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Abstract 

The synthesis of bio-based products, fuels, and materials in large-scale closed-

photobioreactors (PBRs) presents a sustainable option for tackling the ever-increasing mass 

and energy demands of the world’s rapidly growing population. With the scale-up of 

production comes significant cost reductions and increased commercial viability. However, 

successful PBR scale-up must overcome key hurdles relating to the local environmental 

conditions, including uneven light distribution caused by cellular absorption and mutual 

shading, as well as nutrient and biohydrogen partial pressure gradients. Therefore, this thesis 

confronts these engineering challenges with advanced mathematical modelling techniques 

by tackling the biotechnology’s multi-scale complexities with minimum simulation cost 

strategies. The proposed models were thoroughly validated using both literature and 

experimental data collected from cultivating different microbial species in PBRs of different 

configurations and scales. 

In a “journal format” style thesis, Chapters 1 to 2 covers the general introduction and 

comprehensive literature review whereas Chapters 3 to 5 present the published original 

contributions. More specifically, Chapter 3 proposes the first-ever mechanistic model to 

directly integrate the effect of PBR mixing-induced light/dark cycles into the biomass 

growth kinetics. This enables the manipulation of the PBR mixing rate to alleviate light 

attenuation challenges and maintain higher biomass growth rates. Chapter 4 extends the 

mechanistic model’s capabilities to account for the effects of temperature and PBR 

biohydrogen partial pressure, which were previously ununified for any microbial species. To 

evaluate the biotechnological transfer across two types of PBR, namely the Schott bottle-

based and vertical tubular-based PBR, two parameters related to the PBR's local 

environmental conditions were derived: the effective light coefficient and the biohydrogen 

enhancement coefficient for recalibration. The successful systematic upscaling approach was 

recommended for other similar biosystems. Building on these achievements, Chapter 5 

focuses on the multi-physics coupling within a Computational Fluid Dynamics (CFD) solver 

to facilitate optimisation and upscaling of biohydrogen production. For this, accelerated 

growth kinetics and parallel computing were combined to greatly reduce the simulation cost, 

enabling uncertainty estimation via Monte Carlo simulation for the first time.  

Finally, Chapter 6 concludes the thesis and presents two future directions: the exploitation 

of the models developed in Chapters 3 and 5 for (i) model-based optimal control of PBR 

mixing, (ii) the optimisation of PBR static mixers to enhance biomass growth and 

biohydrogen productivity, and (iii) application to other scalable PBR configurations.  
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Chapter 1 General Introduction 

General Introduction 

This chapter briefly describes the PhD research carried out within the last three years 

(September 2019 to September 2022) and is structured into four sub-chapters. The first sub-

chapter makes a case for biorenewable energy as a source of renewable energy for the future. 

The second sub-chapter presents the challenges surrounding systematic upscaling, while the 

third presents the PhD thesis aims and objectives. Then the final sub-section details the thesis 

structure and highlights the original contributions.  

1.1 Biorenewable energy prospects 

Continuing to meet the world’s energy demand (circa 80% for electricity generation, 

transportation, and heating, as indicated by Dechatiwongse et al., and Anye Cho et al., [1,2]) 

by the large-scale combustion of fossil fuels is of increasing concerns due to the 

repercussions of global climate change. As a result, policymakers are striving to enact 

measures (e.g., the PARIS COP 21 Agreement) to limit global warming and greenhouse gas 

emissions by reducing the use of fossil-resource-derived fuels. This directive has 

spearheaded the research for clean and renewable energy sources such as wind, hydro, solar 

and biofuels. Among them, solar energy from the Sun, reaching the earth’s atmospheric 

surface at an estimated rate of 1.73×1017 W or 6.38×1019 Wh year-1 by Pilon et al., [3] is by 

far, the most abundant renewable energy source available to humanity.  

For this reason, significant research has been invested into developing technologies for 

capturing, converting, and storing solar energy to meet the world’s mass and energy 

demands. Solar electricity is gaining much traction due to the ability of commercial 

photovoltaic (PV) cells to be manufactured in modular units and installed in small, 

distributed facilities like the roofs of local residences. These PV cells consist of 

semiconductor materials like silicon, selenium, germanium, cadmium telluride diselenide, 

copper indium, and indium antimonide, as highlighted by Bayod-Rujula [4]. Among the 

semiconductors, silicon derived from silica which composes 60 % of the earth’s crust, is 

cheaply available. Thus silicon constitutes 90 % of the commercially available PV cells, as 

mentioned by Bayod-Rujula [4]. Even so, the solar-to-electrical energy conversion 

efficiencies of these PV cells are estimated by Green et al., [5] at 25±0.5 %, while electricity 

by PV cells remains 5 to 10 times more expensive than that produced by burning fossil fuels. 

https://www.sciencedirect.com/topics/engineering/power-generation
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Hence, PV power generation continues to struggle to compete as the primary energy source 

due to present semiconductor technological limitations.  

The natural photosynthetic bioconversion process of solar into chemical energy, stored in 

several biomolecules such as sugars, starch, and lipids, to name a few, presents a viable 

alternative. This is because the biomolecules constituents of crops, plants, macroalgae (e.g., 

seaweed), microalgae (e.g., cyanobacteria) and bacteria can become precursors to various 

transport biofuels. For instance: (i) bioethanol by the authors Tang et al., and Kim-Dale [6,7], 

(ii) biodiesel by the authors Kim-Dale [7], (iii) biomethanol by the author Dong [8] and (iv) 

biohydrogen by the author Demirbas [9], to name a few. The fundamentals for obtaining 

these biomolecules via natural photosynthetic processes are detailed in Section 2.1 of this 

PhD thesis, while the photobiological production of biohydrogen was investigated in 

Chapter 4. For now, Section 1.1 revisits the classification of these biorenewable energy 

sources into three different generations.  

The use of biomass from crops like corn, sugarcane, and soybeans for the production of 

liquid biofuels such as bioethanol in Kim-Dale [7] and biodiesel in the works of Kim-Dale 

and Hill et al., [7,10] are classified as first-generation biofuels. First-generation biofuels are 

characterised by their low energy densities (e.g., 21.26 MJ L-1 for bioethanol, as stated by 

Hill et al., [10]), so would therefore require large swaths of arable land to be turned over to 

biofuel production to replace the demand currently satiated by petroleum-derived transport 

fuels. Competing with agricultural land makes first-generation biofuels unattractive, given 

(i) the growing demand for food and water by the rapidly growing world’s population and 

(ii) this would exacerbate the already large carbon footprint of ammonium-based fertilisers 

manufactured from the fossil fuel-intensive Haber-Bosch process. 

On the other hand, second-generation biofuels are derived from nonedible plants like woody 

crops, lignocellulosic biomass, agricultural residues and wastes. For example, cellulose-

based products from plants such as Miscanthus explored by Brosse et al., [11], switchgrass 

(Panicum virgatum L.) studied by Hartman et al., [12] and Sorghum investigated by Tang et 

al., [6], can all be converted into liquid biofuels. However, second-generation biofuels are 

also characterised by low energy densities (e.g., 21.26 MJ L-1 for bioethanol, as stated by 

Hill et al., [10]) and given the technological challenges associated with gasification, 

pyrolysis and fermentation, they remain commercially unviable. 

Finally, third-generation biofuels are derived solely from microalgae (including 

cyanobacteria) and photosynthetic bacteria. In contrast to former generation biofuels, 

microalgae and photosynthetic bacteria grow faster and accumulate more biomolecules (e.g., 
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up to 77 % lipids in the microalgae Schizochytrium sp. as reported by Chisti [13]), enabling 

higher biofuel productivities. These benefits can be attributed to their simpler structure and 

lack of roots, leaves or flowers, shrinking their geographical footprint, and water 

requirements so they can be cultivated away from more arable land. Despite the promising 

prospects, the commercial viability of third-generation biofuels is hampered by the high cost 

of small-scale production and their non-competitive price in the fossil-fuel-dominated liquid 

fuel market. Full details of these bottlenecks will now be elucidated in Section 1.2 of this 

PhD thesis.  

1.2 Predictive scale-up perspectives 

Given that producing third-generation biofuels at larger capacities is key to minimising the 

production, operational and maintenance costs, thus making them commercially viable, there 

is an urgent need for effective, affordable, scalable photobioreactors (i.e., a specialised piece 

of equipment for supporting microbial growth as reviewed in Chapter 2). Upscaling 

microbial cultivation and biofuel production from lab scale to pilot plant and industrial scale 

may initially seem trivial. For a specific power input and flow regime, one should increase 

the photobioreactor’s diameter and/or height to achieve a volume within 10 L [14–17] for 

lab scale, within 500 L [17–21] for pilot plant scale, and 500 L or greater [17,22,23] for 

industrial scale. Furthermore, the microbes involved only require simple minimal growth 

media such as nitrates, phosphates, trace elements, and most importantly, the greenhouse gas 

carbon dioxide while in the presence of light.  

However, supplying the required light intensity and of the correct wavelength to all the 

microbial cells within photobioreactors of different scales has proven challenging. This is 

due to the inability to store, pump or mix the light over space and time, while light attenuates 

due to cellular mutual shading. As such, microbial cells on the side of the photobioreactor 

facing the light source are exposed to higher light intensities and are prone to 

photoinhibition, while microbial cells in the photobioreactor’s interior receive less light and 

are prone to becoming photolimited. The prohibitive combination of photoinhibition and 

photolimitation hinders biomass accumulation and biofuel productivity. This issue is often 

accentuated at larger scales (i.e., pilot plant and industrial scales) if the photobioreactor is 

upscaled naively by simply increasing its diameter and or height.  

Predictive mathematical models incorporating limiting cultivation variables like light 

intensity and attenuation can facilitate systematic photobioreactor optimal design, control 

and upscale. Although a vast majority of models proposed in literature achieve satisfactory 

prediction accuracy within the same photobioreactor scale, they fail to predict across 
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different scales and configurations. This limitation can be attributed to: (i) the simpler 

assumption of perfectly mixed bioreactor conditions, which exclude hydrodynamic coupling 

to the bioreaction kinetics within solvers as per the works of Merchuck et al., [24,25] via the 

circulation time approach, and others as reviewed by Bechet et al., [26], (ii) the lack of 

theoretical support in the formulations of advanced multiscale coupling of bioreaction 

kinetics to hydrodynamic solvers as per the recent works of Gao et al., [16,27], (iii) the 

prohibitively high computational cost in resolving all micro-scale intracellular reactions 

kinetics and the macro-scale cell growth and hydrodynamic simulations as reported by Gao 

et al., [16,28].  

The cellular activities are strongly coupled to local environmental conditions (e.g., light 

attenuation, nutrient and pH gradients). Therefore, models that are independent of spatial 

dimensions (i.e., (i) above) cannot predict the impact of increasing the photobioreactor’s 

spatial dimensions (i.e., diameter and/or height). In contrast, models incorporating spatial 

dimensions (i.e., (ii) above) can account for the influences of changing the photobioreactor’s 

diameter and /or height. However, current sophisticated approaches like those in the recent 

works of Gao et al., [27] first simulate the intracellular reaction kinetics over the spatio-

temporal dimension and then separately compute the volume average cellular growth rate at 

regular time intervals. This is then used to calculate the photobioreactor’s local light intensity 

distribution in other time intervals over the simulation period. However, this approach is 

only valid over short simulated time step sizes where the change in biomass concentration 

is negligible, so it is computationally expensive to simulate large-scale photobioreactors this 

way. This approach also assumes that the intracellular reaction kinetics occur in free 

suspension outside the microbial cell walls, violating biological knowledge. As per the latter 

models (i.e., (iii)), exploiting the Lagrangian simulation framework for thousands of 

particles over a sufficiently long period to estimate the cell light exposure history and then 

embed them into the intracellular reaction kinetics has proven both computationally 

expensive and numerically unstable. This is because of the increasing number of particles 

that must be simulated to ensure statistical significance for the larger computational domains 

of upscaled photobioreactors. In addition, the unphysical trapping of simulated particles in 

the boundary layers of photobioreactor walls due to the unavailability of submicron grid 

resolution was reported by Gao et al., [16,28] to affect the numerical accuracy of such 

approaches.  

Therefore, there is an urgent need for high-fidelity multiscale photo-bioreactive transport 

models capable of considering the macroscopic scale (e.g., hydrodynamics, nutrients, cell 
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growth and by-product formation) and the microscopic scale (e.g., intracellular metabolic 

reactions, fluxes of light intensity and heat) with minimum computational cost. Such a model 

would enable optimal photobioreactor design and scaleup, contributing to the effective 

commercialisation of third-generation biofuels. This greater goal motivates the formulation 

of the aims and objectives for this PhD research, as presented in Section 1.3.  

1.3 Thesis aims and objectives  

To address the aforementioned challenges, this PhD research aims to develop high-fidelity 

multiscale photo-bioreactive transport models capable of integrating the biochemical 

reaction kinetics (i.e., micro-scale intracellular kinetics and macro-scale cell growth and by-

product formation kinetics) with the macro-scale bioreactor fluid dynamics and light 

transport with minimal computational cost. The validated multiscale photo-bioreactive 

transport models are to be exploited to investigate the bioprocess performance and identify 

primary limiting factors affecting the design, optimisation, control and scale-up of different 

photobioreactors scales and configurations. To achieve the central aim of this PhD research, 

the following five objectives were formulated: 

1. To incorporate the influence of macro-scale hydrodynamics into the original micro-

scale three-state photosynthetic factory unit proposed by Eilers and Peeters [29]. 

However, the simultaneous simulation of both the micro and macro scales poses 

significant numerical challenges and is computationally infeasible. Therefore, 

theoretical derivations will be utilised to reduce model complexity without 

compromising simulation accuracy. If successful, the new model will be able to 

simulate the impact of light gradients within the bioreactor and mixing-induced 

light/dark cycles on macro-scale biomass growth and secondary metabolite (e.g., 

biohydrogen) production. There will be flexibility for incorporating additional 

cultivating variables like temperature and bioreactor biohydrogen partial pressure. 

  

2. To exploit Computational Fluid Dynamics (CFD) in building a PDE solver that 

simulates the bioreactor fluid dynamics, light transmission, photosynthetic cell 

growth and secondary metabolite production at different photobioreactor scales and 

configurations. For this, ANSYS-Fluent, a commercial software used in the industry, 

was the CFD code of choice. Nonetheless, successfully coupling the bioreaction and 

light transport models developed under objective one requires the model parameters 

to be first identified. Due to the stiffness, nonlinearity, and complexity of the 

constructed models, stochastic swarm intelligence-based and derivative-based 

algorithms will be exploited for dynamic parameter estimation when appropriate. To 
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embed the photo-bioreaction kinetics within the commercial CFD solver, advanced 

programming skills are needed in programming languages C and Scheme to 

customise the CFD solver with User-Defined Functions and communication via Text 

User Interface to the Fluent solver cortex. 

 

3. To investigate the computational efficiency of the multi-scale Eulerian CFD solver 

and propose efficient simulation strategies for enabling the realisation of the large-

scale bioprocess optimisation. The two-step literature approach would recommend 

that the hydrodynamics are first solved to convergence, the converged flow fields 

frozen in place, and the slower bioreaction kinetics simulated over larger time steps. 

However, when simulating multiple state variables (i.e., biomass, substrate, and 

secondary metabolite production such as biohydrogen), even this approach is 

exorbitantly expensive (i.e., taking a few weeks to months), hindering large-scale 

bioprocess simulation and optimisation. Therefore, advanced modelling techniques 

(e.g., (i) acceleration of growth kinetics, (ii) parallel computing or a combination 

thereof) will be investigated to accelerate the simulation time without compromising 

the solution quality to attain superior cost savings compared to the current literature 

CFD models.  

 

4. To identify the primary limiting factors affecting the design, control and scale-up of 

different bioreactor configurations and then optimise the operating conditions subject 

to profitability and environmental concerns. The proposed cost-efficient CFD solver 

integrating bioreactor fluid dynamics, light transmission and bioreaction transport 

will serve as the mechanistic surrogate of the true bioprocess. This will enable the 

design of in-silico experiments to test formulated hypotheses quickly, such as the 

influence of photo-bioreaction model parameter uncertainties under hydrodynamic 

coupling via Monte Carlo simulation, which is previously unanswered in literature.  

 

5. To establish external collaborations with other international groups and leverage the 

collaborative network to generate experimental data. Although CFD solvers returns 

qualitative and quantitative predictions of the velocity, biomass, substrate (e.g., 

glycerol) and biohydrogen concentration contours, the results cannot be trusted 

without validation against data collected using accurate experimental methods like 

Laser Doppler Anemometry (LDA), High-Performance Liquid Chromatography 

(HPC) and Gas Chromatography (GC).   
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1.4 Thesis structure  

This thesis is written and presented in a “journal format” style and features three original 

paper publications, which are compiled into three separate chapters. The novelty and 

research contributions made within each chapter are summarised as follows: 

Chapter 3 – Synergising Biomass Growth Kinetics and Transport Mechanisms to 

Simulate Light/Dark Cycle Effects on Photo-production Systems. 

Status:  Published 6th  February 2021- DOI: https://doi.org/10.1002/bit.27707. 

• Presented the first mechanistic model directly integrating the effect of light/dark 

cycles on biomass growth kinetics without expensive external computation of cell 

light exposure history.  

• Proposed a new parameter, the effective light coefficient, to account for the effect of 

culture mixing and an original nonlinear correlation linking the effective light 

coefficient to the photobioreactor gas inflow rate.  

• Developed an efficient multiscale photo-bioreactive transport modelling strategy that 

coupled bioreactor fluid dynamics with biomass growth kinetics and light 

transmission.  

• Enabled the control and optimisation of photobioreactor gas inflow rate to alleviate 

light attenuation and maintain a high biomass growth rate.  

 

Chapter 4 – Dynamic Modelling of Rhodopseudomonas palustris Biohydrogen 

Production: Perturbation Analysis and Photobioreactor Upscaling.  

Status:  Published 26th  October 2021- DOI: https://doi.org/10.1016/j.ijhydene.2021.08.162. 

• Unified the complex influences of light intensity, light attenuation and temperature 

on biomass and biohydrogen production, previously not unified for photosynthetic 

bacteria. 

• Exploited perturbation analysis to identify critical parameters influencing model 

prediction accuracy across two types of PBR: the Schott bottle-based and vertical 

tubular-based PBR.  

• Proposed two parameters, the effective light coefficient and the biohydrogen 

enhancement coefficient, both linked to photobioreactor transport phenomena for 

model prediction recalibration during PBR scale-up and/or across PBR 

configurations.  

https://doi.org/10.1002/bit.27707
https://doi.org/10.1016/j.ijhydene.2021.08.162
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• For the first time, mechanistically described the observed enhancement of 

biohydrogen production rate by improved culture mixing and gas removal rate.   

 

Chapter 5 – A CFD Coupled Photo-Bioreactive Transport Modelling of Tubular 

Photobioreactors Mixed by Peristaltic Pump. 

Status: Accepted by Chemical Engineering Science, currently in press.  

• Proposed a cost-saving CFD-integrated photo-biokinetic framework for 

modelling externally pumped-recirculated photobioreactors.  

• Combined accelerated growth kinetics and parallel computing to reduce 

computation time, enabling Monte Carlo simulation for a CFD-based framework 

for the first time.  

• Excellent agreement with experimental tracer dye studies and bioreaction data to 

within 10 % error for simulated velocities and similar output uncertainties for the 

coupled CFD-photo-bioreaction and pure photo-bioreaction models. 

• Using the model, undesirable regions with poor radial mixing were identified. 

Hence, static mixers were suggested to enhance the PBR’s radial mixing (i.e., 

eliminating stagnant regions) to improve light/dark cycles, biomass growth and 

biohydrogen production. 

Finally, general conclusions to the work done herein and recommendations for future work 

are presented in Chapter 6. 
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Chapter 2 Literature Review 

Literature Review 

In this Chapter, the background knowledge and concepts supporting the original 

contributions within this PhD research are presented. This is structured into seven sub-

chapters with the first six being: fundamentals of microbial photosynthesis and biohydrogen 

production; photobioreactors: a choice of closed over open systems for microbial cultivation; 

mathematical modelling of biochemical reaction kinetics; dynamic model parameter 

estimation; mathematical modelling of photobioreactor fluid dynamics; multi-scale 

modelling of photobioreactor fluid dynamics and bioreactions. Finally, a summary of the 

first six sub-chapters (i.e., summary of the literature review Chapter) is presented as the 

seventh sub-chapter in addition to the PhD research objectives.  

2.1 Fundamentals of microbial photosynthesis and biohydrogen 

production 

Photosynthesis is broadly a multi-step process by which plants, macroalgae (e.g., seaweed), 

microalgae (including cyanobacteria) and photosynthetic bacteria can store light energy into 

various chemical forms such as carbohydrates and other metabolites like proteins and lipids, 

just to highlight a few, while using a carbon source (e.g., CO2) as illustrated by Akkerman 

et al., and Berberoglu et al., [30,31] in Eq. (2.1). The sugars and metabolites constitute the 

building blocks of biomass whereby the microbial cells (e.g., microalgae) are reported to fix 

a higher biomass per unit carbon source than their plants (e.g., trees or sugar cane) or 

macroalgae (e.g., seaweed) counterparts. For instance, on a fixed surface area, microalgae 

alone can produce 30 times more oil than terrestrial oilseed crops as reported by Pilon et al., 

and Chisti [3,13], and the production occurs in facilities not requiring arable land, thus not 

competing for agricultural production as discussed by Mills et al., [32]. These greater 

photosynthetic fixing efficiencies are associated to their simpler cellular structure, the 

readily availability of low-cost carbon sources like flue gases (e.g., 4-14 vol% CO2 from 

power plants stated by Pilon et al., [3]), and the other various dissolved nutrients in fresh and 

saltwater bodies. Therefore, the exploitation of microbial photosynthesis by industrial 

biotechnologist and bioprocess engineers presents a more promising route to attain some of 

these value-added bio-products of industrial importance such as organic compounds (e.g., 

isoprene [33]), amino acids (e.g., mycoporine-like amino acid [34]), and biofuels (e.g., 

biohydrogen [35]).   
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 nCO2 + nH2O 
light
→  [CH2O]𝑛 + nO2 

(2.1) 

The subscript 𝑛 in the general photosynthetic reaction in Eq. (2.1) can take any positive 

integer illustrating the chemical composition of the photosynthesised sugars. Also, Eq. (2.1) 

can be further decomposed into two separate reactions, namely light dependent reactions: 

generation of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide 

phosphate (NADPH), and light independent (i.e., dark) reactions: carbon fixation via Calvin-

Benson-Basshan cycle to produce glyceraldehyde-3-phosphate [36]. In Eqs. (2.2) and (2.3) 

which are representations of the former and latter, the light and dark reactions are observed 

to interact via the ATP and NADPH but occurring in different cellular components, and time 

scales as reviewed by Carvalho et al., [36], depending on the species of the microorganisms 

under investigation. 

 
Light reactions: 2H2O 

light
→  4[NADPH + e−] + O2 +  ATP 

(2.2) 

 Dark reactions: ATP + [NADPH + e−] + CO2  
enzymes
→      [CH2O] + H2O (2.3) 

Regarding the different cellular components, whilst the light dependent reactions occurs in 

the two Photosystems (i.e.., Photosystem I and II) for microalgae (i.e., including most 

cyanobacteria) upon the absorption of light by chlorophyll a and b as reported by Pilon et 

al., and Akkerman et al., [3,30], the same reactions only occur in one Photosystem (i.e.., 

Photosystem II) in purple photosynthetic bacteria upon the absorption of light by 

bacteriochlorophyll [3,30]. As per the existence of different time scales, whilst the light 

dependent reactions usually last a few milliseconds, the dark reactions on the other hand are 

normally completed within a few seconds to minutes as reported by Carvalho et al., [36]. 

However, based on the amounts of exposed light intensity, the subsequent generated 

amounts of ATP and NADPH varies significantly thereby warranting the microorganisms to 

implement several regulation mechanisms to survive such light conditions. As a result, the 

entire microbial photosynthesis process spans over several other different time scales such 

as the following in Table 2.1: 

(i) Photoproduction: the absorption of light and utilisation for the generation of ATP 

and NADPH which occurs within milliseconds.  

(ii) Photoinhibition: the photo-oxidative damages of the photosynthetic apparatus’s 

pigment molecules due to extreme high light intensities and often proceeds between 

minutes to hours. 
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(iii) Photoregulation or Non-photochemical quenching: the short-term adjustment of the 

light absorbing pigment molecules for the efficient light reactions by dissipating 

excess photons as heat energy. This usually occurs within a few seconds to minutes.  

(iv)  Photoacclimation: just like in (iii) but are long-term adjustments which occur within 

hours to days.  

Table 2.1: Analysis of the microbial photosynthetic time scales.  

 Time scales  ms s min hr day  Reference  

(i) Photoproduction X     [36,37] 

(ii) Photoinhibition   X X  [37–39] 

(iii) Photoregulation  X X   [37,38] 

(iv) Photoaclimation    X X [38,39] 

Therefore, the microbial photosynthesis is not solely a multi-step process but also a multi-

time process for the various species of microbes. In addition to the light induced survival 

steps and time scales, the available amounts and types of other culturing conditions such as 

organic vs inorganic carbon sources, with and/or without oxygen, just to highlight a few, can 

result to different microbial growth modes: namely (i) phototrophic, (ii) heterotrophic, (iii) 

mixotrophic, (iv) photoheterotrophic, (v) aerobic respiration, and (vi) anaerobic respiration, 

as briefly reviewed in Table 2.2. The various microbial growth modes tabulated in Table 2.2 

typically occur in specialised technical equipment called photobioreactors and are briefly 

reviewed in the next sub-chapter as Section 2.2. 

Table 2.2: Various growth modes of photosynthetic microorganisms adapted from Deo et 

al., [40].  

Growth modes  Carbon sources  Energy sources  Remarks  

Phototrophic Inorganic carbon 

e.g., CO2 

Light  

e.g., solar 

radiation  

Light from solar radiation 

and CO2 from factories and 

power plants are abundantly 

available. However, light 

attenuation is growth 

limiting.   

Heterotrophic Organic carbon Organic carbon 

e.g., sugars 

Avoids light limitation 

challenges often 

experienced in dense 
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e.g., sugars 

(glucose, 

sucrose) 

(glucose, 

sucrose) 

microbial cultures. 

However, organic carbon is 

not cheaply available like 

inorganic carbon (e.g., CO2 

in flue gases).   

Mixotrophic Inorganic and 

Organic carbon 

Light or organic 

carbon  

The organic carbon source 

could also serve as the 

energy source.   

Photoheterotrophic Organic carbon 

e.g., sugars 

(glucose, 

sucrose) 

Light e.g., solar 

radiation 

Corn powder hydrolysate 

and artichoke hydrolysate 

are cheaper alternative to 

organic carbon sources such 

as glucose, acetate, and 

glycerol.  

Aerobic 

respiration 

Inorganic or 

Organic carbon 

Light or organic 

carbon 

Oxygen is the terminal 

electron acceptor  

Anaerobic 

respiration 

Inorganic or 

Organic carbon 

Light or organic 

carbon 

Requires a terminal electron 

acceptor other than oxygen 

(e.g., nitrogen, hydrogen 

sulfide, or hydrogen) 

 

Since the efficient and sustained photobiological production of biohydrogen is the rational 

of this PhD research, the tabulated microbial growth modes in Table 2.2 were further 

analysed for those supporting the hydrogen metabolism. With the taxonomically diverse 

photosynthetic microorganisms (green algae, blue-green algae, and purple non-sulfur 

bacteria, just to highlight a few) which can support biohydrogen production, there are several 

enzymes (e.g., hydrogenase, and nitrogenase as reported by the authors Azwar et al., 

Hallenbeck-Benemann and Eroglu-Melis [41–43]) involved in the several metabolic 

pathways and processes (see a summarised version in Figure 2.1) catalysing hydrogen 

production. However, the presence of oxygen as a cultivating variable or as the resulting by-

product of the photosynthesis process is known in the literature [41–43] to suppress the gene 

expression of these enzymes and their activities. Therefore, Table 2.3 reviews oxygenic and 

anoxygenic processes of biohydrogen production together with the involved reactions 

catalysed by the specific enzymes for the various types of photosynthetic microorganisms.  
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Table 2.3: Photobiological hydrogen production routes adapted from the works of Deo et 

al. [40]. 

Conditions Process/Organism Enzymes Reactions 

 

 

 

 

 

Oxygenic 

Direct 

biophotolysis 

(Microalgae and 

Cyanobacteria) 

 

 

Hydrogenase   

2H2O 
light
→  2H2 + O2 

Hydrogenase reaction:  

2H+ + 2e−  → 2H2 

 

 

Indirect 

biophotolysis 

(Filamentous 

Cyanobacteria) 

 

 

 

 

Nitrogenase  

In vegetative cells: 

6CO2 + 6H2O 
light
→  C6H12O6

+ 6O2 

In heterocyst cells: 

C2H12O6 + 6H2O 
light
→  6CO2

+ 12H2 

Nitrogenase reaction:  

N2 + 8H
+ + 8e−  +  16ATP →

2NH3 + H2 + 16ADP +  16Pi  

 

 

 

Anoxygenic  

 

 

Photofermentation 

(Purple non-sulfur 

bacteria) 

 

 

 

Nitrogenase 

Nitrogenase reaction:  

N2 + 8H
+ + 8e−  +  16ATP → 

2NH3 + H2 + 16ADP +  16Pi 

In absence of 𝑁2:  

8H+ + 8e−  +  16ATP → 4H2 

+16ADP +  16Pi 

 

Firstly, hydrogenase activities during the direct biophotolysis within Table 2.3 is inhibited 

by the release of oxygen from splitting water into protons and electrons. Therefore, very low 

yields of biohydrogen can be obtained and therefore requiring several circumventing 

strategies like (i) oxygen removal with inert gases and with haemoglobin, (ii) genetic 

modification for cells to consume any produced oxygen, (iii) sulfur removal from growth 

media to inhibit protein accumulation and cell growth, thus producing lesser oxygen, just to 

highlight a few, as reviewed by the authors Hellenbeck-Benemann and Eroglu-Melis 

[42,43]. Due to these insurmountable oxygen sensitivity challenges, research attention has 

been shifted towards filamentous cyanobacteria which undergoes hydrogen production via 

the indirect biophotolysis process. Even though water splitting, and oxygen evolution 

happens during the indirect biophotolysis, these reactions occur within spatially differentiate 
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cell compartments: the (i) vegetative cells responsible for photosynthetic growth (indicated 

in Figure 2.1 with pale green colour), from the (ii) heterocyst cells responsible for nitrogen 

fixation thereby containing nitrogenase enzymes (indicated in Figure 2.1 with blue colour), 

thus eliminating oxygen-induced nitrogenase repression. Therefore, the indirect 

biophotolysis process produces higher biohydrogen yields but the authors Hallenbeck-

Benemann [42] reviewed the economics as questionable due to the cost of photobioreactor 

design, and its performances.  

 

Figure 2.1: Schematics of electron flow during the photobiological hydrogen production 

process of both oxygenic and anoxygenic microorganisms as reproduced from the works of 

Azwar et al. [41]. Notice the spatially separated vegetative cells in pale green colour as to 

the heterocyst cells in blue colour within the oxygenic process. The anoxygenic process is 

indicated in purple colour.   

On the other hand, the photofermentative route of biohydrogen production by purple non-

sulfur bacteria occurs under the absence of oxygen and is catalysed by the nitrogenase 

enzymes as illustrated in Figure 2.1 with a purple colour. Interestingly, four more times of 

hydrogen is produced under nitrogen limiting conditions (see Table 2.3) for the same amount 

of ATP energy requirement in the nitrogen rich conditions. Just like in the indirect 

biophotolysis with filamentous cyanobacteria, the photobioreactor economics with 

photofermentation can be addressed as questionable, thus hindering large scale 
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photobiological hydrogen production. Therefore, the next sub-chapter (i.e., Section 2.2) 

focuses on reviewing these photobioreactor designs. 

2.2 Photobioreactors: a choice of closed over open systems for microbial 

cultivation 

Photobioreactors (PBRs) are technical systems within which the cultivation of 

photosynthetic microorganisms (e.g., microalgae, cyanobacteria, and photosynthetic 

bacteria) takes place. These PBRs mainly differ from classical bioreactors due to their 

additional light supply requirements to support the microbial photosynthetic process in the 

presence of other growth substrates as defined by Anye Cho and Pott [44]. These PBRs have 

been around since the 1950s and can be designed to be either open or cut-off from the 

atmosphere. Hence, they are therefore categorised into (i) open systems such as: natural 

ponds, lakes, lagoons, artificial ponds (raceway ponds), just to highlight a few as illustrated 

in Figure 2.2 and Figure 2.3 [45–47], and (ii) closed systems such as: continuous stirred tank 

PBR [48–50], flat plate PBR [14,51,52], torus PBR [53], airlift driven tubular PBR [54–56], 

thermosiphon PBR [44], bubble column tubular PBR [57–59], annular PBR [60], semi-

partitioning PBR [61], and taylor-couette PBR [27,28,62] as illustrated in Figure 2.4.   

 

Figure 2.2: Raceway open ponds reproduced from Yen et al., [46]  
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Figure 2.3: Circular open ponds reproduced from Waldrop [63] 

Among the categories, open systems are mainly used commercially because of their 

simplicity, low capital, operational, and production costs [45,64,65]. Despite these 

advantages, open systems experience several drop backs such as (i) large land requirements, 

(ii) significant evaporative loss, (iii) poor light transfer and utilisation by photosynthetic 

microbial cells, (iv) carbon dioxide (CO2) diffusion to the atmosphere, (v) poor mass transfer 

rates due to inefficient mixing/stirring mechanism, (vi) contamination and pollution by 

predators or other fast growing heterotrophs, and (vii) uncontrolled culture growth 

parameters such as pH levels, temperature, and nutrient supplies [45,64,66–68]. On the other 

hand, closed PBR systems can provide a balance of these growth parameter requirements 

while enabling their better control. However, this is often expensive due to the high capital 

and operational costs in conjunction with high maintenance costs as reported by Posten [69].  

Nonetheless, closed PBR systems are particularly favorable for producing pharmaceutical 

grade value-added products, and gaseous secondary metabolites such as biohydrogen, 

whereby oxygen in the open systems would inhibit nitrogenase activity (i.e., biocatalyst for 

biohydrogen production) as discussed by Dasgupta et al., [70]. Regarding the latter 

biohydrogen productivity, if any or very little is produced within the open systems, it will 

simply escape into plein-air and therefore pointless. Therefore, closed PBR systems were 

chosen over open PBR systems for this PhD research. 
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Figure 2.4: Various scales of closed PBRs: lab scale PBRs (a) to (b), pilot plant scale PBRs 

(c), (d) reproduced from Lindblad et al., [23] and (e) reproduced from Adessi et al., [19], 

and industrial scale PBR (f) reproduced from Yen et al., [46]. 

The illustrated PBRs in Figure 2.4 do not illustrate the biohydrogen collection units. To 

economically achieve this, the hydrogen insolubility in water is often exploited by 

researchers, for example Tamburic et al., and Skjanes et al. [68,71], to trap the produced 

biohydrogen in an inverted measuring cylinder submerged within a beaker container as 

illustrated in Figure 2.5 A) and B). Then, an initial water volume mark is noted, and any 

changes to the volume mark indicated by water displacement during the biohydrogen 

production is noted and the volume of biohydrogen produced is calculated. Alternatively, 

the weights of the produced biohydrogen, measured with a digital balance, can also be used 

for the same calculations as reported by Skjanes et al. [71] in Figure 2.5 B). Despite being 

conceptually simple, the biohydrogen collection unit is a crucial part of guaranteeing the 

continuous photobiological production process. This is due to the reaction within the 
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heterocyst cells in Table 2.3 restated herein as Eq. (2.4) being inherently limited by the 

PBR’s biohydrogen partial pressure and gaseous mass transfer. Therefore, if the produced 

biohydrogen is not removed and collected from the PBR, the PBR’s biohydrogen partial 

pressures increases and shifts the equilibrium constant, 𝐾𝑐 as defined in Eq. (2.5) to the left 

(backward reaction), thus hindering more production. However, when removed from the 

PBR as illustrated in Figure 2.5, the biohydrogen partial pressures reduces and shifts 𝐾𝑐 to 

the right (forward reaction), thus enhancing more production according to Le Chateliers 

Principle reported in the works of Li et al. [72]. Another factor shifting 𝐾𝑐 to the right (i.e., 

enhancing biohydrogen productivity) is by improving the PBR’s gaseous mass transfer 

through its mixing enhancement. However, mathematical models embedding these crucial 

details into their predictions and enabling the manipulation of PBR mixing to sustain long 

lasting biohydrogen productivity were still pending prior to starting this PhD research. This 

was therefore investigated in Chapter 4 for the photosynthetic bacterium R. palustris and 

addressed with the proposal of a new parameter called the biohydrogen enhancement factor.  

 

Figure 2.5: Hydrogen gas collection systems: (A) water displacement and hydrogen volume 

measurement as utilised by the authors Tamburic et al. [68], (B) water displacement and 

hydrogen volume and weight measurements as utilised by the authors Skjanes et al.[71].  

 
C2H12O6 + 6H2O 

light
→  6CO2 + 12H2 

(2.4) 

 
𝐾𝑐 =

[H2]
12 ∙ [CO2]

6

[C6H12O6] ∙ [H2O]6
 

(2.5) 

Also, systematically upscaling the closed PBR systems form lab to pilot, and industrial scale 

by increasing the PBR’s width and/or length as visualised in a) to f) of Figure 2.4 is not often 

regarded as feasible, thus contributing to the questionable economics as highlighted by the 

authors Hallenbeck-Benemann [42]. Specifically, the above mentioned PBR gaseous mass 

transfer issues coupled with the challenges associated with light attenuation are often 
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conspicuous in densely growing cultures, resulting in microbial cell mutual shadings. This 

leads to a majority of the PBR’s incident light intensity being harvested by the microbial 

cells in the front-facing PBR section thereby leading to higher levels of photoinhibition 

meanwhile microbial cells in the PBR’s interior will receive less light intensity and may 

become photolimited. These consequential effects hinders the PBR’s optimal performance 

and upscaling are investigated in Chapters 3 and 4 respectively. Generally, to (i) effectively 

design, (ii) systematically scale-up, and (iii) optimally operate PBRs, careful understanding 

of the coupling between the biological response and environmental considerations must be 

captured in comprehensive mathematical models. Hence, the next sub-chapter (i.e., Section 

2.3) presents a timely review of these mathematical models.  

2.3 Mathematical modelling of biochemical reaction kinetics  

Over the decades, several mathematical models have been developed to describe the 

microbial biological response and environmental considerations on the photosynthetic 

microbial cell growth, and secondary metabolite production in closed PBRs. Light intensity 

and temperature effects are the two most influencing culturing parameters commonly under 

review in literature, thus revisited herein.  

2.3.1 Modelling the influences of light intensity, light attenuation and light/dark (L/D) 

cycles 

Light is considered as an obligate requirement for photosynthetic microorganisms and light 

dependent mathematical models have been broadly categorised by Bechet et al., [26]  into 

three main types (i.e., Type I, Type II and Type III) based on their theoretical ability to 

account for incident light intensity, light gradients and light/dark (L/D) cycles. Firstly, Type 

I and II models were looked into as they can assume same structural forms, thus jointly 

tabulated in Table 2.4. However, whilst Type I model predicts the photosynthetic rate of the 

entire microbial culture as a function of solely the PBR’s incident light intensity, Type II 

additionally accounts for PBR’s light attenuations effects. As a result, Type I models are 

only applicable to very thin-tube PBRs with short light path lengths and diffusively 

populated microbial cultures whereby the individual microbial cells are assumed to be 

exposed to the same incident light intensity. Meaning they have no commercial feasibilities 

for scale-up applications and will not be further reviewed.  

On the other hand, Type II models account for the impact of light gradients on the local 

photosynthetic rate, thus applicable for upscaled PBRs with larger light path lengths and of 

commercial feasibilities [73–77]. However, they neglect the L/D cycles experienced by the 

individual microbial cells when cycling from the PBR’s front-to-back sections due to mixing 
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of the PBR, except for the last hyperbolic structural model in Table 2.4 (derived from Type 

III model) proposed within this PhD research by Anye Cho et al., [52]. As such, when applied 

in densely growing microbial cultures, the previous Type II models overestimate the impact 

of light-inhibition on the local photosynthetic rate under the light gradient. Since, high 

biomass growth rate is the target for industrial cultivations, the strength of the proposed 

model by Anye Cho et al., [52] lies in the abilities of integrating the effects of culture mixing 

into the biomass growth kinetics via a new parameter, the effective light coefficient, 𝜂 as 

mathematical derived from Type III models and validated in Chapter 3 of this PhD thesis.  

Table 2.4: Published photosynthesis light response Type I and Type II models. Whereby 

𝜇(I): specific growth rate, 𝜇max: maximum specific growth rate, I: light intensity, I0: incident 

light intensity, Iopt : optimum light intensity, Iav : average light intensity, K*
s : light affinity 

constant (at I= K*
s, μ is not 𝜇max /2), (Ks, IK, K): light saturation constant (at I= Ks, IK, K, 𝜇 

= 𝜇max /2), KI : light inhibition constant, (n, a, b, c, KCI, K1, K2): constants, 𝜂: effective light 

coefficient.  

SN Model 

structural form 

Equations Reference 

1 Linear 
𝜇(𝐼) = 𝜇max ∙

𝐼

𝐾S
∗ 

[78,79] 

2 Quadratic 
𝜇(𝐼) = 𝜇max ∙

𝐼

𝐾S
∗ ∙ (1 −

𝐼

4𝐾S
∗) 

[78,80] 

3 Exponential 
𝜇(𝐼) = 𝜇max ∙

𝐼

𝐾S
∗ ∙ exp (1 −

𝐼

𝐾S
∗) 

         [78,81] 

  

𝜇(𝐼) = 𝜇max ∙ (1 −
2

exp (2 ∙
𝐼
𝐾S
∗) + 1

) 

[78,80] 

  
𝜇(𝐼) = 𝜇max ∙ (1 − exp(−

𝐼

𝐾S
∗)) 

[78,82] 

4 Power  
𝜇(𝐼) = 𝜇max ∙

𝐼av
n

𝐼K
n + 𝐼avn

 
[26,83–85] 

  
𝜇(𝐼) = 𝜇max ∙

𝐼av
n

𝐼K
n + 𝐼avn

− λ 
[26,86] 

  𝜇(𝐼) = 𝜇max ∙ [26,84] 
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𝐼av
(
n2
𝐼0
)

[𝐾I ∙ (1 + (
𝐼0
𝐾I
′)
n1

)]
(
n2
𝐼0
)

+ 𝐼av
(
n2
𝐼0
)

 

  𝜇(𝐼) = 𝜇max ∙ 

𝐼av
(
n2
𝐼0
)

[𝐾I ∙ (1 + (
𝐼0
𝐾I
′)
n1

)]
(
n2
𝐼0
)

+ 𝐼av
(
n2
𝐼0
)

− λ 

[26,86] 

  𝜇(𝐼) = 𝜇max ∙ 

𝐼av
(b+

c
𝐼0
)

[𝐾1 ∙ (1 + (
𝐼0
𝐾2
)
a

)]
(b+

c
I0
)

+ 𝐼av
(b+

c
𝐼0
)

 

[83,85] 

5 Hyperbolic 
𝜇(𝐼) = 𝜇max ∙

𝐼

𝐼 + 𝐾S
 

[78,87] 

  
𝜇(𝐼) = 𝜇max ∙

𝐼

(𝐼2 + 𝐾S
∗2)

0.5 
[78,88] 

  
𝜇(𝐼) = 𝜇max ∙

𝐼

𝐼 + 𝐾S +
𝐼2

𝐾I

 
               

[78,83,86,89] 

  
𝜇(𝐼) = 𝜇max ∙

𝐼av

𝐾𝑠 + 𝐼av +
𝐼2

𝐾I

 
[84] 

  
𝜇(𝐼) = 𝜇max ∙

𝐼

𝐼 + 𝐾S +
𝐼av2

𝐾I
′

− λ 
[15,84] 

  
𝜇(𝐼) = 𝜇max ∙

𝐼

(𝐼n + 𝐾S
∗n)

1
n

 
[78,83,90] 

  
𝜇(𝐼) = 𝜇max ∙

𝐼

(𝐼n + 𝐾S
∗n)

1
n

−m 
[78,91] 

  
𝜇(𝐼) = 𝜇max ∙

𝐼

𝐼 + KS
∗ . (

𝐼
𝐼opt

− 1)
2 

[78,92] 

  
𝜇(𝐼) = 𝜇max ∙

𝐼 − 𝐾𝐶𝐼
𝐼 + 𝐾CI + 𝐾S − 𝐾𝐶𝐼

 
[78] 

  
𝜇(𝐼, 𝜂) = 𝜇max ∙

𝐼

𝐼 (
1
𝜂) + 𝐾S +

𝐼2

𝐾I (
1
𝜂)

 
in this work [52] 
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6 Hyperbolic  

tangent 
𝜇(𝐼) = 𝜇max ∙ tanh (

𝐼

𝐾I
) 

[26,84,93] 

Unlike typical Type II models, Type III models generally describe the photosynthetic rate 

by accounting for both the light gradient and L/D cycles experienced by the individual 

microbial cells within the PBR as stated by Bechet et al., and Kroumov et al., [26,84] and 

are timely reviewed in Figure 2.6. As seen, they are mechanistic models based on the 

concepts of photosynthetic units (PSUs): the simplest functional unit of the photosynthetic 

apparatus as defined by Papadakis et al., and Han [94,95]. This enables researchers to 

formulate different hypothesis around the PSUs with mostly 3 or 4 states being featured in 

different published model structures. For instance, the most widely revisited model in 

literature is the three state model according to Eilers and Peeters [29] which is summarised 

in Eqs. (2.6) to (2.9) and forms the backbone from which most of the variant PSU models in 

Figure 2.6 were constructed. The model assumes the PSUs in the inactive/resting/open state 

(𝑥1) to be paused but moves upon activation via the absorption of photons into the 

active/excited/closed state (𝑥2). In the active state they can either utilise the absorbed energy 

to start photo-production, and then return to the inactive state (𝑥1) or absorb an extra photon 

becoming inhibited (𝑥3). Finally, the PSUs in the inhibited state can recovery back to the 

inactive state [26,29,95]. Hence, the rate of change for these states are respectively described 

by the ordinary differential equations: Eqs. (2.6) to (2.8). 

 𝑑𝑥1
𝑑𝑡
= −𝛼𝐼𝑥1 + 𝛾𝑥2 + 𝜎𝑥3 

(2.6) 

 𝑑𝑥2
𝑑𝑡

= 𝛼𝐼𝑥1 − 𝛾𝑥2 − 𝛽𝐼𝑥2 
(2.7) 

 𝑑𝑥3
𝑑𝑡

= 𝛽𝐼𝑥2 − 𝜎𝑥3 
(2.8) 

With unity probability of states as defined in Eq. (2.9). 

 𝑥1 + 𝑥2 + 𝑥3 = 1 (2.9) 

Together with the microbial specific growth rate being directly proportional to PSUs in the 

active state as expressed in Eq. (2.10) and 𝜅 being the constant of proportionality.   

 𝜇 = 𝜅𝛾𝑥2 (2.10) 

 Whereby the light dependent reactions are characterised by the rate constants (𝛼, and 𝛽) 

which are 1st order with respect to the absorbed light intensity. Similarly, the dark reactions 

are characterised by the rate constants (𝛾 and 𝜎) which are 0th order with respect to the light 

intensity. 
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 𝜇 = 𝜅𝛾𝑥2 −𝑀𝑒 (2.11) 

 

Figure 2.6: Schematic diagrams of the PSU model and variants adapted from Gao et al. [16]: 

(a) Eilers-Peeters model [29] with x1, x2, and x3 representing the PSU in inactive, active and 

inhibited states respectively; (b) the Garcia Camacho et al., model [38]; (c) the Han model 

[95–97] and Nikolalou model [39,98]; (d) the Papadakis et al. model [94]; (e) the Camacho 

Rubio et al. model [99] and similarly the Bernardi model [100] with a1, a2 and a3 representing 

the PSU in inactive, active and inhibited states respectively; (f) the Anye Cho et al. model 

[52] in this work with 𝜂 denoting the effective light coefficient. 

To incorporate more physics, some of the literature modifications and advancement of the 

original three state model by Eilers-Peeters [29] include: (i) the incorporation of a 

maintenance term (i.e., 𝑀𝑒) in Eq. (2.10) leading to Eq. (2.11) by Wu and Merchuk [101] to 

account for the negative photosynthesis rate at relatively low or no light intensity as a result 

of metabolic aspiration, widely accepted and used in other studies, for example Gao et al., 

and Bernardi et al. [16,100]; (ii) the 0th and 1st order reactions with respect to light intensity 

for the dark reactions (i.e., 𝛾) and photoinhibition (i.e.,𝛽𝐼) were reformulated as enzyme-
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mediated process obeying Michealis-Menten kinetics for the former (i.e., ., 𝛾 =
𝑟𝑚

(𝑘𝑠+𝑎2)
 ) and 

a square root dependence to light intensity for the later (i.e., 𝛽𝐼 = 𝑘𝑖√𝐼 ) by Camacho Rubio 

et. al. [99], also widely implemented in other studies, for example Garci-Camacho et al., and 

Bernardi et al. [38,100]; (iii) the incorporation of effective absorption cross-section of PSUs 

(i.e.,  𝜎𝑃𝑆𝐼𝐼) and the turn over time (i.e., 𝜏) for electron transfer chain from the water donor 

side of PSII to terminal electron acceptors by Han [95], as well widely utilised in other 

studies [96–98]; and most recently (iv) embedding of an effective light coefficient (i.e., 𝜂) to 

account for the effects of culture mixing, thus L/D cycles by Anye Cho et. al. [52]. 

Whilst the aforementioned literature modifications and advancements (i.e., (i) to (iv)) led to 

a satisfactory micro-scale simulations by capturing the intracellular response to extracellular 

stimuli, the coupling of the first-three (i.e., (i) to (iii)) models to macro-scale hydrodynamic 

simulations for the PBR’s engineering upscaling investigations poses significant numerical 

and bio-physical challenges. All these shall be reviewed separately under Section 2.3.4.  

2.3.2 Modelling the influences of temperature  

Temperature is an environmental culturing parameter which is well known to affect the 

growth and secondary metabolite production of photosynthetic microorganisms via their 

enzymatic, metabolic and electron transport efficiencies. When cultivated at appropriate 

temperatures, the microbial growth and secondary metabolite products are promoted, 

whereas at a high temperature, the microbial growth and secondary metabolite productions 

would decrease primarily due to the denaturing of essential proteins/enzymes in addition to 

inhibitory effects on microbial cellular physiology as stated by Yen et al., [46]. However, 

only a handful of studies have been reported in literature, as tabulated in Table 2.5, 

investigating the temperature effects on the stoichiometric coefficients of mathematical 

models like specific growth rate, specific decay rate, and yield coefficients, just to name a 

few. The models in Table 2.5 can be broadly categorised into Arrhenius-type models and 

statistical-type models whereby the former is often preferred due to its better mechanistic 

interpretation and knowledge, thus ranked top on the list (i.e., SN:1 to 4). Hence, the latter 

is not of interested to this PhD research and was therefore not reviewed further. Since most 

literature studies featured the first-three Arrhenius-type models on Table 2.5, they were 

further discussed due to their relevance to this PhD research.  

Starting with Table 2.5’s SN. 1, the model assumes an exponential increase of the microbial 

growth rate with rising temperature. Although very reliable at sub optimal temperature 

conditions, the model fails once the cultivating temperature increases and exceeds the 
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microorganism’s optimum temperature. Since it cannot represent the decrease in growth 

rates at higher temperatures beyond the optimal culturing temperature like models of SN. 2 

and 3 in Table 2.5. A common term between SN. 2 and 3, is the 𝐴2 ∙ exp (−
𝐸𝑎2

𝑅𝑇
) representing 

the deceleration of 𝜇(𝑇) at increasing T beyond the optimal T whereby 𝐴2 (h
-1) and 𝐸𝑎2 (J 

mol-1) are the pre-exponential factor and activation energy for thermal denaturing processes 

respectively.  

Table 2.5: Literature review of temperature model structures with either activating and/or 

deactivating effects. Whereby 𝜇(T): growth rate dependence on temperature, 𝜇max: maximum 

specific growth rate, A and A1: pre-exponential factor, A2: post-exponential factor, Ea and 

Ea1 : activation energy, Eb and Eb2 : de-activation energy, R: universal gas constant and T: 

absolute temperature, Tmin: minimum temperature, Tmax: maximum temperature, Topt: 

optimum temperature, b1,b2, and C2: model constants.  

SN Temperature model Reference 

1 
𝜇(𝑇) = 𝐴 ∙ exp (−

𝐸𝑎
𝑅𝑇
) 

[102] 

2 
𝜇(𝑇) = 𝐴1 ∙ exp (−

𝐸𝑎1
𝑅𝑇
) − 𝐴2 ∙ exp (−

𝐸𝑎2
𝑅𝑇
) 

[102–104] 

3 

𝜇(𝑇) =
𝐴1 ∙ exp (−

𝐸𝑎1
𝑅𝑇)

1 + 𝐴2 ∙ exp (−
𝐸𝑎2
𝑅𝑇)

 

 

[26,102] 

4 
𝜇(𝑇) = exp (−(

𝐸𝑎
𝑅𝑇
−
𝐸𝑎
𝑅𝑇𝑎

)) − exp (−(
𝐸𝑏
𝑅𝑇
−
𝐸𝑏
𝑅𝑇𝑏

)) 
[105] 

5 𝜇(𝑇)

=
(𝑇 − 𝑇𝑚𝑎𝑥)(𝑇 − 𝑇𝑚𝑖𝑛)

2

(𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛)

∙
1

((𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛)(𝑇 − 𝑇𝑜𝑝𝑡) − (𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑎𝑥)(𝑇𝑜𝑝𝑡 + 𝑇𝑚𝑖𝑛 − 2𝑇))
 

 

 

[26] 

6 
𝜇(𝑇) = 𝜇𝑚𝑎𝑥 ∙ exp (

−(𝑇 − 𝑇𝑜𝑝𝑡)
2

2𝜎2
) 

[106,107] 

 

7 

𝜇(𝑇) = (𝑏1(𝑇 − 𝑇𝑚𝑖𝑛))
2
 

𝜇(𝑇) = (𝑏2(𝑇 − 𝑇𝑚𝑎𝑥)[1 − exp(𝐶2(𝑇 − 𝑇𝑚𝑎𝑥))])
2
 

[108] 
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Having highlighted the pros and cons of each Arrhenius-type models, it is important to 

mention that the choice of one over another is mostly subjective and context-dependent: (i) 

available operating temperature conditions, (ii) type of mathematical model construction 

(i.e., static vs dynamic), and (iii) methodology of parameter estimation and software solvers. 

These aspects were further exploited in Chapter 4 of this PhD thesis.   

2.3.3 Modelling the influences of light intensity, light attenuation, and temperature on 

secondary metabolite production 

As the previous two sub sections of Chapter 2 already reviewed the effects of light intensity 

and light attenuation as 𝜇(𝐼), and effects of temperatures as 𝜇(𝑇), on the microbial growth, 

this sub section considers the combined effects of 𝜇(𝐼, 𝑇) on the microorganism’s secondary 

metabolite productions. Generally, the formation of microbial secondary metabolite 

products are expressed by the specific product formation rate, 𝛼𝑝𝑟𝑜𝑑 which is dependent on 

whether the bioproduct is: (i) growth associated, if its production rate is directly proportional 

to the cell growth rate (i.e. 𝛼prod = 𝛼𝑝 ∙ μ), ii) non growth associated, if it is produced at a 

constant rate during the stationary phase of the cell growth curve (i.e. 𝛼prod = 𝛽𝑝), or iii) 

mixed growth associated, if its production occurs during both linear (i.e. (i)) and stationary 

(i.e., (ii)) growth phases.  

A review of the various structural forms of the secondary metabolite production models are 

presented in Table 2.6 such that if 𝛼𝑝 = 0, the bioproduct formation is non-growth 

associated, if 𝛽𝑝 = 0), the bioproduct formation is growth-associated and if both are non-

zero (i.e., 𝛼𝑝, 𝛽𝑝 ≠ 0 ), the bioproduct formation is mixed growth-associated.  

Table 2.6: Review of published secondary metabolite production model structures. 

SN Model type Equations Reference 

1 Growth 

associated 

𝛼prod = 𝛼𝑝 ∙  𝜇 [109] 

𝛼prod(𝐼) = 𝛼𝑝 ∙ 𝜇(𝐼) [110] 

𝛼prod(𝐼, 𝑇) = 𝛼𝑝 ∙ 𝜇(𝐼) ∙ 𝜇(𝑇) [105] 

2 Non growth 

associated 

𝛼prod = 𝛽𝑝 

 

[109] 

𝛼prod(𝐼) = 𝛽𝑝(𝐼) n/a 

𝛼prod(𝐼, 𝑇) = 𝛽𝑝(𝐼, 𝑇) n/a 

3 Mixed growth 

associated 

𝛼prod = 𝛼𝑝 ∙  𝜇 + 𝛽𝑝 [35,60] 

𝛼prod(𝐼) = 𝛼𝑝 ∙ 𝜇(𝐼) + 𝛽𝑝(𝐼) n/a 
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𝛼prod(𝐼, 𝑇) = 𝛼𝑝 ∙ 𝜇(𝐼) ∙ 𝜇(𝑇) + 𝛽𝑝(𝐼, 𝑇) in this work [2] 

n/a: not available  

As seen in Table 2.6, mathematical models accounting for the combine light intensity, light 

attenuation, and temperature effects on the stoichiometric coefficients representing the 

growth and non-growth associated bioproduct formation rates of photosynthetic 

microorganisms were previously not available (i.e., n/a) until realised in this PhD research 

by Anye Cho et al., [2]. The mathematical derivation, model parameter estimations, and 

prediction validations for the modelling of biohydrogen production by the photosynthetic 

bacterium Rhodopseudomonas palustris was thoroughly dealt with in Chapter of 4 of this 

PhD thesis.  

2.3.4 Light attenuation simulation in photobioreactors  

Under the special considerations of fixed abiotic factors and well mixed PBR systems, the 

photosynthetic microbial growth rate becomes a function of the transmitted local light 

intensity regimes to which the microbial cells are subjected to, inside the PBR. This 

phenomenon is characterised by several parameters including: (i) microbial cell morphology 

- cell diameter and shape, (ii) microbial cell concentration, (iii) PBR light-path length, (iv) 

cell pigment fractions, (v) bubbles if present, and (vi) the PBR wall properties 

[3,83,111,112]. Therefore, these factors must be incorporated into the mathematical models 

aimed at the robust PBR design, upscaling to industrial scale PBR systems, as the appropriate 

intensity, duration, and wavelength of light must be supplied. As a result, different numerical 

methods and sub models has been proposed in literature studies, ranging from the most 

complex (solving radiation transport equations), to the simplest (empirical Beer-Lambert 

Law and its variant). These methods are reviewed below: 

2.3.4.1 Radiation transport equation (RTE) 

The complete radiation transport equation (RTE) for an absorbing, emitting, and scattering 

medium at position 𝒓 in the direction 𝒔 is governed by Eq. (2.12). Without simplifications, 

the RTE equation is too complex to be solve together with dynamic cell growth kinetics, 

thus only a handful of literature studies have numerically solved the complete RTE in 

commercial Partial Differential Equation (PDEs) software like ANSYS-Fluent [3,31,112–

115]. Although the studies achieved superior results in comparisons to studies not solving 

RTE, the computational expense of the methodology was prohibitively high. Hence, it is 

therefore computationally infeasible to simulate larger scale PBRs (i.e., pilot plant to 

industrial scale) for dynamic optimisation. These disadvantages are the main motivations 

paving the way forward for the utilisation of sub RTE models (i.e., Two-flux approximation, 
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Beer-Lambert model, and variants) which fairly approximates the complete RTE but are 

computational efficient (i.e., Computational Fluid Dynamics (CFD) -friendly) to be 

exploited for the PBR designs, optimisation and upscaling. Hence, they are subsequently 

reviewed.  

 

𝑑𝐼𝜆(𝒓, 𝒔)

𝑑𝑠
+ (𝑎𝜆 + 𝜎𝜆,𝑠) ∙ 𝐼𝜆(𝒓, 𝒔)

=
𝑎𝜆 ∙ 𝑛

2 ∙ 𝜎 ∙ 𝑇4

𝜋
+
𝜎𝜆,𝑠
4𝜋
× ∫ 𝐼𝜆(𝒓, 𝒔𝒊) ∙ Φ𝜆 ∙ ( 𝒔𝒊, 𝒔) ∙ 𝑑Ω𝑖

4𝜋

0

 

(2.12) 

Where 𝐼𝜆(𝒓, 𝒔) represents the wavelength (𝜆) radiation intensity, in the light path direction 𝒔, 

and position vector 𝒓, wavelength dependent absorption coefficient 𝑎𝜆, light path length 𝒔, 

scattering direction 𝒔𝒊,wavelength dependent scattering coefficient 𝜎𝜆,𝑠, refractive index 𝑛, 

Stefan-Boltzmann constant 𝜎, local temperature 𝑇, and solid angle 𝑑Ω𝑖.  

2.3.4.2 Two flux approximation model  

Unlike the complete RTE model, there is a significant decrease in computational expense 

with using the two-flux approximation model proposed by Cornet et al., [116] as reported in 

Eq. (2.13). The model accounts for both the cell absorption and scattering phenomena for 

highly dense microbial cultures within PBRs and has been used in several studies where the 

cell scattering effects cannot be neglected [3,116,117]. However, experimentally measuring 

the cell mass scattering coefficient is somehow challenging and for some special scenarios 

where its contributions are minimal, that is 𝛼1 = 1 and 𝐸𝑠 = 0, Eq. (2.13) reverts into the 

classical Beer-Lambert law (i.e., Eq. (2.14)).  

 𝐼(𝑧)

𝐼0
=

4 ∙ 𝛼1
(1 + 𝛼1)2 ∙ exp𝛼2 − (1 − 𝛼1)2 ∙ exp−𝛼2

 
(2.13) 

Where 𝛼1 = √𝐸𝑎 (𝐸𝑎 + 𝐸𝑠)⁄  , 𝛼2 = 𝛼1 ∙ 𝑋𝑏 ∙ 𝑧 ∙ (𝐸𝑎 + 𝐸𝑠), with 𝐸𝑎 and 𝐸𝑠 being the mass 

absorption and scattering coefficient respectively [118].  

2.3.4.3 The Beer-Lambert law and its variants  

The Beer-lambert law remains the most widely used light transfer model in literature because 

of its simplicity and accuracy in describing the physics of light attenuation in PBRs due to 

microbial cell absorption as stated in Eq. (2.14) [3,49,65,77,83,111]. 

 𝐼(𝑧) = 𝐼0 ∙ exp
−𝐾0∙𝑍 (2.14) 

Where 𝐼(𝑧) and 𝐼0 represents the local and incident light intensity respectively, the overall 

spectral attenuation coefficient, 𝐾0 = 𝐾𝑏 ∙ 𝑋𝑏 + 𝐾𝑤, 𝐾𝑏 and 𝐾𝑤 being the microbial and 

water mass extinction coefficients while 𝑋𝑏 and 𝑧 are the microbial biomass concentration 

and light path length respectively.  
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This empirical Beer-lambert law is valid for only (i) monochromatic and collimated light, 

(ii) well-mixed and transparent medium, and (iii) no light scattering as reported by Krujatz 

et al., and Cornet et al., [67,116]. However, this is not always the case in PBRs especially 

when the cell biomass concentration exceeds 1.0 gL-1 and the light attenuation coefficient 𝐾0 

is reported by Suh-Lee [119] to deviate from linearity with cell biomass concentration. 

Hence, variants of the Beer-Lambert law have been proposed in literature with 𝐾0 having a 

hyperbolic correlation as seen in Krujatz et al. and Suh-Lee [67,119] with Eq. (2.15) whereby 

𝐾𝑚𝑎𝑥 and 𝐾 corresponds to the maximum possible attenuation and constant respectively. 

 𝐾0 =
1

𝑧
∙
𝐾𝑚𝑎𝑥 ∙ 𝑋𝑏
𝐾 + 𝑋𝑏

 (2.15) 

Even so, the model does not account for light scattering effects which is often significant in 

PBRs harbouring gas bubbles. To incorporate this into the Beer-Lambert law for sparging 

PBRs, a variant model was published in the works of Zhang et al., [105,120] as seen in Eq. 

(2.16) which accounted for light scattering by gas bubbles within the PBR. These 

modifications were found to produce satisfactory predictions for the modelling of a wide 

range of biomass concentrations in PBRs, thus adopted in Chapter 3 of this PhD thesis. 

 𝐼(𝑧) = 𝐼0 ∙ exp
(−(

3∙𝜀
𝑑
+𝜏∙𝑋𝑏)∙𝑍) (2.16) 

Where  휀 is bubble (gas phase) volume fraction, and 𝑑 is the bubble diameter (𝑚) and 𝜏 is 

the light absorption coefficient (L g-1 m-1). 

2.4 Dynamic model parameter estimation 

The constructed mathematical models as seen in Section 2.3 have several model parameters 

which must be identified for the accurate bioprocess simulations. Depending on how noisy 

the experimental data sets are, the estimation procedure is fundamentally based on the 

weighted least squares minimisation of the error between the model response and actual 

system’s response as illustrated in Eq. (2.17a) to (2.17e). These equations (i.e., Eq. (2.17a) 

to (2.17e)) can be solved with derivative-based and derivative-free methods. Among the 

methods, derivative based approaches which compute the first and second order derivatives 

of the objective function with respect to the model parameter(s) are regarded as the most 

accurate and robust since the gradient information is preserved. Therefore, derivative based 

methods have been used for several dynamic parameter estimation studies of biokinetic 

mathematical models [35,121–126] and was exploited in Chapter 4 and 5 of this thesis. The 

approach decomposes the non-linear optimisation problem into four steps, namely (i) direct 

transcription (time-discretisation or orthogonal collocation [126]) of the differential systems 

of equations into algebraic equations, (ii) formulation of the objective function into standard 
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form, (iii) formulation of the barrier function and relaxation of the inequality constraints, 

and (iv) solving the algebraic system of equations for optimality while satisfying the 

constraints via an appropriate non-linear optimisation solver (e.g. interior point solver, 

IPOPT or APOPT[126]). 

min
𝑃
Φ(𝑷) =∑ (

�̂�𝑖 − 𝑦(𝑡𝑖, 𝑷)

�̂�𝑖
)

2𝑁𝑃

𝑖=1
∙ 𝑊𝑖 

(2.17a) 

             Subject to: 

                                                       
𝑑𝒚

𝑑𝑡
= 𝑓(𝒚(𝑡), 𝑃) ,               𝑡 ∈ [𝑡0, 𝑡𝑓]   (2.17b) 

𝒚𝑙𝑏 ≤ 𝒚 ≤ 𝒚𝑢𝑏 (2.17c) 

𝑷𝑙𝑏 ≤ 𝑷 ≤ 𝑷𝑢𝑏 (2.17d) 

𝒚(𝑡0) = 𝒚0 (2.17e) 

Where 𝑷 is a vector of parameters, 𝑁𝑃 is the number of experimental data points, 𝑦 is 

dynamic model output, �̂�𝑖 is experimental data point at time instant 𝑡𝑖, 𝑊𝑖 is a vector of 

weights for data point at time instant 𝑡𝑖, 𝒚 is a vector of state variables (e.g., biomass 

concentration, substrate concentration and biohydrogen production), 𝒚𝑙𝑏, 𝒚𝑢𝑏 , 𝑷𝑙𝑏 and 𝑷𝑢𝑏 

are the lower and upper bounds for the state variables and parameters respectively, 𝒚0 is the 

initial concentration of the state variables.  

The framework is summarised in Figure 2.7 whereby collocation transcription over finite 

difference method was used since it has been reported by Nicholas et al., [127] to produce a 

significantly more accurate algebraic approximation. The implementation is carried out in 

Pyomo.DEA and executed by: (i) breaking the continuous domain (i.e., 𝑡 ∈ [𝑡0, 𝑡𝑓]) into 𝑁 −

1 finite elements, (ii) using a polynomial function of order 𝐾 + 1 to approximate the 

differential variable 𝑦(𝑡) over each profile 𝑖, (iii) defining the polynomial function using 

𝐾 collocation points as additional discretisation points within each finite element, and (iv) 

enforcing continuity at the boundaries of the finite elements over the differential variable, 

𝑦(𝑡) [127]. This is illustrated bellow (see Eqs. (2.18b) to (2.18f)) for any given derivative 

function and associated constraints in the form of Eq. (2.16a) as published by Nicholson et 

al., [127]. 

 
(
𝑑𝑦(𝑡)

𝑑𝑡
, 𝑓(𝑦(𝑡), 𝜇(𝑡))) = 0, 𝑡 ∈ [0, 𝑇] 

(2.18a) 

The application of collocation description to Eq. (2.16a) is given by: 
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 𝑑𝑦

𝑑𝑡
]
𝑡𝑖𝑗

=
1

ℎ𝑖
∑𝑦𝑖𝑗

𝑑𝑙𝑗(𝜏𝐾)

𝑑𝜏
,     𝐾 = 1,…𝐾, 𝑖 = 1,… . , 𝑁 − 1

𝐾

𝑗=0

 

(2.18b) 

 

0 = 𝑔(
𝑑𝑦

𝑑𝑡
]
𝑡𝑖𝑗

, (𝑦𝑖𝐾, 𝜇𝑖𝐾)) , 𝐾 = 1,…𝐾, 𝑖 = 1, … . , 𝑁 − 1 

(2.18c) 

 

𝑦𝑖+1, 0 =∑𝑙𝑗(1)𝑦𝑖𝑗

𝐾

𝐽=0

 , 𝑖 = 1, … . , 𝑁 − 1 

(2.18d) 

Where 𝑡𝑖𝑗 = 𝑡𝑖−1 + 𝜏𝑗ℎ𝑖 , 𝑦(𝑡𝑖𝑗) = 𝑦𝑖𝑗, and the solution to 𝑦(𝑡) is interpolated as per Eqs. 

(2.18e) and (2.18f). 

 

𝑦(𝑡) =∑𝑙𝑗(𝜏)𝑦𝑖𝑗, 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖], 𝜏 ∈ [0,1]

𝐾

𝑗=0

 

(2.18e) 

 

𝑙𝑗(𝜏) = ∏
(𝜏 − 𝜏𝐾)

(𝜏𝑗 − 𝜏𝐾)

𝐾

𝐾=0,≠𝑗

 

(2.18f) 

 

Figure 2.7: Summary of dynamic nonlinear programming (NLP) estimation framework with 

interior point solvers. 
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The resulting hundreds of thousands to millions of variables and constraints are then solved 

using interior point-based solvers such as IPOPT or APOPT. The solvers implement an 

active set strategy with a filter-based line-search that approaches the optimal solution from 

within the feasible region as illustrated in Figure 2.8.  

 

Figure 2.8: Schematic representation of the IPOPT algorithm flow sheet reproduced from 

Sandia National Laboratories [128]. 

However, whenever the constructed biokinetic models are too structurally complex, stiff, 

and multimodal in nature as seen in Chapter 3, the derivative-based approaches yield sub-

optimal solutions. To guarantee global optimality, derivative-free methods which are 

broadly classified into evolutionary-based algorithms and swarm intelligence-based 

algorithms are often exploited to solve these non-linear optimisation problems. The former 

evolutionary-based algorithms are among the oldest in literature featuring Genetic 

Algorithms [129–131], Genetic Programming, for example Cheema et al., [132], 

Evolutionary Strategy, for example Roubos et al., [133] and Evolutionary Programming, for 

example Simutis et al., [134]. More recently, the latter swarm intelligence-based algorithms 

inspired by the collective behaviour of social insect in their colonies and other animal 

societies, have been developed and are attracting the interest of many research scientist. For 

example Particle Swarm Optimisation (PSO) [135,136], Artificial Bee Colony (ABC) [137], 

Artificial Ant Colony [138], to name a few. Among them, the PSO and ABC algorithms are 

the better algorithms employing fewer control parameters but capable of finding the near-

optimal solutions of difficult optimisation problems. The reader is encouraged to revisit the 
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works of Karaboga-Akay [137] for a comprehensive literature on the individual algorithms 

as only a brief background has been provided herein. In PSO, the interacting agents are 

particles whose position correspond to a possible solution to the optimisation problem. The 

particles move in the search space upon updating their velocities (i.e., �⃑�(𝑡)) by following the 

current optimum particles (i.e., local best �⃑�(𝑡)) and changing their positions (i.e., �⃑�(𝑡)) at 

every time step t, to find the optima (i.e., global best �⃑�(𝑡)) as described in Eq.(2.19) to (2.21). 

 �⃑�(𝑡 + 1) = �⃑�(𝑡) + �⃑�(𝑡 + 1) (2.19) 

 �⃑�(𝑡 + 1) = 𝜔�⃑�(𝑡) + 𝜙1rand(0,1)(�⃑�(𝑡) − �⃑�(𝑡))

+ 𝜙2rand(0,1)(�⃑�(𝑡) − �⃑�(𝑡)) 

 

(2.20) 

 �⃑�𝑚𝑖𝑛 ≤ �⃑�(𝑡) ≤ �⃑�𝑚𝑎𝑥 (2.21) 

Whereby the parameter 𝜔, is an inertia weight to control the magnitude of the old velocity 

during the calculation of a new velocity, whereas 𝜙1 and 𝜙2 regulates the significance of 

�⃑�(𝑡) and �⃑�(𝑡) respectively, and the velocity is constraint to �⃑�𝑚𝑎𝑥 but randomly initialised 

within the bounds in Eq. (2.21) at the start.  

As per ABC, the position of a food source represents a possible solution to the optimisation 

problem meanwhile the nectar amount of that food source corresponds to the quality (fitness) 

of that solution. By using bees of three categories, namely employed bee, onlooker bee, and 

scout bee, as the interacting agents, the algorithm exploits their foraging abilities to 

memomerise local information and tests the nectar amount (fitness value) of new food 

sources (potential solutions). If the nectar amount of a food source is higher than that of the 

previous one, the bee memorises the position and forgets the old one, otherwise the positon 

of the previous one is retain in their memories. Starting by randomly generating the initial 

food source positions, 𝑥𝑖 corresponding to the number of employed bees, SN (i.e., 

𝑥𝑖(𝑖 = 1,2, … . 𝑆𝑁)), a new food source is chosen by an onlooker bee depending on the 

associated probability value, 𝑃𝑖 with that food source as defined in Eq. (2.22). To forget the 

position of old food source in the bee’s memory, new ones are explored with Eq. (2.23) 

whereby 𝜙𝑖𝑗 is a random number in the range [−1,1] and controls the production of new 

neighborhood food source around 𝑥𝑖𝑗 by comparing two food source positions (i.e., 𝑥𝑖𝑗 and 

𝑥𝑘𝑗). Once the nectar of a food source is abandoned due to no improvements after a 

predetermined number of cycles (i.e., limit for abandonment), the scout bee discovers a new 

food source for replacement with Eq. (2.24). The ABC algorithm terminates after a 

predetermined number of repeated cycles.  
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𝑃𝑖 =

𝑓𝑖𝑡𝑖
∑ 𝑓𝑖𝑡𝑛
𝑆𝑁
𝑛=1

 
(2.22) 

 𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝜙𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗) (2.23) 

 𝑥𝑖
𝑗
= 𝑥𝑚𝑖𝑛

𝑗
+ rand[0,1](𝑥𝑚𝑎𝑥

𝑗
− 𝑥𝑚𝑖𝑛

𝑗
) (2.24) 

Where 𝑓𝑖𝑡𝑖 is the fitness value of a solution 𝑖 (i.e., amount of nectar in the food source 

position 𝑖), 𝑘 ∈ {1,2, … . 𝑆𝑁} and 𝑗 ∈  {1,2, … . 𝐷} are randomly chosen indexes and D is a 

dimensional vector.  

Table 2.7: The swarm intelligence-based algorithms implemented in the hybrid PSO-ABC 

algorithm adapted from the works of Karaboga-Akay [137].  

Particle Swarm Optimisaion (PSO) Artificial Bee Colony (ABC) 

1: Initialise population  1: Initialise population  

2: Repeat  2: Repeat  

3: Calculate fitness values of 

particles  

3: Place the employed bees on 

their food sources   

4: Modify best particles in the 

swarm             

4: Place the onlooker bees on the 

food sources depending on 

their nectar amounts  

5: Choose the best particles  5: Send the scouts to the search 

area for discovering new food 

sources  

6: Calculate the velocities of 

particles  

6: Memorise the best food source 

found so far  

7:  Update the particles positions 7: Until requirements are met 

8: Until requirements are met   

 

Table 2.7 lists the pseudo codes of these swarm intelligence-based algorithms and Chapter 

3 employs a combination of these two algorithms in a parallelised hybrid PSO-ABC 

algorithm as demonstrated in Figure 2.9. The strength of the proposed hybrid PSO-ABC 

algorithm lies in its ability to penalise the premature convergence of the PSO algorithm, a 

major literature limitation as stated in the works of Diogo et al., [136] by utilising the 

explorative characteristics of ABC to further explore the search space of worse inputs, thus 

finding potentially good solutions for the model parameters of the proposed highly non-

linear multiscale photo-bioreactive transport model. 
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Figure 2.9: Hybrid hybrid PSO-ABC swarm intelligence-based algorithm.  

2.5 Mathematical modelling of photobioreactor fluid dynamics  

The mathematical modelling of photobioreactor fluid dynamics is achieved in a separate 

discipline called Computational Fluid Dynamics (CFD) which merges the theories of (i) 

fluid mechanics, (ii) mathematics (i.e., fundamental governing equations for the 

conservations of mass, momentum, and energy), and (iii) computer science (i.e., software 

tools e.g., solvers, pre and post processing utilities) as per the book of Versteeg-Malalasekera 

[139]. This methodology presents a powerful numerical tool for solving and obtaining 

approximate solutions (i.e., qualitative predictions) for complicated photobioreactor fluid 

flow, heat and mass transfer, reaction kinetics, and other related phenomena which cannot 

be done experimentally or analytically. As a result, CFD has been widely implemented in 

literature to study PBR fluid flows since satisfactory mixing conditions can minimise 

temperature and nutrient gradients, enhance gas-liquid mass transfer, maintain microbial 
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cells in free suspension (i.e., prevent sedimentation) and decrease the cell mutual shading 

phenomena. Therefore, the simulations of photobioreactor hydrodynamics, and turbulences 

are briefly reviewed herein in the subsequent two sub-chapters.  

2.5.1 Photobioreactor hydrodynamic simulations 

The commonly used methodologies for PBR hydrodynamic simulations in CFD solvers 

include (i) Volume of Fluid (VOF), (ii) Eulerian-Lagrangian, and (iii) Eulerian-Eulerian as 

reviewed by Gao et al., and Versteeg-Malalasekera [16,139]. Beginning with the VOF 

methodology, they are mainly applied for the modelling of immiscible fluid systems 

whereby there’s a defining interface separating the individual fluids, for example, between 

atmospheric air and culture media. For this reason, they are particularly attractive for the 

modelling of open PBR systems (see Figures 2.2 and 2.3) whereby a single set of momentum 

equations are solved and then the volume fraction of the individual fluids through the domain 

are tracked. Since this work focuses on closed PBR systems, the VOF method was therefore 

not reviewed further.  

Now looking at the Eulerian-Lagrangian (E-L) approach, it treats the primary phase (e.g., 

liquid/water phase) as a continuum and solves the Navier-Stokes equations, while particle 

tracking is used to solve for the secondary phase (e.g., gas phase) by tracking large number 

of gas bubbles for gas-liquid multiphase flows. The E-L approach allows for the primary and 

secondary phase interaction via the exchange of mass, momentum, and energy. Therefore, 

the E-L approach is attractive for the modelling of both open and closed PBR systems and 

has been used to study liquid-gas flows in several photobioreactors [15,28,49,140,141]. 

However, the E-L approach is limited by its prohibitively high computational expense 

associated to the computation of thousands of particle trajectories over a sufficient long time. 

For this reason, the Eulerian-Eulerian (E-E) approach is an appealing alternative due to the 

reduced computational resource requirements. Unlike E-L, the E-E approach treats both 

primary and secondary phases as interpenetrating continuums, and continuum equations are 

solved for both phases with an appropriate interaction between them. As a result, it has been 

widely implemented in the literatures [20,27,52,57,142] to obtain approximate solutions to 

the general mass (Eq. (2.25)), momentum (Eq. (2.26)), and species transport equations (Eq. 

(2.27)) as stated below: 

 𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘) + ∇ ∙ (𝛼𝑘𝜌𝑘𝒖𝑘) = 𝑆𝑝𝑘 

(2.25) 
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 𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘𝒖𝑘) + ∇ ∙ (𝛼𝑘𝜌𝑘𝒖𝑘𝒖𝑘)

= −𝛼𝑘∇𝑝 + ∇ ∙ (𝑟𝑘𝜇𝑘,𝑒 [𝛻𝒖𝑘 + (𝛻𝒖𝑘)
𝑇 −

2

3
I(𝛻 ∙ 𝒖𝑘)])

+ 𝜌𝑘𝛼𝑘𝒈 + 𝑭𝑙𝑘 

 

(2.26) 

 𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘𝑌𝑘

𝑖) + 𝛻 ∙ (𝛼𝑘𝜌𝑘𝒖𝑘𝑌𝑘
𝑖) = −𝛻 ∙ 𝛼𝑱𝑘

𝑖 + 𝑆𝑝𝑘
𝑖  

(2.27) 

Whereby the subscript 𝑘 = 𝑆, 𝐿, 𝐺 stands for solid, liquid and gas phases for multiphase 

simulations. The 𝛼𝑘, 𝜌𝑘, and 𝒖𝑘 terms correspond to the phase volume fraction, density, and 

velocity, respectively. 𝑆𝑝𝑘 is the source term mass transfer rate from phase 𝑝 to phase 𝑘. The 

pressure and gravity force are represented as 𝑝, 𝒈 respectively. 𝜇𝑘,𝑒 is the effective viscosity 

which is a combination of molecular viscosity, 𝜇𝑘,𝑚 and turbulent viscosity 𝜇𝑘,𝑇 as reported 

by Gao et al., and Luo-Al-Dahhan [27,54] in Eq. (2.28). The interphase momentum forces 

are lumped in 𝑭𝑙𝑘 meanwhile 𝑌𝑘
𝑖 is the mass fraction of the conversed species 𝑖. These 

interphase momentum forces can be decomposed into at least five independent interphase 

forces as presented by Gao et al., [27,56] in Eq. (2.29) corresponding to: drag (𝑭𝐷), lift (𝑭𝐿), 

virtual mass (𝑭𝑉𝑀), wall lubrication (𝑭𝑊), and turbulent dispersion (𝑭𝑇), respectively. 

Among them, the drag effects are often more dominating in the literature as reported by Gao 

et al., and Luo-Al-Dahhan [27,54] and are accounted for with Eq. (2.30). 

 𝜇𝑘,𝑒𝑓𝑓 = 𝜇𝑘,𝐿𝑎𝑚 +  𝜇𝑘,𝑇𝑢𝑟𝑏 (2.28) 

 𝑭𝑙𝐾 = 𝑭𝐷 + 𝑭𝐿 + 𝑭𝑉𝑀 + 𝑭𝑊 + 𝑭𝑇 (2.29) 

 
𝑭𝑙,𝑘 = 𝑭𝐷 =

3

4

𝐶𝐷
𝑑𝑏
𝑟𝐺𝜌𝐿|𝒖𝐺 − 𝒖𝐿|(𝒖𝐺 − 𝒖𝐿) 

(2.30) 

In Eq. (2.30), 𝑑𝑏 is the gas bubble diameter while 𝐶𝐷 is the drag coefficient required to 

calculate the drag 𝑭𝐷. The Schiller-Naumann drag model (i.e., Eq. (2.31)) is among the 

widely used correlations in multiphase studies in bubble column PBRs as indicated by Luo-

Al-Dahhan [54] and was adopted in Chapter 3 of this PhD thesis.  

 
𝐶𝐷 =

24

𝑅𝑒𝑏
(1 + 0.15𝑅𝑒𝑏

0.678) 
(2.31) 

Where the bubble Reynolds number 𝑅𝑒𝑏, is defined as Eq. (2.32) 

 
𝑅𝑒𝑏 =

𝜌𝐿|𝒖𝐺 − 𝒖𝐿|𝑑𝑏
𝜇𝐿

 
(2.32) 

The fluid flow and mixing regimes within these photobioreactors usually vary from laminar, 

to transitional, and turbulent regimes depending on the Reynolds number, 𝑅𝑒 (𝒖𝐿 𝑣⁄  

whereby 𝒖 and 𝐿 are the mean flow’s velocity and characteristic length of scale, and 𝑣 is the 
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kinematic viscosity) as defined in Versteeg-Malalasekera [139]. For low 𝑅𝑒 (< 2,000), the 

flow is laminar, with well-ordered movements and smooth sliding layers of fluid over other 

layers. Hence, the changes of velocity and pressure fields are smooth in both time and space 

thereby leading to a cancellation of the turbulent viscosity term (i.e.,  𝜇𝑘,𝑇 = 0.0) as reported 

by Lapin et al., [143] in Eq. (2.28). This is further exploited in Chapter 5 for modelling the 

vertical tubular photobioreactor’s single phase flow (i.e., 𝑘 = 𝐿) with Eqs. (2.25) to (2.26) 

and scalar transport with Eq. (2.27).  

However, in high 𝑅𝑒 (> 2,000), the flow develops chaotic and stochastic movements which 

are characterised by eddies and swirls. Under such transitional and turbulent regimes, the 

velocity and pressure fields changes rapidly with space and/or time leading to a non-zero 

turbulent viscosity term (i.e., 𝜇𝑘,𝑇 ≠ 0.0) in Eq. (2.28). As consequence of these fluctuations, 

the flow fields experience additional stresses, the so-called Reynolds stresses as well-defined 

by Versteeg-Malalasekera [139]. This is derived by firstly decomposing the instantaneous 

fields as a sum of the mean and the fluctuating components, the former is denoted by an 

overbar ͞ and the latter by ʹ in Eqs. (2.33a) and (2.33b) in the so-called Reynolds 

decomposition as detailed by Versteeg-Malalasekera [139]. This is then embedded into the 

instantaneous continuity and momentum equations, followed by taking time average which 

then yields the time-averaged Navier-Stokes equations (i.e., Eqs. (2.34) to (2.35)) whereby 

the additional term in the momentum equation corresponds to the Reynolds stresses 

(i.e.,−𝜌�́�𝑖�́�𝑖̅̅ ̅̅ ̅̅  ) [139]. These represent the turbulent frictions in the flow which are caused by 

the mixing of the turbulent eddies. The modelling strategies to close the problem is therefore 

discussed below in the next sub-chapter.  

 𝒖𝑖 = �̅�𝑖 + �́�𝑖 (2.33a) 

 𝜌 = �̅� + �́� (2.33b) 

 𝜕𝜌

𝜕𝑡
+
𝜕

𝜕𝑥𝑖
(𝜌�̅�𝑖) = 0 

 (2.34) 

 𝜕

𝜕𝑡
(𝜌�̅�𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌�̅�𝑖�̅�𝑖)

= −
𝜕�̅�

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕�̅�𝑖
𝜕𝑥𝑗

+
𝜕�̅�𝑖
𝜕𝑥𝑖

−
2

3
𝛿𝑖𝑗
𝜕�̅�𝑚
𝜕𝑥𝑚

)]

+
𝜕

𝜕𝑥𝑗
(−𝜌�́�𝑖�́�𝑖̅̅ ̅̅ ̅̅ ) 

 

 

 (2.35) 

Where 𝑖=1, 2, 3 are the coordinate components.  
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2.5.2 Photobioreactor turbulence simulations 

The Reynolds Averaged Navier-Stokes (RANS) as presented above considers the time-

averaged properties of the flow as satisfactory and is often applied for most photobioreactor 

turbulent computations. This is due to superior computational cost saving in comparison to 

the literature counterparts: Numerical Simulations (DNS) and Large Eddy Simulation (LES) 

as reported by Versteeg-Malalasekera [139]. DNS approach resolves all the various scales 

of turbulence (i.e., big and small eddies) by directly solving the instantaneous Navier-Stokes 

equations meanwhile the LES approach resolves the behaviour of the larger eddies and then 

model the effects of the smaller ones [139]. As a result, the computational demand for DNS 

is prohibitively high whereas the computations and volume of storage for LES are still very 

large, thus they are unattractive for most photobioreactor turbulence computations. 

However, the appearance of extra terms in Eq. (2.35) of the RANS technique due to the 

interactions between various turbulent fluctuations are to be modelled with additional 

transport equations. Depending on the number of additional transport equations, the RANS 

turbulence models are classified into a family of models as tabulated in Table 2.8.  

Table 2.8: Classification of turbulence calculation methodologies adapted from Versteeg-

Malalasekera [139]. 

Number of additional transport equations Name of model 

0 Mixing length 

1 Spalart-Allmaras 

2 

2 

2 

𝑘 − 휀 

𝑘 − 𝜔 

SST 

7 Reynolds stress 

A recent review by Gao et al., [16] showed the family of models with 2 additional transport 

equations as the most widely used models for photobioreactor turbulence studies. Within the 

category, 𝑘 − 휀 and 𝑘 − 𝜔 tops the list but 𝑘 − 휀 features in many more studies because of 

its simplicity and lesser computational resource requirements [16] and therefore of interest 

to this PhD research. As Chapters 3 utilises the RANS equations and 𝑘 − 휀 model for 

modelling the respective fluid flows and turbulence of a Flat-plate PBR, the formulations of 

𝑘 − 휀 equations are therefore revisited herein. The model introduces the turbulent kinetic 

energy, 𝐾 as a sum of the three fluctuating velocity components as defined in Eq. (2.36) and 

then models the turbulent kinetic energy (Eq. (2.37) with its dissipation rate, 휀 (Eq. (2.38)) 
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as the two respective additional transport equations. This is then embedded into the turbulent 

viscosity 𝜇𝑘,𝑇 in Eq. (2.28) via in Eq. (2.39). 

 
𝐾 = √(�́�2̅̅̅̅ + �́�2̅̅ ̅ + �́�2̅̅ ̅̅ ) 

(2.36) 

 𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘𝐾𝑘) + ∇ ∙ (𝛼𝑘𝜌𝑘𝒖𝑘𝐾𝑘) = ∇ ∙ (𝛼𝑘 (𝜇𝑘,𝐿𝑎𝑚 +

 𝜇𝑘,𝑇𝑢𝑟𝑏
𝜎𝐾

) ∙ ∇𝐾𝑘) 
 

(2.37) 

 +𝛼𝑘(𝑃𝑘 − 𝜌𝑘휀𝐾) 

 𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘휀𝐾) + ∇ ∙ (𝛼𝑘𝜌𝑘𝒖𝑘휀𝐾) = ∇ ∙ (𝛼𝑘 (𝜇𝑘,𝐿𝑎𝑚 +

 𝜇𝑘,𝑇𝑢𝑟𝑏
휀𝐾

) ∙ ∇휀𝐾) 
 

 

(2.38)  +𝛼𝑘
휀𝐾
𝐾𝑘
(𝐶𝜀1𝑃𝑘 − 𝐶𝜀2𝜌𝑘휀𝐾) 

 
 𝜇𝑘,𝑇𝑢𝑟𝑏 = 𝐶𝜇𝜌𝑘 (

𝐾𝑘
2

휀𝐾
) 

(2.39) 

Where 𝐶𝜇, 𝐶𝜀1, 𝐶𝜀2, 𝜎𝐾, and 휀𝐾, are constants (see Table 2.9) meanwhile 𝑃𝑘 is the turbulence 

production term for phase k. 

Table 2.9: Values of the constants in the 𝑘 − 휀 model 

𝐶𝜇 𝐶𝜀1 𝐶𝜀2 𝜎𝐾 휀𝐾 Reference 

0.09 1.44 1.92 1.0 1.3 [20,49,144,145] 

 

2.6 Multi-scale modelling of photobioreactor fluid dynamics and 

bioreactions   

The (i) nanoscopic (or atomic) (~10-9 m), (ii) microscopic (~ 10-6 m), (iii) mesoscopic (~ 10-

4 m), and (iv) macroscopic (~10-2 m) scales are the four distinguished scales in the context 

of numerical simulations as reviewed by Jebahi et al., [146]. Among these scales, multi-scale 

mathematical modelling of photobioreactors considers the engineering problem at the 

macroscopic scale (e.g., hydrodynamics, nutrients, cell growth and bioproduct formation, 

just to highlight a few) while considering the complexity of the microscopic scale (e.g., 

intracellular metabolic reactions, fluxes of light intensity and heat, just to highlight a few) 

with minimum simulation costs. A recent review of the comprehensive multi-scale coupling 

methodologies for photobioreactors by Gao et al., [16] categorised these methodologies into 

three main approaches: (i) Circulation time approach, (ii) Lagrangian simulation approach, 

and (iii) Eulerian simulation approach.  



55 
 

2.6.1 Circulation time approach 

This strategy is different from the others as no hydrodynamic solver is used, instead the fluid 

flow patterns are assumed a priori. For instance, Eq. (2.40) was utilised by Wu and Merchuk 

[25] to describe the radial position of microbial cells within a bubble column photobioreactor 

as a cosine function of time. This was then coupled with the Beer-Lambert law to calculate 

the microbial cell light exposure history and then biomass growth within the PBR column. 

Similarly, the same authors applied this approach to approximate the liquid velocities of each 

region (riser, downcomer and separator) of an internal loop airlift PBR to calculate the algae 

biomass growth [24]. Even though satisfactory results were achieved in comparison with 

experimental data, the definition of circulation time was reported in the investigations of 

Gao et al., [16] to be physically unrealistic and difficult to estimate in photobioreactors with 

complex geometries and flow dynamics. Therefore, this approach is not suitable for the 

design applications and scale-up studies of industrial scale-PBRs. Consequently, the 

circulation time approach was not further reviewed  

 
𝑟 =

𝑅

2
(1 − 𝑐𝑜𝑠

2𝜋

𝑇
𝑡) 

(2.40) 

Where 𝑅 is the column radius and 𝑇 is the cycle time as obtained from a surface renewal 

model by Wu and Merchuk [25]. 

2.6.2 Lagrangian simulation approach 

Just like the circulation time approach which focuses on the computation of microbial cell 

light exposure history, the Lagrangian simulation approach performs the same task with 

additional consideration such as (i) influences of the local fluid flow velocities on the particle 

position via Newton’s law of motions, and (ii) incorporation of other interfacial forces such 

as drag, buoyancy, virtual mass, and lift. For example, Eq. (2.41) as defined in the works of 

Sato et al., [141] captures the drag force and additional particle acceleration as represented 

in the 𝑥-direction of a cartesian coordinate system.  

 𝑑𝒖𝑝

𝑑𝑡
= 𝑭𝑫 ∙ (𝒖 − 𝒖𝑝) +

𝒈𝑥 ∙ (𝜌𝑝 − 𝜌)

𝜌𝑝
+ 𝑭𝒙 

(2.41) 

whereby 𝒖𝑝 and 𝜌𝑝 are the particle velocity and density 𝑭𝑫 ∙ (𝒖 − 𝒖𝑝) is the drag force per 

unit particle mass and 𝑭𝒙 is an additional acceleration (force/unit particle mass) term [141].  

As a result, the Lagrangian simulation approach has been widely used for both two and three 

phase Eulerian-Eulerian-Lagrangian simulations [15,28,49,141,147]. Although this 

approach produces satisfactory results when compared to experimental measurements, its 

major limitation arose from the enormous computational expense associated to the 
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computation of thousands of particle trajectories over a sufficient long time as reviewed by 

Gao et al., [16]. This is done to obtain statistically meaningful information for the cell light 

exposure history, but the high associated cost hinders their application for large scale PBR 

optimisation studies. Therefore, Lagrangian simulation approach was not adopted in this 

PhD research.  

2.6.3 Eulerian simulation approach   

The Eulerian simulation approach enables the decomposition of the comprehensive multi-

scale coupling into a two-stage simulation: (i) computation of the velocity fields and 

turbulence distribution for the multiphase system till convergence, and (ii) using the 

hydrodynamic information from (i), together with light transport to compute the volume 

average biomass productivity of the Photobioreactor. This approach has been implemented 

by Gao et al., and Anye Cho et al., [27,52]. The major benefit of this approach is that a larger 

time step can be used for the second step (i.e., (ii)) simulations (up to 24 hrs in the paper of 

Amini et al., [142]) thereby minimising the computational expense over extended periods of 

simulation time. For this reason, the Eulerian simulation approach has been widely applied 

for several studies involving the coupling of macroscale (i.e., hydrodynamic) to models of 

similar scales (e.g., Type II biokinetic models [20,52,142]) or other scales. The other scale 

models features microscale biokinetic models like the Type III biokinetic models as per the 

works of Gao et al., [16,27,28,56] and Nauha and Aloaeus [57,148].   

Among the hydrodynamic and Type III biokinetic model coupling studies, only few (less 

than 5 to the author’s knowledge) features in literature. This reflects the difficulties of the 

implementation as these studies were realised within the last 7 years despite the fast pace 

development of this research area. The implementation formulates the specie transports 

equation (i.e., Eq. (2.27)) for each of the PSU states. By so doing, each PSU state is assigned 

convection and diffusion terms as illustrated in Eqs. (2.42) to (2.43) and then, the dry 

biomass concentration is externally computed with Eq. (2.45) as per the works of Gao et al., 

[27,56]. When applied to simulate the cultivation of the algae Chlorella vulgaris at different 

rotations per minutes (rpm) in a taylor vortex PBR, the approach yielded satisfactory results 

in comparison to 5 days experimental measured biomass concentration. However, the multi-

scale coupling strategy was interpreted herein as (i) lacking theoretical support, and (ii) 

computationally expensive for large scale PBR simulation and optimisation. The former (i.e., 

(i)) assignment of convection and diffusion terms to the PSU states implies that they are in 

free suspension within photobioreactor and are outside of the microbial cell walls which 

defies biological laws. The latter (i.e., ii) external computations of dry biomass concentration 

implies no direct coupling between intracellular kinetics and fluid dynamics, which results 
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in a high computational cost for the valid smaller time step sizes, thereby severely limiting 

the applications in PBR design, optimisation and scale up.  

 𝜕

𝜕𝑡
(𝛼𝑠𝜌𝑠𝑥1) + ∇ ∙ (𝛼𝑠𝜌𝑠𝒖𝑠𝑥1)

= −∇ ∙ (𝛼𝑠𝜌𝑠𝐷𝑒∇𝑥1) + 𝛼𝑠𝜌𝑠(−𝛼𝐼𝑥1 + 𝛾𝑥2 + 𝜎𝑥3) 

 

(2.42) 

 𝜕

𝜕𝑡
(𝛼𝑠𝜌𝑠𝑥2) + ∇ ∙ (𝛼𝑠𝜌𝑠𝒖𝑠𝑥2)

= −∇ ∙ (𝛼𝑠𝜌𝑠𝐷𝑒∇𝑥2) + 𝛼𝑠𝜌𝑠(𝛼𝐼𝑥1 − 𝛾𝑥2 − 𝛽𝑥2) 

 

(2.43) 

 𝐷𝑒 = 𝐷𝑠,𝐿 +
𝜇𝑡
𝜌𝑠𝑆𝑐𝑡

 (2.44) 

 𝑑𝑋

𝑑𝑡
= �̅� ∙ 𝑋 

(2.45) 

Where 𝐷𝑒 is the effective turbulent diffusivity of the solid phase (microalgae), 𝐷𝑠,𝐿 is the 

larmina difussivity of the solid phase, 𝑆𝑐𝑡 is the turbulent schimdt number and �̅� is the mean 

specific growth rate.  

These simulation cost challenges motivated the development of a robust multi-scale coupling 

strategy with significant computational cost savings in Chapters 3 and 4 of this PhD thesis. 

For this, two advanced modelling techniques, namely (i) acceleration of growth kinetic, and 

(ii) parallel computing, are exploited within this PhD thesis to accelerate the simulation time 

without compromising the solution quality. The former technique considers the biokinetic 

model in Eq. (2.46) producing the typical sigmoid shape of bioprocesses in Figure 2.10 A) 

as scalable by two of its model parameters (i.e., 𝜇𝑚 and 𝑢𝑑). Therefore, by scaling these 

parameters with a factor (e.g., by 8640 as proposed in our works Anye Cho et al. [52]), the 

entire simulated bioprocess kinetics would be accelerated from a 6 days (144 hrs) simulation 

into a 60 s simulation without compromising the sigmoid shape as demonstrated in Figure 

2.10 B). This technique presents a massive simulation cost reduction of the orders of months 

since the stage two Eulerian CFD photo-biokinetic simulation will be now performed for 60 

s instead of the previously 6 days (144 hrs) computations. In addition, the latter parallel 

computing technique splits the computational domain into multiple compartments and 

assigns compute nodes to each of them. Depending on the available computational 

processing power (e.g., 10 logical processors computer) and the user allocated number of 

parallel computing processors (e.g., 8 processors), the 8 compartments will be solving 

simultaneously meanwhile the results are assembled and communicated to the host node 

which outputs the results. This presents a massive cost reduction compared to solving with 

serial mode whereby the entire domain is solved as just one compartment.  
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𝑑𝑋

𝑑𝑡
= 𝜇𝑚 ∙

1

𝑧
∙ (∫

𝐼

𝑘𝑠 +
𝐼
1 +

𝐼2

𝑘𝑖

𝑑𝑧

𝐿

0

) ∙ 𝑋 − 𝑢𝑑 ∙ 𝑋
2 

 

(2.46) 

 

Figure 2.10: Accelerated growth kinetic strategy: A) 6 days (144 hrs) simulation turned into 

a B) 60 s simulations without compromising the sigmoid shape growth profile.  

Therefore, the combination of accelerated growth kinetic and parallel computing techniques 

would provide simulation cost savings surpassing the current literature attainable standards 

as thoroughly discussed in Chapters 3 and 4.    

2.7 Summary of literature review and PhD objectives  

The literature review chapter firstly begins in Section 2.1 with the fundamentals of microbial 

photosynthesis and biohydrogen production by reviewing the involved multi-steps reactions, 

enzymes, and time scales. With references to microalgae (including cyanobacteria) and 

photosynthetic bacteria as exemplary photosynthetic microorganisms, the order of time 

scales were shown to range from milliseconds to days. In addition, the differing growth 

modes and hydrogen production metabolisms were also covered. In Section 2.2, the 

specialised piece of cultivating bioreactor equipment, which requires light supply and 

therefore termed photo-bioreactors, was reviewed. At this point, a case for choosing closed 

photobioreactors over open ones for this PhD research was elucidated as well as the 

upscaling bottlenecks. Thereafter, the literature mathematical models incorporating the 

influences of intensity, light attenuation, light/dark cycles, and temperature on biomass 

growth and secondary metabolite production were thoroughly reviewed in Section 2.3. These 

literature models were reported to (i) overestimate the impacts of light-inhibition on the local 

photosynthetic rate with Type II models, and (ii) exhibit multi-scale coupling challenges 

with Type III models, to hydrodynamic solvers. These were the identified gabs to be firstly 

addressed in addition to combining the complicated influences of light intensity, light 
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attenuation, light/dark cycles, and temperature effects to both the growth and non-growth 

associated bioproduct formations (e.g., biohydrogen) kinetics presented.  

For this, the various thesis Chapters addressing the literature limitations with new 

constructed mathematical models were indicated. However, these constructed models have 

several model parameters to be identified and Section 2.4 was therefore focused on the 

dynamic parameter estimation methodologies. Both derivative-based and derivative-free 

methods were briefly reviewed for handling stiff and highly nonlinear problems. Once the 

model parameters are identified, the proposed models can now perform accurate bioprocess 

simulations without a hydrodynamic solver. As mixing conditions can minimise temperature 

and nutrient gradients, prevent cell sedimentation, and enhance gas-liquid mass transfer, just 

to highlight a few benefits, Section 2.5 therefore reviewed the literature hydrodynamic and 

turbulence models, as well as their implementation methodologies in CFD solvers. To couple 

the hydrodynamic and turbulence simulations to bioreaction kinetics, Section 2.6 reviewed 

the literature multiscale coupling approaches: (i) Circulation time simulation, (i) Lagrangian 

simulation, and (iii) Eulerian simulation. Among them, the latter two-steps Eulerian 

simulation approach with reduced computational resource requirements was adopted. Also, 

Section 2.6 pointed out the theoretical inconsistencies and computational costly coupling of 

Type III models to photobioreactor hydrodynamics thereby signalling the advent of new 

robust coupling approaches. This led to the brief review of accelerated growth kinetic and 

parallel computing techniques implemented within this PhD research for the reduction of 

simulation cost.  

The presented summary pointed out some pertinent challenges to be addressed which aligns 

with the objectives of this PhD research. Therefore, the formulated objectives in Section 1.3 

are restated below in context of the above-mentioned summary. 

1. To incorporate the influence of macro-scale hydrodynamics into the original micro-

scale three-state photosynthetic factory unit proposed by Eilers and Peeters [29] in 

1988. By theoretical derivations, the resulting Type III model will be structurally 

reduced to Type II model without compromising its multi-scale simulation accuracy. 

This should address the (i) literature reported overestimation of light-inhibition 

impact on the local photosynthetic rate with previous Type II models, and (ii) multi-

scale coupling challenges of Type III models to hydrodynamic solvers. Also, the 

model’s flexibility will enable the coupling of temperature effects to the complicated 

influences of intensity, light attenuation, light/dark cycles on biomass growth and 

secondary metabolite (e.g., biohydrogen) production as flagged above in Section 2.3.  
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2. To exploit Computational Fluid Dynamic (CFD) in building a PDE solver that 

simulates the bioreactor fluid dynamics, light transmission, photosynthetic cell 

growth and secondary metabolite production (e.g., biohydrogen) at different 

photobioreactor scales and configurations. Firstly, both derivative-based algorithms 

and stochastic swarm intelligence-based algorithms shall be investigated for the 

model’s dynamic parameter estimation. This is to handle the stiffness, and 

nonlinearities of the constructed photo-bioreactive models from objective 1, thus 

enabling the accurate bioprocess simulations outside of the CFD solver. Secondly, 

the Eulerian- Eulerian cost-efficient simulation approach together with RANS and 

𝑘 − 휀 turbulence models will be employed. This will robustly couple the simulations 

of bioreactor fluid dynamics, light transport and photo-bioreactive models within the 

CFD solver. At this point, the CFD simulation cost of this PhD research levels with 

literature attained standards, and now paves the way forward for further cost 

improvements.  

3. To investigate the computational efficiency of the multi-scale Eulerian CFD solver 

and propose efficient simulation strategies for enabling the realisation of large-scale 

bioprocess optimisation. Despite the reported simulation cost reduction from months 

to a few days with the two steps Eulerian-Eulerian approach, biomass growth is 

mostly the only literature simulated state variable. In the simulation of additional 

state variables like substrate consumption and biohydrogen production herein, the 

cost is expected to scale up to a few weeks or months, thus hindering large-scale 

bioprocess simulation and optimisation. Therefore, advanced modelling techniques 

(e.g., (i) acceleration of growth kinetic, (ii) parallel computing, or a combination 

thereof) will be investigated to accelerate the simulation time without compromising 

the solution quality to attain superior cost savings compared to the current literature 

CFD models. 

4. To identify the primary limiting factors affecting the design, control and scale-up of 

different bioreactor configurations and then optimise the operating conditions subject 

to profitability and environment concerns. For this, several in-silico experiments will 

be designed to test formulated hypotheses quickly, such as the influences of photo-

bioreaction model parameter uncertainties under hydrodynamic coupling via Monte 

Carlo simulations, which is previously unanswered in literature. This will bridge the 

literature gab of unavailable superior cost-efficient CFD integrated biokinetic 

solvers. 
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5. To establish external collaboration with other international groups and leverage the 

collaborative network to generate experimental data. Although CFD solvers returns 

qualitative and quantitative predictions of velocity, biomass, substrate (e.g., glycerol) 

and biohydrogen concentration contours, the results cannot be trusted without 

validation data collected using accurate experimental methods like Laser Doppler 

Anemometry (LDA), High-Performance Liquid Chromatography (HPC), and Gas 

Chromatography (GC).   
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Chapter 3 Synergising Biomass Growth Kinetics and Transport Mechanisms to Simulate 

Light/Dark Cycle Effects on Photo-production Systems 

Synergising Biomass Growth Kinetics and Transport 

Mechanisms to Simulate Light/Dark Cycle Effects on Photo-

production Systems 

3.1 Preface  

 

Figure 3.1: Graphical abstract illustrating the integration of light/dark cycles into biomass 

growth kinetics via new parameter, the effective light coefficient, 𝜂 without the expensive 

external computation of cell light exposure history. 

Light attenuation, a phenomenon responsible for the decreasing light transmission within 

photobioreactors due to cellular absorption and scattering, is a key challenge limiting the 

upscaling of photobioreactors for sustainable bio-productions. Under severe light 

attenuation, microbial cells in the photobioreactor’s front-facing and interior sections are 

exposed to higher (photic zones) and lower (dark zones) light intensities respectively. If too 

long, the microbial cells are prone to photoinhibition and photolimitation consequentially 

affecting the overall biomass growth. However, intense culture mixing can reduce the 

microbial cells’ residence time in the photic and dark zones, thus preventing the 
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photosynthetic proteins from over-reduction and over-oxidation thereby enhancing biomass 

growth.  

Therefore, Chapter 3 focuses on the development of the first mechanistic model which 

directly integrates the consequential effects of light/dark cycles into biomass growth kinetics 

without the expensive external computation of cell light exposure history. Through 

theoretical derivation based on the intracellular reaction kinetics from the original three-state 

PSU model by Eilers and Peeters [29], modifications were made by embedding a new 

parameter, the effective light coefficient to account for the effects of culture mixing on the 

macro-scale biomass growth kinetics. To estimate the value of the proposed effective light 

coefficient, a new cost-efficient multiscale photobioreactive transport modelling strategy 

was developed to couple fluid dynamics with biomass growth kinetics and light 

transmission. From the simulation results, an original nonlinear correlation was proposed to 

link the effective light coefficient with photobioreactor gas inflow rate, enabling its control 

and optimisation to alleviate light attenuation and maintain a high biomass growth rate, this 

has not been done before.  

The published paper presented herein as Chapter 3 is structured as follows: Section 3.1 

introduces the study; Section 3.2 presents the methodologies for mechanistic model 

development, in-silico design of experiments, and parameter estimation; Section 3.3 then 

presents the in-silico validations results, discussions for correlating the effective light 

coefficient with photobioreactor gas inflow rate, and strategy the photobioreactor’s optimal 

control; finally, Section 3.4 concludes the current study.  
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Abstract 

Light attenuation is a primary challenge limiting the upscaling of photobioreactors for 

sustainable bio-production. One key to this challenge, is to model and optimise the light/dark 

cycles so that cells within the dark region can be efficiently transferred to the light region 

for photosynthesis. Therefore, this study proposes the first mechanistic model to integrate 

the light/dark cycle effects into biomass growth kinetics. This model was initially 

constructed through theoretical derivation based on the intracellular reaction kinetics, and 

was subsequently modified by embedding a new parameter, effective light coefficient, to 

account for the effects of culture mixing. To generate in silico process data, a new multiscale 

reactive transport modelling strategy was developed to couple fluid dynamics with biomass 

growth kinetics and light transmission. By comparing against previous experimental and 

computational studies, the multiscale model shows to be of high accuracy. Based on its 

simulation result, an original correlation was proposed to link effective light coefficient with 

photobioreactor gas inflow rate; this has not been done before. The impact of this study is 

that by using the proposed mechanistic model and correlation, we can easily control and 

optimise photobioreactor gas inflow rates to alleviate light attenuation and maintain a high 

biomass growth rate.  

 

Keywords: light/dark cycle; multiscale modelling; photobioreactor design; kinetic 

modelling; biomass cultivation. 
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3.1 Introduction  

Bio-renewable products ranging from biofuels to more valuable components such as 

pigments and antioxidants have placed the cultivation of photosynthetic microorganisms, for 

example, microalgae and cyanobacteria in photobioreactors (PBRs) at the spotlight of 

biotechnological research. However, the economic viability of this biotechnology is hurdled 

by its high capital, operational and maintenance cost due to difficulties in designing and 

upscaling of PBRs [44,64,144,149]. In an attempt to bridge this gap, constructing advanced 

mathematical models to analyse the underlying process plays a vital role. At present, 

different types of models integrating microscopic and/or macroscopic biokinetics with light 

transmission and/or fluid dynamics have been proposed to assess the performance of PBRs.  

On the one hand, macroscopic models that combine the Monod-type empirical biokinetic 

equations with light transmission functions as viewed in Socher et al., [78] have been 

previously used to optimise the geometry of pilot-scale PBRs by Ali et al., [20] and analyse 

biomass productivity in different sizes of open raceway ponds as seen in Amini et al., and 

Park-Li [142,150]. However, effects of light/dark cycles on biomass growth and reactor 

design have been barely included. Light/dark cycles are induced by fluid dynamics and light 

attenuation. A short light/dark cycle caused by an intense culture mixing can reduce cells’ 

residence time in the photic zone near the irradiated PBR surface and the dark zone in the 

PBR interior, thus preventing photosynthetic proteins from over-reduction and over-

oxidation for algae and cyanobacteria species as reported by Janssen et al., and Luo-Al 

Dahhan [111,151]. This improves the light utilisation efficiency and microbial 

photosynthetic activity [97,152]. Although there have been a few studies trying to simulate 

this phenomenon like Li et al., and Pruvost et al., [14,15], they did not integrate light/dark 

cycles into the biokinetic models. Instead, external computation of cell light exposure history 

was performed separately and then averaged to solve the cell growth kinetic model. This 

simplification may introduce large errors especially when being applied to large scale PBRs.  

On the other hand, microscopic kinetic models derived based on photosynthetic units (PSUs) 

have also been embedded into computational fluid dynamics (CFD) along with light 

transport models to simulate spatio-temporal changes of intracellular PSU states and culture 

biomass growth [27,56,153]. Although these models have achieved satisfactory results when 

compared with experimental data, their underlying coupling strategy was computationally 

expensive and lacks theoretical support. This is because the PSU models are primarily 

developed to simulate intracellular photosynthetic reactions without the inclusion of 

macroscale biomass concentration changes as interpreted from the works of Gao et al., and 

Papacek et al., [101,154]. Thus, when embedded into the CFD model, this multiscale reactive 
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transport model is only valid over a small time period when biomass concentration changes 

are negligible. As a result, the model can only be run within a small time step to estimate the 

spatial ratio between different PSU states under the current light intensity distribution. This 

ratio is then used to estimate a volume averaged growth rate to calculate biomass 

concentration. The updated concentration is finally used to calculate local intensity 

distribution at the next time step. Hence, the lack of direct coupling between intracellular 

kinetics and fluid dynamics causes a high computational cost which severely limits the 

application of this approach for PBR design.  

Overall, at the meso/macroscale, most biokinetic models assume that fluid dynamics and 

light transmission are not correlated. Despite the fact that fluid dynamics directly affect the 

frequency of light/dark cycles, there is lack of accurate models integrating fluid dynamics 

into cell growth kinetics. Furthermore, theoretical connections between macroscale 

empirical biomass growth kinetics (e.g., Monod-type models) and intracellular 

photosynthetic reaction kinetics (e.g., PSU models) are still missing. It is unclear how the 

parameters in an empirical model are linked to the metabolic reactions. Thus, it is 

challenging to modify the model structure when trying to incorporate more 

physical/biological information.  

Therefore, to address these challenges, the present study proposes a new physical model 

linking the synergistic effects of light/dark cycles and fluid dynamics into biomass growth 

kinetics. This model is proposed based on a theoretical derivation using intracellular PSU 

reaction mechanisms. The remainder of this paper is structured as follows: the biokinetic 

model derivation and CFD coupling strategy for PBR simulation are presented in Section 

3.2. New correlations between gas inflow rate (indicative of fluid dynamics) and light related 

kinetic parameters along with their practical application are discussed in Section 3.3, 

followed by the final conclusion and suggestions for future work. 

 

3.2 Methodology  

3.2.1 Derivation of a kinetic model for biomass growth 

The intracellular kinetics occurring at the simplest functional unit of the photosynthetic 

apparatus (PSU) are used here. These PSUs are assume to occur within three hypothetical 

states as visualised in Figure 3.2a: (i) an open state 𝑥1, where the PSUs are inactive but move 

upon activation via the absorption of photons; (ii) a closed state 𝑥2, where PSUs are light 

saturated thereby using the absorbed energy to begin photo-production (photochemical 

quenching), and (iii) an inhibited state 𝑥3, where the PSUs are temporarily damaged under 
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high light intensities but can be recovered to the closed state after cellular self-reparation. 

This state transitioning kinetics is described by Eqs. (3.1) to (3.4). 

 𝑑𝑥1
𝑑𝑡
= −𝑟1 + 𝑟2 = −𝛼𝐼𝑥1 + 𝛾𝑥2 

(3.1) 

 𝑑𝑥2
𝑑𝑡

= 𝑟1 − 𝑟2 − 𝑟3 + 𝑟4 = 𝛼𝐼𝑥1 − 𝛾𝑥2 − 𝛽𝐼𝑥2 + 𝜎𝑥3 
(3.2) 

 𝑑𝑥3
𝑑𝑡

= 𝑟4 − 𝑟3 = 𝛽𝐼𝑥2 − 𝜎𝑥3 
(3.3) 

 𝑥1 + 𝑥2 + 𝑥3 = 1 (3.4) 

where 𝛼 and 𝛽 are reaction rate constants for light dependent reactions from 𝑥1 to 𝑥2 and 

from 𝑥2 to 𝑥3, respectively, and 𝛾 and 𝜎 are reaction rate constants for light independent 

reactions from 𝑥2 to 𝑥1 and from 𝑥3 to 𝑥2, respectively.  

 

Figure 3.2: Schematic illustrations of (a) three state intracellular kinetic model (with light 

inhibition) inspired from Han and Nikolaou scheme [95,98] and (b) Mixing induced 

alternation of L/D cycles. (𝛼, 𝛽) and (𝛾, 𝜎) corresponds to the light and dark reaction 

coefficients respectively, 𝐼 is photon, tI and tD are the duration of light and dark exposures 

in each light/dark cycle, 𝑅𝑒 is Reynolds number induced mixing. 

From the literature by Wu-Merchuk [101], the rates of these reactions are in the order of 

seconds to minutes. For example, for red marine alga Porphyridium sp., the doubling time 

of 𝑟1 to 𝑟4 is 1.79 s, 4.75 s, 99 min and 24 min, respectively. Compared to the growth rate 

of microalgae and cyanobacteria of which the average doubling time is 26 hours as reported 

by Liu et al., [155] and 7-12 hours as reported by Bernstein [156], respectively, it can be 

assumed that these intracellular reactions are at a pseudo-equilibrium condition (i.e. 
𝑑𝑥1

𝑑𝑡
=

𝑑𝑥2

𝑑𝑡
=
𝑑𝑥3

𝑑𝑡
= 0) when estimating biomass growth. Biomass growth is exclusively dependent 

on the closed state, 𝑥2, given that only cells at this state have received enough solar energy 

for their growth as adopted by Solimeno et al., [157]. Therefore, based on Eqs. (3.1) to (3.4) 

a macroscopic biomass growth kinetic model can be written as Eq. (3.5):  
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 𝑑𝑋

𝑑𝑡
= 𝜇𝑚(𝑥2𝑋) = 𝜇𝑚

𝐼

𝛾
𝛼 +

𝐼
1 +

𝐼2
𝜎
𝛽

𝑋 = 𝜇𝑚
𝐼

𝑘𝑠 + 𝐼 +
𝐼2

𝑘𝑖

𝑋 
(3.5) 

where 𝜇 is the maximum specific growth rate (h-1), 𝑋 is biomass concentration (g L-1), 𝑘𝑠 is 

light saturation term (μmol m-2 s-1), and 𝑘𝑖 is light inhibition term (μmol m-2 s-1). 

Eq. (3.5) can be exactly presented as the commonly used Aiba model which accounts for 

photo-limitation, photo-saturation, and photo-inhibition as formulated by Aiba in 1982 

[158]. In spite of the wide application of this model, 𝑘𝑠 and 𝑘𝑖 are often considered as 

empirical terms, and their respective biological meaning has never been clarified. This 

derivation, therefore, filled this gap. It is seen that these terms represent the ratios of different 

intracellular reaction rate constants. To validate this, 𝑘𝑠 =
0.1460

0.001935
= 75.5 µmol m-2 s-1, and 

 𝑘𝑖 =
0.0004796

5.7848×10−7
= 829.1 µmol m-2 s-1 according to the intracellular reaction rate constants 

for red marine alga Porphyridium sp., as determined by Wu-Merchuk [101]. These values 

of 𝑘𝑠 and 𝑘𝑖 falls within the respective literature ranges of 70 µmol m-2 s-1 to 250 µmol m-2 

s-1 and 457 µmol m-2 s-1 to 2760 µmol m-2 s-1 for algae and cyanobacteria as reported by 

Zhang et al., [105] using the empirical Aiba model. 

Noticeably, Eq. (3.5) does not include light attenuation, a phenomenon responsible for the 

decrease in light transmission within PBRs due to cellular absorption and scattering. This 

impacts the PBR’s local light availability as more is absorbed by cells in the front (light 

zone) while cells in the rear (dark zone) are light deprived. Under such conditions, cells are 

exposed to light/dark cycles which limits biomass growth. The frequency of these light/dark 

cycles are largely influenced by culture mixing which is dictated by fluid dynamics. As 

illustrated in Figure 3.2b, at each position in a PBR with a specific local light intensity 𝐼𝑙, 

cells can move back and forth due to culture mixing, thus being exposed to either a ‘lighter’ 

region where they can absorb more light or a ‘darker’ region where less solar energy resource 

is available. Thus, the actual light intensity that cells experienced during their growth could 

be significantly different from the local light intensity 𝐼𝑙. To account for this effect, in this 

work, we defined a new coefficient, effective light coefficient 𝜂, to estimate the ‘effective’ 

local light intensity (𝜂 ∙ 𝐼𝑙) based on engineering principles. Therefore, Eqs. (3.1) to (3.3) are 

modified to Eqs. (3.6) to (3.8): 

 𝑑𝑥1
𝑑𝑡
= −𝑟1 + 𝑟2 = −𝛼(𝐼𝜂)𝑥1 + 𝛾𝑥2 

(3.6) 

 𝑑𝑥2
𝑑𝑡

= 𝑟1 − 𝑟2 − 𝑟3 + 𝑟4 = 𝛼(𝐼𝜂)𝑥1 − 𝛾𝑥2 − 𝛽(𝐼𝜂)𝑥2 + 𝜎𝑥3 
(3.7) 
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 𝑑𝑥3
𝑑𝑡

= 𝑟4 − 𝑟3 = 𝛽(𝐼𝜂)𝑥2 − 𝜎𝑥3 
(3.8) 

Solving Eqs. (3.6) to (3.8) in the same manner results in a new biokinetic model taking into 

account light/dark cycle as Eqs. (3.9). The effective light coefficient depends on the culture 

mixing which is utterly determined by the mixing energy if the PBR configuration is fixed. 

In practice, as mixing energy is difficult to be measure directly but is closely linked to the 

gas inflow rate for many PBRs (if gas inflow rate is used for culture mixing), it is more 

convenient to link gas inflow rate with the effective light coefficient.  Hence, by changing 

the gas inflow rate, we can control biomass growth rate during biomass cultivation. The 

correlation between 𝜂 and gas inflow rate will be determined in Section 3.3.4. In principle, 

if culture mixing in a PBR is carried out using other approaches, then gas inflow rate can be 

replaced by other parameters such as impeller rotation rate.  

 

 𝑑𝑋

𝑑𝑡
= 𝜇𝑚

𝐼

𝑘𝑠 (
1
𝜂) +

𝐼
1 +

𝐼2

𝑘𝑖 (
1
𝜂)

𝑋 
(3.9) 

In order to estimate 𝜂 and investigate how it is correlated with the PBR fluid dynamics, two 

in-silico case studies are presented in the following sections.  

 

3.2.2 Introduction to the in-silico PBRs 

The Flat-Plate PBRs (FP-PBRs) simulated in this study have dimensions of 100 mm × 150 

mm × 25 mm (length, height and thickness). Two scenarios, scenarios 1 (see Figure. 3.3a): 

one centrally positioned sparger, and scenarios 2 (see Figure 3.3b): two equidistantly 

positioned spargers, were investigated since the geometric positioning of aeration (sparger) 

inlets in FP-PBR significantly contributes to the culture flow pattern and modulating the 

light/dark cycles as visualised in the paper of Yang et al., [159]. The air flowing through the 

square shape sparger of size 2 mm × 2 mm has an average bubble diameter, 𝑑𝑏 of 3 mm as 

utilised by Huang et al., [55] operating under five different gas inflow rates for each scenario: 

scenario 1 ( 0.1 m s-1, 0.5 m s-1, 1.0 m s-1, 1.5 m s-1 and 2.0 m s-1 ) and Scenario 2 ( 0.25 m 

s-1, 0.5 m s-1, 0.52 m s-1, 0.75 m s-1, and 1.0 m s-1 ) respectively, so that total volumetric gas 

flowrate is same in the two scenarios. The gas inflow rates selected here correspond to a 

typical range of superficial gas velocities used in PBR studies [55,159,160]. The PBRs were 

unidirectionally illuminated with fluorescent lamp source same as Wu-Merchuk [101] at an 

incident light intensity of 300 μmol m-2 s-1. This intensity is often used for microalgae 

experimental cultivations, for example: Li et al., and Rio-chonana et al., [14,121]. Nutrient 
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concentration (i.e., CO2) was assumed to be sufficient and therefore their effects are not 

included in the model. 

 

 

Figure 3.3: Schematic illustration of flat-plate PBR (FP-PBR) under investigation with (a) 

Scenario 1, and (b) Scenario 2. 

 

3.2.3. Computational fluid dynamics simulation 

Coupling CFD with biokinetic model for process data generation remains a challenge as 

discussed in the introduction. To solve this issue, a new approach was proposed here to save 

computational cost while guaranteeing a high simulation accuracy.  

3.2.3.1 Selection of the gas-liquid multiphase model  

A two-phase fluid (water and air) model assuming that the microbial cells follow the water 

phase without interference is applied for the multiphase PBR system using the classical 

Eulerian-Eulerian approach as indicated by Papacek et al., [62]. This results to the continuity 

and momentum Eqs. (3.10) and (3.11), respectively.  

 𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘) + ∇(𝛼𝑘𝜌𝑘𝒖𝑘) = 0 , (𝑘 = 𝐿, 𝐺) 

(3.10) 

 𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘𝒖𝑘) + ∇(𝛼𝑘𝜌𝑘𝒖𝑘𝒖𝑘) = −𝛼𝑘∇𝑝 + 𝛼𝑘𝜌𝑘𝒈 

 

(3.11) 

 
+∇(𝛼𝑘𝜇𝑘,𝑒 [𝛻𝒖𝑘 + (𝛻𝒖𝑘)

𝑇 −
2

3
I(𝛻𝒖𝑘)]) + 𝑭𝑙,𝑘 , (𝑘 = 𝐿, 𝐺) 

where subscript 𝑘 = 𝐿, 𝐺 stands for liquid or gas phase, 𝛼𝑘, 𝜌𝑘, 𝒖𝑘 corresponds to the phase 

volume fraction, density, and velocity vector, respectively. The pressure and gravitational 

vector are denoted as 𝑝, 𝒈 respectively. 𝜇𝑘,𝑒 is effective viscosity which includes both 

molecular viscosity, 𝜇𝑘,𝑚 and turbulent viscosity 𝜇𝑘,𝑇.  𝜇𝑘,𝑇 is modelled using the standard 

𝑘 − 휀 turbulence model [161]. I is the unit tensor. Drag effect being more dominant is the 
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only interphase momentum force 𝑭𝑙,𝑘 which is considered herein. It was modelled with the 

Schiller-Naumann drag model as it is widely used in bubble column PBRs, for example: 

Nauha-Alopaeus [57]. Detailed formulations of the standard 𝑘 − 휀 turbulent model and the 

Schiller-Naumann drag model can be found in Rampure et al., [162] and Luo-Al Dahhan 

[111].  

3.2.3.2 Rigorous biomass transfer model   

To account for both light limitation and inhibition, the three-PSU-state kinetic model is used 

in this case. The mass transport model for biomass concentration accounting for both time 

and spatial dimensions is therefore expressed as Eq. (3.12). The first term on the left stands 

for biomass accumulation, the second term on the left denotes biomass convection, the first 

term on the right denotes biomass diffusion, and the second term on the right represents 

biomass growth. Attention must be paid to the fact that Eq. (3.12) does not need to include 

the effective light coefficient 𝜂, as this equation captures the instantaneous biomass growth 

at each time and each location inside a PBR. In addition, a decay term is also added in Eq. 

(3.12) in same fashion as Rio-chanona et al., [121]. Practically, the decay rate constant 𝜇𝑑 is 

a function of culture shear stress which is also dependent on fluid dynamics. As the current 

study only investigates biomass growth, the decay rate constant is set fixed. This assumption 

is found to be true as long as the shear stress does not exceed a threshold, beneath which 

shear stress has negligible effect on cell decay [163].  

 𝜕𝑋

𝜕𝑡
+ 𝛻(𝒖𝐿𝑋) = 𝛻 ((𝐷𝐿 +

 𝜇𝑘,𝑇
𝜌𝐿𝑆𝑐𝑡

)𝛻𝑋)

+ (𝜇𝑚
𝐼𝑙

𝑘𝑠 + 𝐼𝑙 +
𝐼𝑙
𝑘𝑖

𝑋 − 𝜇𝑑𝑋
2) 

 

 

(3.12) 

where 𝒖𝐿 and 𝜌𝐿 are the culture velocity and density (using water density), respectively, 𝐷𝐿 

= 5.5 × 10−10 m2 s-1 is biomass viscosity, 𝑆𝑐𝑡 = 0.7 is turbulent Schmidt number taken from 

Gao et al., [27],  𝜇𝑘,𝑇 is turbulent viscosity. Values of biological kinetic parameters are 

modified from literature for demonstration purpose: 𝜇𝑚 = 0.225 h-1 is maximum specific 

growth rate, 𝜇𝑑 = 6.87 × 10
−3 L g-1 h-1 is the death rate constant taken from Rio-chanona 

et al., and Zhang et al.,  [105,121], 𝑘𝑠 =
𝛾

𝛼
= 82.84 µmol m-2 s-1, and  𝑘𝑖 =

𝜎

𝛽
=

910.21 µmol m-2 s-1 [101], 𝐼𝑙 is the local light intensity calculated by Eq. (3.13).  

 
𝐼𝑙 = 𝐼0 ∙ exp [− (

3 ∙ 휀𝐺
𝑑𝑏

+ 𝜏 ∙ 𝑋) 𝑧] 
(3.13) 

Eq. (3.13) is a variant Beer-Lambert’s law accounting for both light absorption and gas 

bubble light scattering formulated by Zhang et al., [105]. In this work, 𝐼0 = 300 µmol m-2 s-
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1 is the incident light intensity, 휀𝐺 is the gas volume fraction, 𝑑𝑏 =  0.003 m is gas bubble 

diameter, 𝜏 = 126 m2 g-1 is the light absorption coefficient, and 𝑧 is the light penetration 

length.  

3.2.3.3 Multiscale model coupling strategy 

In this work, CFD simulations were executed using ANSYS FLUENT 19.2. The 3D PBR 

geometries were meshed with structured grid amounting to 62,500 volumes after grid test 

with time step sizes. Higher resolution areas were identified to be the PBR bottom section 

with bubble inlets and the PBR top sections with reverse flow of the liquid phase due to the 

presence of a free surface (pressure outlet/degassing zone). Therefore, additional grid 

refinement was conducted in these areas in comparison to the PBR centre section. 

To couple the biomass transport model (Eq. (3.12)) with the hydrodynamics model (Eqs. 

(3.10) to (3.11)), a two-step approach is proposed. Initially, a time step size of 0.005 s and a 

simulation time of 60 s were used to solve Eqs. (3.10) to (3.11). Upon convergence, Eq. 

(3.12) was solved with a time step size of 0.005 s for 100 s, with biomass growth and death 

rates being accelerated by 8640 times such that the 100-second simulation result is 

representative of the process behaviour for 10 days of biomass cultivation. This 

approximation is attributed to the fact that fluid dynamics converges more rapidly (order of 

seconds as reported Papacek et al., [62]) than cell growth (e.g., doubling time at an order of 

days as reported by Benstein and Liu et al., [155,156]). Even by accelerating biomass growth 

kinetics up to an order of minutes or hours, cells would have still experienced the light/dark 

cycles hundreds of times. Hence, the effect of light/dark cycles on biomass growth will be 

similar to that estimated using the true biomass growth parameters (where cells experienced 

light/dark cycles over thousands of times). Through this approximation, the computational 

time cost can be greatly reduced. 

To couple the biomass transport model with the light attenuation model (Eq. (3.13)), a User 

Defined Memory for recording the accumulation of biomass was inserted into the first term 

on the left of Eq. (3.12) and was then passed into Eq. (3.13) at every iteration during the 

simulation. All User Defined Functions were written in C programming language, compiled, 

and inserted into the CFD solver. In this way, biomass growth kinetics and transport, light 

transmission, and fluid dynamics can be fully coupled and solved simultaneously. 

 

3.2.4 Parameter estimation of the dynamic model for the effective light 

coefficient 

Once data is generated from the rigorous multiscale model, it is used to estimate 𝜂 in Eq. 

(3.9). The effective light coefficient represents the effect of light/dark cycles on the biomass 
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growth kinetics, and this equation can be served as a mechanistic surrogate model to enable 

efficient process simulation and real-time control. To include light attenuation and cell 

decay, Eq. (3.9) is modified as Eq. (3.14), which can be further approximated as Eq. (3.15) 

to eliminate the spatial dimension effect (light transmission) just like Zhang et al., [105]. In 

this way, overall biomass concentration inside a PBR as well as its correlation with light/dark 

cycles can be calculated. 
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(3.15) 

where 𝐿 is the PBR width (total light transmission length).  

However, Eq. (3.15) is a highly nonlinear ordinary differential equation, imposing great 

obstacles when performing parameter estimation to calculate the value of 𝜂 under different 

gas inflow rate using gradient based optimisation algorithms. Therefore, a stochastic hybrid 

optimisation algorithm was used to estimate the value of 𝜂. This hybrid algorithm utilises 

the particle swarm optimisation (PSO) and the artificial bee colony (ABC) algorithms in 

parallel. The hybrid algorithm is initialised with a discrete number of inputs, which are 

evaluated with the objective function (negative log-likelihood) and sorted into different 

groups. A specified percentage (50% in this study) of the best inputs are used by the PSO, 

with the rest used by the ABC as per Karaboga-Akay [137]. This process is repeated over a 

specified number of iterations (10 iterations in this study), and the best input found is 

returned. The advantage of this hybrid algorithm is that it uses the explorative characteristics 

of ABC to explore the search space of the worse inputs (thus finding potentially good 

solutions) and uses the exploitative characteristics of PSO reported by Kennedy et al., [135] 

to exploit the search space of the better inputs. The computational time to attain the solution 

is 2.5 min in this study. 
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3.3 Results and discussion  

3.3.1 Computational cost analysis 

All the CFD simulations were executed on a workstation. The time cost for each test case 

was 12.3 hours and amounted to 111.4 hours for all the cases investigated in this study. This 

presented a significant reduction in computational cost given that the small time step size of 

0.005 s was maintained in both stage one (converging the fluid dynamic equations) and stage 

two (solving the biomass transport model). Solving steps one and two under the same time 

step size ensures numerical stability and retains essential information of light/dark cycles for 

PBR simulation. Hence, it is advantageous in comparison to the previous studies whereby 

the time step size for stage two is increased dramatically such as from 0.01 s to 3,600 s over 

3 weeks of cultivation by the authors Amini et al., [142] and from 0.0005 s to 10 s over 120 

hours of cultivation by Gao et al., [27].  

 

3.3.2 In silico experimental data validation 

To examine the current multiscale modelling strategy, several properties were analysed to 

compare with the literature observations. Figure 3.4 a-c show typical instantaneous water 

displacement for Scenario 1 displayed on a cross sectional plane (x-y) at z = 0.0125 m, for 

better visualisation. It is seen that a dynamic vertical motion from the bottom (sparger) to 

the centre top PBR sections with randomly oscillating plume was observed similar to that of 

Huang et al., Yang et al., and Yu et al., [55,159,160]. This was intepreted to be generated by 

the raising plume of air-volume fractions which induces vortical structures in the liduid 

phase thereby displacing it chaotically. In addition, as seen in Figure 3.4 d-f, the Turbulence 

Kinetic Energy (TKE) distribution were found to be well correlated with the chaotic mixing 

patterns induced by the rising plume. Hence, regions with high TKE values within the flow 

filed correlated well with the appearance of bubbles in the FP-PBR which is in agreement 

with the results of other researchers, for example Yang et al., Yu et al., and Zhao etal., 

[159,160,164].  

To check for the flow regime induced by the rising bubbles within the FP-PBR, a Reynolds 

number 𝑅𝑒 is defined using Eq. (3.16) which was reportedly used by Pfleger et al., [161] for 

3D multiphase CFD simulation of FP-PBR: 

 
𝑅𝑒 =

𝜌𝐿 ∙ 𝒖𝑔 ∙ 𝑍

𝜇𝐿
 

(3.16) 

In this study, the value of 𝑅𝑒 is 10,366 for the lowest gas inflow rate and 15,192 for the 

highest gas inflow rate, thus indicating turbulent flow regimes and validating the selection 

of the multiphase turbulent flow model (Eq. (3.11)). This supports the chaotic velocity flow 
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pattern observed inside the FP-PBR as visualised in Figure 3.4 a-c. The same analysis was 

also carried out to evaluate the data accuracy in Scenario 2, thus not repeated here.   

 

Figure 3.4: Scenario 1 contour plots of water flow patterns ((a), (b), (c)) and Turbulence 

Kinetic Energy (TKE) ((d), (e), (f)) distribution inside the FP-PBR for three test cases: (0.1 

m s-1), (0.5 m s-1), and (1.0 m s-1). 

3.3.3 Effect of gas inflow rate on biomass growth  

Only biomass growth for the first 144 hours of cultivation is presented since there was no 

observable change in biomass concentration after this time (stationary phase). Figure 3.5a 

shows the biomass evolution-time profiles of all test cases in Scenario 1. These profiles are 

observed to attain a saturation biomass concentration ranging from 4.2 g L-1 to 5.0 g L-1 

which is realistic for a batch photo-production process operated under good aeration 

conditions [56,164,165]. The maximum biomass concentration increased by 16.7 % from a 

gas inflow rate of 0.1 m s-1 to 2.0 m s-1. This was expected as increasing gas inflow rate leads 

to a better culture mixing and a more frequent light/dark cycle for cells to absorb solar 

energy, in alignment with previous experimental observations by Grobbelaar, Janssen et al., 

and Richmond [151,165,166]. This can be further proved given that the liquid phase velocity 

along the light transmission direction increases by 307.7% with the increasing gas inflow 

rate from 0.1 m s-1 to 2.0 m s-1 (see Figure 3.5b), shortening the light/dark cycles as reported 
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in Huang et al., [55]. The increase of biomass concentration under different cases also proves 

the accuracy of the multiscale model coupling strategy proposed in this study.  

Most importantly, it is expected that maximum biomass concentration will only increase 

mildly when increasing the gas inflow rate as observed in Zhao et al., [164]. This is because 

biomass growth kinetics does not directly depend on fluid dynamics, but culture mixing can 

affect the light exposure history that cells experienced during their growth. As a result, an 

intensified culture mixing will not increase biomass concentration as dramatic as what 

observed when changing other key factors such as temperature, pH, or nutrient supply. 

Finally, Scenario 2 also yields a similar conclusion as Scenario 1, thus not presented here. 

 

Figure 3.5: Scenario 1 CFD prediction for (a) biomass evolution with time, and (b) biomass 

growth dependence on liquid velocity along the light transmission direction 

3.3.4 Correlating the effective light coefficient with gas inflow rate 

The estimated values of effective light coefficient, 𝜂 for all test cases in Scenario 1 and 2 are 

summarised in Table 3.1 while the fitting results are presented in Figure 3.6. It is observed 

that the model fits all the experimental data, indicating that the currently proposed biokinetic 

model (Eq. (3.15)) can well simulate the effect of light/dark cycles on biomass growth.  

Specifically, two main observations were drawn from Table 3.1. Firstly, the value of 𝜂 is 

greater than 1 in both Scenario 1 and 2. This suggests a higher “effective” local light intensity 

as (𝜂 ∙ 𝐼𝑙)  > 𝐼𝑙, implying that cells suspended in the dark region in fact have absorbed more 

light for their growth due to culture mixing, and that purely using a light attention equation 

to calculate a PBR’s ‘apparent’ dark region may overestimate the effect of light attenuation 

on biomass growth kinetics and PBR upscaling. This greater effective local light intensity 

also suggests a better light utilisation efficiency since culture mixing also prevents cells 

exposed within the light zone from being over-oxidised due to the long-term absorption of 

excessive photons (e.g., photo-inhibition). 
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Table 3.1: Estimated values of the effective light coefficient, 𝜂 

Scenario 1 Scenario 2 

Test case effective light 

coefficient, 𝜂 

Test case effective light 

coefficient, 𝜂 

 0.1 m s-1 1.395 0.25 m s-1 1.315 

0.5 m s-1 1.560 0.5 m s-1 1.338 

1.0 m s-1 1.969 0.52 m s-1 1.412 

1.5 m s-1 2.711 0.75 m s-1 1.580 

2.0 m s-1 3.625 1.0 m s-1 2.457 

 

 

Figure 3.6: Effective light coefficient estimation results for all test cases in scenario 1. Line: 

model fitting results, points in-silico process data. Scenario 2 showed similar fitting, thus 

not repeated here.  

Secondly, the effective light coefficient  𝜂 increases with an increasing gas inflow rate in 

each scenarios: a 159.8% increase from 0.1 m s-1 to 2.0 m s-1 in Scenario 1 and an 86.9% 
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increase from 0.25 m s-1 to 1.0 m s-1 in Scenario 2. This implies that 𝜂 is positively correlated 

with an increased liquid phase velocity and a shortened light/dark cycle, both induced by the 

increasing gas inflow rate. When comparing the two scenarios, it is seen that the correlation 

between 𝜂 and gas inflow rate is also dependent on the PBR geometry. This is understandable 

as fluid dynamics are influenced by the reactor configuration. 

In theory, it is more appropriate to correlate the effective light coefficient with Re. However, 

as it is difficult to directly calculate Re for a multiphase system, in practice it is more 

convenient to correlate the effective light coefficient with gas inflow rate which 

fundamentally governs the PBR fluid dynamics. Therefore, Eqs. (3.17) and (3.18) are 

proposed from the fitting results of Figure 7a and b to correlate effective light coefficient 𝜂 

and gas inflow rate 𝑢 for the two scenarios respectively.  

 
𝜂 = 0.606 ∙ (

𝑢

𝑢0
)
1.890

+ 1.387 
(3.17) 

 
𝜂 = 1.128 ∙ (

𝑢

𝑢0
)
5.095

+ 1.328 
(3.18) 

where 𝑢0 = 1 m s-1 is the reference gas inflow rate. 

 

Figure 3.7: Curve fitting result of the correlation between effective light coefficient η and 

gas inflow rate u for (a) Scenario 1 and (b) Scenario 2. Line: model fitting results, points: 

process data.   

From Eqs. (3.17) and (3.18) and Figure 3.7, three important observations are drawn. Firstly, 

the correlations between 𝜂 and 𝑢 follow a power law expression in both scenarios. This is 

similar to most correlations used in the field of transport phenomena. For example, power 

laws are commonly used to correlate mass transfer coefficient with gas inflow rate for gas-

liquid reactor simulation as seen in Fujasova et al., and Muocha et al., [167,168], and the 

power index is determined by the momentum and mass transfer behaviours at a molecular 

level. Physically speaking, the effective light coefficient represents the significance of local 
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light transmission (local photons mass transfer) and microbial cells mass transfer, thus the 

correlation between effective light coefficient and gas inflow rate should obey a power law 

expression. Secondly, parameters in the two correlations are different as they are dependent 

on the PBR geometry and power input. This is also similar to the mass transfer coefficient 

in a gas-liquid reactor as the power index corresponding to gas inflow rate and power input 

can vary over twice if the impeller configuration is different as interpreted from Fujasova et 

al., [167]. Thus, calibration must be carried out when applying the current correlation to 

other PBRs (e.g., different configurations, scale and sizes, and operational parameters like 

light intensity, bubble diameter). Finally, although they are not estimated in this study, there 

exists an upper bound of gas inflow rate beyond which the correlation will be invalid. This 

is either attributed to the fact that an increasing gas inflow rate will cause a higher shear 

stress which in turn leads to cell decay as investigated by Leupold et al., [163], or the fact 

that the culture mixing pattern has been changed. Therefore, future work should also pay 

attention to the valid range of this correlation. 

 

3.3.5 Controlling PBR operation 

Increasing incident light intensity (offsetting light attenuation) and enhancing culture mixing 

(shortening light/dark cycles) are two strategies to facilitate biomass growth in a PBR as 

reported by Schulze et al., [169]. Although model based optimal control of light intensity 

has been reported previously by Del Rio-chanona et al., and Koller et al., [170,171], optimal 

control of gas inflow rate to enhance culture mixing has never been achieved as such a model 

was never proposed before. 

Therefore, by using Eq. (3.15) it is now possible address this problem. In fact, based on this 

model, the maximum attainable biomass growth rate for varying light intensity occurs at an 

optimal effective light coefficient 𝜂𝑜𝑝𝑡 = √
𝑘𝑠𝑘𝑖

𝐼𝑜𝑝𝑡
2  (see Appendix A). During biomass 

cultivation, as biomass concentration keeps increasing, the average light intensity 𝐼𝑎𝑣𝑒 inside 

a PBR becomes time-dependent. To ensure a maximum biomass growth rate, the optimal 

gas inflow rate can be controlled by using the power law correlation (e.g., Eq. (3.17)) with a 

given 𝜂𝑜𝑝𝑡 = √
𝑘𝑠𝑘𝑖

𝐼𝑎𝑣𝑒
2  . Biomass concentration and average light intensity can be directly 

calculated using Eqs. (3.15) and (3.13), respectively. In this way, cells can always maintain 

a high growth rate and the presence of dark region will not significantly restrict biomass 

growth. 
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3.4 Conclusion  

In this study, the biological meaning of 𝑘𝑠 and 𝑘𝑖 in the Aiba model are clarified. Based on 

this knowledge, an effective light coefficient was proposed and embedded into a 

macroscopic biokinetic model to account for the effect of light/dark cycles on biomass 

growth. To estimate its value, a novel multiscale modelling strategy was developed to greatly 

reduce the computational time cost, meanwhile guaranteeing high simulation accuracy. Most 

importantly, the physical insight, practical applicability, and current limitations of the 

proposed effective light coefficient were thoroughly discussed. By correlating the effective 

light coefficient with PBR gas inflow rate, it is now feasible to optimally control the gas 

inflow rate at each time to maximise cell growth and mitigate light attenuation for biomass 

cultivation. Considering the early stage of this research and simplifications (e.g., sufficient 

nutrient supply, constant culture physical properties, fixed PBR configurations) used for 

theoretical derivation, more thorough investigation will be conducted in the future work to 

generalise the applicability of current work for PBR design, upscaling and real-time control. 
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Appendix A: derivation of the optimal effective light 

coefficient, 𝜼𝒐𝒑𝒕   

Using Eq. (3.9), the optimal effective light coefficient, 𝜂𝑜𝑝𝑡 is identified where the biomass 

growth rate is at the optimum , 𝜇𝑜𝑝𝑡 (i.e., 
d𝜇

d𝐼
= 0 at 𝐼𝑜𝑝𝑡)  
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(A2) 
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𝜂𝑜𝑝𝑡 = √
𝑘𝑠𝑘𝑖

𝐼𝑜𝑝𝑡
2  

(A5) 

In Eq. (A5), 𝐼𝑜𝑝𝑡 is calculated with Eq. (3.13) by integrating over the PBR’s light path 

length, 𝑧  resulting in the following equation: 

 
 𝐼𝑜𝑝𝑡 = 𝐼𝑎𝑣𝑒 =

𝐼0

(
3 ∙ 휀𝐺
𝑑𝑏

+ 𝜏 ∙ 𝑋) ∙ 𝑍
(1 − 𝑒𝑥𝑝 [−(

3 ∙ 휀𝐺
𝑑𝑏

+ 𝜏 ∙ 𝑋) ∙ 𝑍]) 
(A6) 
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Chapter 4 Dynamic Modelling of Rhodopseudomonas palustris Biohydrogen Production: 

Perturbation Analysis and Photobioreactor Upscaling 

Dynamic Modelling of Rhodopseudomonas palustris 

Biohydrogen Production: Perturbation Analysis and 

Photobioreactor Upscaling 

4.1 Preface  

 

Figure 4.1: Graphical abstract illustrating the model-based across the scale and upscaling 

prediction capabilities. The smaller scale schott bottle-based photobioreactor is mixed by 

magnetic stirrers meanwhile the larger scale tubular-based photobioreactor is mixed by 

peristaltic pumps.  

Biohydrogen is a promising alternative to fossil-based fuels (circa 80% world’s energy 

consumption) meant for providing clean and renewable energy which is usable for: (i) 

transportation, (ii) electricity generation, and (iii) heating [1]. Among the several 

photosynthetic microorganisms which can photosynthesise biohydrogen, the versatile 

metabolic repertoire of purple-non-sulfur photosynthetic bacterium Rhodopseudomonas 

palustris (referred to as R. palustris thereafter) promotes the continuous synthesis in all 

growth phases, lasting significantly longer than microalgae and cyanobacteria counterparts, 

thus a promising candidate for upscaling. However, developing biokinetic models for R. 
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palustris under the complicated influences of (i) light intensity, (ii) light attenuation and (iii) 

temperature, and within different photobioreactors (PBRs) configurations and scales poses 

a significant challenge.  

Therefore, Chapter 4 investigates R. palustris’s growth and biohydrogen production in two 

types of PBRs: schott bottle-based (smaller scale ~ 500 mL) and vertical tubular-based 

(larger scale ~ 1 mL) as seen in Figure 4.1. From this, a mechanistic model unifying (i) to 

(iii) for the first time in R. palustris and for any other photosynthetic bacteria was proposed. 

Perturbation analysis was exploited to identify critical parameters influencing the model’s 

accuracy, and two parameters: the effective light coefficient (contribution from Chapter 3) 

and the biohydrogen enhancement coefficient (Chapter 4’s contribution), both linked to the 

PBR’s transport phenomena were theoretically derived and put forward for recalibrations 

during PBR scale-up predictions. As well, the systematic approach was valid for when 

making predictions across different PBR configurations. 

The comprehensive details of the published paper as presented in Chapter 4 is structured as 

follows: Section 4.1 introduces the study; Section 4.2 presents the experimental setup and 

methodologies for biokinetic model construction, model parameter estimation, perturbation 

analyses and upscaling predictions; Section 4.3 then presents the model validation results 

and discussions for R. palustris’s higher biohydrogen production yields and upscaling 

predictions; finally, Section 4.4 concludes the current study.  
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Abstract 

Developing kinetic models to simulate Rhodopseudomonas palustris biohydrogen 

production within different configurations of photobioreactors (PBRs) poses a significant 

challenge. In this study, two types of PBRs: schott bottle-based and vertical tubular-based, 

were investigated, and three original contributions are presented. Firstly, a mechanistic 

model was constructed to simulate effects of light intensity, light attenuation, and 

temperature on biomass growth and biohydrogen synthesis, previously not unified for 

photosynthetic bacteria. Secondly, perturbation analysis was exploited to identify critical 

parameters influencing the accuracy of the model. Thirdly, two parameters: effective light 

coefficient and biohydrogen enhancement coefficient, both linked to the PBR’s transport 

phenomena were proposed for process scale-up prediction. By comparing against 

experimental data, the model’s accuracy was confirmed to be high. Moreover, the 

enhancement of biohydrogen production rate by improved culture mixing and gas removal 

was also described mechanistically. This provides important advances for future efficient 

design of PBRs and process online optimisation. 

Keywords: biohydrogen production; purple non-sulphur bacteria; photobioreactor; kinetic 

modelling; upscaling.   
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4.1 Introduction  

Biohydrogen is one of the biofuels identified as a promising alternative to fossil-based fuels 

(circa 80% world’s energy consumption) for providing clean and renewable energy meant 

for: (i) transportation, (ii) electricity generation, and (iii) heating [1]. The reasons include 

but are not limited to: (i) liberating only pure water and energy during combustion with 

oxygen, (ii) high energy yield per unit mass (122 KJ g-1), approximately 2 to 3 times greater 

than that of hydrocarbons (e.g. petrol) [172,173], (iii) ambient synthesis conditions which 

require relatively low energy input, and (iv) able to use various waste materials which 

facilitate waste recycling in the process of bioremediation [172–174].  

Although biohydrogen can be produced by several species of photosynthetic microorganism 

for example microalga Chlamydomonas reinhardtii [68,175,176] and cyanobacterium 

Cyanothece sp. [1,177,178], the purple-non-sulfur photosynthetic bacterium 

Rhodopseudomonas palustris (referred to as R. palustris) has been identified as a promising 

candidate. This is due to: (i) a versatile metabolic repertoire capable of consuming a wide 

variety of organic substrates such as simple sugars to short chain fatty acids [179], including 

those toxic to other microorganisms [180,181]; (ii) continuous synthesis of biohydrogen 

during all growth phases, including the stationary phase [35] which has been  observed to 

last significantly longer than microalgae and cyanobacteria species under anaerobic 

conditions, (iii) an active photosystem even under changing daily irradiance levels and 

spectral bands [19], thus comparatively suitable for outdoor cultivation; and (iv) oxygen-

induced nitrogenase repression is not a concern since the photo-fermentation process is 

anoxygenic [40].  

Despite these benefits and the impending hydrogen economy, biological hydrogen 

production with R. palustris in photobioreactors (PBRs) has been mostly carried out at 

laboratory scale [35,149,182,183] and to a lesser extent at pilot scale [17,19], but remains 

pending at industrial scale. To facilitate experimental design and process upscaling, 

mathematical models are valuable tools that can accurately describe bioprocess kinetics 

under influences of cultivating factors like pH, nutrient composition, temperature, and light 

intensity. However, the inherent complex model structures involved when simultaneously 

incorporating all these factors has limited literature studies to a few factor investigations. 

For example, the authors Zhang et al., [35] investigated the effects of nutrient composition 

via the optimal ratio of nitrogen source to organic carbon source (N/C ratio) with piece-wise 

Droop and Contois models meanwhile the pH, incident light intensity and temperature 

effects on the maximum specific growth rate were investigated by Wang et al., [184] with 

an empirical formula for R. palustirs.  
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As per other related photosynthetic bacteria, the authors Kaftan, Bína, and Koblížek [185] 

investigated the temperature effects with Arrhenius models for Rhodospirillum rubrum, 

meanwhile Palamae et al., [120] investigated light intensity and light attenuation with Beer 

Lambert equation for Rhodobacter sphaeroides. Obeid et al., [186] investigated the effects 

of incident light intensity on biohydrogen production using Rhodobacter capsulatus. These 

studies adds to others which have approximated the curves of biomass concentration and 

biohydrogen production with empirical equations such as the logistic model and the 

Gompertz equation for Rhodopseudomonas faecalis [187], Rhodobacter sphaeroides, 

[188,189], R. palustris [60,190], and Rhodobacter capsulatus [191]. Despite the reported 

acceptable model fitting results (i.e., R2 > 0.9), these investigations were laboratory based 

as the PBRs ranged between 100 mL to 1.1 L, and no upscaling predictions were attempted 

using the models developed. 

A possible reason for this is that, these studies employed empirical models which are 

eminently challenging to be modified when trying to incorporate more physical/biological 

knowledge for upscaling modelling. Even so, two of the most important factors, namely 

temperature and light intensity [192] (including light attenuation herein - a phenomenon 

responsible for the decrease in light transmission within PBRs because of cellular absorption 

and scattering) have never been coupled in a mechanistic model of photosynthetic bacteria 

in general and R. palustris in particular. Such a detailed mechanistic model for R. palustris 

would have varying components with different time scales (e.g., slow biomass growth versus 

fast nutrient consumption rates), thus classified as stiff systems, whereby parameter 

estimation is a challenging task [35]. Although solvable with least-square principles and 

advanced discretisation schemes like orthogonal collocation [127], the nonlinearities 

associated with kinetic model structures is a reoccurring dilemma to be addressed. In the 

literature [105], decoupling the problem into separate parameter estimation problems (i.e., 

temperature versus light effects) and solving the parameters stepwise (i.e., initially excluding 

temperature effects to solve the light-dependent parameters followed by including 

temperature-dependent parameters) is recommended.  

Also, scale-up studies with such mechanistic models are indispensable for fast-paced and 

cost-effective development of any microbial process. However, the biological activities of 

these microorganisms are strongly coupled to the local environmental conditions (i.e., light 

attenuation, nutrient and pH gradients, etc.) which are influenced by transport phenomena to 

a greater extent and are bioreactor scale dependent. For instance, the authors Imamoglu and 

Sukan [193] reported an increase of 1.8 times and 88% for biomass and bio-ethanol 

production, respectively, for a 10 L bioreactor compared with that of a shaken flask or 
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intermediary bioreactors (i.e., 2 L and 5 L) despite upscaling under constant impeller tip 

speed of the agitator. Similarly, Lu et al., and Ziadi et al., [17,194] also observed a 

comparable increase in productivity upon upscaling. These results indicate that empirical 

biokinetic model parameters are scale-dependent and should be re-estimated before applied 

for process upscaling prediction.  

To resolve the aforementioned challenges, this article aims to: (i) construct an accurate 

kinetic model capable of simulating biomass growth and biohydrogen production of R 

palustris under the influences of light intensity, light attenuation and temperature, and (ii) 

evaluate its applicability when simulating process dynamics over different scales and 

configurations of PBRs.   

 

4.2 Methodology  

4.2.1 Experimental setup 

The small (500 mL) and large (1,000 mL) scale photobioreactors (PRRs) employed, namely, 

the schott bottle-based PBR and vertical tubular-based PBR are illustrated in Figure 4.2, 

whilst details of their schematics, construction and modes of operation are provided in the 

respective papers [149,180]. The light path lengths of the small and large scale PBRs were 

86 mm and 50 mm, respectively. The pH of the growth medium in both PBR operations 

were adjusted using HCl and NaOH to a fixed value of 7.0 ± 0.1. Unidirectional illumination 

was provided by tungsten lighting bulb (100 W) at two light intensities: 100 Wm-2 and 200 

Wm-2.  These light intensities were arrived at by adjusting the distance between the tungsten 

lighting bulb (100 W) and the PBR front surface to the corresponding values detected by a 

compact spectrometer (RGB photonics Qmini VIS-NIR). The two light intensities were both 

used in the small scale PBR to establish the biokinetic model whilst only 100 Wm-2 was 

employed for upscaling application in the large scale PBR due to its narrower light path 

length. Similarly, the small-scale PBR was operated at 28℃, 30℃, 35℃ and 40℃, controlled 

within ±0.2℃ using a water bath whilst the large scale PBR was operated at a fixed value 

of 28℃ with air conditioning of the room. The experimental analytic methods and essays for 

quantifying (i) biomass concentration, (ii) substrate (glycerol) concentration, and (iii) 

biohydrogen collection and purity analysis, has already been detailed in [149,180], and are 

thus not repeated here. 
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Figure 4.2: Photobioreactor (PBR) used herein: A) small scale PBR with magnetic stirrer 

driven mixing, and B) large scale PBR with peristaltic pump driven mixing in the work of 

Ross-Pott [149] specific to only planktonic operation used herein. 

4.2.2 Biokinetic model construction 

The kinetic model constructed in this work will be used to simulate photo-heterotrophic 

biomass growth and biohydrogen production under the influences of (i) light intensity, (ii) 

light attenuation, and (iii) temperature.  

4.2.2.1 Biomass growth  

The growth rate of R. palustris biomass with an assumption of negligible cell death is 

described by Eq. (4.1). The substrate concentration 𝑆, was always in excess (i.e., > 20 mM 

at the end each batch) indicating that it was not a limiting factor for biomass growth. 

Therefore, the biomass growth rate in this study was independent of 𝑆. 

𝑑𝑋

𝑑𝑡
= 𝜇𝑚𝑎𝑥 ∙ 𝜇(𝑇) ∙ 𝜇(𝐼) ∙ 𝑋 

(4.1) 

where 𝑋 is the biomass concentration (g L-1), 𝜇𝑚𝑎𝑥 is the maximum specific growth rate (h-

1),  𝜇(𝑇) and 𝜇(𝐼) denote the respective effects of temperature (𝑇) and light intensity (𝐼) on 

biomass growth.   

 

4.2.2.2 Glycerol consumption 

Substrate consumption rate is described by Eq. (4.2) and is characterised by 𝑌𝑋𝑆 and 𝑚 as 

the substrate yield coefficient (mmol g-1) and maintenance coefficient (mmol g-1 h-1), 

respectively. 
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𝑑𝑆

𝑑𝑡
= −𝑌𝑋𝑆 ∙

𝑑𝑋

𝑑𝑡
− 𝑚 ∙ 𝑋 

(4.2) 

4.2.2.3 Biohydrogen production 

Biohydrogen production by R. palustris and some photosynthetic bacteria are often modelled 

in the literature using the Luedeking-Piret model [35,60,186]. The model assumes 

biohydrogen formation to be linearly associated with both biomass growth rate and 

instantaneous biomass concentration (i.e., growth-independent) as seen in Eq. (4.3a). 

However, the effects of light intensity and temperature remain unaccounted for in Eq. (4.3a), 

leading to the construction of Eq. (4.3b) by combining Eq. (4.1) with Eq. (4.3a) when the 

light intensity and temperature effects are associated to 𝑌𝑋𝐻2  and 𝑌𝐻2 in the form of 𝑌𝑋𝐻2(𝐼, 𝑇) 

and 𝑌𝐻2(𝐼, 𝑇).The reader is referred to Appendix B of the supplementary sheet for the full 

derivation.    

𝑑𝐻2
𝑑𝑡

= 𝑌𝑋𝐻2 ∙
𝑑𝑋

𝑑𝑡
+ 𝑌𝐻2 ∙ 𝑋 

(4.3a) 

𝑑𝐻2
𝑑𝑡

= 𝛼𝑚𝑎𝑥 ∙ 𝛼𝐻2(𝑇) ∙ 𝛼𝐻2(𝐼) ∙ 𝑋 
(4.3b) 

where 𝐻2 is biohydrogen production (mL), 𝑌𝑋𝐻2(mL H2 L g-1) and 𝑌𝐻2 (mL H2 L g-1 h-1) are 

growth-dependent and growth-independent yield coefficient, respectively, 𝛼𝑚𝑎𝑥 is the 

maximum specific 𝐻2 production rate (h-1) while 𝛼𝐻2(𝑇) and 𝛼𝐻2(𝐼) the respective effects 

of temperature (T), light intensity (I) on biohydrogen production, respectively.  

4.2.2.4 Simulation of temperature influences  

The influences of temperature on microbial processes are commonly modelled with the 

Arrhenius equation (Eq. (4.4a) and (4.4b)). Although there exists an optimal temperature 

beyond which microbial metabolism activity will decrease, in this study, the operating 

temperature did not exceed this value (i.e., 313.15 K) for R. palustris biomass growth [180]. 

Thus, it is valid assuming a monotonic increase over the temperature range explored in this 

work.   

𝜇(𝑇) = 𝐴 ∙ exp (−
𝐸𝑎
𝑅𝑇
) 

(4.4a) 

𝛼𝐻2(𝑇) = 𝐴𝐻2 ∙ exp (−
𝐸𝑎,𝐻2
𝑅𝑇

) 
(4.4b) 

where 𝐴 and 𝐴𝐻2  are pre-exponential coefficients (h-1) for biomass growth and biohydrogen 

production, respectively. 𝐸𝑎 and 𝐸𝑎,𝐻2 are the activation energies (J mol-1) for cellular 

multiplication and biohydrogen biosynthesis. R the is universal gas constant (8.3145 J mol-

1K-1) and T is the absolute temperature (K). 



92 
 

When Eqs. (4.4a) and (4.4b) are substituted in Eqs. (4.1) and (4.3b), the multiplicative terms 

(i.e.,  𝜇𝑚𝑎𝑥 ∙ 𝐴 and 𝛼𝑚𝑎𝑥 ∙ 𝐴𝐻2) are observed. As these terms are mathematically 

unidentifiable, they are lumped as 𝐴′ (h-1) and 𝐴𝐻2
′ (h-1), respectively, to form identifiable 

parameters.  

 

4.2.2.5 Simulation of light intensity and light attenuation influences  

Light is an obligate requirement for biomass growth and biohydrogen production by R. 

palustris. Its effects have been extensively studied in literature with photolimitation, 

photosaturation and photoinhibition being the main photo-mechanisms of interest [120]. The 

former occurs under low light intensity, the second under optimal light intensity and the 

latter under intense light intensity. The Aiba model (Eqs. (4.5a) and (4.5b)) captures the 

dynamic nature of these photo-mechanisms but the photoinhibition term is neglected here. 

This is because the light intensities investigated within this study were not higher than 200 

Wm-2, as photoinhibition was not observed in a similar purple non-sulfur photosynthetic 

bacterium Rhodobacter sphaeroides O.U. 001 for light intensities between 150 W m-2 - 250 

W m-2 [188,195].    

𝜇(𝐼) =
𝐼

𝐼 + 𝑘𝑠 +
𝐼2

𝑘𝐼

≈
𝐼

𝐼 + 𝑘𝑠
 

(4.5a) 

𝛼𝐻2(𝐼) =
𝐼

𝐼 + 𝑘𝑠,𝐻2 +
𝐼2

𝑘𝐼,𝐻2

≈
𝐼

𝐼 + 𝑘𝑠,𝐻2
 

(4.5b) 

where 𝑘𝑠 and 𝑘𝑠,𝐻2 are light saturation coefficients (W m-2) for biomass growth and 

biohydrogen production, respectively. Similarly,  𝑘𝐼 and 𝑘𝐼,𝐻2 are light inhibition 

coefficients (W m-2). 

Since the PBRs were illuminated uni-directionally, the front-face section of the PBRs 

experienced a higher local light intensity compared to the rear, particularly as the biomass 

concentration increased over time. The resulting non-uniform light exposure caused by 

microbial absorption can be approximated using Eq. (4.6). Although light scattering can be 

another contributing factor, it effects were neglected in this case since the PBRs were not 

mixed by aeration, thus the effects of light scattering were omitted. The simplifications in 

Eq. (4.6) are convenient for dynamic parameter estimation without compromising the high 

accuracy compared to other complicated light transmission models like the two-flux 

approximation of the radiation transfer equation [73,196].       



93 
 

𝐼(𝑙) = 𝐼0 ∙ e
(−𝜏∙𝑋∙𝑙) (4.6) 

where 𝐼(𝑙) and 𝐼0 are the local and incident light intensity (Wm-2), respectively, 𝜏 (m2 g-1) is 

the light absorption coefficient, 𝑙 (m) is the light path length.    

Due to the PBR’s cylindrical geometry and impact on Eq. (4.6) during parameter estimation 

(i.e., solving Eqs. (4.8a) to (4.8e) below), curvature effects were approximated by taking the 

rectangular cross-sectional area as reported in [120]. In addition, embedding Eq. (4.6) into 

Eq. (4.1) introduces a partial differential equation (PDE) given by the presence of both 

temporal and spatial dimensions. To simplify the model complexity, Eq. (4.6) was used to 

calculate the average light intensity (Eq. (4.7)) in order to eliminate the spatial dimension 

[197,198]. Hence, Eq. (4.7) is then substituted into Eqs. (4.5a) and (4.5b) for the remainder 

of the study.   

𝐼𝑎𝑣𝑒 =
∫ 𝐼(𝑙)𝑑𝑙
𝐿

0

𝐿
=

𝐼0
(𝜏 ∙ 𝑋) ∙ 𝐿

. (1 − 𝑒−(𝜏∙𝑋)∙𝐿) 
(4.7) 

where 𝐿 is the length of the PBR. 

4.2.3 Parameter estimation 

The constructed kinetic model has several parameters to be estimated. Given the high 

nonlinearity, parameters in the biomass growth and substrate consumption equations were 

first calculated, followed by those in the biohydrogen production equation. Parameter 

estimation was solved by a weighted nonlinear least-square regression (see Eqs. (4.8a) to 

(4.8e)).  

 

min
𝑃
Φ(𝒑) =∑∑(

�̂�𝑖,𝑗 − 𝑦𝑗(𝑡𝑖, 𝒑)

�̂�𝑖,𝑗
)

𝟐

∙ 𝑤𝑖

𝑁𝑃

𝑖=1

𝑁

𝑗=1

 

(4.8a) 

             Subject to: 

                                                  
𝑑𝒚

𝑑𝑡
= 𝑓(𝒚(𝑡), 𝑝) ,                          𝑡 ∈ [𝑡0, 𝑡𝑓]    

(4.8b) 

𝒚𝒍𝒃 ≤ 𝒚 ≤ 𝒚𝒖𝒃 (4.8c) 

𝒑𝒍𝒃 ≤ 𝒑 ≤ 𝒑𝒖𝒃 (4.8d) 

𝒚(𝑡0) = 𝒚𝟎 (4.8e) 

where 𝒑 is a vector of parameters, 𝑁 and 𝑁𝑃 are the number of state variables (e.g. 

concentrations of biomass, substrate, product) and experimental data points, respectively, 𝒚 

is dynamic model output, �̂�𝑖,𝑗 is experimental data point for state variable 𝑗 at time instant 

𝑡𝑖, 𝑤𝑖 is a weight for the data point of state variable 𝑗 at time instant 𝑡𝑖, 𝒚𝒍𝒃, 𝒚𝒍𝒃, 𝒑𝒍𝒃 and 𝒑𝒖𝒃 

are the lower and upper bounds for the state variables and parameters, respectively, 𝑡0 and 𝑡𝑓 
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are the initial and final cultivation time while 𝒚𝟎 is the initial concentration of the state 

variables.  

As per the literature approach [105], temperature effects were excluded (i.e., constants: 

𝜇𝑇=303.15 𝐾,  𝜇𝑇=308.15 𝐾, and 𝜇𝑇=313.15 𝐾) initially in order to solve for the light-dependent 

parameters (i.e., 𝑘𝑠, 𝜏, 𝑌𝑋𝑆 and 𝑚) using the biomass and substrate models as an example. 

Then, temperature-dependent parameters (i.e., 𝐴′ and 𝐸𝑎) were estimated via nonlinear curve 

fitting with Eq. (4.4a) using the data from step one (i.e., 𝜇𝑇=303.15 𝐾,  𝜇𝑇=308.15 𝐾,

and 𝜇𝑇=313.15 𝐾). This results in a complete solution of the biomass and substrate kinetic 

models constituting the first part of the decoupled system pending the biohydrogen model. 

The aforementioned methodology is then repeated for the coupled system (i.e., biomass, 

substrate and biohydrogen models), however, the optimal solution (estimated parameters 

values) of the first part is now fixed when estimating the biohydrogen model parameters. 

Considering the stiffness and nonlinearity of the proposed kinetic model, orthogonal 

collocation over finite elements in time was used to discretise the differential equations 

thereby transforming them into a series of nonlinear algebraic equations [127]. The nonlinear 

optimisation problem was now solved with an interior point solver (i.e., IPOPT [199]) via 

an open-source interface Pyomo [200] within Python version 3.7 programming environment.  

 

4.2.4 Perturbation analysis 

Parameters in a biokinetic model often have large uncertainties [124]. To understand how 

the model’s prediction uncertainty is affected by its parameters’ uncertainty, perturbation 

analysis was carried out in this study. In Table 4.1, parameters are grouped into three classes 

where the input space was characterised by a lower (𝑝𝑚𝑖𝑛) and upper (𝑝𝑚𝑎𝑥) bound centered 

on the mean parameter (𝑝𝑚𝑒𝑎𝑛) value as defined by Eqs. (4.9a) and (4.9b). Latin Hypercube 

Sampling (LHS) was used for the probabilistic sampling of the input space where each 

sample was then used to perform dynamic model simulation. All codes were executed in 

Python version 3.7 using the SMT 1.0.0, NumPy and SciPy libraries.    

Table 4.1: Parameter class and input uncertainty allocations. 

Parameters  Class  Units  Expert Knowledge Justification  

𝑌𝑋𝑆 I  mmol g-1 Reaction conversion related parameters are 

often well-known with great accuracy from 

microbiological studies [201,202]. 

𝑚 I mmol g-1 h-1 

𝑘𝑠 II  Wm-2 

𝑘𝑠,𝐻2 II  Wm-2 
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𝜏 II  mm2 g-1 Light intensity associated parameters are 

often identifiable in the literature [203] to 

acceptable fidelity.  

𝐴′ III  h-1 Arrhenius (temperature associated) 

parameters are poorly known in the literature. 

Identifiability issues are recorded, with the 

parameter confidence intervals rarely 

reported [102,204] 

𝐸𝑎 III J mol-1 

𝐴𝐻2
′  III h-1 

𝐸𝑎,𝐻2  III J mol-1 

 

𝑃𝑚𝑖𝑛 = (1 −%𝑉𝑎𝑟𝑎𝑡𝑖𝑜𝑛) ∙ 𝑃𝑚𝑒𝑎𝑛 (4.9a) 

𝑃𝑚𝑎𝑥 = (1 +%𝑉𝑎𝑟𝑎𝑡𝑖𝑜𝑛) ∙ 𝑃𝑚𝑒𝑎𝑛 (4.9b) 

2.5 Large scale PBR simulation   

Transport phenomena and light transmission greatly affect the performance of PBR scale-

up. Since biomass growth was independent of substrate concentration herein, local light/dark 

cycle frequency is the only factor influenced by transport phenomena in this study. In our 

recent study [52], we have found that this effect can be simulated by introducing one 

additional parameter, namely effective light intensity coefficient, 𝜂, which is larger than 1 if 

culture mixing is intensified in a PBR. Therefore, incorporating this into Eq. (4.5a) results 

in Eqs. (4.10a) to (4.10c) which will be used to simulate the process dynamics in the large 

scale PBR. The value of 𝜂 is determined by PBR configuration and culture mixing intensity. 

It was estimated in this study via parameter estimation. 

𝑑𝑋

𝑑𝑡
= 𝜇𝑚𝑎𝑥 ∙ 𝜇(𝑇) ∙ 𝜇(𝐼𝑎𝑣𝑒 , 𝜂) ∙ 𝑋 

(4.10a) 

𝑑𝑆

𝑑𝑡
= −𝑌𝑋𝑆 ∙

𝑑𝑋

𝑑𝑡
− 𝑚 ∙ 𝑋 

(4.10b) 

𝜇(𝐼𝑎𝑣𝑒 , 𝜂) = (

𝐼0
(𝜏 ∙ 𝑋) ∙ 𝐿𝐿

. (1 − 𝑒−(𝜏∙𝑋)∙𝐿𝐿)

𝑘𝑠 (
1
𝜂) +

(
𝐼0

(𝜏 ∙ 𝑋) ∙ 𝐿𝐿
. (1 − 𝑒−(𝜏∙𝑋)∙𝐿𝐿))

) 

 

(4.10c) 

In addition, the biohydrogen production rate is also known to be a function of hydrogen 

partial pressure since this reaction is reversible [174,205]. As a result, hydrogen removal rate 

and gas-liquid mass transfer will also affect overall hydrogen production rate. As the vertical 

tubular PBR has a better mass transfer and gas removal system than that of the schott bottle 

PBR, it is expected that hydrogen production rate in the tubular PBR is enhanced. Therefore, 

another parameter namely biohydrogen enhancement coefficient 𝜙, was added in Eq. (4.3b) 
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to take into account this factor when simulating hydrogen production in the tubular PBR (as 

shown in Eqs. (4.11a) and (4.11b)).   

𝑑𝐻2
𝑑𝑡

= 𝜙 ∙ 𝛼𝐻2(𝑇) ∙ 𝛼𝐻2(𝐼𝑎𝑣𝑒 , 𝜂) ∙ 𝑋 
(4.11a) 

𝛼𝐻2(𝐼𝑎𝑣𝑒 , 𝜂) = (

𝐼0
(𝜏 ∙ 𝑋) ∙ 𝐿𝐿

. (1 − 𝑒−(𝜏∙𝑋)∙𝐿𝐿)

𝑘𝑠,𝐻2 (
1
𝜂) +

(
𝐼0

(𝜏 ∙ 𝑋) ∙ 𝐿𝐿
. (1 − 𝑒−(𝜏∙𝑋)∙𝐿𝐿))

) 

 

(4.11b) 

 

4.3. Results and discussion 

4.3.1 Parameter estimation results 

Table 4.2 lists the model parameter estimation result through the two-step parameter 

estimation framework. As there is no previous research developing a kinetic model for R. 

palustris, the values of parameters estimated in this study are compared to other similar 

photosynthetic bacteria such as Rhodobacter sphaeroides, Rhodobacter capsulatus and 

Rhodospirillum rubrum. From the table, it is seen that the currently estimated kinetic 

parameters fall within the same range as these species except for 𝑘𝑠 which was about 10 

orders of magnitued higher than that reported by Palamae et. al., [120] for Rhodobacter 

sphaeroides.  

Table 4.2: Model parameter estimates and literature validation. 

Step-one optimisation 

Parameters Estimated Literature 

𝜇𝑇=303.15 𝐾 (h
-1) 0.159 0.198 to 0.243 

[120] 𝜇𝑇=308.15 𝐾 (h
-1) 0.185 

𝜇𝑇=313.15 𝐾 (h
-1) 0.225 

𝑘𝑠 (Wm-2) 500.0 42.02 (i.e., 2.87×104 lux whereby 1 Wm-2 = 683 lux) 

[120] 

𝜏 (mm2 g-1) 90.8 10.2 [120] 

𝑌𝑋𝑆 (mmol g-1) 9.66 (1.1 to 10) [184,206]  

𝑚 (mmol g-1 h-1) 0.0140 (0.0 to 0.78) [35] 

𝛼𝑇=303.15 𝐾 (h
-1) 56.9 n/a 

𝛼𝑇=308.15 𝐾 (h
-1) 81.0 

𝛼𝑇=313.15 𝐾 (h
-1) 106.0 

𝑘𝑠,𝐻2(Wm-2) 500.0 
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Step-two optimisation 

𝐴′(h-1) 8.30×103 n/a 

𝐸𝑎(J mol-1) 2.74 ×104 (1.63×104 to 3.8×104) [185] 

𝐴𝐻2
′ (h-1) 1.01×1010 n/a 

𝐸𝑎,𝐻2(J mol-1) 4.78×104 

n/a: not available 

 

Figure 4.3 shows the model fitting result after the first parameter estimation step for 100 

Wm-2 and 200 Wm-2 at 35℃ and 30℃, respectively. This constitutes half of the overall 

results with the remainder (i.e., 200 Wm-2 at 35℃ and 40℃ ) presented in Figure B 4.8 of 

the supplementary sheet. The overall average relative percentage error was ranked as 3.06%, 

8.68%, and 15.47% for the substrate model, biomass model and biohydrogen model, 

respectively. Figure 4.4 (a) and (b) shows the model fitting result after the second parameter 

estimation step.  

 

Figure 4.3: Model fitting results for the various state variables at :100 Wm-2 at 35℃ (a) to 

(c), 200 Wm-2 at 30℃ (d) to (f). The (a) to (c) and (d) to (f) are state variables corresponding 
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to the biomass, substrate and biohydrogen models respectively. Each fitting is accompanied 

by the percentage relative error (%RE). 

It is seen in Figure 4.4 (a) and (b) that the specific production rates of biomass and 

biohydrogen increase with temperature. This can be attributed to temperature enhanced 

photosynthetic electron transport as reported by [185] from the oxidised organic substrate 

(i.e., glycerol herein) via the three major metabolic pathways (i) Carbon fixation, (ii) 

Nitrogen fixation/Hydrogen production, and (iii) biomass biosynthesis [40]. Under such 

conditions, the ATP flux surpasses the threshold necessary for solely biomass production, 

leaving the excess to activate the biohydrogen production pathway (i.e., enhanced activity 

of the nitrogenase) and maintain the cellular redox balance [40]. Thus, both biomass and 

biohydrogen biosynthesis are significantly enhanced. This finding parallels to that of [180] 

but now provides an in-depth mechanistic description, quantified by the estimated kinetic 

model parameters.    

 

Figure 4.4: Model fitting results for temperature parameters in step two optimisation (a) to 

(b), and dynamic simulation of light intensity and attenuation influences: (c) to (d). 

 

On the other hand, the enhanced biomass productivity observed at elevated temperatures 

increases biomass concentration and thus cell mutual shading within the PBR. Therefore, 

the average light intensity available to drive photosynthesis drops exponentially away from 

the illuminated surface towards the rear of the PBR according to the Beer-Lambert law. Both 
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bio-physical phenomena are effectively captured by the mechanistic model (see Figure 4.4 

(c) and (d)) where it can be seen that the average light intensity is greatest during inoculation 

(time, 𝑡 = 0 hrs) when the biomass concentration (X ~ 0.61 g L-1) and cellular absorption 

are lowest. Conversely, the average light intensity is lowest at the end of the batch (𝑡 > 230 

hrs) due to a greater biomass concentration (X > 2.5 g L-1) and degree of cellular absorption 

and mutual shadings. Although, the percentage light captured increases with biomass 

density, (i.e., light travels through the PBR to other side and is wasted when biomass 

concentration is low), the small scale PBR’s surface area to volume ratio appears sub-

optimal with most of the light being attenuated with a few centimeters. An important insight 

from this is that, optimising this surface area to volume ratio could increase the local light 

availability leading to the biomass and biohydrogen productivity being further enhanced.  

 

4.3.3 Result of perturbation analysis  

The uncertainty bands in Figure 4.5 reflect the degree of variability on model predictions of 

biomass, substrate and biohydrogen imposed by the different classes of parameters. Each 

uncertainty class (I to III) was investigated in turn by randomly re-sampling the parameters 

between 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 whilst fixing the parameters from the other two classes. Since the 

resulting propagated uncertainty bounds were similar across the different experimental 

conditions studied herein (i.e., light intensities and temperature), for illustration, only the 

results corresponding to a light intensity of 100 Wm-2 at a temperature of 35 ℃ is presented. 

From Figure 4.5, it can be seen that the propagated uncertainty increases (i.e., size of band 

width) with time. The model uncertainty is shown to be lowest for Class I parameters (see 

Figure B 4.9 of the supplementary sheet) but highest (i.e., up to 60%) for Class III 

parameters. This result suggests that the model is highly sensitive to change of Class III 

parameters but is less responsive to Class I parameters. 

This can be expected as Class I parameters are solely found within the substrate model, in 

contrast, biomass growth and biohydrogen production are void of them. Consequently, they 

have negligible impact to the model’s uncertainty. In contrast, the largest model prediction 

uncertainty with Class III parameters for as little as 4% input uncertainty in Figure 4.5 (a) to 

(c) signifies the highest model sensitivity. This indicates the necessity of designing more 

experiments (e.g., adding 100 Wm-2 at 30℃ and 100 Wm-2 at 40℃ ) in order to accurately 

identify the values of temperature associated parameters. As the model accuracy is highly 

sensitive to these parameters, updating Class III parameters for model based process online 

optimisation may not be a safe strategy considering the level of prediction uncertainty that 

can be introduced to the model. As a result, their values should be well estimated prior to 
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the use of the model and then fixed when employing the model for process optimisation. 

Compared to Class III parameters, Class II parameters can also result in a similar magnitude 

of model uncertainty if their input uncertainty is around 20% as shown in Figure 4.5 (d) to 

(f). This implies that these parameters are sensitive enough to affect the model accuracy but 

the model is also robust to mild changes in these parameters (i.e., small changes in 

parameters will not cause a significant difference to the model’s simulation result). As a 

result, these parameters are ideal candidates to be re-estimated during online operation if the 

model is used for dynamic process optimisation.  

 

Figure 4.5: Perturbation analysis for input uncertainties of (a) to (c) 4% for class III, (d) to 

(f) 20% for class II. The mean, 10th and 90th percentile, and % RE for 100 Monte-Carlo 

simulations. Also, (a) to (c) and (d) to (f) are state variables corresponding to the biomass, 

substrate and biohydrogen models respectively.  

 

Another result found from the perturbation analysis is that introducing an adequate level of 

parameter uncertainty may improve the kinetic model’s simulation performance. Figure 4.6 

shows the averaged model simulation error at different levels of input uncertainty over 100 

Monte-Carlo simulations for Class II and Class III parameters. From the figure, it is observed 
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that the model simulation error is minimum when 5% and 30% input uncertainties are 

assigned to Class III and Class II parameters, respectively. This suggests that perturbation 

analysis can be used to determine the adequate level of parameter uncertainty that can be 

embedded into the model in order to improve its prediction accuracy and estimate its 

prediction uncertainty. As a result, the use of perturbation analysis for bioprocess robust 

optimisation will be explored in future research. However, it should be noted that this result 

has not been reported in other studies, thus further investigation needs to be carried out to 

understand if this conclusion can be generalised.  

 

Figure 4.6: Effects of parameter input uncertainty on the model simulation accuracy. (a) 

Class III and (b) Class II parameters.   

3.4 Performance of large scale PBR simulation 

Figure 4.7 (a) to (c) shows the simulated and experimental process trajectories for the large 

scale PBR following estimation of the kinetic parameters (reported in Table 4.3) from the 

small scale PBR data. From the figure, it is seen that the model can well predict substrate 

consumption and hydrogen production in the large scale PBR, indicating its potential for 

large scale system prediction. The highest relative percentage error of 17% was recorded for 

the upscaled biomass growth model. Despite this being generally acceptable for a highly 

nonlinear temperature and light-dependent bioprocess, the model simulation error could be 

attributed to the lack of a decay term in Equation (1). This is evident in the model over-

predicting the late exponential growth phase for the upscaled PBR contrary to the slowing 

biomass growth rate but steady biohydrogen production rate as observed. This phenomenon 

has been reported by other researchers [35] on the modelled microorganism R. palustris as 

biohydrogen production was observed in all three growth phases (i.e., (i) initial lag, (ii) 
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primary growth phase and (iii) secondary growth phase). Therefore, more experiments are 

needed for the incorporation and identification of this decay term which would improve the 

upscaled model accuracy in describing all three phases.  

 

Figure 4.7: Simulation result of the large scale PBR: (a) to (c) and perturbation analysis (d) 

to (f) of 20% for transport phenomena associated parameters. The mean, 10th and 90th 

percentile, and %RE for 100 Monte-Carlo simulations. Each fitting is accompanied by the 

percentage relative error (% RE). Also, (a) to (c) and (d) to (f) are state variables 

corresponding to the biomass, substrate and biohydrogen models respectively. 

Perturbation analysis investigated for the transport phenomena associated parameters at 20% 

input uncertainties are presented in Figure 4.7 (d) to (f). It is seen that all the state variables 

(biomass, substrate and biohydrogen models) were sensitive to the transport phenomena 

associated parameters. This implies that all the state variables are tunable during any re-

calibration process for the prediction of a different PBR scale and enables the accurate 

extrapolations of the new PBR scale when deviations between the state variables and 
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experimental data are minimised. Contrary to the Class III parameters as seen in Figure 4 for 

4% input uncertainty, these sensitives were relativity low and this indicates that the transport 

phenomena associated parameters can be updated during process online optimisation for 

scenarios such as a sudden disturbance of the PBR operation (e.g., random failure event of 

the mixing pumps in the PBR [202]).  

 With regards to the transport phenomena associated parameters listed in Table 4.2, 𝜂 was 

observed to be higher than that reported in the literature [52]. This suggests a better light 

utilisation efficiency in the upscaled PBR due to an enhanced transport phenomena (i.e., 

better culture mixing that promotes a more frequent light/dark cycling). This is the case as 

unlike the small scale PBR with magnetic stirrer driven mixing, the upscaled PBR 

recirculated the biosuspension externally with a peristaltic pump from the overflow outlet 

into its bottom inlet via a connecting tube. In addition, the shorter light path length (36mm) 

of the upscaled PBR compared to that of the small scale PBR likely prevents cells from 

prolonged light deprivation as the enhanced culture mixing frequently cycled cells from the 

rear to the front PBR section. Shortened light/dark cycles are known for impacting the 

photosynthetic electron distribution in R. palustris via the cell redox and ATP balances 

[207]. As a result, the cells are subjected to metabolic pathway switches competing for the 

electrons with biomass and biohydrogen pathways being the two favoured electron sinks as 

their productivities were observed to be significantly enhanced. These observations are 

coherent with literature surrounding other photosynthetic bacteria as the authors Koku et al., 

[188] reported a respective 53% and 23% increase in biomass concentration and 

biohydrogen productivity with a 14h light-10h dark periods compared to continuous 

illumination for Rhodobacter sphaeroides O.U. 001.     

Table 4.3: Calibration of transport phenomena associated parameters. 

Parameters  Value  Units  Literature  

𝜂 4.515 dimensionless  0.25 to 3.625 [52] 

𝜙 1.945 dimensionless n/a 

n/a: not available  

 

It was found that, 𝜙 = 1.945 as exhibited in Table 4.3, with this parameter being a novel 

contribution of this study and comparative literature on this parameter being unavailable. 

Nonetheless, it can be deduced that the maximum specific 𝐻2 production rate was almost 

doubled due to a decrease in the partial pressure of PBR which facilitates biohydrogen 
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synthesis. This is in agreement with the authors [72] who reported a 12% increase in the 

biohydrogen productivity of Rhodobacter sphaeroides ZX-5 when the total pressure at the 

PBR’s headspace was decreased from 1.082×105 to 0.944×105 Pa. However, their 

observations were void of a mechanistic description or any kinetic model parameters needed 

to capture the essential bio-physical knowledge. This gap has been bridged herein and 

presents an important advance in the aid of efficient design and upscaling of novel PBR 

configurations such as that in Cho and Pott [44].    

Finally, since the kinetic model for Rhodopseudomonas palustris biohydrogen production 

within different PBR configurations has been constructed and verified, the first future 

research phase will focus on the investigation of kinetic model-based process optimisation 

and PBR design for the maximisation of biohydrogen production. Also, as the simulation 

performance of the kinetic model can be improved by introducing an adequate level of 

parameter uncertainty, perturbation analysis will be exploited in the second phase of future 

work for robust optimisation of the dynamic bioprocess.  

 

4.4 Conclusion  

In this research, a detailed mechanistic model capable of simulating the photoheterotrophic 

biomass growth and biohydrogen production of the photosynthetic bacterium R. palustris 

under the influences of light intensity, light attenuation and temperature was proposed. By 

using experimental data from a small scale (0.5 L) photobioreactor (PBR) with magnetic 

stirrer driven mixing, the intrinsic kinetic parameters were identified via an efficient 

parameter estimation method. The high accuracy of the model and its estimated parameters 

were verified by comparing with experimental measurements and previous literature. Based 

on perturbation analysis, it is seen that although the temperature and light dependent 

parameters are both sensitive to the model output, the former should first be identified and 

validated with more experimental data prior to the use of the model whilst the latter is more 

suited to be re-estimated during an online model based process optimisation framework. 

For upscaling applications, two transport phenomena dependent parameters 𝜂 and 𝜙 were 

proposed and embedded into the mechanistic model, thus requiring re-calibration for across-

scale extrapolations. By comparing the model simulation result with experimental 

measurements from a larger scale (1 L) PBR with peristaltic pump driven mixing, the 

accuracy and applicability of the kinetic model for large scale PBR simulation was verified. 

It is also concluded that given the better culture mixing and gas removal performance in the 

large scale PBR, the biohydrogen production rate is enhanced markedly compared to the 

small scale PBR. This provides important advances for the future efficient design of novel 
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PBRs as well as upscaling to different production scales while enabling process online 

optimisation for the maximisation of biohydrogen production. 
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Appendix B: Derivation of biohydrogen model under the 

influence of light and temperature 

Using Eq. (4.3a), 𝑌𝑋𝐻2and 𝑌𝐻2 are formulated to be both light intensity and temperature-

dependent thereby leading to (B1) 

𝑑𝐻2
𝑑𝑡

= 𝑌𝑋𝐻2(𝐼, 𝑇) ∙
𝑑𝑋

𝑑𝑡
+ 𝑌𝐻2(𝐼, 𝑇) ∙ 𝑋 

(B1) 

As  
𝑑𝑋

𝑑𝑡
= 𝜇(𝐼, 𝑇) ∙ 𝑋 in (B1) leading (B2) 

𝑑𝐻2
𝑑𝑡

= 𝑌𝑋𝐻2(𝐼, 𝑇) ∙ 𝜇(𝐼, 𝑇) ∙ 𝑋 + 𝑌𝐻2(𝐼, 𝑇) ∙ 𝑋 
(B2) 

The multiplicative effect of light intensity and temperature of the two variables (i.e., 

𝑌𝑋𝐻2(𝐼, 𝑇) ∙ 𝜇(𝐼, 𝑇) produces a new variable (i.e., 𝜇𝑌𝑋𝐻2(𝐼, 𝑇)) leading (B3) 

𝑑𝐻2
𝑑𝑡

= 𝜇𝑌𝑋𝐻2(𝐼, 𝑇) ∙ 𝑋 + 𝑌𝐻2(𝐼, 𝑇) ∙ 𝑋 = [𝜇𝑌𝑋𝐻2(𝐼, 𝑇) + 𝑌𝐻2(𝐼, 𝑇)] ∙ 𝑋 
(B3) 

By letting 𝛼𝐻2(𝐼, 𝑇) = 𝜇𝑌𝑋𝐻2(𝐼, 𝑇) + 𝑌𝐻2(𝐼, 𝑇), the combined effect of the variables is 

captured by a single variable which is both light intensity and temperature-dependent. 

𝑑𝐻2
𝑑𝑡

= 𝛼𝐻2(𝐼, 𝑇) ∙ 𝑋 = 𝛼𝑚𝑎𝑥 ∙ 𝛼𝐻2(𝑇) ∙ 𝛼𝐻2(𝐼) ∙ 𝑋 
(B4) 

Finally, (B5) in the explicit form of (B4) used within this study 

𝑑𝐻2
𝑑𝑡

= 𝐴𝐻2
′ ∙ exp (−

𝐸𝑎,𝐻2
𝑅𝑇

) ∙ (

𝐼0
(𝜏 ∙ 𝑋) ∙ 𝐿

. (1 − 𝑒−(𝜏∙𝑋)∙𝐿)

𝑘𝑠,𝐻2 + (
𝐼0

(𝜏 ∙ 𝑋) ∙ 𝐿
. (1 − 𝑒−(𝜏∙𝑋)∙𝐿))

) ∙ 𝑋 

(B5) 
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Figure B 4.8: Model fitting results for the various state variables at: 200 Wm-2 at 35℃ (g) to 

(i), and 200 Wm-2 at 40℃ (j) to (l). The (g) to (i) and (j) to (l) are state variables 

corresponding to the biomass, substrate and biohydrogen models respectively. Each fitting 

is accompanied by the percentage relative error (%RE). 
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Figure B 4.9: Perturbation analysis for input uncertainties of 20% for Class I: (g) to (i) 

corresponding to biomass, substrate and biohydrogen models respectively. The mean, 10th 

and 90th percentile, and %RE for 100 Monte-Carlo simulations. 
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Chapter 5 A CFD Coupled Photo-bioreactive Transport Modelling of Tubular Photobioreactor 

Mixed by Peristaltic Pump 

A CFD Coupled Photo-bioreactive Transport Modelling of 

Tubular Photobioreactors Mixed by Peristaltic Pump 

5.1 Preface  

 

Figure 5.1: Graphical abstract showing: A) photobioreactor setup, B) CFD velocity results 

within the main column and illustrated virtually absent section, C) CFD trajectories of 

biomass, substrate and biohydrogen under 5% input uncertainty.  

The airless and low shear mixing of externally pumped-recirculated vertical tubular 

photobioreactors (VT-PBRs) proffers biohydrogen production with higher purity (e.g., 

94.1±0.4% by Ross and Pott [149]), therefore an attractive biotechnology for upscaling. To 

realise this, robust photo-bioreactive transport models are required to identify the primary 

limiting factors affecting biohydrogen optimisation and the VT-PBR’s upscaling. On one 

hand, the proposed modelling strategy in Chapter 3 could be directly applied herein, 

especially as Chapter 4 has already presented and validated the photo-biokinetic model of R. 

palustris within the VT-PBR but outside of a CFD solver, thus only pending hydrodynamic 
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coupling herein. On the other hand, the CFD modelling of the complex interactions between 

hydrodynamics, light transport and bioreactions within the three VT-PBR’s distinctive 

sections: i) vertical column, ii) dark external recirculation pipe, and iii) peristaltic pump as 

illustrated in Figure 5.1 A), has proven computationally intractable.  

Therefore, Chapter 5 focuses on the development and validation of a new cost-efficient 

photo-bioreactive transport modelling strategy for tubular photobioreactor mixed by 

peristaltic pump by: approximating the complexities of the peristaltic pump with inlet-outlet 

boundary conditions (BCs), (ii) introducing mean residence time (𝑡𝑚) for updating the BCs 

during simulation, and (iii) unifying 𝑡𝑚-dependent accelerated growth kinetics to 

parallelised Computational Fluid Dynamic (CFD) environment. Due to superior cost-savings 

compared to previous CFD studies, Monte-Carlo simulations for 5% coupled CFD-photo-

bioreaction parameter uncertainties was investigated for the bioprocess reliability; this has 

not been done before. 

The complete details of the paper as presented in Chapter 5 is structured as follows: Section 

5.1 introduces the study; Section 5.2 presents the CFD hydrodynamic models and techniques 

for experimental validations, and the strategies for coupling the hydrodynamic, light 

transport and biokinetic models; Section 5.3 then presents the results and discusses the 

hydrodynamic insights and PBR performance under uncertainty; finally, Section 4 concludes 

the current study.  
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Abstract 

Optimisation and upscaling of biohydrogen production in externally pumped-recirculated 

photobioreactors (PBRs) are hampered by computational infeasibilities of coupling 

hydrodynamics, to light transmission and bioreaction transport, through the column and 

peristaltic pump. This study approximates the complexities of peristaltic pump with inlet-

outlet boundary conditions (BCs), introduces mean residence time (𝑡𝑚) for updating BCs 

during simulation, and unifies 𝑡𝑚-dependent accelerated growth kinetics to parallelised 

Computational Fluid Dynamic (CFD) environment. Due to superior cost-savings compared 

to previous CFD studies, the bioprocess reliability under 5% coupled CFD-photo-

bioreaction parameter uncertainties was investigated for the first time, and thoroughly 

validated with tracer dye studies plus literature bioreaction data for a 1L PBR. The results 

agreed to within 10% of error for simulated velocities, identifying undesired regions with 

poor radial mixing, and showed similar output uncertainties between the coupled CFD-

photo-bioreactions and pure photo-bioreactions models, indicating absence of numerical 

diffusion. Therefore, this approach has great potentials for modelling other similar 

biosystems. 

Keywords: CFD modelling; tubular photobioreactor; biokinetic modelling; biohydrogen 

production; uncertainty analysis.   
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5.1 Introduction  

Microbial cultivation in photobioreactors (PBRs) for high-value bio-based products, fuels, 

and materials presents a viable option for tackling the ever-increasing mass and energy 

demands of the world’s rapid population growth rate. Hence, these biotechnologies are 

receiving increasing interest from academia and the biorefinery, pharmaceutical, cosmetic 

and aquacultural industries [65,208]. Computational Fluid Dynamics (CFD) is a powerful 

numerical tool for accelerating the development and optimisation of novel biotechnologies, 

reducing the labour and expenses required for the physical design [51,65]. Experimentally 

validated CFD simulations have been extensively applied in PBR design, upscaling and 

structural optimisation of different configurations including: closed-PBRs: (i) continuous 

stirred tank PBRs [48–50], (ii) torus PBRs [53], (iii) flat-plate PBRs [14,51,52], (iv) airlift 

driven tubular PBRs [54,55], (v) bubble column tubular PBRs [56–59], (vi) thermosiphon 

PBRs [44], (vii) annular PBRs [60], (viii) semi-partitioning PBRs [61], and (ix) taylor-

couette PBRs [27,28,62], to name a few. 

Among the closed-PBR configurations, airlift and bubble column driven tubular PBRs are 

the commonly preferred configurations due to their (i) high surface-area-to-volume ratio, (ii) 

flexible tube arrangement enabling different patterns and orientation to maximise the 

photosynthetic efficiency, (iii) low energy consumption, and (iv) efficient mixing with low 

shear rate [208,209]. However, as an air-liquid-solid multiphase system, they are not 

attractive for producing gaseous biofuels such as biohydrogen due to the added expenses of 

separating the gaseous biofuel from the air mixture during downstream processing [66,71]. 

As a result, several modifications have been proposed in the literature [71,120,149], 

including the addition of (i) an external recirculation loop, (ii) a biohydrogen collection unit, 

and (iii) a peristaltic pump to provide airless pumped-recirculation mixing for a biohydrogen 

gas-liquid-solid tri-phasic system labelled herein as an externally pumped-recirculated 

tubular PBR. 

Although the externally pumped-recirculated tubular PBR is an attractive biotechnology to 

be upscaled due to its higher biohydrogen productivity and percentage purity (e.g., 

94.1±0.4% in [149]), CFD modelling of the configuration is limited to only a few studies in 

literature. For instance, the authors El Maakoul et al., [210] replaced the external 

recirculation loop within their CFD model with a mass flowrate inlet and outlet boundary 

conditions to approximate the pumped-recirculation action for a 90 L anaerobic digester used 

for biogas production. They then investigated the effects of increasing recirculation rate on 

heat delivery and pressure drop. Similarly, Saini et al., [211] numerically investigated the 
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optimum recirculation rate for complete mixing of the anaerobic digester at a reduced power 

consumption cost. On the other hand, the authors Rivas et al., [212] used a velocity inlet and 

pressure outlet for the recirculation boundary conditions to investigate the spatial and 

temporal distribution of scalar tracers (i.e., mole fraction of methylene blue, but could be the 

concentration of any arbitrary specie for other investigations) in a (i) water and methylene 

blue, and (ii) water, methylene blue and artificial biomass mixtures within a 2.02 L Plexiglas 

tubular PBR. To guarantee recirculation of the scalar, the scalar value at the outlet section 

was calculated and then used to update the inlet scalar value every 10 mins for the duration 

of a 200 min CFD simulation.  

Despite attaining satisfactory results, these studies were mainly focused on the fluid flow 

and mixing visualisation, while microbial growth, substrate consumption and biogas 

production were omitted from their CFD models. Hence, more robust CFD models are 

needed to capture the interacting effects of both the biotic and abiotic factors within such 

complex PBR biosystems. Specific to the scalar inlet updating time interval of 10 mins in 

Rivas et al., [212], the reasons for choosing this time changes to adequately represent the 

recirculation process of any arbitrary PBR were not provided thus, it is still unclear how to 

choose an updating time for an externally pumped-recirculated tubular PBRs of different 

scales and configurations. On the other hand, mean residence time has often been exploited 

in the CFD modelling of photocatalytic reactors [213,214] and chemical reactors [215,216] 

to analyse the degree of contaminant reduction and microbial inactivation. Therefore, studies 

which utilises the mean residence time for informing the frequency at which the scalar inlet 

boundary condition is to be updated, remains to be elucidated in the CFD modelling of 

replaced external recirculation loop with inlet-outlet boundary conditions. 

Our previous work demonstrated that accelerating the simulated growth kinetics [52] is an 

efficient strategy for coupling the hydrodynamics and scalar transport phenomena, reducing 

the CFD computational clock time from a few days to a few hours without adversely 

affecting simulation accuracy. Meanwhile, parallel computing also reduces the 

computational cost immensely; for instance, Nauha and Alopaeus [148] parallelised their 

CFD simulation over 6 processors, reducing the computational clock time needed for 

simulating a 60 L bubble column from a few months to a few days. Therefore, merging both 

approaches present a unique opportunity to address the computational burden of coupling 

expensive CFD simulations with multiple state variables dynamics. In particular, estimation 

of prediction uncertainties from the biokinetic model parameters coupled to the CFD 

hydrodynamic model is of utmost interest but was previously unexplored due to the 

prohibitively high computational cost of Monte Carlo analysis. 
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Therefore, this manuscript aims at (i) to develop a CFD coupled hydrodynamics, light 

transport and biokinetic model for an externally pumped-recirculated tubular PBR, (ii) to 

validate the model against a literature case study [2] for biomass growth, glycerol 

consumption and biohydrogen production by the photosynthetic bacterium 

Rhodopseudomonas palustris NCIMB 11774, and (iii) for the first time, combine the 

computational cost-savings achieved by accelerated simulated growth kinetics and parallel 

computing to investigate the reliability of the CFD coupled hydrodynamic-biokinetic model 

via uncertainty propagation with Monte Carlo analysis.  

5.2 Methodology 

5.2.1 Experimental setup and tracer dye studies   

The operational mode of the VT-PBR has been detailed in our previous works [2,149]; thus, 

only the adaptation of the experimental setup for tracer dye studies was presented herein. 

For this, ten monitoring points, labelled 𝑃1−10, each 0.05 m apart were marked on the vertical 

column, as shown in Figure 5.2 A). Upon reaching hydrodynamic steady-state, achieved by 

recirculating phenolphthalein indicator in distilled water through the VT-PBR for at least 

one minute, 3 mL of 3.5 M NaOH was injected into the flow field via a sampling port in the 

external recirculation pipe producing a pink coloration. As the pink tracer was carried 

upward from 𝑃1 to 𝑃10, the time taken for the pink colouration to pass each monitoring point 

was recorded. By dividing the distance between the monitoring points by the time taken to 

pass each point, the local velocity of the flow field was determined. This procedure was 

repeated in triplicate, and the data collected was later used for validation of the CFD model’s 

prediction at the locations of the numerical monitoring points. 

5.2.2 Computational fluid dynamics (CFD)  

5.2.2.1 Hydrodynamic model and CFD domain  

As illustrated in Figure 5.2 A), the VT-PBR was characterised by three main sections: i) a 

vertical column illuminated by 100 W m-2 bulbs, ii) a dark (i.e., non-illuminated) external 

recirculation pipe, and iii) a peristaltic pump for the pumped-recirculation mixing. While 

each section is important, a CFD model that included them all would be too computationally 

expensive to simulate. Hence, the VT-PBR CFD model made the following simplifying 

assumptions: 

• Only the illuminated vertical column and outlet section were included in the CFD 

model, while the dark recirculation pipe and peristaltic pump were omitted as they 

were considered photosynthetic dead zones without light. 
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Figure 5.2: Experimental and CFD step up: A) Vertical tubular photobioreactor (VT-PBR) 

whereby P1-10 are local velocity measuring points for the tracer dye study, B) 2D VT-PBR 

geometry with dimensions, and C) Quadrilateral dominant gird elements used in the domain 

meshing.   

• The 3D geometry of the remaining illuminated column was approximated with the 

2D design shown in Figure 5.2 B) due to the symmetrical tubular nature of the VT-

PBR. 

• Flow velocity via the inlet and outlet sections of the 2D geometry were captured 

with suitable boundary conditions, as reported in Table 5.1. Therefore, the 

peristaltic pump was omitted from the CFD model like in other literature sources 

[210–212].  

• The smaller pipe’s inlet velocity (i.e., 𝒖𝑝𝑖𝑝𝑒) was uniformly distributed by the 

woven wire screen into the VT-PBR’s inlet velocity (i.e., 𝒖𝑖𝑛𝑙𝑒𝑡) but simulating its 

smaller grid element sizes would significantly increase the number of elements 

count and thus computational cost. Therefore, mass balance was applied to estimate 

𝒖𝑖𝑛𝑙𝑒𝑡 with Eq. (5.1a) whereby 𝐴𝑝𝑖𝑝𝑒 and 𝐴𝑉𝑇−𝑃𝐵𝑅  are the cross-sectional areas of 

the smaller pipe and the VT-PBR respectively. 
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𝒖𝑖𝑛𝑙𝑒𝑡 =
𝐴𝑝𝑖𝑝𝑒 ∙ 𝒖𝑝𝑖𝑝𝑒

𝐴𝑉𝑇−𝑃𝐵𝑅
 

(5.1a) 

• The Reynolds number was calculated to be 381.9, indicating a laminar flow regime 

within the vertical column, thus Eq. (5.1b) for fully developed laminar flow profile 

was implemented as the inlet boundary condition of the CFD’s hydrodynamic 

model.  

𝒖(𝑟) = 2 ∙ 𝒖𝑖𝑛𝑙𝑒𝑡 ∙ [1 − (
𝑟

𝑅
)
2

] 
(5.1b) 

whereby 𝒖(𝑟) is the radial velocity, 2 ∙ 𝒖𝑖𝑛𝑙𝑒𝑡 is the maximum velocity occurring 

at the centre when the radius 𝑟 = 0, 𝑅 is the inner radius of the VT-PBR. 

• The absence of visible biohydrogen bubbles during the operation of the 

experimental setup and the assumption of density similarities between cell biomass 

and water [52,215] reduces the investigation into a single-phase flow problem.  

• Fluid within the entire CFD domain was incompressible, Newtonian, and operating 

under isothermal conditions at 301.15 K; thus, heat exchange was not considered.  

Table 5.1: Operating conditions of the VT-PBR. 

General boundary 

conditions 

Hydrodynamic model Mass (scalar) transport 

model 

Inlet conditions  Velocity inlet (m s-1) 

𝒖𝑖𝑛𝑙𝑒𝑡 = 0.0055 

Dirichlet (updated after 

every mean residence 

time)   

Outlet conditions Pressure outlet Neuman (i.e., zero flux) 

Top wall condition (water 

surface) 

Free surface of constant 

shear (free slip) at 1 atm 

Neuman (i.e., zero flux) 

All other wall conditions Non-slip Neuman (i.e., zero flux) 

 

Based on these assumptions, the continuity (i.e., Eq. (5.2)) and momentum (i.e., Eq. (5.3)) 

equations were solved as the CFD hydrodynamic model.  

𝜕𝜌

𝜕𝑡
= ∇ ∙ (𝜌𝐮) = 0 

(5.2) 

𝜕

𝜕𝑡
(𝜌𝐮) + ∇ ∙ (𝜌𝐮𝐮) = −∇𝑃 + ∇ ∙ (𝜇 [(∇𝐮 + ∇𝐮𝑇) −

2

3
∇ ∙ 𝐮𝐼]) +  𝜌𝐠 +  𝐅 

(5.3) 
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where 𝒖 is the velocity, 𝜌 is the density, while 𝜌𝒈 and 𝑭 are the gravitational body force and 

external body forces, respectively, 𝑃 is the static pressure, 𝜇 is the molecular viscosity, and 

𝐼 is the unit tensor.  

5.2.2.2 Biokinetic model  

Our recent work proposed a biokinetic model for simulating biomass growth, substrate 

consumption and biohydrogen production by the photosynthetic bacterium R. palustris 

within the VT-PBR [2], reproduced in Eq. (5.4) to Eq. (5.6). However, to approximate the 

biokinetics of the VT-PBR based solely on the productivity of the vertical column, it was 

necessary to correct for the fraction of time, 𝑇𝐿 the bacteria cells spent within the illuminated 

zone of the experimental VT-PBR, as defined by Eq. (5.7). A caveat herein is that 

photosynthetic biomass growth was not limited by substrate concentration as it was supplied 

in replete amounts, hence the maintenance term in Eq. (5.5) was not influenced by 𝑇𝐿 .  

𝑑𝑋

𝑑𝑡
= 𝑇𝐿 ∙ 𝐴

′ ∙ exp (−
𝐸𝑎
𝑅𝑇
) ∙ (

𝐼0
(𝜏 ∙ 𝑋) ∙ 𝐿

. (1 − 𝑒−(𝜏∙𝑋)∙𝑙)

𝑘𝑠 (
1
𝜂) + (

𝐼0
(𝜏 ∙ 𝑋) ∙ 𝐿

. (1 − 𝑒−(𝜏∙𝑋)∙𝑙))
) ∙ 𝑋 

 

(5.4) 

𝑑𝑆

𝑑𝑡
= −𝑌𝑋𝑆 ∙ (𝑇𝐿 ∙ 𝐴

′ ∙ exp (−
𝐸𝑎
𝑅𝑇
) ∙ (

𝐼0
(𝜏. 𝑋) ∙ 𝐿

. (1 − 𝑒−(𝜏∙𝑋)∙𝑙)

𝑘𝑠 (
1
𝜂) + (

𝐼0
(𝜏 ∙ 𝑋) ∙ 𝐿

. (1 − 𝑒−(𝜏∙𝑋)∙𝑙))
) ∙ 𝑋) −𝑚 ∙ 𝑋 

 

(5.5) 

𝑑𝐻2
𝑑𝑡

= 𝑇𝐿 ∙ 𝜙 ∙ 𝐴𝐻2
′ ∙ exp (−

𝐸𝑎,𝐻2
𝑅𝑇

) ∙ (

𝐼0
(𝜏 ∙ 𝑋) ∙ 𝐿

. (1 − 𝑒−(𝜏∙𝑋)∙𝑙)

𝑘𝑠,𝐻2 (
1
𝜂
) + (

𝐼0
(𝜏 ∙ 𝑋) ∙ 𝐿

. (1 − 𝑒−(𝜏∙𝑋)∙𝑙))
) ∙ 𝑋 

 

(5.6) 

𝑇𝐿 =
𝑡𝐿

𝑡𝐿 + 𝑡𝐷
 

(5.7) 

whereby 𝐴′ (8.30×103 h-1) and 𝐴𝐻2
′ (1.01×1010 h-1) are the pre-exponential factors for 

biomass growth and biohydrogen production, 𝐸𝑎 (2.74 ×104 J mol-1) and 𝐸𝑎,𝐻2 (4.78×104 J 

mol-1) are the activation energies for biomass growth and biohydrogen production, R (8.3145 

J mol-1K-1) is the universal gas constant, T (301.15 K) is the absolute temperature, 𝐼0 (100 

Wm-2) is the incident light intensity, 𝑘𝑠 (500.0 Wm-2) and 𝑘𝑠,𝐻2  (500.0 Wm-2) are the light 

saturation coefficients for biomass growth and biohydrogen production, 𝜏 (90.8 m2 g-1) is 

the light absorption coefficient, 𝐿 (0.05 m) is the light path length, 𝑌𝑋𝑆 (9.66 mmol g-1) and 

𝑚 (0.0140 mmol g-1) are the substrate yield coefficient and maintenance coefficient, 𝜂 

(4.515) is the effective light coefficient and 𝜙 (1.945 ), is the biohydrogen enhancement 

factor. Finally, 𝑡𝐿 (s) and 𝑡𝐷 (s) are the lengths of time spent in the light and dark zones, 

respectively, as estimated from the CFD model using Eq. (5.8) based on the predicted flow 
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rates �̇�𝑖 through the illuminated vertical column (i.e., 𝑖 = 𝐿)  of volume 𝑉𝐿 and dark 

recirculation pipe (i.e., 𝑖 = 𝐷) of volume 𝑉𝐷. 

𝑡𝑖 =
𝑉𝑖

�̇�𝑖
 

(5.8) 

5.2.2.3 Coupling of CFD hydrodynamics and biokinetic models  

To integrate the dynamics of the biokinetics and concentration distribution within the VT-

PBR, the three mass (scalar) transport equations describing the bioreaction species 

corresponding to the biomass growth (i.e., Eq. (5.9)), substrate consumption (i.e., Eq. (5.10)) 

and biohydrogen production (Eq. (5.11)) were coupled with the converged velocity flow 

fields from solving Eq. (5.2) and Eq. (5.3). On the left-hand side of Eq. (5.9) to (5.11), the 

first and second terms denote the accumulation and convection of the bioreaction specie, 

respectively. On the right-hand side of Eq. (5.9) to (5.11), the first and second terms denote 

bioreaction specie diffusion and growth, respectively, where the diffusivities were taken 

from literature: 𝐷𝑒_𝑋 = (5.5 × 10−10 m2 s-1) [52], 𝐷𝑒_𝑆 = (1.06 × 10−9 m2 s-1) [217] and 

𝐷𝑒_𝐻2 = (5.11 × 10−9 m2 s-1) [217]. The CFD implementation of the light transport model 

(i.e., 𝐼0 ∙ exp
(−𝜏∙𝑋∙𝑙)) within the specie growth terms has already been detailed in our previous 

work [52] but was modified as illustrated in Table 5.2 to eliminate interpolation errors 

between the scalar’s currently occupied mesh cell elements and the unoccupied neighboring 

cell elements of the domain. This guarantees the strong coupling of the column’s rising 

plume to photobioreactions by tracking the rising plume’s vertical distance and activating 

the light transport model in a compartmentalised approach. Since no significant 

improvement in the simulation results were observed beyond 50 compartments (i.e., 

0.0128775 m each), thus 50 was deem satisfactory to avoid higher computational costs. 

𝑑𝑋

𝑑𝑡
+ [∇ ∙ (𝒖𝑋)] = ∇ ∙ (𝐷𝑒_𝑋∇X) + [𝐴

′ ∙ exp(−
𝐸𝑎
𝑅∙𝑇

) ∙
𝐼0 ∙ exp

(−𝜏∙𝑋∙𝑙)

𝐼0 ∙ exp
(−𝜏∙𝑋∙𝑙) + 𝑘𝑠′

∙ 𝑋] 
(5.9) 

𝑑𝑆

𝑑𝑡
+ [∇ ∙ (𝒖𝑆)]

= ∇ ∙ (𝐷𝑒_𝑆∇S)

+ [−𝑌𝑋𝑆 ∙ 𝐴
′ ∙ exp(−

𝐸𝑎
𝑅∙𝑇

) ∙
𝐼0 ∙ exp

(−𝜏∙𝑋∙𝑙)

𝐼0 ∙ exp
(−𝜏∙𝑋∙𝑙) + 𝑘𝑠′

∙ 𝑋 − 𝑚 ∙ 𝑋] 

 

 

(5.10) 
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𝑑𝐻2
𝑑𝑡

+ [∇ ∙ (𝒖𝐻2)]

= ∇ ∙ (𝐷𝑒_𝐻2∇𝐻2)

+ [ 𝜙′ ∙ 𝐴𝐻2
′  ∙ exp

(−
𝐸𝑎,𝐻2
𝑅∙𝑇

)
∙

𝐼0 ∙ exp
(−𝜏∙𝑋∙𝑙)

𝐼0 ∙ exp
(−𝜏∙𝑋∙𝑙) + 𝑘𝑠,𝐻2

′ ∙ 𝑋] 

 

 

(5.11) 

Table 5.2: Algorithm pseudocode for coupling light intensity and light attenuation to scalar 

transport. 

Algorithm: Coupling light intensity and light attenuation to scalar transport 

1: 𝑢𝑝𝑒𝑎𝑘 ← rising plume’s maximum velocity  

2: 𝑡𝐶𝐹𝐷 ← CFD simulation time 

3: 𝑌𝑇 ← vertical column’s height  

4: 𝑌 ← rising plume’s vertical distance  

5: 𝑌𝐶 ← vertical coordinates of each mesh cell centroid  

6: 𝐼(𝑙) ← light intensity and light attenuation  

7: 𝐶𝑖 ←  compartmentalisation of domain into 50.  

              ∑ [(𝑖 − 1) ∙  
𝑌𝑇

50
≪ 𝐶𝑖 ≪ (𝑖 ∙

𝑌𝑇

50
)]𝑛=50

𝑖=1  

  

8: for all cells in discretise domain do 

9:      for all compartments 𝐶𝑖=1 𝑡𝑜 50 in domain do 

10:              𝑌 ← 𝑢𝑝𝑒𝑎𝑘 ∙ 𝑡𝐶𝐹𝐷 

11:              if 𝑌𝐶 > 𝑌 then  

12:                       𝐼(𝑙) = 0.0 

13:              else 

14:                     𝐼(𝑙) = 𝐼0 ∙ exp
(−𝜏∙𝑋∙𝑙) see [52] 

 

In Eq. (5.9) to (5.11), the light saturation coefficients (i.e., 𝑘𝑠
′  and 𝑘𝑠,𝐻2

′ ) and biohydrogen 

enhancement factor (𝜙′) are intrinsic to the VT-PBR meanwhile the estimated 𝑘𝑠, 𝑘𝑠,𝐻2and 

𝜙 in our previous work [2] were based on a smaller PBR (i.e., Schott bottle PBR). Therefore, 

the conversion from the referenced Schott bottle PBR into the VT-PBR’s CFD model 

warranted the formulation of Eq. (5.12) and Eq. (5.13) to embed the consequential effects of 

light/dark cycles onto the VT-PBR’s intrinsic light saturation coefficients. Notice that the 

parameters on the right-hand side of both Eq. (5.12) and Eq. (5.13) are known since the 

effective light coefficient of the referenced Schott bottle PBR, 𝜂𝑆𝐵 = 1.0. However, 
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parameters on the left-hand side are unknown but for any given one (e.g., 𝑘𝑠
′  or 𝜂𝑉𝑇) whereby 

𝜂𝑉𝑇 is the VT-PBR’s intrinsic effective light coefficient, the other was straight forwardly 

identifiable as with Eq. (5.14). This implies that both 𝑘𝑠
′  and 𝑘𝑠,𝐻2

′  have to be firstly estimated 

for 𝜂𝑉𝑇 and 𝜂𝑉𝑇,𝐻2to be identified. However, it is well known in the literatures [2,105] that 

these two intrinsic parameters have similar order of magnitudes (i.e., 𝑘𝑠
′~𝑘𝑠,𝐻2

′ ), thus only 

𝑘𝑠
′  was to be estimated herein together with 𝜙′ for the VT-PBR’s intrinsic biohydrogen 

partial pressure influences. This was achieved by minimising the sum of squares errors 

between the data (i.e., Eq. (5.4) to Eq. (5.6)) and the CFD coupled hydrodynamic-biokinetic 

model (i.e., Eq. (5.9) to Eq. (5.11)) resulting to 𝑘𝑠
′ , 𝜙′ and 𝜂𝑉𝑇 as 7.0 (W m-2), 5.65 

(dimensionless), 0.063 (dimensionless) respectively.  

(
𝑘𝑠
′

𝜂𝑉𝑇
)
𝑉𝑇−𝑃𝐵𝑅

= (
𝑘𝑠
𝜂𝑆𝐵
)
𝑆𝐵−𝑃𝐵𝑅

∙
𝜂𝑆𝐵
𝜂

 
(5.12) 

(
𝑘𝑠,𝐻2
′

𝜂𝑉𝑇,𝐻2
)
𝑉𝑇−𝑃𝐵𝑅

= (
𝑘𝑠,𝐻2
𝜂𝑆𝐵

)
𝑆𝐵−𝑃𝐵𝑅

∙
𝜂𝑆𝐵
𝜂

 
(5.13) 

𝜂𝑉𝑇 =
𝑘𝑠
′

499.99
1.0 ∙

1.0
4.51

=
𝑘𝑠
′

110.74
 

(5.14) 

Whereby the subscript 𝑆𝐵 − 𝑃𝐵𝑅 represents the referenced Schott bottle PBR and 𝜂𝑉𝑇,𝐻2is 

the effective light coefficient for biohydrogen production.  

 

Figure 5.3: Schematic representation for the CFD coupling of hydrodynamics to light and 

biokinetics transport within an externally pumped-recirculated photobioreactor. 
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To model the external recirculation of 𝑋, 𝑆 and 𝐻2:(i) mean residence time was assumed 

equivalent to one pass through the vertical column and was determined from Eq. (C1) to Eq. 

(C3) in the Appendix C via the pulse input technique as discussed in [218], (ii) within each 

pass, the VT-PBR’s inlet section was fixed to the value of the outlet’s volume (i.e., area ×1 

unit for a 2D CFD) average concentration from the previous pass, (iii) after each pass, the 

volume average concentration at the VT-PBR’s outlet section was recalculated, and this 

result was patched into the VT-PBR’s inlet section via the Dirichlet boundary condition and 

maintained for the duration of that pass as presented in Table 5.1. These three steps (i.e., (i), 

(ii), and (iii)) guarantees the complete recirculation of the bioreaction species from the VT-

PBR’s outlet back into the inlet section during the time course of the CFD simulation. As 

well, it renders the pass time accelerable for the growth kinetics decoupling it form the fluid 

dynamic’s simulation time since it cannot be accelerated. The entire coupling strategy was 

summarised in Figure 5.3. 

5.2.2.4 Solver settings and solution strategy  

A time step size of 0.005 s and simulation time of 75 s was used to firstly solve the CFD 

hydrodynamic model to convergence (i.e., residuals drop below 10-6). Secondly, 6 passes 

(i.e., 6 × 𝑡𝑚 s) were chosen to approximate the entire bioprocess and the same time step size 

of 0.005 s was considered for the mass (scalar) transport model. The computational cost-

saving approach proposed by Anye Cho et al., [52] was implemented by scaling three model 

parameters: 𝐴′, 𝑚 and 𝐴𝐻2
′  by a factor of 

192 hrs 

6×𝑡𝑚 s 
, accelerating biomass growth, substrate 

consumption and biohydrogen production, respectively. As per the parallel computing, the 

CFD simulations were parallelised over 16 processors with 4GB per processor core using 

the High-Performance Computing (HPC) cluster at The University of Manchester, United 

Kingdom.  

5.2.2.5 CFD uncertainty propagation 

The variability in the coupled hydrodynamic-biokinetic model predictions stems from the 

uncertainty associated with the estimated model parameters. While the impact of parameter 

uncertainty on a pure biokinetic model has been well quantified in literature [2,124,219,220] 

using Monte Carlo techniques, the impact of hydrodynamic coupling on the overall 

propagated uncertainty remains unknown. Therefore, to investigate this, a 5% input 

uncertainty was assigned to the transport phenomena related parameters in [2] corresponding 

to (i) 
𝑘𝑠

𝜂
, 
𝑘𝑠,𝐻2

𝜂
, 𝜏 and 𝜙 for the pure biokinetic model, and (ii) 𝑘𝑠

′ , 𝑘𝑠,𝐻2
′ , 𝜏 and 𝜙′ for the CFD 

coupled hydrodynamic-biokinetic model. This choice was motivated by the suitability of 
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these parameters for online model re-calibration during process optimisation. While the 

parameters collectively impact all three state variables, the state variables are also robust to 

mild perturbations of these parameters, as reported by Anye Cho et al., [2]. Latin Hypercube 

Sampling (LHS) drew 100 probabilistic samples from the parameter input spaces whereby 

each sample was used to simulate one possible process simulation using either the pure 

biokinetic model (i.e., Eq. (5.4) to (5.6)) or coupled hydrodynamic-biokinetic model (i.e., 

Eq. (5.9) to (5.11)). The former was simple to execute in Python version 3.7 using the SMT 

1.0.0, Numpy and SciPy libraries, while the latter was more complex, requiring ANSYS 

Fluent version 19.2.  

5.3 Results and discussion   

5.3.1 Grid sensitivity analysis and CFD fluid flow validations  

To compare and validate the CFD model’s prediction against experimental results, the 

simulation was run with four different mesh resolutions (i.e., 50336, 104584, 205682, and 

526257 grid elements), each composed of quadrilateral-based elements as shown in Figure 

5.4 C). As seen in Figure 5.4 B), the CFD models predicted the local experimental velocity 

of all 10 measuring points to within a small percentage relative error (i.e., RE (%)) of less 

than 10% which is considered as satisfactory in other literature for PBR validation studies 

[44,55,221]. This confirms the reliability of the 2D CFD model for approximating the 

hydrodynamics of the 3D VT-PBR. Although increasing the number of grid elements from 

50,336 to 526,257 did not improve the CFD’s numerical accuracy, the computational time 

cost was observed to increase from 0.57 hrs to 0.68 hrs and 0.91 hrs, respectively. This result 

demonstrates that using the smallest number of grid elements (i.e., 50,336 grid elements) 

were sufficient for accurate CFD hydrodynamic prediction while minimising the 

computational time cost by 37.4 % compared with the highest 526,257 grid element option.  

However, Figure 5.4 C) shows the grid Peclet number (𝑃𝑒) to decreases with an increasing 

number of grid elements from 50,336 to 526,257, resulting in the highest and lowest 𝑃𝑒 

values of 10,884.2 and 3,359.5 respectively. This agrees with other literature findings 

[222,223] but high 𝑃𝑒 values have serious consequences for numerical stability by inducing 

numerical (i.e., false) diffusion, which often masks the fluid’s molecular diffusion, thereby 

inducing truncation errors into the advection-diffusion transport equations [222–224]. 

Therefore, given the stiff nature of the ordinary differential equations (ODEs) of the source 

growth terms embedded into the mass (scalar) transport equations, the CFD model with the 

highest number of grid elements (i.e., 526,257) and lowest 𝑃𝑒 was selected for all subsequent 

analysis within this work.  
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Figure 5.4: Results of A) CFD velocity contours with post-processed arrows indicting flow 

pattern and directions, B) CFD validation at monitoring points and grid sensitivity analysis 

with their indicated % RE, and C) influence of the number of CFD grid elements on the grid 

Peclet number. 

5.3.2 CFD hydrodynamic insights  

As the CFD model has been validated against experimental data, its full potential can be 

unleashed to explore the VT-PBR’s hydrodynamic modes of operations, in particular: (i) the 

flow profile, and (ii) areas of poor mixing or hydrodynamic dead zones. Beginning with the 

flow profile, the CFD hydrodynamic model predicted an average velocity of 7.7 × 10−3 m 

s-1 with a corresponding light fraction time of 0.7 (𝑇𝐿 see Eq. (5.7) and Eq. (5.8)) and a 

parabolic flow profile exhibited by the arrowheads within the path lines across Figure 5.4 
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A) which are indicative of a laminar flow regime, thus validating the choice of the laminar 

flow regime during the CFD simulation solver setup as indeed correct. Now looking at 

hydrodynamic mixing within the VT-PBR, it can be seen that mixing was axially dominated, 

reflected by the vertically pointing arrowheads in Figure 5.4 A), which maintained a parallel 

trajectory from the inlet to the outlet. However, as visualised by the deep blue regions of the 

contour plot, hydrodynamic dead zones with lower velocities occurred near the walls and 

top of the vertical column. Low fluid velocities near the walls were expected, given the non-

slip boundary condition at the walls of the vertical column in addition to the parabolic profile 

of the laminar flow which mainly peaks at the centre and then decreases towards the walls. 

Therefore, these results reveal the need to improve radial mixing within the VT-PBR to 

alleviate the stagnant near-wall regions to minimise prolonged exposure periods of either 

light intensity (i.e., photoinhibition) or darkness (i.e., photolimitation). Some have reported 

that static mixers can improve radial mixing; however, while many designs have been 

proposed for flat-plate PBRs [51,160,225,226], very few designs have been proposed for 

tubular PBRs [227–229].  

5.3.3 Parameter estimation and CFD simulation results  

To visualise the performance of the current photobioreactive transport modelling strategy, 

the CFD predicted light distribution and biomass concentration contours at four different 

simulation times within the 1st pass were plotted in Figure 5.5. It is seen that at the start 

(Figure 5.5 A)), the light distribution is zero through the domain and as the simulation 

progresses, the light distribution only becomes non-zero (Figure 5.5 B), C) and D)) for 

regions harboring the rising plume as indicated with the dash lines. Similar observations 

were made for the other coupled state variables (i.e., substrate consumption and biohydrogen 

production) and in the subsequent passes (i.e., 2nd to 6th) with the results not shown herein, 

thus validating the proposed algorithm. However, beneath the dash lines in Figure 5.5 B) to 

C) shows the algorithm to be missing out the curvature profile of the laminar plume, thereby 

activating the light transport model for a few more mesh cell elements which are unoccupied 

by the rising scalar, presenting an area of the algorithm’s improvements.  

Figure 5.6 A), C) and E) shows the model fitting and simulation results, where the percentage 

relative errors (i.e., RE (%)) for the biomass, substrate and biohydrogen models were 21.0 

%, 7.1 % and 24.4 %, respectively. This high RE (%) were mostly observed for the 

intermediary passes (i.e., 2nd to 5th passes) and the good comparison at the 6th pass suggests 

decreasing RE (%) with increasing number of simulated passes. However, the improved 

performance achieved by increasing the number of passes comes at the cost of increased 
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computational CFD simulation time. Therefore, a good compromise between simulation 

accuracy and computational cost must be struck. 

 

 

Figure 5.5: CFD prediction results of biomass and light intensity distribution at various time 

instances during the 1st pass: A) at the start, B) 9.68 s, C) 52.02 s, and D) end of pass. No 

photobioreactions outside of rising plume is indicated with blue arrows and the source term 

was always zero in the outlet pipe section.   

The 6 passes herein only took 22.28 hrs of wall clock time to simulate 508.14 s of CFD 

simulation time. Of the 22.28 hrs wall clock time, it only took 0.91 hrs to simulate the 

hydrodynamics in Step ONE; the remaining 21.38 hrs were spent simulating the three state 

variables in Step TWO. Hence the model in this work is very efficient compared to others in 

the literature that took several days to converge even for a single state variable [142,148] 

using larger time step sizes of 3600 s [142] and 10 s [27]. Therefore, while increasing the 

number of passes would incur an additional computational cost, the resulting clock time 
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would remain competitive with published works, given the high accuracy achieved already 

with only 6 passes.  

 

Figure 5.6: CFD end of pass prediction for the column’s volume average results for A) 

biomass growth, C) substrate consumption, and E) biohydrogen production compared to the 

respective pure biokinetic simulation as the data. B), C) and F) shows CFD uncertainty 

propagation results for the state variables. The numbers enclosed within broken circles 

denote the pass number and the asterisk demarcates the end of that pass. The percentage 

relative errors (% RE) between the CFD and actual biokinetic predictions are indicated in 

each plot.  

5.3.4 Uncertainty propagation results 

The uncertainty bands in Figure 5.6 B), D) and F) shows the degree of variability in the 

predictions from the biokinetic model parameters into the CFD coupled hydrodynamic-

biokinetic model as well as the pure biokinetic model in Appendix C. For all state variables, 

the propagated uncertainty increased with time, demonstrating that the models were 
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responsive to changes in the parameter input space while not being too sensitive, in 

agreement Anye Cho et al., [2]. Comparing the two models, the uncertainty of the pure 

biokinetic model approaches that of the coupled hydrodynamic-biokinetic model towards 

the end of the last (i.e., 6th) pass. This similarity suggests that the CFD hydrodynamic to 

biokinetic coupling was robust to false diffusion related errors. Also, the comparable 

percentage deviation between the two mean Monte Carlo predictions in Figure 5.6 B), D) 

and F) to those of Appendix C (i.e., without Monte Carlo) suggest that both models will 

perform the same under mild level of uncertainty provided that the solution quality in Section 

5.3.3 was improved (i.e., minimise the high %RE in intermediary passes). Overall, this 

implies that the mathematically derived hydrodynamic and transport phenomena related 

parameters in the literature [2,52] and the formulated Eq. (5.12) to Eq. (5.14) for estimating 

the VT-PBR’s intrinsic parameters were theoretically sound, meaning they can be 

perturbated directly to investigate the hydrodynamic influence on the overall PBR’s 

productivity.  

 

Figure 5.7: Effects of uncertainty propagation in the CFD coupled hydrodynamic-biokinetic 

models at the end of the final pass. The x-axis of A) and B) corresponds to volume averages 

for 0.01 m intervals through the vertical height of the vertical column for the lower and upper 

uncertainty bands respectively.   

Also, the influence of the CFD coupled hydrodynamic-biokinetic model’s uncertainty 

propagation on the local state variables (e.g., distribution of biomass concentration) and 

growth limiting factors (i.e., local light intensity) were further analysed with the lower and 

upper uncertainty bands at the end of the final pass. This was since the literature studies 

[21,76] considered optimisation of the biomass concentration at the final cultivation period. 
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For this, the column was vertically split up into 5 equal sections (0.01 m each) along the 

PBR’s light path length (a scalable variable) and the volume averages of the local biomass 

concentration and local light intensities reported respectively in Figure 5.7 A) and B). The 

results showed (i) slight inverse correlation between local biomass concentration and local 

light intensity, (ii) strong coupling between local biomass concentration and light intensity 

as they both decrease with increasing PBR’s diameter, (iii) local light intensity was critically 

low (i.e., < 5 W m-2) beyond 0.02 m. Meanwhile the implications of (ii) and (iii) for the 

design and upscaling of PBRs have already been discussed in the literature [78,165], (i) is 

revealed herein as an interacting effect which could increase to significant levels with 

increasing uncertainty bands. Hence, the PBR’s optimisation under uncertainty might 

guarantee a good compromise between the uncertainties’s upper and lower bands while not 

violating this inverse correlation for the optimal solution 

5.4. Conclusion  

This paper presents a cost-efficient CFD based framework exploiting parallelised computing 

environment, and cost-saving accelerated growth kinetics, for the modelling of light and 

bioreaction species transport in a vertical tubular photobioreactor under uncertainty. The 

simulated (i) velocities and (ii) bioreaction species (i.e., biomass growth, substrate 

consumption and biohydrogen production) agreed well with the experimental data to within 

10% and 24% respectively. However, the absence of radially dominated flow patterns in the 

simulated velocities suggests the need for the PBR’s structural optimisation to eliminate 

stagnant near-wall regions. Regarding the increasing accuracy for the simulated bioreaction 

species with increased number of simulated passes, it has been found that there is a trade-off 

between the simulation accuracy and computational cost. Therefore, optimisation of the 

PBR’s flow and biohydrogen productivity under uncertainty are now computationally 

feasible. 
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Appendix C: Equations for mean residence analysis  

𝐶(𝑡) = 𝜙𝑜𝑢𝑡𝑙𝑒𝑡(𝑡) (C1) 

𝐸(𝑡) =
𝐶(𝑡)

∫ 𝐶(𝑡)
∞

0
𝑑𝑡
=

𝐶(𝑡)

∑ 𝐶(𝑡)𝑖𝑖 ∙ ∆𝑡
 

(C2) 

𝑡𝑚 = ∫ 𝐸(𝑡) ∙ 𝑡
∞

0

𝑑𝑡 =∑𝐸(𝑡)𝑖
𝑖

∙ 𝑡 ∙ ∆𝑡  
(C3) 

Whereby 𝜙𝑜𝑢𝑡𝑙𝑒𝑡 is the passive scalar at the outlet section, 𝐶(𝑡) and 𝐸(𝑡) are the C-curve 

and the E-curve, while ∆𝑡 = 0.5 s is the time step size and 𝑡𝑚 is the mean residence time.  
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Figure C 5.8: Uncertainty propagation results for state variables: A) biomass concentration, 

B) substrate concentration, and C) biohydrogen production of the pure biokinetic model.  
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Chapter 6 Conclusion and Future Directions 

Conclusions and Future Directions 

Chapter 6 represents the last Chapter of this PhD thesis, and it is broken down into two main 

sub-chapters. The first sub-chapter covers the conclusions arrived within this research work 

whereas the second sub-chapter covers the future directives of the work. 

6.1 Conclusion  

Bio-based products, fuels, and materials are sustainable options for tackling the ever-

increasing mass and energy demands of the world’s rapid growing population growth. 

However, current small-scale productions in closed photobioreactors (PBRs) are associated 

with high costs compared to fossil-based alternatives, thus hindering their 

commercialisation. In order to attain economic viability, the biotechnological transfer from 

smaller PBR scales, into pilot plants, and industrial scales presents a major engineering 

challenge for now and the near future. Prior to the work conducted as part of this PhD thesis, 

the overall progress was prohibitively slowed by several bottlenecks but primarily due to 

light attenuation challenges; uneven light distribution due to cellular absorption and mutual 

shading, and the other PBR local environmental conditions like nutrient and pH gradients, 

biohydrogen partial pressures, just to highlight a few. Presently, the contributions of this 

PhD thesis via the three original publications have significantly advanced this area as 

summarised in the subsequent paragraphs. 

In Chapter 3, light attenuation challenges, reportedly the primary bottleneck for upscaling 

PBRs was tackled by proposing the first mechanistic model to directly integrate the effect of 

PBR mixing-induced light/dark cycles into biomass growth kinetics via a new parameter, 

the effective light coefficient. To estimate its value, in silico experiments within a Flat plate 

PBR and for the cultivation red marine alga Porphyridium sp., were designed in a 

Computational Fluid Dynamic (CFD) solver. As a result of the expensive nature of such 

PDE simulations, a cost-efficient accelerated growth kinetics strategy for coupling 

bioreactor fluid dynamics with biomass growth kinetics and light transmission was proposed 

and validated. This enabled the simulation of all 10 in silico experiments within feasible 

wall-clock time to enable the optimisation of the effective light coefficient. From this, the 

effective light coefficient was linked to the photobioreactor gas inflow rates via a non-linear 

correlation. Hence, the PBR gas inflow rates can now be easily optimised and controlled to 

alleviate light attenuation and maintain a high biomass growth rate.  
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Despite the breakthrough in Chapter 3, the proposed multiscale photo-bioreactive transport 

model was validated for only one microbial strain and PBR design. Hence, the systematic 

biotechnological transfer to other PBR scales, configurations and for the cultivations of 

different microbial strains were still unclear. Therefore, Chapter 4 exploits two different 

types of PBR: Schott bottle-based (500 mL) and vertical tubular-based (1 L) for the 

cultivation of the photosynthetic bacterium Rhodopseudomonas palustris. To account for the 

other PBR local environmental conditions influencing PBR upscaling, Chapter 3’s 

mechanistic model was extended to unify the complicated influences of light intensity, light 

attenuation and temperature to the light/dark cycles experienced by Rhodopseudomonas 

palustris during biomass and biohydrogen production. Through theoretical derivation and 

perturbation analysis, two parameters: the effective light coefficient (Chapter 3’s 

contribution) and the biohydrogen enhancement coefficient (Chapter 4’s contribution), both 

linked to the photobioreactor's transport phenomena, were proposed and validated for 

recalibrations during scale-up predictions and/or across the configuration predictions.  

Among the two investigated PBR types in Chapter 4, the scalable vertical tubular PBR 

possesses: (i) a high surface-area-to-volume ratio in the main column, and (ii) efficient 

mixing with low shear rate via a peristaltic pump, which maximises the photosynthetic 

efficiency thereby enhancing the biohydrogen productivity. With the greater goal of 

optimising and upscaling biohydrogen production, Chapter 5 investigates the coupling of 

hydrodynamics, to light transmission and bioreaction transport from Chapter 4, through the 

column and a peristaltic pump. This was found to be computational infeasibilities. Therefore, 

a cost-saving CFD framework approximating the complexities of the peristaltic pump with 

inlet-outlet boundary conditions (BCs), introducing mean residence time (𝑡𝑚) for updating 

the BCs during simulation, and unifying 𝑡𝑚-dependent accelerated growth kinetics to a 

parallelised CFD environment was proposed. Due to superior cost savings compared to 

previous CFD studies, the bioprocess reliability under 5% coupled CFD-photo-bioreaction 

parameter uncertainties was investigated for the first time with Monte Carlo simulations. To 

thoroughly validate the proposed CFD photobioreactive transport modelling strategy, 

experimental tracer dye studies and bioreaction data (biomass, substrate and biohydrogen as 

seen in Chapter 4) were exploited. The simulated velocities agreed to within 10 % of error, 

and similar output uncertainties between the coupled CFD-photo-bioreactions and pure 

photo-bioreactions models were observed. With the model, undesired regions with poor 

radial mixing were identified and static mixers were suggested to enhance the PBR’s radial 

mixing. By eliminating the stagnant regions, PBR’s long light/dark cycles, biohydrogen 

partial pressures, and biohydrogen productivity can now be optimised.  
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6.2 Future directions  

Whilst Chapters 3 to 5 show cased the significant contributions from this PhD thesis, the 

complete biotechnological transfer from smaller PBR scales, into pilot plants, and industrial 

scales is still far from sufficient maturity. This is partly because of the investigations 

presented herein, were carried out in laboratory scale PBR configurations. Nonetheless, 

some interesting insights were gained and led to identification of the following future 

directions: 

6.2.1 Model-based control of PBR mixing to alleviate light attenuation and maintain a 

high biomass growth rate. 

It was acknowledged in Chapter 3 that the original nonlinear correlation linking the effective 

light coefficient to the PBR gas inflow rates had an upper bound beyond which its prediction 

fails. Since this was unexplored, a future directive would be to experimentally cultivate the 

microbial cells at various PBR gas inflow rates to identify their intrinsic biological limits for 

tolerating high mixing induced shear stresses. This cannot be achieved in silico but with 

sufficient experimental growth data sets, the proposed model parameters can be recalibrated 

to enhance the prediction fidelity for a wider manipulated range of PBR gas inflow rates. 

Also, the proposed model is flexible enough for the incorporation of additional manipulated 

variables like the influences of PBR incident light intensities and dual-directional (i.e., 

instead of just uni-directional) illumination. The latter manipulated variable has been shown 

to enhanced biomass growth in literature studies for faster growing strains like 

Desmodesmus sp., by the authors Del Rio-Chanona et al., [170] and Scenedesmus 

obtusiusculus by the authors Koller et al., [171]. Therefore, it would be interesting to 

compare the outcome of both techniques.  

6.2.2 Robust optimisation of static mixer design for maximising biomass and 

biohydrogen productivity in a tubular PBR: A combined CFD-machine learning 

driven approach. 

The identification of undesired regions with poor radial mixing was a major finding with the 

proposed CFD photobioreactive transport model in Chapter 5. Elsewhere in the literatures 

[51,160,227,228], static mixers have been demonstrated to enhance radial mixing thereby 

eliminating stagnant regions within the PBRs. This concept was quickly tested by 

introducing static mixer design variables: (i) battle length 𝐵𝐿, (ii) baffle spacing 𝐵𝐻, and (iii) 

baffle inclination angle 𝐵𝜃 as seen in Figure 6.1 A). The preliminary results in Figure 6.1 B) 

shows the appearance of swirly flows which are desired to induce radial mixing within the 

PBR. Due to the promising results, the three static mixer design variables are to be optimised 
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together with the biomass growth and biohydrogen productivity. Therefore, it is 

recommended to use Chapter 5’s cost efficient CFD photobioreactive transport modelling 

strategy to generate the numerous in silico experiments from the sampled design variable 

space. Then, state-of-art machine learning algorithms can be employed to learn from and 

replace the CFD simulations. The obtained surrogate model now becomes cheap to evaluate 

and suitable for the optimisation studies.  

 

Figure 6.1: Future work showing A) some identified geometrical parameters influencing 

radial mixing within the VT-PBR to be later optimise, and B) CFD visualisation showing 

the creation of radial mixing within the VT-PBR when these geometrical parameters are 

included.   

6.2.3 Application to other scalable PBR configurations. 

Although different PBR configurations such as (i) flat plate/bubble column PBRs, (ii) schott 

bottle PBRs and (iii) vertical tubular PBRs, has been explored within this PhD research, 

there exist a plethora of other scalable configurations targeting diverse metabolite 

productions. For example, continuous stirred tank reactors (CSTR) PBRs [48–50], and airlift 

driven PBRs [54,55] has been extensively exploited in academia and the biorefinery, 

cosmetic, pharmaceutical, and aquacultural industries. These PBR configurations exploit 
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different mixing mechanisms to achieve microbial cell circulation, hence, correlating these 

to the Light/Dark cycles, effects of substrate and temperature, and PBR biohydrogen partial 

pressure, is of utmost interest herein.  

Starting with CSTR based PBRs, efficient mixing and microbial cell circulation is mainly 

achieved with mechanical agitation by impellers (blades connected to a shaft and rotated 

with a motor). The important optimal operational parameters, for examples impeller design, 

required number of impeller rotations, and desired mixing regime, just to name a few, has 

been detailed in the literature [48–50]. Therefore, by directly correlating the Reynolds 

number of these CSTR based PBRs to the effective light coefficient as discussed in Chapter 

3, the herein formulated mathematical models are exploitable for the optimal control of these 

PBRs. However, these CSTR based PBRs are often sparged (e.g., oxygen and CO2 supply, 

etc.) depending on the microbial biological demand, thus creating a gas-liquid-solid 

multiphase system. As biomass growth is optimised by manipulating the impeller rotation 

speed to alleviate light attenuation, the microbial biological demand is expected to varying 

considerably. Therefore, the sparging rate is to be concurrently manipulated with the 

impeller rotation speed to maintain the biomass growth rate at the theoretical maximum. 

Nevertheless, increasing and/or decreasing the supply of the gasses would consequentially 

affect the cell growth rates. For example, altering the PBR’s CO2 will offset the operational 

pH, thus limiting cell growth rate. Hence, the gas mass transfer coefficients are key 

parameters to be investigated and then embedded into the proposed mathematical models.  

Unlike CSTR based PBRs, airlift driven PBRs are void of internal moving parts. They are 

equipped with an airlift pump and either a draft tube (internal loop) or an external loop. The 

airlift principle, upward displacement of less dense gas–liquid mixture through the higher 

density surrounding liquid, is how efficient mixing and microbial cell circulation is attained. 

Just like sparged CSTR based PBRs, gas-liquid-solid multiphase system is obtained and the 

caveat on the gas mass transfer coefficients are to be investigated and embedded into the 

model.  
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