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Abstract. Proximities are at the heart of almost all machine learning
methods. If the input data are given as numerical vectors of equal lengths,
euclidean distance, or a Hilbertian inner product is frequently used in
modeling algorithms. In a more generic view, objects are compared by
a (symmetric) similarity or dissimilarity measure, which may not obey
particular mathematical properties. This renders many machine learn-
ing methods invalid, leading to convergence problems and the loss of
guarantees, like generalization bounds. In many cases, the preferred dis-
similarity measure is not metric, like the earth mover distance, or the
similarity measure may not be a simple inner product in a Hilbert space
but in its generalization a Krein space. If the input data are non-vectorial,
like text sequences, proximity-based learning is used or ngram embed-
ding techniques can be applied. Standard embeddings lead to the desired
fixed-length vector encoding, but are costly and have substantial limita-
tions in preserving the original data’s full information. As an information
preserving alternative, we propose a complex-valued vector embedding of
proximity data. This allows suitable machine learning algorithms to use
these fixed-length, complex-valued vectors for further processing. The
complex-valued data can serve as an input to complex-valued machine
learning algorithms. In particular, we address supervised learning and
use extensions of prototype-based learning. The proposed approach is
evaluated on a variety of standard benchmarks and shows strong perfor-
mance compared to traditional techniques in processing non-metric or
non-psd proximity data.

Keywords: Proximity learning · embedding · complex values · learning
vector quantizer.
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1 Introduction

Machine learning has a growing impact in various fields and the considered input
data become more and more generic [27,15]. In particular non-vectorial data like
text data, biological sequence data, graphs and other input formats are used [17].
The vast majority of learning algorithms are expecting fixed-length real value
vector data as inputs and can not directly be used on non-standard data [27,28].

Using embedding approaches is one strategy to obtain a vectorial embedding,
but this is costly and information is only partially preserved [27]. More recent
approaches of deep learning like word2vec or others require the training of the
embedding model and are only effective if the set of input data is large [12].

In a more generic scenario, proximity measures, like alignment functions, can
be applied to compare non-vectorial objects to obtain a proximity score between
two objects. These values can be used in the modeling step.

If all input data are pairwise compared, we obtain a proximity matrix P ∈
R

N×N . If the measure is a metric dissimilarity measure, we have a distance
matrix that can be used for the nearest-mean classifier. In case of inner products
like the euclidean inner product or the RBF-kernel function, a kernel matrix is
obtained. If this kernel matrix is positive semidefinite (psd), a large number of
kernel methods can be used in the modeling stage [35].

Also so-called empirical feature space approaches have been considered, but
with the drawback of high model complexity and inherent data transformations
[21]. For a more in-depth introduction into indefinite learning see [33,5]

Here we consider non-vectorial input data given either by a non-metric dis-
similarity measure or a non-standard inner product, leading to an indefinite
kernel function. As detailed in [33], learning models can be calculated on these
generic proximity data in very different ways. Most often, the proximities are
transformed to fit into classical machine learning algorithms, with a number of
limitation [33]. In this work, we propose the application of a complex-valued
embedding on these data. Recently different classical learning algorithms have
been extended to complex-valued inputs [9]. It is now possible to preserve the
information provided in the generic proximity data while learning in a fixed-
length vector space using a highly effective, well-understood learning algorithm.
The respective procedures are detailed in the following and evaluated on classical
benchmark data with strong results.

2 Background and basic notation

Consider a collection of N objects xi, i = {1, 2, ..., N}, in some input space X .
Given a similarity function or inner product on X , corresponding to a metric,
one can construct a proper Mercer kernel acting on pairs of points from X . For
example, if X is a finite-dimensional vector space, a classical similarity function
in this space is the Euclidean inner product (corresponding to the Euclidean
distance).
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2.1 Positive definite kernels - Hilbert space

The Euclidean inner product is also known as linear kernel with k(x,x′) =
〈φ(x), φ(x′)〉, where φ is the identity mapping. Another prominent kernel func-

tion is the RBF kernel k(x,x′) = exp
(

− ||x−x
′||2

2σ2

)

, with σ > 0 as a free scale

parameter. In any case, it is always assumed that the kernel function k(x,x′) is
psd.

The transformation φ is, in general, a non-linear mapping to a high-dimensional
Hilbert space H and may not be given in an explicit form, but allowing linear

techniques in H. Instead of providing an explicit mapping, a kernel function
k : X × X 7→ R is given, which encodes the inner product in H. The kernel k is
a positive (semi-) definite function such that k(x,x′) = 〈φ(x), φ(x′)〉H, for any
x,x′ ∈ X . The matrix Ki,j := k(xi,xj) is an N ×N kernel (Gram) matrix de-
rived from the training data. For more general similarity measures, subsequently,
we also use S to describe a similarity matrix.

Kernelized methods process the embedded data points in a feature space uti-
lizing only the inner products 〈·, ·〉H [35], without the need to explicitly calculate
φ, known as kernel trick. However, to employ the benefits of linear methods also
explicit mappings of psd kernel function, using random Fourier features, are
frequently used [30].

However, this assumption is not always fulfilled and the underlying similarity
measure may not be metric and hence not lead to a Mercer kernel. Examples can
be easily found in domain-specific similarity measures, as mentioned before. Such
similarity measures imply indefinite kernels, preventing standard "kernel-trick"
methods developed for Mercer kernels to be applied.

2.2 Non-positive definite kernels - Krein space

A Krein space is an indefinite inner product space endowed with a Hilbertian
topology. Let K be a real vector space. An inner product space with an indefinite
inner product 〈·, ·〉K on K is a bi-linear form where all f, g, h ∈ K and α ∈ R

obey the following conditions:

– Symmetry: 〈f, g〉K = 〈g, f〉K;
– linearity: 〈αf + g, h〉K = α〈f, h〉K + 〈g, h〉K;
– 〈f, g〉K = 0 implies f = 0.

An inner product is positive semidefinite if ∀f ∈ K, 〈f, f〉K ≥ 0, negative definite
if ∀f ∈ K, 〈f, f〉K < 0, otherwise it is indefinite. A vector space K with inner
product 〈·, ·〉K is called an inner product space.

An inner product space (K, 〈·, ·〉K) is a Krein space if we have two Hilbert
spaces H+ and H− spanning K such that ∀f ∈ K we have f = f+ + f− with
f+ ∈ H+ and f− ∈ H− and ∀f, g ∈ K, 〈f, g〉K = 〈f+, g+〉H+

− 〈f−, g−〉H−
.

Indefinite kernels are typically observed by means of domain-specific non-
metric similarity functions (such as alignment functions used in biology [36]),
by specific kernel functions - e.g., the Manhattan kernel k(x, x′) = −||x− x′||1,
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tangent distance kernel [14] or divergence measures, plugged into standard kernel
functions [6]. A finite-dimensional Krein-space is a so-called pseudo-Euclidean
space.

3 Embedding for non-psd proximities

Embedding of a proximity matrix into a vector space is not a new consideration,
see e.g. [19], but was possible so far only in case of psd kernel functions. Given a
symmetric dissimilarity matrix with zero diagonal, an embedding of the data in
a pseudo-Euclidean vector space, determined by the eigenvector decomposition
of the associated similarity matrix S, is always possible [11] 3. Given the eigen-
decomposition of S, S = UΛU

⊤, we can compute the corresponding vectorial
representation V in the pseudo-Euclidean space by

V = Up+q+z |Λp+q+z |
1/2

(1)

where Λp+q+z consists of p positive, q negative non-zero eigenvalues and z
zero eigenvalues. Up+q+z consists of the corresponding eigenvectors. The triplet
(p, q, z) is also referred to as the signature of the pseudo-Euclidean space. The
crucial point in Eq. (1) is the absolute operator used in the embedding, which is
also called a flip operation in the field of indefinite learning [33]. This effectively
makes the representation of the data metric again and can have a substantial
(potentially negative) impact on the data representation and modeling perfor-
mance [23].

The transformation of dissimilarities to obey metric properties, or of simi-
larities to be psd is in general expected to be useful. At least, it is technically
useful because it permits to employ many mathematical concepts, as shown in
[19], not available otherwise. We will go a step further and remove the absolute
function from the embedding in Eq. (1) and obtain Eq. (2). Accordingly, the
new embedding does not modify the data, in particular, an inner product of the
embedded data reveals the input again.

V = Up+q+zΛ
1/2
p+q+z (2)

Subsequently, we show how a number of mathematical operations can still be
used to get an efficient machine learning model. This comes with additional
effort and (finally) an embedding of the data into a complex-valued vector space is
obtained. The embedding in Eq. (1) and Eq. (2) is straight forward but extremely
costly.

Already in [19], this was addressed for psd kernels (only) by using the Nys-
tröm approximation. The approach in [19] can not be used directly in our setting
since the input is non-psd.

3 The associated similarity matrix can be obtained by double centering [27] of the
dissimilarity matrix. S = −JDJ/2 with J = (I − 11

⊤/N), identity matrix I and
vector of ones 1.
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In our former work [10], we have shown that the Nyström approximation
remains valid for generic proximity data, in particular similarities that are non-
psd. This has been recently reconsidered by a simplified proof in [26]. Hence the
Nyström approximation becomes available also to approximate a non-psd matrix.
In our work [10], we have further shown how the Nyström approximation can
also be used to have an approximated Double-Centering to deal with dissimilarity
data. Our former work helps in two ways to permit the embedding of Eq. (2)
effectively:

1. the input needs not to be a kernel but can also be a dissimilarity matrix

2. the Nyström matrix approximation can also be done for non-psd similarities
which reduced the costs of the embedding

In the Nyström approximation, we have to specify the number of m landmarks
with m ≪ N . The landmarks can be selected for non-psd matrices randomly
or by kmeans++ as shown recently in [25,26]. Our efficient approach to get an
approximated complex-valued, vectorial embedding of a non-psd matrix is shown
in Algorithm 1.

Algorithm 1 Approximated embedding of symmetric proximities

Embed_proximities(P,m)
if P is dissimilarity then

Knm,Kmm := ApproximatedDoubleCentering(P,m) using [10] and kmeans++
else

Knm,Kmm := Approximate(P,m) using [10] for similarities and kmeans++
end if
[C,A] := eig(Kmm); with eigenvectors C and eigenvalues in A (diagonal)
W := diag(sqrt(1./diag(A)))*C’ modified Nyström projection matrix
M := W*Knm’ complex-valued embedding
K∗ := M’*M reconstruction
return M

In the first step of Algorithm 1, the input matrix is approximated using the
Nyström approximation (potentially with an integrated double centering). This
can be done with linear costs and with guaranteed approximation bounds [10,26].
Subsequently, we calculate the essential part of the embedding function in Eq.
(2) combined with the projection matrix of the Nyström approximation, by
taking the square root of the (pseudo-) inverse of the eigenvalue decomposition
of Kmm. This can be done with linear costs as shown in [10]. The vectorial
embedding M is finally done by mapping the rectangular Nyström part Knm of
the similarities to the projection matrix W 4. The embedding is complex-valued
if the similarity matrix K is non-psd and hence A contains negative values.

4 The step how the projection matrix W ∗ is calculated, is slightly related to so-called
Landmark MDS as suggested in [2] for psd-only matrices.
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We now have an approximated complex-valued fixed-length vectorial embed-
ding of the proximity data P whereby the respective reconstruction is exact if
the rank of P equals to the number of non-vanishing eigenvalues in A. Algorithm
1 has a linear complexity as long as the number of landmarks m ≪ N , which
is in general the case. In contrast to many other methods [32], the embedding
procedure has a straight forward out of sample extension. The mapping in 1 can
be done for new points by evaluating the proximity function for the landmark
point and using the respective projection function.

For the complex-valued embedding (so far) a quite limited number of ma-
chine learning algorithm is available, like the complex-valued support vector
machine (cSVM) [41,3], the complex-valued generalized learning vector quanti-
zation (cGMLVQ) [4,37], or a complex-valued neural network (cNN) [13,38,7].
Further, a nearest neighbor (NN) classifier by employing a standard norm oper-
ator can be used. While cSVM, cGMLVQ, cNN are parametric methods, the NN
classifier is parameter-free and can be used directly. In particular, after applying
the norm, the obtained dissimilarity values are metric. For the cGMLVQ, we
briefly recap the respective derivations and show how it can be effectively used
within our setting.

4 Complex-valued Generalized Learning Vector

Quantization

In this section, we will review the complex-valued Learning Vector Quantization

(cGLVQ). We first lay out the general idea of LVQ classification and the learning
rules in modern variants. We will then review the learning rules’ adaptation to
make the algorithm suitable for handling complex-valued data.

In Learning Vector Quantization (LVQ), the classification scheme is param-
eterized by a set of labeled prototypes and a distance measure d(·, ·). New data
is classified according to the label of the nearest prototype with respect to the
distance measure d(·, ·). This original idea was proposed by Kohonen in 1986.
In contrast to the k-nearest neighbor classifier in which the full dataset is used
in the classification procedure, the classes in LVQ schemes are represented by
only very few prototypes. Hence, in the algorithm’s working phase, LVQ takes
less computational effort and storage in order to assign class labels to new data.
Moreover, LVQ is often praised for its white-box character: The prototypes that
are crucial for the classification represent typical examples of the classes in the
dataspace. Numerous extensions of LVQ that have been proposed over the years,
such as adaptive distance measures known as relevance learning, low-rank ap-
proaches a.s.o, further increasing the performance and interpretability of the
method. The interpretability of LVQ provides important insights in many appli-
cations, see for instance [39,1] for examples in the medical domain.

4.1 Training an LVQ classifier

Given a training dataset of N labeled objects in K classes, i.e. (xi, yi) with
i = {1, 2, ..., N}, in which xi ∈ X is an input object and yi ∈ {1, 2, ...,K} its class
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label. The aim of the training procedure is choosing prototypes {(wk, yk) | 1 ≤
k ≤ M} in the space of the objects X , such that the resulting classification
scheme gives high classification accuracy with respect to unseen data. The num-
ber of prototypes per class is a hyperparameter chosen by the user and one has
to choose at least one prototype per class, hence the total number of prototypes
M is at least the number of classes K, i.e. K ≥ M . The distance measure d(·, ·)
is of central importance in the training- and classification procedure. It is used
to compare input objects with prototype vectors for classification and for de-
termining the change in positions of the prototypes in the training procedure.
If the data space X is Euclidean, the squared Euclidean distance measure is a
common choice:

dΛ(w,xi) = (xi −w)HΩ
H
Ω(xi −w) , (3)

in which Ω is the identity matrix and H is the Hermitian transpose. One draw-
back of this choice is that it is affected by differing scales of the input variables
xi, such that an xi with a large standard deviation compared to others has a
large influence in the distance measure. This is, however, easily prevented by nor-
malizing all input variables to unit standard deviation. A major improvement
in LVQ is the introduction of relevance learning [16,34], in which the elements
of the linear projection Ω are adapted during training to reflect the importance
of the features in the classification task and to account for correlations between
features.

The original idea of Kohonen’s LVQ1 is to update the prototypes based on
a heuristic Winner Takes All (WTA) rule. At the random presentation of an
example, its closest prototype is attracted by the example if the class labels
coincide and is repelled from the example otherwise. In [31], the authors proved
that this training scheme does not converge and instead the authors propose a
by now popular and successful cost function that does converge in the gradient
descent. The cost for an example is defined as:

EGLVQ =

P
∑

i=1

Φ(µi), with µi =
d+(xi)− d−(xi)

d+(xi) + d−(xi)
. (4)

The argument µi is based on the difference between the distance d+(xi) from its
position to the closest prototype with the same label and the distance d−(xi) to
the closest prototype with a different label, normalized to the range µi ∈ [−1, 1].
The function Φ(·) is monotonically increasing and is usually chosen to be identity
Φ(x) = x or the logistic function Φ(x) = 1/(1 + exp(−kx)). The above cost
function can be minimized with respect to the prototypes w and the relevance
matrix Ω by either batch- or stochastic gradient descent. To formulate the update
rule with respect to w± and Ω for the example xi, one applies the chain rule:

w± = w± − αΦ′(µi)
∂µi

∂d±

∂d±
∂w±

, Ω = Ω− βΦ′(µi)
∂µi

∂d

∂d

∂Ω
(5)

In case Φ(·) is a zero-centered sigmoidal function, the largest updates occur for
examples close to the decision boundary with µi ≈ 0, which causes the classifier
to learn faster from the most informative examples.
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4.2 Learning rules for complex-valued data

In the complex-valued data space C
N , the squared distance in Eq. (3) between

an object xi and an example w± is always real: It is the sum of the squared
magnitudes of the components of the projected difference vector Ω(xi − w±).
Therefore only the innermost derivatives of the distance measure in Eq. (5) are
with respect to the complex-valued variables. These can be done in an elegant
way using the Wirtinger differential operators [40] as proposed in [9]:

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

,
∂

∂z∗
=

1

2

(

∂

∂x
+ i

∂

∂y

)

, (6)

in which z = x+iy and z∗ = x−iy, the complex conjugate. Using the differential
operator with respect to the conjugate of the complex variable, the inner most
derivatives in Eq. (5) are as follows:

∂d∗

∂w∗
±

= −Ω
H
Ω(xi −w±),

∂d

∂Ω∗
= Ω(xi −w±)(xi −w±)

H , (7)

which are conceptually very similar to the derivatives for real-valued variables.

5 Experiments

In this section, we show the effectiveness of the proposed embedding approach
on a set of benchmark data typically used in the area of proximity-based super-
vised learning. The following section contains a brief description of the datasets
with details in the references. Subsequently, we evaluate the performance of our
embedding approach on these datasets compared to some baseline classifier.

5.1 Datasets

We use multiple standard benchmark data for similarity-based learning. All data
sets used in this experimental setup are indefinite with different spectral prop-
erties. If the data are given as dissimilarities, a corresponding similarity matrix
can be obtained by double centering [27]: S = −JDJ/2 with J = (I − 11

⊤/N),
with identity matrix I and vector of ones 1. The datasets used for the exper-
iments are described in the following and summarized in Table 1, with details
given in the references. The triplet (p, q, z) is also referred to as the signature.
In this context, the signature describes the ratio of positive to negative and zero
eigenvalues of the respective data set.

1. Balls3d/Balls50d consist of 200/2000 samples in two/four classes. The
dissimilarities are generated between two constructed balls using the shortest
distance on the surfaces. The original data description is provided in [29].

2. The Copenhagen Chromosomes data set constitutes 4,200 human chromo-
somes from 21 classes represented by grey-valued images. These are trans-
ferred to strings measuring the thickness of their silhouettes. These strings
are compared using edit distance. Details are provided in [24].
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Dataset #samples #classes signature

Balls3d 200 2 (48, 152, 0)
Balls50d 2000 2 (853, 1147, 0)
Chromosomes 4, 200 21 (2258, 1899, 43)
DelftGestures 1, 500 20 (963, 536, 1)
Protein 213 4 (170, 40, 3)
Sonatas 1068 5 (1063, 4, 1)
Zongker 2000 10 (1039, 961, 0)

Table 1: Overview of the datasets used in our experimental setup. Details are
given in the textual description.

3. The Delft gestures (1500 points, 20 classes, balanced, signature: (963,536,1)),
taken from [8], is a set of dissimilarities generated from a sign-language in-
terpretation problem (see Figures 8 to 10c). It consists of 1500 points with
20 classes and 75 points per class. The gestures are measured by two video
cameras observing the positions of the two hands in 75 repetitions of cre-
ating 20 different signs. The dissimilarities are computed using a dynamic
time-warping procedure on the sequence of positions (Lichtenauer, Hendriks,
Reinders, 2008).

4. Protein: the Protein data set has sequence-alignment similarities for 213
proteins and is used for comparing and classifying protein sequences accord-
ing to its four classes of globins: heterogeneous globin (G), hemoglobin-A
(HA), hemoglobin-B (HB) and myoglobin (M). The signature is (170,40,3),
where class one through four contains 72, 72, 39, and 30 points, respectively
[18].

5. Sonatas dataset consists of 1068 sonatas from five composers (classes) from
two consecutive eras of western classical music. The musical pieces were
taken from the online MIDI database Kunst der Fuge and transformed to
similarities by normalized compression distance [22].

6. Zongker dataset is a digit dissimilarity dataset. The dissimilarity measure
was computed between 2000 handwritten digits in 10 classes, with 200 entries
in each class [20].

5.2 Results

In this section, we evaluate the performance of the proposed embedding on
the mentioned datasets using a model that is able to handle complex-valued
data. For this purpose, we use the Generalized Learning Vector Quantization
(GLVQ) from Sec. 4 with the learning rule for complex-valued data from Sec.
4.2. The GLVQ was parametrized once with and once without relevance learning.
Within the GLVQ, we verified that the corrected input matrix was indeed psd
by an additional test using an eigendecomposition, no fails were found. For the
initialization of prototypes, we used one prototype per class for the G(M)LVQ.
In the embedding step of Algorithm 1 we set the meta parameter m (# of
landmarks) by a rule of thumb:
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– If the number of data points in the data set is < 1000, our recommendation
is m = 40.

– For data sets with a size 1000 < N < 5000, we recommend m = 70.

– otherwise m = 100.

Additionally, to the GLVQ, we chose a nearest neighbor classifier (NN ) for
performance comparisons to our proposed method, which remains valid also for
generic psd data. In the nearest neighbor, the kernel matrix was left in the
original - that means in the uncorrected, indefinite - state.

Experiments were run in a ten-fold cross-validation. Mean prediction accu-
racy on the hold out test data and the respective standard deviation is reported
and shown in Table 2.

Dataset CGLVQ CGMLVQ Nearest Neighbor

Balls3d 0.61 ± 0.07 0.99± 0.03 0.48 ± 0.07
Balls50d 0.29 ± 0.04 0.50± 0.06 0.25 ± 0.02
Chromosomes 0.92 ± 0.01 0.94± 0.01 0.95± 0.02
DelftGestures 0.94 ± 0.02 0.96± 0.02 0.95 ± 0.01
Protein 0.91 ± 0.07 0.98± 0.05 0.22 ± 0.04
Sonatas 0.82 ± 0.03 0.89± 0.03 0.90± 0.01
Zongker 0.87 ± 0.03 0.92± 0.02 0.58 ± 0.05

Table 2: Prediction accuracy (mean ± standard-deviation) for the cGLVQ vari-
ants and the nearest neighbor classifier. Column cGLVQ shows the performance
of the Generalized Learning Vector Quantization without relevance learning and
column cGMLVQ provides the performance of the complex-valued Generalized
Matrix Learning Vector Quantization, employing relevance learning. Column
Nearest Neighbor shows the performance of the baseline classification.

If the data were left uncorrected we obtained often a rather poor result using
the nearest neighbor classifier, sometimes even significantly worse compared to
cGLVQ and cGMLVQ (see balls3d, balls50d, protein, zongker). In some cases,
NN had equal or slightly better performance than the two cG(M)LVQ vari-
ants (Chromosomes, Sonatas). This is due to the spectrum of eigenvalues: Chro-
mosomes has many eigenvalues, which are almost negligible and close to zero.
Sonatas has only a few negative eigenvalues and these eigenvalues are also close
to zero. With respect to the two cGLVQ variants, one can also see a difference in
performance between GLVQ and GMLVQ: the activation of relevance learning
within the cGMLVQ leads to significantly better results in some cases. However,
even the mere use of the cGLVQ without relevance learning leads to a significant
increase compared to the NN with uncorrected data. Therefore, we assume that
a correction step, like our embedding approach, is indeed essential since the use
of uncorrected non-psd data shows a clear drop in accuracy.
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In summary, the presented approach, applying an embedding of the indefinite
input data into a complex-valued vector space, shows promising results on a
variety of data sets.

6 Conclusions

In this work, we proposed a complex-valued embedding and processing pipeline
to analyze non-metric or non-psd proximity data. The approach shows very
promising performance on a variety of datasets and is easy to employ. A care-
ful combination of approximation techniques, derived by the authors in former
work, permits a valid and still effective calculation of the embedding matrix. By
processing the embedding matrix, a straight forward out of sample extension is
obtained, which is not easily available for many traditional indefinite learning
approaches. The low-rank embedding has the benefit that the reconstructed ma-
trix approximates the original indefinite kernel with low error, hence all major
information in the original data is preserved. In the classifier models, a norm
operator is used which eventually leads to a psd dissimilarity representation.
The effect of this operation, which is not equivalent to a classical flip correc-
tion on the original indefinite kernel, has to be evaluated in more detail in fu-
ture work. Using learning algorithms for complex-valued embeddings, predictive
models can be obtained with low computational costs. In this initial work, we
focused on complex-valued G(M)LVQ and Nearest Neighbor to calculate classifi-
cation model, but this will be extended to further modeling approaches in future
work. Our initial findings show that the suggested complex-valued embedding
of indefinite proximity data, combined with complex-valued classifier models is
a promising very effective approach to more complicated alternatives.
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