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Abstract

Flow and mass transport processes through porous materials are ubiquitous in nature and indus-
try. In order to study these phenomena, we developed a computational framework for massively
parallel supercomputers based on lattice-Boltzmann and random-walk particle tracking methods.
Using this framework, we simulated the flow and mass transport (advection-diffusion problem)
in several types of ordered and disordered porous materials. The pore network of the materials
was either generated algorithmically (using Jodrey-Tory method) or reconstructed using con-
focal laser scanning microscopy or scanning electron microscopy. The simulated flow velocity
field and dynamics of the random-walk tracer ensemble were used to study the transient and
asymptotic behavior of macroscopic transport parameters: permeability, effective diffusion, and
hydrodynamic dispersion coefficients.

This work has three distinct topics developed and analyzed in four chapters. Each chapter has
been published as a separate study. The date of publication and corresponding journal name are
denoted at the beginning of each chapter. The first part of this work (Chapter 1) is addressing a
timely question of high-performance liquid chromatography on whether particle size distribution
of the modern packing materials gives any advantage in terms of separation efficiency. The
second part (Chapters 2 and 3) is focused on the effects of dimensionality and geometry of
the channels on the transport inside different types of chromatographic supports (particulate
packings, monoliths, and pillar arrays). In order to analyze these effects, we recorded transient
values of the longitudinal and transverse hydrodynamic dispersion coefficients in unconfined,
partially, and fully confined structures and analyzed the time and length scales of the transport
phenomena within. In the last part of this work (Chapter 4) we investigated the influence of the
shell thickness and diffusivity on separation efficiency of the core—shell packings. Based on the
simulation results, we extended the Giddings theory of coupled eddy dispersion and confirmed
the validity of the Kaczmarski-Guiochon model of interparticle mass-transfer.

Overall, this study extends the understanding of the connection of geometry and morphology
of the porous materials with their macroscopic transport parameters.



Zusammenfassung

Fluss- und Transportprozesse durch porése Materialien sind in der Natur und Industrie allge-
genwartig. Um diese Phinomene im Detail zu untersuchen, haben wir ein computerbasiertes
Framework auf der Basis von Lattice-Boltzmann- und dem Random-Walk-Tracking-Methoden
fiir parallelisierte Rechnungen auf Supercomputern entwickelt. Dieses Framework wurde fiir die
Simulation von Fluss und Massentransport (Advektions-Diffusions-Problem) in verschiedenen
geordneten und ungeordneten pordsen Systemen eingesetzt. Die Porennetzwerke der Materia-
lien wurden entweder durch den Einsatz von Algorithmen (Nutzung der Jodrey-Tory Methode)
generiert oder mit Hilfe von konfokaler Lasermikroskopie bzw. Rasterelektronenmikroskopie
rekonstruiert. Die simulierten Flie3geschwindigkeitsfelder und die Dynamik des Random-Walk
Tracer Ensembles wurden fiir die Untersuchung des iibergangsverhalten und asymptotischen
Verhaltens der folgenden makroskopischen Transportparameter genutzt: Effektive Diffusion, Per-
meabilitdt und hydrodynamischer Diffusionskoeffizient.

In dieser Arbeit haben sich drei spezifische Themen herauskristallisiert, die in insgesamt vier
Kapiteln untersucht wurden. Jedes Kapitel wurde als eine Studie separat publiziert, wobei das
Veroffentlichungsdatum und das entsprechende Journal jeweils zu Beginn des Kapitels angege-
ben sind. Der erste Abschnitt dieser Arbeit (Kapitel 1) beschéftigt sich mit der aktuellen Frage,
ob die enge PartikelgréRenverteilung der modernen Core-Shell Partikel einen Vorteil im Hinblick
auf die Trennungseffizienz in der High-Performance Liquid Chromatography liefert. Der zweite
Abschnitt (Kapitel 2 und 3) thematisiert die Auswirkung von Dimensionalitdt und Kanalgeome-
trie auf die Transporteigenschaften in verschiedenen chromatographischen Supportmaterialien
(partikuldre Betten, Monolithen und Pillar-Arrays). Um diese Effekte zu analysieren, wurden
die zeitabhingigen Werte der longitudinalen und transversalen hydrodynamischen Dispersions-
koeffizienten in génzlich unendlichen, partiell begrenzten und komplett begrenzten Strukturen
aufgenommen und im Hinblick auf die Zeit- und Langenskala der darin ablaufenden Transport-
phidnomene untersucht. Der letzte Abschnitt (Kapitel 4) beschéaftigt sich mit dem Einfluss der
Dicke der porosen Hiille sowie der Diffusion in dieser Hiille auf die Trenneffizienz von Core-Shell
Packungen. Die Ergebnisse dieser Simulationen wurde genutzt, um die Giddings-Theorie der
gekoppelten Eddy-Dispersion zu erweitern und die Giiltigkeit des Kaczmarski-Guiochon Models
von dem interpartikuldren Massentransfer zu bestétigen.

Zusammengefasst erweitert diese Arbeit das Verstindnis vom Zusammenspiel von Geometrie
und Morphologie der porésen Sdulenmaterialien mit den makroskopischen Transportparametern.
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Introduction

The transport of matter and heat can be found in virtually any physical system and object that
surrounds us, ranging from planetary to cell scale. For example, the currents in oceans drive
nutrient-rich water from the bottom up into the oceanic mixed layer, where the nutrients be-
come accessible to plankton®® — the base of the marine food chain. Given that any human is a
descendant of a universal aquatic ancestor;° we may speculate that without the matter and heat
transport phenomena there would be no human being to appreciate this thesis. In addition, these
transport processes play a key role in the most important challenges of the modern civilization:
preservation of fresh water aquifers, climate change, and recovery of natural resources. Aston-
ishing number of industrial applications are based on mixing and heat transport: filtration and
separation systems, plastics and textile processing, chemicals manufacturing, food production,
and many more.

Mathematically, the transport problem for incompressible fluids can be described with the
system of the Navier-Stokes” and the advection-diffusion® equations

" 1 .

9% | (5. V)i = pAi— Lvps F
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where ¥ is the fluid velocity,  is the kinematic viscosity, p is the fluid density, p is the pressure,
F' is the body force, ¢ is concentration of migrating species, and D is the diffusion coefficient.
The Egs. (1) were solved only for a limited number of simple boundary conditions. Even the
basic properties of the solution of the three-dimensional Navier—Stokes equation, namely the
existence and smoothness, are still an unsolved problem. In the year 2000 this problem has been
included into the list of the seven Millennium Prize Problems stated by the Clay Mathematics
Institute.
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In this thesis we deal with the transport problems in porous materials. Such materials can
be of natural or man-made origin, e.g., a mineral or, as is the case of this work, a chromato-
graphic column. The distinctive feature of porous materials is the complicated geometry of their
pore space. Even though, the pore space of some materials has an ordered or close to ordered
structure;>'* in most of the cases pores have irregular shape and are connected with each other by
tortuous channels. Moreover, the sizes of the pores may vary greatly'' and several scales of pore
size often coexist in a single material. For example, in a particulate chromatographic column
the mesopores of the packing material are on the order of nanometers, while the size of the
pores between the particles is on the order of micrometers. Another example is concrete, where
pore size ranges from angstroms to millimeters, spanning seven orders of magnitude. In terms
of transport problem, this complex multiscale geometry of the pore space directly corresponds
to a complicated boundary condition for the Egs. (1). However, the good news is that due to the
small scale of the material features and typically low fluid velocities (creeping or laminar flow
regime), the Reynolds number is much smaller than unity;* which means that the Navier-Stokes
equation in system (1) is reduced to a more simple Stokes equation

ov

1 N
— = uAU — — F. 2
ot v pr+ (2)

In the previous years multiple attempts have been undertaken to model porous materials
in a way that simplifies the solution of Egs. (1). One of the methods substitutes the complex
geometry of a pore space with a network of interconnected capillaries’*~'> for which the precise
solutions of flow and transport equations exist (Poiseuille flow and Taylor-Aris dispersion'®'7).
More precisely, using the graph theory, the flow and tranport can be subsequently calculated'®'”
as a combination of the known weighted solutions for Poiseuille flow and Taylor-Aris dispersion.
In this way one does not deal with the partial differential equations (1). Even though some trends
and experimental results could be matched with the adjustment of the model?° the bottleneck
of this approach is the transition from a real porous medium sample to a capillary network
representation — the prediction capabilities of these models are sensitive to the reconstruction
procedure?!

Another class of methods to simplify the transport equations can be grouped under the name

°H. He et al. Adv. Funct. Mater:, 23, pp. 4720—4728, 2013.

19p, Yang et al. Adv. Mater., 13, pp. 427-431, 2001.

11J. H. Cushman The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles Springer Netherlands, 1997
12D, Hlushkou and U. Tallarek. J. Chromatogr: A, 1126, pp. 70-85, 2006.
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141, Fatt. Trans. Am. Inst. Min. Met. Eng., 207, 160—163, 1956.

'°1. Fatt. Trans. Am. Inst. Min. Met. Eng., 207, 164-181, 1956.

16 G. Taylor. Philos. Trans. R. Soc. A, 219, pp. 186—203, 1953.

7R. Aris. P. Roy. Soc. A-Math. Phy., 235, pp. 67-77, 1956.

18p, M. Adler and H. Brenner. Physicochem. Hydrodyn., 5, pp. 245268, 1984.
P, M. Adler and H. Brenner. Physicochem. Hydrodyn., 5, pp. 269285, 1984.
20M. J. Blunt. Curr. Opin. Colloid Interface Sci., 6, pp. 197-207, 2001.

21H. Dong and M. Blunt. Phys. Rev. E, 80, p. 036307, 2009.
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of upscaling methods?? Many authors used variations of this approach?*->° but the common idea is
to transform Eqgs. (1) from their local form into a macroscopic representation. Upscaling methods
treat a domain with a pore network as a continuum described by the effective macroscopic (with
respect to its own scale) transport coefficients. For example, such upscaling of the Stokes equation
(2) leads to a solution, which is known as the Darcy law?®:

5= - KVp, 3)
Ep

where ¢ is the porosity of the medium and K is the permeability tensor. The goal of upscaling
methods is the derivation of the macroscopic (often tensor) quantities from the microscopic
geometry of the porous medium. Using these macroscopic quantities one can solve the transport
problems of a larger scale. For example, using the three-dimensional data of the seismic tomog-
raphy, the transport through the strata of different rock types can be calculated if we know the
dispersion tensors of each rock type. The dispersion tensors of each rock type can be obtained by
solving the transport equations (1) in their representative elementary volume (REV). However,
so far the analytical solutions even for the ideal case of spheres located in the nodes of crystal
structures (simple-cubic, face-centered cubic, etc.) have not been obtained. Consequently, the
solution of Egs. (1) in the REV are usually computed numerically?’=*° as is the case of the current
work.

Modern numerical analysis boosted during the years of World War II. At that time the word
computer referred to a human for whom calculation was a day job and whose major tools were
a slide rule and the tables of mathematical functions®° Gradually, the human computers were
replaced by mechanical and later electronic devices. The first paper to study the influence of
rounding error on the computational algorithm was published in 1947 by von Neuman and Gold-
stine in the Bulletin of the American Mathematical Society?! In the following decade an academic
discipline was formed with its own community and publication venues. In the meantime, Von
Neuman predicted that the “automatic computing machine” would replace the analytic solution
of flow equations and that this approach would make experimental fluid dynamics obsolete. More
than a half century later these predictions have not fully come true: the crucial properties of the
computational fluid dynamics — stability and convergence — are still in need of mathematical
study. Despite the ongoing research, some simulation techniques have become widespread and
are now recognized among the engineering and scientific community. In 2013 the Nobel Prize in

22J. H. Cushman, L. S. Bennethum, and B. X. Hu. Adv. Water Resour., 25, pp. 1043-1067, 2002.

BH. Brenner. Philos. Trans. R. Soc. A, 297, pp. 81-133, 1980.

%M. Quintard and S. Whitaker. Chem. Eng. Sci., 48, pp. 2537-2564, 1993.

L. W. Gelhar and C. L. Axness. Water Resour: Res., 19, pp. 161-180, 1983.

26p, M. Adler Porous Media: Geometry and Transports Butterworth-Heinemann Series in Chemical Engineering,
1992

¥D. A. Edwards et al. Transp. Porous Media, 6, pp. 337-358, 1991.

28, Salles et al. Phys. Fluids A, 5, pp. 2348—2376, 1993.

V. Mourzenko et al. Phys. Rev. E, 77, p. 066306, 2008.

30 Grier D. A. When Computers Were Human 2nd ed. Princeton University Press, 2007

31J. Von Neumann and H. H. Goldstine. B. Am. Math. Soc., 53, pp. 1021-1099, 1947.
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chemistry was awarded for the development of multiscale simulation methods that have allowed
to model complex chemical systems and reactions.

In this work we use numerical methods to simulate the flow and mass transport in the
pore space of several structures employed in chromatography. Despite the enormous progress
of the computing industry in our lifetime, the performance and memory capacity of a modern
desktop PC is not sufficient to perform simulations in big domains on the scale of individual
pores. Yet, the simulations of that scale are possible on the supercomputers — machines with
thousands of processors and terabytes of memory. The methods that we used to compute velocity
fields and mass transport are not based on the solution of Egs. (1), but rather on an alternative
mathematical representation of the same problems. A brief description of this mathematical
approach is presented below.

The Navier-Stokes (NS) and advection-diffusion (AD) equations are derived under the
assumption that the fluid is an infinitely divisible continuum. The NS equation follows from the
Newton’s second law applied to fluid motion, while AD equation follows from continuity equation,
and Fick’s first law. An alternative to the continuum representation of fluid is to consider fluid
behavior on the molecular level. This can be done in the framework of statistical mechanics by
the Boltzmann equation

.0 _ 0 0 L. (of
(U.Of’+a.85’+8t> f(F,u,t) = (8t>c’ 4

where f(7,7,t) is the probability density distribution of a single particle with coordinate 7.
The right-hand side of Eq. (4) is called the collision term and it is responsible for the change
of the distribution function when particles collide. In order to solve Eq. (4), a collision term
describing the behavior of the particular system should be specified. If we assume that the
substance under consideration is an ideal gas at thermodynamic equilibrium, then the velocity
probability distribution of the gas particles obeys the Maxwell-Boltzmann statistics f°4(¢/) and
the collision term can be represented in the Bhatnagar-Gross-Krook form??
eq( 7\ _ - =
(o) - L= sienn, )

T

where 7 is the collision time. The density p and velocity ¢ at a specific space-time point are
obtained as the zeroth and first moments of f (7, u,t). It has been shown that when the mass and
momentum are conserved during the particle collision, the Boltzmann equation is equivalent to
the Navier-Stokes equation?*>** One of the positive side effects of the microscopic treatment of
fluid is that continuum assumption is alleviated and thus the flows with high Knudsen number
can be treated using this approach. In a similar way that the Boltzmann equation is equivalent

32p, L. Bhatnagar, E. P. Gross, and M. Krook. Phys. Rev., 94, pp. 511-525, 1954.
33 C. Bardos, F. Golse, and D. Levermore. J. Stat. Phys., 63, pp. 323-344, 1991.
34F. Golse and L. Saint-Raymond. J. Math. Pures Appl., 91, pp. 508—552, 2009.
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to the Navier-Stokes equation, the stochastic differential equation®

A7 (t) = §(7(t))dt + V2DAB(t), (6)

where B denotes standard Brownian motion, is equivalent to the advection—diffusion equation?6-’

Popular Eulerian approaches of solving partial differential equations numerically (finite
difference, element, and volume methods) are based on the different types of discretization of
the simulation domain and approximation of the differential operators. These methods can be
applied to the solution of the Navier-Stokes equation. However, the drawbacks of these methods
are the artificial oscillations and numerical dispersion;**° which are especially pronounced for
the advection dominated regime. In order to avoid these problems, we simulate flow and mass
transport employing Lagrangian approach, namely the lattice-Boltzmann (LBM) and random
walk-particle tracking methods (RWPT). These numerical methods are relatively new in the

family of computational fluid dynamics algorithms.

The LBM numerically solves a version of the Boltzmann equation with discrete space, time,
and a finite set of velocities. In general, LBM methods are classified by the number of dimensions
in which they operate and the size of the finite set of velocities used. In this work a D3Q19 LBM
model is used, i.e., a three-dimensional model, where velocity vector at each point of the discrete
space can posses one of the 19 values. The RWPT method is a straightforward implementation
of Eq. (6) that employs one step Euler approximation?' Due to their locality, both LBM and
RWPT are suitable for massive parallelization. Additionally, the typical elongated geometry of
the simulated structures allowed us to use one-dimensional decomposition of the simulation
domain, which greatly simplifies the parallelization routines. Exploiting these peculiarities, we
have developed a highly scalable simulation framework capable of operating on hundreds of
thousands processor cores?* Another practical advantage of our LBM implementation is due to its
Cartesian discretization grid: one can use three-dimensional confocal laser scanning microscopy
images of the real porous materials as a direct input to the algorithm (Chapter 3). I would
like to point the reader interested in the general ideas of LBM, RWPT, and the details of their
implementation to the thesis of my former colleague Dr. Khirevich;” which can be easily found
online.

35 C. W. Gardiner Handbook of stochastic methods: for physics, chemistry and the natural sciences 2nd ed.
Springer-Verlag, 1996

36p, Salamon, D. Fernandez-Garcia, and J. J. Gémez-Hernandez. J. Contam. Hydrol., 87, pp. 277-305, 2006.

S7F. Delay, P. Ackerer, and C. Danquigny. Vadose Zone J., 4, pp. 360—379, 2005.

38 A.D. Daus, E.O. Frind, and E.A. Sudicky. Adv. Water Resour:, 8, pp. 86-95, 1985.

¥ G. Liu, C. Zheng, and S. M. Gorelick. Water Resour. Res., 40, W08308, 2004.

4CM. N. Guddati and B. Yue. Comput. Methods Appl. Mech. Eng., 193, pp. 275-287, 2004.

“IP, E. Kloeden and E. Platen Numerical solution of stochastic differential equations Springer-Verlag, 1995

425, Khirevich, A. Daneyko, and U. Tallarek “Simulation of fluid flow and mass transport at extreme scale” in:
Jiilich Blue Gene/P Extreme Scaling Workshop 2010 ed. by B. Mohr and W. Frings Forschungszentrum Jiilich,
Jiilich Supercomputing Centre, 2010

435, Khirevich “High-Performance Computing of Flow, Diffusion, and Hydrodynamic Dispersion in Random Sphere
Packings” PhD thesis Germany: Philipps-Universitdt Marburg, 2010
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The simulation code used in this work originates from the works of Kandhai et al***” During
the last decade, the codes were maintained and extended by my colleagues Dr. Hlushkou and Dr.
Khirevich in the group of Prof. Tallarek. The last chapter of this thesis was made possible by the
extension of the RWPT code for the case of porous particles (cf. Chapter 4).

Each chapter of this thesis has its own introduction section (pages 8, 28, 69, and 111) and
conclusion section (pages 21, 65, 107, and 148) that present the motivation and implications of
the individual studies. The concise description of the work done can be found in the conclusion
part of this thesis (page 151).

4B. D. Kandhai “Large scale lattice-Boltzmann simulations: computational methods and applications” PhD thesis
The Netherlands: University of Amsterdam, 1999

4 D. Kandhai et al. J. Comput. Phys., 150, pp. 482-501, 1999.

46D, Kandhai et al. Int. J. Numer. Methods Fluids, 31, pp. 1019-1033, 1999.

47D. Kandhai et al. Phys. Rev. Lett., 88, p. 234501, 2002.
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Abstract

The narrow particle size distribution (PSD) of certain packing materials has been linked to a
reduced eddy dispersion contribution to band broadening in chromatographic columns. It is
unclear if the influence of the PSD acts mostly on the stage of the packing process or if a narrow
PSD provides an additional, intrinsic advantage to the column performance. To investigate
the latter proposition, we created narrow-PSD and wide-PSD random packings based on the
experimental PSDs of sub-3 yum core-shell and sub-2 um fully porous particles, respectively, as
determined by scanning electron microscopy. Unconfined packings were computer-generated
with a fixed packing protocol at bed porosities from random-close to random-loose packing to
simulate fluid flow and advective-diffusive mass transport in the packings’ interparticle void space.
The comparison of wide-PSD, narrow-PSD, and monodisperse packings revealed no systematic
differences in hydraulic permeability and only small differences in hydrodynamic dispersion,
which originate from a slightly increased short-range interchannel contribution to eddy dispersion
in wide-PSD packings. The demonstrated intrinsic influence of the PSD on dispersion in bulk
packings is negligible compared with the influence of the bed porosity. Thus, the reduced eddy
dispersion observed for experimental core-shell packings cannot be attributed to a narrow PSD
per se.


http://dx.doi.org/10.1021/ac200424p
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1.1 Introduction

The use of sub-2 pm***° and of solid core-porous shell particles®®*! as packing materials for
high-performance liquid chromatography (HPLC) columns are two of the newer developments
in separation science. Both particle types deliver higher separation efficiencies than traditional
packing materials, i.e., fully porous particles of 3 — 5 um nominal diameter.

The basic idea of sub-2 pm particles is to increase the separation efficiency by reducing the
particle size, albeit at the expense of increased pressure requirements, necessitating specialized
equipment. The concept of core-shell particles is to improve the mass transfer kinetics (and
thus the separation efficiency) by restricting intraparticle diffusion to the thin porous shell;*°
while maintaining the hydraulic permeability associated with the total particle diameter. Core-
shell particles differ not only in their architecture from fully porous particles, but also in their
particle size distributions (PSDs): Fully porous sub-2 pm particles come in broad size distribu-
tions (relative standard deviation: 20 — 25%), because traditional particle sizing methods are
ineffective for these particles;* core-shell particles come in narrow size distributions (relative
standard deviation: 5 — 6%), because the size of the solid cores as well as the thickness of the
porous shell can be strictly controlled>’ Although not part of the original concept, the narrow
PSD of core-shell particles is now considered as one of their key properties and claimed to be
the major cause for the outstanding separation efficiency of core-shell particle columns. The
notion is that a packing material with a narrow PSD allows for a more homogeneous packing,
which reduces the eddy dispersion contribution to band broadening and thus improves the sep-
aration efficiency of the column. Observations that highly efficient core-shell particle columns
exhibit a significantly reduced eddy dispersion contribution to band broadening have indeed
been frequently made?®°*>>¢ Corroborating evidence for a link between the width of the PSD
and column performance came from capillary columns packed with submicrometer, fully porous
particles: a reduction of the relative standard deviation of the PSD from 33% to 15% effected a
substantial increase in hydraulic permeability and separation efficiency of the packed capillaries>*
But exactly how a narrow PSD works to achieve a more homogeneous packing and thus higher
column efficiency is unclear. The effect may depend on the slurry-packing process, in which
case other particle properties, such as shape, density, and surface roughness;”>>® but also column

48 J. R. Mazzeo et al. Anal. Chem., 77, 460 A—467 A, 2005.

“K. D. Patel et al. Anal. Chem., 76, pp. 5777-5786, 2004.

0. J. Kirkland, T. J. Langlois, and J. J. DeStefano. Am. Lab., 39, pp. 18—21, 2007.
°1G. Guiochon and F. Gritti. J. Chromatogr. A, 1218, pp. 1915-38, 2011.

2 A, Cavazzini et al. Anal. Chem., 79, pp. 59729, 2007.

%3 J. 0. Omamogho et al. J. Chromatogr. A, 1218, pp. 1942-53, 2011.

>4 J. Will Thompson, R. A. Lieberman, and J. W Jorgenson. J. Chromatogr. A, 1216, pp. 7732—8, 2009.
5J. S. Baker et al. J. Sep. Sci., 33, pp. 2547-57, 2010.

6D, Cabooter et al. J. Chromatogr. A, 1217, pp. 7074-81, 2010.

S7F. Gritti et al. J. Chromatogr. A, 1217, pp. 3819-43, 2010.

*8 J. 0. Omamogho and J. D Glennon. Anal. Chem., 83, pp. 1547-56, 2011.
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dimensions;*%° properties of the slurry liquid, and process control parameters such as the packing

pressure play a role.

Apart from the specific properties of the particles and packing process at hand, the question
remains if a narrow PSD provides an intrinsic advantage to the column performance. A gen-
eral answer to this question can only be given with the help of computer-generated packings,
because this approach enables to study a certain parameter, in our case the PSD, independent
from all other parameters, such as the packing process and individual particle properties. More-
over, packings can be computer-generated with high reproducibility over the full range of bed
(external) porosities. This feature is indispensable to elucidate the relationship between the stud-
ied parameter and its effect on the column performance, as the bed porosity is the parameter on
which hydraulic permeability®! and hydrodynamic dispersion®*°* and thus column performance,
depend first and foremost. The bed porosity of experimental packings is the result of a certain
combination of packing material, column dimensions, and packing conditions®* Slurry-packed
columns of different packing materials, e.g., core-shell and fully porous particles, are therefore
necessarily compared at different bed porosities®®°”

We investigate if a narrow PSD provides an intrinsic advantage to the column performance
by numerical simulations of hydraulic permeability and hydrodynamic dispersion in computer-
generated, random packings of monodisperse, narrow polydisperse, or wide polydisperse spheres.
The packings are unconfined bulk packings that mimic infinitely wide packings without walls,
and the spheres are hard and impermeable (nonporous). The size distributions of the spheres in
the narrow-PSD and the wide-PSD packings were modeled after the experimentally determined
PSDs of sub-3 um core-shell and sub-2 pm fully porous particles, respectively. All packings were
generated over a range of bed porosities between ¢ = 0.366 and ¢ = 0.46, i.e., at densities
representing the range from random-close to random-loose packing for monosized spheres®
The same packing protocol was followed with all packing types. This approach eliminates the
influence of the slurry-packing process as well as of all particle properties other than the size
distribution, and enables the comparison of monodisperse, narrow-PSD, and wide-PSD packings
at equal bed porosity. The porosity-dependence of the calculated permeabilities is discussed in
terms of the Kozeny-Carman model, and the dispersion behavior of the three packing types as

reflected in their plate-height curves is analyzed with the comprehensive Giddings equation®®®”

*9F. Gritti and G. Guiochon. J. Chromatogr. A, 1217, pp. 5069-5083, 2010.

0E. Olah et al. J. Chromatogr. A, 1217, pp. 3642-53, 2010.

61X. Garcia et al. Phys. Rev. E, 80, p. 021304, 2009.

62R. S. Maier et al. Water Resour. Res., 44, W06S03, 2008.

638, Khirevich et al. J. Chromatogr: A, 1217, pp. 4713-4722, 2010.

%4B. G. Yew et al. AIChE J., 49, pp. 642—664, 2003.

% C. Song, P. Wang, and H. A. Makse. Nature, 453, pp. 629-632, 2008.

6 J. C. Giddings Dynamics of Chromatography: principles and theory Marcel Dekker, 1965
678, Khirevich et al. Anal. Chem., 81, pp. 7057-7066, 2009.
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Figure 1.1: Particle size distributions (PSDs) of (A) sub-2 um fully porous particles (wide PSD) and (B) sub-3 pm
core-shell particles (narrow PSD) as experimentally determined by scanning electron microscopy. The histograms
were converted into probability density functions (red curves) for the computer-generation of polydisperse random
sphere packings. Computer-generated wide-PSD and narrow-PSD packings of ca. 10 da x 10da x 70 da (where da is
the number-mean diameter of the PSD) at a bed porosity of ¢ = 0.366 are shown as insets.

1.2 Experimental and numerical methods

1.2.1 Particle size distributions

The particle size distributions (PSDs) of porous-shell 2.6 um Kinetex particles (Phenomenex, Tor-
rance, CA) and of fully porous 1.7 pm Acquity particles (Waters, Milford, MA) were determined
with a JSM-7500F scanning electron microscope (JEOL, Eching, Germany). Of Kinetex particles
(Cis, endcapped, carbon load: 12%; core: 1.9 um, shell: 0.35 um, pore size: 100 A) 44 images
were acquired, from which 976 particle diameters were measured. Of Acquity particles (BEH 300
C;s, endcapped, carbon load: 18%; pore size: 300 A) 93 images were acquired, from which 2608
particle diameters were measured. The experimental data (histograms) were converted into
smooth, continuous probability density functions fy (narrow PSD) and fw (wide PSD) using the
kernel density estimation method with Gaussian kernel and restriction to positive values®® Exper-
imental PSDs and resulting probability density functions are shown in Figure 1.1. Sets of random
numbers to represent the sphere diameters in the computer-generated polydisperse packings
were generated from the probability density functions fy and fy with an acceptance-rejection
method®’

8 A. W. Bowman and A. Azzalini Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus
Illustrations Oxford University Press, 1997
69 J. E. Gentle Random Number Generation and Monte Carlo Methods 2nd ed. Springer, 2003
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1.2.2 Computer-generation of sphere packings

Unconfined, isotropic, random packings of hard, impermeable spheres at six bed porosities
(e = 0.366,0.38,0.40,0.42,0.44,0.46) were generated with a modified Jodrey-Tory algorithm
as described previously/%’! Packing dimensions of ca. 10 dy x 10 dy x 70 da, where d, is the
number-mean diameter of the PSD, were chosen to avoid recorrelation artifacts that are observed
when the representative domain is too small’? The longest packing dimension is along the su-
perficial flow direction (Figure 1.1). For each packing type and porosity, ten individual packings
were generated. The results shown in the figures represent the average from ten packings of the
same type and porosity, while confidence intervals (95%) reflect the differences between these
packings.

1.2.3 Simulation of fluid flow

Low-Reynolds-number flow of an incompressible fluid in the interstitial void space of the gener-
ated packings was simulated by the lattice-Boltzmann method using the BGK-collision operator
and the D3Q19 lattice as described earlier/® The uniform pressure gradient driving the flow
was substituted by an equivalent body-force gradient’* The generated packings were spatially
discretized to obtain a cubic grid at a resolution of 60 nodes/d,. At the solid-liquid interface
(i.e., the spheres’ surfaces), a halfway bounce-back rule was applied to implement the no-slip
flow-velocity boundary condition/> Because the bounce-back rule may introduce a significant
error to pore-scale simulations, if the value of the lattice-viscosity differs from 1/6/° we used this
value in the simulations. The flow velocity field inside a packing was first calculated at a low
Reynolds number (Re = 0.005) and then linearly rescaled”” to cover the whole velocity range
used in the simulations of hydrodynamic dispersion.

1.2.4 Simulation of advection-diffusion

Mass transport was simulated using a random-walk particle-tracking technique/® where a large
number of inert, point-like tracers is distributed randomly and uniformly throughout the packing
void space, and then the time evolution of the tracer coordinates due to fluid flow and molecular
(Brownian) motion is monitored. The transient dispersion coefficient D, () along a direction «

7S, Khirevich et al. Anal. Chem., 79, pp. 9340-9349, 2007.

71S. Khirevich et al. Anal. Chem., 81, pp. 4937-4945, 2009.

72R. S. Maier et al. Phys. Fluids, 12, pp. 2065-2079, 2000.

73S. Khirevich, A. Héltzel, and U. Tallarek. Philos. Trans. R. Soc. A, 369, pp. 2485-93, 2011.

74P, M. Adler, M. Zuzovsky, and H. Brenner. Int. J. Multiphase Flow, 11, pp. 387-417, 1985.

7>M. A. Gallivan et al. Int. J. Numer. Methods Fluids, 25, pp. 249-263, 1997.

76C. Pan, L.-S. Luo, and C. T. Miller. Comput. Fluids, 35, pp. 898—909, 2006.

7M. R. Schure et al. Anal. Chem., 74, pp. 6006—6016, 2002.

78J. A. Rudnick and G. D. Gaspari Elements of the random walk: an introduction for advanced students and
researchers Cambridge University Press, 2004
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is determined from

1 d&
Do _TVOTZ:: (Arqi(t) — (Ara (1)) 2 (1.1)

where Ar, ;(t) et Ta,i(t) — ra.i(0), o (t) is the a-coordinate of a given tracer ¢, N is the number

of tracers (N =5 x 10°), and (Ar,(t)) is the displacement along the direction a averaged over
the whole tracer ensemble. Advective displacement of a tracer was calculated using the velocity
vector from the nearest lattice node, assuming constant fluid velocity over a lattice voxel. A
multiple rejection scheme was implemented to restrict tracer movement to the interparticle void
(fluid) space of the packings/? Diffusive displacement of a tracer follows a Gaussian distribution
in each spatial coordinate with zero mean and a variance of (2 Dmét)l/ 2 where D,, is the tracer
diffusion coefficient in bulk solution and 6t is the simulation time step.

Longitudinal and transverse dispersion coefficients, Dy (t) and D+ (t), were calculated with
equation (1.1) along and transverse to the flow direction, respectively. In unconfined random
sphere packings, the longitudinal dispersion coefficient attains its long-time (asymptotic) limit
after a time span of 2 — 2.5, where 7, is the transverse dispersive time defined as 7, = 2drt/da
(with Dy as the asymptotic transverse dispersion coefficient)®” The transverse dispersive time
unit corresponds to the time span after which tracer particles are dispersed laterally by one
sphere diameter. Asymptotic values of the longitudinal dispersion coefficient D;, were calculated
as the average value over the time span 2 — 2.5 7, (Figure 1.6, Supporting Information, Section
1.5).

The programs for simulations of fluid flow and mass transport were implemented in C/C++
languages using the MPI standard®® Simulations took 250 hours on 1024 processor cores of a
BlueGene/P system (JUGENE at Forschungszentrum Jiilich, Germany).

1.3 Results and discussion

1.3.1 Generation of polydisperse sphere packings

Figure 1.1 shows the PSDs that were determined by scanning electron microscopy for 1.7 pm
fully porous particles (wide PSD) and for 2.6 upm core-shell particles (narrow PSD). Of the
various statistical moments that can be calculated for PSDs, we will refer to the number-mean
diameter dy = ¥ n,d,;/¥n, and the surface-mean or Sauter diameter ds = X n; dgyi /¥n; df)

The narrow PSD of the core-shell particles contains particle diameters between 2.3 and 2.9 pm,
has a relative standard deviation of 3.4%, and closely spaced number-mean and surface-mean
diameters of dy, = 2.60 pm and ds = 2.61 pm, respectively (Table 1.1). We took great care to
establish the experimental PSD for the 1.7 pm particles: To cover the relatively wide size range

9P, Szymczak and A. J. C. Ladd. Phys. Rev. E, 68, p. 036704, 2003.
80W. Gropp and A. Lusk E. Skjellum Using MPI: Portable Parallel Programming with the Message-Passing Interface
2nd ed. MIT Press, 1999
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with a representative number of particles, 2608 particle diameters were measured. The wide PSD
covers particle diameters from 0.30 to 2.79 pm and has a relative standard deviation of 25.3%;
its number-mean diameter (d, = 1.64 pm) is smaller than its surface-mean diameter (dg = 1.83
um).

For computer-generation of random sphere packings, we converted the histograms into
continuous probability density functions fw and fy (red curves in Figure 1.1) such that the
relevant statistical properties of the experimental PSDs were conserved (Table 1.1). Based on the
two probability density functions, fw and fx, two types of polydisperse packings, a wide-PSD and
a narrow-PSD type, respectively, were generated with the Jodrey-Tory algorithm at bed porosities
of ¢ = 0.366 — 0.46. Examples of the two generated packing types (at ¢ = 0.366) are shown in
Figure 1.1 as front view onto the packing cross-section of ca. 10 dy x 10 d5 and as side view
onto the longest packing dimension of ca. 70 d,, which is the macroscopic flow direction in our
simulations. The respective width of the two PSDs is well reflected in the appearance of the
generated packing types.

1.3.2 Grid resolution

For simulations of fluid flow in the interstitial void space of the packings with the lattice-
Boltzmann method, packings are discretized with a simulation grid. The accuracy of the simula-
tion results depends on the grid resolution, which in turn affects the required amount of compu-
tational resources. For monodisperse packings, a grid resolution of 30 nodes/d, is sufficient®! For
polydisperse packings, the appropriate grid resolution depends on the number and diameter of
the smallest spheres in the PSD/* We evaluated the effect of the grid resolution on the numerical
simulation results by calculating the flow velocity field at grid resolutions between 10 and 90
nodes/d,. For evaluation we chose the densest of the wide-PSD packings (¢ = 0.366), because it
contains the smallest sphere diameters and also the smallest voids and should therefore be the
most sensitive packing towards grid resolution. The Darcy permeability K was calculated from
the pressure drop over packing length (AP/L) via Kp = nug/(AP/L), where 7 is the dynamic
viscosity of the fluid and wu,; is the superficial flow velocity. The Darcy permeability was then
equated with the Kozeny-Carman permeability Kk, defined as

3 2
€ dg

(1—6)2fK70

(1.2)

Kyge =

to calculate the Kozeny-Carman constant fxc, assumed as fxc ~ 180 for packed beds®%% With
increasing grid resolution, the calculated Kozeny-Carman constants approach an asymptotic
value close to fxc = 180 (Figure 1.2). The calculated value does not increase discernibly beyond
a grid resolution of 60 nodes/d,, which is why we judged this resolution as best compromise
between accuracy and required computational resources.

81D. Kandhai et al. Philos. Trans. R. Soc. A, 360, pp. 521-534, 2002.
82F. A. L. Dullien Porous media: fluid transport and pore structure 2nd ed. Academic Press, 1992
83p, C. Carman Flow of Gases Through Porous Media Academic Press, 1956
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Figure 1.2: Kozeny-Carman constant fxc as a function of the simulation grid resolution (nodes per da, the number-

mean diameter of the PSD) for the densest wide-PSD packing (¢ = 0.366). Each point is averaged over 10 different
packings, error bars are comparable with the symbol size.

1.3.3 Hydraulic permeability

For comparison between the packing types, the calculated Darcy permeabilities K, were normal-
ized by the square of the surface-mean diameter®*%* Figure 1.3A displays the reduced permeabili-
ties Kp/d3 of the two polydisperse packing types along with those of a monodisperse packing that
was generated with the same generation algorithm and parameters as the polydisperse packings,
but from monosized spheres. The reduced hydraulic permeabilities of all three packing types are
presented in Figure 1.3A as neatly collapsed data over the whole porosity range. The average
value from all packing types at each porosity was taken to fit the data to the Kozeny-Carman
equation (1.2), by equating Darcy with Kozeny-Carman permeability (Kp = Kkc) and using
fxc as a fitting parameter. The fit gave a value of fxc = 172.2 with a correlation coefficient of
R? =0.9995.

Because the hydraulic permeability of packed beds depends first and foremost on the bed
porosity, the large span of Kp,/d3-values in Figure 1.3A obliterates small differences between the
packing types. To decide if a systematic influence of the PSD exists, we calculated fic separately
for each packing type and porosity (Figure 1.3B). The differences in fxc displayed by the packing
types in Figure 1.3B are random and in average smaller than the differences between individual
packings of the same type and porosity as reflected by the wide, overlapping confidence intervals.
The data in Figure 1.3A and Figure 1.3B demonstrate that the hydraulic permeability of bulk
random sphere packings depends on the surface-mean diameter (ds), but not on the width of
the PSD.

With increasing bed porosity, the calculated Kozeny-Carman constants in Figure 1.3B deviate
more from the targeted value of fxc = 180. In the Kozeny-Carman model, the porous medium is
a one-dimensional version of a bundle of twisted, nonintersecting capillaries with constant diam-
eter, and fxc is proportional to the hydraulic tortuosity factor®*®* But a fixed fxc-value neglects
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of bed porosity ¢ for wide-PSD, narrow-PSD, and monodisperse packings. The dashed green line represents the best
fit of the data averaged over the three packing types to the Kozeny-Carman equation (eq. (1.2)). (B) Kozeny-Carman
constant fxc as a function of € calculated with eq. (1.2).
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that the tortuosity of a real, three-dimensional porous medium depends on its porosity®5® Thus,
the decrease of fxc observed in Figure 1.3B may reflect that for the three investigated packing
types the hydraulic tortuosity is a decreasing function of bed porosity. If hydraulic tortuosity is
imagined as the average crookedness of the flow paths in a packing, a decrease of the hydraulic
tortuosity in looser packings, where more void space is available so that the average flow path is
less crooked than in dense packings, appears reasonable. The porosity-dependence of the calcu-
lated obstruction factors, which are the inverse of the diffusive tortuosity, for the three packing
types also support this assumption (Figure 1.7).

1.3.4 Hydrodynamic dispersion

Longitudinal asymptotic dispersion coefficients Dy, were calculated for a range of reduced ve-
locities v = u,,ds/D,, of v = 0.5 — 750 and converted into plate heights H via Dy, = Hu,, /2%
where u,, is the average flow velocity and D,,, = 1.56 x 10~%m? /s, as estimated for anthracene in
acetonitrile at 295 K For normalization of fluid velocity (v = u,,ds/D,,) and plate height data
(h = H/ds), we chose the surface-mean diameter (dg) rather than the number-mean diameter
(da). Whereas the use of dg in connection with the permeability is unquestioned, because in
laminar flow the viscous drag on a spherical particle is proportional to the surface area orthogo-
nal to the flow direction?® normalization of plate-height curves by dg requires explanation. The
pore-scale velocity non-uniformity of the flow field in the interparticle void space of a packing
is caused by the no-slip (zero velocity; liquid stick) boundary condition at the spheres’ surfaces.
Therefore, the surface area has an impact on the flow field and on the eddy dispersion contribu-
tion that originates from the non-uniformity of the flow field. Normalization by dg ensures that
the packings are compared under the condition of equal total surface area. In fact, the dispersion
regime for a bed of nonporous spheres in the velocity range of ca. 5 < v < 300 is referred to
as the “boundary-layer dispersion regime” in recognition of the presence and importance of the
viscous boundary layer at the spheres’ surfaces, in which mass transport normal to the surface
is diffusion-limited®°-°! We note for clarity that for porous particles the volume-mean diameter
could be better suited for normalization of plate height data, due to the dominating contribution
of the intraparticle mass transfer resistance to the overall plate height at higher reduced flow
velocities:”

The use of the surface-mean diameter caused a grouping of the plate-height curves of all

84H. L. Weissberg. J. Appl. Phys., 34, pp. 2636—2639, 1963.

85E. Mauret and M. Renaud. Chem. Eng. Sci., 52, pp. 1807-1817, 1997.

86 M. Barrande, R. Bouchet, and R. Denoyel. Anal. Chem., 79, pp. 9115-9121, 2007.

87F. Gritti et al. J. Chromatogr. A, 1217, pp. 1589-603, 2010.

88 R. F. Probstein Physicochemical hydrodynamics Wiley, 1994

89D. L. Koch and J. F. Brady. J. Fluid Mech., 154, pp. 399-427, 1985.

%0S. G. Weber and P. W. Carr “High Performance Liquid Chromatography” in: ed. by P. R. Brown and
R. A. Hartwick John Wiley & Sons, 1989 chap. 1

°1 M. Sahimi Flow and transport in porous media and fractured rock: From classical methods to modern approaches
Wiley-VCH, 1995

47D. Kandhai et al. Phys. Rev. Lett., 88, p. 234501, 2002.
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Figure 1.4: Comparison of reduced plate-height curves for wide-PSD, narrow-PSD, and monodisperse packings at
bed porosities of e = 0.366 — 0.46 (¢ as indicated) . Plate heights and velocities are normalized by the surface-mean
diameter, and Dy, = 1.56 x 107 ?m?/s.

three packing types according to porosity (Figure 1.4), whereas normalization by the number-
mean diameter d, did not yield unified plate-height curves (Figure 1.8). This is an important
point, because ds and d, of the narrow PSD are nearly equal, but dg of the wide PSD is larger
than d, (Table 1.1). Thus, comparing wide-PSD and narrow-PSD packings by plate height data
normalized by d, puts wide-PSD packings at a disadvantage. The minima of the plate height
curves for the two polydisperse packing types range from h,;, = 0.5 and v,;, = 10 (wide
PSD) or 11 (narrow PSD) at € = 0.366 to Ay, = 0.9 and v, = 5 (wide PSD) or 6 (narrow
PSD) at € = 0.46. The small h,,;,-values result from our model of unconfined (bulk) packings
of nonporous particles and the use of nonadsorbing tracers, where the wall effects, intraparticle
mass transport, and retention contributions of experimental packings®*°* are absent, to allow the
investigation of eddy dispersion in the interparticle void space with the best possible selectivity
and precision.

Closer inspection of Figure 1.4 reveals that the plate-height curves of the wide-PSD packings
may show an upward deviation from the well-united plate-height curves of the narrow-PSD and
monodisperse packings. But the observed differences in plate heights are small. At a bed porosity
of ¢ = 0.38 — a conservative estimate for well-packed HPLC columns - the difference at the plate
height minimum is only 8%, which leaves the advantage of a narrow over a wide PSD too small
to be noticed in chromatographic practice. Furthermore, columns packed with sub-2 um particles
typically have bed porosities of ¢ < 0.38, sometimes even as low as ¢ = 0.35 — 0.36;* whereas
columns packed with core-shell particles more often have bed porosities of ¢ = 0.40 — 0.43>" If
we compare a wide-PSD packing at ¢ = 0.38 with a narrow-PSD packing at ¢ = 0.40 in Figure 1.4,
the advantage of the lower bed porosity already outweighs that of the narrow PSD.

°2U. D. Neue HPLC columns: theory, technology, and practice Wiley-VCH, 1997
3 G. Guiochon et al. Fundamentals of Preparative and Nonlinear Chromatography Elsevier, 2006
4D. Cabooter et al. J. Chromatogr. A, 1178, pp. 108-117, 2008.
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1.3.5 Eddy dispersion contribution to band broadening

To investigate the origin of the small differences between wide-PSD and narrow-PSD packings
observed in Figure 1.4, we analyzed the individual contributions to band broadening by fitting the
reduced plate-height data to a condensed form of the comprehensive Giddings equation®® which
considers only those contributions to band broadening that are experienced by the nonadsorbing
tracer in our computer-generated bulk packings of nonporous particles®>°”

2y 2\ 2o

(1.3)

The first term in equation (1.3) is the contribution from longitudinal diffusion in the pack-
ing and contains the obstruction factor v = D.g/D,,, which relates the effective (asymptotic)
diffusion coefficient of a tracer in the packing (D.g) to the diffusion coefficient of this tracer
in bulk solution (D,,). The second and third term in equation (1.3) consider the eddy disper-
sion contributions to band broadening that originate from inhomogeneities of the flow field
(Figure 1.9): the second term (index 1) refers to a velocity inhomogeneity across the individual
flow channels between adjacent particles (transchannel contribution), whereas the third term
(index 2) covers the flow maldistribution on a lateral length scale of 1 — 2 particle diameters
(short-range interchannel contribution). Whereas transchannel equilibration is required in any
packed bed, ordered or random, the short-range interchannel contribution is associated with
the disorder of a random compared with an ordered sphere packing, but also reflects individual
degrees of disorder between different random packings®>®” Additional flow heterogeneities on a
larger lateral length scale as present in confined packings (transcolumn contribution) are absent
from our bulk packings. Please note that the use of nonporous particles and nonadsorbing tracers
in our packings also eliminates the classical velocity-proportional mass transfer contribution to
band broadening.

The obstruction factor v was calculated for each packing type and porosity from the re-
spective effective diffusion coefficients observed in the long-time limit in simulations of mass
transport without flow (v = 0) (Figure 1.7). For fitting the reduced plate height data to equation
(1.3), v was held fixed at the calculated value. The complete set of reduced plate-height curves
for wide-PSD, narrow-PSD, and monodisperse packings as well as the best fits of these curves to
equation (1.3) are available in Figure 1.10.

The values for the universal structural parameters \;, \,, w;, and w, that we received from
these fits are shown in Figure 1.5. Systematic differences between the three packing types only
emerge for )\,, where the wide-PSD packings deviate from the narrow-PSD and monodisperse
packings. All other variations between the packing types with respect to the four structural
parameters are random, and therefore due to statistical variations in the arrangement of the
individual particles in a packing, not to differences in their PSDs. The \;-values are scattered
around \; ~ 0.45, close to the value of \; ~ 0.5 predicted by Giddings®® This parameter reflects
the longitudinal length scale on which the flow velocity inequality between center and edge of
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Figure 1.5: Structural parameters characterizing the eddy dispersion contribution to band broadening originating
from flow inhomogeneities at the transchannel scale (A1 and w;) and at the short-range interchannel scale (A2
and w»). Data were received from fits of the reduced plate-height curves normalized by the surface-mean diameter

(Figure 1.4) to equation (1.3) (see also Figure 1.10). The confidence intervals (95%) represent the quality of these
fits.
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a single pore persists before the flow stream splits up into several subsequent pores down the
packing. \; was shown to be insensitive towards variations of packing generation parameters
that affect packing microstructure®® As )\, is neither influenced by the PSD nor the packing mi-
crostructure, a value of \; ~ 0.45 appears to be a general property of random sphere packings in
the investigated porosity range. w; depends on the lateral pore dimensions and thus increases
with the bed porosity. However, the overall impact of w; is negligible due to its very small values
(0.003 < w; < 0.006). The velocity range in which a certain eddy dispersion term reaches half
of its maximum value and thereafter begins to flatten noticeably is indicated by the reduced
transition velocity v/ ; = 2);/w; % The reduced transition velocity for the transchannel contri-
bution is estimated at ca. 14,517 = 2 x 0.45/0.0045 = 200, i.e., it raises slowly over most of the
velocity range shown in Figure 1.4 and reaches its full potential only at high velocities, which
are outside the operational range in chromatography (5 < v < 20) and even beyond realization
with experimental packings and equipment.

The parameters characterizing the short-range interchannel contribution to eddy dispersion,
A2 and w,, both increase monotonously with the bed porosity, which reflects the fact that a
looser random packing is more disordered on a short-range scale than a denser one, where
the restricted available space narrows the possibilities for sphere placement®® The w,-values
for all three packing types are neatly collapsed in a range of 0.1 < w, < 0.3, whereas the \,-
values show a small, but systematic upward deviation of the wide-PSD packings, immediately
reminiscent of their plate-height curves in Figure 1.4. )\, characterizes the longitudinal length
scale, on which flow inequalities that exist over a lateral length scale of 1 — 2 particle diameters
persist in a packing, before being leveled out in (and by) the flow field®® According to Figure 1.5,
the packing microstructure over the short-range scale is less homogeneous in wide-PSD than in
narrow-PSD or monodisperse packings, which explains the slightly elevated plate-height curves
for the wide-PSD packings in Figure 1.4. Experimental values for \, provided by Gritti et al>”
and Gritti and Guiochon® for core-shell particle columns all fall within our simulated range
of 0.2 < Ay < 0.5: they determined A\, = 0.20 and A\, = 0.35 for columns packed with 2.6
um Kinetex-C;g particles (100 x 4.6 mm) and with 2.7 um Halo-C,z particles (150 x 4.6 mm),
respectively;” and later \, = 0.30 and A\, = 0.40 for 150 x 4.6 mm columns packed with 2.6 um
Kinetex-C, g particles and with 2.7 um Halo-C, particles, respectively?> All columns had external
(bed) porosities around ¢ = 0.40. For a narrow-PSD packing at this bed porosity, our simulations
predict \, = 0.32. Experimental \,-values for columns packed with Acquity particles are not yet
documented in the literature.

Apart from revealing the cause for the slightly raised plate height data of the wide-PSD
packings, Figure 1.5 also shows that the three packing types have essentially the same porosity-
dependence of their structural parameters (\;, w;). When we previously studied hydrodynamic
dispersion in monodisperse random sphere packings created to possess different degrees of
microstructural heterogeneity through systematic variation of packing generation parameters,
we found that a packing’s degree of microstructural heterogeneity has a large impact on its

5 F. Gritti and G. Guiochon. Chem. Eng. Sci., 65, pp. 6327-6340, 2010.
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hydrodynamic dispersion behavior®® The dispersion coefficient of more disordered packings is not
only larger than that of less disordered (i.e., more homogeneous) packings at equal bed porosity,
but also increases more strongly with the bed porosity. We may therefore infer from the collapsed
curves in Figure 1.5 that the generated wide-PSD, narrow-PSD, and monodisperse packing types
possess highly similar packing-scale disorder, as was intended through using identical packing
generation parameters for all three packing types. When we previously analyzed the individual
eddy dispersion contributions for monodisperse packings of different packing-scale disorder??
we found larger deviations in the structural parameters than observed between polydisperse
and monodisperse packings in Figure 1.5 as well as an individual porosity-dependence of the
structural parameters for each packing type. Thus, compared with packing generation parameters
that determine the packing-scale disorder of the bulk sphere packings, the width of the PSD exerts
only a small influence on the eddy dispersion contribution to band broadening.

1.4 Conclusions

Through numerical simulations in computer-generated monodisperse, narrow-PSD, and wide-
PSD bulk random packings of hard, impermeable spheres we have investigated the intrinsic
influence of the PSD on hydraulic permeability and hydrodynamic dispersion. The mass trans-
port properties of a packing are determined by its microstructure, which for computer-generated
packings depends on the algorithm and parameters used for their generation, not on the un-
derlying PSD. Contrariwise, the microstructure or morphology of experimental packings cannot
be reproduced from different PSDs. This underlines the importance of computational methods
to investigate an individual parameter, in this case the PSD, independent from other relevant
parameters, whose influences are inseparable in experimental packings.

Our simulation results reflect independence from the underlying PSD for the hydraulic
permeability of the bulk packings, but a small influence of the PSD on hydrodynamic disper-
sion. Wide-PSD packings can exhibit slightly raised plate heights compared with narrow-PSD
and monodisperse packings. Analysis of the individual eddy dispersion contributions to band
broadening according to Giddings revealed an increased short-range interchannel contribution
as the cause, suggesting that the microstructure in wide-PSD packings on a scale of 1 — 2 particle
diameters is less homogeneous than in narrow-PSD or monodisperse packings. In principle, this
observation reflects a slight intrinsic advantage of a narrow PSD with respect to hydrodynamic
dispersion in bulk packings. The effect of the PSD width on the plate height curves, however, is
negligible compared with the influence of the bed porosity and also too small to be noticed in
chromatographic practice.

Our simulations have shown that the reduced eddy dispersion reported for columns packed
with core-shell particles cannot result from the intrinsic (i.e., unrelated to the packing process)
advantage of a narrow PSD. This is all the more intriguing, because these columns often combine
low eddy dispersion with a rather high bed porosity. According to our results, the homogeneity
of core-shell columns must be clearly superior to those of densely packed columns of fully porous
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particles to overcome the disadvantages of high bed porosity. The answer to why core-shell
particle columns have low eddy dispersion lies probably in the unraveling of the experimental
column packing process®* For this challenge the physical reconstruction of column packings and
the derivation of appropriate statistical parameters that describe the packing morphology appears
promising;® because a direct link between the experimental parameters of the slurry-packing
process and the properties of the final packing microstructure might thus be established.
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1.5 Supporting Information

Table 1.1: Statistical properties of the experimentally determined particle size distributions (PSDs) for sub-2 pm fully
porous particles (wide PSD) and for sub-3 pm core-shell particles (narrow PSD) and of the corresponding probability
density functions fy and fx derived from the experimental PSDs.

Wide PSD fw Narrow PSD N

1.7um fully porous 2.6um  core-shell

particles particles
Number of measured particle diameters 2608 - 976 -
Number-mean diameter (da) 1.64 1.64 2.60 2.60
Surface-mean diameter (dg) 1.83 1.84 2.61 2.61
Relative standard deviation 25.3% 25.9% 3.4% 3.4%
Minimum diameter 0.30 0.27 2.27 2.24
Maximum diameter 2.79 3.01 2.90 2.93
Quantiles d10/ds0/doo 1.10/1.64/2.16 1.09/1.65/2.17  2.50/2.60/2.71 2.50/2.60/2.71

%S, Bruns and U. Tallarek. J. Chromatogr. A, 1218, pp. 1849-60, 2011.
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Figure 1.9: Velocity inhomogeneities that contribute to eddy dispersion in confined particle-packed beds according
to Giddings. The transchannel contribution arises from the transverse distribution of velocities inside each individual
channel between particles. The short-range interchannel contribution is due to the existence of small groups of tightly
packed particles between which more loosely packed regions are found. Fluctuations of local packing density cause
this pattern of tightly packed groups of particles interspersed by loosely packed regions to be erratic, which results in
the long-range interchannel contribution. The existence of systematic variations of the mobile phase velocity between
different regions of the column, i.e., in the core and the wall regions, is responsible for the transcolumn contribution.
A fifth contribution mentioned by Giddings as a source of velocity bias is the transparticle contribution, which exists
in beds of porous particles. This effect should not be taken into account as an eddy dispersion term, however, as it is
actually the strict equivalent of the intraparticle pore diffusion mechanism (the flowing mobile phase does not affect
pore diffusion inside the particles). The figure is reproduced with permission of Dr. Khirevich:
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Abstract

Flow and mass transport in bulk and confined chromatographic supports comprising random
packings of solid, spherical particles and hexagonal arrays of solid cylinders (regular pillar ar-
rays) are studied over a wide flow velocity range by a numerical analysis scheme, which includes
packing generation by a modified Jodrey-Tory algorithm, three-dimensional flow field calcula-
tions by the lattice-Boltzmann method, and modeling of advective-diffusive mass transport by
a random-walk particle-tracking technique. We demonstrate the impact of the confinement and
its cross-sectional geometry (circular, quadratic, semicircular) on transient and asymptotic trans-
verse and longitudinal dispersion in random sphere packings, and also address the influence
of protocol-dependent packing disorder and the particle-aspect ratio. Plate height curves are
analyzed with the Giddings equation to quantify the transcolumn contribution to eddy disper-
sion. Confined packings are compared with confined arrays under the condition of identical bed
porosity, conduit cross-sectional area, and laterally fully equilibrated geometrical wall and corner
effects on dispersion. Fluid dispersion in a regular pillar array is stronger affected by the macro-
scopic confinement and does not resemble eddy dispersion in random sphere packings, because
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the regular microstructure cannot function as a mechanical mixer like the random morphology.
Giddings’ coupling theory fails to preserve the nature of transverse dispersion behind the arrays’
plate height curves, which approach a linear velocity-dependence as transverse dispersion be-
comes velocity-independent. Upon confinement this pseudo-diffusive behavior can outweigh the
performance advantage of the regular over the random morphology.

2.1 Introduction

The presence of a macroscopic confinement for any microscopically regular or random porous
medium implies at least two fundamental time and length scales behind longitudinal dispersion
with respect to the lateral equilibration of an analyte or a passive tracer in the nonuniform flow
velocity field: the pore (short-time) scale and the macroscopic confinement (long-time) scale®”-°”
According to Giddings®® these scales reflect the transchannel and the transcolumn contribution to
eddy dispersion, respectively. The effect of the confinement on dispersion (hereafter referred to
as transcolumn contribution, regardless of the actual format of the confinement, i.e., cylindrical
column or noncylindrical conduit) depends on the ratio of two lengths, one characteristic of the
conduit cross-section and the other of the porous medium. For a particulate bed confined in the
classical column format, for example, it is the ratio of column and particle diameter, referred to
as particle-aspect ratio.

Hydrodynamic dispersion in cylindrically confined random sphere packings at low particle-
aspect ratio (< 20) is a topic with a long tradition in chemical engineering?® For such packings
eddy dispersion is dominated by the geometrical wall effect®”-°”-°° which describes the effects of
the inability of spherical particles to form a close packing against the locally flat and hard surface
of the column wall on the resulting lateral (external) porosity and velocity distributions. The first
particle layer of the bed in contact with the wall is not only highly ordered, but also differs from
subsequent layers, because the interstitial space between wall and first layer cannot be partially
occupied by other particles. In subsequent particle layers (i.e., with increasing distance from the
wall) the degree of microstructural order relaxes towards the packing bulk. The lateral external
porosity profile of the packing starts at the wall with large oscillations, whose amplitudes decrease
over a distance of a few (~5) particle diameters to a value associated with bulk behavior!?-1%
The short-ranged geometrical wall effect is distinct from a second and more extended wall effect,

675, Khirevich et al. Anal. Chem., 81, pp. 7057-7066, 2009.

°7R. S. Maier et al. Phys. Fluids, 15, pp. 3795-3815, 2003.

66 J. C. Giddings Dynamics of Chromatography: principles and theory Marcel Dekker, 1965
%8J. M. P. Q. Delgado. Heat Mass Transfer, 42, pp. 279-310, 2006.

%M. Giese, K. Rottschiifer, and D. Vortmeyer. AIChE J., 44, pp. 484-490, 1998.

100 A J. Sederman, P. Alexander, and L. F. Gladden. Powder Technol., 117, pp. 255—269, 2001.
101 A, de Klerk. AIChE J., 49, pp. 2022-2029, 2003.

102 3. Theuerkauf, P. Witt, and D. Schwesig. Powder Technol., 165, pp. 92—99, 2006.

103G, E. Mueller. Powder Technol., 203, pp. 626-633, 2010.
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traditionally discussed in connection with much larger particle-aspect ratios (> 100) % The
latter is related to the compressibility of pulverulent materials and the complex distribution of
axial and radial stress during compression of the bed®* During the slurry-packing process, the
friction between the particles, the resulting radial stress that forces the particles against the
wall, and the friction between bed and wall}** effect a higher packing density near the wall (but
beyond the ~5 d,-distance from the wall that is governed by the geometrical wall effect) than
in the core. As a consequence of this “frictional wall effect”, external porosity and permeability
are higher in the core than in the near-wall region, and a heterogeneous radial velocity profile
develops. Under general conditions both wall effects (geometrical and frictional) influence the
morphology of a confined packing, but depending on the actual particle-aspect ratio either wall
effect may dominate hydrodynamic dispersion behavior?®!1%°

The geometrical wall effect was envisioned early in the chromatographic literature'®” and
later carefully studied by Li et al!°® in supercritical fluid chromatography and by Jorgenson and
co-workers in capillary HPLC*>19%119 with particle-packed cylindrical fused-silica capillaries. For
example, Kennedy and Jorgenson'?” and subsequently Hsieh and Jorgenson''® have shown that
the performance of capillaries packed with 5 um particles improves significantly when decreasing
the capillary diameter from 50 to 12 pm. At these low particle-aspect ratios, the packed bed
morphology is dominated by the geometrical wall effect; because the small column diameter
does not enable full relaxation of the ordered wall region into bulk behavior, the packing is
effectively more ordered and homogeneous over the whole conduit cross-section.

Packed beds with low particle-aspect ratios have shifted into the focus of research, since the
“omics” era, requiring fast analysis of small amounts of complex samples, triggered the ongoing
trend for miniaturization!''-'** Liquid chromatography was successfully miniaturized in the form
of nanoflow and microchip HPLC;!'*'!® particle-aspect ratios of 10 — 20 are typical, because

downsizing of conduit dimensions is not accompanied by a similar reduction of particle size!!*'2°
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Therefore, the geometrical wall effect is important to eddy dispersion in microchip packings as
well as the cylindrical fused-silica capillaries used in nano-HPLC. An additional challenge of
microchip HPLC is the noncylindrical conduit format for the chromatographic bed. The cross-
sectional geometry of a microfluidic channel is mainly determined by the materials and methods
used in its fabrication. Separation channels with approximately semicircular,?"'?* elliptical;**
quadratic,;?* rectangular;?>'%® bell-shaped,?’ or trapezoidal cross-sections'?*'** are found on
recent HPLC-microchips, and deviations from ideal geometry, such as introduced by curved sides,
rough edges, and irregularly-angled corners, are the rule. Due to the pressure limitations of most
microchips, the slurry-packing of these noncylindrical microchannels is a technological problem,
but has been solved previously to yield dense beds (average external porosity around € = 0.40)1%*
The presence of corners in a noncylindrical conduit as well as the symmetry decrease of the cross-
section, if its geometry deviates from a circle, increase eddy dispersion in a microchip packing
relative to a cylindrical capillary packing/®"1-11%1%> Low particle-aspect ratios and noncylindrical
conduits are therefore the main points of investigation for the effect of the confinement on eddy
dispersion in miniaturized chromatographic packings.

Because the quality of their preparation is less affected by the downsized conduit dimen-
sions, monolithic beds or regular pillar arrays often substitute for particulate packings on HPLC-
microchips!*®13” Organic polymer-based monolithic beds are simply prepared by carrying out
the one-step polymerization reaction directly in the microchannel!!$126129.131.138-142 The pho-
tolithographic etching of a regular array of pillar columns into a microchip!2®137:143-145 requires
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substantially more fabrication efforts, followed by post-processing to yield porous pillars with
chemical surface modifications, essential for the capacity and selectivity of HPLC separations.
Regular pillar arrays benefit from a microscopically ordered geometry, which decreases fluid
dispersion in unconfined arrays compared with unconfined particulate beds. The latter are bulk
random sphere packings, which possess a microscopic disorder on the scale of 1 — 2 d,, that
translates to a short-range interchannel contribution to eddy dispersion?” in addition to the tran-
schannel dispersion inherent to all porous media, regular or random. But the concept of regular
pillar arrays as spatially porous media has to be altered, when these are used as chromatographic
supports, because the inevitable confinement engenders a macroscopic heterogeneity, which will
affect the dispersion behavior and thus the efficiency of the array for HPLC separations.

Whereas the influence of transcolumn velocity gradients of various origins on eddy dis-
persion in packed columns is well known;*-6466:67.96-110,146-148 the precise nature of how the mi-
crostructure of a packed bed, local disorder, and the geometry of the confinement affect the
flow heterogeneity, transverse equilibration as well as macroscopically resulting longitudinal
dispersion, and how it interrelates with the velocity-dependent transverse rate of mass transfer
is still largely unresolved. In this work, we investigate how a macroscopic confinement affects
the dispersion behavior and ultimately the separation efficiency of particulate packings and reg-
ular pillar arrays at conduit dimensions and geometrical properties that reflect those in capillary
and microchip HPLC practice. We employ explicit or direct numerical simulations;" where all
important transport phenomena and parameters, including the volumetric representation of the
morphology of the studied system, are considered explicitly rather than using a meanfield or aver-
age procedure. Besides reproducing experimental column behavior, direct numerical simulations
of flow and transport have been instrumental in identifying key structure-transport relation-
ships in chromatographic media®*®” and to analyze the effect of relevant parameters, such as
particle size and shape, particle size distribution, intraparticle porosity and associated diffusion-
limited transport, bed density, packing disorder and defects, as well as column dimensions and
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cross-sectional geometry, on the hydrodynamic properties of fixed beds:”:6%6%67.70-73,77,97,135,149-159
Transient dispersion is easily recorded, which allows to quantify (i) the time and length scales
behind the long-time (asymptotic) limit of dispersion, and (ii) the flow velocity-dependence of
longitudinal and transverse asymptotic dispersion coefficients.

Computer-generated random packings of monosized, solid (nonporous), spheres at a bed
(average external) porosity of ¢ = 0.40 confined in conduits of circular, rectangular, and semi-
circular cross-section serve as examples for miniaturized particulate packings. We vary the
confinement geometry at constant cross-sectional area, and the microstructural heterogeneity
(introduced through the packing protocol) as well as the particle-aspect ratio (20 and 10) for
cylindrically confined packings. The comparison with bulk packings (which mimic infinitely wide
random sphere packings without confinement) enables a clear-cut distinction of the effects in-
troduced by the confinement on the various eddy dispersion contributions. An extensive set
of longitudinal dispersion coefficients collected over a wide range of reduced flow velocities
(0.5 < v < 500) provides plate height curves for analysis with the comprehensive Giddings
equation. The observation of asymptotic dispersion behavior requires complete lateral equilibra-
tion over the conduit cross-section, which, in turn, necessitates sufficiently extended packings in
the longitudinal (macroscopic flow) direction. The required packing length increases with the
average flow velocity, but also depends on the cross-sectional geometry of the conduit, because
the presence of corners and the increased characteristic lateral distance of a noncylindrical com-
pared with a cylindrical conduit costs additional simulation time or packing length to account
for laterally fully equilibrated wall and corner effects on dispersion. The size of the generated
cylindrical and noncylindrical packings, with a length on the order of 10® particle diameters,
and the studied velocity range (four orders of magnitude) necessary to obtain a good fit to the
Giddings equation, relegate the numerical simulations to the large-scale category performed on
supercomputers. The dispersion behavior of confined random sphere packings is compared with
those of hexagonal arrays of solid (nonporous), cylindrical pillars. Starting from an unconfined
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array, simulated as a single unit cell with periodic boundary conditions?*'6%1¢! we first add top

and bottom walls, and then complete the confinement by the addition of side walls. The inter-
stitial porosity and the cross-sectional area of the arrays match the bed porosity (¢ = 0.40) and
cross-sectional area (100 wd or 25 wd?), respectively, of the random sphere packings. The fully
confined arrays are flat, rectangular boxes with channel width-to-height ratios typically found
on microchips.

The results section starts with random sphere packings (Section 2.3.1): the transient dis-
persion behavior of confined sphere packings is contrasted with that of bulk sphere packings to
retrieve the effect of the confinement for the studied conduit geometries; monitoring transient
dispersion up to the asymptotic (long-time) limit guarantees that the derived plate height curves
account for fully equilibrated wall and corner effects. This is essential to evaluate support struc-
tures of radically different morphologies, as, e.g., packings and pillar arrays, for their potential as
chromatographic adsorbents. Plate height curves are analyzed with the comprehensive Giddings
equation, and the effect of microstructural heterogeneity on asymptotic dispersion is discussed.
Section 2.3.2 covers regular pillar arrays, and explains the differences in longitudinal dispersion
behavior between random sphere packings and regular pillar arrays on the basis of their trans-
verse dispersion behavior. Section 2.3.3 compares confined sphere packings with confined pillar
arrays and quantifies the loss of separation efficiency for microscopically random and regular
chromatographic supports, respectively, upon macroscopic confinement.

2.2 Numerical simulations

2.2.1 Generation of random sphere packings

Packings of monosized, solid (nonporous) spheres were generated with a modified Jodrey-Tory
algorithm®”-7° at a bed porosity (interstitial void fraction) of ¢ = 0.40. Bulk (unconfined) ran-
dom sphere packings had dimensions of ca. 9.53 d, x 9.53 d,, (cross-section) x76.43 d,, (length;
longitudinal direction, the macroscopic flow direction in our simulations) and periodic boundary
conditions in all three directions. Confined packings (with periodic boundary conditions in the
longitudinal direction) were generated in containers of 100 7d? cross-sectional area and circular,
rectangular (with a side-aspect ratio of 2:1), or semicircular geometry. The respective packing
dimensions were ca. 20 d,, (cylinder diameter) x6554 d,, (length), 25 d, x 12.5 d, (rectangle
sides) x8192d,,, and 14.1d, (semicircle radius) x8192d,. Additionally, smaller cylindrical sphere
packings with a particle-aspect ratio of 10 and a cross-sectional area of 25 wd’ were generated
with dimensions of ca. 10 d,, (cylinder diameter) x1638 d,, (length).

Packing density (¢ = 0.40), confinement geometry (with circular, rectangular, or semicircular
cross-section), and particle-aspect ratio are typical for miniaturized HPLC columns in capillary
or microchip format. For 5um-sized particles, a particle-aspect ratio of 20 translates to a column
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inner diameter of 100 um, a conservative value in capillary HPLC. The packing length of the
cylindrically confined sphere packing (6554 d,,) would then correspond to a bed length of ~3.3
cm. Such packing dimensions are sufficient for the analysis of laterally fully equilibrated wall
and corner effects on dispersion, as observed with bed lengths on the order of centimeters in
chromatographic practice.

For the bulk and the cylindrically confined packings we also varied the degree of microstruc-
tural heterogeneity. The Jodrey-Tory algorithm enables independent adjustment of bed porosity
and degree of heterogeneity?>¢>1? Packing generation starts from a random distribution of
sphere centers in the simulation box, where sphere overlap is typical. Each iteration includes
the search for two sphere centers with a minimum pair-wise distance that defines the maximal
sphere diameter at which no sphere-overlap occurs in the current configuration, followed by
a symmetrical displacement of the two sphere centers up to a new distance; the displacement
length is scaled by a constant . Our modification of the Jodrey-Tory algorithm considers in the
searching procedure for the distance between two nearest points also the distance between a
point and the container wall, which allows the generation of packings in containers of every
shape. Three packing types were generated by varying (i) the initial distribution scheme of
sphere centers and (ii) the value of the constant « scaling the displacement length. Generation
of R- and Rx0.001-packings started from a random and uniform distribution of sphere centers
in the simulation box, whereas for Sx2-packings the simulation box was first divided into equal
cubes and then each sphere center placed in a random position into a cube. The scaling constant
was set to a = 0.001 (Rx0.001), « = 1 (R), or = 2 (Sx2). If a small constant for scaling the
displacement length is used, sphere centers remain close to their initial positions during packing
generation, which preserves the randomness of the initial distribution. Using a larger constant for
scaling the displacement length yields a more homogeneous distribution of sphere centers in the
final configuration. The degree of microstructural heterogeneity increases among the three pack-
ing types as Sx2 <R <Rx0.001. Confined packings with rectangular or semicircular cross-section
were generated as R-packings.

Packings were discretized with a spatial resolution of 30 nodes/d,,, which is sufficient for the
accurate simulation of fluid flow®! and mass transport/? Discrete lattices had dimensions of ca.
286 x 286 x 2293 nodes (bulk), 600 x 600 x 196608 nodes (circular), 752 x 376 x 245760 nodes
(rectangular), 848 x 424 x 245760 nodes (semicircular), and 300 x 300 x 49140 nodes (small
circular). We used five random realizations of each packing; results given for a packing refer to
the mean calculated from its five random realizations.

2.2.2 Regular pillar arrays

Regular, hexagonal arrays of uniform, solid (nonporous) cylinders were constructed with the
same bed porosity (¢ = 0.40) as the sphere packings. Porosity (¢), unit cell width (m), and pillar

43S, Khirevich “High-Performance Computing of Flow, Diffusion, and Hydrodynamic Dispersion in Random Sphere
Packings” PhD thesis Germany: Philipps-Universitdt Marburg, 2010
81D. Kandhai et al. Philos. Trans. R. Soc. A, 360, pp. 521-534, 2002.
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Figure 2.1: Hexagonal array of identical cylindrical pillars with a bed porosity of e = 0.40. The three-dimensional unit
cell with top and bottom confinement (left) was used as partially confined array (with periodic boundary conditions
at the sides) and to build fully confined arrays of the desired width (z). Simulations in a bulk pillar array were
performed with the two-dimensional unit cell (right). Periodic boundary conditions in the macroscopic flow direction
(y) were generally used for all arrays and packings.

diameter (d,) are related through

& = 2‘7/?(1 — &)m?, (2.1)
as illustrated in Figure 2.1 with the two-dimensional unit cell. Simulations in a bulk array were
performed in such a two-dimensional unit cell with periodic boundary conditions in = and .
The three-dimensional unit cell is shown alongside; the structure has a height (z) of 2.8 d,
and a length (y) of 2.1 d,,. Simulations in a partially confined array were performed in such
a unit cell with periodic boundary conditions along the sides (x) and in the macroscopic flow
direction (length y), mimicking a flat configuration with wide top and bottom walls and open
sides (top-bottom confinement). The fully confined pillar array was built from repetition of the
three-dimensional unit cell up to the desired width (z) of 112.2d,, and is shown in Figure 2.2 next
to the confined sphere packings. The high channel width-to-height ratio of 112.2d,,/2.8 d,, = 40
is typical for microfabricated pillar arrays on HPLC microchips!**-'*> Based on a particle or pillar
diameter of d, = 5 pm, for example, the fully confined array would have a channel height of
14 pm and a channel width of 561 pm. The pillar array’s cross-sectional area matches those of
the confined sphere packings (100 7d?). For comparison with the smaller cylindrical packing
(particle-aspect ratio of 10 and cross-sectional area of 25 7d?), a fully confined pillar array with
a correspondingly smaller width of 28.3 d,,, but equal height (2.8 d,,) and length (2.1 d,) than
the other confined pillar arrays was built (Figure 2.3). Periodic boundary conditions in the flow
direction (y) were used for all packings and arrays.

The pillar arrays were discretized with a grid resolution of 60 nodes/d,, i.e., twice the res-
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length: 6554 d, length: 8192 d,
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112,27 d,

Pillar array, top view

112.27 d,
FLOW

Figure 2.2: Confined chromatographic beds with a cross-sectional area of 100 7d> (where d,, denotes the particle or
pillar diameter) and a bed porosity of ¢ = 0.40. Shown are random sphere packings with circular (with a particle-
aspect ratio of 20), rectangular, or semicircular cross-section (and dimensions as indicated) as well as the fully
confined pillar array with flat, rectangular cross-section (with a channel width-to-height ratio of 40). Zoom and top
view visualize the pillar array’s two-dimensionally ordered, hexagonal microstructure.
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Pillar array, cross-section
28.28 d,

10d,

length: 1638 d,

Figure 2.3: Confined chromatographic beds with a cross-sectional area of 25 7d?, (where d,, denotes the particle or
pillar diameter) and a bed porosity of ¢ = 0.40. The cylindrical random sphere packing has a particle-aspect ratio of
10, which is also the channel width-to-height ratio of the regular pillar array’s rectangular cross-section.
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olution used for the random sphere packings, because calculation of dispersion coefficients for
the arrays is more sensitive to the spatial resolution:*® Discrete lattices of the representative geo-
metrical elements (unit cells) from the pillar arrays, which were subjected to periodic boundary
conditions as required in a given case, had dimensions of ca. 74 x 128 nodes (width = Xlength
y) for the bulk pillar array (two-dimensional geometry, Figure 2.1), 74 x 128 x 170 nodes (width
x xlength y Xheight z) for the partially confined pillar array (Figure 2.1), 6736 x 128 x 170
nodes for the fully confined pillar array (Figure 2.2), and 1704 x 128 x 169 nodes for the small,
confined pillar array (Figure 2.3).

2.2.3 Simulation of fluid flow

We consider low Reynolds number flow (Re ~1072) of an incompressible fluid in the interstitial
void space of the generated sphere packings and pillar arrays. Velocity fields () were simulated
by the lattice-Boltzmann method (LBM)!°?-1%° The principal advantages of the LBM approach are
its simple handling of topologically complex boundaries, such as those encountered in porous
media, and its inherent parallelism that allows easy implementation of the developed numerical
models at high-performance computational systems. The LBM approach is based on the connec-
tion between (i) the molecular kinetics and (ii) the phenomenological description which can be
expressed in the form of the Navier-Stokes equations assuming the fluid as a continuum

V-u=0 (2.2)
and
(u-V)u+ Vpp —uVi =0, (2.3)

where p is pressure, and p and p are the density and kinematic viscosity of the fluid, respec-
tively. The kinetics of an ensemble of (in a physical sense) classical particles can be described
in terms of the one-particle velocity distribution function f(,v,t) which defines the density
of particles with velocity ¢ around the space-time point (#, t). Assuming molecular chaos, the
Boltzmann equation describing the dynamics of f(7,,¢) can be derived!®®
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where the right-hand side describes the time rate of change in f(7,¢,t) due to interparticle
collisions (collision operator).

Only a small set of discrete particle velocities is needed to simulate the Navier-Stokes equa-
tion and much of the kinetic theory of classical particle ensembles can be represented in a
discretized version!®”-1%® In this version, the continuous velocity distribution function f (7,7, ) is
replaced by its discrete analogue f;(7,t), which defines the density of particles with a discrete
velocity €; at (7, t). Particles move synchronously during time steps At along links of a spatial
lattice. The values of the velocities ¢€; are chosen such that in one time step each particle moves
from one lattice node to its neighbor. After every time step, the functions f;(7,t) are redistributed
in lattice nodes according to the collision operator. The time evolution of f;(r, t) is described by
the discrete (lattice) Boltzmann equation

fi ('F+ é;At, t+ At) = fz (Fa t) + Az (Fa t) ) (25)

where A; is the discrete interparticle collision operator. Local values of the fluid density and
flow velocity are obtained from the statistical moments of the velocity distribution functions in
corresponding lattice nodes:

p(Fot) = fi(7 1) (2.6)
and

= _ ngz (F7 t)

u(r, t) = zl: D (2.7)

In this study, we used the so-called D3Q19 lattice, a cubic lattice with lattice spacing Al
and 18 links at each lattice node, which can be obtained by projecting the four-dimensional
face-centered hypercubic lattice onto three-dimensional space!®®!7° In the D3Q19 lattice each
node is connected to its six nearest and twelve diagonal neighbors. Additionally, we employ a
linear BGK-collision operator®

o fea
A; = _M’ (2.8)
T
where 7 is the relaxation time of the particle velocity distribution function to an equilibrium state
f9. This parameter is connected with the lattice kinematic viscosity of the fluid:

(2
21 —1
= ) (2.9)
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By employing the Chapman-Enskog expansion, it can be shown that the equilibrium distri-
bution

9 3
fo = pw; 1+3a-ﬁ+§(a-ﬁ)2—§ﬁ.ﬁ , (2.10)
with the weight coefficients

1
wo =3, (2.11)

! (2.12)
Wao = 735> .

18

! (2.13)
wg = — .

736

properly recovers the Navier-Stokes equations!®®!”! Subscripts o and f3 refer, respectively, to
lattice links with the nearest and diagonal neighbors, while 0 corresponds to the component of
174 associated with the rest particles.

In our LBM simulations the uniform pressure gradient driving the flow was substituted by
an equivalent body-force gradient. The validity of this approach for spatially periodic simulation
domains was demonstrated by Zuzovsky et al!’? and Adler et al’*; it was successfully applied by
Edwards et al!”® and Maier et al’?. Simulations were performed at very low lattice Mach numbers
(Ma <1073), which minimizes the compressibility error introduced by LBM as Ma approaches
cs = 1/3/2 the speed of sound in the system. A bounce-back (BB) rule’”> was employed to
implement the no-slip velocity boundary condition at the solid-liquid interface (i.e., the surfaces
of the solid spheres, solid cylinders, and the confinement). The lattice kinematic viscosity defined
by Eq. (2.9) was set to a value of 1/6 (7 = 1). Pan et al’® have shown that this value gives the
most accurate performance of the BB boundary condition. The lattice kinematic viscosity in Eq.
(2.9) can be translated into the physical world using the spatial and temporal discretization steps
(Al and At) of the model by pipnysical = fhattice (Al)? /AL,

The velocity field in a sphere packing or pillar array was first calculated at a low Reynolds
number and then linearly rescaled;” relying on the properties of creeping flow (p. 48 in [66]), to
cover the whole velocity range in simulations of hydrodynamic dispersion. In order to quantify
the numerical error in the simulations introduced by the approximation of constant velocity

171X, He and L.-S. Luo. J. Stat. Phys., 88, pp. 927—-944, 1997.

172 M. Zuzovsky. Phys. Fluids, 26, p. 1714, 1983.

74Pp. M. Adler, M. Zuzovsky, and H. Brenner. Int. J. Multiphase Flow, 11, pp. 387-417, 1985.
173D, A. Edwards et al. Phys. Fluids A, 2, pp. 45-55, 1990.

7>M. A. Gallivan et al. Int. J. Numer. Methods Fluids, 25, pp. 249-263, 1997.

76C. Pan, L.-S. Luo, and C. T. Miller. Comput. Fluids, 35, pp. 898—909, 2006.
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over a lattice voxel, we performed a detailed and computationally expensive resolution study
(see [43], available online) using up to 90 grid nodes per sphere diameter for bulk packings
as well as confined packings with different conduit cross-sections. This study demonstrated (i)
convergence of the asymptotic longitudinal dispersion coefficient to a “grid independent” value
with increasing resolution: the discretization error becomes small and the difference between
resolutions of 75 and 90 nodes/d,, is less than 1%; and (ii) less than 10% error in the dispersion
coefficients with the resolution used in the present work (30 nodes/d,) relative to the highest
resolution of 90 nodes/d, over the whole simulated velocity range, from reduced velocities of
0.5 up to 500, i.e., from the diffusion-limited to the convection-dominated transport regime (cf.
Figure 1.10 in Khirevich*®).

The D3Q19 lattice requires storage of 19 lattice links per lattice node, which resulted in com-
puter memory requirements of ca. 13 GB for bulk packings and of up to 5 — 6 TB for the confined
packings. Flow simulation in one realization of a confined packing required ca. 1500 LBM itera-
tions and took ~0.8 hours on 16384 processor cores (cylindrical packing with particle-aspect ratio
of 20, Figure 2.2) or ~0.4 hours on 2048 processor cores (cylindrical packing with particle-aspect
ratio of 10, Figure 2.3) of a BlueGene/P system (Forschungszentrum Jiilich and Rechenzentrum
Garching, Germany). Flow simulation in the fully confined pillar array of Figure 2.2 required ca.
1500 LBM iterations and took ~0.5 hours on 1024 processor cores.

2.2.4 Simulation of advection-diffusion

Mass transport was simulated using a random-walk particle-tracking technique/® where a large
number of inert (nonadsorbing and nonreacting), point-like tracers is distributed randomly and
uniformly throughout the void space of a sphere packing or pillar array, and then the time
evolution of the tracer coordinates due to fluid flow and molecular (Brownian) motion monitored.
The transient hydrodynamic dispersion coefficient D, (¢) along a direction y is determined from

D, (1) = 5 37 (A7, (1) — (A7, (1)*, (2.14)

i=1

where A7), ;(t) o 7y.i(t) — 7,:(0) and (A7), (t)) denote the corresponding Cartesian components
of the displacement of the ith tracer and the average displacement of the tracer ensemble after
time ¢, respectively, in y-direction, and N is the number of tracers (N = 5 x 10°). Advective
displacement of a tracer was calculated using the velocity vector from the nearest lattice node,
assuming constant fluid velocity over a lattice voxel. A multiple-rejection scheme was imple-
mented to restrict tracer movement to the void (fluid) space of the packings and pillar arrays’’
Diffusive tracer displacement follows a Gaussian distribution in each spatial coordinate with zero
mean and a variance of (2D,,6t)/2, where D,, is the diffusion coefficient in bulk solution and

78J. A. Rudnick and G. D. Gaspari Elements of the random walk: an introduction for advanced students and
researchers Cambridge University Press, 2004
79P. Szymczak and A. J. C. Ladd. Phys. Rev. E, 68, p. 036704, 2003.



Chapter 2. Effect of the macroscopic confinement on hydrodynamic dispersion 42

dt is the simulation time step. Longitudinal and transverse dispersion coefficients, Dy (¢) and
D+ (t), were calculated with Eq. (2.14) along and transverse to the macroscopic flow direction,
respectively. Transient values are denoted as Dy,(¢) and Dr(t), while the absence of the time
parameter denotes time-independence, i.e., asymptotic values, Dy, and Dy, as determined from
the D(t)-curves. We analyzed flow and dispersion for a velocity range of 0.5 < v < 500, where
v = u,d,/ Dy, is the reduced velocity calculated from the average velocity through a sphere pack-
ing or pillar array (u.,), the particle or pillar diameter (d,), and the tracer diffusion coefficient
in the bulk fluid (D,,).

The program realization of all algorithms was implemented as parallel codes in C/C++
languages using the Message Passing Interface standard®® Mass transport simulations were per-
formed on 8192 processor cores of the BlueGene/P system and took about 768 hours for all
confined packings. Mass transport simulations for all pillar arrays took about 600 hours on 1024
processor cores.

2.2.5 Validation of the simulation methodology

Over the last decade our modeling approach including the implementation of different (and
systematically varied) packing generation protocols and a detailed study of their impact on the
resulting packing microstructure, from random-close to random-loose packing of the beds, and
how the resulting microstructure affects diffusion as well as fluid flow and dispersion over a
wide velocity range, has been significantly developed and validated through comparison with
analytical predictions, simulations, and experimental results.

In a simple case study, we simulated hydraulic flow between two parallel plates*® and found
a relative error in the flow velocity profile (compared to the analytical solution) of 0.5% using
a spatial resolution of 25 nodes over the width of the channel. In a more complex case, we
simulated flow through bulk random sphere packings and analyzed their hydraulic permeability
as a function of the lattice spatial resolution®' For grid resolutions higher than ~25 nodes per
sphere diameter we observed only a weak effect on permeability; a similar value has been given
by Maier et al’?. Further, the absolute value of permeability agreed very well (within a few
percents) with permeability values obtained from the Kozeny-Carman and Richardson-Zaki
equations (cf. Figure 3 in [81]).

To compare simulated values of hydrodynamic dispersion coefficients with analytical pre-
dictions of Taylor'® and Aris!’* we simulated advective-diffusive mass transport between two
parallel plates: The relative difference between simulated and analytical values of the disper-
sion coefficient was 0.63%. Dispersion and mass transfer simulations in computer-generated
bulk random packings of porous and nonporous spheres have also shown good agreement with
experimental data obtained by pulsed magnetic-field gradient nuclear magnetic resonance (cf.

80W. Gropp and A. Lusk E. Skjellum Using MPI: Portable Parallel Programming with the Message-Passing Interface
2nd ed. MIT Press, 1999

16 G. Taylor. Philos. Trans. R. Soc. A, 219, pp. 186-203, 1953.

174R. Aris. Philos. Trans. R. Soc. A, 252, pp. 538550, 1959.
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Figure 4 in [47]). Similarly, the velocity dependence of the dispersion coefficients for packed
beds (described by a power law) was very close to the experimentally observed one, which
is based on a large body of experimental data’® In closely related research, we validated our
numerical simulation approach to three-dimensional electrokinetic flow and transport problems
in porous media (ordered and random sphere packings as well as microfluidic channels) under
general conditions, e.g., for arbitrary value and distribution of electrokinetic potential at the
solid-liquid interface, electrolyte composition, and pore space morphology, by good agreement
with results that have been either predicted theoretically, or obtained by alternative numerical
meth0d5}53’175_177

More recently, we reported systematic studies and derived correlations on the effect of the
particle size distribution, packing density (bed porosity), and packing generation protocol on the
resulting packing microstructure (degree of heterogeneity) and the observed transport behavior
(diffusion, dispersion) ®*'°%159 In particular, the diffusive tortuosities simulated for ordered sphere
packings approached the analytical solution and the diffusive tortuosities simulated for random
sphere packings reproduced the Weissberg equation;'>* Weissberg’s equation was derived the-
oretically and has found corroboration from a number of experiments and simulations. Most
striking, however, was the close agreement between data based on our simulations and those
reported for porous sub-2 um and core-shell particles by Gritti et al”” and Gritti and Guiochon””
concerning parameters in the comprehensive Giddings plate height equation that characterize
the disorder of the packing microstructure and its impact on eddy dispersion!*® This excellent
comparison between sophisticated experimental and modeling approaches shifts the acquisition,
analysis, and interpretation of plate height data to a new level, which is required in the derivation
of the key morphology-transport relationships. These relationships are essential to any improved
HPLC stationary phase design and our general understanding of chromatographic band spreading
through its individual contributions.”®

We also simulated hydrodynamic dispersion in microfluidic separation channels with cross-
sections derived from real HPLC microchips. The simulations were performed in both open
(i.e., non-packed) as well as particle-packed channels (using the particle size distribution and
packed-bed porosity from the experiments as input parameters), and very good agreement with
experimental dispersion data was found in both cases’*

Very recently we demonstrated the physical reconstruction of packed beds of modern fine par-
ticles and monoliths?%171%9 In turn, these physical reconstructions can serve as benchmark in the

175D, Hlushkou, D. Kandhai, and U. Tallarek. Int. J. Numer. Methods Fluids, 46, pp. 507—-532, 2004.

176D, Hlushkou et al. Chem. Eng. Commun., 193, pp. 826-839, 2006.

177D, Hlushkou “Numerical Simulation of Flow and Mass Transport in (Electro)Chromatographic Systems”
PhD thesis Magdeburg, Germany: Institute of Chemical and Process Engineering, Otto-von-Guericke-Universitét,
2003

>7F. Gritti et al. J. Chromatogr. A, 1217, pp. 3819-43, 2010.

% F. Gritti and G. Guiochon. Chem. Eng. Sci., 65, pp. 6327—-6340, 2010.

178 F, Gritti and G. Guiochon. J. Chromatogr. A, 1221, pp. 2—40, 2012.

1795, Bruns et al. Anal. Chem., 82, pp. 656975, 2010.

1805, Bruns et al. J. Chromatogr. A, 1218, pp. 5187-94, 2011.
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Figure 2.4: Comparison of simulated plate height data in a reconstructed hexagonal pillar array with top-bottom
confinement with the experimental data of Eghbali et al!®**. Dependence of the reduced plate height h = 2(Dr,/D.,) /v
on the reduced velocity v = uayd,/Dr, for a bed porosity of ¢ = 0.78, a pillar diameter of d,, = 4 um, and channel
height (distance between top and bottom walls) of b = 10 um (b/d, = 2.5) or b = 11.5 um (b/dp = 2.88).

simulations, and results for silica monoliths have been reported already!®'-'®® These simulations
have shown quantitative agreement between experimental and simulated Darcy permeabilities,
validating our approach, because the only input parameters were the physically reconstructed
geometrical structure of the macropore domain (without any assumptions or subsequent ad-
justments on monolith morphology), pressure drop, and mobile phase viscosity!®* Quantitative
agreement between experiment and simulations not only validated our approach to the recon-
struction of porous media morphology and simulation of flow and transport, but also allowed us
to present subsequently derived data characterizing the velocity field as well as hydrodynamic
dispersion on solid grounds,;®'~'® because these data are strictly based on a realistic macropore
space morphology. Therefore, we have reached the stage where the individual contributions to
chromatographic band spreading can be quantified through their morphological origin.

A final validation, which fits in the context of the present work (regular pillar arrays), is
provided by Figure 2.4, where we compare chromatographic plate height data in a reconstructed
hexagonal pillar array for top-bottom confinement with the experimental data of Eghbali et al!®.
We used this system for our simulations, because (i) precise (on-column) experimental data
for the plate heights are available, and (ii) the microstructure of the system can be reproduced
exactly. For our simulations we adapted a porosity of ¢ = 0.78, a pillar diameter of d, = 4 um, and
a nominal channel height (distance between top and bottom walls) of b = 10 um, i.e., b/d, = 2.5,
as in [184]. The three-dimensional unit cell of the hexagonal array of identical cylindrical pillars
with top-bottom confinement in Figure 2.1 (left panel) was adjusted accordingly and discretized

181D, Hlushkou, S. Bruns, and U. Tallarek. J. Chromatogr. A, 1217, pp. 3674—3682, 2010.
182D, Hlushkou et al. Anal. Chem., 82, pp. 71509, 2010.
183D, Hlushkou et al. J. Sep. Sci., 34, pp. 2026-37, 2011.
184 Y. Eghbali et al. Anal. Chem., 81, pp. 705-715, 2009.
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with a high spatial resolution of 200 grid nodes per d, to minimize possible finite-size effects.
Because the experimental plate height data reported in [184] represent equilibration of the
injected tracer bands between top and bottom walls only, without equilibration between the two
side walls, we also modeled dispersion for the top-bottom confinement:*

In Figure 2.4 we compare the normalized asymptotic longitudinal dispersion coefficients
Dy, /D,,, expressed in terms of plate heights h = 2(Dy,/D,,)/v, with experimental values from
the work of Eghbali et al!®** over the whole range of reduced velocities v available from the
experiments. Simulated plate heights slightly underestimate the experimental ones at higher
velocities. The agreement improved when we increased the channel height from b = 10 pm
to 11.5 um (b/d, = 2.88). In [185], the authors noted a nominal pillar height of 10 pm, but
according to Figure 2 in [185] the micropillars have a height of ~11.5 um. The same value
was also reported in [143]. Therefore, we performed an additional set of simulations with
b/d,, = 2.88, which provides close agreement with the experimental data (Figure 2.4). It is not
clear why the experimental data for v > 20 show a common upward shift; a disturbance in the
curve progression is probably due to an experimental artifact. Taking into account this shift of
the data and also some uncertainty in the “exact” spatial dimensions of the experimental system,
as well as deviations of the pillar shape from a perfect cylinder due to the etching process, which
also has been shown to increase dispersion (cf. Figure 1.12 in [43]), we conclude that our model
demonstrates good agreement with the experimental data in [184].

2.3 Results and discussion

2.3.1 Dispersion in bulk and confined sphere packings

Transient dispersion behavior

Dispersion in bulk random sphere packings (¢ = 0.366 — 0.46), including transient behavior, has
been studied in considerable detail in the past®®°77%77:15¢ From these studies we know that the
longitudinal dispersion coefficient Dy (¢) attains its asymptotic (long-time) limit on a time scale
of ca. 2—2.5tp, where tp, is a characteristic transverse dispersive time defined as tp, = 2Dr(v)t/ df,
and Dr is the asymptotic transverse dispersion coefficient at a given value of v. The transverse
dispersive time unit 2Dy /d? corresponds to the time span d? /2 Dy, after which the tracer particles
are dispersed laterally by one sphere diameter. The transverse dispersive time scale adequately
describes the lateral equilibration between different velocities in a random packing, which is
driven neither by pure diffusion nor by pure convection, but by their combined effects. The use
of D in the dimensionless dispersive time scale reflects this combination of flow and diffusion.
The asymptotic time scale of ~2.25 tp, translates to a characteristic average transverse dispersion
length in the bulk packings (Ir), , of

(Ir)y e = V2D1t &~ /2.25d, = 1.5d,, (2.15)
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Figure 2.5: Transient longitudinal dispersion in confined random sphere packings with a cross-sectional area of
100 d> and a bed porosity of € = 0.40 (cf. Figure 2.2) at an average reduced velocity of v = 100. Dy (t)/Dn is a
function of the transverse dispersive time tp = 2Drt/L%, where Dr is the transverse dispersion coefficient taken
from the bulk packing (at ¥ = 100) and Lc is the characteristic transverse length for each conduit geometry, i.e., the
radius (Lc = 10dp), half-diagonal (Lc = 14d;,), and corner-to-apex chord (Lc = 20d,,) for the circular, rectangular,
and semicircular cross-section, respectively.

which means that longitudinal dispersion in a bulk packing is asymptotic after a distance of
about 1.5 d, has been sampled laterally by the tracer molecules. This heterogeneity on the order
of 1 — 2d, Eq. (2.15) is associated with the short-scale disorder of a random sphere packing
compared to a crystal-like structure, e.g., an ordered array of spheres. Giddings’ estimate of
~1.25 d,, for the distance behind the short-range interchannel contribution (see p. 45 in [66]) is
close to our own result of ~1.5d,,. Heterogeneities on larger time and length scales than 2—2.5¢p,
have not been detected so far.

The transient behavior of longitudinal dispersion coefficients towards their asymptotic values
was monitored for the confined sphere packings, expecting a transcolumn contribution due to the
geometrical wall effect®”-7%97:151.155 Figure 2.5 shows the development of Dy, (t)/D,, for a reduced
velocity of v = 100. Elapsed time has been normalized through the transverse dispersive time
tp = 2D (v)t/ L%, with the value for Dr(v) taken from the bulk packings. L¢ is a characteristic
transverse length for the three conduit geometries, which replaces the particle diameter used as
a convenient measure for the bulk packings. This length characterizes the lateral distance that
needs to be traversed by the tracer particles for a complete exchange between different velocities.
Under consideration of the symmetry of the velocity fields it refers to the longest distance between
different velocities. The highest velocities in cylindrical conduits are found along the wall due to
the geometrical wall effect; complete exchange between velocity extremes in the fluid phase is
then achieved by covering the lateral distance from wall to center. Consequently, the characteristic
transverse length on the macroscopic (conduit cross-sectional) scale is the cylinder radius. For
the noncylindrical conduits studied in this work the highest velocities are located in the corners.
The characteristic transverse length for a conduit with rectangular cross-section is then the half-
diagonal, and for a conduit with semicircular cross-section the distance between corner and

apex70,73,135
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Figure 2.6: Transient transverse dispersion in confined random sphere packings with a cross-sectional area of 100 7d?
and a bed porosity of ¢ = 0.40 (cf. Figure 2.2) at an average reduced velocity of v = 100. Dr(t)/Dx is a function
of the transverse dispersive time tp = 2Drt/L%, where Dr is the transverse dispersion coefficient taken from the
bulk packing (at v = 100) and Lc is the characteristic transverse length for each conduit geometry, i.e., the radius
(Lc = 10dy), half-diagonal (L¢ = 14 dy,), and corner-to-apex chord (Lc = 20 d,,) for the circular (A), rectangular
(B), and semicircular (C) cross-section, respectively. Arrows indicate directions along which transverse dispersion was
monitored.

The choices for the characteristic transverse lengths of the confined packings are validated
in Figure 2.5, where the longitudinal dispersion data demonstrate asymptotic behavior after
~1 tp. This time scale corresponds to the time span after which the tracer particles are dispersed
laterally by one L. For the cylindrical packing this result yields the anticipated characteristic

average transverse dispersion length for longitudinal dispersion, (I1) .inqer.1s OF
de
<lT>Cylinder,L = \/m ~ LC = 5 (216)

The macroscopic flow heterogeneity caused by the cylindrical confinement of a sphere pack-
ing adds a transcolumn contribution to dispersion, which due to the cylindrical symmetry re-
quires lateral equilibration on the scale of the cylinder radius, i.e., Lc = d./2. The asymptotic
time span of ¢t ~ (d./2)?/2Dr(v) for Dy(t) is reminiscent of classical Taylor-Aris dispersion
in laminar flow through a cylindrical pipe, where the asymptotic time span is proportional to
t ~ (d./2)%/2D,,*'7* The reduction of symmetry from circular to rectangular to semicircular
cross-sections at constant cross-sectional area results in an increased characteristic transverse
length of the velocity field (Figure 2.2 and Figure 2.5).

Before continuing with transient transverse dispersion in Figure 2.6, we note that Maier et
al?”1°L15% have studied enhanced, diameter-dependent dispersion in packed cylinders compared
with bulk packings. They adopted a generalization of the Aris model of dispersion in a tube!”*
to extrapolate their pore-scale simulations to the asymptotic time scale (tp > 1, Figure 2.5)
and used the radial velocity variation from the pore-scale simulation in a simplified transport
model!®! It is a qualitative model of how the radial velocity profile affects the development of
asymptotic longitudinal dispersion. With this approach Maier et al!*> demonstrated new evidence
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for diameter-dependent dispersion in packed cylinders with particle-aspect ratios of 10 < d./d,, <
50. Their approach is very useful for the comparison of dispersion in its pre-asymptotic regime
and the determination of cross-over points for packed cylinders with different diameters. This
is important for all experimental designs in which the asymptotic dispersion regime is never
reached (e.g., in analytical and preparative HPLC). In our current work, we are not interested
in a refinement of models that extrapolate from pore-scale simulations to the asymptotic time
scale for dispersion in confined packings, but in the quantitative analysis on how laterally fully
equilibrated wall and corner effects are reflected in the dependence of the reduced plate heights
on the reduced velocity, as analyzed with the comprehensive Giddings equation.

Figure 2.6 illustrates transient transverse dispersion at » = 100 for the confined packings.
Elapsed time has been normalized as in Figure 2.5, i.e., through tp = 2Dy (v)t/L%, with L¢
as the radius, half-diagonal, and corner-apex-chord of the conduits with circular, rectangular,
and semicircular cross-section, respectively. Figure 2.6A shows that transverse dispersion in the
cylindrical packing decreases to zero on a time scale about four times longer than it takes to
reach asymptotic longitudinal dispersion (Figure 2.5). Transverse asymptotic dispersion in the
cylindrical packing is thus observed on a time scale of ~4 ¢y (in any direction due to cylindrical
geometry), which translates to a characteristic average transverse dispersion length for the

transverse dispersion process, (I1). .y jider s OF
<ZT>Cylinder,T =V 2DTt ~ 2LC = dC' (217)

This result is unsurprising given the limits that the confinement imposes on the tracers’
lateral displacements: On their journey laterally through a sphere packing the tracer particles
bounce back from the wall, so that their lateral displacement cannot exceed the cylinder di-
ameter. Transverse dispersion has decayed to zero after the time ¢ ~ d?/2D+(v) has elapsed,
i.e., the asymptotic time scale for a confined cylindrical packing is 22 times larger in transverse
(Figure 2.6A) than in longitudinal direction (Figure 2.5) and therefore

<lT>cylinder,T =2 <lT>cylinder,L . (218)

The transverse dispersion behavior of confined packings with rectangular (Figure 2.6B) and
semicircular (Figure 2.6C) cross-section is qualitatively similar, i.e., Dr(¢)/D,, decreases to zero.
Because of the reduced symmetry of these conduits with respect to cylindrical packings, however,
the process is anisotropic, as Figure 2.6B and Figure 2.6C show.

Figure 2.5 and Figure 2.6 reflect the dispersion behavior of packed capillaries*>'°%!1° and
separation channels used in nano-HPLC''*''” and microchip-HPLC}'® where the ratio of the
packed-bed length to the column diameter (or the characteristic transverse channel size) reaches
an order of thousands. For narrow-bore and analytical HPLC columns (which constitute the
majority of HPLC columns in practice) the ratio of packed-bed length to column diameter is
below 100. Thus analyte residence times in these columns are insufficient to allow for a fully
relaxed transcolumn contribution to eddy dispersion, i.e., the dynamic process is truncated before
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Figure 2.7: Dependence of the reduced plate height h = H/d,, on the reduced velocity v = wavd,/Dm (where d,
is the particle diameter) for bulk and confined random sphere packings with a cross-sectional area of 100 7d> and a
bed porosity of ¢ = 0.40 (cf. Figure 2.2). Symbols denote the cross-sectional geometry. Solid lines represent the best
fits of the simulated data to Eq. (2.20). Characteristic parameters of the plate height curves (Amin, Vmin) and eddy
dispersion contributions (\;, w;; cf. Eq. (2.20)) are summarized in the legend.

the asymptotic longitudinal dispersion coefficient is reached. Plate height curves acquired under
such nonequilibrium conditions do not reflect the full lateral equilibration, and the absence of
wall effects may erroneously be assumed.

Velocity-dependence of longitudinal dispersion

Longitudinal dispersion coefficients D;, usually discussed in the engineering literature®® are
related to the chromatographic plate heights H as well as their reduced values h = H/d,
through®®

. Huav hV‘DIIl

R (2.19)

The plate height curves obtained for the bulk and confined random sphere packings from
collecting asymptotic longitudinal dispersion coefficients over a reduced velocity range of 0.5 <
v < 500 are shown in Figure 2.7. The use of nonporous spheres and nonadsorbing tracers in
our model eliminates mass transfer resistance contributions due to intraparticle diffusion and
adsorption from our data, as opposed to experimentally acquired plate heights®°7:185187 Because
plate heights in Figure 2.7 reflect only band broadening contributions that originate from eddy
dispersion in the interparticle void space of the packings, they are overall lower than plate height
data of a nonselective system.

186p Magnico and M. Martin. J. Chromatogr. A, 517, pp. 31-49, 1990.
187 J. H. Knox. J. Chromatogr. A, 960, pp. 7—18, 2002.
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The effect of a macroscopic confinement and the associated transcolumn contribution to
eddy dispersion is immediately recognizable from the large difference between the plate height
curves of the bulk and those of the confined packings. The plate height minimum jumps from
hmin = 0.60 and v, = 10 for the bulk packing to A, = 1.27 and v,,;, = 3 for the cylindrically
confined packing. With decreasing conduit symmetry, the plate height curves shift upwards, from
hmin = 1.47 and v,,;, = 2.5 for the rectangular cross-section to h,,;, = 1.62 and v,,;, = 1.8 for the
semicircular cross-section. Figure 2.7 shows that the impact of the actual conduit geometry on the
separation efficiency of random sphere packings—although secondary to that of the confinement
per se—is by no means negligible. It is therefore advisable to consider the final geometry of
a separation channel that is to be packed with adsorbent particles for chromatography, when
choosing microfabrication materials and methods!*’

The plate height data of Figure 2.7 were analyzed with the comprehensive plate height
equation h = f(v) derived by Giddings considering the coupling between transverse diffusion
and spatial velocity fluctuations® For our computer-generated packings of nonporous spheres
and point-like, inert (nonadsorbing, nonreacting) tracers, the Giddings equation is®’

3 3
h=har+ > heggs = L+ 3 _ 2.20
ait ddy, v + — 1+ 2\ /w) vt ( )

i=1 v

The first term in Eq. (2.20), hqiz = 27v/v, is the contribution from longitudinal diffusion
in the packing and contains the obstruction factor v = D.g/D,,, which relates the effective
(asymptotic) diffusion coefficient of a tracer in the packing (D.g) to the diffusion coefficient
of this tracer in the bulk solution (D,,)!*® The second, third, and fourth terms in Eq. (2.20)
consider eddy dispersion contributions h.q4y,; to band broadening that originate from flow field
inhomogeneities on different time and length scales:'”® the second term (i = 1) refers to the
velocity inhomogeneity across individual flow channels between adjacent particles (transchannel
contribution), whereas the third term (i = 2) covers the flow maldistribution on a lateral length
scale of 1 — 2 particle diameters (short-range interchannel contribution). While transchannel
equilibration is required in any packed bed, ordered or random, the short-range interchannel
contribution is associated with the disorder of a random compared with an ordered sphere
packing, and also reflects individual degrees of disorder between different random packings®!>®
The fourth term in Eq. (2.20) (¢ = 3) represents the confinement-based transcolumn velocity bias
and associated dispersion (transcolumn contribution)®’” w; and J; in Eq. (2.20) are structural
parameters characteristic of each eddy dispersion contribution. The ratio vy,,; = 2\;/w; is a
reduced transition velocity at which the corresponding plate height term h.q4q,,; reaches half of
its limiting value and thereafter starts to flatten noticeably:*® At high velocities h.qq4y,; approaches
the constant value 2)\,;, whereas at low velocities h.qqy,; approaches w;v and then looks like an
ordinary kinetics or mass transfer velocity-proportional term.

The obstruction factor v was calculated for each packing from the respective effective dif-

188 5. C. Giddings. Nature, 184, pp. 357-358, 1959.
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fusion coefficients observed in the long-time limit in simulations of mass transport without
advective flow (v = 0). For fitting the reduced plate height data to Eq. (2.20), ~ was held fixed
at the calculated value. The best fits of the plate height data to Eq. (2.20) as well as the derived
values for the coefficients \; and w; are shown in Figure 2.7. (For fitting the plate height data
of the bulk packings the term for the transcolumn contribution, h.qqy,3, was omitted from Eq.
(2.20)). The adapted form of the comprehensive Giddings equation excellently fits the simulated
plate heights over the whole velocity range of 0.5 < v < 500, with R? > 0.999.

The values we obtained for the bulk packings (with v = 0.65) of A\; = 0.40 and w; = 0.004
for the transchannel and \, = 0.30 and w, = 0.17 for the short-range interchannel contribution
are reminiscent of Giddings’ estimates: \; ~ 0.5, w; ~ 0.01, A\, ~ 0.5, and w, ~ 0.5°° The
results for the bulk packings agree very well with our previous data for bulk monodisperse®® and
polydisperse!'*® packings. A, reflects the longitudinal length scale on which the velocity inequality
between center and edge of an individual pore persists before the flow stream splits up into
several subsequent pores down the packing; w; depends on the lateral pore dimensions and thus
increases with the bed porosity, but its overall impact is negligible due to its very small values
(0.003 < w; < 0.006)%*'°® The reduced transition velocity for the transchannel contribution is
estimated at vy,,; = 2 x 0.4/0.004 = 200, i.e., it raises slowly over most of the velocity range
shown in Figure 2.7 and reaches its full potential only at high velocities, which are outside
the operational range in HPLC practice with modern fine particles*®>1%-! (typically v < 30).
The parameters \, and w, both increase monotonously with the bed porosity®>!'>® reflecting
that a looser random packing is more disordered on a short-range scale than a denser one,
where the restricted available space narrows the possibilities for individual sphere placement.
The value for w, = 0.17 agrees excellently with our previous results for bulk monodisperse
and polydisperse packings at ¢ = 0.40 (w, = 0.16 — 0.18) generated with the same protocol!*®
Ao characterizes the longitudinal length scale on which flow inequalities over a lateral length
scale of 1 — 2 particle diameters persist in a packing, before being leveled out in (and by) the
flow field*®°7:178 Experimental values for A\, provided by Gritti et al®” and Gritti and Guiochon®®
for core-shell particle columns fall within the range of 0.2 < A\, < 0.5, which we previously
received for monodisperse and polydisperse packings at bed porosities of ¢ = 0.366 — 0.460
:1°% they determined )\, = 0.20 and A, = 0.35 for columns packed with, respectively, 2.6 pm
Kinetex-C;g particles (100 x 4.6 mm) and 2.7 um Halo-C, particles (150 x 4.6 mm);” and later
Ao = 0.30 and A, = 0.40 for 150 x 4.6 mm columns packed with 2.6 pm Kinetex-C,g particles and
with 2.7 um Halo-C,g particles, respectively?> All columns had external (bed) porosities around
¢ = 0.40. For a packing with a narrow particle size distribution at this porosity, our previous
simulations predicted A\, = 0.31,°® and the value for the present monodisperse packing is very
similar (A, = 0.30).

48 J. R. Mazzeo et al. Anal. Chem., 77, 460 A—467 A, 2005.

°1G. Guiochon and F. Gritti. J. Chromatogr. A, 1218, pp. 1915-38, 2011.

189 J. E. MacNair, K. C. Lewis, and J. W. Jorgenson. Anal. Chem., 69, pp. 983-989, 1997.
1903, E. MacNair, K. D. Patel, and J. W. Jorgenson. Anal. Chem., 71, pp. 700708, 1999.
1913, Fekete, K. Ganzler, and J. Fekete. J. Pharmaceut. Biomed., 51, pp. 5664, 2010.
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To focus our analysis on the wall and corner effects and the resulting transcolumn con-
tribution to eddy dispersion in the confined packings (Figure 2.7), we limited the number of
unknown parameters in Eq. (2.20) by using the transchannel contribution of the bulk packings
(A = 0.4 and w; = 0.004). This is a valid first approximation, because the transchannel contri-
bution appears to be the most “universal” dispersion contribution, expected to show the least
variations between different packings of similar packing density. Our previous work has shown
that the values of \; and w, for ¢ < 0.40 are nearly insensitive to variations in the packings’
microstructural degree of heterogeneity as well as to the particles’ polydispersity®>!1°¢

We now discuss the transcolumn contribution to eddy dispersion (A3 and ws) for laterally
fully equilibrated wall and corner effects in our computer-generated packings. Dy, (t) converges
to its asymptotic value on a time span ¢ oc L% /(Dy), where (Dr) represents the mean value
of Dy over a bed’s cross-section®”-?7-151155:192 (¢f, Figure 2.5). With sufficiently long packings
tracers equilibrate over the entire cross-section by transverse dispersion. For this “equilibrium”
transcolumn contribution pseudo-diffusive behavior is observed, characterized by a linear ve-
locity dependence of the plate height contribution!*® This dynamics is typical for capillary and
microchip HPLC (where the ratio of bed length to column diameter or the characteristic trans-
verse channel size reaches an order of thousands), but different from that in wider columns,
especially as we consider fast separations. In that case, tracers cannot sample the complete
cross-section and band broadening is directly related to the actual transcolumn flow profile. As
a consequence, this “nonequilibrium” transcolumn contribution is controlled by a convective
mechanism,** and the associated eddy dispersion contribution to a first approximation shows
a linear velocity-dependence, while the corresponding plate height contribution becomes some-
what velocity-independent (see also the discussion of transcolumn dispersion in [194] and Figure
6 in that reference).

The significance of a macroscopic confinement for the overall eddy dispersion contribution to
band broadening is apparent from the relatively large values of A3 (compared with the transchan-
nel and the short-range interchannel contribution): A3 = 2.63 (circular cross-section), A\; = 4.14
(rectangular), and A3 = 5.13 (semicircular). The values for w; demonstrate a similar increase
with decreasing symmetry of the conduit cross-section, with w3 = 0.022 (circular) < wz = 0.036
(rectangular) < ws; = 0.046 (semicircular). As expected for laterally fully equilibrated wall and
corner effects, the coefficients for the transcolumn contribution have high reduced transition
velocities of 453 = 2A3/w; > 200, so that in the wide velocity range where v < 2\3/ws, the
transcolumn contribution can be approximated as heqqy,3 & wsv, just like the transchannel contri-
bution (heqqy,1 = wiv). Both plate height contributions taper off at higher velocities, due to the
coupling of classical eddy dispersion (pure flow mechanism) and transverse diffusion in random
packings, inherent to Eq. (2.20) 140

The qualitative dependence of the transcolumn contribution on the conduit geometry at
constant cross-sectional area can be better understood with a closer look at the general form of

192E Hamdan, J. Milthorpe, and J. Lai. Chem. Eng. J., 137, pp. 614-635, 2008.
193F, Gritti and G. Guiochon. J. Chromatogr. A, 1217, pp. 6350-65, 2010.
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Figure 2.8: Lateral velocity distributions (averaged over the packing length) at an average reduced velocity of v = 100
in confined random sphere packings (cf. Figure 2.2) with a cross-sectional area of 100 7d3 and a bed porosity of
e = 0.40 (top), and one-dimensional distributions of the relative velocity wiocal/uav (bottom) along the indicated

directions.
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w; in Eq. (2.20) according to Giddings®®

w; = i OB (2.21)

Here, w, ; is the ratio of the characteristic diffusion length to the particle diameter and wg ;
is the ratio of the difference between the velocity extremes characterizing a particular type
of velocity disparity (e.g., a transcolumn velocity heterogeneity) and the corresponding mean
velocity. The influence of w, ; can be explained by the characteristic transverse length L¢ for
the three conduit geometries, as derived from the transient dispersion behavior (Figure 2.5):
L¢ increases from circular (Lc = 10 dp,; radius) to rectangular (Lc = 14 d,; half-diagonal)
to semicircular (L = 20 d,; corner-apex-chord) geometry. Concerning the influence of the
second parameter (wg,), Figure 2.8 (top panel) shows the lateral flow velocity distribution at
v = 100 for each conduit geometry. As anticipated from the impossibility to pack conduit corners
tightly, regions of advanced velocity appear in the corners of the noncylindrical packings/%’731%>
Selected velocity profiles (Figure 2.8, bottom panel) over a distance of 8 d,, from the wall to
the randomly packed core visualize the local velocity extremes for each conduit geometry. The
difference in local velocities between wall and core region grows decidedly from cylindrical
to noncylindrical conduits. The semicircular cross-section has worse dispersion characteristics
than the rectangular one, partly because the corner region of the semicircular packing has more
extended channels and carries higher velocities, partly because the semicircular cross-section
has lower symmetry and a longer characteristic transverse length than the rectangular at equal
area’®”® (Figure 2.5).

From the dispersion analysis presented in Figure 2.7 we obtain the following estimates
for the transition velocities characterizing the three eddy dispersion contributions: v /51 ~ 200
(transchannel), 14,5 > ~ 4 (short-range interchannel), and v,/ 3 > 200 (transcolumn). Because
the reduced transition velocity is a rough dividing point between the dominance of diffusive and
flow mechanisms of lateral exchange in a packing at lower and higher velocities, respectively, the
high transition velocities of the transchannel and transcolumn contributions indicate that over
a wide range of reduced velocities, certainly in chromatographic praxis (v < 30), these effects
reduce to simple mass transfer velocity-proportional terms. Only the short-range interchannel
contribution retains its coupling characteristics. The total effect of the component plate height
curves to eddy dispersion can then be written as

29

1+ (2)\2/&)2) vt . (222)

3
Neaay = Z heaay,: = (w1 +w3) v +
i=1

This result agrees well with Giddings’ scale analysis for these contributions®® The low impact
of coupling between diffusive and flow mechanisms of eddy dispersion in the limited range of
practical velocities (5 < v < 30) also explains why in this velocity range the plate height data
are adequately described by the van Deemter equation, particularly for columns packed with



Chapter 2. Effect of the macroscopic confinement on hydrodynamic dispersion 55

porous particles, when mass transfer terms associated with the stationary phase add to the plate
height!%>1%¢

Effect of the degree of microstructural heterogeneity on dispersion

Experimental chromatographic packings are produced with a wide range of packing conditions.
The final column may be tested for its dispersion characteristics by acquisition of plate height
curves, but the packing microstructure usually remains unknown, so that crucial knowledge
about the relation between packing process parameters, packing microstructure, and the pack-
ing’s transport properties remains unavailable. In contrast, the effect of the packing process
parameters and protocols on the microstructure of computer-generated packings is far better
understood:*°*1> We studied three packing types: Rx0.001, R, and Sx2. The Sx2-packing orig-
inates from a lattice-based initial distribution of sphere centers in the simulation box, whereas
the generation of R- and Rx0.001-packings starts from a random distribution. The value of the
constant « for scaling the displacement length determines how well inhomogeneities in the initial
distribution of sphere centers are balanced out in the final packing microstructure: with a small
displacement value (o« = 0.001) particle centers tend to stay closer to their initial positions so
that the final configuration reflects the randomness of the initial distribution of particle centers;
a larger displacement value (« = 2) provides a more uniform distribution of particle centers in
the final configuration. The three generated packing types therefore reflect a systematic decrease
in the microstructural degree of heterogeneity (or packing disorder) in the sequence: Rx0.001
> R > Sx2.

In our previous work on disorder-dispersion correlations for bulk sphere packings at bed
porosities of e = 0.366 — 0.46, we subjected all packings to Voronoi tessellation'®” and subse-
quently correlated the statistical moments of the Voronoi volume distributions (standard devi-
ation and skewness) with the porosity and the protocol-dependent microstructural disorder®?
The conducted statistical analysis based on the Voronoi volume distributions revealed a porosity
and protocol-dependent short-range disorder that was strongly correlated to the short-range
interchannel contribution to eddy dispersion, whereas the transchannel contribution was much
less affected by the packing disorder.

In the current work, we investigate cylindrically confined packings (Rx0.001, R, Sx2) with a
particle-aspect ratio of 20 and a bed porosity of ¢ = 0.40. The complete h — v data sets for these
packings over a reduced velocity range of 0.5 < v < 500 as well as the best fits of these data
to Eq. (2.20) are available in Figure 2.9. Again, the obstruction factor v was fixed at the value
calculated independently for each confined packing at » = 0 and the values of the parameters for
the transchannel contribution to eddy dispersion (\; and w,) were taken from the respective bulk
packings. Each curve in Figure 2.9 (similar to Figure 2.7) represents the mean calculated from
five random realizations of a packing type (or confinement type, as in Figure 2.7). The adapted
form of the comprehensive Giddings equation Eq. (2.20) excellently fits the simulated plate

195 U. Tallarek, E. Bayer, and G. Guiochon. J. Am. Chem. Soc., 120, pp. 14941505, 1998.
19K, M. Usher, C. R. Simmons, and J. G. Dorsey. J. Chromatogr. A, 1200, pp. 122—128, 2008.
197 A. Okabe Spatial tessellations: concepts and applications of Voronoi diagrams 2nd ed. John Wiley & Sons, 2000
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Figure 2.9: Dependence of the reduced plate height h = H/d,, on the reduced velocity v = uavd,/Dm (Where dj, is
the particle diameter) for cylindrically confined random sphere packings with a cross-sectional area of 100 ndf) and a
bed porosity of ¢ = 0.40. The packings possess different degrees of microstructural heterogeneity (Rx0.001 > R >
Sx2) induced by systematic variations of the packing protocol. Solid lines represent the best fits of the simulated data
to Eq. (2.20). Characteristic parameters of the plate height curves (Amin, min) and eddy dispersion contributions (\;,
w;; cf. Eq. (2.20)) are summarized in the legend.

height data over the whole velocity range, with R? > 0.999. The curve minimum (A,,;, and vp;,)
shifts from h,,;, = 1.46 and v,,;, = 2 for the Rx0.001-packing via h,,;, = 1.27 and v,,;, = 3 for the
R-packing to h;, = 0.83 and v,,;, = 5 for the Sx2-packing, i.e., separation efficiency increases
with decreasing packing disorder. Whereas the transchannel contribution to eddy dispersion is
practically unaffected by the protocol-dependent degree of microstructural heterogeneity, the
values of the parameters for the short-range interchannel (\;, w,) and transcolumn (A3, ws)
contributions show a trend consistent with the shift of the curve minimum, i.e., they decrease
with decreasing packing disorder.

Figure 2.9 demonstrates the impact of the packing generation protocol (similar to the pack-
ing conditions and process parameters in HPLC practice) on the kinetic performance of a confined
packing. The range of the plate height curves in Figure 2.9, where the span between different
packing types is comparable (between R and Rx0.001) or even larger (between Sx2 and Rx0.001)
than the change induced by different conduit cross-sectional geometries (cf. Figure 2.7), sug-
gests that more research should be devoted to the preparation of highly efficient packed beds.
Understanding how packing generation determines packing microstructure is admittedly easier
for computer algorithms than for the slurry-packing process®* but the physical reconstruction
of experimental column packings and the derivation of appropriate statistical parameters that
describe the packing morphology is a promising step in this direction?®
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2.3.2 Dispersion in bulk and confined pillar arrays

Velocity-dependence of longitudinal dispersion

Contrary to random sphere packings the studied pillar arrays possess an ordered microstructure
due to the regular arrangement of equal cylindrical pillars. Modeling of flow and transport in bulk
regular pillar arrays is relatively straightforward, because transport properties can be reduced
to an advection-diffusion problem in a single unit cell?**%%1°! Thus, unlike in random sphere
packings, whose geometrical dimensions need to be sufficient to observe asymptotic dispersion
behavior, dispersion simulations in a bulk pillar array can be limited to the two-dimensional
unit cell (e.g., to the xy-plane, Figure 2.1). Upon confinement of the array, however, the no-
slip velocity boundary condition at the surface of a wall causes flow and transport to become
macroscopically inhomogeneous. A transcolumn velocity bias is generated parallel to the pillar
axis (by the top and bottom walls) as well as perpendicular to it (due to the side walls), and
dispersion simulations require consideration of the complete three-dimensional geometry of the
confined array to take proper account of the four newly created 90°-corners (Figure 2.2 and
Figure 2.3).

The two-dimensional problem of dispersion in bulk regular cylinder arrays (arrays of cir-
cles) was studied in the past?”-?%198290 and received renewed interest with microfabricated pillar
array columns for HPLC applications?°! In contrast, dispersion simulations in confined pillar
arrays, where the confinement effects on the scaling of dispersion were quantified, are rare and
incomplete. Desmet and co-workers studied the effect of the two side walls and their geomet-
rical adjustment for minimizing the engendered dispersion at a few velocities by employing a
two-dimensional geometry (without top and bottom walls)?°? Later, they investigated the in-
fluence of top and bottom walls, using periodic boundary conditions at the sides?*® But real,
experimental microfabricated arrays are fully confined, with side walls and corners, and these
partial confinement studies do not account for the long-term equilibration along the width of
a flat confined pillar array (with a high channel width-to-height ratio, as in Figure 2.2). Tracer
equilibration between the closely spaced top and bottom walls is much faster than between the
wider spaced side walls and the accompanying corners. Because the envisioned length along
the flow direction of the microfabricated pillar arrays for HPLC applications is on the order of
centimeters,**~'*> the complete lateral equilibration between the side walls over a distance on
the order of 100 pm also requires consideration in a full confinement analysis. Plate height data
of partially confined (equilibration only between top and bottom walls, i.e., on the order of just

¥D. A. Edwards et al. Transp. Porous Media, 6, pp. 337-358, 1991.

28J. Salles et al. Phys. Fluids A, 5, pp. 2348-2376, 1993.

198D, A. Edwards, M. Shapiro, and H. Brenner. Phys. Fluids A, 5, p. 837, 1993.
199H. P. A. Souto and C. Moyne. Phys. Fluids, 9, pp. 2253-2263, 1997.

200D, Buyuktas and W. W. Wallender. Heat Mass Transfer, 40, pp. 261-270, 2004.
201p Gzil et al. Anal. Chem., 75, pp. 6244—50, 2003.

202N, Vervoort et al. Anal. Chem., 76, pp. 4501-7, 2004.

203, De Smet et al. J. Chromatogr. A, 1154, pp. 189-197, 2007.
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10 um) or even unconfined pillar arrays are sometimes'*>291:204295 compared with plate height
data of particle-packed capillaries?°®?°7 but this is inappropriate (as well as confusing to those
interested more in technological advances than chromatographic theory), because the latter plate
heights reflect laterally fully equilibrated wall and corner effects, which are absent in the former.
In addition, the performance of particle-packed capillaries depends on the particle-aspect ratio,
thus, also on the cross-sectional area (for a given particle size), and on the packing conditions,
which largely determine the packing microstructure or quality*!%%-119 As our transient disper-
sion analysis in Figure 2.5 shows, truncating the dispersion process in the pre-asymptotic regime
reduces the apparent dispersion coefficient with respect to its long-time (asymptotic) limit and
therefore mimics a better chromatographic performance. Thus, the comparison between differ-
ent column morphologies is valid only under the condition of similar conduit cross-sectional
area, bed porosity, support porosity (nonporous; partially or fully porous), and retention behav-
ior (thermodynamic vs. kinetic), and moreover requires the careful analysis of time and length
scales behind any velocity bias to quantify its impact on dispersion.

Figure 2.10 presents the comprehensive h — v data set simulated for the fully confined pillar
array with a channel width-to-height ratio of 40 (Figure 2.2), the bulk pillar array, and the top-
bottom confined array (cf. Figure 2.1) over a velocity range of 0.5 < v < 500, where the pillar
diameter replaces the sphere diameter in the calculation of v = wu,.d,/D,,. The longitudinal
dispersion data simulated for the fully confined array reflect laterally fully equilibrated wall
and corner effects. The h — v curves in Figure 2.10A (double logarithmic) and Figure 2.10B
(linear-logarithmic) reveal the following features:

(i) First and foremost, confinement causes a strong shift of the plate height minimum (best
seen in Figure 2.10A), similar as observed in Figure 2.7 for the random sphere packings. Whereas
the minimum coordinates are h,,;,, = 0.07 at v,,;, = 50 for the bulk pillar array, they shift to h,,;, =
0.18 and v,,,;, = 20 upon adding top and bottom walls, and to A, = 0.46 and v,,,;, = 15 after
further enclosing the array with side walls. Thus, h,,;, increases by a factor of nearly seven from
bulk to full confinement, whereas cylindrical confinement of the random sphere packing resulted
only in a ca. twofold increase of h,,;, (Figure 2.7)! The explanation for this discrepancy between
sphere packings and pillar arrays lies in their respective microstructures, random vs. regular:
fluid dispersion in a bulk regular pillar array results only from transchannel equilibration, and
thus the plate heights of an unconfined regular pillar array are lower than those of an unconfined
random sphere packing, where due to the inherent short-range disorder of the microstructure
additionally a short-range interchannel term contributes to eddy dispersion. Consequently, the
regular pillar array experiences a much stronger loss of its (previously excellent) separation
efficiency after the addition of a confinement-based macroscopic heterogeneity than a random
sphere packing.

(ii) At low velocities (v < 2), all plate height curves approach and ultimately collapse

204M. De Pra et al. Anal. Chem., 78, pp. 6519-6525, 2006.

2053, Eijkel. Lab Chip, 7, pp. 815-7, 2007.

206G, Stegeman, J. C. Kraak, and H. Poppe. J. Chromatogr. A, 634, pp. 149-159, 1993.
207N. W, Y. Liu, and M. L Lee. J. Chromatogr. A, 1131, pp. 142-50, 2006.
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Figure 2.10: Dependence of the reduced plate height h = H/d, on the reduced velocity v = wuavdp/Dm (dp is
the pillar diameter) for bulk and confined regular pillar arrays with a cross-sectional area of 100 wd2 and a bed
porosity of e = 0.40 (cf. Figure 2.1 and Figure 2.2). Plate height curves are shown in double logarithmic (A) and
linear-logarithmic (B) form to visualize individual aspects discussed in the text.
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onto the pure diffusion result (best seen in Figure 2.10A) characterized by hgs = 27/v with
~v = Deg/D,, = 0.61, i.e., at low flow velocities the tracers sample the microstructure primarily
by diffusion. It is interesting to note that diffusion in the regular pillar arrays is more obstructed
than in the random sphere packings at equal bed porosity, whereas diffusion in ordered sphere
packings is less obstructed than in random sphere packings!>® This marks a fundamental differ-
ence between structures that are ordered in two dimensions, like regular pillar arrays, and those
that are ordered in three dimensions, like ordered sphere packings, with regard to diffusion?°®

(iii) At high velocities (v > 200), all plate height curves demonstrate a linear velocity-
dependence, highlighted by the straight lines in Figure 2.10A. Whereas this looks like an ordinary
kinetics or mass transfer velocity-proportional term, we note again that the use of nonporous
supports (nonporous spheres or cylinders) and passive tracers eliminates the mass transfer
resistance contributions caused by diffusion inside the spheres or cylinders and by adsorption.
The slope of the solid lines in Figure 2.10A, which serve as a guide to the eye, increases strongly
from bulk to top-bottom confined to fully confined pillar array and represents the additional,
pseudo-diffusive contributions to overall fluid dispersion from the laterally fully equilibrated
wall and corner effects in the confined structures. For the bulk pillar array the indicated linear
velocity-dependence of the plate heights originates in the perfectly ordered microstructure, which
is known to result in a diffusion-limited contribution to dispersion. In spatially periodic porous
media molecular diffusion is essential for the tracers to “forget” their initial position?315%160,161,209
The deleterious effect of the confinement on the separation efficiency is best seen in the linear-
logarithmic presentation of the h — v data (Figure 2.10B), where at v > 100 the plate heights
of the fully confined array visually shoot off. And Figure 2.10A shows that the fully confined
array (black crosses) has an unusually wide and shallow plate height minimum (compared with
the confined sphere packings in Figure 2.7) at v = 5 — 50, before the plate heights rise steeply
at higher velocities. Plate height curves of the regular pillar arrays are analyzed in detail in the
next section, where we also clarify why the Giddings equation and other familiar plate height
equations (or correlations), which work well for sphere packings, fail to describe the data in
Figure 2.10.

Transverse dispersion and tracer trajectories

Complementary information about the plate height curve characteristics was obtained from the
velocity-dependence of the transverse dispersion coefficient. The dependence of Dt /D,, in the
bulk pillar array (measured perpendicular to the axis of the cylinders) is compared in Figure 2.11
with the corresponding curve for the bulk sphere packing. This figure reveals a fundamental
difference in transverse dispersion behavior between regular cylinder arrays and random sphere
packings, which in turn affects longitudinal dispersion and the velocity-dependence of the plate
height data. Dt/ D,,-values of the sphere packing increase monotonously over the whole velocity
range, whereas for the pillar array the values—after an initially faster increase than observed for
the sphere packing—approach an asymptotic value of Dr/D,, ~ 10 at v > 200. Thus, transverse

2085 Torquato Random heterogeneous materials: microstructure and macroscopic properties Springer, 2002
209D, J. Gunn and C. Pryce. Trans. Inst. Chem. Eng., 47, T341, 1969.
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Figure 2.11: Dependence of the normalized asymptotic transverse dispersion coefficient Dt /Dy, on the reduced
velocity v = wuavdp/Dm for the bulk sphere packing and the bulk pillar array (d, is the particle or pillar diameter,
respectively). Dispersion in the array is recorded perpendicular to the pillar axis.

dispersion in the regular pillar array shows a very weak velocity-dependence at » > 200 and
manifests itself as a pseudo-diffusive mechanism; however, with a faster transverse equilibration
(characterized by Dt ~ 10D,,,) than achieved by pure molecular diffusion (D,,). This develop-
ment of Dy towards an asymptotic value'®! is reflected in the plate height curves of Figure 2.10A,
where the consequences of the transverse dispersion process are again most apparent for the
fully confined pillar array (black crosses). For v < 50, transverse dispersion increases noticeably
with the velocity (Figure 2.11). The increase of Dt to some extent counteracts the increase
of Dy, i.e., the increased transverse dispersion (and faster equilibration) moderates the extent
of longitudinal dispersion. As a consequence, the plate height data show only a small increase
with velocity, resulting in the wide, shallow plate height minimum at v = 5 — 50 (black crosses
in Figure 2.10A). For 50 < v < 200, the velocity-dependence of transverse dispersion weak-
ens (Dr/D,,-data in Figure 2.11 taper off strongly) and the slope of the plate height curve in
Figure 2.10A increases. When at v > 200 transverse dispersion is almost velocity-independent
(Figure 2.11), plate height data (black crosses in Figure 2.10A) increase linearly with velocity,
as expected for mobile phase mass transfer resistance characterized by a constant diffusivity or,
as here, a (nearly) constant transverse dispersivity.

Whereas transverse equilibration of tracers perpendicular to the pillar axis occurs through
transverse dispersion, which may or may not be velocity-dependent as analyzed with Figure 2.11,
transverse equilibration parallel to the pillar axis (between top and bottom walls of the confined
arrays) occurs — at any velocity — solely by molecular diffusion. The situation in the regular pillar
arrays, where we either have a constant transverse diffusivity or a flow-rate dependent, but at
higher flow rates also constant transverse dispersivity,°' contrasts with the monotonous increase
of Dt /D,, over the whole velocity range observed for random sphere packings (Figure 2.11).
Consequently, transverse dispersion in random sphere packings remains flow-rate dependent
at higher velocities and is thus a more efficient moderator of longitudinal dispersion than the
velocity-independent transverse diffusivity or dispersivity in regular pillar arrays. Thus, the plate
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Figure 2.12: Tracer trajectories in a two-dimensional hexagonal pillar array (¢ = 0.40) at reduced velocities of v = 5,
50, and 500, illustrating the velocity-dependent, effective interplay between longitudinal advection and transverse
diffusion. Six color-coded tracers were released at the same location (as indicated by the striped arrow) and their
pathways within the predefined section (fixed spatial window) monitored.

height contribution from transcolumn dispersion in the confined sphere packings, which depends
on the rate of transverse equilibration between the involved velocity extremes, tapers off at
higher velocities (v,,23 > 200, Figure 2.7), whereas the plate heights of the confined pillar array
show a linear velocity-dependence at higher velocities (Figure 2.10A, black crosses, v > 200).

To visualize the interplay between longitudinal advection and transverse diffusion behind the
transverse dispersion behavior of the regular pillar array (Figure 2.11) at the scale of individual
tracers, we recorded tracer trajectories at low, medium, and high velocities (v = 5, 50, and
500; Figure 2.12). Six color-coded tracers were simultaneously released in the central pore at
the selected pillar array section’s upstream border (“starting point” at the bottom; indicated by
the striped arrow), and their paths due to fluid flow (the macroscopic flow direction is from
bottom to top in Figure 2.12) and diffusion were monitored, until the downstream border of the
selected section (“finish line” at the top) was reached. Because tracers reach the downstream
border faster at higher velocities, trajectories for larger values of v in Figure 2.12 correspond to
a shorter time scale. Comparison of trajectories over comparable distances, i.e., within a fixed
spatial window instead of a fixed temporal domain, better visualizes the developing diffusion-
limitation to transverse dispersion with increasing velocity. At low velocities (v = 5, left panel of
Figure 2.12), diffusion is an effective mechanism for lateral exchange between flow streamlines
from neighboring pores. The coupling of diffusion and advection spans a velocity-responsive
network of longitudinal and lateral mass transport (due to the circular pillar shape the pore
walls are curved, so that longitudinal as well as lateral velocity components exist at the pillar
array’s pore scale). An increase of v results in an increase of lateral advective mixing, which
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together with the diffusive coupling explains the increase of Dt/D,, with v in Figure 2.11 at
low velocities. At high velocities (v = 500, right panel of Figure 2.12), tracer motion due to
longitudinal advection between individual pillars is so fast that transverse diffusion enables
only comparatively small jumps, which are ineffective to further increase lateral mixing with the
velocity. Within the fixed spatial window visible in Figure 2.12, tracers adhere to the bundle of
streamlines into which they were released originally and undergo stream splitting and merging
along the row of pillars behind the tracers’ starting point. Eventually, tracers hop into neighboring
streamlines by diffusion, but to visualize this process at v = 500, the observation window would
have to be much longer.

Figure 2.12 illustrates the diffusion-limitation of the regular pillar arrays clearly: at high
reduced velocities lateral mixing across the streamlines occurs only by diffusion, unaffected by
the velocity. This explains the near-asymptotic regime in Figure 2.11, where the D+ /D,,-values
become almost constant (Dr/D,, ~ 10 for v > 200). As a result, the longitudinal dispersion
coefficients Dy, /D,, grow quadratically with the velocity (and plate heights linearly), similar to
Taylor-Aris dispersion in an open tube!®'”* (But Dr/D,, levels off at a significantly higher value
than for pure diffusion, because lateral velocity components in the pillar array increase lateral
equilibration at the pore scale.) The microstructure of the pillar array plays a key role behind that
behavior: Unlike a random sphere packing the regular pillar array cannot function as a mixer,
which explains the observed difference in the velocity-dependence of Dr/D,, compared with
random sphere packings (Figure 2.11). In a regular pillar array diffusion lets a tracer forget its
initial position (cf. Figure 2.12), whereas in a random sphere packing the tracer experiences a
stochastic velocity, which becomes uncorrelated as soon as a sufficient length of streamline has
been traversed!®!

The tracer dynamics of Figure 2.12 complement the averaged transverse dispersion data
of Figure 2.11 and explain the slopes of the plate height curves in Figure 2.10 for the pillar
arrays, particularly the linear dependence of the reduced plate height on the reduced velocity for
v > 200. Our analysis shows that fluid dispersion in regular pillar arrays does not resemble eddy
dispersion in random sphere packings. This is also the reason why we did not present best fits of
any form of the Giddings equation or other familiar plate height equations (or correlations) to
the data in Figure 2.10. Whereas the Giddings equation as well as the Knox correlation describe
the bending of the plate height curves of random sphere packings at higher velocities?®!“° they
do not capture the nature of the transverse dispersion behavior behind longitudinal dispersion
and the plate height curves of regular pillar arrays. These plate height curves approach a con-
stant slope (linear increase of h with v) as transverse dispersion becomes velocity-independent
(Figure 2.10 and Figure 2.11). The statement that the Knox equation remains valid for regular
pillar arrays®®! is therefore unfounded from a fundamental, hydrodynamic point of view. In our
present study, the fitting of the Knox equation to the comprehensive data sets in Figure 2.10 re-
sulted in obvious, systematic deviations, whereas application of the Giddings equation provided
eddy dispersion parameters (\; and w;) without physical meaning. Schure et al!** have reached
similar conclusions about dispersion in ordered packed beds.
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Figure 2.13: Comparison of plate height curves for confined cylindrical sphere packings and fully confined pillar
arrays at € = 0.40. (A) Confined beds of Figure 2.2 with a cross-sectional area of 100 ﬂ'd?), corresponding to a particle-
aspect ratio of 20 for the cylindrical packings and a channel width-to-height ratio of 40 for the confined array. (B)
Confined beds of Figure 2.3 with a cross-sectional area of 25 7d>, a particle-aspect ratio of 10 for the cylindrical
packings, and a channel width-to-height ratio of 10 for the confined array. Confined random sphere packings were
generated with different degrees of microstructural heterogeneity (Rx0.001 > Sx2) induced by systematic variations
of the packing protocol.

2.3.3 Comparison of confined sphere packings and pillar arrays

In Figure 2.13 we compare the separation efficiencies (h — v curves) of confined cylindrical
sphere packings and confined pillar arrays under the condition of identical porosity (¢ = 0.40)
and cross-sectional area as well as laterally fully equilibrated wall and corner effects over a
wide velocity range (0.5 < v < 500). In particular, Figure 2.13A contains the data obtained for
the chromatographic beds with a cross-sectional area of 100 7d? (i.e., a particle-aspect ratio of
20 for the cylindrical packings), and Figure 2.13B shows the data for the smaller dimensioned
beds (Figure 2.3) with a cross-sectional area of 25 wdi (i.e., a particle-aspect ratio of 10 for
the cylindrical packings). The effect of the varied packing generation parameters on the final
packing microstructure and the plate height curves is reflected in the data range spanned by the
Rx0.001 and the Sx2 packing types (cf. Section 2.3.1.3 and Figure 2.9). For the smaller particle-
aspect ratio (Figure 2.13B), the difference in plate heights between the more homogeneous
Sx2-packings and the less homogeneous Rx0.001-packings narrows, and the plate height curves
are lower than for the larger particle-aspect ratio (Figure 2.13A). The lower particle-aspect ratio
implies that the wall region (characterized by porosity oscillations over a distance of ~5 d,,
from the cylinder wall towards the bulk due the geometrical wall effect) constitutes a larger
fraction of the overall cross-section, so that these packings are effectively more homogeneous.
This results in lower plate heights and damps the impact of the packing generation parameters on
morphology (and separation efficiency), because the influence of the bulk properties ultimately
disappears. Thus, the restraint the geometrical confinement and accompanying wall effect places
on the possible positions of spheres forces random sphere packings from different generation
protocols to become more homogeneous as well as more similar to each other. Because reducing
the channel width-to-height ratio from 40 (Figure 2.13A) to 10 (Figure 2.13B) has no effect on
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the ordered microstructure of the regular pillar arrays, their plate height curves are much less
affected than those of the random sphere packings by decreasing confinement dimensions.

The confined pillar arrays are superior to the cylindrical sphere packings over most of the
velocity range shown in Figure 2.13. However, the plate height curves of the pillar arrays come
out of the minimum with a much steeper slope than those of the sphere packings and finally
overtake them at higher velocities. For the larger beds in Figure 2.13A, this occurs at rather
high velocities (v ~ 180 and v = 450 for the Sx2- and the Rx0.001-packing, respectively), but
when the bed dimensions are decreased to a cross-sectional area of 25 wdi (Figure 2.13B), the
difference between random sphere packings and regular pillar arrays decreases, and the velocity
at which arrays and packings are comparable is down to v = 60— 150. For chromatographic praxis,
Figure 2.13 implies that regular pillar arrays have better efficiency than random sphere packings
for HPLC separations of small analytes (typically v < 30), but not for the envisioned high-speed
analyses of larger analytes, e.g., fast bioseparations. For example, at an average velocity of u,, = 5
mm/s, a pillar diameter of d, = 5 um, and a diffusivity of D,, = 1.5107'°m?/s (comparable to
the bulk diffusion coefficients of insulin or lysozyme in typical mobile phases®”), the reduced
velocity of v = u,,d,/D,, = 166.7 puts the separation into a regime, where the plate heights of
the pillar arrays are already comparable to those of the sphere packings (Figure 2.13).

Our analysis of the dispersion behavior of pillar arrays shows that their regular microstruc-
ture can be beneficial or problematic:*° The absence of mechanical mixing capabilities reduces
longitudinal dispersion at lower velocities compared with random sphere packings, but limits
transverse equilibration at higher velocities, which strikes back onto longitudinal dispersion. Reg-
ular pillar arrays differ fundamentally from random sphere packings in their dispersion-scaling
at higher velocities: Lateral mixing in confined pillar arrays occurs by purely diffusive (along the
pillar axis) or pseudo-diffusive (perpendicular to the pillar axis) dynamics, which results in a
steep, linear rise of the plate heights with the velocity, whereas lateral mixing in confined sphere
packings is due to a coupling of transverse diffusion and spatial velocity fluctuations (absent
in regular pillar arrays), a mechanism that remains “flow-responsive” (velocity-dependent) and
causes the bending (tapering off) of the plate height curves.

2.4 Summary and conclusions

To quantify the impact of the macroscopic confinement of chromatographic supports on flow
heterogeneity and the resulting dispersion, we investigated flow and mass transport in computer-
generated bulk and confined (i) random packings of monosized, solid (nonporous), spherical
particles, and (ii) hexagonal arrays of monosized, solid cylinders (pillar arrays) over a wide
range of reduced velocities (0.5 < v < 500). Comprehensive data sets were obtained with
a quantitative numerical analysis scheme comprising (i) the generation of bulk and confined
packings by a modified Jodrey-Tory algorithm, (ii) three-dimensional flow field calculations by

87F. Gritti et al. J. Chromatogr. A, 1217, pp. 1589-603, 2010.
%0S. G. Weber and P. W. Carr “High Performance Liquid Chromatography” in: ed. by P. R. Brown and
R. A. Hartwick John Wiley & Sons, 1989 chap. 1
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the lattice-Boltzmann method, and (iii) modeling of advective-diffusive transport with a random-
walk particle-tracking technique. Programs were implemented and scaled on publicly accessible
supercomputing platforms. We employed a basic set of confined sphere packings with identical
cross-sectional area and bed porosity (¢ = 0.40), to quantify the impact of the confinement
geometry (circular, rectangular, and semicircular), to study the influence of packing-protocol
induced microstructural disorder and of the particle-aspect ratio (20 and 10), and to evaluate
the general consequences of the confinement-induced porosity and velocity heterogeneity on
dispersion.

Transient behavior of longitudinal and transverse dispersion was analyzed and the time scale
of asymptotic dispersion correlated with the spatial scales of heterogeneity in bulk and confined
sphere packings. For the cylindrical packings asymptotic longitudinal dispersion is achieved on
a time scale proportional to the square of the column radius, but transverse dispersion decays
to zero on a time scale proportional to the square of the column diameter, i.e., four times more
slowly. The reduced conduit cross-sectional symmetry from circular to rectangular to semicircular
geometry at constant cross-sectional area resulted in an increased characteristic transverse length
of the velocity field and the associated dispersion. This length characterizes the straight lateral
distance through a packing that needs to be covered by the tracers for complete exchange
between different velocities.

The velocity-dependence of asymptotic longitudinal dispersion as reflected in the plate
height curves was analyzed with the comprehensive Giddings equation, which was carefully
adapted to the confined packings Eq. (2.20) based on insight gained from the bulk packings.
Due to the geometrical wall effect and the presence of corners in the noncylindrical packings,
a significant transcolumn contribution to eddy dispersion could be resolved and analyzed. The
extremes values of the velocities characterizing the transcolumn velocity bias increase from
circular to rectangular to semicircular geometry, because (i) the channels in the corners of the
semicircular geometry are more extended and display higher flow velocity than the channels in
the corners of the rectangular geometry, and (ii) the semicircle has the lowest symmetry among
the investigated geometries and a longer characteristic transverse length.

Confined random sphere packings were compared with confined regular pillar arrays under
the condition of identical bed porosity (¢ = 0.40), conduit cross-sectional area (1007rdf, or 257rd12)),
as well as laterally fully equilibrated geometrical wall and corner effects on dispersion, to quantify
the actual separation efficiency loss for microscopically regular and random chromatographic
media upon macroscopic confinement. We showed that the plate height curves of regular pillar
arrays are more affected by the confinement than those of the random sphere packings, and
that fluid dispersion in the pillar arrays does not resemble eddy dispersion in random packings.
The plate height curves of the pillar arrays were analyzed and explained in detail on the basis
of the transverse dispersion behavior, illustrated with tracer trajectories. Whereas the Giddings
equation and the Knox correlation describe the bending (tapering off) of the plate height curves
at higher velocities for random packings due to the coupling of transverse diffusion and spatial
velocity fluctuations, they do not capture the nature of the transverse dispersion behavior behind
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longitudinal dispersion for regular arrays. Instead of tapering off, the plate height curves of
the pillar arrays increase to approach a constant, steep slope as transverse dispersion becomes
velocity-independent (pseudo-diffusive). The regular microstructure of a pillar array plays a
key role in that regard, because it cannot function as a mechanical mixer like a random sphere
packing. As a result, longitudinal dispersion grows quadratically with the velocity, like Taylor-Aris
dispersion in a tube. This pseudo-diffusive behavior (linear plate height increase with velocity)
is amplified upon confinement and can outweigh the performance advantage of a regular pillar
array over a random sphere packing.
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Abstract

We study the impact of microscopic order on transverse dispersion in the interstitial void space
of bulk (unconfined) chromatographic beds by numerical simulations of incompressible fluid
flow and mass transport of a passive tracer. Our study includes polydisperse random sphere pack-
ings (computer-generated with particle size distributions of modern core—shell and sub-2 ym
particles), the macropore space morphology of a physically reconstructed silica monolith, and
computer-generated regular pillar arrays. These bed morphologies are analyzed by their velocity
probability density distributions, transient dispersion behavior, and the dependence of asymp-
totic transverse dispersion coefficients on the mobile phase velocity. In our work, the spherical
particles, the monolith skeleton, and the cylindrical pillars are all treated as impermeable solid
phase (nonporous) and the tracer is unretained, to focus on the impact of microscopic order on
flow and (particularly transverse) hydrodynamic dispersion in the interstitial void space. The
microscopic order of the pillar arrays causes their velocity probability density distributions to
start and end abruptly, their transient dispersion coefficients to oscillate, and the asymptotic trans-
verse dispersion coefficients to plateau out of initial power law behavior. The microscopically
disordered beds, by contrast, follow power law behavior over the whole investigated velocity
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range, for which we present refined equations (i.e., Eq. (3.13) and the data in Table 3.2 for the
polydisperse sphere packings; Eq. (3.17) for the silica monolith). The bulk bed morphologies
and their intrinsic differences addressed in this work determine how efficient a bed can relax the
transverse concentration gradients caused by wall effects, which exist in all confined separation
media used in chromatographic practice. Whereas the effect of diffusion on transverse dispersion
decreases and ultimately disappears at increasing velocity with the microscopically disordered
chromatographic beds, it dominates in the pillar arrays. The pillar arrays therefore become the
least forgiving bed morphology with macroscopic heterogeneities and the engendered longitudi-
nal dispersion in chromatographic practice. Wall effects in pillar arrays and the monolith caused
by their confinement impact band broadening, which is traditionally observed on a macroscopic
scale, more seriously than in the packings.

3.1 Introduction

In chromatography, the height equivalent to a theoretical plate (H) is defined as the slope of
the dependence of the variance of an analyte band (¢?) on its migration distance. In a first
approximation, assuming a homogeneous chromatographic bed and an incompressible mobile
phase, this slope (hence H) is constant along the column. A similar definition applies to the band
broadening in longitudinal (z—) and transverse directions, i.e., parallel and perpendicular with
respect to the macroscopic flow direction. Longitudinal and transverse dispersion coefficients
Dy, and D usually discussed in the engineering literature®® are related to the chromatographic
plate heights Hy, and Hy by®®

_ Hyu., hyvDy o, Oof

Yav (3.1)

D — -
L 2 2 2 0z’

and

Hru,y,  hrvD,, — u,, 002
D= == (3.2)
where h is the reduced plate height and v is the reduced velocity, which characterizes the ratio
of longitudinal advective to diffusive transport in a chromatographic bed (u., is the average
mobile phase velocity through the bed and D,,, is the analyte’s diffusion coefficient in the bulk
fluid). Importantly, the band broadening in longitudinal direction controls the resolution between
the peaks of the different components of the sample and is of paramount importance in all
applications of chromatography; band broadening in the transverse direction controls the lateral
homogeneity of the band and relaxes concentration gradients caused by nonuniform distributions
of the local velocity?®-14¢
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66 J. C. Giddings Dynamics of Chromatography: principles and theory Marcel Dekker, 1965

20S. G. Weber and P. W. Carr “High Performance Liquid Chromatography” in: ed. by P. R. Brown and
R. A. Hartwick John Wiley & Sons, 1989 chap. 1
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As an analyte zone migrates along a chromatographic bed, it is dispersed in longitudinal and
transverse directions by a combination of diffusive and advective processes. When a streamlet
hits, e.g., a particle in a randomly packed bed, it splits into several, unequal streamlets that flow
around the hit particle, between it and its different neighbors, and merge with other different
streamlets of similar origin. Thus, the migration of the mobile phase along a packed column
is accompanied by the constant shearing and merger of streamlets. This process is involved in
the eddy dispersion contribution to longitudinal dispersion; it is also the essential source of
transverse dispersion, because transverse diffusion in the new streamlets and a cascade succes-
sion of similar events at each additional particle promote transverse dispersion. In this case, the
process is known as “stream-splitting”. Because the streamlets are much smaller than the par-
ticles between which they flow, transverse dispersion causes rapid local homogenization of the
stream composition. However, in the absence of significant transverse advection, homogeniza-
tion is extremely slow at the column scale, where it relaxes transcolumn concentration gradients
that arise from macroscopic variations in the local flow velocity. This implies that at least two
fundamental length and time scales exist for eddy dispersion and the associated transverse equi-
libration between different velocities of the flow field in a confined chromatographic bed: the
pore (short-time) scale and the confinement or transcolumn (long-time) scale®”*”

If a chromatographic bed (e.g., an in situ prepared monolith, a slurry-packed column, or a
microfabricated pillar array) is macroscopically inhomogeneous, which is usually related to its
confinement, it will show a transcolumn flow heterogeneity. This, in turn, leads to the formation
of transverse concentration gradients, which are eventually relaxed with transverse dispersion.
Recent work of Gritti and Guiochon'**1?® has provided an in-depth analysis of transcolumn dis-
persion in packed chromatographic columns. In particular, they demonstrated that transcolumn
concentration gradients relax differently depending on whether the bed is made of porous or
nonporous particles. When the particles are porous, the analytes can diffuse either through the
interparticle void space or through the intraparticle pores (impossible with nonporous particles).
The diffusion flux across a particle is the sum of the contributions of diffusion through the mobile
phase contained in the pores of the particle and of surface diffusion (along the adsorbent sur-
face)?1921! The latter contribution increases rapidly with increasing concentration gradient along
this surface, hence the diffusion flux increases rapidly with increasing retention of the analyte.
Furthermore, the time spent by the analytes in the column is longer when the particles are porous.
Thus, transverse concentration gradients are more effectively relaxed. Gritti and Guiochon'*!*
presented a new model of transcolumn eddy dispersion based on Giddings’ coupling theory for
diffusive and flow mechanisms?® in which transcolumn flow profiles were approximated with
experimental data and also the importance of surface diffusion (enhancing the rate of mass trans-
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fer through porous particles, along the adsorbent surface) was accounted for. To summarize, the
impact of transcolumn velocity biases is minimized when the pores of the particles are accessible;
it decreases with increasing retention and transverse dispersion coefficient of the analytes.

Transcolumn velocity biases of different origin can be a serious problem with all kinds of
chromatographic beds. For example, the presence of two wall effects has been reported for slurry-
packed columns:?®'% (i) Stress and strain that take place in the bed during the slurry packing
process and bed consolidation cause the distribution of mobile phase velocities across the col-
umn to become heterogeneous®°+1% Consequently, the sample zones warp during elution and
concentration gradients build up?>?!? This frictional wall effect is traditionally discussed in con-
nection with analytical and preparative columns. (ii) A geometrical wall effect’’’?!*> dominates
the kinetic column performance at low column-to-particle diameter ratio, which becomes impor-
tant for packed capillaries*'* and microchips!'*!** In general, both wall effects contribute to the
bed morphology, but depending on the actual column-to-particle diameter ratio either wall effect
may dominate the macroscopic velocity heterogeneity and transcolumn eddy dispersion.

Compared with packed (particulate) beds, transcolumn velocity biases in silica monoliths
are caused by their radial heterogeneity, which is supposed to stem from chemical and/or temper-
ature gradients that form across the column bed during the monolith preparation?'® Also, strain
resulting from the stress caused by the shrinkage of the monolithic rod after formation of a solid
network may cause the interface between monolith and column wall to break due to inelastic
deformations. The monolith may separate from the wall causing slightly higher local porosities
in the wall region. By placing electrochemical detectors at various points of the cross-section at
the column exit of semi-preparative (10 mm i.d.) and analytical (4.6 mm i.d.) silica monoliths,
Guiochon and co-workers?'®?17 found 4% and 1.5% velocity difference, respectively, between the
wall and the core region. Even at only a few percent, morphological differences, e.g., in local
macroporosity, cause a noticeable loss of separation efficiency. Another, severe form of radial
heterogeneity occurs in capillary monoliths: As opposed to larger-diameter monolithic rods, cap-
illary monoliths are prepared directly in the tube then used for chromatographic separations;
so that gaps where the bed has snapped back from the wall allow the mobile phase to bypass
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the bed!®? Efforts directed against this problem have been reported recently for capillary!8%218-221

and analytical??*2?* silica monoliths.

Compared to microscopically disordered, macroscopically inhomogeneous packings and
monoliths, even microscopically ordered pillar arrays suffer from substantial wall effects as we
distort the perfect microstructure by a macroscopic confinement. The concept of pillar arrays
as spatially periodic porous media has to be altered when these stationary phases are used as
chromatographic supports, because the inevitable confinement engenders a macroscopic hetero-
geneity, which affects the dispersion behavior and thus the efficiency of the array for separations
in liquid chromatography??*® The effect of a straightforward confinement (resulting in a rect-
angular bed cross-section and side walls containing a layer of embedded half cylinders) on
hydrodynamic dispersion is illustrated with Figure 3.1. We employ numerical simulations of the
transient normalized longitudinal hydrodynamic dispersion coefficient obtained with a passive
(nonadsorbing, nonreacting) tracer in the inertstitial void space between nonporous pillars of
diameter d,?** Upon confinement of the pillar array, the no-slip velocity boundary condition at
the surface of the top and bottom as well as the two side walls causes flow and transport to
become macroscopically inhomogeneous. The transcolumn velocity bias is generated parallel to
the pillar axis (by the top and bottom walls) as well as perpendicular to it (due to the side walls).
To obtain reliable plate height data the dispersion simulations require consideration of the com-
plete three-dimensional geometry of the confined array to take proper account of the four newly
created 90°-corners?*> Starting from an unconfined, i.e., bulk regular pillar array, simulated as a
single unit cell with periodic boundary conditions, we first add top and bottom walls (indicated
in the upper right panel of Figure 3.1 by the semi-transparent faces), and then complete the
confinement with the addition of side walls. The two fully confined exemplary pillar arrays in
Figure 3.1 (with a height of 2.8 d,, each and a width of 28.37 d,, and 112.27 d,,, respectively) are

flat, rectangular boxes with channel width-to-height ratios typically found on microchips!*

Importantly, Figure 3.1 illustrates that the asymptotic dispersion coefficient at the selected
velocity of v = u,ydgom/Dm = 61.5 (dgom is the domain size of a pillar array taken as the sum of
d, and the shortest interpillar distance) increases from D;,/D,, = 1.75 for the bulk pillar array
(blue curve in Figure 3.1) to 6.64 for top-bottom confined pillar array (black curve) to ca. 16.2
for both fully confined pillars (overlaid red and green horizontal lines). Thus, the dispersion
coefficients and the corresponding plate heights increase by a factor of ~9 when we progress

182, Hlushkou et al. Anal. Chem., 82, pp. 7150-9, 2010.

1805, Bruns et al. J. Chromatogr. A, 1218, pp. 5187-94, 2011.

218K, Kanamori et al. J. Sep. Sci., 27, pp. 874—886, 2004.

219 M. Motokawa et al. J. Sep. Sci., 29, pp. 2471-2477, 2006.

220R. Roux, M. Abi Jaoudé, and C Demesmay. J. Chromatogr. A, 1216, pp. 3857—-63, 2009.
21T Hara et al. J. Chromatogr. A, 1217, pp. 89-98, 2010.

222K, Hormann et al. J. Chromatogr. A, 1222, pp. 46-58, 2012.

223F. Gritti and G. Guiochon. J. Chromatogr. A, 1225, pp. 79-90, 2012.

224F, Gritti and G. Guiochon. J. Chromatogr. A, 1227, pp. 82-95, 2012.

225 A, Daneyko et al. J. Chromatogr. A, 1218, pp. 8231-48, 2011.

1451, C. Taylor, N. V. Lavrik, and M. J. Sepaniak. Anal. Chem., 82, pp. 9549-56, 2010.



Chapter 3. Analysis of transverse dispersion in ordered and disordered materials 73

Narrow pillar array,

cross-section (A = 251td?)
2837d, |

I 2.8d,

Narrow pillar array, top view
28.37d,

TOP WALL

15 Narrow pillar array, A=25nd?
\

Wide pilla/r array, A= 100 7td

2.8d

Top-bottom/confined

0 1 1 1 1
0 50 150 100 200
z, d

avy Mp

112.27 d,

Wide pillar array, top view

—
4
C)
0.0,0

2000

e000e

FLOW

Figure 3.1: Influence of the macroscopic confinement on longitudinal dispersion in hexagonal arrays of solid
(nonporous), cylindrical pillars at a bed porosity (interstitial void volume fraction) of ¢ = 0.40. The graph com-
pares transient longitudinal dispersion as well as the corresponding asymptotic values (horizontal lines) for a bulk
pillar array (blue curve), which represents an unconfined pillar array without walls, with a top-bottom confined
pillar array of 2.8 d,, height (illustrated in the top right panel of the figure; black curve and line in the graph) and
two fully confined pillar arrays with a width (cross-sectional area A) of 28.37 d;, (25 7d2) and 112.27 d, (100 7d3),
respectively (d, is the pillar diameter). Top and cross-sectional views onto the confined pillar arrays are provided
in the figure. Their side walls contain a layer of embedded half cylinders, reflecting a simple, regular truncation of
the microstructure at the unit cell boundaries upon confinement. Dimensionless longitudinal dispersion coefficients
D1, (zav)/Dm are plotted as a function of the longitudinal (z—) position of the center of gravity of the tracer ensemble
Zav (in dp). The reduced velocity is v = tavddom/Dm = 61.5 (ddom is the domain size taken as the sum of d;, and the
shortest interpillar distance). Asymptotic values Dr,/Dx, of the two fully confined pillar arrays are identical (overlaid
red and green horizontal lines at D1,/ D = 16.2), because of their identical height. Due to their different widths,
however, they realize asymptotic behavior after different times.
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from the bulk pillar array (which is a mathematical abstraction) to the fully confined arrays.
In addition, asymptotic dispersion for the fully confined, wide array (with a width of 112.27 d,,
and a cross-sectional area of A = 100 7d>) is reached after the center of gravity of the tracer
ensemble has travelled downstream by a distance of ~15, 700 d,, with the flow. Only then does
the green curve in Figure 3.1 coincide with its horizontal asymptote (at Dy /D,, = 16.2). Our
analysis demonstrates that the simple addition of confining walls to a pillar array with regular
microstructure, even with side walls containing a layer of embedded half cylinders, already
changes dramatically time and length scales of dispersion as well as the asymptotic dispersion
coefficients and plate heights associated with the new transcolumn velocity bias.

This effect is enhanced when the side wall regions cannot be prepared homogeneously and
even differ from each other, as reported by Op de Beeck et al??°. In that case, the whole width of
the confined pillar array is required to relax the (also nonsymmetrical) transcolumn concentra-
tion gradients seen in an unsymmetrical warping of the sample zones over the whole width of
the microchip (see, e.g., Figure 6 in [226]). The dramatic consequences of these nonsymmetrical
side wall effects in confined pillar arrays for dispersion are similar to those observed earlier with
capillary silica monoliths®? where local gaps have formed irregularly along the column and its
circumference. This wall effect has a noncylindrical symmetry, so that the capillary diameter as
opposed to the capillary radius is the characteristic equilibration length for transcolumn eddy

dispersion®”

The preceding discussion highlights the insurmountable evidence for wall effects in modern
chromatographic supports and their impact on kinetic performance of HPLC columns. It has also
indicated the key role played by transverse dispersion in the mass transfer across the beds, relax-
ing the transverse concentration gradients that are caused by the various transcolumn velocity
biases. The efficient transverse relaxation of concentration gradients in the interstitial void space
of a chromatographic bed specifically addresses the bed morphology in regard to its ability to
mix mechanically between velocity biases that are associated with the macroscopic confinement.
There is general consensus’® that measurements of transverse dispersion are more difficult to per-
form than the analysis of the much easier accessible longitudinal dispersion data. Unsurprisingly,
the precise nature of how the microstructure of a chromatographic bed affects the transverse
flow heterogeneity (velocity probability density distribution), transverse equilibration (transient
behavior), and the velocity-dependent transverse rate of mass transfer (scaling of the asymptotic
transverse dispersion coefficients with the velocity) still remains largely unresolved. A profound
insight into the transverse dispersion behavior of modern chromatographic beds (packings, mono-
liths, pillars) improves our understanding of mass transfer mechanisms in different morphologies
and the quantitation of phenomena that limit kinetic column performance.

In this work we analyze transverse dispersion (velocity distributions, transient dispersion,
and the velocity-dependence of D) in the important bulk domain of chromatographic beds,
because the morphology of the bulk domain determines how efficient the bed can relax trans-
verse concentration gradients that are caused by the various transcolumn velocity biases. Our

2263, Op de Beeck et al. J. Chromatogr: A, 1239, pp. 35-48, 2012.
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analysis includes random sphere packings computer-generated with a narrow and a wide particle
size distribution (PSD), which reflect the PSDs of modern core—shell and sub-2 um particles,
respectively;'°® the macropore space morphology of a silica-monolith, which has been physically
reconstructed using confocal laser scanning microscopy;!”®-!81:183
onal pillar arrays (cf. Figure 3.1). These microscopically disordered (packed beds, monolith) and
ordered (pillar arrays) bed morphologies form a set of materials, which are currently intensively
discussed and investigated for their use in highly efficient chromatographic separations. From a
fundamental point of view, our study addresses the key influence of the bed morphology (the im-
pact of microscopic order, in particular) on both transverse and longitudinal dispersion behavior.
It employs realistic bed morphologies, and as a potential benefit for the knowledge base of the
chromatographer, it provides correlations on the velocity-dependence of transverse dispersion,
which contribute to a reliable analysis of mass transfer mechanisms in modern HPLC. In the
current work, the spherical particles of the random sphere packings, the continuous skeleton of

and computer-generated hexag-

the monolith, and the cylindrical pillars of the regular pillar arrays are all treated as imperme-
able solid phase (nonporous) and the tracer is unretained. This approach allows us to focus on
the impact of microscopic order on flow and (particularly transverse) hydrodynamic dispersion
in the interstitial void space of the beds, which is most important in chromatographic practice
when advection dominates over diffusion. It also avoids unnecessary complexity added by the
specification and discussion of intraparticle transport properties.

In the remainder of this work we first summarize the generation of the employed bed mor-
phologies, then describe briefly our approach to the simulation of flow and mass transport, and
finally present simulation results on velocity probability density distributions, transient dispersion
behavior, and the velocity-dependence of asymptotic dispersion coefficients.

3.2 Employed bed morphologies

3.2.1 Polydisperse random sphere packings

The study of polydisperse sphere packings is motivated by the use of sub-2 um***° and of solid
core—porous shell particles°®>! as modern HPLC packing materials, which reflect two of the
newer developments in separation science. The basic idea of the sub-2 pm particles is to in-
crease separation efficiency by a reduction of particle size, albeit at the expense of increased
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pressure requirements, necessitating specialized equipment??’-22° The concept of core—shell par-
ticles is to improve mass transfer kinetics by restricting intraparticle diffusion to the thin porous
shell;%°%239.231 while maintaining the hydraulic permeability associated with the particle diame-
ter. Core—shell particles differ not only in their architecture from fully porous particles, but also
in their PSDs: Fully porous sub-2 pm particles come in broad PSDs (relative standard deviation:
20 — 25%), because traditional particle sizing methods are ineffective for these particles;>* core—
shell particles come in narrow PSDs with a relative standard deviation of 5 — 6%, because the
size of the solid cores and the thickness of the porous shell can be strictly controlled?!

We have studied narrow PSD and wide PSD bulk packings based on the experimental PSDs of
sub-3 pm core-shell and sub-2 pm fully porous particles, respectively, as determined by scanning
electron microscopy.® Packings were computer-generated with a fixed packing protocol over a
range of bed porosities (interparticle void volume fractions) between ¢ = 0.366 and ¢ = 0.460
(representing the range from random-close to random-loose packing for monosized spheres) to
simulate fluid flow and advective-diffusive mass transport in the packings’ interparticle void space.
The comparison of wide PSD, narrow PSD, and monodisperse packings revealed no systematic
differences in hydraulic permeability and only small differences in hydrodynamic dispersion. This
observation indicates a slight intrinsic advantage of a narrow PSD with respect to hydrodynamic
dispersion in bulk packings. The effect of the PSD width on the plate height curves, however, is
negligible compared with the influence of the bed porosity and is also too small to be noticed
in chromatographic practice!*® These simulations have demonstrated that the reduced eddy
dispersion reported for columns packed with core—shell particles cannot result from the intrinsic
(i.e., unrelated to the packing process) advantage of a narrow PSD.

In this work we apply these packings as well as the simulation approach to the analysis of
transverse dispersion. These packings are unconfined (bulk) packings that mimic infinitely wide
packings without walls. The size distributions of the spheres in the narrow PSD and the wide
PSD packings were modeled after the experimentally determined PSDs of sub-3 um core—shell
and sub-2 pm fully porous particles, respectively. Important steps are repeated here for the ease
of reading. PSDs of porous-shell 2.6 pm Kinetex particles (Phenomenex, Torrance, CA) and of
fully porous 1.7 pm Acquity particles (Waters, Milford, MA) were determined with a JSM-7500F
scanning electron microscope (JEOL, Eching, Germany). Of Kinetex particles (C;s, endcapped,
carbon load: 12%; core: 1.9 um, shell: 0.35 um, pore size: 100 A) 44 images were acquired, from
which 976 particle diameters were measured. Of Acquity particles (BEH 300 C,s, endcapped,
carbon load: 18%; pore size: 300 A) 93 images were acquired, from which 2608 particle diam-
eters were measured. Histograms were converted into smooth, continuous probability density
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Figure 3.2: (A) Particle size distributions (PSDs) of sub-2 um fully porous particles (wide PSD) and sub-3 pm core—
shell particles (narrow PSD) as experimentally determined by scanning electron microscopy. The histograms were
converted into probability density functions fw and fx (red curves) for the computer-generation of polydisperse
random sphere packings (cf. Table 3.1). (B) Wide PSD and narrow PSD packings of solid (nonporous) particles of
10da x 10da x 70 da (where da is the number-mean diameter) at a bed porosity of ¢ = 0.40.

functions fx (narrow PSD) and fy (wide PSD) using the kernel density estimation method with
Gaussian kernel and restriction to positive values®® Experimental PSDs and resulting probability
density functions are shown in Figure 3.2A. Sets of random numbers to represent the sphere
diameters in the computer-generated polydisperse sphere packings were generated from the
probability density functions fy and fw with an acceptance-rejection method®’

Of the various statistical parameters that can be calculated for PSDs, we use number-mean
diameter dy = Y n,;d;/¥ n; and surface-mean (or Sauter) diameter ds = X n;d; /¥ n;d?. The
narrow PSD of the core—shell particles contains particle diameters between 2.3 and 2.9 pm,
has a relative standard deviation of 3.4%, and closely spaced number-mean and surface-mean
diameters of dy = 2.60 pm and ds = 2.61 um, respectively (Table 3.1). The wide PSD of the 1.7
um particles covers particle diameters from 0.30 to 2.79 um and has a relative standard deviation
of 25.3%; its number-mean diameter (d, = 1.64 um) is somewhat smaller than its surface-mean
diameter (dg = 1.83 pm).

Based on the two probability density functions, fyw and fyx (cf. Figure 3.2A), two types of
bulk, isotropic, random packings of solid (nonporous) spheres, a wide PSD and a narrow PSD
type, respectively, at a bed porosity of ¢ = 0.40 were generated with a modified Jodrey-Tory
algorithm, as described previously®>!>° using periodic boundaries. The realization of periodic

8 A. W. Bowman and A. Azzalini Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus
Illustrations Oxford University Press, 1997

69 J. E. Gentle Random Number Generation and Monte Carlo Methods 2nd ed. Springer, 2003
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Table 3.1: Statistical properties of the experimentally determined particle size distributions (PSDs) for sub-2 pm fully
porous particles (wide PSD) and for sub-3 pm core-shell particles (narrow PSD) and of the corresponding probability
density functions fi and fx derived from the experimental PSDs.

Wide PSD fw Narrow PSD N

1.7um fully porous 2.6um  core-shell

particles particles
Number of measured particle diameters 2608 - 976 -
Number-mean diameter (da) 1.64 1.64 2.60 2.60
Surface-mean diameter (dg) 1.83 1.84 2.61 2.61
Relative standard deviation 25.3% 25.9% 3.4% 3.4%
Minimum diameter 0.30 0.27 2.27 2.24
Maximum diameter 2.79 3.01 2.90 2.93
Quantiles d10/ds0/doo 1.10/1.64/2.16 1.09/1.65/2.17  2.50/2.60/2.71 2.50,/2.60/2.71

boundaries assumes that the position of a sphere on one side of the packing (within the repre-
sentative domain) influences the position of spheres at the opposite side. As a result, space is
filled regularly at the macroscale, while reproducing the representative domain, but randomness
prevails locally at the microscale, within this domain. When a physical parameter (e.g., velocity
field lines) or matter (e.g., a tracer molecule) is passing through one face of the representative
domain, it reappears on the opposite face with the same properties (e.g., tracer velocity). Packing
dimensions of 10 dy x 10 ds x 70 d, were chosen to avoid recorrelation artifacts observed when
the representative domain is too small>*> The bed porosity of € = 0.40 is used as a representative
value for packed beds and needs to be fixed in a comparison of different packings, because it
is the parameter on which hydrodynamic dispersion and thus column performance depend first
and foremost.!*®

Examples of the two packing types are shown in Figure 3.2B. They illustrate the packing
cross-section (10d, x 10d,) and the longest packing dimension (70d, ), which is the macroscopic
fluid flow direction in our simulations. The respective width of the two PSDs and relative particle
sizes are well reflected in the appearance of the generated packing types. With each PSD, ten
individual packings were generated, and the results shown in the figures represent the average
from these ten packings of the same type and porosity.

3.2.2 Silica monolith

A research sample of a ca. 60 cm long bare-silica Chromolith CapRod ™ monolith with a nominal
macropore size of ~2 um and a nominal skeleton thickness of ~1 ypm in a 100 pm i.d. cylindrical
fused-silica capillary was provided by Merck KGaA (Darmstadt, Germany). For physical recon-
struction of the monolith’s macropore space morphology by confocal laser scanning microscopy,
a 10 cm long segment was cut from the monolith. A bulk segment from the monolith’s core
region was physically reconstructed to receive a 60 pm x60 pm x12 pm matrix (consisting of
1.6 x 10° cubic voxels of 30 nm edge length) with an interskeleton macroporosity of ¢ = 0.70,
shown in Figure 3.3. Experimental details behind the reconstruction of the bulk macropore space

25 Khirevich, A. Héltzel, and U. Tallarek. , 13, pp. 801-822, 2013.
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Figure 3.3: (A) Bulk macropore domain (60 um x60 pm Xx12 um) of a silica monolith reconstructed using confocal
laser scanning microscopy. The 60 um x12 pm x12 pm sub-domain used for the simulations of fluid flow and
dispersion (encased by the thick red lines) contains 3.2 x 10® cubic voxels with an edge length of 30 nm. (B) Two
transverse sections and one longitudinal section of the sub-domain. The solid (nonporous) monolith skeleton is shown
in black. The bed porosity (interstitial void volume fraction) is ¢ = 0.70.

morphology of the silica monolith can be found in our previous publications!8%182

We have combined the physical reconstruction of silica monolith morphology with direct
numerical simulations of fluid flow and mass transport in the monolith’s interskeleton macropore
space: 81182 Three-dimensional flow simulations gave quantitative agreement between experi-
mental and simulated Darcy permeabilities; only the physically reconstructed three-dimensional
geometrical structure of the macropore domain (without assumptions or subsequent adjust-
ments on the monolith morphology), pressure drop, and mobile phase viscosity were used as
input parameters in these simulations!®! We also quantified eddy dispersion contributions origi-
nating in the bulk macropore heterogeneity and correlated them with structural features of the
monolith!®? This new insight has substantially improved morphology-transport relationships for
silica monoliths!®%**3 In particular, the results have shown that both the intraskeleton transport
properties and a stochastic variation of the macropore space characteristics can be neglected
compared with the ultimate challenge of reducing the column radial heterogeneity.

Z33E, Gritti and G. Guiochon. J. Chromatogr. A, 1218, pp. 5216-27, 2011.
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Figure 3.4: Hexagonal array of solid (nonporous), identical cylindrical pillars. Simulations in bulk pillar arrays with
a bed porosity of ¢ = 0.40 (shown) and ¢ = 0.70 were performed using the two-dimensional unit cell (right), where
dp, denotes the pillar diameter and m is the unit cell width. Periodic boundary conditions were used in all directions.

In this work, we apply the bulk silica monolith with a solid (nonporous) skeleton depicted in
Figure 3.3 and the simulation approach to study transverse dispersion of a passive (unretained)
tracer and compare it with the random sphere packings and regular pillar arrays.

3.2.3 Regular pillar arrays

Regular, hexagonal arrays of uniform, solid (nonporous) cylinders were computer-generated
with the same bed porosities as the polydisperse sphere packings (¢ = 0.40, Figure 3.2) and the
silica monolith (¢ = 0.70, Figure 3.3) for the sake of comparison. Porosity (&), unit cell width
(m), and pillar diameter (d,) are related through

d?> =2-—(1—¢)m?, (3.3)

as illustrated in Figure 3.4 with the two-dimensional unit cell. The simulations in bulk regular
pillar arrays with porosities of ¢ = 0.40 and ¢ = 0.70 were performed in such two-dimensional
unit cells with periodic boundary conditions in all directions. The three-dimensional unit cell is
shown alongside. This structure has a height of 2.8 d,, and a length of 2.1 d, (¢ = 0.40). It has
previously been used to construct flat configurations with wide top and bottom walls and open
or closed sides to study by simulations the impact of the stepwise confinement of a bulk pillar
array (from bulk to top-bottom confined to fully confined) on the engendered fluid dispersion

225

(cf. Figure 3.1) in:

In this work, we apply two-dimensional unit cells (Figure 3.4) and the simulation approach
to analyze transverse mixing in these perfectly ordered microstructures and compare it with the
behavior observed in disordered microstructures represented by the polydisperse sphere packings
and the silica monolith. This approach allows us to resolve an intrinsic bottleneck of regular pillar
arrays concerning their use in highly efficient chromatographic separations.



Chapter 3. Analysis of transverse dispersion in ordered and disordered materials 81

3.3 Simulation of fluid flow

The lattice-Boltzmann method (LBM)!®%-1¢> was used for the simulation of low Reynolds number
flow of an incompressible fluid through the interparticle void space of the bulk, polydisperse
random sphere packings, the interskeleton macropore space of the reconstructed monolith, and
the interstitial void space of the regular pillar arrays. At present, the LBM is arguably the best
tool for pore-scale simulations of fluid flow in porous media, mostly due to its ability to ac-
curately describe flow in complex pore space geometries without need for simplification or
extensive meshing?®'%* A distinct advantage is its inherent parallelism, which allows easy par-
allelization of the developed numerical models for effective use on supercomputing systems:**3
Until now, this approach has demonstrated great potential in the modeling of flow and trans-
port in chromatographic media like randomly packed beds?*’-62:63:67.70,71,73,77,97,135,149-154,156,159,225,232
and monoliths!#1-183:234.235 Besides reproducing experimental column behavior, these simulations
have been instrumental in resolving morphology-transport relationships and to analyze the effect
of the particle size distribution, intraparticle porosity and associated diffusion-limited transport,
bed density, packing disorder and defects, as well as column dimensions and cross-sectional ge-
ometry on dispersion. We have previously described in much detail the whole modeling approach,
e.g., in [43] (available online), and in a directly preceding paper, which analyzed the impact of
the macroscopic confinement on flow and dispersion in regular pillar arrays and random sphere
packings??® Therefore, only a brief summary is given here.

In the LBM a discretized version of the Boltzmann equation with linearized collision operator
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is solved!®>-1%> The method simulates hydrodynamic phenomena by tracking the time evolution
of distribution functions of fictitious particles that are confined to a cubic lattice and move
with discrete velocity ¢; during discrete time steps. The particle distribution function f;(7,t)
represents the probability of finding a particle with velocity ¢ at position 7 and time t. Each
time step At is divided into separate streaming and collision steps. Velocities ¢; are chosen
such that in one streaming step a particle moves along a lattice link from one lattice node to
its neighbor. Subsequently, particle distribution functions f; are redistributed according to the
collision operator.

For our LBM, we used the BGK (Bhatnagar-Gross-Krook) collision operator®? and the evolu-
tion equation for the distribution function is'®%-16°

Fi(F+ Ate, t+ At) = fi(7, 1) — 2OD =0, (3.4)

where f? denotes the equilibrium distribution function and 7 is the relaxation parameter, which
is related to the kinematic viscosity by p = (27 — 1)/6!° The local fluid density p(7, t) and veloc-
ity (7, t) are obtained from the zero-order and first-order moments of the particle distribution
functions:

and
U(T,t) = W (3.6)

The equilibrium distribution function depends on the local density p(7,¢) and the local
velocity (7, t)

(3.7)

e o c;u cu)? ud
fiq(p,u):wz-p<1+ 2 (4) >’

(2
4 9.2
cg 2cg 2cg

where cg is the speed of sound and w; are weight factors that depend on the employed lattice.
Usually, the LBM models are designated as DxQy, where x is the lattice dimensionality and y
refers to the number of lattice links from a given lattice node to its neighbors (including the node
itself) located on a simple cubic lattice. In this work we used the D3Q19 lattice, a cubic lattice
with 18 links at each lattice node, which can be obtained by projecting the four-dimensional
face-centered hypercubic lattice onto three-dimensional space!®®'”° Each node is connected to its

32p, L. Bhatnagar, E. P. Gross, and M. Krook. Phys. Rev., 94, pp. 511-525, 1954
169 Rothman D. H. and Zaleski S. Lattice-Gas Cellular Automata Cambrige Unversity Press, 1997
170y, H. Qian, D. D’Humiéres, and P. Lallemand. EPL, 17, pp. 479484, 1992.
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six nearest and twelve diagonal neighbors. The following weight factors were used: w; = 1/3 for
i=0;w; =1/18 fori =1,3,5,7,10,13; and w; = 1/36 for i = 2,4,6,8,9,11,12,14,15,16,17, 18
(conventional numbering for lattice links). It can be shown'°®!”! that the equilibrium distribution
function and the given weight coefficients recover the macroscopic fluid properties represented
by the Navier-Stokes equation’

(i~ V)i + vf — V2 =0, (3.8)

with
V-4=0. (3.9)

To summarize, the LBM uses a mesoscopic description, where the fluid is represented by
an ensemble of identical particles, and although these fictitious particles do not resemble real
molecules and the particle dynamics is limited to random moves and binary collisions on a regular
lattice, macroscopic fluid properties described by Egs. (3.8) and (3.9) can be properly recovered
from the ensemble properties by a statistical approach. The LBM is based on a connection
between the molecular kinetics and phenomenological description; the latter can be expressed
with the Navier-Stokes equation assuming the fluid as a continuum.

We substituted the uniform pressure gradient driving the flow by an equivalent body force 163164169

A bounce-back rule” was applied to implement the no-slip velocity boundary condition at the
solid-liquid interface (i.e., the surfaces of the solid spheres, solid monolith skeleton, and solid
pillars). The lattice kinematic viscosity was set to a value of 1/6 (7 = 1), which was shown to
provide an accurate performance for the modeling scheme we employ?® Periodic boundary condi-
tions were imposed at the external faces of the representative domains for the chromatographic
beds. Their application assumes identical local values of the flow velocity field in opposite points
lying at the corresponding edges of a domain. To avoid artifacts in the flow field originating from
abrupt changes in the pore space structure due to the connection of monolith slices from opposite
faces, we introduced additionally a gap space that separates the periodically reproduced monolith
domain in three-dimensional space. If the gap is large enough to allow flow field equilibration,
this eliminates any mutual effects between neighboring monolith domains!®!

The typical flow regime in the employed chromatographic beds is low Reynolds number
flow (Re <« 1). According to Darcy’s law the pressure gradient driving the flow and the average
flow velocity are directly proportional as long as Re < 1 is satisfied;? and the local flow vector

1665, Chapman and T. G. Cowling The mathematical theory of non-uniform gases 3rd ed. Cambridge University Press,
1990
71X, He and L.-S. Luo. J. Stat. Phys., 88, pp. 927-944, 1997.
L. D. Landau and E. M. Lifschitz Fluid mechanics 2nd ed. Butterworth—Heinemann, 2007
7M. A. Gallivan et al. Int. J. Numer. Methods Fluids, 25, pp. 249-263, 1997.
76C. Pan, L.-S. Luo, and C. T. Miller. Comput. Fluids, 35, pp. 898—909, 2006.
12D, Hlushkou and U. Tallarek. J. Chromatogr. A, 1126, pp. 7085, 2006.
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components follow the same linear scaling. This allows to calculate the flow field for a given
packing, monolith, or pillar array at low Reynolds number (Re < 0.01) and realize the required

range of velocities in our dispersion simulations by linear rescaling of the flow field components/”

For simulations of fluid flow in the interstitial void space of the chromatographic beds with
the LBM, the polydisperse sphere packings, the monolith, and the pillar arrays are discretized to
obtain a simulation grid. The accuracy of the simulation results depends on the grid resolution,
which in turn affects the required amount of computational resources. For monodisperse sphere
packings, a grid resolution of 30 nodes/d, is sufficient®! For polydisperse sphere packings, the
appropriate grid resolution depends on the number and diameter of the smallest spheres in
the PSD7' We evaluated the effect of the grid resolution on the numerical simulation results by
calculating the flow velocity field at grid resolutions between 10 and 90 nodes/d, and observed
that for the employed wide PSD and narrow PSD packings (Figure 3.2) a grid resolution of 60

nodes/d, is the best compromise between accuracy and required computational resources!*®

For the silica monolith (Figure 3.3) the three-dimensional lattice spacing was adjusted to the
pixel resolution in the confocal laser scanning microscopy image stack (30 nm). All simulations
were performed in a 60 pm x12 pm x12 pm sub-domain (encased by the thick red lines in
Figure 3.3A) of the reconstructed 60 pm x60 pm x12 pm monolith domain. The sub-domain
contains 2000 x 400 x 400 = 3.2 x 10® cubic voxels and was characterized as large enough
(by systematic variation of its size) for determining bulk properties of the monolith (hydraulic
permeability, asymptotic diffusion and dispersion coefficients) and realizing a velocity range for
the dispersion and plate height analysis, which is representative of chromatographic practice
with this type of monolith!81-183

The pillar arrays were discretized with a grid resolution of 60 nodes/d,,, because the calcu-
lation of dispersion coefficients for the ordered structures is more sensitive to spatial resolution
than for the random packings® Discrete lattices of the representative geometrical elements (unit
cells) from the bulk pillar arrays, which were subjected to periodic boundary conditions, had
dimensions of 74 x 128 nodes (width x length) for the two-dimensional geometry shown in
Figure 3.4 (¢ = 0.40) and of 104 x 178 nodes for ¢ = 0.70 (due to the larger unit cell, cf. Eq.
(3)).

The flow field simulations for each packing consisted of 2500 LBM iterations, which required
~2.2 hours on 1024 BlueGene/P processor cores and 110 GB of RAM. Flow simulation for the
monolith consisted of 10000 LBM iterations, which required ~40 hours on 64 Power6 processor
cores and 50 GB of RAM. The demand of resources for flow simulations in the pillar arrays is
negligibly small in comparison (20000 LBM iterations, requiring only 12 seconds on 16 Power6
processor cores and 5 MB of RAM).

81D. Kandhai et al. Philos. Trans. R. Soc. A, 360, pp. 521-534, 2002.
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3.4 Simulation of advection-diffusion

Mass transport in the polydisperse sphere packings, in the monolith, and in the pillar arrays was
simulated with a random-walk particle-tracking technique®*”-”® where a large number of inert,
point-like tracers is distributed randomly and uniformly throughout the whole void space of a
chromatographic bed, and then the time evolution of tracer coordinates due to fluid flow and
molecular (Brownian) motion is monitored. The transient dispersion coefficient D, (¢) along a
direction o, e.g., parallel or perpendicular to the direction of macroscopic fluid flow is determined
from

1 d &
Dyt _TVCTZ: (Arg(t) — (Ary (1)), (3.10)

where Ar, ;(t) o Ta,i(t) — 74,:(0) and (Ar,(t)) denote corresponding Cartesian components of

the displacement of the ith tracer and the average displacement of the tracer ensemble after
time ¢, respectively, in a-direction, and N is the number of the employed tracers (in this work
up to N = 2 x 10°). Advective displacement of a tracer was calculated using the velocity vector
from the nearest lattice node, assuming constant fluid velocity over a lattice voxel. A multiple-
rejection scheme was implemented to restrict the tracer movement to the void (fluid) space of
a chromatographic bed’’ Diffusive tracer displacement follows a Gaussian distribution in each
spatial coordinate with zero mean and a variance of 2D,,0t, where D,, is the diffusion coefficient
of the tracers in the bulk fluid and 4t is the simulation time step (defined such that the average
diffusive displacement did not exceed half of the lattice spacing used to calculate a flow velocity
field).

Longitudinal and transverse dispersion coefficients (cf. Egs. (3.1) and (3.2)) were deter-
mined by Eq. (3.10) parallel and perpendicular to the macroscopic flow direction, respectively.
Transient values are denoted as Dy, (t) and Dr(t), while the absence of the time parameter indi-
cates time-independence, i.e., asymptotic values, Dy, and Dr, as determined from the D(t)-curves.
For calculation of any D,,(t) with Eq. (3.10), the individual and ensemble displacements of the
tracer particles (A7; and (A7)) during their movement in the artificially introduced gap space
between the periodically reproduced monolith domain were excluded.

The program realization of all algorithms was implemented as parallel codes in C/C++
languages using the Message Passing Interface standard® All dispersion simulations took ~600
hours on 1024 processor cores of a BlueGene/P system.

36p. Salamon, D. Fernandez-Garcia, and J. J. Gémez-Hernandez. J. Contam. Hydrol., 87, pp. 277-305, 2006.

37F. Delay, P. Ackerer, and C. Danquigny. Vadose Zone J., 4, pp. 360—379, 2005.

78J. A. Rudnick and G. D. Gaspari Elements of the random walk: an introduction for advanced students and
researchers Cambridge University Press, 2004

9P, Szymczak and A. J. C. Ladd. Phys. Rev. E, 68, p. 036704, 2003.

80W. Gropp and A. Lusk E. Skjellum Using MPI: Portable Parallel Programming with the Message-Passing Interface
2nd ed. MIT Press, 1999
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3.5 Validation of the simulation approach

Over the last decade our modeling approach including the implementation of different (and
systematically varied) sphere-packing generation protocols and a detailed study of their impact
on the resulting packing microstructure, from random-close to random-loose packing of the beds,
and how the microstructure affects diffusion as well as fluid flow and dispersion over a wide
range of velocities, has been significantly developed and validated through comparison with
analytical predictions, simulations, and experimental results. For a summary of these results and
achievements, which cover random sphere packings, silica monoliths, and pillar arrays, the reader
is referred to Chapter 2.5 in [225], a directly preceding paper to the current one. The validation
of the employed boundary conditions, including bed length, grid resolution, multiple-rejection
scheme for implementation of the no-flux boundary condition at the solid-liquid interface, ap-
proximation of constant velocity over a lattice voxel, etc., is summarized in [232] and in Chapters
1.3 and 1.4 in [43].

3.6 Results and discussion

We sub-divide our dispersion study (with an emphasis on transverse dispersion) into the fol-
lowing aspects, which are analyzed for each chromatographic bed type: (i) Velocity probability
density distributions; (ii) transient dispersion Dr(t)/D,,; and (iii) dependence of the asymp-
totic Dt /D,, on the average mobile phase velocity u,,. The gained insight helps us to compare
the different bed types (packings, monolith, pillars) concerning their intrinsic morphology and
capability to function as an efficient transverse mechanical mixer in view of wall effects and
the engendered longitudinal dispersion with confined supports traditionally used, analyzed, and

discussed in chromatographic practice®”-18%225

3.6.1 Polydisperse random sphere packings

The aforementioned aspects are illustrated in Figures 3.5-3.7 for the polydisperse sphere pack-
ings. Figure 3.5 begins with transverse (panel A) and longitudinal (panel B) velocity probability
density distributions P(ut/u.,) and P(uy,/u.,), where ur and u;, denote transverse and longi-
tudinal velocity components in a packing, respectively. The area under these curves has been
normalized to unity, and they can be regarded as providing the relative fraction of a velocity
component ur or uy, in the flow field. P(ur/u.,) in Figure 3.5A is symmetric with respect to zero
velocity, because there is no net flow in transverse direction; its center of gravity is at ur/u,, = 0.
P(uy,/u,y) in Figure 3.5B has a sharp peak close to zero velocity (due to the no-slip boundary
condition at the surface of the particles) and decays exponentially, quickly towards negative
velocities and with a much smaller slope towards positive velocities; its center of gravity is at
UL /sy = 1.

The distribution functions in Figure 3.5 characterize fluid flow through the packings in
the low Reynolds number regime, where they are invariant to changes in u,,.?> The PSD has
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Figure 3.5: Transverse (A) and longitudinal (B) velocity probability density distributions P(ur/uav) and P(ur,/uay)
for the polydisperse sphere packings (cf. Figure 3.2), where ur and u;, are the transverse and longitudinal velocity
components and u,y is the average mobile phase velocity. The area under these curves has been normalized to unity,
and they can be regarded as providing the relative fraction of a velocity component ur or ur, in the flow field. The

inset in panel B is a zoom into the negative velocity tail of P(ur,/uav).
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Figure 3.6: Transient behavior of the transverse dispersion coefficient D (7p)/Dm for the polydisperse sphere
packings at selected values of the reduced velocity v = wuavds/Dm, where dg is the Sauter mean diameter (cf.
Table 3.1). Elapsed time ¢ is plotted as dimensionless transverse dispersive time 7p = 2Drt/d3, where Dr(v) is the
asymptotic transverse dispersion coefficient at a given value of v.

a negligible effect in this regard, as evidenced by the almost indistinguishable distributions
P(ur/u.) and P(uy,/u.,) for packings with narrow and wide PSD at identical bed porosity
(¢ = 0.40). The slow exponential decay of P(uy,/u,,) towards positive velocities and its small,
but distinct tail towards negative velocities (visualized by the inset in Figure 3.5B) agrees with
previous simulated and experimental data?**?*” The occurrence of negative velocities in laminar
flow through random sphere packings due to back-flow regions and stationary eddy patterns is
well-known!%?38-243 Stationary vortices in a flow velocity field are not necessarily a sign of the
turbulent regime. Turbulent flow is highly unsteady; all fluid properties fluctuate with extremely
chaotic spatio-temporal pattern, and inertial dominate over viscous forces!? In laminar flow, fluid
layers glide smoothly over adjacent ones, with a stationary spatio-temporal pattern and molecular
interchange of momentum only.

Figure 3.6 illustrates transient behavior of the transverse dispersion coefficient D (m)/ Dy,

for selected values of v = w,,ds/D,, from the investigated range of reduced velocities (0.5 <
v < 500). Elapsed time ¢ in Figure 3.6 is plotted as dimensionless transverse dispersive time

2361, Lebon et al. Phys. Fluids, 8, p. 293, 1996.

B7R. S. Maier et al. Phys. Fluids, 10, pp. 60—74, 1998.

Z8 M. L. Johns et al. AIChE J., 46, pp. 2151-2161, 2000.

%9y, E. Kutsovsky et al. Phys. Fluids, 8, p. 863, 1996.

249\, Rashidi et al. Adv. Water Resour:, 19, pp. 163-180, 1996.

2417, Gotz et al. Chem. Eng. Process., 41, pp. 611-629, 2002.

242X Ren, S. Stapf, and B. Bliimich. AIChE J., 51, pp. 392-405, 2005.
243N, W. Halpern-Manners et al. J. Phys. Chem. A, 115, pp. 4023-30, 2011.
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T = 2Drt/d3, where the dispersive time unit 2D+ /d3 corresponds to the time span d3/2Dr,
after which the tracer particles are dispersed laterally by one Sauter diameter ds, and Dr(v) is
the asymptotic transverse dispersion coefficient at the given value of v. The use of D+ in the
dimensionless dispersive time scale reflects the actual combination of flow and diffusion and
describes adequately the lateral equilibration between different velocities in a random sphere
packing, which - in the investigated velocity range — is driven neither by pure diffusion nor
by pure convection, but by their combined effects®® (see also analysis of dispersion regimes
following below).

For reduced velocities in Figure 3.6 (5 < v < 300), Dr(7p)/D,, demonstrates the attainment
of asymptotic values after 7, = 2 — 3 with both narrow and wide PSD packings, i.e., transverse
dispersion becomes asymptotic after a distance of ~1.5dg has been sampled laterally by the tracer
particles. Absolute time required for this process decreases with increasing velocity v due to the
concomitant increase of D (v). Figure 3.6 illustrates that transverse dispersion curves develop
an intermediate peak for v > 10, i.e., as advection dominates over diffusion. With increasing
velocity the peak is shifted towards very short times 7?7 The form of the curves is caused by
longitudinal advection, which initially forces the average tracer particle to make a transverse
displacement on the order of ds/2 around a sphere. Afterwards, the tracer may either move back
towards its initial transverse position or further increase its transverse displacement, yielding a
net reduction in the rate of spreading. The transverse dispersion curves of the narrow PSD and
the wide PSD packings for a given velocity are generally very similar, like their asymptotic values.

Figure 3.7 presents asymptotic values Dt/D,, for the polydisperse sphere packings as a
function of the reduced velocity (v = w.,ds/Dy,), in Figure 3.7A in double-logarithmic form
for the whole investigated velocity range (0.5 < v < 500), and in Figure 3.7B in linear form
for 5 < v < 300. The relevance of the velocity range selected in Figure 3.7B (as well as in
Figure 3.6) will become evident below. Transverse dispersion coefficients Dt in Figure 3.7 were
calculated from the transient dispersion curves (cf. Figure 3.6) as the average value over the
interval o = 2 — 3. The data in Figure 3.7A can be analyzed with the following dispersion
regimes?!?* At very low velocities (v < 0.3) we enter the diffusion regime, where advection is
so weak that diffusion controls transverse dispersion almost completely and

Dr
— R Y. 3.11
Dm ! (3.11)
Here, 7. is the external (or interparticle) obstruction factor. It characterizes effective diffusion in
the interparticle void space of the packings®®!'>’
D D(t)

Ye = D —tlirglo D (3.12)

°1 M. Sahimi Flow and transport in porous media and fractured rock: From classical methods to modern approaches
Wiley-VCH, 1995
244]J, M. P. Q. Delgado. Chem. Eng. Res. Des., 85, pp. 1245-1252, 2007.
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Figure 3.7: Asymptotic values Dt /Dy, for the polydisperse sphere packings as a function of the reduced velocity
V = uavds/Dm, where ds is the Sauter mean diameter (cf. Table 3.1). (A) Double-logarithmic plot for the whole
investigated velocity range (0.5 < v < 500). (B) Linear plot for 5 < v < 300. Transverse dispersion coefficients Dt
were calculated from the transient dispersion curves (cf. Figure 3.6) as the average value over the interval p = 2 —3.
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where D,, is the diffusion coefficient in the bulk fluid, D(¢) is the pre-asymptotic diffusion
coefficient in a packing, and D.g is its effective, i.e., asymptotic (long-time) value. We determined
~. by monitoring the long-time limit of the diffusion coefficient in the packings, analogous to
Dr(mp)/D,, in Figure 3.6, but for v = 0/°° The following values were obtained: ~, = 0.670 and
0.672 for the narrow PSD and the wide PSD packings, respectively. This limiting behavior is
indicated in Figure 3.7A by the horizontal line.

The velocity range 0.3 < v < 5 denotes a transition or superposition regime, where the
contributions of advection and diffusion to dispersion are of similar magnitude; the functional
dependence Dr/D,, = f(v) is difficult to quantify by an equation. The velocity range 5 < v <
300 (Figures 3.6 and 3.7B) characterizes the power law regime, where advection dominates
dispersion, but the effect of diffusion cannot be neglected:*!-?**

ZD):l =7 + arpoT. (3.13)

This regime is also referred to as boundary-layer dispersion in recognition of the presence
and importance of the viscous boundary layer at the spheres’ surfaces, in which mass transport
normal to the surface is diffusion limited®® Sahimi®' mentions that the average value of 3t in
Eq. (3.13) from all the available experimental data (including beadpacks and unconsolidated
sandpacks) is 1 ~ 0.9, whereas typical values of ar, which depend on the heterogeneity of the
pore space, are at ~ 0.01 —0.05. For reduced velocities v > 300 we enter the pure mechanical dis-
persion regime, where the effect of diffusion is negligible and transverse dispersion results simply
from the stochastic velocity field that is imposed by the randomly distributed pore boundaries in
a packing”h**

Dr

D et brv. (3.14)

Based on this overview of relevant dispersion regimes, we fitted Eq. (3.13) to our Dt /D,,-
data in the velocity range of 5 < v < 300 (Figure 3.7B), representing the power law or boundary-
layer dispersion regime of the whole investigated velocity range shown in Figure 3.7A (0.5 < v
< 500). Values of 4. for the narrow PSD and wide PSD packings were used as fixed input
parameters. The results are illustrated in Figure 3.7B and summarized in Table 3.2. The fit of Eq.
(3.13) to the Dt/D,,-data in the velocity range of 5 < v < 300 is excellent. Interestingly, as we
fit Eq. (3.13) to the Dt /D,,-data over the whole velocity range, the parameters are only slightly
modified (Table 3.2).

The transverse dispersion data in Figure 3.7 strictly refer to bulk packings of nonporous par-
ticles (without wall and extracolumn effects) and a nonadsorbing tracer. They allow us to focus
on the impact of the bed morphology on flow and mass transport in the interparticle void space
of the packings, which is most important when advection dominates over diffusion. Thereby,

89D. L. Koch and J. F. Brady. J. Fluid Mech., 154, pp. 399-427, 1985.
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Table 3.2: Analysis of the transverse dispersion data Dt/Dw = f(v) in Figure 3.7 for the bulk wide PSD and narrow
PSD packings (cf. Figure 3.2 and Table 3.1) at a bed porosity of ¢ = 0.40%

Velocity range® ~ Wide PSD packings® Narrow PSD packings®

5 < v <300 Eq. (3.13): at = 0.167, Bt = 0.731, R = 0.9992  Eq. (3.13): at = 0.152, Bt = 0.756, R = 0.9994
0.5 <1y <500 Eq.(3.13): ar = 0.146, Bt = 0.758, R2 = 0.9996  Eq. (3.13): a1 = 0.133, B = 0.782, R2 = 0.9996
0.5<v <500 Eq.(3.14): by = 0.034, R? = 0.9847 Eq. (3.14): by = 0.037, R? = 0.9879

@ Transverse dispersion coefficients D1 were calculated from the transient dispersion curves (cf. Figure 3.6) as the average
value over the interval 7p = 2 — 3.

b Reduced velocity was calculated as v = uaydg /D, where dg is the Sauter mean diameter (cf. Table 3.1).

¢ Best fits of Eq. (3.13) to the Dt /Dmy,-data for 5 < v < 300 and of Eq. (3.14) to the Dt /Dy, -data for 0.5 < v < 500 are
visualized in Figure 3.7B.

these data also avoid unnecessary complexity caused by the specification and discussion of intra-
particle transport properties. On the other hand, it is known that the retention of an analyte and
the porosity of the particles affect transverse equilibration!*®'® The effects of analyte retention
and particle porosity will be absorbed in the effective diffusion coefficient for the packings. Then,
Egs. (3.11)-(3.14) may be generalized based on the expressions for D.g discussed by Gritti and
Guiochon in a recent review on mass transfer kinetics, band broadening, and column efficiency
in liquid chromatography (see Chapter 2.3.1 in [178]).

As such, our data and results in Table 3.2 (nonporous particles, inert tracer; D.g = Yo Dp)
should be compared with the work of Knox et al?** and Eon?*® who studied transverse dispersion
and plate height data in the bulk region of cylindrical confined packings prepared from nonporous
glass beads over approximate velocity ranges of 16 < v < 250?*° and 0.6 < v < 100024® For these
full velocity ranges the following equation was fitted to their transverse reduced plate height
data

P
hy = : + Ar, (3.15)

which is directly obtained from Eq. (3.14) using Eq. (3.2), with At = 2by. Whereas the first
term on the right-hand-side of Eq. (3.15) accounts for obstructed diffusion in a packing (cf.
Eq. (3.12)), the constant At in Eq. (3.15) can be identified as arising from a “stream-splitting”
mechanism dependent only upon the packing geometry?*’ Knox et al?** and Eon?*® obtained
values of At = 0.060 and 0.075, respectively. After applying Eq. (3.14) to our transverse dis-
persion data over the whole investigated velocity range in Figure 3.7A (0.5 < v < 500), which
reflects the procedure of Knox et al?** and Eon2* we obtain A = 2by = 0.073 and 0.068 for the
narrow PSD and the wide PSD packings, respectively. On the one hand, we note the excellent
agreement between our analysis with Eq. (3.14) and that of Knox et al*** and Eon**® with Eq.
(3.15) regarding the values of the constant At = 2bt obtained for similar systems (bulk packings
of nonporous particles). On the other hand, we caution the limited use of these equations, as

they relate to the pure mechanical dispersion regime, where the effect of diffusion is completely

2457, H. Knox, G. R. Laird, and P. A. Raven. J. Chromatogr. A, 122, pp. 129-145, 1976.
246 . H. Eon. J. Chromatogr:. A, 149, pp. 29-42, 1978.
27D, S. Horne, J. H. Knox, and L. McLaren. Separ. Sci., 1, pp. 531-554, 1966.
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negligible (v > 300). In the power law or boundary-layer dispersion regime (5 < v < 300), how-
ever, diffusion cannot be neglected. Unsurprisingly, the above mentioned representation of our
D+ /D,,-data with Eq. (3.14) is unsatisfactory in this regime (see dashed lines in Figure 3.7B and
R?-values in Table 3.2). Instead, Eq. (3.13) should be used for the adequate representation of the
transverse dispersion data, both from the achievable fit quality (see solid lines in Figure 3.7B and
R?-values in Table 3.2) and the underlying hydrodynamic boundary-layer dispersion mechanism.

To summarize, our careful analysis with the bulk narrow PSD and wide PSD packings sug-
gests to adapt the following equation (obtained from Egs. (3.2) and (3.13)) for characterization
of transverse reduced plate height data in the chromatographically most relevant velocity range
represented by the power law or boundary-layer dispersion regime:

27
hy = i _|_2aTy(5T—1). (3.16)
1%

For the employed polydisperse sphere packings (¢ = 0.40) all parameters relevant to this equation
can be found in Table 3.2. Our analysis shows that the PSD has a negligible impact on transverse
dispersion, which agrees with the conclusions of other investigations?*$** We note that the
Sauter mean diameter should be employed in comparative studies with polydisperse sphere
packings to account for their different surface-to-volume ratios (even at identical bed porosity),
which impact the hydrodynamics in the boundary-layer dispersion regime'>*%>° (for clarity, dg
has been used to prepare Figures 3.6 and 3.7).

3.6.2 Silica monolith

Figures 3.8-3.10 illustrate the results of a similar analysis for the reconstructed silica monolith
(cf. Figure 3.3) as performed above for the polydisperse sphere packings (Figures 3.5-3.7). In
particular, Figure 3.8 shows the transverse (panel A) and longitudinal (panel B) velocity prob-
ability density distributions P(ur/u.,) and P(uy/u.,), where corresponding functions of the
wide PSD packings from Figure 3.5 are included for comparison. As Figure 3.8 demonstrates,
these distributions are very similar for the two bed morphologies and reveal common features
explained already for the packings. The most notable difference is observed with the higher dis-
tribution maxima for the monolith, which are associated with slow fluid. While such a difference
may be caused by different degrees of heterogeneity in the bed structures, as observed, e.g.,
for bead packs with artificially placed defects®>!°%15423% (where zones of slow fluid dominate
throughout, forming an intense, narrow peak of the distribution, whereas faster regions occur
with much lower frequency but carry the bulk of the flow), the computer-generated sphere pack-
ings (Figure 3.2) and the physically reconstructed silica monolith (Figure 3.3) have relatively
homogeneous morphologies®1°%182183 Another, straightforward explanation can be found in the

248N. W. Han, J. Bhakta, and R. G. Carbonell. AIChE J., 31, pp. 277288, 1985.
2497 R. F. Guedes de Carvalho and J. M. P. Q. Delgado. AIChE J., 46, pp. 1089-1095, 2000.
BOE. Gritti et al. J. Chromatogr: A, 1218, pp. 8209-21, 2011.
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Figure 3.8: Transverse (A) and longitudinal (B) velocity probability density distributions P(ur/uay) and P(ur /uayv)
for the reconstructed silica monolith (cf. Figure 3.3), where ur and uy, are the transverse and longitudinal velocity
components and u,y is the average mobile phase velocity. The area under these curves has been normalized to unity,
and they can be regarded as providing the relative fraction of a velocity component ur or uy, in the flow field. The
inset in panel B is a zoom into the negative velocity tail of P(ur,/uav). Distributions for the wide PSD packings are
included for comparison.
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Figure 3.9: Transient behavior of the transverse dispersion coefficient Dt (7p)/Dx, for the silica monolith at selected
values of the reduced velocity v = tayddom/Dm, Where daom = 3.2 wm is the monolith’s domain size!®* Elapsed time
t is plotted as dimensionless transverse dispersive time 7p = 2Drt/d3,,,, where Dr(v) is the asymptotic transverse
dispersion coefficient at a given value of v.

higher external surface-to-volume ratio of the silica monoliths compared to sphere packings?°’

Consequently, the peaks of both P(ur/u,,) in Figure 3.8A and P(uy,/u,,) in Figure 3.8B become
sharper and more intense for the monolith. Like the packings, the monolith shows a distinct tail
of negative velocities in P(ur,/u.,). The volumetric fraction of regions with negative longitudinal
flow velocity components (inset in Figure 3.8B) amounts to ~1.3% of the total macropore space
of the reconstructed 60 pym X 12 pm X12 ym monolith sub-domain (encased by the thick red
lines in Figure 3.3A). It is somewhat smaller for the packings (~0.8%).

For the sake of completeness we note that the comparison of P(uy,/u.,) of a silica monolith
with that of a polymeric monolith (a commercial “convective interaction media” sample) shows
that the silica monolith has a wider, lower peak around zero and comparatively fewer negative
velocities?** This difference may originate in the relatively homogeneous morphology of the
silica monolith;®*!%% which results in a more uniformly distributed flow field compared to the
heterogeneous polymeric monolith structure with a much broader distribution of the pore sizes
available for fluid flow and therefore pores that enable varying degrees of advective flow>**

Figure 3.9 illustrates transient behavior of the transverse dispersion coefficient Dt (m)/ Dy,
in the monolith for selected reduced velocities v = w,,dgom/Dwm- Elapsed time is plotted as
transverse dispersive time 7, = 2D+t /d3,,,. We have now used the domain size dgo, = 3.2 pm
of this monolith in the calculation of both v and 7. The value of d4,,, (i.e., the sum of the
monolith’s macropore size and skeleton thickness) originates from the results of our previous
morphological analysis of the reconstructed silica monolith using chord length distributions for
the skeleton and the macropore space!®® As an illustration, a chord length in the monolith’s
macropore space is a straight distance between two encounters with the monolith skeleton. The

mode of the chord length distribution represents the most frequent skeleton wall-to-wall distance.

1y, Tallarek, F. C. Leinweber, and A. Seidel-Morgenstern. Chem. Eng. Technol., 25, pp. 1177-1181, 2002.
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Figure 3.10: Asymptotic values Dt /Dy, for the silica monolith as a function of the reduced velocity v = uavdaom /Dm,
where dgom = 3.2 pm is the monolith’s domain size!®® Transverse dispersion coefficients D were calculated from
the transient dispersion curves (cf. Figure 3.9) as the average value over the interval 7p = 1.0-1.5.

Gille et al>> have shown that for an infinitely long cylindrical pore the mode of the chord length
distribution corresponds to the pore diameter. We have analyzed modes of 2.25pm and 0.95um,
respectively, for the macropore space and the skeleton, providing an estimate for the domain
size of dgom = 3.2 um!®® In Figure 3.9 the dispersive time unit 2Dy /d3_,, now corresponds to the

time span d? /2D, after which the tracer particles are dispersed laterally by one domain dy,,
and Dr(v) is the asymptotic transverse dispersion coefficient at the given value of v, as before.

The Dr(m)/ Dy, curves in Figure 3.9 demonstrate the attainment of asymptotic values after
ca. one T, i.e., transverse dispersion becomes asymptotic in the monolith after a distance on
the order of just one domain size (dq.,) has been sampled laterally by the tracer particles. It
shows that the macropore space morphology of the silica monolith can be considered as very
homogeneous!® Figure 3.9 also illustrates that the transverse dispersion curves for the monolith
develop an intermediate peak for v > 10 (when advection dominates over diffusion), as for
the packings. The “stream-splitting” mechanism, mentioned with the packings, takes place now
along the curved surface of the monolith skeleton.

Figure 3.10 presents asymptotic values D+ /D,, for the monolith as a function of the reduced
velocity (v = .y, dgom /D). Transverse dispersion coefficients Dy in Figure 3.10 were calculated
from the transient dispersion curves (cf. Figure 3.9) as the average value over the interval
m = 1.0 — —1.5. Although the macroscopic dimensions of the monolith (cf. Figure 3.3) limit
the realizable velocity range in the dispersion simulations, we could still extend this range
(with values of v up to 64) beyond typical operating conditions in HPLC practice. Based on our
experience with the packings (Figure 3.7), Eq. (3.13) was fitted to the Dr/D,,-data for the
monolith in the velocity range of 5 < v < 64 in Figure 3.10, which represents the power law or
boundary-layer dispersion regime. The value of . for the macropore space of the monolith has
been analyzed independently by monitoring the long-time limit of the diffusion coefficient (cf.
Eq. (3.12)), analogous to Dr(7mp)/D,, in Figure 3.9, but for v = 0, and was used as a fixed input

B2ZW. Gille, D. Enke, and F. Janowski. J. Porous. Mat., 8, pp. 179-191, 2001.
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parameter (7, = 0.730). The best fit of Eq. (3.13)) to the data in Figure 3.10 gives (R? = 0.9993):

% = 0.730 + 0.0561°%7 (3.17)
with v = u,,dgom/Dm and dgom = 3.2 pm. As expected from our experience with the packings
(Figure 3.7 and Table 3.2), the application of Eq. (3.14) to the transverse dispersion data of
the monolith provided an inadequate description. The best fit with Eq. (3.14) is included in
Figure 3.10 for comparison (Dr/D,, = 0.730 + 0.038v, R? = 0.9919). To summarize, our careful
analysis with the reconstructed silica monolith suggests to adapt Eq. (3.17) for characterization
of transverse dispersion coefficients and reduced plate height data (together with Eq. (3.2)) in
the chromatographically most relevant velocity range represented by the power law or boundary-
layer dispersion regime.

3.6.3 Regular pillar arrays

After having analyzed the hydrodynamics in microscopically disordered, macroscopically homo-
geneous chromatographic beds in Sections 3.6.2 and 3.6.1, we complement this insight by a
similar study with microscopically ordered pillar arrays at bed porosities (¢ = 0.40 and 0.70),
which reflect the packings and the monolith. Figure 3.4 shows that the pillar arrays have an
ordered microstructure due to the regular arrangement of equal cylindrical pillars. The modeling
of flow and transport in unconfined regular pillar arrays is straightforward, because transport
properties can be reduced to an advection-diffusion problem in a single unit cell?>!%%1°! Unlike in
random packings and monoliths, whose geometrical dimensions need to be sufficient to observe
asymptotic dispersion behavior, the dispersion simulations in bulk pillar arrays can be limited to
the two-dimensional unit cell (Figure 3.4) with periodic boundary conditions in all directions.
On the other hand, this simple picture needs to be revised upon confinement of an array, because
the no-slip velocity boundary condition at the surface of a wall causes flow and mass transport to
become macroscopically inhomogeneous?* This has already been pointed out in the Introduction
of this paper and illustrated with Figure 3.1. A transcolumn velocity bias is generated parallel to
the pillar axis (by the top and bottom walls) as well as perpendicular to it (due to the side walls).
Dispersion simulations then require consideration of the complete three-dimensional geometry
of the confined array to take proper account of the four newly created 90°-corners??* For con-
fined pillar arrays their bulk transverse mixing rates play a key role, because they determine how
quickly the significant transcolumn concentration gradients caused by even simple confinement
and wall effects, as in Figure 3.1, are relaxed over the whole cross-section, and therefore how
much band broadening is finally engendered after full transcolumn equilibration.

There are only few studies available which provide information on transverse dispersion

ZH. Brenner. Philos. Trans. R. Soc. A, 297, pp. 81-133, 1980.
160H, Brenner and P. M. Adler. Philos. Trans. R. Soc. A, 307, pp. 149-200, 1982.
181D, L. Koch et al. J. Fluid Mech., 200, pp. 173-188, 1989.
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Figure 3.11: Transverse (A) and longitudinal (B) velocity probability density distributions P(ut/uayv) and P(ur,/uav)
for the regular pillar arrays (cf. Figure 3.4), where ur and uy, are the transverse and longitudinal velocity components
and uay is the average mobile phase velocity. The area under these curves has been normalized to unity, and they can
be regarded as providing the relative fraction of a velocity component ur or uy, in the flow field.
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in bulk regular cylinder arrays?”-2%199:200.253.254 ‘We particularly note the recent work of Porter
et al?*> (and references therein). Here, we extend this knowledge and furthermore compare
microscopically ordered with microscopically disordered chromatographic beds in regard to their
transverse dispersion behavior. Figures 3.11-3.14 for the pillar arrays complement the earlier
presentation and analysis of data for the polydisperse sphere packings (Figures 3.5-3.7) and the
silica monolith (Figures 3.8—-3.10). In particular, Figure 3.11 depicts the transverse (panel A)
and longitudinal (panel B) velocity probability density distributions P(ur/u.,) and P(ur,/ua.y)
for bed porosities of ¢ = 0.40 and 0.70. The striking difference between these distributions
(Figure 3.11) and those of the microscopically disordered beds (Figure 3.5 and Figure 3.8) is
recognized from their abrupt termination for the pillar arrays. With P(ur/u,,) and the positive
velocity tail of P(uy,/u.y) it appears as if the exponential decay functions have been truncated;
in addition, the negative velocity tail of P(uy,/u.,), observed for the packings and the monolith,
is absent for the pillar arrays. The microscopic order of the pillar arrays limits the set of available
velocities ur/u,, and uy, /u.,, which explains the discreteness of P(ur/u,,) and P(uy,/u.,) seen
in Figure 3.11 and the narrower velocity ranges than for the microscopically disorded beds. A
similar observation has been made with ordered sphere packings!** The drop-off in P(uy,/u.,)
for the pillar arrays (Figure 3.11B) is reminiscent of the boxcar shape of P(uy/u.,,) in Hagen-
Poiseuille flow through a straight cylindrical tube?%?” where each velocity (0 < ug,/u., < 2)
has identical probability density. The different velocity ranges for the pillar arrays in Figure 3.11
reflect their bed porosities: the lower bed porosity produces wider velocity spectra to realize a
targeted value of u,, .

As we will see below, the transient dispersion curves for the pillar arrays are visually more
complex than for the packings (Figure 3.6) and the monolith (Figure 3.9). However, this apparent
complexity is the mere result of simplicity, i.e., the strict monodispersity of the pillar diameter
d,, and the microscopic order compared with the polydisperse, disordered chromatographic beds.
Figure 3.12 analyzes dispersion exemplarily for the pillar array with ¢ = 0.70. Figure 3.12A
illustrates transient transverse and Figure 3.12B transient longitudinal dispersion. For better
visualization, the tracers were initially (¢ = 0) distributed uniformly in a plane between two
pillars, as indicated in panel 2 of Figure 3.12 by the thick red lines (“initial distribution™). This
simulates the local pulse injection into a bulk pillar array. The tracer zone then moves downstream
with the flow (from left to right), shown in more detail by two movies uploaded in the Supporting
Information (available at http://dx.doi.org/10.1016/j.chroma.2012.08.024). The position of
the center of gravity of the tracer ensemble z,, corresponds to the first moment of the tracer

*’D. A. Edwards et al. Transp. Porous Media, 6, pp. 337-358, 1991.

2. Salles et al. Phys. Fluids A, 5, pp. 2348—2376, 1993.

199H. P. A. Souto and C. Moyne. Phys. Fluids, 9, pp. 2253-2263, 1997.

200D Buyuktas and W. W. Wallender. Heat Mass Transfer, 40, pp. 261-270, 2004.

23 A, Eidsath. Chem. Eng. Sci., 38, pp. 1803-1816, 1983.

4M. Quintard and S. Whitaker. Adv. Water Resour., 17, pp. 221-239, 1994.

B5M. L. Porter, F. J. Valdés-Parada, and B. D. Wood. Adv. Water Resour:, 33, pp. 1043-1052, 2010.
26 M. J. E. Golay and J. G. Atwood. J. Chromatogr. A, 186, pp. 353—370, 1979.

7U. Tallarek et al. Anal. Chem., 72, pp. 2292-2301, 2000.
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Figure 3.12: Analysis of transient transverse (A) and longitudinal (B) dispersion in the bulk pillar array with e = 0.70
at selected values of the reduced velocity v = wavddom/Dm, wWhere dgom is the domain size taken as the sum of
the pillar diameter d,, and the shortest interpillar distance (daom = m in Figure 3.4). Transverse and longitudinal
dispersion coefficients (panel 1) are plotted as a function of the position of the center of gravity of the tracer ensemble
Zav (cf. Eq. (3.18)). The 2 x 10° tracers were initially (¢ = 0 distributed uniformly in a plane between two pillars, as
indicated in panel 2 by the thick red lines (“initial distribution”), which simulates local pulse injection. The tracer zone
then moves downstream with the flow (from left to right), which is monitored by the travelled longitudinal distance of
the tracers L, (in dp,). Two-dimensional concentration snapshots and associated one-dimensional distribution profiles
in panel 2 and panel 3 correspond to z., = 3.1 dp and z.v = 3.6 dp, (indicated by the red vertical lines in panel 3).
These values of z,, reflect local maxima of the transient dispersion curves in panel 1 (also marked by red vertical
lines). The data shown in panel 2 and panel 3 were obtained for v = 522 (cf. blue curves in panel 1). The movies
in the Supporting Information (available at http://dx.doi.org/10.1016/j.chroma.2012.08.024), which visualize
the transverse and longitudinal dispersion dynamics in more detail, were obtained for this v = 522 (Movie_1.mp4)
as well as for v = 139 (Movie_2.mp4).
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coordinates

1 N
tae = ;z (3.18)

where N is the total number of tracers (here, N = 2 x 10°) and z; denotes the individual tracer
coordinates. Two-dimensional concentration snapshots and associated one-dimensional distribu-
tion profiles in panel 2 and panel 3 of Figure 3.12 correspond to z,, = 3.1 d,, (Figure 3.12A)
and z,, = 3.6 d, (Figure 3.12B). These values of z,, are indicated by the red vertical lines in
panel 3. They reflect local maxima in the transient dispersion curves in panel 1 of Figure 3.12,
which are also marked by red vertical lines. In panel 1 the dispersion coefficients are plotted
as a function of z,, for different reduced velocities v = . dgom/Dm, Where dgon is the do-
main size of a pillar array taken as the sum of d, and the shortest interpillar distance, i.e.,
dgom = m in Figure 3.4. We employed d,..,, for the calculation of v to compare supports with
different bed porosity. The data shown in panel 2 and panel 3 of Figure 3.12 were obtained for
v = 522 (cf. blue curves in panel 1). The movies in the Supporting Information (available at
http://dx.doi.org/10.1016/j.chroma.2012.08.024), which visualize the transverse and longitu-
dinal dispersion dynamics in more detail, were obtained for this ¥ = 522 (Movie_1.mp4) as well
as for v = 139 (Movie_2.mp4).

Panel 2 of Figure 3.12 indicates that local maxima in the transient transverse and longitudi-
nal dispersion coefficients (cf. panel 1) are observed when the highly concentrated (red) part of
the tracer zone flows through regions of the pillar array, where high transverse and high longi-
tudinal velocity components are found, respectively. This can be explained using the transverse
and longitudinal velocity fields in Figure 3.13, shown for the same geometrical section of the
pillar array as in panel 2 of Figure 3.12. Each stream of fluid which impinges directly on the top
of a pillar is divided equally around it. Therefore, high positive (and high negative) transverse
velocities are observed in regions where this “stream-splitting” is strong (Figure 3.13A), i.e.,
near the upstream hemisphere of a pillar. Due to the cylindrical geometry, the positive trans-
verse velocities decrease (and negative velocities increase) to zero towards the equator of the
pillars, where the longitudinal velocities dominate (Figure 3.13B). When the highly concentrated
(red) part of the tracer zone flows near the upstream hemisphere of a pillar, as in panel 2 of
Figure 3.12A, the locally strong transverse spreading affects a large number of tracers, which
results in a local maximum of the transient transverse dispersion coefficient seen in panel 1 of
Figure 3.12A (red vertical line). This process is repeated with each pillar further downstream. It
is blurred only by transverse diffusion, which results in decreasing amplitudes of the oscillations
with the distance travelled by the tracer zone. Similarly, when the highly concentrated (red)
part of the tracer zone flows near the equator of the same pillar (now panel 2 of Figure 3.12B),
the locally strong longitudinal spreading (cf. Figure 3.13B) results in a local maximum of the
transient longitudinal dispersion coefficient seen in panel 1 of Figure 3.12B (red vertical line).
Eventually, the oscillations in the transient transverse and longitudinal dispersion coefficients
disappear and asymptotic values Dt and Dy, can be extracted (see also movies in the Supporting
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Figure 3.13: Normalized transverse (ur/uav, A) and longitudinal (ur, /uav, B) velocity fields in the bulk pillar array
with ¢ = 0.70. The geometrical section of the pillar array corresponds to that shown in panel 2 of Figure 3.12, and
also the flow direction is from left to right (as in Figure 3.12).



Chapter 3. Analysis of transverse dispersion in ordered and disordered materials 103

Information at http://dx.doi.org/10.1016/j.chroma.2012.08.024).

The clear, separate pictures of the transverse and longitudinal velocity fields in Figure 3.13
explain the oscillating behavior observed for transient transverse and longitudinal dispersion
coefficients in Figure 3.12: The periodic changes between positive and negative transverse veloc-
ities (Figure 3.13A) and between high and low positive longitudinal velocities (Figure 3.13B),
which are experienced during downstream flow, produce periodic transverse and longitudinal
spreading behavior, respectively. While asymptotic values Dt and Dy, are also obtained for the
pillar arrays, as for the polydisperse sphere packings and the monolith, the damped oscillations
observed in Figure 3.12, which are absent in Figure 3.6 (packings) and Figure 3.9 (monolith),
result from the strict monodispersity of the pillar diameter d, and the microscopic order com-
pared with the polydisperse, disordered chromatographic beds. “Stream-splitting” in the random
morphologies of the packings and the monolith produces a single peak only in the transient dis-
persion curves (and only at sufficiently high velocities, where the effect of diffusion, as a random
process, becomes small). To summarize, the random arrangement of obstacles and their polydis-
persity weaken spatio-temporal correlations in flow through packings and monoliths compared
with regular pillar arrays, which is reflected by their transient dispersion curves (Figures 3.6, 3.9,
and 3.12). Similar conclusions on spatio-temporal correlations in flow and transport through
porous media can be reached using dedicated pulsed magnetic-field gradient nuclear magnetic

resonance techniques?°8-26

Figure 3.14 presents asymptotic values Dr/D,, for the two pillar arrays (¢ = 0.40 and
0.70) as a function of the reduced velocity v = wu,ydjom/Dm (up to v = 615). This figure
reveals an important difference in the transverse dispersion curves for random sphere packings
(Figure 3.7) and regular pillar arrays!?>?*-*>> Whereas the D+ /D,,-data of the packings increase
significantly over the whole velocity range in Figure 3.7A, the data for the pillar arrays approach
porosity-dependent plateaus (Figure 3.14A) after an initial increase (Figure 3.14B): They taper
off strongly and show a weak velocity-dependence for » > 100 (¢ = 0.40) and v > 30 (¢ = 0.70).
The plateaus in Figure 3.14A demonstrate a diffusion-limitation that occurs in the pillar arrays.
It is manifested as a pseudo-diffusive mechanism in the transverse dispersion characteristics,
however, with a faster transverse equilibration (characterized by Dt ~ 10 D,, for ¢ = 0.40 and by
Dy ~ 3 D, for e = 0.70 in the plateau region) than by pure molecular diffusion (D,,). Although
the Dt /D,,-data of the pillar arrays indicate intitial power law behavior (Figure 3.14B), as
observed for the packings (Figure 3.7B) and the monolith (Figure 3.10), which can be explained
by enhanced “stream-splitting” along individual pillars, the regular microstructure of the pillar
arrays (compared with the packings and the monolith) limits transverse advective mixing to the
unit cell of a pillar array; a larger transverse “mixing network” based on advective flow cannot
develop.

This is illustrated by Figure 3.15, which shows normalized transverse velocity fields ur /u.,

28p T. Callaghan, S. L. Codd, and J. D. Seymour. Concept. Magnetic. Res., 11, pp. 181-202, 1999.
9P, T. Callaghan and S. L. Codd. Phys. Fluids, 13, pp. 421-427, 2001.
2603, stapf et al. Concept. Magnetic. Res., 14, pp. 172—211, 2002.
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Figure 3.14: Asymptotic values Dt /Dy, for the two pillar arrays (¢ = 0.40 and 0.70) as a function of the reduced
velocity v = tavddom/Dm, Where ddom is the domain size of an array taken as the sum of the pillar diameter d;, and
the shortest interpillar distance (dqom = m in Figure 3.4). After an initial power law behavior (v < 30, panel B), the
data approach porosity-dependent plateaus at higher velocity (A). For v = 0, we obtain v, = 0.610 (¢ = 0.40) and
~Ye = 0.761 (¢ = 0.70). The plateaus are at Dy /Dy, =~ 10 (¢ = 0.40) and Dt /Dy, ~ 3 (¢ = 0.70).
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Figure 3.15: Normalized transverse velocity fields ur /uay for (A) the pillar array (¢ = 0.40, (B) a wide PSD packing
(e = 0.40), and (C) the silica monolith (¢ = 0.70). The pillar, particle, and monolith dimensions are not drawn to
scale. Dashed lines in the pillar array indicate symmetry lines, where transverse velocity is zero.
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for the pillar array with ¢ = 0.40 (Figure 3.15A), a wide PSD packing (Figure 3.15B), and the
monolith (Figure 3.15C). Strikingly, the strict monodispersity of the pillar diameter d, and the
microscopic order compared with the polydisperse, disordered chromatographic beds results in
lines of symmetry in each unit cell of the pillar array, for which velocity is zero in transverse
direction (ur/u,, = 0, highlighted by the dashed black lines in Figure 3.15A). The fluid of
the complete unit cell (cf. Figure 3.4) is encased by these lines of zero transverse velocity.
Additional lines exist within the unit cell both parallel and perpendicular to the macroscopic flow
direction (see Figure 3.15A). Due to this high symmetry, which is conserved throughout the whole
chromatographic bed, a diffusion-limitation develops in the Dr/D,,-data for a pillar array as the
velocity is increased (Figure 3.14). In regions with very low (or even zero) transverse velocities,
i.e., near (or on) the symmetry lines, transverse dispersion is diffusion-controlled and overall
increases little with the velocity. Thus, as the velocity and the “stream-splitting” along individual
pillars increase, these regions ultimately limit the transverse dispersion beyond the individual
pillar scale, i.e., between different unit cells. This can be rationalized with the symmetry lines
at the equator of the pillars, which are perpendicular to the macroscopic flow direction. In
Figure 3.15A these symmetry lines are the two horizontal ones (the flow direction is vertical).
The hydrodynamics along these lines reflects Taylor-Aris dispersion in a straight channel, where
transverse equilibration (and the entrance into the neighbored unit cell in Figure 3.15A) can
occur only by diffusion. In addition, these lines contain the highest longitudinal velocities (cf.
Figure 3.13B, where the flow direction is horizontal and £ = 0.70). Consequently, as longitudinal
velocity increases, available time for transverse diffusive equilibration between neighbored unit
cells decreases.

This analysis identifies the bottleneck of transverse dispersion in the regular pillar arrays:
Transverse equilibration between unit cells is diffusion-limited and, because the symmetry indi-
cated in Figure 3.15A is conserved throughout the whole pillar array, limits the maximal value
of Dr/D,, observed in the plateau (Figure 3.14A). The higher bed porosity of £ = 0.70 results in
longer symmetry lines and a stronger diffusion-limitation, as seen in the lower Dt /D,, plateau
values compared with ¢ = 0.40 (Dr/D,, — 1 as e — 1). By contrast, the transverse velocity fields
for the polydisperse, disordered chromatographic beds (Figure 3.15B and 15C) do not reveal the
symmetry observed with the pillar array in Figure 3.15A (and Figure 3.13). Instead, positive and
negative velocities appear in a random fashion, reflecting the individual microstructural degree
of heterogeneity. This illustrates that the random bed morphologies can build an efficient, three-
dimensional network of longitudinal and transverse velocities, which allows them to function as
a more efficient transverse mechanical mixer at high velocities than a regular pillar array (which
can only mix by “stream-splitting” on the local pillar level). For the sake of completeness, we
note that the symmetry lines of zero transverse velocity shown in Figure 3.15A (ur/u., = 0) also
explain the difference at zero velocity between bed porosities observed in the longitudinal and
transverse velocity probability density distributions of the pillar arrays (Figure 3.11): The longer
lines for £ = 0.70 cause a higher overall peak at ur/u,, = 0 (Figure 3.11A), whereas the lower
peak at ur, /u,, = 0 for e = 0.70 in Figure 3.11B results from the smaller surface (which imposes
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the no-slip velocity boundary condition). Thus, the lines of zero transverse velocity within the
fluid space outweigh the effect of a smaller surface (at which both longitudinal and transverse
velocities are zero) on P(ur/u,,) at higher bed porosity. By contrast, the monolith (¢ = 0.70) in
Figure 3.8 demonstrates higher population of zero velocities in both P(ur/u.,) and P(uy,/u.y)
than the packings (¢ = 0.40). It is explained by its higher ratio of external surface to volume,

which originates from its different bed morphology?>*

To summarize, the local transverse velocity components in a regular pillar array arise due
to “stream-splitting” around individual pillars. While they increase with the velocity on this very
local scale, the transverse equilibration between neighbored unit cells (on the next larger scale)
remains diffusion-limited. It restricts the maximal available transverse dispersion coefficients and
causes the Dy /D,,-data to plateau out of the initial power law behavior (Figure 3.14) originating
in the above-mentioned “stream-splitting”. This developing dominance of diffusion is in contrast
to the disappearing effect of diffusion on transverse dispersion with the polydisperse, disordered
chromatographic beds (cf. Figure 3.7): In the power law or boundary-layer dispersion regime the
effect of diffusion is small, but not yet negligible; then, in the pure mechanical dispersion regime
diffusion can be neglected and dispersion, which results from the stochastic velocity field that is
imposed by the randomly distributed pore boundaries, increases linearly with the velocity. It is
therefore unsurprising that Eqs. (3.13) and (3.14) were inadequate to represent the transverse
dispersion data of the pillar arrays (Figure 3.14).

3.7 Summary and conclusions

All chromatographic beds are heterogeneous over the column cross-section for reasons, which
are specific to the diverse conditions of their preparation processes. These macroscopic het-
erogeneities cause noticeable or even deleterious transcolumn velocity biases responsible for
the warping of analyte bands and transverse concentration gradients. This is highlighted by
the unsymmetrical wall effects, which are not symmetrical with respect to the column axis, ob-
served in capillary silica monoliths'®? and pillar arrays??® They cause persistent transients in the
longitudinal dispersion coefficients and high asymptotic values (if asymptotic behavior can be
realized at all). At this point transverse dispersion is important. It contributes to mass transfer
across the column, relaxing transverse concentration gradients that are caused by these velocity
biases. The efficient transverse mixing by a particular bed morphology therefore is a key compo-
nent in the overall morphology-transport relationships underlying advanced material design and
performance optimization.

In this work we have analyzed the transverse dispersion behavior of bulk, i.e., uncon-
fined chromatographic bed morphologies, which comprise polydisperse random sphere packings
(reflecting the PSDs of modern core—shell and sub-2 pm particles), a silica monolith, and two
regular (hexagonal) pillar arrays. Our study shows that the effect of these PSDs on the velocity
probability density distributions (Figure 3.5), transient dispersion (Figure 3.6), as well as the
dependence of asymptotic dispersion on the reduced velocity (Figure 3.7) is negligible. As an
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important result, we found that Eq. (3.13) and the parameters listed in Table 3.2 should be
used to scale the transverse dispersion coefficients of the polydisperse sphere packings in the
(chromatographically most relevant) power law or boundary-layer dispersion regime, where the
influence of diffusion becomes small but not negligible (equivalently, Eq. (3.16) and the param-
eters listed in Table 3.2 should be used for the transverse plate heights). Similarly, Eq. (3.17)
should be used to scale transverse dispersion coefficients for the silica monolith (cf. Figure 3.10).
Both bed morphologies (packings and monolith) are macroscopically homogeneous (“infinite”
bulk morphologies), but microscopically disordered. By contrast, the pillar arrays are microscop-
ically ordered, which has unique consequences for their flow and dispersion behavior. First, the
velocity probability density distributions (Figure 3.11) start and end abruptly, because the or-
dered microstructure limits the set of available velocities (“cutting off” the tails observed for
the microscopically disordered chromatographic beds, Figure 3.8). Second, transient dispersion
oscillates (Figure 3.12) due to the periodic nature of spreading in transverse and longitudinal
directions along the pillars, as explained with the transverse and longitudinal velocity fields
(Figure 3.13) and visualized using tracer pulse injection (Figure 3.12). Third, their asymptotic
transverse dispersion coefficients plateau out of an initial power law behavior (Figure 3.14),
whereas the microscopically disordered chromatographic beds demonstrate power law behavior
throughout the whole investigated velocity range (Figures 3.7 and 3.10, Egs. (3.13) and (3.17)).

The impact of the microscopic order of the pillar arrays on flow and dispersion can be
rationalized with a closer look at the transverse velocity field (Figure 3.15). The fluid of the
complete unit cell is encased by symmetry lines of zero transverse velocity; further symmetry
lines exist within the unit cell. As a consequence, transverse equilibration between unit cells is
diffusion-limited, which — together with the bed porosity — determines the maximal value in
the plateau of the transverse dispersion curves (Figure 3.14A). By contrast, the random bed
morphologies construct an efficient, three-dimensional network of longitudinal and transverse
velocities, which allows them to function as a more efficient transverse mechanical mixer at high
velocities than a regular pillar array.

This different behavior of microscopically ordered and disordered chromatographic beds
has important consequences for the band broadening in chromatographic practice. Our analysis
shows that the regular microstructure of pillar arrays can be beneficial or problematic when we
add a confinement :°®?*> The limited (longitudinal as well as transverse) mechanical mixing
capabilities still result in a lower longitudinal dispersion compared to confined sphere packings
at low velocities, but increase longitudinal dispersion even beyond that of the packings at higher
velocities (Figure 13 in [225]). Due to the diffusion-limitation in the transverse dispersion curves
longitudinal dispersion already in bulk pillar arrays grows quadratically with the velocity, when
the transverse dispersion data plateau out of their initial power law behavior (Figure 3.14).
This pseudo-diffusive behavior translates to a linear increase of longitudinal plate heights with
velocity. It is amplified upon confinement and eventually outweighs the performance advantage
of a regular pillar array over a random sphere packing: Lateral mixing in confined pillar arrays
occurs by purely diffusive (along the pillar axis) and pseudo-diffusive (perpendicular to the



Chapter 3. Analysis of transverse dispersion in ordered and disordered materials 109

pillar axis) dynamics, which results in a steep, linear rise of the longitudinal plate heights with
the velocity (see straight lines in Figure 10A in [225]). By contrast, lateral mixing in confined
packings is promoted via a coupling of transverse diffusion and spatial velocity fluctuations
(absent in regular pillar arrays beyond the individual pillar scale), a mechanism that remains
velocity-dependent and is responsible for the familiar bending (“tapering off”) of the eddy
dispersion contribution in the longitudinal plate height curves at increasing velocity %22

Due to the limited transverse dispersion originating in their ordered microstructure, regular
pillar arrays experience a much stronger loss of separation efficiency upon confinement than
random sphere packings. This is also revealed by the strong shift of the coordinates for the
minimum of their longitudinal plate height curves, as analyzed previously (Figure 10 in [225]):
Whereas the coordinates of the plate height minimum for the bulk pillar array in Figure 3.1
(e = 0.40) are hu;, = 0.07 and vy, = 50, they shift to h,,;, = 0.18 and v,,;, = 20 for the
top-bottom confined pillar array (indicated in the upper right panel of Figure 3.1 by the semi-
transparent faces), and to h,,;, = 0.46 and v,,,;, = 15 for the fully confined, wide pillar array also
shown in Figure 3.1 (A = 100 7rd12)). Thus, A, of the longitudinal plate height curves increases
by a factor of nearly seven from bulk to full confinement in Figure 3.1, whereas cylindrical
confinement of random sphere packings (also with ¢ = 0.40 and A = 100 7d?) resulted only in a
ca. twofold increase of A, 2%

To summarize, the transverse dispersion data of the polydisperse sphere packings (¢ = 0.40)
and the monolith (¢ = 0.70) are similar to those of the pillar arrays (with ¢ = 0.40 and ¢ = 0.70,
respectively) in an initial power law regime. However, while the effect of diffusion on transverse
dispersion decreases and ultimately disappears at increasing velocity with the microscopically
disordered chromatographic beds, it dominates in the pillar arrays. At increasing velocity, regular
pillar arrays therefore become the least forgiving morphology with macroscopic heterogeneities
and the engendered longitudinal dispersion. Wall effects with pillar arrays and the monolith
impact band spreading more seriously than for packings; the efficiency loss with respect to the
bulk bed morphologies is tremendous (cf. Figure 3.1) 1822
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Abstract

In recent years, chromatographic columns packed with core-shell particles have been widely
used for efficient and fast separations at comparatively low operating pressure. However, the
influence of the porous shell properties on the mass transfer kinetics in core—shell packings is
still not fully understood. We report on results obtained with a modeling approach to simulate
three-dimensional advective—diffusive transport in bulk random packings of monosized core—
shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The
impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness
on the resulting plate height is investigated. We present an extension of Giddings’ coupling theory
of eddy dispersion to account for the analyte retention due to stagnant fluid regions in the porous
shells of the particles, where the mobile phase flow velocity is zero. The plate height equation
involving the modified eddy dispersion term excellently describes the simulated data for sphere
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packings with varied shell thickness and shell diffusion coefficient. It is shown that the model
of trans-particle mass transfer resistance for core—shell particles by Kaczmarski and Guiochon?®*
is applicable up to a constant factor. We analyze individual contributions to the plate height
from different mass transfer mechanisms in dependence of the shell parameters. Simulations
demonstrate that a reduction of the plate height in packings of core—shell relative to fully porous
particles arises mainly due to a reduced trans-particle mass transfer resistance and transchannel
eddy dispersion.

4.1 Introduction

Core-shell particles have recently been intensively studied and employed for highly efficient, fast
separations?®>12%2-275 They consist of a nonporous fused-silica core surrounded by a porous layer
having essentially the properties of fully porous particles. The performance of columns packed
with sub-3 um core-shell particles challenges that of columns packed with sub-2 um fully porous
particles, with the advantages of operating at back-pressures close to 3 um-particle packings and
smaller efficiency losses due to thermal effects at high flow rates®-2°2276277 The efficiency of a
column with a given length and bed characteristic scale is inversely proportional to its height
equivalent to a theoretical plate (HETP), which is mainly a function of the linear velocity of the
mobile phase during an isocratic run. Nearly 60 years ago, van Deemter et al?’® have formulated
an empirical equation describing the essence of band broadening in chromatographic columns.
These authors simplified the solution of the kinetic model developed earlier by Lapidus and
Amundson®”® by assuming a Dirac pulse shape of the injection pulse. They established that
the broadening of an analyte band during its migration along the column and the HETP are
controlled by three independent factors: (i) longitudinal diffusion of analyte molecules along the
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concentration gradient in the eluent, (ii) eddy dispersion due to sample transport and exchange
between the anastomosed flow paths in a packed bed, and (iii) mass transfer resistance due to
finite rates for the transfer of analyte molecules between bulk eluent and stationary phase. These
contributions to the HETP are referred to in chromatography as, respectively, the B, A, and C
terms (or coefficients) of the van Deemter equation
B
H=—+ A+ Cu,, (4.1)
Uay

where H is the plate height and u,, the average mobile phase velocity. The three contributions
to the HETP account for all the band broadening due to mass transfer processes encountered in
any type of chromatographic column. For instance, the B term is related to an apparent, complex
diffusion coefficient accounting for the sample diffusivity in the interparticle bulk eluent and
in the pore network of the stationary phase. The A term includes contributions due to flow
velocity biases taking place over different characteristic lengths in the column, which can be
divided into transchannel (associated with the dimension of the interparticle channels between
neighboring particles), short-range interchannel (associated with the scale of a few particle di-
ameters), long-range interchannel, and transcolumn effects®® The flow velocity biases behind
the two latter contributions (long-range interchannel, transcolumn) occur only in macroscopi-
cally inhomogeneous packed beds. The C' term accounts for all mechanisms resulting in a finite
response time that analyte molecules need for transfer between solid and bulk liquid phase. As a
consequence, the coefficients in Eq. (4.1) are semi-empirical and cannot be related directly to a
physical description of the individual mass transfer mechanisms. A comprehensive approach to
the efficiency of chromatographic beds therefore must distinguish between the individual contri-
butions to band broadening arising from different mass transfer mechanisms and physiochemical
phenomena. Then, the general HETP equation can be written as'’®

H = Hlong + Heddy + Hﬁlm + Hstat + Hads + er7 (42)

nn n.n

where the subscripts "long", "eddy", "film", "stat", "ads", and "fe" denote the contribution of lon-
gitudinal diffusion, eddy dispersion, external film mass transfer resistance, mass transfer resis-
tance across the stationary phase including pore and surface diffusion, the rate of adsorption—
desorption at the surface of an adsorbent, and the friction—expansion of the mobile phase,
respectively.

Using peak parking experiments with a diffusion model based on the effective medium
theory, Gritti and Guiochon®” analyzed individual contributions to band broadening in columns
packed with Halo and Kinetex core—shell particles. They demonstrated that the high efficiencies
for core—shell particles in resolving low molecular weight compounds result from a combination
of a smaller longitudinal diffusion term (B term in Eq. (4.1) and H,,,, term in Eq. (4.2) and

6 J. C. Giddings Dynamics of Chromatography: principles and theory Marcel Dekker, 1965
178, Gritti and G. Guiochon. J. Chromatogr. A, 1221, pp. 2—40, 2012.
S9F. Gritti and G. Guiochon. J. Chromatogr. A, 1217, pp. 5069-5083, 2010.
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significantly reduced eddy dispersion (A term in Eq. (4.1) and H.qq, term in Eq. (4.2) compared
to those in columns packed with conventional fully porous particles’’>” Later, numerical simula-
tions of hydrodynamic dispersion in bulk random packings of polydisperse particles’*® and the
morphological analysis of physically reconstructed packed beds®*° revealed that the smaller eddy
dispersion contribution to band broadening in columns packed with core—shell particles should
be attributed to a higher transcolumn homogeneity rather than an improved bed morphology
on smaller length scales. The origin for the decrease of B and H,,, terms can be explained
by a reduction of the total packed-bed volume accessible for diffusion due to the presence of
the particles’ solid cores. However, a rigorous theoretical analysis of the interrelation between
physiochemical properties of the porous shells, analyte molecules, and column efficiency is still
an unresolved problem.

The theoretical determination of the terms in the HETP equations is generally a big problem
as it requires resolvable and accurate mathematical models for all mass transfer phenomena
occurring in chromatographic columns. The greatest challenge results from the random and
heterogeneous nature of the packed particulate beds. In this regard, computer simulations pro-
vide the exceptional possibility to evaluate the mass transfer characteristics in packed beds and
analyze systematically the dependence of separation efficiency on individual parameters of the
chromatographic system.

In this contribution, we present the results of a numerical investigation of advective —diffusive
mass transfer in bulk random packings of spherical core—shell particles. We analyze the impact
of the effective diffusivity of analyte molecules in the porous shell as well as the shell thickness
on the plate height. For this purpose, we computer-generated random packings of 16,000 mono-
sized particles. Then, we computed the three-dimensional flow velocity field in the interparticle
void space using the lattice-Boltzmann method (LBM). Finally, the transport of point-like trac-
ers in the interparticle void space and porous shells of the packing particles was modeled by a
random-walk particle-tracking (RWPT) technique. A similar simulation approach was previously
applied to study the effect of the packing porosity, morphology, and particle size distribution
on the effective diffusivity and eddy dispersion in packed beds;%%¢7:152154158.281 tq analyze the
impact of the packing confinement on eddy dispersion;’”-?* to study hydrodynamic dispersion in
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silica and polymeric chromatographic monoliths;!8%18%.234235.282 and to investigate the influence
of analyte retention and adsorption kinetics on mass transport in open channels and packed
beds/”-?%3284 In this study, we mainly focus on the analysis of the influence of two core—shell
particle characteristics — the shell thickness and the value of the effective diffusion coefficient in
the shell — on the plate height. The plate height equation for the system we investigate consists
of three terms

H= Hlong + Hcddy + Hstat7 (43)

where the H.qq, term is associated with the flow velocity biases on only the transchannel and
short-range interchannel characteristic lengths, because the packings are bulk packings, i.e.,
unconfined (no wall effects) and macroscopically homogeneous. The H,,,, term associated with
the apparent diffusivity of tracers in the entire packing (including the interparticle void space
and pore network in the particles’ porous shells) is obtained by the RWPT simulation in the
absence of flow. Then, we determine the plate height at different mobile phase flow velocities
(with reduced velocities between 0.5 and 1000), while keeping the same structure of the packing,
and vary the following two parameters: the diameter of the particles’ solid core from zero (fully
porous particles) to the particle diameter (nonporous particles) and the value of the effective
diffusion coefficient in the porous shells. We analyze individual contributions to the plate height
arising from different mass transfer mechanisms, using a proposed extension of the Giddings
coupled eddy dispersion model to packings of core—shell particles and the model of Kaczmarski
and Guiochon?®! originally developed for mass transfer in a single core—shell particle.

4.2 Numerical methods

4.2.1 Overview of the employed simulation methods

The numerical simulations of mass transport in packings of core—shell particles as performed
in this work involve three distinct methods: (i) simulation of the bed structure, (ii) simulation
of fluid flow in the interparticle void space, (iii) simulation of advective —diffusive transport of
inert (non-reactive) point-like tracers. Firstly, a collective-rearrangement algorithm based on the
Jodrey-Tory method was employed to generate random packings of spheres (Section 4.2.2).
The method reproduces the morphological properties of the interstitial void space of the bulk
region of a chromatographic bed. The LBM was used to calculate the three-dimensional flow
velocity field in the interparticle void space of the packings (Section 4.2.3). And finally, a RWPT
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technique was applied to simulate advective—diffusive transport of the tracers in the interparticle
void space and diffusive transport in the porous shells of the particles (Section 4.2.4). To analyze
the effect of the porous shell on the plate height, the shell thickness was systematically changed,
while the arrangement of the spheres remained identical. In addition, two values of the effective
shell diffusivity were used in the simulations.

4.2.2 Bed morphologies

Ten different bulk random packings of monosized spheres with an external (interparticle) poros-
ity of £, = 0.4 were generated employing a modified Jodrey—Tory algorithm. A detailed descrip-
tion of this procedure can be found in®*?*? Each packing had dimensions of 10d,, x 10d,, x 140d,,,
where d,, is the sphere diameter. All packings had periodic boundaries along every dimension.
The implementation of periodic boundaries assumes that the sphere position on one side of the
packing (i.e., within the representative domain) influences the position of spheres at the opposite
side. Moreover, when a flow velocity field line or a tracer molecule is passing through one face
of the representative domain, it reappears on the opposite face with the same properties. The
length of the packings (140 d,) was chosen to avoid recorrelation artifacts observed when the
packing length is too short:*’%?32 These artifacts manifest themselves in an increasing value of
the hydrodynamic dispersion coefficient with time. The tracer transport in the porous shells of
the particles was assumed to be purely diffusive due to the much higher hydraulic resistance of
the shell layer compared with the interparticle void space. The morphology of the particles was
characterized by the core-to-particle diameter ratio, p = d.oe/d,. In this study, we analyzed pack-
ings composed of core—shell particles with nine values of p = 0.0,0.2,0.5,0.6,0.74,0.8,0.9,0.95,
and 1.0, covering the range from fully porous particles (p = 0.0) to nonporous particles (p = 1.0).
The shell porosity in all particles was assumed as e, = 0.44%” The diffusivity of tracers in the
porous shells was characterized by the ratio 2 = Dg,.;1/ D, of the effective diffusion coefficient
in the shell (Dg,;) to the molecular diffusion coefficient in the bulk solution (D,,). We used two
values 2 = 0.2 and 0.9, which represent the range of this parameter from a small nonretained to
a moderately retained compound!”®2%>

4.2.3 Velocity field computations

The velocity field was computed using the LBM - a kinetic approach with discrete space and
time based on resolving the microscopic Boltzmann equation instead of the macroscopic Navier—
Stokes equation. Among the advantages of the LBM are its inherent parallelism in view of
computational efficiency and the capability to handle topologically complex solid—liquid inter-
faces like those in random sphere packings. We employed a three-dimensional cubic lattice with

225, Khirevich, A. Holtzel, and U. Tallarek. , 13, pp. 801-822, 2013.
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19 links at each lattice node, the so-called D3Q19 lattice!”° The lattice spacing Al was adjusted
to Al = d,,/60, i.e., 60 nodes per particle diameter!**2*? After discretization of the generated bed
structures the LBM lattice had dimensions of 600 x 600 x 8400 nodes. Depending on the position,
each lattice node was marked as either solid (inside the particles) or liquid (in the interparticle
void space). At the solid—liquid interface, a halfway bounce-back rule was applied to implement
the no-slip velocity boundary condition/® Periodic boundary conditions were imposed at the ex-
ternal faces of the computational domain. Further parameters and implementation details used
for the LBM in this work can be found in31°8:225.232

4.2.4 Hydrodynamic dispersion simulation

Mass transport of tracers in the interparticle void space of the packing and in the porous shells
of the particles was modeled with a RWPT method?®”7%2%¢ The idea of the RWPT approach is to
distribute a large number N of point-like tracers in the volume of interest and let them move
according to the local flow velocity and local diffusion properties (in this work we employed
N = 3 x 10°). The velocity of a tracer in the interparticle volume of the packing was determined
by using its position in the discrete velocity field as obtained with the LBM (nearest-point in-
terpolation with resolution d,,/60). At each time step At of the algorithm, the position of the
individual tracer is updated according to the following rule

P+ At) =7 (t) + @ (7 (t)) At + £/2D (F (1)) At, (4.4)

where @(7(t)) is the flow velocity at 7(¢), £ is a random vector whose Cartesian components have
a standard normal distribution (5 is independently generated on each iteration for each tracer),
and D(7(t)) is the diffusion coefficient at #(¢). The diffusion coefficient of a tracer depends on
its current position and is either equal to the molecular diffusion coefficient D,, (if the tracer is
in the interparticle void space of the packing) or to Dg,.; = Q2D,, (if the tracer is in the porous
shell of a particle, i.e., the shells of the particles are treated as homogeneous medium with an
effective diffusion coefficient D).

The transient hydrodynamic dispersion coefficient D, (¢) along direction v is determined
via the second central statistical moment of the coordinates of the tracer ensemble o7, (t) as

Doty = 320 _ LS ) (s 1), (4.5)

%

where Ary, ; (t) =7y (t) — 1y (0), 74, (t) is the ¢-coordinate of the ith tracer and (Ary ; (t)) is
the displacement along the v-direction averaged over the tracer ensemble. The asymptotic value
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of the dispersion coefficient D,, = lim,_,,, D, (t) is related to the chromatographic plate height
H, in the corresponding direction as
- kuav hd;VDm Uay 8012/;

Do=—"="5"=% a1 (4.0)

where h,, is the reduced plate height, v = u,,d,/D,, is the reduced flow velocity (in this work,
0.5 < v <1000), L is the distance traveled by the analyte zone along the column (or generally,
along the macroscopic flow direction), and o7, is the variance of the analyte zone.

The simulation of the effective diffusion coefficient D.qs — obstructed diffusion of the analyte
through the interstitial void space of the bed and porous shells of the particles — is a special case
of the hydrodynamic dispersion simulation, for which we use Egs. (4.4) and (4.5) but set the
velocity field to zero.

4.2.5 Mass balance in simulations with core—shell particles

Given a packing of mesoporous core—shell particles, let us consider the analyte concentration in
the interparticle (macroporous) void space and in the mesopore volume of the shells. We assume
that the tracers are inert, i.e., no adsorption takes place and the shell of the particle is merely
a rigid mesoporous structure (Figure 4.1, top panel). If the size of the tracers is infinitely small
(no finite-size effects occur) and the system is at equilibrium, the concentration of tracers in the
interparticle macropores ¢, should be equal to the concentration of tracers in the mesopores of
the shell, c. = ciesopore (s€€ Figure 4.1, top panel).

Since the concentrations cyesopore and c. are equal, the amount of tracers in the shells Ng,en
should relate to the amount of the tracers in the interparticle void space N, as

Nohen . (1—e)(1— /)3) Eshell

N, - 4.7)

Tracers move in the pores of the shells, which occupy the volume Vi,eni voia = Eshen Vanen (Where
Vinen is the total volume of the shells). When we switch from the microscopic approach to the
effective medium approach the volume accessible for the tracers increases and becomes V.
This increase in volume accessible for tracers requires a decrease in their apparent effective
concentration c.g in the shell as c.g = Ngen/Vinen (Figure 4.1, bottom panel). Since c.g is
less than ¢pesopore the straightforward implementation of the random walk method will lead to
an artificial diffusive flux that will eventually equilibrate c.x and ¢yesopore and thus violate the
theoretically correct distribution of tracers governed by Eq. (4.7). To preserve the distribution
according to Eq. (4.7), one needs to introduce a probability for tracers to cross the bulk liquid—
shell boundary. This approach was developed empirically and validated experimentally by Hoteit
et al?®” Lim?*® extended that work to account for the porosity of the media. According to [287,

287H. Hoteit et al. Math. Geol., 34, pp. 435-456, 2002.
28D, Lim. Nucl. Technol., 156, pp. 222245, 2006.
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Figure 4.1: Comparison of the microscopic approach and the effective medium approach to core-shell particles.
Dygpen is the effective diffusion coefficient in the shell, Dy, is the diffusion coefficient in the bulk fluid, ¢mesopore i the
analyte concentration in the mesopores of the shell, c. is the concentration in the interparticle (macroporous) void

space, eshen is the porosity of the shell, ¢, is the external porosity of the packing, and ces is the apparent effective
concentration in the shell.
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288], when a tracer hits the interface between medium M; and medium M, (regardless of the
direction, i.e., whether this event occurs from M; to M, or from M, to M), the probability P,
that a tracer ends up in medium M, is

. 61@1
51\/51 + 52\/52’

where ¢; and D; (i = 1, 2) are the porosities and diffusion coefficients of the respective media.
The probability that the tracer ends up in medium M, is

52\/52
e1V Dy + eV D,

Later, Ramirez et al?®* mathematically proved the empirical findings of Hoteit et al?®’, i.e., the
validity of Egs. (4.8) and (4.9), using the theory of a-skew Brownian motion. Bechtold et al?°
proposed a modification to Egs. (4.8) and (4.9) that makes them less expensive in terms of the
numerical implementation. They showed that, since tracers cross the interface in both directions,
one can achieve the same mass flux through the interface by letting tracers cross the interface
from one side unconditionally and adjusting the probability to cross the interface from the other
side. With these considerations in mind, they transformed Egs. (4.8) and (4.9) into the following
form:

P (4.8)

P = &1V D, and P, = 1if &1V D, <1
2V Dy €2V Dy (4.10)
52\/52 . 51\/51

P1: andP2:11f >1
51\/51 52\/32

Here, P, is the probability for a tracer to enter medium M, when it hits the interface coming
from medium M,; P, is the probability to enter medium A, when the tracer hits the interface
coming from medium M;.

The work of Bechtold et al**° describes an efficient general RWPT method for porous media
with discontinuous dispersion and diffusion coefficients. In the next section, we will show how
this approach is adopted to our system.

4.2.6 RWPT method for core—shell particles

When a tracer moves in the interparticle void space of a packing its diffusive component of the
displacement at each RWPT algorithm step is computed as

AF = £\/2D, At. (4.11)

289 5. M. Ramirez et al. Water Resour. Res., 44, pp. 1-5, 2008.
290M. Bechtold et al. Water Resour: Res., 47, W10526, 2011.
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Figure 4.2: Illustration of random-walk particle-tracking method for media with discontinuous diffusion coefficients.
The initial move of the tracer is split into external and internal components Ar. and Argen. If the tracer is reflected,
then Argpen is transformed into Argpen refiected; if the tracer stays in the particle, the Argnen component is transformed
into Arshell,corrected according to Eq. (4.16) because of the difference between diffusion coefficients outside and inside
the porous shell (D and Dshen).

If the tracer ends up in the shell of a particle after a A7 displacement, we need to decide if
the tracer enters the shell or is reflected from the particle surface. According to Eq. (4.10), the
probability that a tracer enters the shell from the interparticle space (P,,.1) and the probability
that a tracer enters the interparticle space from the shell (P,) shall be calculated as follows:

‘DS e
Pyen = 1/ DihHESheu and P, = 1. (4.12)

Any time a tracer hits the particle boundary from the interparticle void space, we generate a
random number y from a [0, 1] uniform distribution. If y < P,,.u, the tracer is allowed to enter
the particle; otherwise, it is reflected specularly from the surface of the particle (Figure 4.2).
Since we know the position of the particle, we can split the tracer displacement A7 into the
external A7, and internal A7, components with respect to the particle surface and determine
their values (see Figure 4.2):

AT = ATy + ATlpen (4.13)

If the tracer enters the particle, the A7, part of the total tracer displacement A7 should be
corrected, as it was computed with D,, instead of Dy, in Eq. (4.11). The correction procedure
was implemented according to the nonlinear time-splitting scheme by Bechtold et al?*°

VAL = /At + \/ Atgpen, (4.14)

where At, is the time spent in the interparticle space and At the time spent in the shell during
a single iteration when the tracer crosses the bulk liquid-particle interface. Using the Einstein
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diffusion formula, we can obtain the expression for the time of the external displacement A7, :

VAL = IAFeI/‘E\/ﬁ‘ (4.15)

Using Egs. (4.14), (4.15), and the Einstein diffusion formula, we can compute a corrected
displacement inside the particle A7yen correctea @S:

— nd nd AFe
ATshell,corrected - g\/QDshellAtshell = g\/ZDshellAt <1 - ||Aﬂ|> (416)

When a tracer starts its displacement in the shell of a particle and ends up in the interparticle

space of the packing, we let it out unconditionally (P, = 1) according to Eq. (4.10).

We also have to correct the external part A7, of the total tracer displacement A7. The
expression for the corrected displacement A7, .orectea 1S derived similar to Eq. (4.16):

F - A _; e
Afz:,corrcctcd = {\/2DmAtc == 45\/2DmAt <1 - “2;_.,‘11‘> (417)

If the tracer hits a nonporous core of the particle it is always reflected specularly.

To simulate mass transport with different reduced velocities, we scaled linearly the velocity
field. This is a valid approach, as the velocity fields were determined for the laminar regime, which
means that local flow velocity scales linearly with applied pressure and average flow velocity??®
To prevent instability and numerical dispersion, the cell Péclet number Pe..; = u.,Al/D,, was
always kept below 20 (Al is the lattice spacing in the LBM)/?

4.2.7 Validation of the simulation approach

The LBM implementation was validated by comparing the velocity fields with analytical solutions
of the Navier—Stokes equation in an open channel having circular cross-section and between two
infinite parallel plates. Using the same LBM implementation, Khirevich* simulated flow in the
body-centered cubic (BCC) sphere packing and compared permeability with analytical solutions
of Sangani and Acrivos*** and Zick and Homsy;*?® the deviation was within 2%. Hlushkou et
al!®! simulated hydraulic flow in a physically reconstructed silica monolith and compared the
simulated permeability with experimental data; the relative difference was 2—4%.

The precision of our implementation of the RWPT method was investigated in [232]. The
authors compared simulated hydrodynamic dispersion in an open channel with the analytical
solution of Taylor and Aris'®!” and found excellent agreement in the range of Péclet numbers of
1 < Pe < 1000. In previous work?*> we compared the results of hydrodynamic dispersion simu-

22 A, S. Sangani and A. Acrivos. Int. J. Multiphas. Flow., 8, pp. 343-360, 1982.

23 A, A. Zick and G. M. Homsy. J. Fluid Mech., 115, pp. 13-26, 1982.

181D, Hlushkou, S. Bruns, and U. Tallarek. J. Chromatogr. A, 1217, pp. 3674—3682, 2010.
16 G. Taylor. Philos. Trans. R. Soc. A, 219, pp. 186-203, 1953.

7R. Aris. P. Roy. Soc. A-Math. Phy., 235, pp. 67-77, 1956.
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Figure 4.3: Comparison of our simulated data with the solution of Blees and Leyte?*' Normalized effective diffusion
coefficient Desr/ D, as a function of the packing density (1 — €.). Data of Blees and Leyte were taken from Figures
2 and 4 in [291]. The top panel shows diffusivities for the face-centered cubic (FCC) geometry. The bottom panel
shows diffusivities for the simple cubic (SC) geometry.



Chapter 4. Mass transport in packings of core—shell particles 123

lations in periodic arrays of cylinders with experiments of Eghbali et al!®* and found excellent
agreement. A recent comparison of our simulated data for packed beds of nonporous particles
with pulsed field gradient nuclear magnetic resonance experiments in [294] has revealed a max-
imum deviation between simulation and experiment of 5 to 10% for longitudinal and transverse
dispersion coefficients, respectively.

For this work, we have conducted additional simulations to validate the implementation
of the RWPT method for systems with discontinuous diffusion coefficients, described in Section
4.2.4. We have simulated diffusion in periodic arrays of spheres. The spheres were centered in
the lattice points of the face-centered cubic (FCC) and simple cubic (SC) crystals. The porosity
of the structures was varied through the variation of the sphere size. Both cases of nonporous
and fully porous spheres where investigated. Figure 4.3 reveals excellent agreement between our
simulations and the analytical results of Blees and Leyte?*! In the case of fully porous particles
the ratio of the concentrations in the interparticle void space ¢, and inside the particles c.4 was
Co/cet = 10. In terms of Blees and Leyte?*! the parameters were D,C; = 0.1 D,C, and D; = Dy,
where (D;, C) and (D, C5) are the diffusion coefficient and concentration for the intraparticle
and interparticle space, respectively.

In the course of every simulation, the monitored distribution of tracers conformed to Eq.
(4.7). We also monitored the spatial distribution of tracers near the surface of the particles to
ensure their concentration is not distorted — an effect known if the multiple-rejection boundary
condition is used instead of specular reflection’’

4.3 Motivation for the extension of the Giddings theory

In this section, we briefly show that the original Giddings theory of coupled eddy dispersion
cannot explain the behavior of the plate height curves obtained by simulations of advective—
diffusive mass transport in the packings of core—shell particles. The reduced plate height for
the packings under study can be represented as the sum of three independent contributions
associated with three distinct mass transport mechanisms: longitudinal diffusion (), eddy
dispersion (heqqy), and trans-particle mass transfer resistance (hghen)

2D.q (p)

h = hlong + heddy + hshell = DmRV

+ A(v)+Coy, (4.18)
where D.g(p) is the effective diffusion coefficient for a given value of the core-to-particle diameter
ratio p, A(v) is the eddy dispersion term, and C,, is the trans-particle mass-transfer resistance
coefficient. The retention ratio can be defined according to Giddings®® as R = N,/(N, + Nguen)
and determined in terms of the external porosity of a packing &., the shell porosity 4,11, and the

184H. Eghbali et al. Anal. Chem., 81, pp. 705-715, 2009.
1 M.H. Blees and J.C. Leyte. J. Colloid Interface Sci., 166, pp. 118-127, 1994.
79P. Szymczak and A. J. C. Ladd. Phys. Rev. E, 68, p. 036704, 2003.
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Figure 4.4: Comparison of simulated plate heights for core—shell particles (red circles) with the plate height model
(red solid line) that uses structural parameters \; and w; obtained for nonporous particles (black diamonds and black
solid line) in the eddy dispersion term A(v) of Eq. (4.18). The maximum relative deviation of the model (red solid
line) from the simulation results (red circles) for core—shell particles with a core-to-particle diameter ratio of p = 0.9
is 15%. The external porosity of the packings is e. = 0.4, the particles’ shell porosity is eshen = 0.44.

core-to-particle diameter ratio p as

€e
(1 - €e> Eshell (1 - p3) + €e .

R = (4.19)

The retention ratio R is related to the zone retention factor k; often used in the literature as
R=1/(1+k,). (4.20)

The origin of retention for nonadsorbed molecules is the zero-velocity field of stagnant fluid
regions in the porous shells, accessible by diffusion.

According to Giddings’ theory of coupled eddy dispersion®® the A(v) term for bulk, macro-
scopically homogeneous packings of nonporous particles includes the transchannel (i = 1) and
short-range interchannel (i = 2) contributions:

2 2\,
Apy=) —
i=1 2/\1
1+ v—1

Wi

(4.21)

where \; and w; are parameters that depend only on the geometrical structure of the packing
(“structural parameters”). Equation (4.18) involving the A term determined by Eq. (4.21) was
already used for describing successfully the reduced plate height curves (h—v) simulated for bulk
packings of nonporous particles®®'°® when the trans-particle mass-transfer resistance coefficient
C,, is zero and the retention ratio R = 1. An example of such a fitting result is shown in Figure 4.4

from the current study: The black diamonds in that figure are the values of i obtained with the
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modeling approach described in Section 4.2 for a bulk packing of nonporous spheres (p = 1.0);
the black solid line represents the fitting of the simulated data by Egs. (4.18) and (4.21) with
C, = 0 and R = 1. For this fitting procedure, we first determined D.s in Eq. (4.18) from the
simulation of purely diffusive transport in the packing (v = 0). As a consequence, the only free
fitting parameters were \;, A\, wi, and w, (the structural parameters) determining the eddy
dispersion term (hcqqy) in Eq. (4.18).

We attempted to exploit the same model, Egs. (4.18) and (4.21), to fit the reduced plate
height curve for a packing of core—shell particles. For this purpose, we used the same packing, i.e.,
with the same particle size and arrangement, but with porous shells (p = 0.9) introduced into
the particles. The value of D.4 for this packing was determined from the simulation of purely
diffusive transport in the interparticle void space and the porous shells. To demonstrate the
inapplicability of the original Giddings theory to porous particles, we used in Eq. (4.21) values
of the structural parameters (\;, A2, wi, wo) determined for the same packing but composed of
nonporous particles. Thus, the only unknown parameter to be fitted in Eq. (4.18) was C,,. The
red circles and red solid line in Figure 4.4 represent, respectively, the simulated values of 4 in the
core—shell particle-packing and the fit of Eqs. (4.18) and (4.21) with structural parameters of
the nonporous particles and adjustable C,,. Fitting quality is much lower than for the nonporous
particles and the relative difference between simulated data and the fitted curve reaches 15%.
This disagreement originates in the fact that Giddings’ coupled eddy dispersion theory does
not account for analyte retention due to stagnant mobile phase in the porous shells. Giddings
speculated that for porous particles (R <1) w; may increase tenfold, whereas the parameter
w, should be less affected by changes in solute retention (conclusion of Chapter 2.8 in [66]).
However, the theory of coupled eddy dispersion as presented in [66] does not provide any explicit
dependency of the structural parameters (w;, A;) on retention due to analyte adsorption or due
to the presence of stagnant mobile phase.

In the next section, we will present an extension of the original Giddings model to the case
of core—shell particles.

4.4 Giddings theory of and its extension to packings of core—shell
particles

In Sections 4.4.1 through 4.4.6, we present the derivation of the Giddings theory of coupled eddy
dispersion for nonporous particles, which combines a cell model and effective medium approach
with a discrete representation of the velocity field. Then, in Section 4.4.7, we extend this theory
to the case of core—shell particles, using the same formalism.

4.4.1 Prerequisites

We need three equations to follow the reasoning of Giddings.

(i) Definition of plate height as the ratio of the variance of the analyte zone to the distance
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traveled by the center of the band:

g
H=— 22
7 (4.22)

(ii) Einstein’s mean square displacement formula (for one-dimensional diffusion):

0 = 2Dt (4.23)
(iii) The relation for the variance of the displacement of a random walker:

o?=10%n (4.24)

Here, [ is the length of the random walker step and n is the number of steps.

It is assumed that the chromatographic zone spreading follows Fick’s law (pseudo-diffusive
behavior) and yields a Gaussian profile, which obeys Eq. (4.23) but with D,, replaced by some
effective coefficient. If the solute is unretained, the center of the zone moves with the average
mobile phase velocity (u.y ).

4.4.2 Cell model

Following Giddings’ arguments in [66], we assume that the continuous velocity field in a packing
can be represented by the simplified velocity field depicted in Figure 4.5, which is a superposition
of two different velocity field layers. Each layer consists of neatly connected rectangular cells,
which are v,d,, long and «;d, wide (i = 1, 2). The mobile phase velocity in a cell of each field i
in the frame of reference of the zone center is = Au,. Thus, the velocity at a given point in the
laboratory frame of reference is u,, + Au; £ Aus,.

The velocity layer with smaller cells or layer 1 (black grid in Figure 4.5) is referred to as
“transchannel”, since it is associated with a transport process in the channels formed by the
spheres in the packing. The size of a transchannel cell in the model is supposed to correspond to
the average channel dimensions in a packing. It is assumed that the velocity in a given channel is
constant and persists throughout its whole length, until the channel splits or merges with another
one. The larger cells of the second velocity layer (red grid in Figure 4.5) represent regions, where
a variation of the velocity occurs due to irregularities of the sphere packing on a spatial scale
larger than in the first (transchannel) layer. Layer 2 is referred to as “short-range interchannel”
and is associated with mass transport between the channels that are represented by layer 1.
Unlike the transchannel layer, the short-range interchannel layer does not directly correspond to
any physical boundary in the packing. The original estimates of the cell dimensions for typical
chromatographic beds by Giddings®® were o; = 1/6, ay = 1.25, 4, = 1, and 7, = 1.5. Giddings
also included long-range interchannel and transcolumn layers in the velocity field superposition.
These layers arise from velocity inhomogeneities on scales larger than those considered in this
study. Consequently, they are not included in the further reasoning.
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Figure 4.5: Top panel: Schematic of the velocity field in the eddy dispersion theory of Giddings, as seen from the
frame of reference of the center of the analyte zone. The black cells are from the transchannel layer of the velocity
field (index 1) and the red cells are from the short-range interchannel layer (index 2). Although we have only drawn
four transchannel and two short-range interchannel cells, they fill up space regularly and infinitely. The distance {
represents the jump of the random walker relative to the center of the analyte zone. Bottom panel: Slice of a simulated
velocity field with the corresponding length scales, a1 dp, (transchannel) and aqdp (short-range interchannel). The
color map indicates the velocity component along the superficial flow direction (red regions correspond to high
velocity, blue regions to low velocity).
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The model implies that the sign of Au; is chosen randomly with probability 1/2. This rule
ensures that there are as much +Auw; cells as —Aw; cells (so that the average velocity u,, is not
affected) and velocity biases on different levels, i.e., Au; and Au, are spatially uncorrelated.
We now consider a single molecule as a random walker that moves in one of the velocity layers,
whose parameters | and n we need to determine, so we could use Eq. (4.24) to compute the
variance of its displacement. The step length [ is defined as the distance that a molecule travels
in the flow direction without velocity change relative to the center of the analyte zone. Transport
of molecules with different velocities is one of the origins for zone dispersion. The top panel
of Figure 4.5 illustrates two possibilities for a molecule to change velocity: due to a diffusion-
controlled process or a flow-controlled process. The first scenario is realized when the molecule
diffuses the distance «;d, (i = 1, 2) laterally into the neighboring cell. The second scenario is
realized when the molecule travels the distance v,d,, (i = 1, 2) along the flow into the next cell.
These two mechanisms of velocity switch give rise to the different plate height contributions,
which are described in Sections 4.4.3 and 4.4.4.

4.4.3 Diffusion-controlled dynamics of random walk

Let us consider the first scenario, when the dynamics of the random walk is determined by
diffusion along the direction transverse to the average flow velocity (we use the subscript D for
the diffusion-related quantities). Giddings assumed that this diffusion happens on both velocity
layers with molecular diffusion coefficient D,, and used Einstein’s diffusion formula, Eq. (4.23),
to obtain the time needed to diffuse from the border of one cell into its neighbor (i.e., to travel
the distance «;d, in one dimension):

tp,i = oid; /2D, (4.25)

P

Since the center of the zone has the velocity u.,, the length of the random walker step in the
frame of reference that moves with the center of the zone is:

lp,; = Au;tp ; (4.26)

Given that L is the distance travelled by the zone center, the number of steps needed for the
molecule to be displaced by L is

L

np,; = )
' Sb,i

(4.27)

where Sp ; is the distance that the random walker travels on average in the laboratory frame of
reference between diffusion-controlled cell changes. Since the average speed of the molecule is
the same as the speed of the zone u,,, then:

SD,Z' = uavtD,i (428)
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We can now write down the expression for the plate height H, ; that originates from the diffusion-
controlled dynamics, using Egs. (4.22) - (4.28):

2 2,2 2,2 2 22
I5,mp;  Auith mp;  Auith;  Aultp,  Aujaid

OD,i
H . = 2 pr— —_— p— — 02
) L L Sp.; Uny Uny 2Dy (4-29)
If we introduce the relative velocity difference as
A
g =1 (4.30)
uav
then the result of Eq. (4.29) can be rewritten as
232 d%u,,
Hp,; = %i (4.31)

2 D’

which is formula (2.8-9) in [66]. Equation (4.31) can be rewritten in the form that was used by
Giddings to derive the coupling formula:

Hp,; = 37Sp. (4.32)

4.4.4 Flow-controlled dynamics of random walk

The second scenario for a molecule to change its velocity is the elution into the neighboring cell
by fluid flow. This is the case when the dynamics of the random walker is controlled by changes
in the flow field (subscript F). The distance S ; that the random walker travels in the laboratory
frame of reference between flow-controlled cell changes is:

SF,i = ’}/de (433)

Accordingly, the number of steps for a random walker to travel the distance L is:

L
= 3
nF, S (4.34)
The time that a molecule spends in the cell on average is:
tp; = Jithy (4.35)
uav

The average length of the step between velocity changes in the frame of reference of the zone
center is:

lp; = Autp,; (4.36)
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Using Egs. (4.22), (4.24), (4.30), and (4.33)—(4.36) we obtain the flow-controlled contribution
to the plate height:

OF,i _ I Mk _ (AuitF,i)2 NrEi _ (Auitinf
L L L Sk,i
AU; zd 2 Auz ?
_ (Buyidy)” %< ; ) d, = v82d, (4.37)

uzvsF,i av

Hy,; =

4.4.5 Interdependence of diffusion- and flow-controlled dynamics (coupling)

Earlier theory of eddy dispersion argued that its contribution to the plate height was constant
for a given column?® i.e., it did not depend on velocity. If one assumes that the diffusion-
controlled and flow-controlled processes are independent of each other, then according to the
random-walk theory the variances of their respective random walks should sum up. This will
lead to a linear dependence of plate height from velocity. However, experiments have shown
that the plate height approaches a plateau with increasing velocity?*>-*°” Since the velocity field
affects the concentration field, which in turn drives diffusion, we cannot consider the diffusion-
controlled mass transport as independent from flow-controlled mass transport. Thus, the addition
of variances of the random walk processes should not hold true.

To introduce the interdependence of diffusion- and flow-controlled random walks, Giddings
assumed that the length of the random walker step in the laboratory frame of reference is
controlled by a combination of the diffusion- and flow-controlled dynamics (subscript C for
coupled):

Sci=L/(np,; +np,;) (4.38)

Then, he postulated that the expression for the coupled plate height H.; has a functional form
similar to the expression for the diffusion-controlled plate height Hp ; defined by Eq. (4.32).
This assumption leads to the following expression:

Heo; = 2Sc, (4.39)

Equations (4.38) and (4.39) were used to derive the coupled plate height H as a combination of
diffusion- and flow-controlled contributions (Hp and Hy). Notably, Klinkenberg and Sjenitzer*®
have pointed out the lack of justification for the conceptually similar assumption made in the very
first publication of Giddings'®® on the coupling effect. Several other authors have also pointed

5], C. Giddings and R. A. Robison. Anal. Chem., 34, pp. 885-890, 1962.
296 J. C. Giddings. Anal. Chem., 35, pp. 1338-1341, 1963.

297 A, Klinkenberg. Anal. Chem., 38, pp. 489-490, 1966.

298 A, Klinkenberg and F. Sjenitzer. Nature, 187, p. 1023, 1960.

188 . C. Giddings. Nature, 184, pp. 357-358, 1959.
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out the empirical nature of the coupling formula?*-?>% In the remainder of this section, we
derive the coupling formula on a mathematically more rigorous basis than the one originally
presented by Giddings in [66, 188].

We first derive a set of simple asymptotic behaviors for the coupled plate height H¢ as a
function of the diffusion- and flow-controlled plate heights Ho = H¢ (Hp, Hy). This allows us
to specify a Taylor expansion for H¢ in terms of Hp and Hr. We derive one possible form of
coupling by neglecting unknown higher-order terms in this expansion. As far as Hc shall be fully
described by Hp and Hy, our derivation does not depend on the physical mechanisms we choose
for specifying the asymptotic behaviors of Hp and Hy. We utilize the cell model from Figure 4.5
to analyze the behavior of these terms.

Let us examine the case of infinitely wide cells («; — oo in Figure 4.5): The diffusion-
controlled process will never be able to bring a molecule out of its cell, so the only mechanism
that is going to participate in switching between the cells is the flow-controlled process. Thus,
the coupled plate height will be equal to the flow-controlled plate height, H- = H. At the same
time, if a; — oo, then according to Eq. (4.29) Hp — oo. Let us examine another case — that of
infinitely long cells (y; — oo in Figure 4.5): The flow-controlled process will never be able to
bring a molecule out of its cell, so the cell switch will be accomplished by the diffusion-controlled
process only. Thus, Hc = Hp, and according to Eq. (4.37) Hr — oco. We now have the following
set of asymptotic conditions:

(4.40)

HD—>OO:>HC:HF
HF—>OO:>HC:HD

If we introduce a set of reciprocal variables ¢ = 1/H, we transform the infinities in Eq. (4.40)
into zeros:

{ o =0 = 9c = or (4.41)

¢r =0 = ¢c = ¢p

Despite the function ¢c = ¢¢ (¢p, ¢r) — a reciprocal of function H¢ — is unknown, we can write
its Taylor expansion at the point ¢p = 0, ¢ = 0 as

b = b0 (0,0) + 22 (0,0) e + 2% (0,0) 6 + Re(r, b0). (4.42)
Oor 0¢p

where Rt(¢r, ¢p) is a remainder of the series. If we truncate Eq. (4.42) — use only linear terms

%7D. S. Horne, J. H. Knox, and L. McLaren. Separ: Sci., 1, pp. 531-554, 1966.
299 C. Horvath and H.-J. Lin. J. Chromatogr: A, 126, pp. 401-420, 1976.
300 A, L. Berdichevsky and U. D. Neue. J. Chromatogr. A, 535, pp. 189-198, 1990.
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— and combine it with the set of asymptotic conditions (4.41), we get:

6 (0,0) + 22 (0,0) g5 = 6

9o (4.43)
60 (0,0) + 522 (0,0) 0 = 9o
Pr

The system of Eq. (4.43) can only hold true if

¢ (0,0) =0

99

87; (0,0) =1 (4.44)
Jdgn B

5o, (0:0)=1

Using Eq. (4.44) in Eq. (4.42) and discarding higher order terms of ¢ and ¢p, we get:

$c = ¢r + ¢p (4.45)

If we rewrite Eq. (4.45) in the form of plate heights, we obtain the coupling formula of Giddings
for the ith velocity field layer:

1/Hc,; =1/Hp,; +1/Hp; (4.46)

Thus, the coupling can be derived through the cell model by neglecting higher-order terms in
the Taylor expansion of ¢¢ Eq. (4.42).

The last assumption of the coupled eddy dispersion theory is that the processes happening
in different layers of the velocity field are uncorrelated. Thus, their contributions are additive
and the total eddy dispersion is the sum of the transchannel and short-range interchannel contri-
butions:

H.qay=Hc 1+ Hep (4.47)

To obtain the most common representation of the coupling formula, Eq. (4.21), we need to use
a different set of variables:

{wzﬁ@ﬂ

A= 22 (48)

As seen from Eq. (4.48), the parameters w; and \; do not depend on retention. In Section 4.4.7,
we will extend the theory of coupled eddy dispersion to account for retention.
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4.4.6 Comments on the original Giddings theory and further modifications

In Sections 4.4.2—4.4.5 it has been shown that the Giddings model is a combination of the cell
model and effective-medium approach with a discrete representation of the velocity field. A
mathematically rigorous cell model was developed by Schettler and Giddings in [301]. They
introduced a correlation parameter that determined the order in which cells with different ve-
locity bias alternate, but unfortunately the theory assumed a simpler geometrical structure. The
authors showed how the choice of the correlation parameter (that determines the order in which
cells with different velocity bias alternate) leads either to the classical or coupled model of eddy
dispersion. The derivation that we have laid out in the previous sections is based on the uniform
random distribution of the +Awu, cells, however the real velocity field is spatially correlated, i.e.,
regions of high velocity do not abruptly follow after low-velocity regions. The focus on spatial
correlations of the velocity field might be the key to further advancements in the theory of dis-
persion in packed beds. Using Fourier analysis it might be possible to expand the discrete case
described in [301] to a computed flow field and establish a quantitative link between the spatial
correlations of the velocity field and eddy dispersion.

In [302] Giddings and Schettler developed a mathematically rigorous but at the same time
very general theory that included the retention factor, i.e., it was not constrained to nonporous
particles. The partial differential equations of this theory were solved for extremely high and
extremely low velocity and conform to the coupling formula for the plate height:

Hi =~ (u(P)g 7, B)) (4.49)

Hign = 2840/ (1) (4.50)
(u(7))

Here, 7 is a point in the packing, R is the retention ratio, ¢g(7, R) and f() are some unknown
functions, and u(7) is the projection of the velocity vector onto the direction of the superficial
flow. The theory, however, does not offer solutions for the intermediate velocity range, i.e., it
does not provide any direct corroboration of the coupling formula, Eq. (4.46), in the range of
velocities where chromatography usually operates. However, the coupling formula shows good
quantitative agreement with simulations and experimental data for nonporous particles®®158:186.294
The treatment of porous or core—shell particles (R # 1) in the framework of this theory has not
yet been undertaken and is considered in the next section.

4.4.7 Extension of the Giddings formula for core—shell particles

We now derive expressions for the diffusion- and flow-controlled plate height contributions for
the case when the packing particles have porous shells. Physical quantities associated with the

186 p, Magnico and M. Martin. J. Chromatogr: A, 517, pp. 31-49, 1990.
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core—shell particles will be denoted with primes.

Dependence of the cell model parameters on retention

The average velocity of analyte molecules through a bed of core—shell particles (v, ) is a function
of the retention ratio R and the average velocity in the interparticle void space wu.,,:

U, = Rily (4.51)

The relative velocity difference for the case of core—shell particles (;) can be obtained from Egs.
(4.30) and (4.51)

B: = Aui/u;v = Au;/Ru,, = B;/R, (4.52)

where we assume that the velocity differences Au; remain unchanged. The spatial structure
of the velocity field changes with the variation of the core-to-particle diameter ratio, i.e., the
volume occupied by a porous shell is a zero-velocity region available for diffusion, which should
affect the cell model. The characteristic length for such a region is comparable to the size of the
particle and the size of the short-range interchannel velocity cells. We therefore assume that the
dimensions of the short-range interchannel velocity cells should be a function of R or p, since
R = R(p) (cf. Eq. (4.19). With the assumption that the aspect ratio of the cells is preserved, the
functional dependence of the cell length ~, and width o, can be expressed as

7; = v R"and a; = a,R", (4.53)

where 7 is the unknown parameter and 7, and «, are the length and width of the short-range
interchannel cell for the case of nonporous particles. Since the transchannel velocity layer rep-
resents the velocity field between particles, the cell dimensions of this layer are assumed to be
independent from R. Thus, the whole set of the cell model parameters is:

5; = /31/R
oy =
=M
7 (4.54)
Bg = BQ/R
oy = apR"
\ fY; = ’YZRW

Eddy-dispersion formula for core—shell particles

Dimensions of the short-range interchannel cells (Figure 4.5) in the Giddings model reach beyond
the size of a pore between the particles. Since diffusion on this length scale will be obstructed by
the spheres of the packing and their shells, it is reasonable to use the effective diffusion coefficient
D.g instead of the molecular diffusion coefficient D,, in the diffusion-controlled contribution
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described by Eq. (4.31). Therefore, for the case of core—shell particles, Eq. (4.31) becomes:

’ 29’2 dZUI
Hy,, = 7%252 71‘; ZV (4.55)

It should be noted that the influence of p and (2 is already taken into account by the use of the
effective diffusion coefficient D.s. We now have all prerequisites to write down the full eddy
dispersion plate height expression for core—shell particles. First, from Egs. (4.46), (4.47), and
(4.54) we obtain the following expression:

He = Z; (1) +1/m,) T
I B

/ —1 ’ f ’ —1
0/26/2 dzuav o -1 (6] 2/8 2 d2uav o -1
( 5 b ) * (715 12dp) I\ T2 . T (726 22dp> -

202 J2 -1 2 -7~ 202 g2 -1 9 1
i B dyliay 7B a3z diuay o 32
( 2R D, ) +< 2 ori2 Dy ) T\ men™ (4.56)

Next, we simplify Eq. (4.56) by introducing a set of parameters )\; and w;:

_l’_

w, = a3f?/2R
X; = B2 /2R

/ 4.57
wy = 33 /2R (4.57)
Xy = 1B/ R
Using Eq. (4.57), we can rewrite Eq. (4.56) in a simpler form:
! /dQUav - / -1 - /dQUav - ’ -1 -
H, = [(wl P > n (ledp> + <w2 o ) + (2)\2dp) ] (4.58)
Finally, from Eq. (4.58) we obtain the reduced plate height:
’ Hé ’ -1 A -1 , -1 N\ —1 -1
o= 8 = (o) " (20) 7]+ (o) (20) 7] =
1%
2\, 2\,
! + 2 (4.59)

2\ D [ 2\
Wy D, \ w,

Equations (4.57) and (4.59) represent our extension of the eddy dispersion theory to core—shell
particles that takes retention into account. The main expression, Eq. (4.59), has a form similar
to the one in the original theory of Giddings, with two distinctions: (i) The effective diffusion
in the short-range interchannel term accounts for the influence of both p and €2 on transverse
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mixing due to diffusion, and (ii) the parameters \; and w, depend on the retention ratio R as
described by Eq. (4.57).

4.4.8 Sum of the relative velocity differences

The velocity within the cell of an ith layer in the Giddings model is:

Au;, po = 0.
yeell — { +Aui, pr =05 (4.60)

—Au;, p_ =0.5

That is, the magnitude of the velocity in the frame of reference of the zone center is Au and its
direction is a random variable with probability p, = p_ = 0.5. The variance of the velocity field
defined by Eq. (4.60) is:

Var( CCH) = Au? (4.61)

In the Giddings theory, the velocity fields in transchannel (u$*") and short-range interchannel
(use) layers are chosen in a way that they are spatially uncorrelated to another, a prerequisite
for splitting the eddy dispersion into independent transchannel and short-range interchannel
contributions. Due to the absence of correlation the following property holds

Z Var (ufe“ = Var (Z uce“> Var Ce“) (4.62)

where uc! is the total discrete velocity in the Giddings theory. The expression for the sum of the
relative velocity differences (.., can be obtained using Egs. (4.30), (4.61), and (4.62):

Var cell ) Var (ucell )

G Z B = 27 e => =z (4.63)

We assume that the variance of the discrete velocity field u°" defined in the Giddings theory is
equal to the variance of the velocity field obtained from the LBM simulations, which gives us the
opportunity to compute 32, for the simulated flow field. We will use Eq. (4.63) in Section 4.5.3
to extract the parameters «;, 7;, and 3; from our simulated data.

4.5 Results and discussion
4.5.1 Plate height

The numerical approach presented in Section 4.2 was used to simulate the reduced plate height &
in packings of core—shell particles with different values of p (solid core-to-particle diameter ratio)
and 2 (ratio of the effective diffusion coefficient in the porous shell to the diffusion coefficient
in bulk solution). Figure 4.6 shows the simulated reduced plate height (symbols) as a function
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Figure 4.6: Simulated reduced plate height h (symbols) as a function of the reduced velocity v for different normalized
shell diffusivities = Dgnenn/Dm and core-to-particle diameter ratios p = dcore/dp. Solid lines correspond to fits
of the data by Eq. (4.64). The size of the 95% confidence interval for each data point is smaller than the size of
the markers. Data for some of the nine employed p-values are omitted from the figure for better visualization. The
external porosity of the packings is e. = 0.4, the particles’ shell porosity is eshen = 0.44.
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of the reduced velocity v. At each given value of p and 2, simulations were carried out for ten
packings (with different particle arrangements), obtained using the same packing protocol. Each
symbol in Figure 4.6 corresponds to a h-value averaged over its ten values for the different beds.
Statistical variation due to the random nature of the packings is represented by 95% prediction
intervals. These intervals, however, were smaller than the size of the markers in Figure 4.6.
For all values of v and both values of (2 the reduced plate height decreases systematically with
increasing p, i.e., with decreasing shell thickness from fully porous (p = 0) to nonporous particles
(p = 1). The results in Figure 4.6 agree with experimental observations of increased efficiency for
columns packed with core—shell particles compared to fully porous particles®->° Further analysis
of the data in the bottom panel of Figure 4.6 indicates that for the higher value of 2 (0.9) the
optimal reduced velocity v,,; (corresponding to the minimum of /) does not change markedly
with p, i.e., with the shell thickness, whereas the value of v, increases with smaller p at 2 = 0.2
(top panel of Figure 4.6). Thus, for larger analyte molecules (lower intraparticle diffusivity) a
reduction of the shell thickness will result in a noticeable increase of v, (shorter analysis time).
But it should be noted that a reduction of the shell thickness also lowers the column capacity,
which may eliminate the benefit of using particles with thinner porous shells. The solid lines in
Figure 4.6 represent the fitting results obtained using the following expression:

h (V) - hlong (1/) + heddy, 1 (V) + heddy, 2 (1/) + hshell (l/) —

/ ’

2D (p, Q2 2\ 2\
Dﬁ(gy )4 ; + L +Cpv (4.64)
o 1+<”> HDM(?A)
Wy D, Wy

Here, hcqay,1 and heqqy 2 are the transchannel and the short-range interchannel contribution to
eddy dispersion, respectively. In Eq. (4.64), we used the explicit forms of heqay1 and heday,o
that were obtained in Section 4.4, Eq. (4.59), by an extension of the Giddings coupled eddy
dispersion model. Values of D.g(p, 2) were acquired from independent simulations of purely
diffusive transport in the packings (without fluid flow). Therefore, five parameters were free
during the fitting procedure: X, \,, w;, wy, and C,. The retention ratio R in dependence of p
was computed according to Eq. (4.19). The fitting quality with Eq. (4.64) in Figure 4.6 is much
better than with Eq. (4.18) in Figure 4.4, which used the hydrodynamic dispersion term from
the original Giddings model of coupled eddy dispersion Eq. (4.21) and structural parameters
for packings of nonporous particles. It allows to conclude that our extension of the Giddings
model, developed and presented in Section 4.4, adequately describes dispersion in the packings
of core—shell particles. The fit of the simulated plate height data by Eq. (4.64) using the known
D (p, Q2) allows us to quantify the individual contributions hjong, Peddy,15 Peddy,2, a0d Agpen to the
total reduced plate height h and analyze the dependence of these contributions from the porous
shell parameters, p and (2.
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Figure 4.7: Normalized effective diffusion coefficient Deg/Dw for different Q = Dgnenn/Dm as a function of the
core-to-particle diameter ratio p. The size of the 95% prediction intervals for each data point is smaller than the size
of the markers.

4.5.2 Effective diffusion coefficient

With the RWPT simulation approach presented in Section 4.2.4, we determined the effective
diffusion coefficient D4 in the packings of core—shell particles as a function of p and 2. To
recall, D.g characterizes the effective diffusivity in both the interparticle void space and the
porous shells. The results of the simulations are shown in Figure 4.7. Remarkably, the behaviors
of D.s in dependence of p are opposite at 2 = 0.2 and 0.9: With a reduction of p (i.e., with
increasing shell thickness) the effective diffusion coefficient in the packings increases for 2 = 0.9
and decreases for {2 = 0.2. This finding can be explained as follows. In a packing of core—shell
particles, the solute fraction R resides in the interparticle void space where diffusive transport
is characterized by D,,. The other solute fraction (1 — R) resides in the porous shells of the
particles, where the diffusion coefficient is Dg,.; = QD,,. The value of R depends on p according
to Eq. (4.19). Diffusion in both intraparticle and interparticle regions is obstructed: molecules in
the interparticle void space follow the tortuous paths around the spheres, while molecules inside
the particles follow the tortuous paths around the solid cores. The effective diffusion coefficient
in the packing D.g is a combination of effective diffusion coefficients in the interparticle space
and in the particles. When the core diameter increases (p increases), the effective diffusion
coefficient decreases for molecules in the spheres, but at the same time the solute fraction in
the shell also decreases, thus reducing the influence of the decreasing effective diffusivity in the
sphere on D.g.

The D.g-behavior in Figure 4.7 can be interpreted in the following way: A tracer moving
between two points in the interparticle void space of the packing can follow a path either through
the shell of a particle or around the particle. Effective diffusion is either enhanced or hindered,
depending on (). As p increases the shell gets thinner and less analyte molecules reside in the
shell. Consequently, the respective effect of the shell (enhancing or hindering diffusion) decreases
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Figure 4.8: Comparison of the total reduced plate height 4 (symbols) and the contribution from eddy dispersion
heddy = Peddy,1 + heddy,2 (solid lines) as a function of the reduced velocity v for the different values of p and .

and D.g converges to the value for nonporous particles (blue circle, Figure 4.7).

Therefore, the effect of D¢ on the reduced plate height term hjny = 2D/ D, Rv may be
either beneficial or adverse: at a given value of v, hj,,, may either decrease or increase depending
on the value of €2, and the magnitude of either effect is controlled by the shell thickness, as shown
in Figure 4.7.

4.5.3 Eddy dispersion

Using the fits from Figure 4.6, we were able to extract the contribution of eddy dispersion
heddy = Peddy,1 + heady 2 to the total reduced plate height and analyze its dependence on p and
2. Figure 4.8 shows h.qqy, as a function of the reduced velocity for different values of {2 and
a systematic variation of p. The magnitude of h.qq, Systematically grows with a decrease of p,
i.e., the eddy dispersion term is higher in packings of fully porous particles (p = 0) than in
the core—shell packings. This finding agrees with experimental results obtained by Gritti and
Guiochon? However, the difference between the contributions of h.qq, at different p-values
to the overall reduced plate height near the plate height minima is marginal. It supports the
conclusion from a morphological analysis of the wall region in core—shell packings?*° i.e., the
reduced eddy dispersion contribution should be basically attributed to a higher transcolumn
homogeneity rather than an improved bed morphology on smaller length scales.

Up until now, no model for transchannel or short-range interchannel eddy dispersion took
retention into account in a quantitative manner. As described in Section 4.3, it was previously
assumed that the coefficients )\; and w; obtained for nonporous particles under unretained con-
ditions have the same values as for porous particles. In this case, it would leave C,, as the only
parameter to be determined in Eq. (4.18). The discrepancy between this assumption and the
simulation results favors rejecting of this model (cf. Figure 4.4). In Section 4.4.7, we have shown
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Figure 4.9: Giddings parameters for the transchannel and short-range interchannel eddy dispersion terms as a
function of the retention ratio R, obtained by fitting Eq. (4.64) to the reduced plate height curves in Figure 4.6. The
95% confidence intervals are obtained from the fitting procedure. The parameters are plotted as a function of R, since
it is the principal variable that affects their value, but they can be displayed also as a function of p using Eq. (4.19).
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that the Giddings parameters for core—shell packings should depend on retention, as described
by Eq. (4.54). Figure 4.9 shows how )\; and w; (i =1, 2) obtained from the fit of Eq. (4.64) to
the simulated plate height data behave as a function of the retention ratio R.

With our extended theory of eddy dispersion, we can express the Giddings parameters )\;
and w; for core—shell particles described by Eq. (4.57) through the parameters for the nonporous
particles )\; and w; described by Eq. (4.48):

wy =w /R
A, = A\ /R?

! 4.65
Wy = wy R1721 ( )
Ay = Ay /RZ

The black solid lines in Figure 4.9 result from the fit of Eq. (4.65) to the displayed values of
A, = A\(R) and w, = w;(R). Parameters of the fit were the coefficients );, w;, and 7. Eq. (4.65)
fits the data well and thus corroborates our extension of the original Giddings theory of coupled
eddy dispersion. The fit yields the following values: \; = 0.51, w; = 6.6 x 1073, Ay, = 0.23,
wy = 0.13, and 1 = 0.91, which are in accord with predictions of Giddings®® The behavior of X,
and w; in Figure 4.9 for different values of 2 are hardly distinguishable, because the influence of
2 on eddy dispersion has been already accounted for in the short-range interchannel term hcqay 2
of Eq. (4.64) by the extended theory of coupled eddy dispersion, Eq. (4.55).

The parameters \; and w; (¢ = 1, 2) can be used to recover the parameters of the cell model
~i, o, and 3; — the length, width, and relative velocity difference, respectively (cf. Section 4.4).
However, such a recovery necessitates an additional set of constraints, because the system (4.48),
which connects the parameters \; and w; with the parameters ~;, a;, and /3; has more unknowns
(six) than equations (four). We now specify a set of additional constraints that limit the range
for the original parameters.

Using the velocity field obtained from our LBM simulations and Eq. (4.63), we computed
the sum of the relative velocity differences:

Bim = B + 0 = 0.934 (4.66)

Equation (4.66) helps us eliminate one variable from Eq. (4.48). However, there are still five
unknowns in four equations. We utilize an additional set of constraints:

2
{ f? ;3 (4.67)
2 1

The first inequality is trivial, because the square cannot have negative values. The inequality
,Y; > fy; results from the assumption that the short-range interchannel cell should be longer
than the transchannel cell at each shell thickness (the other possible restriction, v, >a;, was
automatically satisfied by Eq. (4.67) for the fitted values of \; and w;). Equation (4.67), together
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with Egs. (4.48), (4.53), and (4.66), allows to determine a range for

2>\lﬂs_u?n <mn < 2 (>\1 + )\QR:]nin

) B2 (4.68)

sum’

where R,,;, = 0.6 is the retention ratio for the system of fully porous particles, computed for our
system using Eq. (4.19). Substituting the values for A, A, and 7 obtained from the fit of the
plate height data (Figure 4.6) with Egs. (4.64) and (4.65) into Eq. (4.68), we get vy, € (1.07,
1.35). If we choose any ~, from this range, we eliminate another unknown variable from the
system of Eq. (4.48), which now becomes well determined. We have chosen v, = 1.25 — in the
middle of the allowed interval — because it minimizes the proximity to both constraints of Eq.
(4.68). Table 4.1 compares the original guess of Giddings®® for «;, 3;, and ~; with our recovered
parameters (given that v; = 1.25). The values presented in Table 4.1 can be used to assess the
length scales on which mixing occurs in packed beds.

Table 4.1: Structural parameters of the Giddings model

i1 o B1 V2 Qo Ba

This work, Section 4.5.3 1.25 0.11 0.9 2.0 1.37 0.36
After Giddnigs®® 1.00 0.17 1.0 1.5 1.25 0.80

4.5.4 Trans-particle mass transfer resistance

Fitting of the plate height curves by Eq. (4.64) (Section 4.5.1, Figure 4.6) allows us to analyze
the dependence of the trans-particle mass-transfer coefficient C}, on p and 2. We compare the
behavior of C}, = C,, (p, 2) obtained from that fitting with predictions from the theoretical model

of Kaczmarski and Guiochon?®' which determines C,, as:

1 €e kl ? f(p>
Q)= F_—
(o, S %1—&<1+m> Q

(4.69)
_142p43p° —p* —5p?

(1+p+p>)’°

f(p)

The parameter F' is (implicitly assumed as) unity in [261] and is a model parameter in [303]
with an estimated value close to unity. We have fitted the model represented by Eq. (4.69), with
F' as an adjustable parameter, to the values of C|, determined from the fit of the reduced plate
height curves (Figure 4.6) with Eq. (4.64) and obtained F' = 2.41 and 2.84 for {2 = 0.2 and
0.9, respectively. These values of C,, obtained from the fitted plate height curves, together with
their C, = C, (p, ) fit by Eq. (4.69), are shown in Figure 4.10 by the symbols and solid lines,
respectively. We also include the original model of Kaczmarski and Guiochon®®! with F = 1
(dash-dotted lines).

The disagreement in Figure 4.10 between the behavior of C}, = C,, (p, ) as determined by
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Eq.(4.69), F=1 --- ---
Eq. (4.69) with fitted F — —
C, from the fit of Eq. (4.64) x x

0.04 ¢

0.03}

P 0.02}

0.01

Figure 4.10: Trans-particle mass transfer-resistance coefficient C, as a function of the core-to-particle diameter ratio
p for different values of the normalized shell diffusivity Q2. Symbols represent Cp-values determined from fitting the
simulated h—v curves in Figure 4.6 with Eq. (4.64). The solid lines represent fitting of Eq. (4.69) to the determined
Cp values, where F is a fitted parameter (given in the figure). The dash-dotted lines represent the original model
of Kaczmarski and Guiochon®®! with F' = 1. The 95% confidence intervals obtained from the fitting procedure are
significantly smaller than the size of the markers.
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the simulations and predicted with Eq. (4.69) using F' = 1 (as in [261]) can be attributed to the
assumptions of the general rate model used to derive Eq. (4.69). The derivation in [261] does
not take into account the actual interparticle pore space morphology but rather uses volume-
averaging: (i) the nonuniform flow velocity field in the interparticle void space is replaced
by a constant velocity field, and (ii) a nonuniform radial concentration distribution of analyte
is neglected. Consequently, these assumptions reduce a three-dimensional problem to a one-
dimensional. Our simulation approach does not involve this simplification and resolves both
analyte concentration and velocity fields in the three-dimensional pore space of the beds. Despite
the before-mentioned assumptions, Eq. (4.69) is valid up to a factor F' that does not depend on
the shell thickness and changes only with (.

4.5.5 Analysis of hiongs feddy.15 Meddy,2» @Nd hg,en cONtributions to the total reduced
plate height

In Figure 4.11, we present the individual reduced plate height contributions (hiong, Peddy.1> Peddy,25
and hg,en) to h in packings of core—shell particles (p = 0.9) and fully porous particles (p = 0) as
a function of the reduced velocity. For these plots, we used \; and w; from the fit of Eq. (4.65)
(black lines in Figure 4.9) and C, from Eq. (4.69) with the fitted values of F' (solid lines in
Figure 4.10). For D.g, we used the values directly obtained from the simulations of diffusive
transport in the packings (see Figure 4.7).

At low velocities (v <1), the value of the reduced plate height is mainly determined by the
hiong term. At a given value of v <1, the most pronounced contribution of this term among the
four p—2 data sets (represented in Figure 4.11 with the red-colored areas) is observed for p = 0
(fully porous particles) and 2 = 0.9 (high intraparticle diffusivity). At increasing v (1 <v <10),
the hy,,, contribution decreases and transchannel eddy dispersion (h.qqy,1) becomes dominant.
Moreover, the value of h.qqy,1 increases further with v and is strongly affected by p and 2 (blue-
colored areas in Figure 4.11). By contrast, heaay > (green) hardly changes for » >10 and depends
much less on p and (2. The behavior of the transchannel (fcqqy,1) and short-range interchannel
(heaay,2) eddy dispersion contributions in dependence of v can be explained by considering the
mechanisms resulting in tracer velocity equilibration on these two different length scales.

Transchannel eddy dispersion arises due to the flow velocity heterogeneity within individual
channels formed by neighboring particles. The velocity bias in the interparticle void space of
a packing of nonporous particles is determined by the difference between the highest local
flow velocity in the central region of a channel and zero velocity at the solid—-liquid interface,
where the no-slip velocity boundary condition applies. The only mechanism resulting in the
equilibration of transport velocities for tracers at different lateral positions in the channel is
diffusion. The presence of porous shells (in which the velocity is also zero) slows down the
equilibration process between tracers in an interparticle channel and a particle shell. The rate of
this equilibration process is determined by p and 2: The smaller p and 2 become, the slower is the
velocity equilibration, resulting in a higher hqq,,1 contribution to i (blue areas in Figure 4.11).
The increase in v results in a growth of the velocity bias in the channels and in a corresponding
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p=09

B Longitudinal diffusion, ,,,
B Transchannel eddy dispersion, hedd%1
[ Interchannel eddy dispersion, /.,

B Trans-particle mass transfer, A,

Q=02

10° 10" 10° 10°

v

Figure 4.11: Individual contributions from the reduced plate height terms hiong, feddy,1, Reddy,2, and hshen (cf. Eq.
(4.64)) to the total reduced plate height h as a function of the reduced velocity v for two shell diffusivities 2 and
core-to-particle diameter ratios p.
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Figure 4.12: Individual contributions from the reduced plate height terms hiong, heddy,1, Peddy,2, and hshen (cf. Eq.
(4.64) to the total reduced plate height h at the optimal reduced velocity vt as a function of the core-to-particle
diameter ratio p for Q = 0.2 and 0.9.

increase of h.qqy 1. At large values of v (not analyzed in this work), h.aqy,1 is €xpected to achieve
an asymptotic value, cf. Eq. (4.59).

Short-range interchannel dispersion appears due to velocity biases taking place over dis-
tances larger than a particle diameter. Characteristic distances were extracted in Section 4.5.3:
The parameters a; = 1.37 and v, = 2.0 determine, respectively, the width and length of the
interchannel layer cell in the Giddings theory. At large value of v, the dominant mechanism for
the velocity equilibration over these distances is advection, which allows tracers to visit different
interparticle channels characterized by different local flow velocity. Though local flow velocity
and its bias between two channels in the laminar flow regime scales linearly with v, the advec-
tive transport rate is also proportional to v. As a result, h.qqy,» achieves asymptotic behavior
(constant width of the green-colored areas in Figure 4.11) at much lower v than hegqay,; 971
The advective mechanism of velocity equilibration over short-range interchannel distances is
almost unaffected by the parameters of the porous shells, which explains why hcqqy,» hardly
depends on p and .

The contribution of hg,.; (violet-colored areas in Figure 4.11) to the total reduced plate
height h becomes remarkable only at reduced velocities » >100 and v >5 for core—shell (p
= 0.9) and completely porous particles (p = 0.0), respectively. This confirms the conclusions
obtained from a comparative plate height analysis for columns packed with core-shell and fully
porous particles?®® Though the magnitude of the hg,., term increases with v, it is not dominant
around the minimum of the reduced plate height curves. The influence of Q2 (0.2 vs. 0.9) on
hshenn (Figure 4.11) is less pronounced than the influence of p (0.0 vs. 0.9). It indicates that the
contribution from the trans-particle mass transfer resistance is mainly determined by the shell
thickness rather than the shell diffusion coefficient.
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Finally, we analyzed the contributions of hiong, Reddy,1> feddy,2, and hgpen to the total reduced
plate height at the optimal fluid velocities corresponding to the minima of A, as determined from
our simulations. The results of this analysis are presented in Figure 4.12, where we use the same
color-coding as in Figure 4.11 to designate the contributions from the different plate height terms.
For both Q-values (0.2 and 0.9) the contribution of the h,,, term (red color in Figure 4.12)
decreases with p, while there is little difference in the two curves for the different Q2-values,
demonstrating that use of particles with thinner porous shells allows to reduce h significantly at
the optimal mobile phase velocity v,,:. The same behavior in dependence of (2 and p is observed
for hg,e (violet). However, the magnitude of this contribution to the total reduced plate height
at v, is several times less than hj,,,. At the same time, the values of hg, for p <0.5 and
Q = 0.9 are half of those with 2 = 0.2. This can be explained by lower trans-particle mass-
transfer resistance due to faster diffusion according to Figure 4.10. Transchannel and short-range
interchannel eddy dispersion contributions (blue and green colors in Figure 4.12) are almost
independent from 2 and p. However, the h.qqy » contribution to the total reduced plate height
is always several times larger than h.qqy 1. For p > 0.5 and both values of (2, the short-range
interchannel eddy dispersion becomes dominant and at p = 1.0 (i.e., for nonporous particles)
the heqqy 2 term exceeds the sum of the other three terms (Aiong, feddy,1, a0d Agpen ).

To summarize, the data in Figure 4.12 allow to conclude that a reduction of the total
reduced plate height at the optimal reduced velocity v,,; in packings of core—shell particles
compared to fully porous particles arises due to decreased contributions from the longitudinal
effective diffusivity and trans-particle mass transfer resistance (red and violet colors). While the
former contribution is almost insensitive to a change of the effective analyte diffusivity in the
porous shells, the latter at least reveals a noticeable dependence on (2. At the same time, both
transchannel and short-range interchannel eddy dispersion contributions to & at v,,; are almost
independent from the parameters of the porous shells, €2 and p.

4.6 Summary and conclusions

We proposed a numerical three-dimensional model to simulate advective—diffusive mass trans-
port in random packings of core—shell particles. A packing-generation algorithm was adopted
to prepare isotropic and macroscopically homogeneous beds with external porosity of 0.4. The
flow velocity field in the interparticle void space of the packings was calculated using the LBM
approach. Mass transport of 3 x 10° small, inert tracers in the interparticle void space (due to
advection and diffusion) and in the porous shells of the particles (due to only diffusion) was
modeled by a RWPT technique. The structure of the particles’ porous shells was characterized by
two parameters, the solid core-to-particle diameter ratio (p = d.ore/d,,) and the effective diffusion
coefficient of the tracers in the shells normalized by their diffusion coefficient in the bulk solution
(© = Dqpen/ D).

The developed simulation framework was used to determine the reduced plate height 4 as a
function of the reduced velocity v (0.5 < ©1000) for different values of p and Q2. Simulated h—v
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curves were then fitted by the reduced plate height equation, Eq. (4.18), involving three indepen-
dent terms due to longitudinal diffusion (A,,,), eddy dispersion (h.qqy), and trans-particle mass
transfer resistance (Agyen). In turn, heqqy in the bulk packings was assumed to be composed of two
terms describing eddy dispersion at the transchannel and short-range interchannel length scales,
respectively (heqay,1 and heaay,2). To perform a fitting procedure, the hy.,, term in Eq. (4.18)
was analyzed by independent simulations of purely diffusive transport of tracer molecules in the
interparticle void space and porous shells. The trans-particle mass-transfer resistance term (hgpcn)
was assumed to depend linearly on the reduced velocity, in line with the model of Kaczmarski
and Guiochon?®! which accounts for analyte retention in the porous shell of a single particle. In
the systems we investigated in this work (nonadsorbing tracer), retention occurs only because of
zero mobile-phase velocity in the particles’ porous shells. We showed that Eq. (4.18) involving
heaay,1 and heqqy » terms from the original Giddings theory of coupled eddy dispersion does not
describe adequately the h—v curves for core—shell particles (cf. Figure 4.4). By contrast, Eq.
(4.64) involving an extension of the original Giddings theory to core—shell particles, developed
and presented in Section 4.4, fits the simulated h—v curves that we obtained for 0 < p < 1 and
Q = 0.2 and 0.9 very well (Figure 4.6). In addition, our analysis indicates that the model of
trans-particle mass transfer for a single core—shell particle?®! is applicable to particle-packings
but requires introduction of a scaling factor, the value of which depends on (.

The presented approach allowed us to analyze the contributions associated with individ-
ual mass transfer mechanisms to the total reduced plate height Eq. (4.64) in packings of
core—shell particles depending on porous shell characteristics. Particularly, simulations con-
firmed that the enhanced efficiency of columns packed with core—shell particles compared to
fully porous particles comes from a reduced contribution of h.qq, in the plate height equation
(Figure 4.8)>%°? Specifically, a reduction of eddy dispersion is observed mainly on the transchan-
nel scale (Figure 4.11). A thinner porous shell and higher shell diffusivity result in a faster
velocity equilibration between tracers located in the interparticle channels and particle shells,
leading to a reduction of the h.qq4y 1 term. Eddy dispersion at the short-range interchannel scale
(heaqay,2) is much less affected by the porous shell properties, because advection (the dominating
mass-transfer mechanism on this scale for » >10) occurs only in the interparticle void space and
is not affected by the shells. The hg, contribution to the total reduced plate height increases
with v and depends strongly on €2 and p (Figure 4.11). However, for v close to the optimal
velocity v, the contribution of this term is not dominant (Figures 4.11 and 4.11). This confirms
the conclusions of Gritti and Guiochon® that in a velocity range typical for chromatographic
separations (v <20) the trans-particle mass-transfer resistance is usually small, whether the
column is packed with core—shell or with fully porous particles.

Thus, the presented simulation approach coupled with the proposed extensions of Gid-
dings eddy dispersion model and the model of trans-particle mass transfer of Kaczmarski and
Guiochon?®! allows to perform a very detailed analysis of the contributions from individual
mass-transport mechanisms to the total plate height in packings of core—shell particles. The
proposed approach can be extended to investigate individual contributions to the total plate
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height in real chromatographic columns (particulate packings, silica and polymer monoliths),
using information on the actual bed morphology or even on particle and monolith mesopore
space characteristics, obtained from three-dimensional physical reconstruction by confocal laser

scanning microscopy>'+*°* or electron tomography?°>-3°¢
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Conclusion

In this thesis we conducted a computational investigation of flow and mass transport problems
in disordered and ordered porous materials. These materials are commonly found in liquid
chromatography and heterogeneous catalysis with fixed particulate or monolithic beds. In order
to conduct these simulations, a framework based on the lattice-Boltzmann and random-walk
particle tracking methods was developed and extended. The parallelization of these methods
for supercomputers allowed us to perform simulations of fluid flow and mass transport on an
unprecedented scale, ranging from pore level up to the scale of a column. As a result, the transient
and asymptotic behavior of macroscopic transport parameters was recovered for different types
of materials and the behavior of these parameters was further analyzed and quantified.

In each chapter of this thesis we address a well-defined topic related to diffusion, flow,
and hydrodynamic dispersion in ordered and disordered (mostly particulate) materials. A short
description of each chapter is presented below.

* In Chapter 1 we investigated the influence of the particle (sphere) size distribution (PSD)
on mass diffusion, hydraulic permeability, and hydrodynamic dispersion by a case study
of two particular PSDs derived from industrial samples of real packing materials. The
PSDs were obtained from commercial core—shell (narrow PSD) and fully-porous particles
(wide PSD). With a variation of the bed porosity  (interstitial void volume fraction) of
generated sets of packings, from closely packed to loosely packed beds (0.36 < ¢ < 0.46),
we demonstrate that the influence of the PSD on the permeability, effective diffusion, and
hydrodynamic dispersion is marginal in comparison to the influence of the packing porosity.
Importantly, this result implies that on the contrary to popular claims, the exceptionally
high chromatographic performance of core—shell particles cannot be attributed to their
narrow PSD.

* In Chapter 2 we analyzed the impact of the macroscopic packing confinement (column
format) on the longitudinal hydrodynamic dispersion in random packings of spheres and
microfabricated pillar arrays (ordered structure). Particularly, we compared hydrodynamic
dispersion in unconfined (infinite), partially confined, and fully confined structures and
showed that the confinement can increase the minimum plate height up to ten times. For
the confined packings of spheres we demonstrate that the conduit cross-sectional shape is
correlated with the porosity oscillations in the wall region, which in turn influence hydrody-
namic dispersion by the oscillations in the local fluid velocity. Overall, our simulations show
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that the circular conduit cross-section has a superior separation performance compared
with the other shapes. Moreover, we compared hydrodynamic dispersion coefficients for
confined particulate beds of different degree of heterogeneity with the ordered pillar arrays
and we show that (i) pillar arrays outperform particulate beds for the range of reduced
velocities » < 100 (small analytes), but perform worse in the range of high reduced ve-
locities due to diffusion-limitations in the lateral equilibration in a material with ordered
microstructure; (ii) a reduction of the degree of heterogeneity can improve the separation
performance of particulate columns almost twofold.

* Chapter 3 is dedicated to the analysis of transverse dispersion — a mechanism that controls
the magnitude of the longitudinal dispersion coefficient. More precisely, we analyzed the
transient and asymptotic behavior of transverse hydrodynamic dispersion in three types
of chromatographic systems: (i) particulate beds, (ii) a physically reconstructed silica
monolith, and (iii) microfabricated pillar arrays. We compared the transverse hydrody-
namic dispersion in these structures and pointed out a fundamentally different behavior
of transverse dispersion coefficients in ordered and disordered structures (pillar arrays vs.
particulate beds and monoliths). Overall, our findings extend the understanding of the
longitudinal dispersion behavior covered in Chapter 2.

* Chapters 1-3 deal with materials consisting of nonporous (impermeable) structural ele-
ments (individual pillars, spheres in a packing, monolith skeleton), i.e., the investigation
was limited to the hydrodynamics in the interstitial macropores of the chromatographic
beds (excluding the mesopores inside the stationary phase). In Chapter 4 we extended our
simulation framework to investigate mass transport in beds of spherical particles with a
porous shell that is accessible for the diffusion of the analyte. Subsequently, we identified
the individual contributions to the overall plate height (i.e., longitudinal diffusion, eddy
dispersion, and trans-particle mass transfer) and analyzed them separately. Guided by the
simulation results, we extended the coupled theory of eddy dispersion developed by Gid-
dings to account for retention caused by stagnant zones of analyte entrained in the shells of
the particles. Finally, we compared the results of simulations with the theory of Kaczmarski
and Guiochon and confirmed that the theory is applicable up to a constant factor.

Computer simulations are the core method of investigations in this work. This method allowed
us to analyze the behavior of the transport parameters in different porous materials and to solve
the forward problem - the transition from the local geometrical and physical parameters of
the system to its macroscopic transport parameters. Strikingly, the same numerical toolbox can
now be applied to solve the inverse problem, i.e., find the geometrical and physical parameters
beneficial for faster and more efficient chromatographic separations or more efficient mixing and
thus enhanced reaction rates in catalytic reactors.

Overall, the current study focuses on systems that are commonly found in chemistry. How-
ever, due to the generality of the mathematical description of mass transport and fluid flow, it is
possible to take it one step further and apply the same numerical toolbox to study the properties
of materials implicated in other science fields, such as geology and biology.
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