
ther processed by applying denoising filters and sampling with a sliding window of 2.56
seconds and 50% overlap. Using Butterworth filter with 0.3Hz cutoff, the acceleration sig-
nal was separated into gravitational and body motion components, under the assumption
that the gravitational component contains only low-frequency components. Therefore,
the obtained dataset contains data from 9 views: angular velocity of each of 3 axes, total
acceleration of each of 3 axes and body acceleration of each axis. The dataset con-
tains 7352 samples and the cross-validation sets were selected in a way that the people
performing the actions are not repeated between the train and test splits.

Another action recognition dataset targets the problem of action recognition of older peo-
ple. The Healthy Old People Action Recognition dataset (HOPAR) [56] contains two in-
dependent subsets. The data was collected from a wireless sensor worn by a person
and 4 activities were observed: sitting on a chair, sitting on a bed, ambulating and lying.
Each sample is described from 4 views: acceleration of each of the 3 axes and the signal
attributes, containing RSSI, frequency, and phase. In the first subset, data was collected
from 60 people and 10495 samples were selected randomly, preserving the balance be-
tween the classes and the subjects. In the second subset, 27 people participated in the
experiments resulting in 9057 samples in the dataset. Similarly to the HARS dataset,
cross-validation splits were selected in such a way that the subjects are not repeated
between the train and test sets.

The Robot Execution Failures dataset [1] is often used for evaluation of the methods
applied to robotics problems. Here, the data consists of 5 subsets, each describing a
different problem. For our experiments, datasets 1 and 4 were combined, resulting in a
dataset of failures in approach to grasp or ungrasp position by a robot, therefore defining
a multiclass classification problem with 4 classes: normal, collision, frontal collision, and
obstruction. Each sample in the dataset is described from 6 views: force on each of the
3 axes and torque on each of the 3 axes. There are a total of 205 samples in the dataset.

Another application area that is evaluated in our experiments is audio processing. Here,
we tackle a problem of genre classification utilizing the Million Song Dataset with Images
(MSDI) [43]. Here, the task is to classify audio samples into 15 different genres: blues,
country, electronic, folk, jazz, latin, metal, newAge, pop, punk, rap, reggae, RnB, rock.
Each audio sample is accompanied by an image of the corresponding album cover, de-
scribed with the features extracted from CNN. Due to the large volume of the dataset,
the subset of 7468 instances is selected for our experiments, preserving the balance
between classes.

The summary of the multi-view datasets is outlined in Table 4.2.

45

Table 4.2. Summary of multi-view datasets.

Dataset Number of
views

Number of
classes

Number of
samples Subject area

Handwritten
digits 6 10 2000

handwritten digits
recognition

Caltech-101-7 6 7 1474 object recognition

Caltech-101-20 6 20 2386 object recognition

NUS-WIDE 5 31 11288 object recognition

Robots Failures 6 4 205 robotics

HARS 9 6 7352 action recognition

HOPAR1 4 4 10495 action recognition

HOPAR2 4 4 9057 action recognition

MSDI 2 15 7468 genre classification

4.3 Results

The classification results for the single-view datasets can be seen in Table 4.3 and Ta-
ble 4.4 for the linear formulations of the algorithms; and Table 4.5 and Table 4.6 for the
kernelized formulations of the algorithms. As mentioned previously, the proposed ap-
proach is compared with SDA, CDA, SMFA, and SRDA. In addition, by performing eigen-
decomposition of Lb, regressing the obtained eigenvectors, projecting the data to the
obtained vector and sorting the vectors according to calculated criterion value, we verify
that for the data with subclass structure the eigenvectors corresponding to larger criterion
values are those following the described structure.

For all the experiments, we report the accuracy, training time, and the number of sub-
classes that resulted in the best accuracy after testing on the test set with 1-6 subclasses.
In the single-view dataset, the training time excludes the time taken for clustering, as a
comparison is done with other clustering-based algorithms, hence, this time is similar for
all the methods. In the multi-view case, the clustering time is included in the total time
reported for the proposed method, as the comparison is done with the methods, that do
not require clustering.

As can be seen, the proposed speed-up approach results in higher speed and competitive
accuracy. We can see that in the linear case, the proposed method outperformed other
methods on 6 out of 9 datasets while being close to the best accuracy on the rest 3
datasets. In terms of speed, the method is comparable with SRDA, that follows a similar
speed-up approach, but results in better accuracy even for the single subclass case.

In the multi-view datasets, the comparison is done with multi-view extensions of LDA,

46

Table 4.3. Classification results of linear methods in single-view datasets: accuracy/num-
ber of clusters per class.

Dataset SDA CDA SMFA SRDA
SDA,

sorted
vectors

fastSDA
(our)

BU 62.8/1 60.1/1 59.9/1 62.6 63.3/1 63.3/1

Jaffe 65.2/1 58.1/1 63.8/1 65.7 65.2/1 66.2/1

Ionos. 89.7/3 89.4/5 89.4/4 83.1 87.8/6 88.3/2

Kanade 63.3/1 61.6/1 55.1/1 65.3 64.0/1 65.7/1

Semeion 87.8/1 83.2/1 86.7/1 88.9 89.0/1 89.4/1

Yale 86.8/2 86.6/2 87.6/2 88.6 88.7/1 89.4/1

PIMA 71.2/5 72.0/5 72.8/2 71.2 71.2/1 71.6/4

Monks2 55.8/2 53.9/1 61.2/1 50.9 58.8/6 52.7/3

SoF 98.6/1 98.9/1 98.5/1 99.0 98.0/1 99.0/1

Table 4.4. Classification results of linear methods in single-view datasets: training time
(in sec).

Dataset SDA CDA SMFA SRDA
SDA,

sorted
vectors

fastSDA
(our)

BU 0.019 0.017 0.030 0.013 0.09 0.005

Jaffe 0.013 0.004 0.005 0.005 0.013 0.002

Ionos. 0.008 0.002 0.005 0.005 0.017 0.002

Kanade 0.012 0.005 0.006 0.005 0.02 0.002

Semeion 0.245 0.041 0.147 0.015 1.148 0.013

Yale 0.063 0.056 0.216 0.010 4.1 0.007

PIMA 0.003 0.009 0.016 0.005 0.081 0.001

Monks2 0.004 0.002 0.002 0.005 0.005 0.001

SoF 9.52 18.3 86.0 0.831 0.801 0.611

namely SMvDA, MvMDA, and the proposed single-view approach, where the features of
the different views are concatenated and the clustering is berformed on the concatenated
features. The results for the multi-view datasets are outlined in Table 4.7 and Table 4.8
for the linear versions of the algorithms; and in Table 4.9 and Table 4.10 for the kernelized
forms of the algorithms.

As can be seen, in the linear case, the proposed mvSDA outperforms the multi-view LDA

47

Table 4.5. Classification results of kernel methods in single-view datasets: accura-
cy/number of clusters per class.

Dataset kernel SDA kernel CDA kernel SMFA kernel
fastSDA (our)

BU 63.7/1 64.7/1 62.4/1 64.2/1

Jaffe 69.0/1 69.0/1 63.8/1 68.5/1

Ionosphere 83.4/6 94.5/5 84.6/3 94.9/6

Kanade 59.6/2 60.4/1 57.9/1 61.2/1

Semeion 91.2/2 91.5/1 91.6/1 90.6/1

Yale 89.4/6 91.4/1 75.2/4 91.4/1

PIMA 63.1/6 66.9/6 64.8/5 72.3/3

Monks2 46.0/6 56.4/5 55.2/2 52.7/3

SoF 77.4/2 79.2/2 98.3/2 98.4/2

Table 4.6. Classification results of kernel methods in single-view datasets: training time
(in sec).

Dataset kernel SDA kernel CDA kernel SMFA kernel
fastSDA (our)

BU 0.036 0.068 0.432 0.01

Jaffe 0.004 0.010 0.015 0.001

Ionosphere 0.012 0.026 0.049 0.002

Kanade 0.005 0.007 0.020 0.001

Semeion 0.275 0.479 11.5 0.043

Yale 1.00 0.886 39.5 0.103

PIMA 0.040 0.392 0.368 0.012

Monks2 0.02 0.127 0.007 0.001

SoF 188.9 190.3 167.7 1.55

extensions on all but one dataset. At the same time, in the kernel formulation, the pro-
posed approach outperforms other methods on 4 datasets. The kernel formulation of the
proposed single-view fastSDA outperforms other methods in 4 datasets. The proposed
approaches also outperform the others in terms of speed by a large margin.

48

Table 4.7. Classification results of linear methods in multi-view datasets: accuracy/num-
ber of clusters per class.

Dataset SMvDA MvMDA MvSDA (our) single-view
fastSDA (our)

HWD 98.9 98.6 98.8/1 98.5/4

HARS 62.6 31.9 67.3/1 63.0/3

Robots 66.8 57.5 74.6/5 46.4/6

Caltech-7 98.2 98.2 98.2/1 97.0/1

Caltech-20 93.7 94.6 95.0/1 89.7/1

HOPAR 1 84.9 84.8 85.4/1 84.8/2

HOPAR 2 81.9 81.9 82.3/2 82.3/6

MSDI 57.6 57.0 58.4/6 58.3/2

NUS-WIDE 48.6 47.3 56.0/3 26.0/3

Table 4.8. Classification results of linear methods in multi-view datasets: training time (in
sec).

Dataset SMvDA MvMDA MvSDA (our) single-view
fastSDA (our)

HWD 3.3 2.3 0.10 0.03

HARS 27.4 22.3 1.34 0.22

Robots 0.029 0.028 0.01 0.002

Caltech-7 21.5 22.4 1.35 0.65

Caltech-20 23.4 20.2 2.0 1.0

HOPAR 1 7.14 6.2 0.04 0.008

HOPAR 2 5.75 4.41 0.06 0.008

MSDI 58.4 50.9 0.2 0.024

NUS-WIDE 133.2 130.2 0.54 0.09

49

Table 4.9. Classification results of kernel methods in multi-view datasets: accuracy/num-
ber of clusters per class.

Dataset kernel
SMvDA

kernel
MvMDA

kernel
MvSDA (our)

kernel
single-view

fastSDA (our)

HWD 99.0 98.5 99.3/1 99.0/3

HARS 79.4 86.5 89.5/3 89.5/2

Robots 68.3 75.2 81.5/2 77.6/4

Caltech-7 97.6 97.9 97.7/1 97.8/1

Caltech-20 87.2 93.6 93.9/1 94.7/1

HOPAR 1 85.4 86.0 86.0/2 85.8/2

HOPAR 2 83.1 79.0 80.2/4 82.7/3

MSDI 51.3 31.6 61.5/1 63.9/1

NUS-WIDE 32.9 42 61.3/1 62.7/1

Table 4.10. Classification results of kernel methods in multi-view datasets: training time
(in sec).

Dataset kernel
SMvDA

kernel
MvMDA

kernel
MvSDA (our)

kernel
single-view

fastSDA (our)

HWD 72.4 70.5 5.7 0.07

HARS 561 554 97 4.3

Robots 0.14 0.14 0.03 0.001

Caltech-7 30.9 30 2.78 0.03

Caltech-20 244 236 9.57 0.11

HOPAR 1 76.7 74.4 10.9 4.49

HOPAR 2 65.9 74.1 8.89 2.8

MSDI 69.9 48.6 1.16 2.3

NUS-WIDE 259.5 235.3 24 7.7

50

5 CONCLUSIONS

In this thesis, the area of dimensionality reduction by means of single-view and multi-view
subspace learning was studied. The main limitations of the commonly used methods,
including LDA, lie in the assumptions of the unimodality of data, limitations in the dimen-
sionality of the learned subspace, that is limited by the rank of the between-class scatter
matrix, and low training speed on high-dimensional data in linear case and large datasets
in kernel case.

Many approaches have been proposed to overcome the first two of the above-mentioned
limitations, including Subclass Discriminant Analysis, Clustering Discriminant Analysis,
and Subclass Marginal Fisher Analysis, but these methods still suffer from limitations re-
lated to training time. In this work, an approach to overcome these three limitations at the
same time was proposed by introducing a speed-up approach for Subclass Discriminant
Analysis and Kernel Subclass Discriminant Analysis that is based on Spectral Regression
and exploitation of the specific structure of the between-class Laplacian matrix. Experi-
mentally it was shown that the proposed approach allows gaining the training speed while
resulting in competitive performance.

At the same time, in the multi-view scenario, not as many approaches to overcoming the
limitations of LDA were proposed. Therefore, a novel multi-view extension to Subclass
Discriminant Analysis was proposed for the problems where data is represented by multi-
ple modalities, along with a speed-up solution to it, that is closely related to the speed-up
solution proposed for the single-view case.

Revisiting the research problems defined in the beginning of the work, it can be seen that
the identifined requirements are satisfied in the proposed methods:

• the assumption of unimodality of each class is relaxed by relying on the subclass
representation

• computational efficiency is achieved by substitution of the eigendecomposition step
with a much faster process

• the possible dimensionality of the projected data is increased to C ∗Z− 1 or C ∗Z ∗
V − 1 in single-view and multi-view cases, respectively

• the extention to multi-view data is proposed along with a fast solution.

51

Experimentally it was shown that the proposed approach outperforms other methods that
rely on the assumption on the unimodality of the data, while taking much less time to
train. By utilizing the proposed approaches, dimensionality reduction can be performed
on the large-scale high-dimensional datasets, where the application of other methods is
not viable; and the analysis can be performed on both single-view and multi-view data.

In the future work, possible research directions include the extensions that would rely on
clustering in the kernel space for the kernelized formulation of the methods. Besides,
estimation of the suitable amount of subclasses as a part of the training process can be
studied.

52

REFERENCES

[1] M. Afifi and A. Abdelhamed. Integration and learning in supervision of flexible as-
sembly systems. IEEE Transactions on Robotics and Automation 12 (1996), 202–
219.

[2] M. Afifi and A. Abdelhamed. AFIF4: Deep gender classification based on an AdaBoost-
based fusion of isolated facial features and foggy faces. arXiv preprint arXiv:1706.04277
(2017).

[3] D. Amodei et al. Deep speech 2: End-to-end speech recognition in english and
mandarin. International Conference on Machine Learning. (2016), 173–182.

[4] D. Anguita et al. A public domain dataset for human activity recognition using smart-
phones. European Symposium on Artificial Neural Networks, Computational Intel-
ligence and Machine Learning. Bruges, Belgium, (2013).

[5] M. van Breukelen, R. Duian, D. Tax and J. den Hartog. Handwritten digit recognition
by combined classifiers. Kybernetika 34 (1998), 381–386.

[6] M. Buscema. MetaNet: the theory of independent judges. Substance Use Misuse
33 (1998), 439–461.

[7] D. Cai, X. He and J. Han. Spectral regression for efficient regularized subspace
learning. IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil,
(2007).

[8] D. Cai, X. He and J. Han. SRDA: an efficient algorithm for large scale discriminant
analysis. IEEE Transactions on Knowledge and Data Engineering 20 (2007), 1–12.

[9] D. Cai, X. He and J. Han. Speed up kernel discriminant analysis. The VLDB Journal
20 (2011), 21–33.

[10] G. Cao, A. Iosifidis, K. Chen and M. Gabbouj. Generalized multi-view embedding
for visual recognition and cross-modal retrieval. IEEE Transactions on Cybernetics
48 (2018), 2542–2555.

[11] G. Cao, A. Iosifidis and M. Gabbouj. Multi-view nonparametric discriminant analysis
for image retrieval and recognition. IEEE Signal Processing Letters 24.10 (2017),
1537–1541.

[12] B. Chen, L. Yuan, H. Liu and Z. Bao. Kernel subclass discriminant analysis. Neuro-
computing 71 (2007), 455–458.

[13] X. Chen and T. Huang. Facial expression recognition: a clustering-based approach.
Pattern Recognition Letters 24 (2003), 1295–1302.

[14] T. Chua et al. NUS-WIDE: A real-world web image database from National Uni-
versity of Singapore. ACM International Conference on Image and Video Retrieval.
Greece, (2009).

53

[15] K. Chumachenko, J. Raitoharju, A. Iosifidis and M. Gabbouj. Speed-up and Multi-
view Extensions to Subclass Discriminant Analysis. arXiv preprint arXiv:1905.00794
(2019).

[16] R. Duda, P. Hart and D. Stork. Pattern Classification. 2nd. New York, NY, USA:
Wiley, 2000.

[17] C. Feichtenhofer, A. Pinz and A. Zisserman. Convolutional two-stream network fu-
sion for video action recognition. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (2016), 1933–1941.

[18] L. Fei-Fei, R. Fergus and P. Perona. One-Shot learning of object categories. IEEE
Transactions on Pattern Recognition and Machine Intelligence 8 (2006), 594–611.

[19] R. Fisher. The statistical utilization of multiple measurements. Annals of Eugenics
8 (1938), 376–386.

[20] S. Hershey et al. CNN architectures for large-scale audio classification. 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing. IEEE. (2017),
131–135.

[21] S. Hill, M. Lettington and K. Schmidt. Block representation and spectral properties
of constant sum matrices. Electronic Journal of Linear Algebra 34 (2018), 170–190.

[22] R. Horn and C. Johnson. Matrix Analysis. 1st. Cambridge University Press, 1985.
[23] A. Iosifidis and M. Gabbouj. Nyström-based approximate kernel subspace learning.

Pattern Recognition 57 (2016), 190–197.
[24] A. Iosifidis and M. Gabbouj. Scaling up class-specific kernel discriminant analysis

for large-scale face verification. IEEE Transactions on Information Forensics and
Security 11 (2016), 2453–2465.

[25] A. Iosifidis and M. Gabbouj. Class-specific kernel discriminant analysis revisited:
further analysis and extensions. IEEE Transactions on Cybernetics 47 (2017), 4485–
4496.

[26] A. Iosifidis, A. Tefas and I. Pitas. On the optimal class representation in linear dis-
criminant analysis. IEEE Transactions on Neural Networks and Learning Systems
24.9 (2013), 1491–1497.

[27] A. Iosifidis, A. Tefas and I. Pitas. Kernel reference discriminant analysis. Pattern
Recognition Letters 49 (2014), 85–91.

[28] A. Iosifidis, A. Tefas and I. Pitas. Class-specific reference discriminant analysis with
application in human behavior analysis. IEEE Transactions on Human-Machine
Systems 45 (2015), 315–326.

[29] A. Iosifidis and M. Gabbouj. On the kernel extreme learning machine speedup.
Pattern Recognition Letters 68 (2015), 205–210.

[30] A. Iosifidis, A. Tefas and I. Pitas. Approximate kernel extreme learning machine for
large scale data classification. Neurocomputing 219 (2017), 210–220.

[31] Y. Jia, F. Nie and C. Zhang. Trace ratio problem revisited. IEEE Transactions on
Neural Networks 20.4 (2009), 729–735.

54

[32] M. Kan, S. Shan, H. Zhang, S. Lao and X. Chen. Multi-view Discriminant Analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence 38 (2016), 188–
194.

[33] T. Kanade, J. Cohn and Y. Tian. Comprehensive database for facial expression
analysis. IEEE International Conference on Automatic Face and Gesture Recogni-
tion. Grenoble, France, (2000), 46–53.

[34] N. Kwak. Implementing kernel methods incrementally by incremental nonlinear pro-
jection trick. IEEE Transactions on Cybernetics 47 (2017), 4003–4009.

[35] N. Kwak. Nonlinear projection trick in kernel methods: An alternative to the kernel
trick. IEEE Transactions on Neural Networks and Learning Systems 24.12 (2013),
2113–2119.

[36] K. Lee, J. Ho and D. Kriegman. Acquiring linear subspaces for face recognition
under variable lightning. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 27 (2005), 684–698.

[37] Y. Li, F. Nie, H. Huang and J. Huang. Large-scale multi-view spectral clustering via
bipartite graph. AAAI Conference on Artificial Intelligence. (2015).

[38] J. Long, E. Shelhamer and T. Darrell. Fully convolutional networks for semantic
segmentation. Proceedings of the IEEE conference on computer vision and pattern
recognition. (2015), 3431–3440.

[39] M. Lyons, S. Akamatsu, M. Kamachi and J. Gyoba. Coding facial expressions with
Gabor wavelets. IEEE International Conference on Automatic Face and Gesture
Recognition. Nara, Japan, (1998), 200–205.

[40] B. Ma, H. Qu and H. Wong. Kernel clustering-based discriminant analysis. Pattern
Recognition 40 (2006), 324–327.

[41] A. Maronidis, A. Tefas and I. Pitas. Graph embedding exploiting subclasses. IEEE
Symposium Series on Computational Intelligence. Cape Town, South Africa, (2015).

[42] A. Maronidis, A. Tefas and I. Pitas. Subclass graph embedding and a marginal
Fisher analysis paradigm. Pattern Recognition 48 (2015), 4024–4035.

[43] S. Oramas, F. Barbieri and O. Nieto. Multimodal deep learning for music genre clas-
sification. Transactions of the International Society for Music Information Retrieval
1 (2018).

[44] S. Pang, S. Ozawa and N. Kasabov. Incremental linear discriminant analysis for
classification of data streams. IEEE Transactions on Systems, Man, and Cybernet-
ics 35.5 (2005), 905–914.

[45] O. M. Parkhi, A. Vedaldi, A. Zisserman et al. Deep face recognition. bmvc. Vol. 1.
3. (2015), 6.

[46] C. R. Rao. The utilization of multiple measurements in problems of biological clas-
sification. Journal of the Royal Statistical Society. Series B (Methodological) 10.2
(1948), 159–203.

[47] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. (2017), 7263–
7271.

55

[48] S. Ren, K. He, R. Girshick and J. Sun. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in Neural Information Processing
Systems. (2015), 91–99.

[49] B. Scholkopf., S. Mika, C. Burges, P. Knirsch, K. Muller, G. Ratsch and A. Smola.
Input space versus feature space in kernel-based methods. IEEE Transactions on
Neural Networks (1999), 1000–1017.

[50] B. Scholkopf, A. Smola and K. Muller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10 (1998), 1299–1319.

[51] F. Schroff, D. Kalenichenko and J. Philbin. Facenet: A unified embedding for face
recognition and clustering. Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. (2015), 815–823.

[52] Y. Shuicheng et al. Graph embedding and extensions: a general framework for
dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine In-
telligence 29 (2007), 40–51.

[53] V. Sigillito, S. Wing, L. Hutton and K. Baker. Classification of radar returns from the
ionosphere using neural networks. Johns Hopkins APL Technical Digest 10 (1989),
262–266.

[54] J. Smith, J. Everhart, W. Dickson, W. Knowler and R. Johannes. Using the ADAP
learning algorithm to forecast the onset of diabetes mellitus. Proceedings of the
Symposium on Computer Applications and Medical Care (1988), 261–265.

[55] S. Sun. A survey of multi-view machine learning. Neural Computing and Applica-
tions 23.7-8 (2013), 2031–2038.

[56] S. Torres, D. Ranasinghe, Q. Shi and A. Sample. Sensor enabled wearable RFID
technology for mitigating the risk of falls near beds. IEEE International Conference
on RFID. (2013), 191–198.

[57] H. Wang, X. Lu and W. Zheng. Fisher discriminant analysis with L1-norm. IEEE
Transactions on Cybernetics 4 (2014), 828–842.

[58] J. Wnek and R. Michalski. Comparing symbolic and subsymbolic learning: three
studies. Machine Learning: A Multistrategy Approach 4 (1993).

[59] H. Ye, Y. Li, C. Chen and Z. Zhang. Fast Fisher discriminant analysis with random-
ized algorithms. Pattern Recognition 72 (2017), 82–92.

[60] J. Ye. Least squares linear discriminant analysis. International Conference on Ma-
chine Learning 1 (2007), 1087–1093.

[61] R. A. Yeh et al. Semantic image inpainting with deep generative models. Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. (2017),
5485–5493.

[62] L. Yin, X. Wei, Y. Sun, J. Wang and M. Rosato. A 3D facial expression database
for facial behavior research. IEEE International Conference on Automatic Face and
Gesture Recognition. Southampton, UK, (2006), 211–216.

[63] Q. Yin, S. Wu and L. Wang. Unified subspace learning for incomplete and unlabeled
multi-view data. Pattern Recognition 67 (2017), 313–327.

56

[64] X. You et al. Multi-view Common Component Discriminant Analysis for Cross-view
Classification. Pattern Recognition (2019).

[65] C. Zhao et al. Maximal granularity structure and generalized multi-view discriminant
analysis for person re-identification. Pattern Recognition 79 (2018), 79–96.

[66] M. Zhu and A. Martinez. Subclass discriminant analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence 28 (2006), 1274–1286.

[67] P. Zhu, Q. Hu, Q. Hu, C. Zhang and Z. Feng. Multi-view label embedding. Pattern
Recognition 84 (2018), 126–135.

	Introduction
	Theoretical Background
	Subspace Learning
	Linear and Nonlinear Learning
	Kernel Trick
	Nonlinear Projection Trick

	Subspace Learning Methods
	Linear Discriminant Analysis
	Clustering-based Discriminant Analysis
	Kernel Clustering-based Discriminant Analysis
	Graph Embedding Framework
	Marginal Fisher Analysis
	Subclass Graph Embedding Framework
	Subclass Marginal Fisher Analysis
	Subclass Discriminant Analysis
	Kernel Subclass Discriminant Analysis

	Multi-view Learning
	Multi-view Extensions to Linear Discriminant Analysis

	Speed-up Approaches
	Spectral Regression Discriminant Analysis
	Kernel Regression
	Approximate Kernel Regression
	Nyström-based Approximate Kernel Subspace Learning
	Incremental Learning

	Proposed Methods
	Spectral Regression Subclass Discriminant Analysis
	Speeding Up the Eigendecomposition Step
	Multi-view Subclass Discriminant Analysis
	Speeding Up the Eigendecomposition Step: Multi-view Case

	Experimental Evaluation
	Single-view Datasets
	Multi-view Datasets
	Results

	Conclusions
	References

