390 research outputs found

    G-CSC Report 2010

    Get PDF
    The present report gives a short summary of the research of the Goethe Center for Scientific Computing (G-CSC) of the Goethe University Frankfurt. G-CSC aims at developing and applying methods and tools for modelling and numerical simulation of problems from empirical science and technology. In particular, fast solvers for partial differential equations (i.e. pde) such as robust, parallel, and adaptive multigrid methods and numerical methods for stochastic differential equations are developed. These methods are highly adanvced and allow to solve complex problems.. The G-CSC is organised in departments and interdisciplinary research groups. Departments are localised directly at the G-CSC, while the task of interdisciplinary research groups is to bridge disciplines and to bring scientists form different departments together. Currently, G-CSC consists of the department Simulation and Modelling and the interdisciplinary research group Computational Finance

    Representative hydraulic conductivities in saturated groundwater flow

    Get PDF
    Heterogeneity is the single most salient feature of hydrogeology. An enormous amount of work has been devoted during the last 30 years to addressing this issue. Our objective is to synthesize and to offer a critical appraisal of results related to the problem of finding representative hydraulic conductivities. By representative hydraulic conductivity we mean a parameter controlling the average behavior of groundwater flow within an aquifer at a given scale. Three related concepts are defined: effective hydraulic conductivity, which relates the ensemble averages of flux and head gradient; equivalent conductivity, which relates the spatial averages of flux and head gradient within a given volume of an aquifer; and interpreted conductivity, which is the one derived from interpretation of field data. Most theoretical results are related to effective conductivity, and their application to real world scenarios relies on ergodic assumptions. Fortunately, a number of results are available suggesting that conventional hydraulic test interpretations yield (interpreted) hydraulic conductivity values that can be closely linked to equivalent and/or effective hydraulic conductivities. Complex spatial distributions of geologic hydrofacies and flow conditions have a strong impact upon the existence and the actual values of representative parameters. Therefore it is not surprising that a large body of literature provides particular solutions for simplified boundary conditions and geological settings, which are, nevertheless, useful for many practical applications. Still, frequent observations of scale effects imply that efforts should be directed at characterizing well‐connected stochastic random fields and at evaluating the corresponding representative hydraulic conductivitie

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics

    Get PDF
    Since the pioneering work of Bagnold in the 1940s, aeolian research has grown to become an integral part of earth-system science. Many individuals have contributed to this development, and Dr. Michael R. Raupach (1950–2015) has played a pivotal role. Raupach worked intensively on wind erosion problems for about a decade (1985–1995), during which time he applied his deep knowledge of turbulence to aeolian research problems and made profound contributions with far-reaching impact. The beauty of Raupach’s work lies in his clear conceptual thinking and his ability to reduce complex problems to their bare essentials. The results of his work are fundamentally important and have many practical applications. In this review we reflect on Raupach’s contribution to a number of important aspects of aeolian research, summarise developments since his inspirational work and place Raupach’s efforts in the context of aeolian science. We also demonstrate how Raupach’s work provided a foundation for new developments in aeolian research. In this tribute, we concentrate on five areas of research: (1) drag partition theory; (2) saltation roughness length; (3) saltation bombardment; (4) threshold friction velocity and (5) the carbon cycl

    Flowing matter

    Get PDF
    This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena.Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents.Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter.This book is the legacy of the COST Action MP1305 “Flowing Matter”

    Towards a solution of the closure problem for convective atmospheric boundary-layer turbulence

    Get PDF
    We consider the closure problem for turbulence in the dry convective atmospheric boundary layer (CBL). Transport in the CBL is carried by small scale eddies near the surface and large plumes in the well mixed middle part up to the inversion that separates the CBL from the stably stratified air above. An analytically tractable model based on a multivariate Delta-PDF approach is developed. It is an extension of the model of Gryanik and Hartmann [1] (GH02) that additionally includes a term for background turbulence. Thus an exact solution is derived and all higher order moments (HOMs) are explained by second order moments, correlation coefficients and the skewness. The solution provides a proof of the extended universality hypothesis of GH02 which is the refinement of the Millionshchikov hypothesis (quasi- normality of FOM). This refined hypothesis states that CBL turbulence can be considered as result of a linear interpolation between the Gaussian and the very skewed turbulence regimes. Although the extended universality hypothesis was confirmed by results of field measurements, LES and DNS simulations (see e.g. [2-4]), several questions remained unexplained. These are now answered by the new model including the reasons of the universality of the functional form of the HOMs, the significant scatter of the values of the coefficients and the source of the magic of the linear interpolation. Finally, the closures 61 predicted by the model are tested against measurements and LES data. Some of the other issues of CBL turbulence, e.g. familiar kurtosis-skewness relationships and relation of area coverage parameters of plumes (so called filling factors) with HOM will be discussed also

    Computational investigation of diffusion, flow, and multi-scale mass transport in disordered and ordered materials using high-performance computing

    Get PDF
    Flow and mass transport processes through porous materials are ubiquitous in nature and industry. In order to study these phenomena, we developed a computational framework for massively parallel supercomputers based on lattice-Boltzmann and random-walk particle tracking methods. Using this framework, we simulated the flow and mass transport (advection-diffusion problem) in several types of ordered and disordered porous materials. The pore network of the materials was either generated algorithmically (using Jodrey-Tory method) or reconstructed using confocal laser scanning microscopy or scanning electron microscopy. The simulated flow velocity field and dynamics of the random-walk tracer ensemble were used to study the transient and asymptotic behavior of macroscopic transport parameters: permeability, effective diffusion, and hydrodynamic dispersion coefficients. This work has three distinct topics developed and analyzed in four chapters. Each chapter has been published as a separate study. The date of publication and corresponding journal name are denoted at the beginning of each chapter. The first part of this work (Chapter 1) is addressing a timely question of high-performance liquid chromatography on whether particle size distribution of the modern packing materials gives any advantage in terms of separation efficiency. The second part (Chapters 2 and 3) is focused on the effects of dimensionality and geometry of the channels on the transport inside different types of chromatographic supports (particulate packings, monoliths, and pillar arrays). In order to analyze these effects, we recorded transient values of the longitudinal and transverse hydrodynamic dispersion coefficients in unconfined, partially, and fully confined structures and analyzed the time and length scales of the transport phenomena within. In the last part of this work (Chapter 4) we investigated the influence of the shell thickness and diffusivity on separation efficiency of the core--shell packings. Based on the simulation results, we extended the Giddings theory of coupled eddy dispersion and confirmed the validity of the Kaczmarski-Guiochon model of interparticle mass-transfer. Overall, this study extends the understanding of the connection of geometry and morphology of the porous materials with their macroscopic transport parameters
    • 

    corecore