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ABSTRACT. Kernel methods are powerful but computationally demanding techniques for non-linear
learning. A popular remedy, the Nyström method has been shown to be able to scale up kernel
methods to very large datasets with little loss in accuracy. However, kernel PCA with the Nyström
method has not been widely studied. In this paper we derive kernel PCA with the Nyström method
and study its accuracy, providing a finite-sample confidence bound on the difference between the
Nyström and standard empirical reconstruction errors. The behaviours of the method and bound
are illustrated through extensive computer experiments on real-world data. As an application of the
method we present kernel principal component regression with the Nyström method.
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1. INTRODUCTION

Kernel methods generalize classical statistical methods to discover non-linear patterns in data
[Shawe-Taylor and Cristianini, 2004]. They have been demonstrated to achieve state-of-the-art
results in many application domains and it is straightforward to apply them to non-numeric data,
such as graphs or text [Vishwanathan et al., 2010, Lodhi et al., 2002]. Through a near arbitrary
non-linear mapping of data points into a Hilbert space they offer remarkable flexibility whilst
providing a precise mathematical framework for statistical analyses. A host of linear statistical
methods have been adapted to be used with kernels, including Fisher discriminant analysis (FDA)
[Mika et al., 1999], independent component analysis (ICA) [Bach and Jordan, 2002], instrumental
variable (IV) regression [Singh et al., 2019], and many more. Kernel PCA is a non-linear version of
principal component analysis (PCA), a ubiquitous method to discover the most important directions
of variation in data [Pearson, 1901]. PCA may be used for dimensionality reduction, exploratory
data analysis, anomaly detection, discriminant analysis, clustering, or as a general preprocessing
step for regression or classification [Jolliffe, 2002, Wold et al., 1987].

The other side of the coin of kernel methods is their large computational requirements, as they
generally scale in the number of data points rather than the number of data dimensions. As a remedy,
various approximations have been proposed, such as the Nyström method, which randomly selects a
smaller subset of data points and looks for solutions in their linear span. The Nyström method also
plays an important role in recent state-of-the-art implementations of kernel methods [Rudi et al.,
2017, Ma and Belkin, 2017, Meanti et al., 2020, Carratino et al., 2021].

The need for approximate methods becomes particularly acute for kernel PCA, since it relies on
the eigendecomposition of the kernel matrix, which requires about 9n3 + O(n2) floating-point
operations, as opposed to 1

3n
3 +O(n2) floating-point operations for the solution of a linear system

by way of the Cholesky decomposition when performing regression [Golub and Van Loan, 2013,
Chapters 4, 8]. Despite this fact, kernel PCA with the Nyström method has not yet been derived
fully in line with linear PCA.

In this paper we derive kernel PCA with the Nyström method, generalizing a previous method from
Sterge et al. [2020]. We provide orthonormal principal components in the span of the Nyström
subset that maximize the variance of the data, without assuming that the data has zero mean,
as well as the associated principal scores1. The prin-
cipal scores are perhaps of particular interest, since
they allow for the method to be used as a preprocess-
ing step before applying supervised learning methods,
by virtue of providing a new representation of data
points in the new coordinate system defined by the
principal components. The figure to the right shows
the first two dimensions for these representations for
an example with a dataset of images of handwritten
digits, in comparison with standard full kernel PCA2.

The principal scores are given as follows. First let Kmm be m randomly subsampled rows and
columns of the original kernel matrix K, and Knm be the same m subsampled columns. Centring

1Different conventions exist for the terminology of PCA. Throughout this paper we will take the principal components
to mean the vectors defining the subspaces that maximize the variance of the data i.e. the eigenvectors of the centred
covariance operator or matrix. These are elsewhere sometimes referred to as the principal axes.
2Please see https://github.com/fredhallgren/nystrompca for details
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the data in feature space corresponds to adjusting these matrices through

K ′nm = Knm − 1nKnm − K̃ 1n,mn + 1nK̃ 1n,mn

K ′mm = Kmm − 1m,nn Knm −Kmn1
n,m
n + 1m,nn K̃ 1n,mn

where K̃ = KnmK
−1
mmKmn and 1n, 1n,mn and 1m,nn are n×n, n×m andm×nmatrices respectively

with all elements equal to 1
n . Each element of 1nKnm or 1m,nn Knm equals the mean of the values

in Knm in that element’s column, and each element of K̃1n,mn or Kmn1
n,m
n equals the mean across

that row. The matrices 1m,nn K̃1n,mn and 1nK̃1
n,m
n are constant with each element equal to the sum

of all elements of K̃ divided by n2. Now create an approximate kernel matrix through

1

n
K̃ ′ =

1

n
K ′ −1/2mm K ′mnK

′
nmK

′ −1/2
mm

and calculate its eigenvalues λ̃j and eigendecomposition V Λ̃V T , where M−1/2 = UD−1/2UT for
a matrix M with eigendecomposition UDUT . The scores are then given by W = K ′nmK

′ −1/2
mm V ,

which is a new data matrix with observations along the rows, and the variances of the new data
variables (in the columns) are given by λ̃j . The method has time complexity O(nm2) which is the
same as when the Nyström method is applied to regression.

The method centres the data in the feature space, as is the case for linear PCA [Jolliffe and Cadima,
2016]. Without this adjustment, the lines defined by the principal components along which the
variance is maximized are forced to go through the origin, no longer maximizing the variance in an
unconstrained manner and requiring an assumption of zero-mean data in feature space.

We further study the statistical accuracy of the proposed method. In the special case when the number
of subsampled data points for the Nyström method equals the PCA dimension, then both the empirical
and true reconstruction errors of the Nyström method equal the corresponding reconstruction errors
for kernel PCA constructed using only the subset of data points. For the general case we provide a
finite-sample confidence bound (a confidence interval) with O(m3) time complexity that doesn’t
require that we have observed the entire dataset, only the subset of data [Ramachandran and Tsokos,
2015]. In line with most results on the accuracy of kernel PCA we here assume that data has zero
mean. The result states that with high probability, the difference between the empirical reconstruction
errors of Nyström kernel PCA and full kernel PCA is less than or equal to a data-dependent quantity

Rn(Ṽd)−Rn(V̂d) ≤ h
(

sup
x
k(x, x),

{
λ̂j

}d+1

j=1
, m, n

)

which depends on the maximum value of the kernel function, the eigenvalues of the kernel matrix
from the subset of randomly subsampled data points, the size of this subset m and the total size of
the dataset n, where h(·) is a fixed function and d < m. Please see Section 6 for the complete result.

We illustrate and evaluate the proposed method and derived confidence bound through experimental
analysis using several different datasets and kernel functions. We first compare the accuracy of
Nyström kernel PCA with a number of other unsupervised learning methods, where its performance
is seen to be very close to full kernel PCA, whilst being much more efficient. Then we illustrate the
behaviour of the bound across different PCA dimensions. The source code for all the experiments is
publicly available at https://github.com/fredhallgren/nystrompca.
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From the proof of the confidence bound one can deduce sharper versions of some concentration
results from Rosasco et al. [2010] on the empirical covariance operator and its eigenvalues. Please
see Section 6.1 for details.

To demonstrate the use of Nyström kernel PCA with supervised learning methods we apply it to
the regression problem to present kernel principal component regression with the Nyström method.
Principal components regression (PCR) performs a linear regression on the principal scores from the
top principal components instead of the original data and introduces regularization for improved
generalization. We also illustrate the method through experimental analysis and compare it to kernel
ridge regression with the Nyström method. In summary, the prediction for a data point x∗ is given by

ŷ = ȳ + y′TK ′nmK
′ −1/2
mm VdΛ̃

−1
d V T

d K
′ −1/2
mm κ̃(x∗)

where y′ = (y1− ȳ, y2− ȳ, ..., yn− ȳ)T and κ̃(x) = κm(x)−Kmn1n−1m,nn KnmK
−1
mmκm(x) +

1
m,n
n K̃1n with 1n a length-n column vector given by 1n = ( 1

n ,
1
n , ..., 1

n)T and κm(x) =

(k(x1, x), k(x2, x), ..., k(xm, x))T . Using similar techniques we also present a novel deriva-
tion of standard kernel PCR with centred data in feature space, where a prediction is given by

ŷ = ȳ + y′TQdΛ
−1
d QTd κ

′(x∗)

where QdΛdQTd is the truncated eigendecomposition of K ′ = K − 1nK −K1n + 1nK1n and
κ′(x) = κ(x)− 1nκ(x)−K1n + 1nK1n with κ(x) = (k(x1, x), k(x2, x), ..., k(xn, x))T .

A summary of our main contributions is as follows

(1) Deriving kernel PCA with the Nyström method

(2) A result on the accuracy in the special case of d = m for both the empirical and true errors

(3) A finite-sample confidence bound for the empirical error in the general case

(4) Presenting kernel principal component regression with the Nyström method

(5) Novel specification of kernel PCR with centred regressors

(6) Sharper versions of some concentration results from previous literature

In the next section we give an overview of previous work (Section 2), then go through relevant
background (Section 3), present the main method (Section 4), study the special case when d = m
(Section 5), provide the confidence bound on the accuracy of the method (Section 6), conduct
experimental analysis of the method and bound (Section 7), present kernel principal component
regression with the Nyström method (Section 8) and finally conclude with a summary and outlook
(Section 9). Proofs are in the appendix.

Notation. Upper-case letters will be used for matrices and operators and generally for random
variables, unless they represent data points before they are observed. Vectors in Rp will be denoted
by small letters and parameters fitted to data often by letters from the Greek alphabet. A row vector v
in Rp with elements v1, v2, ..., vp will be written (v1, v2, ..., vp). The transpose of a vector or matrix
is vT . If not stated otherwise all Euclidean vectors will be column vectors. The arithmetic mean of a
vector is denoted v̄. Indices for data points will be denoted by i, r, or `; indices for eigenvectors
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or dimensions will be denoted by j, k, p or q. Estimated quantities will often be denoted by ·̂ ,
approximations by ·̃ and centred quantities by · ′. Empirical quantities may be superscripted or
subscripted by the number of observations used in the estimate. The probability density function of
a measure PY will be denoted by pY (y). The symbol Y will be used for a generic random variable;
the symbols T or L for a generic operator and the symbol M for a generic matrix. The linear span
of a set of vectors A is written span{A} or 〈A〉. The cardinality of a basis for the space V is written
dim(V ).

The symbol O(·) denotes Big-O notation [Sipser, 2013]. The function λj(·) returns the jth eigen-
value, in decreasing order, of its argument, and the symbol λ<d denotes the sum of the largest d
eigenvalues λ1, λ2, ..., λd. If v is majorized by u we write v � u. The symbol := denotes the
introduction of new notation, i.e. a := b means that b will be denoted by a, and vice versa for
a =: b. The binary operators ∨ and ∧ are defined as a ∨ b = max{a, b} and a ∧ b = min{a, b}.
The notation ⊗nv is used for v ⊗ v ⊗ · · · ⊗ v for n instances of the symbol v.

The functional ‖ · ‖ denotes the operator norm or the Euclidean norm, depending on the context.
For other norms the space will always be specified. For a Banach space B, we let B∗ denote the
dual space of bounded linear functionals on B. For an operator T , we let T ∗ denote its adjoint. The
image of an operator is Im(T ) and its null space (also called its kernel) is Ker(T ).

2. PREVIOUS WORK

The study of the statistical accuracy of kernel PCA, or of the related problems of functional
PCA [Besse and Ramsay, 1986, Hall et al., 2006] and PCA of a Hilbert space-valued random
variable [Besse, 1991], was initiated in Dauxois et al. [1982]. They demonstrated the consistency
of the reconstruction error and asymptotic normality of the empirical reconstruction error and
principal components about the true quantities. The asymptotics of kernel PCA was also studied
in Koltchinskii and Giné [2000]. A concentration inequality for the empirical reconstruction error
versus its expectation, based on McDiarmid’s inequality [McDiarmid, 1989], was provided in
Shawe-Taylor et al. [2002] and the same authors later presented a confidence bound on the expected
empirical reconstruction error versus the true error [Shawe-Taylor et al., 2005]. In this bound the
expectation is with respect to the data point to be projected and the confidence with respect to
different training datasets. A similar bound, as well as a version for centred kernel PCA, was later
presented in Blanchard et al. [2007]. The centred version is more conservative compared to the
uncentred one. Approximate confidence bounds for both the principal values and components were
given in Hall and Hosseini-Nasab [2006] based on the bootstrap method [Davison and Hinkley,
1997]. However, these results are not immediately applicable to kernel PCA since the kernel is
defined on a compact subset of R× R. The current state-of-the-art for empirically measuring the
accuracy of kernel PCA appears to be Haddouche et al. [2020].

The Nyström method has been widely studied for different settings and assumptions. Originally
developed for the discretization of integral equations [Nyström, 1930, Banach, 1932], it was adapted
to kernel methods in Williams and Seeger [2001] and applied to regression. The accuracy of the
approximate kernel matrix versus the full kernel matrix, considering the full dataset as fixed, has
been studied in a number of papers, please see Gittens and Mahoney [2016] and references therein.
The study of the accuracy of the Nyström method as applied to regression culminated in the seminal
work by Rudi et al. [2015] as a probabilistic bound on the expected regression error with general
assumptions.

A recent paper [Sterge et al., 2020] presented a similar method for kernel PCA with the Nyström
method, but under an assumption of zero-mean data in feature space, and in the current work we also

5
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derive the principal scores and provide an empirical evaluation of our method. They also presented a
probabilistic inequality for the true reconstruction error with respect to the empirical subspace, which
depends on the maximum value of the kernel function supx k(x, x), the total number of data points
n and the covariance operator C from the true distribution P. As a corollary they also presented an
asymtoptic rate of convergence under the assumption of polynomial decay of the eigenvalues of C.
Even more recently Sterge and Sriperumbudur [2021] presented a similar analysis to [Sterge et al.,
2020], but with one way of centring the data. This method is different from the one considered here,
with the top principal component given by

φ̃1 =
√
mG∗mK

−1/2
mm u1

where u1 is the top eigenvector of 1
n−1K

−1/2
mm (Kmn − Kmn1n)KnmK

−1/2
mm and G∗m is given by

α 7→ 1√
m

∑m
k=1 αkk(xk, x).

If we assume data to have zero mean in feature space, then our derived principal scores are somewhat
similar to the virtual samples of Golts and Elad [2016] which were introduced in the context of
dictionary learning [Aharon et al., 2006] (also see Vincent and Bengio [2002], Guigue et al. [2005]).
These may also be used as a drop-in replacement for the original data points, but they are not
uncorrelated and don’t correspond to the principal scores.

Another related method was described in [Iosifidis and Gabbouj, 2016]. They first derive low-rank
data representations from the uncentred Nyström kernel matrix, similar to the virtual samples above,
including for novel unseen data points. They also propose a method to centre the data in the feature
space, although this is done in order to make the data representations into a subspace and the centred
representations are different from the principal scores derived below. The centring of the matrices
Knm and Kmm is the same as the one used here, but these matrices are applied differently.

3. BACKGROUND

We have a reproducing kernel Hilbert space H (RKHS) of functions from a set X to the real
numbers. Associated with each RKHS is a symmetric positive definite kernel k : X × X → R with
a reproducing property 〈k(x, ·), f〉H = f(x) for which the point evaluation f 7→ 〈k(x, ·), f〉H is
bounded. The kernel maps each element x ∈ X to an element φ(x) := k(x, ·) ∈ H. We assumeH
is separable, which will be the case for example if k is continuous and X is compact [Paulsen and
Raghupathi, 2016].

We have observations {xi}ni=1 of an X -valued random variable X : (Ω,A,P) → (X ,AX ,PX)
where PX(A) = P(X−1(A)) [Cohn, 1980, Graham and Talay, 2011]. We assume X is absolutely
continuous and that it has a continuous density and so all xi will be distinct. We obtain a random
variable Z = φ(X) ∈ H with observations zi = φ(xi), assuming that φ is measurable, which will
be the case for example when k is continuous. Its expectation inH is given by E[Z] =

∫
ZdP. We

assume Z is in L1(Ω,A,P;H) with norm E[‖Z‖H] =
∫
‖Z‖HdP and so also is square-integrable

[Ledoux and Talagrand, 2013].

Observation of an integrable random variable Y with values in some Banach space B (such asH, or
R with norm ‖ · ‖B = | · |) and with observations y1, y2, ..., yM corresponds to application of the
evaluation operator Eω : L1(Ω,A,PB;B)→ B,

Eω(Y ) = Y (ω)

6
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or for specific data points

Eωi(Y ) = Y (ωi) = yi

The evaluation operator is linear, since Eω(aY1 + bY2) = (aY1 + bY2)(ω) = aY1(ω) + bY2(ω) for
a, b ∈ R with norm

‖Eω‖ = sup
‖Y ‖1=1

‖Eω(Y )‖B = sup
‖Y ‖1=1

‖Y (ω)‖B = sup
y∈B
‖y‖B

Principal component analysis (PCA) of the zero-mean random variable Z ∈ H constructs an optimal
subspace Vd ⊂ H, of dimension d, such that the so-called reconstruction error

R(V ) = E
[
‖PV Z − Z‖2H

]
is minimized, where PV : H → H is the projection of (a realization of) Z on a subspace V
[Besse, 1991]. This is termed the true reconstruction error [Blanchard et al., 2007]. Since Z is
square-integrable the reconstruction error always exists and is finite.

In other words, the optimal d-dimensional subspace Vd is given by

Vd = arg min
dim(V )=d

E
[
‖PV Z − Z‖2H

]

An estimate of the optimal subspace Vd is obtained from the data {zi}ni=1 by minimizing the
empirical reconstruction error

Rn(V ) =
1

n

n∑
i=1

‖PV zi − zi‖2H

which has a unique minimum since all eigenvalues are distinct [Blanchard et al., 2007]. We denote
the estimated subspace by V̂d. One may also consider the true reconstruction error with respect to
the empirical subspace, given by

R(V̂d) = E
[
‖PV̂dZ − Z‖

2
H

]
where the expectation may be taken both with respect to Z and V̂d, or treating the subspace as fixed;
as well as the expected value of the empirical reconstruction error, given by

E
[
Rn(V̂d)

]
= E

[
1

n

n∑
i=1

‖PV̂dzi − zi‖
2
H

]

When the random variable Z is not assumed to have zero mean, the smallest reconstruction error is
obtained from the centred random variable Z ′ = Z − E[Z]

7
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R(Vd) = min
dim(V )=d

E[‖PV Z ′ − Z ′‖2H]

and similarly for the empirical reconstruction error replacing zi by z′i = zi − 1
n

∑n
`=1 z`.

Alternatively, instead of minimizing the reconstruction error over d-dimensional subspaces V using
the centred random variable, one may minimize over affine subspaces with respect to the original
random variable, and also optimize with respect to the term used for centring

R(Vd) = min
a∈H

dim(V )=d

E[‖Pa+V Z − Z‖2H] = min
a∈H

dim(V )=d

E[‖PV (Z − a)− (Z − a)‖2H]

where a is the translation of the vector space V , and whose optimal value is known to equal E[Z],
and Pa+V Z = a+ PV (Z − a) is the affine projection.

The covariance operator is an element C(u, v) ∈ H⊗H in the tensor product of bilinear functionals
onH, given by C(u, v) = E[Z ⊗ Z]. The centred covariance operator is given by

C ′(u, v) = E[(Z − E[Z])⊗ (Z − E[Z])] = E[Z ′ ⊗ Z ′]

IdentifyingH⊗H with the space HS(H) of Hilbert-Schmidt operators onH by way of the mapping
of elementary tensors u ⊗ v 7→ 〈·, u〉Hv we obtain C ′ = E[〈 ·, Z ′〉HZ ′]. When we refer to the
covariance operator we may either refer to the tensor inH⊗H or the operator in HS(H).

A Hilbert-Schmidt operator L is an operator on a Hilbert spaceH with finite Hilbert-Schmidt norm,
given by ‖L‖HS(H) =

∑
i ‖Lei‖H for any orthonormal basis {ei}i inH [Davies, 2007, Chapter 5].

It is a Hilbert space, with inner product 〈L1, L2〉HS(H) =
∑

i〈L1ei, L2ei〉H. The Hilbert-Schmidt
norm is always larger than or equal to the operator norm, ‖L‖ ≤ ‖L‖HS(H), and if H is finite it
coincides with the Frobenius norm, ‖L‖HS(H) = ‖M‖F where M is a matrix representation of L
[Kreyszig, 1989].

The covariance operator C ′ is compact, since it is Hilbert-Schmidt, and so its spectrum is countable
and all spectral values are eigenvalues apart from possibly 0. Since C ′ is infinite-dimensional,
by assumption, the value 0 is always a spectral value. Furthermore, the covariance operator is
self-adjoint, and so the spectrum is real and the resolvent spectrum is empty. Finally, it is positive
and so the spectrum is positive.

The sum of the smallest eigenvalues of the centred operatorC ′ equal the minimum true reconstruction
error of the centred random variable Z ′ = Z−E[Z]. The eigenvectors form a countable orthonormal
basis of Im(C ′), which can be extended to a countable orthonormal basis for the entire space, sinceH
is separable. Denoting the eigenvalues by {λi}∞i=1 in decreasing order the minimum reconstruction
error can be written R(Vd) =

∑∞
i=d+1 λi.

Replacing the measure PZ onH by the empirical measure Pn = 1
n

∑n
i=1 δzi , where δx is the Dirac

delta function, we obtain the empirical covariance operator C ′n : H → H

C ′n =
1

n

n∑
i=1

〈 ·, z′i 〉Hz′i

8
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We denote its eigenvalues by λ̂n1 , λ̂
n
2 , ..., λ̂

n
n in decreasing order and the corresponding eigenvectors

by φ̂n1 , φ̂
n
2 , ..., φ̂

n
n. It has finite rank, and so the spectrum only contains eigenvalues, and may or may

not include 0. The minimum empirical reconstruction error is given by its smallest eigenvalues,
Rn(V̂d) =

∑n
i=d+1 λ̂

n
i , and it can be decomposed as C ′n =

∑n
i=1 λ̂

n
i 〈 ·, φ̂ni 〉Hφ̂ni .

If s : X × X → R is square-integrable in the second variable, then the operator given by

Tsf =

∫
X
s(x, y)f(y)dPX(y)

is an isometry of L2(X ,AX ,PX ;R) into the RKHS with kernel k(x, y) =
∫
X s(x, z)s(z, y)dPX(z)

[Paulsen and Raghupathi, 2016]. One may also consider the integral operator

Tkf =

∫
X
k(x, y)f(y)dPX(y)

which is equal to Tk = T 2
s and whose eigenvalues equal those of the covariance operator C [Bach,

2017, Shawe-Taylor et al., 2005].

If one replaces the probability measure PX by its empirical equivalent Pn = 1
n

∑n
i=1 δxiwith respect

to the data points {xi}ni=1 one again obtains an empirical operator Tn

Tnf =

∫
X
k(x, y)f(y)dPn(y) =

1

n

n∑
i=1

k(x, xi)f(xi)

The sampling operatorGn, f 7→ 1√
n

(f(x1), f(x2), ..., f(xn) defines an isometry ofL2(X ,AX ,PX ;R)

into Rn which identifies Tn with K [Koltchinskii and Giné, 2000]. Its adjoint G∗n is given by
α 7→ 1√

n

∑n
k=1 αkk(xk, x) [Rudi et al., 2015]. Furthermore, Cn = G∗nGn and 1

nK = GnG
∗
n.

And so the eigenvalues of the empirical kernel integral operator Tn are the same as the eigenvalues
of the kernel matrix, and its eigenvectors are given by [Bengio et al., 2004]

ψ̂nj =

√
n

λ̂ni

n∑
j=1

ui,jk(xj , x) =

√
n

λ̂ni
uTi κ(x)

The values of ψ̂nj (x) at the points x1, x2, ..., xn equal the corresponding eigenvector of the kernel
matrix K, ψ̂nj (xi) = (ui)i.

If we randomly sample m < n data points {xj}j∈S from the full dataset and then take the values of
ψ̂mj , j = 1, 2, ...,m at all the points x1, x2, ..., xn, and normalize by 1√

n
, we obtain the Nyström

approximation [Williams and Seeger, 2001]

λ̃i =
n

m
λ̂mi

ũi =

√
m

n

1

λ̂mi
Knmui

(1)

9



UCL NYSTRÖM KERNEL PCA F. HALLGREN

Multiplying together the approximate eigenvectors and eigenvalues one so obtains an approximate
kernel matrix K̃ = KnmK

−1
mmKmn where Kmm contains the m subsampled rows and columns of

K, Knm contains the m subsampled columns, and Kmn is its transpose. The approximate kernel
matrix can serve as a replacement of the original kernel matrix for improved computational efficiency
for different kernel methods.

Kernel methods in machine learning look for functions in the reproducing kernel Hilbert space to be
adapted to data

f(x) =
n∑
j=1

αj〈φ(xj), φ(x)〉H =
n∑
j=1

αik(xj , x)

where {αj}j∈S are parameters. The Nyström method may also be defined by restricting these
functions to lie in the linear span of the m subsampled data points {φ(xi)}i∈S , while using the full
dataset of n points for estimation of the unknown parameters [Rudi et al., 2015]. For fixed S the
linear span of {φ(xi)}i∈S is a closed subspace ofH and so is a Hilbert space, which we will denote
byHS [Bollobás, 1999]. In other words, one looks for functions of the form

f(x) =
∑
j∈S

αj〈φ(xj), φ(x)〉H =
∑
j∈S

αik(xj , x)

where {αj}j∈S are parameters, that solve an empirical risk minimization problem based on all data
points {xi}ni=1.

After drawing the n observations {xi}ni=1 independently from PX , the subset of m data points
{xi}i∈S = {xi1 , xi2 , ..., xim} is randomly selected according to a specified distribution p(S|{xi}ni=1).
Before the data points are observed the elements in the subset are random variables {Xi1 , Xi2 , ..., Xim}.
For notational convenience we will assume that the data points are reordered after the subsampling
so that {xi}i∈S = {x1, x2, ..., xm}.

Kernel PCA may be obtained by appealing to the `2(R) representation of a separable real Hilbert
space and arranging the data points in H in a data matrix Φ with one data point occupying a
row, which may then have an infinite number of columns. The principal components are then
the eigenvectors of 1

nΦTΦ and the kernel matrix can be written as K = ΦΦT . The mean can be
subtracted in the RKHS (the feature space) through [Schölkopf et al., 1998]

K ′ = (Φ− 1nΦ)(Φ− 1nΦ)T = K − 1nK −K1n + 1nK1n

where 1n is a matrix for which (1n)i,j = 1
n . The eigenvalues of K ′ = QΛQT scaled by 1

n then
measure the variance of the data projected onto each individual principal component. Its eigenvectors
Q are proportional to the principal scores – the principal scores are given by S = QΛ1/2. By the
singular value decomposition Φ − 1nΦ = QΣET , where Λ = Σ2, the principal scores of a new
data point x∗ which is centred in feature space is given by

w∗ = ((φ(x∗)− 1nΦ)E)T = ((φ(x∗)− 1nΦ)(Φ− 1nΦ)TQΛ−1/2)T

= ((κ(x∗)T − κ(x∗)T1n − 1nK + 1nK1n)QΛ−1/2)T

= Λ−1/2QT (κ(x∗)− 1nκ(x∗)−K1n + 1nK1n) =: Λ−1/2QTκ′(x∗) = S−1κ′(x∗)

10
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where φ(xi) is an element in `2(R) as a row vector, 1n is a length-n column vector with each
element equal to 1

n and κ(x) = (k(x1, x), k(x2, x), ..., k(xn, x))T .

Using this formula to calculate the scores for the original data points we get that κ′(x∗) becomes
K ′ and obtain w∗T = K ′QΛ−1/2 = QΛQTQΛ−1/2 = QΛ1/2 and so as expected we recover the
previous expression for the principal scores.

When applying PCA to a real-world problem it is often appropriate to normalize the input variables
to have variance 1, so as to make the analysis independent of arbitrary changes of units in the
data. Otherwise the variables with higher variance will dominate the principal components and
comparisons between variables become difficult. This normalization will often also be appropriate
for kernel PCA and we do this for the experimental analysis (Section 7). The centring of variables in
the feature space does not guarantee that the input variables become centred.

Multi-dimensional scaling (MDS) finds a lower-dimensional representation of data from a matrix
of distances between data points [Hout et al., 2013]. MDS is equivalent to kernel PCA when the
kernel is isotropic, i.e. on the form f(‖x− y‖) for some function f [Williams, 2002]. Therefore,
theoretical or practical results for kernel PCA are often also applicable to MDS.

The approximate eigenvalues and eigenvectors from the Nyström method in Equation (1) applied
to the centred kernel matrix may be used to define an approximate kernel PCA. However, these
approximate principal scores are not orthogonal (i.e. uncorrelated), so they do not define true PCA,
and the eigenvalues do not describe the variance captured by the principal components. There is a
need for another way to derive kernel PCA with the Nyström method.

4. KERNEL PCA WITH THE NYSTRÖM METHOD

In this section we present kernel PCA with the Nyström method, which provides an efficient and
flexible technique for non-linear PCA. We present the corresponding quantities that are defined for
linear PCA and are useful for data exploration and application of the method in downstream tasks

(1) a set of orthogonal principal components with unit length in the linear span of the subsampled
data points inH (denotedHS),

(2) the variance of the data along each of these directions, termed the explained variance,

(3) the reconstruction error of the data onto the principal components,

(4) a set of uncorrelated principal scores with the weightings of the data points on the principal
components, and,

(5) the principal scores of a new data point with respect to the existing principal components

For standard kernel PCA (2) and (3) are the same, but with the Nyström method they are different,
since the principal components will not span the entire data.

We first present the principal components, explained variance and scores for a dataset in the following
theorem

11
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Theorem 1 (Nyström kernel PCA). Let (λ̃j , vj) be the eigenpairs and V Λ̃V T be the eigendecom-
position of

(2)
1

n
K̃ ′ =

1

n
K ′ −1/2mm K ′mnK

′
nmK

′ −1/2
mm

where

K ′mn = Kmn −Kmn1n − 1m,nn K̃ + 1m,nn K̃1n

K ′mm = Kmm − 1m,nn Knm −Kmn1
n,m
n + 1m,nn K̃1m,nn

with K̃ = KnmK
−1
mmKmn and where 1n, 1n,mn and 1m,nn are n × n, n ×m and m × n matrices

respectively with each element equal to 1
n .

The perpendicular intersecting lines φ0 + 〈φ̃j〉, j = 1, 2, ...,m inHS along which the variance of
the data is successively maximized, where the orthonormal vectors {φ̃j}mj=1 are termed the principal
components, are given by

φ0 =
1

n
KnmK

−1
mmκm(x)

φ̃j =

m∑
k=1

uj,k (k(xk, x)− φ0)
(3)

and the variances along these directions are {λ̃j}mj=1, termed the principal values or explained

variance, where κm(x) = (k(x1, x), k(x2, x), ..., k(xm, x))T , uj = K
′ −1/2
mm vj and U = K

′ −1/2
mm V .

The projection coefficients of the centred data points onto the principal components, termed the
principal scores, are given by

W = K ′nmU = K ′nmK
′ −1/2
mm V

where each row of W contains the scores of one data point onto the principal components.

The principal scores of a new data point x∗ is given by

w∗ = UT (κm(x∗)−Kmn1n − 1m,nn KnmK
−1
mmκm(x∗) + 1m,nn K̃1n) = UT κ̃(x∗)

where 1n is a length-n column vector given by 1n = ( 1
n ,

1
n , ...,

1
n)T .

The principal components can be seen as defining new variables through linear combinations of
the existing variables that have successively maximized variance and that are uncorrelated. The
values of these new variables are given by the principal scores, which represent the data in a new
coordinate system defined by the principal components as a new basis for the space. As such, the
principal scores can be used as a drop-in replacement for the original data in arbitrary supervised

12
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or unsupervised learning methods, including after removing the scores corresponding to principal
components with smaller eigenvalues. Please see Section 8 for an example of this.

To see that these new variables are uncorrelated also with the Nyström method we note that

W TW = V TK ′ −1/2mm K ′mnK
′
nmK

′ −1/2
mm V = nV TV Λ̃V TV = nΛ̃

which is a diagonal matrix.

The computational complexity of the method is O(nm2) in time, which is the same as the Nyström
method applied to regression. Centring of the matrix Knm can be accomplished in O(m3 + nm)
operations, and so the centring in the proposed method adds no additional time requirements to the
dominant O(nm2) factor. We refer to the software implementation for full details.

The Nyström method approximates the corresponding full method, so when m = n we should
recover standard kernel PCA. In this case K̃ = KK−1K = K and as expected K ′mm = K ′nm = K ′

and

K ′ −1/2mm K ′mnK
′
nmK

′ −1/2
mm = K ′

and the scores are equal to W = K ′ 1/2V =
√
nV Λ̃1/2V TV =

√
nV Λ̃1/2 = QΛ1/2, which we

know to be the scores for standard kernel PCA.

The scores of new data points are important when measuring the accuracy of PCA with a test set of
hold-out data points, for example using the reconstruction error (Section 7), or when applying PCA
as a preprocessing step for supervised learning methods and one wishes to create predictions for
new data points, such as in principal component regression (Section 8).

If the data points are assumed to have zero mean in feature space then the matrices K ′nm and K ′mm
may be replaced by Knm and Kmm and the vector κ̃(x) by κm(x). The principal components are
then given by φ̃j =

∑m
k=1 uj,kk(xk, x).

The smallest m − d Nyström eigenvalues
∑m

j=d+1 λ̃j measure the residual variance of the data
points within HS and correspond to the reconstruction error 1

n

∑n
i=1 ‖PṼdz

′
i − PHS

z′i‖2H, where

Ṽd = span{{φ̃k}dk=1}. The full reconstruction error with respect to the top d Nyström principal
components is given by

(4) Rn(Ṽd) =
1

n

n∑
i=1

‖z′i − PṼdz
′
i‖2H =

1

n
Tr(K ′)−

d∑
j=1

λ̃j

where Tr(·) is the trace and 1
nTr(K ′) is the variance of the full dataset inH. From Theorem 1 we

know that this is the smallest reconstruction error among all d-dimensional subspaces inHS .

Calculation of this quantity is O(n2) due to the centring of K. However, it can be approximated for
example by subtracting the mean of Knm instead of the mean of K, which becomes O(nm). This
is included as an option in the software package accompanying the paper3. Please see Section 7 for
further details.

3https://github.com/fredhallgren/nystrompca
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Note that the reconstruction error above in Equation (4) is slightly different from the reconstruction
error of the uncentred data points with respect to the affine subspace φ0 + Ṽd, which becomes
1
n

∑n
i=1 ‖(zi−φ0)−PṼd(zi−φ0)‖2H = 1

n

∑n
i=1 ‖(zi−φ0)−PṼdz

′
i‖2H. Both reconstruction errors

are at a minimum for the proposed method.

Another quantity of interest is the reconstruction error of the full dataset on the eigenspace of the
subset of m data points. Creating PCA from a random subset of m data points to describe the full
dataset will be termed Subset PCA. We may use the same centring as for the Nyström method and
maintain the O(m3) time complexity – that is to say we use the mean of the n data points projected
ontoHS . This also ensures that the amount of variance captured is the same whether we project the
centred data onto the principal components, or the uncentred data onto the lines translated from the
origin. The principal components will then be given by, for j = 1, 2, ...,m

φ̂m,nj =

m∑
k=1

umj,k(k(xk, x)− φ0)

where umj is the jth eigenvector of 1
mK

′
mm. The variance of the full data captured by these principal

components and the associated reconstruction error are presented in the following theorem

Theorem 2 (Subset PCA). The variance of the dataset {φ(xi)}ni=1 along the jth principal compo-
nent φ̂m,nj is given by

λ̂m,nj =
1

n

n∑
i=1

‖Pφ̂m,n
j

z′i‖2H =
1

n ·mλ̂mj
umT
j K ′mnK

′
nmu

m
j

where (λ̂mj , u
m
j ) is the jth eigenpair of 1

mK
′
mm.

The reconstruction error of the full dataset onto the corresponding d-dimensional PCA subspace is

Rn(V̂ m
d ) =

1

n

n∑
i=1

‖z′i − PV̂m
d
z′i‖2H =

1

n
Tr(K ′)− 1

n ·m
Tr(K ′nmU

m
d Λm−1d UmT

d K ′mn)

where Umd Λmd U
mT
d is the truncated eigendecomposition of 1

mK
′
mm.

As expected, if n = m = d then the reconstruction error is zero.

The method proposed in this section for efficient kernel PCA can also be applied to improve the
scalability of MDS when these two methods are equivalent, as outlined in Section 3.
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5. PRELUDE: A SPECIAL CASE

Before studying the statistical accuracy of kernel PCA with Nyström method through a confidence
bound we present a majorization relation between Nyström and Subset PCA and consider the special
case when the PCA dimension equals the number of subsampled data points, d = m. In this case
the reconstruction error for the Nyström method is the same as Subset PCA, both for the empirical
and true reconstruction errors.

Proposition 1. We have the following majorization relation for the empirical error

(λ̃1, λ̃2, ..., λ̃m) � (λ̂m,n1 , λ̂m,n2 , ..., λ̂m,nm )

The majorization is strict in the sense that λ̃<d > λ̂m,n<d for d < m, by the assumption of a continuous
data distribution.

A direct consequence of the proposition is that

Rn(Ṽm) = Rn(V̂ m
m )

For the true reconstruction error we consider the case where the sampling of the Nyström subset
occurs independently of the values of the data points

Proposition 2. Let d = m and let the Nyström subset be sampled according to p(S |x1, x2, ..., xn).
Then if

p(S |x1, x2, ..., xn) = p(S)

i.e. the subsampling is independent of the data, we have

R(Ṽm) = R(V̂ m
m )

The above proposition includes the common case of uniform sampling for the Nyström subset. It
holds whether the n data points are considered fixed or unobserved.

From the above propositions we can conclude that if retaining all the Nyström principal components
then there is no gain in accuracy compared to Subset PCA from the perspective of the reconstruction
error. However, for a smaller PCA dimension the Nyström method will perform strictly better than
PCA directly from the subset. Furthermore, other strategies for sampling of the subset may lead to a
higher accuracy for the Nyström method even when d = m.
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6. STATISTICAL ACCURACY OF NYSTRÖM KERNEL PCA

In this section we provide a high probability confidence bound on the empirical reconstruction error
of kernel PCA with the Nyström method versus the one for full kernel PCA. In line with most results
on the statistical accuracy on kernel PCA we assume that data has zero mean in feature space.

The actual difference between the reconstruction errors of the Nyström method and standard kernel
PCA for a specific dataset is given by

Rn(Ṽd)−Rn(V̂d) =
1

n
Tr(K)−

d∑
j=1

λ̃j −
m∑

j=d+1

λ̂nj = λ̂n<d − λ̃<d

However, the eigenvalues λ̂nj of 1
nK are not available – if they were there would be no need to apply

the Nyström method. When the Nyström method is being considered for a problem then the size of
the data n is very large and calculating the full kernel matrix K, let alone its eigendecomposition, is
prohibitively expensive.

At a minimum, any measure of accuracy should not be more computationally demanding than the
method itself, which is O(nm2). We present a bound that does not require that we have observed
the entire dataset, only the subset x1, x2, ..., xm. It takes O(m3) time to calculate and is O(m2) in
memory. It holds for any subsampling distribution.

Theorem 3 (Confidence bound). With confidence 1− 2e−δ for d = 1, 2, ...,m− 1 and {xi}i 6∈S ∼
pX(x), where B := supx k(x, x), Φ(·) is the standard normal cumulative distribution function,
{λ̂mj }mj=1 are the eigenvalues of the kernel matrix 1

mKmm from the Nyström subset, and

D :=
n−m
n

(
B
√

2δ√
n−m

+
B2

√
m

(√
2 log 2 + 2

√
2πΦ

(
−
√

2 log 2
)))

Dk :=
D2(

λ̂mk − λ̂mk+1

)2 ∧ 1

we have

Rn(Ṽd)−Rn(V̂d) ≤
d∑
j=1

λ̂mj ·Dj +D · max
1≤k≤d

Dk

The bound does not require that we have observed the entire sample. For example, if data is generated
sequentially and iid from pX(x) then picking the first m points for the Nyström subset is equivalent
to sampling all points and then selecting m points uniformly (in the sense that the data points in the
subset have the same distribution in both instances).

If data is stored on disk, and reading from disk is expensive, then only m records need to be read in
order to calculate the bound, assuming this can be done in such a way as to respect the sampling
distribution of the subset of data points. In many implementations of the SQL query language,
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including MySQL and PostgreSQL, this would correspond to appending LIMIT(m) to the end of
the query, which interrupts it after finding the first m records [Beaulieu, 2020]. This may particularly
improve performance if the query itself is time-consuming.

The bound becomes infinite if k(x, x) is not bounded for all x. However, every kernel can be made
bounded for example through the transformation

(5) k′(x, y) :=
k(x, y)√

k(x, x)k(y, y)

which has supx k(x, x) = 1.

Proof outline. A proof outline is as follows. Please see the appendix for a full proof.

1. Rewrite the difference in reconstruction errors in terms of the eigenpairs of the empirical
operators Cn and Cm, to obtain

Rn(Ṽd)−Rn(V̂d) ≤
d∑
j=1

λ̂nj

(
1− 〈φ̂nj , φ̂mj 〉2H

)

2. Apply the Davis-Kahan theorem to convert the angle between the eigenvectors into a
difference between successive eigenvalues of Cm and the norm of the difference between
the empirical operators ‖Cn − Cm‖

3. Convert the unknown eigenvalues λ̂nj into the ones based on the observed data λ̂mj plus the
difference ‖Cn − Cm‖, using Lidskii’s inequality

4. Now ‖Cn − Cm‖ is the only random and unknown quantity left. Split it up into two
independent terms through

‖Cn − Cm‖ ≤
n−m
n

(‖Cn−m − E[Cn−m]‖+ ‖Cm − E[Cm]‖)

where Cn−m = 1
n−m

∑n
i=m+1 zi ⊗ zi

5. Apply Hoeffding’s inequality in Banach spaces to the first term, obtaining

P
(
‖Cn−m − E[Cn−m]‖ ≤

√
2δB/

√
n−m

)
≥ 1− 2e−δ

6. Write the second term in terms of the evaluation operator, then apply Hoeffding’s inequality
to the random part, and then calculate its expectation based on the obtained distribution
function
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6.1. A corollary. From the proof of Theorem 3 one can deduce sharper versions of Theorem 7
and Propositions 10 and 11 from Rosasco et al. [2010], by a factor 2 or 4, although at the expense
of slightly longer proofs. These follow from showing that since the covariance operator C and its
empirical equivalent Cn are positive, then ‖C − Cn‖HS(H) is bounded by supx k(x, x), rather than
2 supx k(x, x).

For Theorem 7, the sharper result states that with probability at least 1− 2e−δ we have

‖C − Cn‖HS(H) ≤
B
√

2δ√
n

The sharper version of Proposition 10 states that with probability 1− 2e−δ

∞∑
j=1

(
λj − λ̂nj

)2
≤ 2B2δ

n

sup
j
|λj − λ̂nj | ≤

B
√

2δ√
n

And for Proposition 11 we obtain that also with probability 1− 2e−δ∣∣∣∣∣∣
∞∑
j=1

λj −
n∑
j=1

λ̂nj

∣∣∣∣∣∣ = |Tr(C)− Tr(Cn)| ≤ B
√

2δ√
n

7. EXPERIMENTAL ANALYSIS

In this section we illustrate the method and bound through experiments on real-world datasets with
different kernel functions. We first compare the proposed method to a number of other unsupervised
learning methods by measuring the reconstruction error on hold-out data sets. We then evaluate the
bound and compare it to the actual errors and the errors for Subset PCA.

The methods and experiments are implemented in the Python programming language and the source
code is available at https://github.com/fredhallgren/nystrompca. The package can be
installed with one simple command using the Python package manager4. It includes a command-line
tool to run the different experiments with different parameter values and kernel functions.

For purposes of reproducibility the computer experiments allow for setting the random seed of the
random number generator [Robert and Casella, 2004], to produce exactly the same results every
time the experiments are run. Other than the random sampling of the Nyström subset, randomness is
also present in the splitting of data into training and test sets.

The principal components are unique only up to a sign, so in the package we switch the sign of
the scores and components such that the range of values in each dimension of the scores is mostly

4pip install nystrompca
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positive. This will ensure that we will get exactly the same values for the scores and components
every time we run the algorithm.

We use different datasets from the UCI Machine Learning Repository [Dua and Graff, 2017].
Dimensionality reduction can be particularly important for high-dimensional data, so we include
a number of such datasets. We use the simulated magic gamma telescope dataset, the yeast
dataset, containing cellular protein location sites for fungi, the cardicotocography dataset,
with heart measurements, the segmentation dataset containing various data on images, the
drug dataset with personality traits and drug consumption, the digits dataset with flattened
8× 8 pixel grayscale images, and two bag-of-words datasets with bag-of-words vectors of articles
from www.dailykos.com and NIPS papers, respectively. We tabulate some information on the
datasets used in one or both of the experiments below in Table 1, where the number of features is
before any data transformation. For comparability we cut each dataset to 1000 data points when
running the experiments. In both experiments we use a Nyström subset of size m = 100 which we
sample uniformly without replacement and we use the same sampled subset for both Nyström PCA
and Subset PCA.

Dataset Data size Number of attributes

1 magic 19020 11

2 yeast 1484 8

3 cardiotocography 2126 23

4 segmentation 2310 19

5 drug 1885 32

6 digits 5620 64

7 dailykos 3430 6906

8 nips 1500 12419

TABLE 1. Datasets used

We convert ordinal variables to integers and categorical variables to discrete ones through one-hot
encoding. We treat discrete numerical variables in the data as continuous for the purposes of PCA.
We remove any date or time variables. We also remove variables that are constant. These will differ
depending on how many data points we include in the total dataset when we run the experiments.

We normalize the input data to have mean zero and variance one. Note that this does not mean that
data has zero mean in the feature space. As previously mentioned, normalizing the input data makes
the analysis independent of the units used to measure the variables and unaffected by the scale of
the variables, which may otherwise dominate the PCA results. Furthermore, it makes it easier to
compare results across different data sets and kernel functions and makes the same kernel parameters
appropriate for all data sets.

We cut eigenvalues that are smaller than 10−12 when performing matrix inversions to improve the
condition number of the matrix. We also remove any negative eigenvalues – in theory all kernel
matrices will be positive definitive, however numerical inaccuracies may occasionally lead to small
negative eigenvalues in practice.
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We use three different kernel functions, the radial basis functions (RBF), polynomial and Cauchy
kernels, summarized below in Table 2. The software package includes a number of additional kernel
functions that can be used when running either of the experiments.

Kernel Functional form k(x, y) Parameters Bound supx k(x, x)

RBF exp
{
−‖x−y‖

2

σ2

}
σ ∈ R+ \ {0} 1

Polynomial (〈x, y〉+R)
d

R ∈ R, d ∈ N ∞

Cauchy 1
1+‖x−y‖2/σ2 σ ∈ R+ \ {0} 1

TABLE 2. Kernel functions used

7.1. Methods comparison. We compare the proposed method to other unsupervised learning
techniques to evaluate its behaviour. We compare with linear PCA, full kernel PCA, sparse PCA
[Wang et al., 2016], locally linear embeddings (LLE), a manifold method [Roweis and Saul, 2000]
and independent component analysis (ICA) [Hyvärinen and Oja, 2000]. We run the methods for
all the datasets in Table 1 above. We split each dataset randomly in half, fitting the methods on
one half and then evaluating them on the other half. We compare the fraction of variances captured
for the different methods for different dimensions. For kernel PCA and Nyström kernel PCA we
measure the variances captured in the RKHS and not in the input space. For this experiment we only
display the results for the RBF kernel. We calculate the bandwidth parameter as the mean distance
between pairs of data points, which is a common heuristic for the RBF kernel. Using all pairs of
data points is quadratic in the total number of data points, so we only use the data points in the
Nyström subset. Please see Table 3 for the full results, where we have set the random seed to 1.
Sparse PCA is NP-hard with respect to the data dimension and so is not computationally feasible for
very high-dimensional data. Therefore we don’t run it for all the datasets. To run these experiments
using the supplied command-line tool one would do

> nystrompca methods --seed 1

Note that the purpose of each of these methods is not necessarily to capture as much variance as
possible, however it can still be enlightening to contrast this quantity between different methods.
Furthermore, since linear PCA acts in the input space and kernel PCA and its derivations act in the
feature space, comparison of the amount of variance captured are not necessarily clear-cut.

Nyström kernel PCA generally captures more variance than Subset PCA, apart from the two
bag-of-words datasets (dailykos and nips). Since we are calculating the reconstruction error
on a hold-out dataset it’s possible that Subset PCA achieves better performance – we know this
to be impossible for the training dataset by Proposition 1. For datasets with a small number of
dimensions standard linear PCA captures the most amount of variance whilst being simpler and
more computationally efficient. For all datasets the performance of Nyström kernel PCA is very
close to the method it is attempting to approximate, despite being many times more efficient.
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Dataset d Subset PCA Nyström Kernel PCA Linear PCA Sparse PCA LLE ICA

magic

1 0.2116 0.2268 0.2274 0.5126 0.5056 0.1050 0.0937
2 0.3459 0.3593 0.3610 0.6257 0.6090 0.2223 0.1798
3 0.4089 0.4246 0.4269 0.7155 0.7080 0.3035 0.2630
4 0.4752 0.4912 0.4923 0.7929 0.7342 0.3805 0.3488
5 0.5292 0.5506 0.5539 0.8635 0.7841 0.5017 0.3488
6 0.5584 0.5875 0.5933 0.9250 0.8407 0.5966 0.5535
7 0.5897 0.6230 0.6291 0.9633 0.8647 0.7055 0.6962
8 0.6126 0.6467 0.6540 0.9816 0.9008 0.7884 0.6962
9 0.6300 0.6699 0.6781 0.9978 0.9603 0.9048 0.6962
10 0.6459 0.6891 0.6982 1.0000 0.9803 1.0000 1.0000

yeast

1 0.1264 0.1387 0.1396 0.1214 0.1181 0.0339 0.0431
2 0.2336 0.2600 0.2614 0.2177 0.2080 0.0784 0.0911
3 0.3197 0.3756 0.3777 0.2773 0.2648 0.1323 0.1223
4 0.4391 0.4521 0.4550 0.4057 0.4051 0.1848 0.1977
5 0.4804 0.4998 0.5037 0.5052 0.4958 0.2299 0.2598
6 0.5238 0.5435 0.5474 0.5869 0.5972 0.3271 0.3149
7 0.5559 0.5771 0.5839 0.6484 0.6546 0.3867 0.3655
8 0.5718 0.6102 0.6169 0.7057 0.7098 0.4344 0.4145
9 0.6022 0.6439 0.6509 0.7520 0.7505 0.4720 0.4569
10 0.6346 0.6736 0.6828 0.7988 0.7972 0.5252 0.5056

cardiotocography

1 0.1329 0.1351 0.1357 0.2223 - 0.0509 0.0260
2 0.2183 0.2284 0.2306 0.3564 - 0.0795 0.0521
3 0.2833 0.3012 0.3043 0.4577 - 0.0928 0.0765
4 0.3374 0.3556 0.3594 0.5258 - 0.1241 0.1019
5 0.3766 0.3983 0.4029 0.5782 - 0.1449 0.1264
6 0.4043 0.4346 0.4399 0.6259 - 0.1763 0.1539
7 0.4342 0.4672 0.4738 0.6636 - 0.2149 0.1790
8 0.4594 0.5001 0.5061 0.7013 - 0.2468 0.2051
9 0.4791 0.5217 0.5312 0.7342 - 0.2682 0.2296
10 0.5056 0.5467 0.5571 0.7687 - 0.3122 0.2576

segmentation

1 0.2563 0.2620 0.2621 0.3107 0.3044 0.0222 0.0387
2 0.3871 0.3952 0.3955 0.5541 0.5468 0.0580 0.1223
3 0.4988 0.5040 0.5044 0.6369 0.6165 0.1555 0.1573
4 0.5494 0.5556 0.5565 0.6787 0.6539 0.1885 0.1934
5 0.6017 0.6039 0.6048 0.7274 0.6971 0.2690 0.2429
6 0.6434 0.6535 0.6543 0.7930 0.7649 0.3116 0.3109
7 0.6785 0.6886 0.6921 0.8427 0.7969 0.3733 0.3676
8 0.6967 0.7102 0.7139 0.8816 0.8190 0.4278 0.4284
9 0.7147 0.7295 0.7332 0.9087 0.8558 0.4412 0.4739
10 0.7314 0.7469 0.7513 0.9665 0.9127 0.5149 0.6188

Table continues on the next page

21



UCL NYSTRÖM KERNEL PCA F. HALLGREN

Dataset d Subset PCA Nyström Kernel PCA Linear PCA Sparse PCA LLE ICA

drug

1 0.1342 0.1398 0.1425 0.2316 - 0.0376 0.0278
2 0.1688 0.1791 0.1837 0.3031 - 0.0602 0.0573
3 0.2010 0.2219 0.2284 0.3594 - 0.1104 0.0874
4 0.2261 0.2464 0.2538 0.4059 - 0.1226 0.1149
5 0.2446 0.2734 0.2827 0.4462 - 0.1559 0.1418
6 0.2773 0.3006 0.3105 0.4846 - 0.1944 0.1699
7 0.2970 0.3217 0.3338 0.5094 - 0.2362 0.1905
8 0.3162 0.3487 0.3631 0.5515 - 0.3044 0.2276
9 0.3330 0.3648 0.3805 0.5791 - 0.3405 0.2530
10 0.3483 0.3807 0.3977 0.6045 - 0.3771 0.2766

digits

1 0.0715 0.0734 0.0749 0.1261 - 0.0190 0.0148
2 0.1459 0.1542 0.1572 0.2261 - 0.0310 0.0289
3 0.2072 0.2163 0.2210 0.3156 - 0.0516 0.0442
4 0.2530 0.2684 0.2754 0.3914 - 0.0730 0.0595
5 0.2960 0.3093 0.3183 0.4526 - 0.0876 0.0772
6 0.3220 0.3403 0.3509 0.4946 - 0.1208 0.0914
7 0.3502 0.3718 0.3847 0.5353 - 0.1479 0.1067
8 0.3730 0.3976 0.4122 0.5693 - 0.1590 0.1221
9 0.3984 0.4203 0.4371 0.6018 - 0.2006 0.1373
10 0.4113 0.4425 0.4624 0.6321 - 0.2258 0.1534

dailykos

1 0.0879 0.0856 0.0843 0.0079 - 0.0086 0.0033
2 0.0917 0.0915 0.0914 0.0096 - 0.0094 0.0040
3 0.0918 0.0915 0.0926 0.0109 - 0.0147 0.0048
4 0.0918 0.0915 0.0932 0.0119 - 0.0155 0.0054
5 0.0918 0.0915 0.0935 0.0126 - 0.0174 0.0058
6 0.0918 0.0915 0.0939 0.0131 - 0.0201 0.0062
7 0.0918 0.0915 0.0939 0.0135 - 0.0218 0.0065
8 0.0918 0.0915 0.0940 0.0140 - 0.0262 0.0069
9 0.0919 0.0916 0.0940 0.0143 - 0.0335 0.0071
10 0.0921 0.0916 0.0940 0.0147 - 0.0368 0.0074

nips

1 0.1035 0.0479 0.0435 0.0011 - 0.0039 0.0046
2 0.1036 0.0480 0.0439 0.0024 - 0.0084 0.0114
3 0.1037 0.0482 0.0443 0.0034 - 0.0088 0.0164
4 0.1037 0.0482 0.0445 0.0037 - 0.0088 0.0187
5 0.1038 0.0482 0.0446 0.0039 - 0.0089 0.0195
6 0.1040 0.0483 0.0447 0.0042 - 0.0133 0.0216
7 0.1040 0.0483 0.0448 0.0045 - 0.0161 0.0242
8 0.1040 0.0483 0.0449 0.0049 - 0.0189 0.0267
9 0.1041 0.0484 0.0451 0.0051 - 0.0217 0.0281
10 0.1041 0.0484 0.0451 0.0054 - 0.0236 0.0305

TABLE 3. Comparison of the variance captured by different dimensionality reduc-
tion methods across the maximum dimension d
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Calculation of Nyström kernel PCA takes on average 0.988 seconds across the eight datasets on an
AWS EC2 m5.large instance with an Intel Xeon® Platinum 8175M CPU5 running Ubuntu Server
20.04 with Linux kernel version 5.4, versus 2.753 seconds for full kernel PCA (n = 500, m = 100).
In both instances the kernel matrices are created in Python whilst the eigendecomposition uses
built-in LAPACK routines written in Fortran6. For these values of n andm the cubic time complexity
is not attained and the constant, linear and quadratic factors are still important.

7.2. Bound evaluation. To demonstrate and evaluate the confidence bound as applied to data we
compare it to the actual difference between the Nyström reconstruction error and the standard one,
as well to the difference between the standard reconstruction error and the reconstruction error for
Subset PCA. These quantities are generally not available when applying the Nyström method since
they depend on the eigenvalues of the full kernel matrix, but we calculate them here for purposes of
illustration.

We calculate the bound for PCA dimensions 1 through 10 and use a confidence level of 0.9 when
calculating the bound. We run the experiments for multiple samples of the Nyström subset and plot
the averages for the relevant quantities using 100 samples. The individual runs for different samples
are run in parallel to leverage multi-core CPUs.

We plot the results of the experiments for the first four datasets in Table 1 and the kernels in Table
2 for different PCA dimensions below in Figures 1, 2 and 3. For the RBF and Cauchy kernels we
set the bandwidth to σ = 1 and for the polynomial kernel we use R = 1 and d = 2. The RBF and
Cauchy kernels are bounded by supx k(x, x) = 1 and we normalize the polynomial kernel according
to Equation (5) before applying it in the experiments. Each plot contains

(1) The values of the confidence bound (“Conf. bound”)

(2) The difference between the Nyström PCA and standard errors Rn(Ṽd)−Rn(V̂ n
d )

(“Nyström diff.”)

(3) The difference between the Subset PCA and standard errors Rn(V̂ m
d )−Rn(V̂ n

d )
(“Subset diff.”)

Running the bound evaluation experiments with the command-line tool can be accomplished with
the following command

> nystrompca bound

Both the Nyström difference, the subset difference and the bound increase as the PCA dimension
increases. The bound increases more rapidly as the PCA dimension increases from low values, but
levels out for larger values as the tail eigenvalues decrease.

5https://aws.amazon.com/ec2/instance-types/
6https://numpy.org/devdocs/reference/generated/numpy.linalg.eigh.html
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FIGURE 1. Error comparison with the RBF kernel

FIGURE 2. Error comparison with the polynomial kernel
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FIGURE 3. Error comparison with the Cauchy kernel

The bound seems fairly conservative for these datasets and these choices of hyperparameters. In
real-life applications of the Nyström method the datasets are usually much larger, with the number of
data points sometimes in the millions, and with much larger n and m the bound will be significantly
smaller. The main purpose of the current experiments is rather to investigate differences between
datasets and kernel functions and across PCA dimensions. The same experiments could not be
performed for actual datasets where the Nyström method is selected to make kernel PCA scalable,
since in this case the calculation of the eigendecomposition is intractable.

8. APPLICATION: NYSTRÖM PRINCIPAL COMPONENT REGRESSION

As an application of Nyström kernel PCA we present kernel principal component regression with
the Nyström method, or Nyström kernel PCR. The proposed method may be used for regularized
kernel regression, for example as an alternative to kernel ridge regression with the Nyström method.
Its derivation demonstrates how the principal scores from Nyström kernel PCA may be used as new
data points for supervised learning methods.

Principal component regression performs a regression of a target variable onto the principal scores
from a subset of the principal components, instead of using the original data as regressor variables
[Jolliffe, 2002, Chapter 8]. Principal component regression introduces regularization and ameliorates
collinearity of the regressors, which leads to high variances for the coefficient estimates and may
especially be a problem for kernel methods. It is known to correspond to the errors-in-variables
regression model under certain circumstances, where the dependent and independent variables are
assumed to contain measurement noise [Fuller, 1980].
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We first derive standard kernel PCR without the Nyström method. This derivation appears to be
novel, as previous presentations of kernel principal component regression assumed data to have zero
mean in feature space [Rosipal et al., 2000, 2001].

Suppose thus that each data point xi is paired with an observation of a target variable yi in R which
we wish to predict using a new observation x∗ of the independent variable. The regression model is

y = α+ Sdβ + ε

with parameters α and β = (β1, β2, ..., βd)
T , where y = (y1, y2, ..., yn)T , Sd are the principal

scores from kernel PCA with respect to the top d principal components, and ε is a noise vector
ε = (ε1, ε2, ..., εn)T , whose components we assume are generated from a zero-mean distribution
with finite variance Var(εi). The intercept is given by α = ȳ since the scores have zero mean in
each dimension. From Section 3 the principal scores are given by Sd = QdΛ

1/2
d , where QdΛdQTd is

the truncated eigendecomposition of K ′. Since we assumed Z to be square-integrable we may apply
least squares estimation to obtain that [Sen et al., 2010]

β̂ = (STd Sd)
−1STd y

′ = Λ
−1/2
d QTd y

′ = S−1d y′

where y′ = (y1 − ȳ, y2 − ȳ, ..., yn − ȳ)T . We recall that the principal scores of a new data point
x∗, which we centre since we estimated the regression for zero-mean data points, are given by, with
respect to the top d principal components

w∗d = Λ
−1/2
d QTd κ

′(x∗) = Λ
−1/2
d QTd (κ(x∗)− 1nκ(x∗)−K1n + 1nK1n)

and so the prediction for a new data point becomes

ŷ = ȳ + βTw∗Td = ȳ + y′TQdΛ
−1
d QTd κ

′(x∗)

For the Nyström method, the principal scores are given byW = K ′nmK
′−1/2
mm V = K ′nmU , and so the

principal scores with respect to the top d principal components are given byWd = K ′nmK
′−1/2
mm Vd =

K ′nmUd where VdΛ̃dV T
d is the truncated eigendecomposition of 1

nK
′−1/2
mm K ′mnK

′
nmK

′−1/2
mm and

Ud = K
′ −1/2
mm Vd. The regression model then becomes

y = α+Wdβ + ε = α+K ′nmUdβ + ε = α+K ′nmK
′−1/2
mm Vdβ + ε

The least squares parameter estimates are α̂ = ȳ and

β̂ = (W T
d Wd)

−1W T
d y
′ =

(
V T
d K

′−1/2
mm K ′mnK

′
nmK

′−1/2
mm Vd

)−1
V T
d K

′−1/2
mm K ′mny

′

=
(

(V T
d V Λ̃V TVd

)−1
V T
d K

′−1/2
mm K ′mny

′ = Λ̃−1d V T
d K

′−1/2
mm K ′mny

′ = Λ̃−1d UTd K
′
mny

′
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And so the prediction becomes

ŷ = ȳ + y′TK ′nmUdΛ̃
−1
d UTd κ̃(x∗)

We implement kernel principal component regression with the Nyström method (Nyström KPCR) in
computer experiments and compare it with Nyström kernel ridge regression (Nyström KRR) [Rudi
et al., 2015], which is given by7

ŷ = ȳ + βTκ(x∗)

β̂ = (KmnKnm + γKmm)−1Kmny
′

where γ ≥ 0 is a regularization parameter.

We use the airfoil dataset from the UCI machine learning repository [Dua and Graff, 2017],
which describes aerodynamic tests of blades in a wind tunnel from NASA and contains 1503 data
points and 6 attributes. Again we normalize the attributes to have mean 0 and variance 1. Note
that we must not normalize the entire dataset at once so as to not introduce look-ahead bias in the
regression – when creating a prediction for a new data point we need to normalize this data point
using the mean and variance from the training set.

We use the radial basis functions kernel with parameter σ = 1. The source code for these experiments
is available in the same package at https://github.com/fredhallgren/nystrompca. We
estimate the regression on a training dataset with a random sample of 75 % of all data points, and
evaluate the method on a test set with the remaining data points.

We plot the R2 for the regression on the test set for different subset sizes m, ridge parameters γ and
PCA dimensions d below in Figure 4. For each parameter combination a different subset is used.

FIGURE 4. Heat maps with regression R2

For Nyström kernel PCR the regression accuracy improves as we increase the number of principal
components used in the regression and as the size of the subset increases. For Nyström KRR

7This is a slightly different specification than in Rudi et al. [2015], where we have demeaned the target variable and
subsumed a factor n into the ridge parameter
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the accuracy also improves with a larger subset, but the pattern is less clear as we change the
regularization parameter.

These experiments can also be run with the command-line tool, using the below command

> nystrompca regression -m 100 -d 90

To further elucidate the behaviour of the methods we also plot the actual target values versus the
predicted ones on the test set for one instance of the parameters. Please see below Figure 5. We
now use m = 100, d = 90 and γ = 10−11. The parameters d and γ were manually tuned. In this
particular example Nyström KPCR obtained an R2 of 0.74 and Nyström KRR 0.72 when we set the
seed to 1.

FIGURE 5. Scatter plot with regression predictions

The scatter plots of the predictions versus the actual targets look as expected for an R2 of around
0.7. The predictions for the two methods look quite similar, but slightly different characteristics are
exhibited by the plots due to the different regularization methodologies.

9. CONCLUSION

In this paper we have presented an efficient implementation of non-linear PCA by combining
kernel PCA with the Nyström method, providing the principal components, explained variance,
the principal scores and the reconstruction error. The algorithm centres the data according to the
standard definition of PCA.

We further showed that there is little use in applying the Nyström method from the perspective of
the reconstruction error when the number of subsampled data points is equal to the PCA dimension.
In this case it is preferable to create the principal components directly from only the subset of data
points.

We also provided a finite-sample confidence bound on the empirical reconstruction error of the
method, which allows us to measure its statistical accuracy before the entire dataset has been
observed. The bound assumes data has zero mean in feature space, but could potentially be adapted
to account for centring of data points, although the analysis would become more involved and the
notation more unwieldy.
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The principal scores from the method may be used instead of the original data matrix in any
supervised learning method, in order for example to achieve regularization and denoising. We
demonstrated this for linear regression by presenting Nyström kernel principal component regression.

We hope that the work presented in this paper will be of interest to the academic community and to
industry practitioners, and that it may give ideas about future directions of research.

In addition to linear regression, there are many other methods based on PCA where kernel PCA with
the Nyström method could be analyzed and explored, such as when PCA is applied in discriminant
analysis, outlier detection or dictionary learning. The latter could be achieved for example along the
lines of Golts and Elad [2016].

The approximate Nyström kernel matrix K̃ = KnmK
−1
mmKmn may often be used as a drop-in

replacement for the original kernel matrix to speed up kernel machines. However, for many methods,
like kernel PCA, more work is needed for a complete treatment. There are still many kernel methods
where application of the Nyström method is not necessarily trivial and has not been fully derived.

Kernel PCA is closely related to functional PCA. Functional PCA may also suffer from scalability
issues if the individual functions are sampled at a large number of points. It’s possible that there
are settings where the Nyström method could be successfully applied to functional data analysis for
improved computational efficiency.
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APPENDIX A. PROOFS

In this section we present the proofs of Propositions 1 and 2, and Theorems 1, 2 and 3.

Proof of Theorem 1. Standard principal component analysis finds the perpendicular intersecting lines
in Rd along which the variance of the data is successively maximized. These lines are affine subspaces
of Rd which are orthogonal with respect to the associated vector space. To derive kernel PCA with the
Nyström method we apply PCA in the span of the subset of data pointsHS , i.e. finding the orthogonal
one-dimensional affine subspaces ofHS where the projected data has maximum variance. These are on
the form

φ0 + 〈fj〉 = φ0 + { afj | a ∈ R }

where φ0 ∈ HS is the translation of the vector space 〈fj〉, and the fj ∈ HS , taken to have norm one,
are the principal components. It is known from standard PCA that the translation vector is given by
the mean of the data points, which in our case is the mean of the data points projected ontoHS . Using
PHS

= G∗m(GmG
∗
m)−1Gm = m ·G∗mK−1mmGm, where Gm is the sampling operator [Rudi et al., 2015],

we obtain

φ0 =
1

n

n∑
r=1

PHS
φ(xr) =

1

n

n∑
r=1

m ·G∗mK−1mmGmφ(xr)

=
1

n

n∑
r=1

√
m ·G∗mK−1mmκm(xr) =

1

n
KnmK

−1
mmκm(x)

Any element φ ∈ HS can be written as φ = φ0 +
∑m

k=1 ak · (φ(xk) − φ0) for some coefficients
a1, a2, ..., am and so the principal components are on the form fj =

∑m
k=1 uj,k(φ(xk) − φ0) with

coefficients uj,1, uj,2, ..., uj,m. The affine projection of a data point φ(x) onto φ0 + 〈fj〉 is then

Pφ0+〈fj〉φ(x) = φ0 + 〈φ(x)− φ0, fj〉Hfj

The variance of the full dataset along φ0 + 〈fj〉 then becomes

Varfj ({φ(xi)}ni=1) =
1

n

n∑
i=1

(
φ0 + 〈φ(xi)− φ0, fj〉H −

1

n

n∑
`=1

(φ0 + 〈φ(x`)− φ0, fj〉H)

)2

=
1

n

n∑
i=1

〈
φ(xi)−

1

n

n∑
`=1

φ(x`),

m∑
k=1

uj,k (φ(xk)− φ0)

〉2

H

=
1

n

n∑
i=1

(
m∑
k=1

uj,k

(
kk,i −

1

n

n∑
`=1

kk,` − 〈φ(xi), φ0〉H +
1

n

n∑
`=1

〈φ(x`), φ0〉H

))2
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Using

〈φ(xi), PHS
φ(xr)〉H = 〈φ(xi),m ·G∗mK−1mmGmφ(xr)〉H

=
√
m〈φ(xi), G

∗
mK

−1
mmκm(xr)〉H = κm(xi)

TK−1mmκm(xr)

where κm(x) = (k(x1, x), k(x2, x), ..., k(xm, x))T , and setting κm(xa) = κm,a, we obtain

1

n

n∑
i=1

(
m∑
k=1

uj,k

(
kk,i −

1

n

n∑
`=1

kk,` − 〈φ(xi), φ0〉H +
1

n

n∑
`=1

〈φ(x`), φ0〉H

))2

=
1

n

n∑
i=1

 m∑
k=1

uj,k

kk,i − 1

n

n∑
`=1

kk,` −
1

n

n∑
r=1

κTm,iK
−1
mmκm,r +

1

n2

n∑
`=1
r=1

κTm,`K
−1
mmκm,r




2

=
1

n
uTj K

′
mnK

′
nmuj

where
K ′mn = Kmn −Kmn1n − 1m,nn KnmK

−1
mmKmn + 1m,nn KnmK

−1
m,mKmn1n

with 1m,nn an m× n matrix with each element equal to 1
n , and K ′nm = K ′Tmn.

The principal components are then given by the orthonormal vectors fj =
∑m

k=1 uj,k(φ(xk) − φ0),
j = 1, 2, ...,m that successively maximize the variance. The inner product between two principal
components is

〈fj , fp〉H =

〈
m∑
k=1

uj,k (φ(xk)− φ0) ,
m∑
q=1

up,q (φ(xq)− φ0)

〉
H

=

m∑
k=1
q=1

uj,kup,q

kk,q − 1

n

n∑
r=1

κm,rK
−1
mmκm,k −

1

n

n∑
`=1

κm,`K
−1
mmκm,q +

1

n2

n∑
r=1
`=1

κm,rK
−1
mmκm,`


= uTj K

′
mmup

where K ′mm = Kmm − 1m,nn Knm −Kmn1
n,m
n + 1

m,n
n KnmK

−1
mmKmn1

m,n
n . Maximizing the variance

therefore becomes a generalized eigenvalue problem. We have

〈fj , fp〉H = uTj K
′
mmup =

(
K ′ 1/2mm uj

)T (
K ′ 1/2mm up

)
:= vTj vp

where K ′ 1/2mm is the unique positive semi-definite square root of K ′mm given by m · UmΛm 1/2UmT ,
where UmΛmUmT is the eigendecomposition of 1

mK
′
mm. Therefore the variance can be written

1

n
vTj K

′ −1/2
mm K ′mnK

′
nmK

′ −1/2
mm vj =

〈
vj ,

1

n
K ′ −1/2mm K ′mnK

′
nmK

′ −1/2
mm vj

〉
Rm
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Then by the Courant-Fischer-Weyl theorem [Bhatia, 1997, Corollary III.1.2] the maximum values over
successively orthonormal vectors vj are given by the eigenvalues of 1

nK
′ −1/2
mm K ′mnK

′
nmK

′ −1/2
mm , and

they occur at its eigenvectors. These eigenvectors will be unique (up to a sign), since all data points are
different by assumption.

The principal components are then given by

φ̃j =
m∑
k=1

uj,k (φ(xk)− φ0) j = 1, 2, ...,m

where uj = K
′ −1/2
mm vj , and the affine subspaces with maximum variances are {φ0 + tφ̃j | t ∈ R },

j = 1, 2, ...,m.

The principal score of a centred data point i with respect to the principal component j is given by

wj,i =

〈
φ(xi)−

1

n

n∑
`=1

φ(x`),

m∑
k=1

uj,k(φ(xk)− φ0)

〉
H

=

m∑
k=1

uj,k

kk,i − 1

n

n∑
`=1

kk,` −
1

n

n∑
r=1

κTm,iK
−1
mmκm,r +

1

n2

n∑
`=1
r=1

κTm,`K
−1
mmκm,r


for j = 1, 2, ..., n. Or in matrix format

(wi,j) = W = K ′nmU

where U = K
′ −1/2
mm V and 1

nK
′ −1/2
mm K ′mnK

′
nmK

′ −1/2
mm = V Λ̃V T , and so W = K ′nmK

′ −1/2
mm V .

The scores of a new data point x∗ which is centred in feature space, i.e. the coordinates of φ(x∗) −
1
n

∑n
`=1 φ(x`) in terms of the principal components, are given by

w∗j =

〈
φ(x∗)− 1

n

n∑
`=1

φ(x`),
m∑
k=1

uj,k (φ(xk)− φ0)

〉
H

=

m∑
k=1

uj,k

k(xk, x
∗)− 1

n

n∑
`=1

kk,` −
1

n

n∑
r=1

κTm,rK
−1
mmκm(x∗) +

1

n2

n∑
r=1
`=1

κTm,rK
−1
mmκm,`


or in matrix format

w∗ = UT
(
κm(x∗)−Kmn1n − 1m,nn KnmK

−1
mmκm(x∗) + 1m,nn KnmK

−1
mmKmn1n

)
:= UT κ̃(x∗)

where 1n is a length-n column vector given by 1n = ( 1
n ,

1
n , ...,

1
n)T .

�
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Proof of Theorem 2. The projection of a data point φ(xi) onto a principal component is given by

Pφ̂m,n
j

φ(xi) =
1√
mλ̂mj

m∑
k=1

umj,k 〈φ(xi), φ(xk)− φ0〉H φ̂
m,n
j

=
1√
mλ̂mj

m∑
k=1

umj,k

(
k(xk, xi)−

1

n
KnmK

−1
mmκm(xi)

)
φ̂m,nj

where (λ̂mj , u
m
j ) is the jth eigenpair of 1

mK
′
mm and umj,k is the kth element of umj [Shawe-Taylor et al.,

2005].

The projection of a centred data point φ′(xi) is then, similarly to Theorem 1, with ka,b := k(xa, xb) and
κm(xa) = κm,a

Pφ̂m,n
j

φ′(xi) =
1√
mλ̂mj

m∑
k=1

umj,k

〈
φ(xi)−

1

n

n∑
`=1

φ(x`), φ(xk)− φ0

〉
H

φ̂m,nj

=
1√
mλ̂mj

m∑
k=1

umj,k

kk,i − 1

n

n∑
`=1

kk,` −
1

n

n∑
r=1

κTm,iK
−1
mmκm,r +

1

n2

n∑
`=1
r=1

κTm,`K
−1
mmκm,r

 φ̂m,nj

Taking the norm and summing over φ(x1), φ(x2), ..., φ(xn) we obtain

1

n

n∑
i=1

‖Pφ̂m,n
j

φ′(xi)‖2H =

1

n ·mλ̂mj

n∑
i=1

 m∑
k=1

umj,k

kk,i − 1

n

n∑
`=1

kk,` −
1

n

n∑
r=1

κTm,iK
−1
mmκm,r +

1

n2

n∑
`=1
r=1

κTm,`K
−1
mmκm,r




2

=
1

n ·mλ̂mj
umT
j K ′mnK

′
nmu

m
j =: λ̂m,nj

For the reconstruction error we have

Rn(V̂ m
d ) =

1

n

n∑
i=1

‖φ′(xi)− PV̂m
d
φ′(xi)‖2H =

1

n

n∑
i=1

‖φ′(xi)‖H −
1

n

n∑
i=1

∥∥∥PV̂m
d
φ′(xi)

∥∥∥
H

=
1

n
Tr(K ′)− 1

n

n∑
i=1

∥∥∥PV̂m
d
φ′(xi)

∥∥∥
H

And so similarly to above, the second term becomes
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1

n

n∑
i=1

∥∥∥PV̂m
d
φ′(xi)

∥∥∥2
H

=

1

n

n∑
i=1

 d∑
j=1

1√
mλ̂mj

m∑
k=1

umj,k

kk,i− 1

n

n∑
`=1

kk,`−
1

n

n∑
r=1

κTm,iK
−1
mmκm,r+

1

n2

n∑
`=1
r=1

κTm,`K
−1
mmκm,r




2

=
1

n·m
Tr(K ′nmU

m
d Λm−1d UmTd K ′mn)

with Umd Λmd U
mT
d the truncated eigendecomposition of 1

mK
′
mm.

�

Proof of Proposition 1. Since V̂ m
d ⊂ HS for any d and by Theorem 1

λ̃<d = max
dim(V )=d
a+V⊂HS

1

n

n∑
i=1

‖Pa+V zi‖2H = max
dim(V )=d
V ⊂HS
a∈HS

1

n

n∑
i=1

‖PV (zi − a)‖2H

≥ 1

n

n∑
i=1

‖PV̂m
d

(zi − φ0)‖2H = λ̂m,n<d

The case d = m follows since both 〈{φ̂m,nj }mj=1〉 and 〈{φ̃j}mj=1〉 capture the full variance of the data in
HS .

�

Proof of Proposition 2. By the previous proposition we have Ṽm = V̂ m
m for a fixed ω and so we will

have Ṽm
d
= V̂ m

m if {Xi1 , Xi2 , ..., Xim}
d
= {X1, X2, ..., Xm}, where S = {i1, i2, ..., im} are the indices

for the subsampled data points. By the law of total probability

P({Xi1 ≤ a1, Xi2 ≤ a2, ..., Xim ≤ am})

=
∑
S

P({Xi1 ≤ a1, Xi2 ≤ a2, ..., Xim ≤ am}|S)P(S)

=
∑
S

P({X1 ≤ a1, X2 ≤ a2, ..., Xm ≤ am}|S)P(S)

since conditional on the sample S, we have m random variables generated according to PX , which we
can take to be X1, X2, ..., Xm.
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If the subsampling is independent of the data then

∑
S

P({X1 ≤ a1, X2 ≤ a2, ..., Xm ≤ am}|S)P(S)

= P({X1 ≤ a1, X2 ≤ a2, ..., Xm ≤ am})
∑
S

P(S) =

m∏
k=1

P({Xk ≤ ak})

so the subsampled data points are generated i.i.d. from PX . We can therefore conclude that Ṽm
d
= V̂ m

m .

Since Z has the same distribution PZ regardless of the subspace and since Ṽm
d
= V̂ m

m we have P
Ṽm
Z ′

d
=

PV̂m
m
Z ′ and can conclude that, since Z is square-integrable

E[‖P
Ṽm
Z ′ − Z ′‖2H] = E[‖PV̂m

m
Z ′ − Z ′‖2H]

and so R(Ṽm) = R(V̂ m
m ) when p(S |x1, x2, ..., xn) = p(S).

�

Proof of Theorem 3. The difference in errors can be rewritten through

Rn(Ṽd)−Rn(V̂d) = min
dim(V )=d
V⊂HS

1

n

n∑
i=1

‖PV zi − zi‖2H − min
dim(V )=d

1

n

n∑
i=1

‖PV zi − zi‖2H

= max
dim(V )=d

1

n

n∑
i=1

‖PV zi‖2H − max
dim(V )=d
V⊂HS

1

n

n∑
i=1

‖PV zi‖2H

=
1

n

n∑
i=1

‖(PHS
+ PH⊥

S
)PV̂dzi‖

2
H − max

dim(V )=d
V⊂HS

1

n

n∑
i=1

‖PV zi‖2H

≤ 1

n

n∑
i=1

‖PHS
PV̂dzi‖

2
H +

1

n

n∑
i=1

‖PH⊥
S
PV̂dzi‖

2
H − max

dim(V )=d
V⊂HS

1

n

n∑
i=1

‖PV zi‖2H

≤ 1

n

n∑
i=1

‖PH⊥
S
PV̂dzi‖

2
H

Expanding the projection operator PV̂d we obtain
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1

n

n∑
i=1

‖PH⊥
S
PV̂dzi‖

2
HS

=
1

n

n∑
i=1

∥∥∥∥∥∥PH⊥
S

d∑
j=1

〈zi, φ̂nj 〉Hφ̂nj

∥∥∥∥∥∥
2

H

=
1

n

n∑
i=1

∥∥∥∥∥∥
d∑
j=1

〈zi, φ̂nj 〉HPH⊥
S
φ̂nj

∥∥∥∥∥∥
2

H

≤ 1

n

n∑
i=1

d∑
j=1

∥∥∥〈zi, φ̂nj 〉HPH⊥
S
φ̂nj

∥∥∥2
H

The last inequality is fairly tight. It becomes an equality without the projection PH⊥
S

, and the further the

projection is from the identity, the smaller the norm of PH⊥
S
φ̂nj . Now we have

1

n

n∑
i=1

d∑
j=1

∥∥∥〈zi, φ̂nj 〉HPH⊥
S
φ̂nj

∥∥∥2
H

=
1

n

n∑
i=1

d∑
j=1

|〈zi, φ̂nj 〉H|2
∥∥∥PH⊥

S
φ̂nj

∥∥∥2
H

=

d∑
j=1

(
1

n

n∑
i=1

|〈zi, φ̂nj 〉H|2
)∥∥∥PH⊥

S
φ̂nj

∥∥∥2
H

=

d∑
j=1

λ̂nj

∥∥∥PH⊥
S
φ̂nj

∥∥∥2
H

Expanding the other projection operator we get

d∑
j=1

λ̂nj

∥∥∥PH⊥
S
φ̂nj

∥∥∥2
H

=
d∑
j=1

λ̂nj

∥∥∥φ̂nj − PHS
φ̂nj

∥∥∥2
H

=
d∑
j=1

λ̂nj

∥∥∥∥∥φ̂nj −
m∑
k=1

〈φ̂nj , φ̂mk 〉Hφ̂mk

∥∥∥∥∥
2

H

We may only keep the jth index in the sum over the m data points without losing much accuracy

d∑
j=1

λ̂nj

∥∥∥∥∥φ̂nj −
m∑
k=1

〈φ̂nj , φ̂mk 〉Hφ̂mk

∥∥∥∥∥
2

H

≤
d∑
j=1

λ̂nj

∥∥∥φ̂nj − 〈φ̂nj , φ̂mj 〉Hφ̂mj ∥∥∥2H =
d∑
j=1

λ̂nj

(
1− 〈φ̂nj , φ̂mj 〉2H

)

Since cos θ = 〈φ̂nj , φ̂mj 〉H then by the Davis-Kahan sin 2θ theorem [Davis and Kahan, 1970]

1− 〈φ̂nj , φ̂mj 〉2H = sin2 θ ≤
‖Cn − Cm‖2HS(H)(
λ̂mj − λ̂mj+1

)2
We know that the left-hand side is always less than or equal to 1 so we have

1− 〈φ̂nj , φ̂mj 〉2H ≤
‖Cn − Cm‖2HS(H)(
λ̂mj − λ̂mj+1

)2 ∧ 1
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Next we have, by Lidskii’s inequality [Kato, 2013, Chapter 3, Theorem 6.11]

d∑
j=1

λ̂nj

‖Cn − Cm‖2HS(H)(
λ̂mj − λ̂mj+1

)2 ∧ 1

 =
d∑
j=1

(
λ̂mj + λ̂nj − λ̂mj

)‖Cn − Cm‖2HS(H)(
λ̂mj − λ̂mj+1

)2 ∧ 1



≤
d∑
j=1

λ̂mj

‖Cn − Cm‖2HS(H)(
λ̂mj − λ̂mj+1

)2 ∧ 1

+

d∑
j=1

∣∣∣(λ̂nj − λ̂mj )∣∣∣ max
1≤k≤d

‖Cn − Cm‖2HS(H)(
λ̂mk − λ̂mk+1

)2 ∧ 1

≤
d∑
j=1

λ̂mj

‖Cn − Cm‖2HS(H)(
λ̂mj − λ̂mj+1

)2 ∧ 1

+ ‖Cn − Cm‖HS(H) max
1≤k≤d

‖Cn − Cm‖2HS(H)(
λ̂mk − λ̂mk+1

)2 ∧ 1

Now the only unknown and random quantity is ‖Cn − Cm‖HS(H). It depends both on the unobserved
data points zm+1, zm+2, ..., zn and the observed ones z1, z2, ..., zm. First we rewrite it into one term that
only contains observed data points and another that only contains unobserved ones

‖Cn − Cm‖HS(H) =

∥∥∥∥∥ 1

n

n∑
i=1

⊗2zi −
1

m

m∑
r=1

⊗2zr

∥∥∥∥∥
H⊗H

=

∥∥∥∥∥ 1

n

n∑
i=m+1

⊗2zi −
n−m
nm

m∑
r=1

⊗2zr

∥∥∥∥∥
H⊗H

=
n−m
n

∥∥∥∥∥ 1

n−m

n∑
i=m+1

⊗2zi −
1

m

m∑
r=1

⊗2zr

∥∥∥∥∥
H⊗H

=
n−m
n
‖Cn−m − Cm‖HS(H)

Noting that E[Cm] = E
[
1
m

∑m
r=1⊗2zr

]
= 1

m

∑m
r=1 E

[
⊗2zr

]
= E

[
⊗2Z

]
= 1

n−m
∑n

i=m+1 E
[
⊗2zi

]
=

E[Cn−m] we may split the norm up into two separate independent norms

n−m
n
‖Cn−m − Cm‖HS(H)

≤ n−m
n

(
‖Cn−m − E[Cn−m]‖HS(H) + ‖Cm − E[Cm]‖HS(H)

)(6)

If we let Yi = ⊗2zi − E[⊗2Z], then the random variables Yi have zero mean, and they are bounded by
B := supx k(x, x) since both ⊗2zi and E[⊗2Z] are positive. This can be seen for example as follows.

Consider the Hilbert subspace ofH⊗H of positive operators, denoted (H⊗H)+, which is closed and
so indeed a Hilbert space, and let L1, L2, T ∈ (H ⊗H)+. We recall that by the Riesz representation
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theorem every Hilbert space can be identified with its dual through the isometry L1 7→ 〈 · , L1〉. And so
‖L1 − L2‖HS(H) = ‖f1 − f2‖ for some bounded linear functionals f1, f2 in (H⊗H)∗.

To see that each f1, f2 will be positive, note that f1(T ) = 〈T, L1〉HS(H) =
∑∞

i=1〈Tei, L1ei〉H for any
basis {ei} inH. If we take {ei} to be the eigenvectors of L1, arbitrarily extended to a basis for the entire
space if Ker(L1) 6= {0}, we obtain, for each i, that 〈Tei, L1ei〉H = 〈Tei, λiei〉H = λi〈Tei, ei〉H ≥ 0
since T is positive and λi ≥ 0. And so f1(T ) ≥ 0 for each T .

Since f1, f2 are positive everywhere we have ‖f1 − f2‖ ≤ max{‖f1‖, ‖f2‖} ≤ B.

Then by Hoeffding’s inequality in Banach spaces [Pinelis, 1994, Theorem 3.5], we have that with
confidence 1− 2e−δ

n−m
n

∥∥∥∥∥ 1

n−m

n∑
i=m+1

⊗2zi − E[⊗2Z]

∥∥∥∥∥
H⊗H

≤ n−m
n

√
2δB√
n−m

=
√

2δB

√
n−m
n

In the second term above in Equation (6) the data points are observed but the expectation is unknown.
Through an application of the evaluation operator we can still use Hoeffding’s inequality to devise a
bound as follows. We have, since Eω(a) = a if a is constant and since Eω(Zi) = Eω(Zj) even if i 6= j∥∥∥∥∥ 1

m

m∑
r=1

⊗2zr − E[⊗2Z]

∥∥∥∥∥
H⊗H

=

∥∥∥∥∥ 1

m

m∑
r=1

Eωr(⊗2Zr)− E[⊗2Z]

∥∥∥∥∥
H⊗H

=

∥∥∥∥∥ 1

m

m∑
r=1

Eωr

(
⊗2Zr − E[⊗2Z]

)∥∥∥∥∥
H⊗H

=

∥∥∥∥∥ 1

m2

m∑
r=1

m∑
`=1

Eωr

(
⊗2Z` − E[⊗2Z]

)∥∥∥∥∥
H⊗H

=

∥∥∥∥∥ 1

m

(
m∑
r=1

Eωr

)(
1

m

m∑
`=1

⊗2Z` − E[⊗2Z]

)∥∥∥∥∥
H⊗H

≤ 1

m

∥∥∥∥∥
m∑
r=1

Eωr

∥∥∥∥∥
∥∥∥∥∥ 1

m

m∑
r=1

⊗2Zr − E[⊗2Z]

∥∥∥∥∥
1

≤ 1

m

m∑
r=1

‖Eωr‖

∥∥∥∥∥ 1

m

m∑
r=1

⊗2Zr − E[⊗2Z]

∥∥∥∥∥
1

= B ·

∥∥∥∥∥ 1

m

m∑
r=1

⊗2Zr − E[⊗2Z]

∥∥∥∥∥
1

= B · E

[∥∥∥∥∥ 1

m

m∑
r=1

⊗2Zr − E[⊗2Z]

∥∥∥∥∥
H⊗H

]

Through another application of Hoeffding’s inequality we obtain that

P

(∥∥∥∥∥ 1

m

m∑
r=1

⊗2Zr − E[⊗2Z]

∥∥∥∥∥
H⊗H

≤
√

2δB√
m

)
≥ 1− 2e−δ
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We can then bound the distribution function of
∥∥ 1
m

∑m
r=1⊗2Zr − E[⊗2Z]

∥∥
H⊗H through

P

(∥∥∥∥∥ 1

m

m∑
r=1

⊗2Zr − E[⊗2Z]

∥∥∥∥∥
H⊗H

≤ y

)
≥
(

1− 2 exp

{
−y

2m

2B2

})
∨ 0 =: F (y)

Letting σ2 := B2/m we obtain

E

[∥∥∥∥∥ 1

m

m∑
r=1

⊗2Zr − E[⊗2Z]

∥∥∥∥∥
H⊗H

]
≤
∫
R+

(1− F (y))dy

= σ
√

2 log 2 +

∫ +∞

σ
√
2 log 2

2e−y
2/2σ2

dy = σ
√

2 log 2 + 2
√

2πσ
1√
2πσ

∫ +∞

σ
√
2 log 2

e−y
2/2σ2

dy

= σ
√

2 log 2 + 2
√

2πσΦ
(
−
√

2 log 2
)

Adding together the two terms gives that with confidence 1− 2e−δ

‖Cn − Cm‖HS(H) =
n−m
n

(
B

√
2δ√

n−m
+

B2

√
m

(√
2 log 2 + 2

√
2πΦ

(
−
√

2 log 2
)))

=: D

and so also with confidence 1− 2e−δ that

Rn(Ṽd)−Rn(V̂d) ≤
d∑
j=1

λ̂mj

 D2(
λ̂mj − λ̂mj+1

)2 ∧ 1

+D · max
1≤k≤d

D2(
λ̂mk − λ̂mk+1

)2 ∧ 1

We recall that the eigenvalues of the empirical covariance operator equal the eigenvalues of the kernel
matrix 1

mKmm, which completes the proof.

�
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