20 research outputs found

    Computational methods and software systems for dynamics and control of large space structures

    Get PDF
    Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers

    Dynamics and Control of Nonholonomic Systems with Internal Degrees of Freedom

    Get PDF
    Nonholonomic systems model many robots as well as animals and other systems. Although such systems have been studied extensively over the last century, much work still remains to be done on their dynamics and control. Many techniques have been developed for controlling kinematic nonholonomic systems or simplified dynamic versions, however control of high dimensional, underactuated nonholonomic systems remains to be addressed. This dissertation helps fill this gap by developing a control algorithm that can be applied to systems with three or more configuration variables and just one input. We also analyze the dynamic effects of passive degrees of freedom and elastic potentials which are commonly observed in such systems showing that the addition of a passive degree of freedom can even be used to improve the locomotion characteristics of a system. Such elastic potentials can be present due to compliant mechanisms or origami, both of which can exhibit bistability and many other properties that can be useful in the design of robots

    Computational methods and software systems for dynamics and control of large space structures

    Get PDF
    This final report on computational methods and software systems for dynamics and control of large space structures covers progress to date, projected developments in the final months of the grant, and conclusions. Pertinent reports and papers that have not appeared in scientific journals (or have not yet appeared in final form) are enclosed. The grant has supported research in two key areas of crucial importance to the computer-based simulation of large space structure. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area, as reported here, involves massively parallel computers

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Motion planning for constrained mobile robots in unknown environments

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Intelligent Navigational Strategies For Multiple Wheeled Mobile Robots Using Artificial Hybrid Methodologies

    Get PDF
    At present time, the application of mobile robot is commonly seen in every fields of science and engineering. The application is not only limited to industries but also in thehousehold, medical, defense, transportation, space and much more. They can perform all kind of tasks which human being cannot do efficiently and accurately such as working in hazardous and highly risk condition, space research etc. Hence, the autonomous navigation of mobile robot is the highly discussed topic of today in an uncertain environment. The present work concentrates on the implementation of the Artificial Intelligence approaches for the mobile robot navigation in an uncertain environment. The obstacle avoidance and optimal path planning is the key issue in autonomous navigation, which is solved in the present work by using artificial intelligent approaches. The methods use for the navigational accuracy and efficiency are Firefly Algorithm (FA), Probability- Fuzzy Logic (PFL), Matrix based Genetic Algorithm (MGA) and Hybrid controller (FAPFL,FA-MGA, FA-PFL-MGA).The proposed work provides an effective navigation of single and multiple mobile robots in both static and dynamic environment. The simulational analysis is carried over the Matlab software and then it is implemented on amobile robot for real-time navigation analysis. During the analysis of the proposed controller, it has been noticed that the Firefly Algorithm performs well as compared to fuzzy and genetic algorithm controller. It also plays an important role inbuilding the successful Hybrid approaches such as FA-PFL, FA-MGA, FA-PFL-MGA. The proposed hybrid methodology perform well over the individual controller especially for pathoptimality and navigational time. The developed controller also proves to be efficient when they are compared with other navigational controller such as Neural Network, Ant Colony Algorithm, Particle Swarm Optimization, Neuro-Fuzzy etc

    Applicable Solutions in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: Kaźmierczak, MarekTechnical editor: Kaźmierczak, Mare

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore