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Abstract

Nonholonomic systems model many robots as well as animals and other systems. Although

such systems have been studied extensively over the last century, much work still remains to be

done on their dynamics and control. Many techniques have been developed for controlling kine-

matic nonholonomic systems or simplified dynamic versions, however control of high dimensional,

underactuated nonholonomic systems remains to be addressed. This dissertation helps fill this gap

by developing a control algorithm that can be applied to systems with three or more configuration

variables and just one input. We also analyze the dynamic effects of passive degrees of freedom

and elastic potentials which are commonly observed in such systems showing that the addition of a

passive degree of freedom can even be used to improve the locomotion characteristics of a system.

Such elastic potentials can be present due to compliant mechanisms or origami, both of which can

exhibit bistability and many other properties that can be useful in the design of robots.
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Chapter 1

Introduction

Nonholonomic constraints play a key role in the dynamics of mobile robots due to the rela-

tionship between rolling motion and no slip constraints [6]. The study of their dynamics and control,

therefore, becomes critical for improving performance of wheeled robots. The research on nonholo-

nomic dynamics has been focused on the study of certain canonical systems with nonholonomic

constraints. These include the rolling coin [51], the roller racer [4,11], the snakeboard [11,18,61,62],

and the Chaplygin sleigh [9, 15, 22, 25, 41, 60, 79]. Early work on such problems involved finding

integrable cases and studying the stability of particular solutions [10]. Nonholonomic systems can

be dynamic or kinematic [75]. Kinematic systems are such that the kinematics of the system are

fully prescribed by the control inputs. Such systems often have multiple nonholonomic constraints

and the shape is assumed to be fully controlled. Currently the majority of the work on control of

nonholonomic systems considers kinematic systems [6, 44, 55]. Such control techniques make use of

the properties of kinematic systems such as driftlessness, simplifying analysis as compared to their

dynamic counterparts.

This dissertation research focuses on dynamic systems where the number of nonholonomic

constraints is less than the number of configuration variables. Dynamic systems exhibit more com-

plex dynamics as the velocities are not fully prescribed by the shape but determined by differential

equations allowing for phenomena such as fixed points, limit cycles, bifurcations and chaos. Further-

more, the systems considered herein are underactuated. That is the system does not have enough

inputs to follow arbitrary trajectories in the configuration space. This allows us to investigate how

nonholonomic constraints and passive degrees of freedom can be used as a passive means of control:
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to stabilize the system, maneuver it or change its dynamics entirely. Underactuated control may be

invaluable in improving energy efficiency of robots as less motors and other actuators are required.

In particular, the Chaplygin sleigh is the case study of this dissertation research [15] (Fig.

1.1). The system consists of a mass with a runner or wheel that is not allowed to slip laterally

in the Yb direction. The system was first introduced by S.A. Chaplygin in 1921 as an example of

what would come to be known as Chaplygin systems, or integrable nonholonomic systems [12]. The

integrability of the sleigh can be exploited to control its heading, as for example in [79]. However the

Chaplygin sleigh is not fully controllable. Due to the invariance of energy, any control input increases

the energy of the sleigh. For robotic applications, however, it becomes useful to consider frictional

dissipation as this represents an experimental environment more accurately. For this reason many

of the systems we consider contain dissipation as done in many other recent works [3,5,18]. Viscous

dissipation is also used to model hydrodynamic forces which helps us exploit the similarities between

land and water nonholonomic systems [67].

The interaction between a Joukowski foil-shaped body and the fluid through vortex shedding

has been shown to be an affine nonholonomic constraint [41, 78]. Moreover, this constraint has a

formal similarity to that of the constraint on the Chaplygin sleigh. Experimental data related to

the motion of a swimming robot propelled by an internal rotor shows that its motion is very similar

to that of the Chaplygin sleigh [69]. The Chaplygin sleigh thus serves as a terrestrial analogue of

swimming robots and this analogy can be exploited to understand the more complicated dynamics of

fluid-robot interaction. In addition to this, almost all commonly encountered nonholonomic systems

have constraints of the same affine form as the Chaplygin sleigh making the sleigh an appropriate

case study for the dynamics of all such systems.

The locomotion characteristics of many animals, including those of fish, show that rhythmic

or periodic actuation, for instance through central pattern generators, plays an important role [36].

There has also been a rich history within the area of nonholonomic mechanics where motion planning

was achieved through sinusoidal inputs [56]. For example certain ratios of input frequencies are

shown to produce useful gaits for the snakeboard in [61] and another snake like robot in [63]. We

therefore consider sinusoidal inputs in control of the systems considered herein. In our works [25,27]

we have shown that for many systems sinusoidal forcing elicits a limit cycle response which can be

calculated using the harmonic balance method [30,66]. A combination of harmonic balance method

and feedback can then be used for simultaneous heading and velocity control as shown in [25]. This
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Figure 1.1: Chaplygin sleigh

dissertation extends such techniques and shows their applicability to many nonholonomic systems

with a periodic response. One such extension is developing a path tracking algorithm based on

harmonic balance techniques as well as vector pursuit [77]. Pursuit algorithms are based on choosing

a target point on the path which can be visualized as an evader vehicle and steering the robot towards

this target referred to as the goal point. Such algorithms are intuitive and found to work well in

practice [?].

Passive degrees of freedom are naturally utilized by animals to facilitate efficient motion.

Examples are the passive flapping of wings by insects to generate lift in hovering flight [21, 82],

passive deformations of fish to extract energy from ambient wake in a stream [65,72]. Experiments

have demonstrated that the maneuverability of swimming fish-like robots improves with passive

tails, [71]. In particular such fish like swimming robots have been shown to be subjected to nonholo-

nomic constraints [67, 78, 81]. This work will explore the effect passive degrees of freedom have on

nonholonomic systems and how they can be used for efficient motion and control of mobile robots.

With passive degrees of freedom one can also elastic potentials which serve as an additional

passive mechanism to achieve desired behavior. Currently there is little literature on the role springs

can play in nonholonomic system. The roller racer with a passive linear spring is considered in [50]

and shown to move along a line asymptotically. In [26] we find that similar trajectories are possible

for a Chaplygin sleigh with an elastic joint and that motion on a circle is also possible. As a

natural extension of passive degrees of freedom with springs we would also like to consider bistable

mechanisms. Such mechanisms can retain two possible configurations with no additional forces.
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Bistable mechanisms can also be realized using compliant mechanisms [34,38,53]. Such mechanisms

combine multiple rigid links and springs into one or a few flexible parts. Compliant mechanisms

can, therefore, greatly reduce assembly time and the number of parts in robots. Compliance is also

natural to consider in the context of bioinspired locomotion and control as animals, especially ones

like fish and snakes use passive deformation and compliance within their bodies to propel themselves

and maneuver.

The contributions of this dissertation are outlined as follows.

• In Chapter 3 we developed a novel method for control of underactuated nonholononomic

systems. The systems we consider have three or more configuration variables with only one

control input. We show that simultaneous velocity and heading control is possible by regulating

the steady state limit cycle dynamics of the system. This is done with the help of the harmonic

balance method.

• In Chapter 4 we extend the techniques in Chapter 3 to develop path following for such systems.

We show that with just one control input we are able to steer a system along a path with a

specified velocity.

• We show an example of how a passive degree of freedom can cause a nonholonomic system to

become chaotic in Chapter 5.

• We then introduce an elastic potential to the system in Chapter 6 and show that this causes

the dynamics to become regular as we observe limit cycles (Hopf bifurcations) and convergence

to fixed points instead of chaos.

• In Chapter 7 we show that the introduction of a passive degree of freedom can in fact improve

the locomotion characteristics like speed and energy efficiency of an underactuated nonholo-

nomic system by comparing a Chaplygin sleigh with a degree of freedom to one without.

• Finally, in Chapter 8 we give two more examples of how elastic potentials can be introduced

in nonholonomic systems. Namely by compliant mechanisms or origami. Such systems can

exhibit bistability and different dynamics in different stable configurations.
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Chapter 2

Equations of Motion

The Euler Lagrange equations of motion for nonholonomic systems in terms of Lagrange

multipliers were first introduced by N.M. Ferrers in 1971 [28]. This method is useful as it yields

explicit expressions for the forces required to enforce the nonholonomic constraints. Knowledge of

such forces is crucial in the design of robots as wheels are subject to slip should these forces become

too high.

The position of a robot may be described by generalized coordinates q = (g, r) ∈ Rn where

g ∈ Rm denotes the configuration of the robot (g ∈ SE(2) for example) and r ∈ Rk denotes the

shape of the robot such as the angles between parts of the robot (n = m + k). The configuration

describes the position of the robot in a global reference frame whereas the shape is independent of

the global position. The generalized coordinates q must fully define the configuration of the system

relative to some reference configuration. For the Chaplygin sleigh with a passive rotor, for example

g = (x, y, θ) ∈ SE(2), the position and orientation of the sleigh in the plane and r = φ ∈ S1, the

orientation of the rotor relative to the sleigh. If any of the shape variables r are not controlled we

call these passive degrees of freedom.The Lagrangian for a mechanical system is given by

L = T (q, q̇)− V(q). (2.1)

Here T = 1
2 q̇
TM(q)q̇ is the kinetic energy of the system with M(q) being the inertia tensor

and V(δ) is its potential energy. The system must also satisfy p nonholonomic constraints of the
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form

W(q)q̇ = 0 (2.2)

where W(q) ∈ Rp×n. Note that the constraint is linear in velocities as is the case for most non-

holonomic systems, especially those which involve wheeled locomotion. A system with n generalized

coordinates and p constraints has n− p degrees of freedom, or allowable directions of motion. Sup-

pose the system is also subject to k control inputs. A major contribution of this dissertation is

the development of a controller for systems where n − p − k ≥ 1. We may also consider viscous

dissipation to model frictional effects a robot experiences. This is done using a Raleigh dissipation

function of the form

R =
1

2

∑
i

civ
2
i (2.3)

where vi is the velocity of the point where friction is applied or the angular velocity where rotational

damping is present and ci is the dissipation coefficient. The equations of motion with multipliers

are then given by

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

=Wijλj +−∂R
∂qi

+ τi(t) (2.4)

where λj is the Lagrange multiplier corresponding to the j’th constraint, Wi.j is the coefficient of

q̇k in (8.4), and τi are the other external forces and torques.

Straight forward calculations yield the Euler-Lagrange equations as

M −WT

W 0


q̈
λ

 = B(q, q̇) + Γ(q, q̇) + τ(t) (2.5)

where

B(q, q̇) =

C(q, q̇)q̇
Ẇ q̇

+
∂L
∂q
.

Here ∂L
∂q is a vector of partial derivatives of the potential terms. The matrix C(q, q̇) contains elements

Cjk =
∑n
i=1 Cijkq̇i where Cijk are the Christoffel symbols of the first kind computed as Cijk =

∂Mkj

∂qi
+ ∂Mki

∂qj
− ∂Mij

∂qk
.

The last p equations of (2.9) is obtained by differentiating the nonholonomic constraints

6



with respect to time. This is needed to complete the system in this form and solve for the velocities.

For many systems we can eliminate the constraint force using gaussian elimination in order to obtain

the equations in matrix form useful for fixed points analysis and other analytical techniques. The

systems we consider in this research have the property of gauge symmetry, or invariance of the

equations of motion under rigid body motion of the vehicle [42,76]. This is to say that the dynamics

are independent of g and this allows us to rewrite the equations of motion in terms of only shape

variables and body velocities to eliminate dependence on g. For this we define a body fixed velocity

vector ξ = Rq̇ such that the velocities are always aligned with a body-fixed axis. For example for

the Chaplygin sleigh we typically chose

ξ =


ux

uy

ω

 =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) −b

0 0 1



ẋ

ẏ

θ̇

 (2.6)

This is a natural choice as the nonholonomic constraint of the sleigh can now be expressed as uy = 0

and one of the equations of motion becomes trivial (u̇y = 0). Therefore putting the equations of

motion in terms of ξ can not only eliminate dependence on g but also reduce the order of the system

in many cases. The reduction of equations is performed by computing the intertial velocities and

accelerations in terms of ξ and r using

q̇ = R−1ξ, and q̈ = Ṙ−1ξ +R−1ξ̇ (2.7)

and substituting the above expressions into 2.9. This yields the following system.


Mb 0 −WT

b

0 I 0

Wb 0 0



ξ̇

ṙ

λ

 = Bb(ξ, r) + Γ(ξ) + τ(t) (2.8)

where the ṙ equations are needed to solve for the shape variables and Bb is defined according to the

above partition. The reduced equations of motion as well as expressions for the Lagrange multipliers
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are then given as


ξ̇

ṙ

λ

 =


Mb 0 −WT

b

0 I 0

Wb 0 0


−1

(Bb(ξ, r) + Γ(ξ) + τ(t)) = F(ξ, r, t) (2.9)

Example 2.0.1. As an example we will derive and briefly analyze the equations of motion for

the classical Chaplygin sleigh. As mentioned, the configuration of the sleigh is parameterized by

q = (x, y, θ). The Lagrnagian is given as

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Jθ̇2

The sleigh is subject to a nonholonomic constraint that point P is not allowed to slip in the Yb

direction. This is expressed as

[− sin(θ), cos(θ),−b]q̇ = 0

and using 2.4 the Euler Lagrange equations become

mẍ = −λ cos(θ) (2.10)

mÿ = λ sin(θ) (2.11)

Jθ̈ = −bλ. (2.12)

Next we define ξ according to 2.6 and use 2.7 to find q̇ and q̈ in terms of ξ and θ. We then substitute

these expressions into 2.10 to obtain the following system:



m cos(θ) 0 −mb sin(θ) − sin(θ)

m sin(θ) 0 mb cos(θ) cos(θ)

0 0 J −b

0 1 0 0





u̇x

u̇y

ω̇

λ


=



−uxω sin(θ)− ω2b cos(θ)

uxω cos(θ)− ω2b sin(θ)

0

0


(2.13)
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As the fourth equation is trivial and decoupled, we typically set ux = u and consider the system


m cos(θ) −mb sin(θ) − sin(θ)

m sin(θ) mb cos(θ) cos(θ)

0 J −b



u̇

ω̇

λ

 =


−uxω sin(θ)− ω2b cos(θ)

uxω cos(θ)− ω2b sin(θ)

0

 . (2.14)

Using 2.9 we derive the final equations as well as the expression for the constraint force to be.


u̇

ω̇

λ

 =


bω2

− mb
J+mb2uω

Jm
J+mb2uω

 (2.15)

Note that due to gauge symmetry the above equations are independent of the sleigh’s orientation

in the global frame. Notice that u̇ > 0 and when u > 0, ω converges to zero. Therefore, due to the

conservation of energy the assymptotic motion of the sleigh is that of a straight line with u > 0 and

ω = 0. The phase plot as well as a sample trajectory of the sleigh are shown in Fig. 2.1. In Fig. 2.1

(a) we see that trajectories are elliptical in the phase space. Figure 2.1 (b) shows the assymptotic

linear motion of the sleigh given some initial conditions

-2 -1 0 1 2
u

-2

-1

0

1

2

ω

(a)

-10 -5 0 5
x

0

5

10

15

y

(b)

Figure 2.1: A phase portrait of the Chaplygin sleigh is shown in a) with sample trajectories shown
as solid curves. A generic trajectory of the sleigh is shown in b). Initial conditions are (u(0) = 0,
ω(0) = 1).

We will now see how a torque driven internal rotor can be used to control the sleigh. This

was done on the idealized sleigh in [80], however due to conservation of energy any control input

9



causes the energy of the sleigh to increase rendering the sleigh uncontrollable. As the absence of

dissipation is unrealistic, we introduce viscous dissipation to the sleigh and develop a controller for

the modified system in the following Chapter.

10



Chapter 3

Control of Dynamic Systems via

Estimation of Limit Cycles

In [25, 27] we developed a control scheme to control the average velocity and orientation

of the sleigh using torque as the only means of actuation. These results are summarized herein.

We model frictional effects via Raleigh dissipation at point P . This is done using the dissipation

function

R =
1

2
cu2 =

1

2
c(ẋ cos θ + ẏ sin θ)2.

The final equations become similar to those of the classical sleigh but with additional terms due to

the friction and torque.

u̇ = bω2 − c

m
u (3.1)

ω̇ =
−mbuω + τ

I +mb2
(3.2)

There is a rich history within the area of nonholonomic mechanics, where motion planning was

achieved through sinusoidal inputs [56, 61, 63]. Motivated by this we consider inputs of the form

τ = A sin(Ωt+ φ). However, as φ does not affect the asymptotic behavior of the sleigh we take it to

11



be zero simplifying our formulation. A typical trajectory of the sleigh under such forcing is shown

in Fig. 3.1.

0 10 20 30 40
time

0

0.5

1

1.5

u x

(a)

0 10 20 30 40
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ω
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-0.5
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0.5

1

1.5

ω
(e)

Figure 3.1: Simulation of chaplygin sleigh with (u(0), ω(0)) = (0, 0) with the input being Irφ̈ =
−2 sin t, i.e. A = 2 and Ω = 1.

In Figs. 3.1 (a) and (b) we see that the longitudinal velocity becomes periodic with some

nonzero mean while the angular velocity also becomes periodic but with zero mean. This is also seen

in Fig. 3.1 as the velocities converge to a figure eight shape limit cycle in the (u, ω) space. Similar

limit cycles are seen in other nonholonomic systems [3, 5, 13]. The existence of a limit cycle for the

viscous sleigh is also proven for a certain range of parameters in [3]. In Figs. 3.1 (c) and (d) we see

that these dynamics lead to a serpentine trajectory in the (x, y) plane with some constant average

angle.

3.1 Approximate Solution of the Viscous Sleigh

Unlike for the classical Chaplygin sleigh, the equations of motion for the viscous sleigh

with forcing are not integrable through analytical techniques. However the periodic input, periodic

output structure of the system allows us to use the harmonic balance method in combination the

a nonlinear systems solver to predict the limit cycle dynamics for any given forcing. Following this

approach and motivated by the numerical simulation, Fig. 3.1 we will make the ansatz that u and

ω are T-periodic functions The harmonic balance technique assumes the outputs of a system to be

sinusoidal and attempts to use the equations of motion to predict the limiting trajectory. From the

12



simulations we see that only harmonics up to the second order appear in the velocities. We use this

as motivation to to neglect periodic terms with frequency greater than 2Ω. Suppose that u and ω

are of the form

u = uc + a1 sin Ωt+ a2 cos Ωt+Au sin 2Ωt+Bu cos 2Ωt

ω = Aw sin Ωt+Bw cos Ωt+ b3 sin 2Ωt+ b4 cos 2Ωt.

The angular velocity will assumed to periodic with zero mean, since numerical simulations such as

those shown in Fig. 3.1 (e) indicate that limit cycles in the velocity space are symmetric about ω

axis. The assumed form of u and ω will be substituted into (5.5) and (5.7). In applying the harmonic

balance approach we will substitute our assumed solutions into the equations of motion and equate

coefficients on both sides. Consider u̇, substituting the assumed periodic form into (5.5) and (5.7),

u̇ = b21bm+ b22bm− 2cuc −
c

m
(a1 sin Ωt+ a2 cos Ωt)

+ (2b1b2b− 2Auc) sin 2Ωt

+ (−b21bm+ b22bm− 2Buc) cos 2Ωt...

A direct differentiation of the assumed periodic form of u yields

u̇ = −Ωa2 sin Ωt+ Ωa1 cos Ωt

− 2ΩAu sin 2Ωt+ 2ΩAw cos 2Ωt

Equating coefficients of sin Ωt and cos Ωt we get

−Ωa2 = − c

m
a1, Ωa1 = − c

m
a2

which is only satisfied if a1 = a2 = 0. Substituting the assumed periodic form of ω and u into the

right hand side of (5.7),

13



ω̇ =
(−a3b2bm+ b1a4bm− 2a3bmuc + 2A)

mb2 + I
sin(Ωt)

+
(−a3b1bm− a4b2bm− 2b2bmuc)

mb2 + I
cos(Ωt)... (3.3)

The interesting thing to note is that no second order harmonics appear in the (3.3). By equating

coefficients of sin(2Ωt) and cos(2Ωt) with the derivative of our assumed ω we get simply

−2Ωb3 = 0, 2Ωb4 = 0

or b3 = b4 = 0. Therefore the velocity u has only second harmonics while the angular velocity, ω

has only first harmonic,

u = uc +Au sin(2Ωt) +Bu cos(2Ωt) (3.4)

ω = Aw sin(Ωt) +Bw cos(Ωt). (3.5)

In order for this solution to exist it must satisfy (5.5)-(5.7). Substituting (4.5) and (4.6)

into (5.5)-(5.7) and simplifying,

u̇ = A2
wbm+B2

wbm− 2cuc + (2AwBwb− 2Auc) sin(2Ωt)

+ (−A2
wbm+B2

wbm− 2Buc) cos(2Ωt)...

ω̇ =
(−AuBwbm+AwBubm− 2Awbmuc + 2A)

mb2 + I
sin(Ωt)

+
(−AuAwbm−BuBwbm− 2Bwbmuc)

mb2+
cos(Ωt)...

The higher harmonics are neglected as part of the harmonic balance method. We will later

justify this assumption with numerical results. A direct differentiation of (4.5) and (4.6) gives
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u̇ = −2ΩBu sin(2Ωt) + 2ΩAu cos(2Ωt)

ω̇ = −ΩBw sin(Ωt) + ΩAw cos(Ωt).

To determine uc and the coefficients Au, Bu, Aw and Bw we simply equate the coefficients

of the above two systems. This yields the following system of nonlinear equations

0 = A2
wbm+B2

wbm− 2cuc (3.6a)

−4mΩBu = 2AwBwbm− 2Auc (3.6b)

4mΩAu = −A2
wbm+B2

wbm− 2Buc (3.6c)

−2αΩBw = −AuBwbm+AwBubm− 2Awbmuc + 2A (3.6d)

2αΩAw = −AuAwbm−BuBwbm− 2Bwbmuc. (3.6e)

where we denote α = mb2 + I to keep the notation compact. We employ the Newton-Raphson

method to solve the equations (3.6) numerically.

To illustrate the calculation of the coefficients, we choose the sleigh parameters and the

input, τ to be the same as the parameters for the simulation in Fig. 3.1. Performing the calculations

yields uc = 0.6341, Au = 0.1103, Bu = 0.1071, Aw = 0.2069 and Bw = −0.7689 after just 4 iterations

of the Newton-Raphson method. To compare this solution with the numerical simulation we may

define Cu =
√
A2
u +B2

u and Cw =
√
A2
w +B2

w, which are the amplitudes of u and ω respectively. In

a similar manner we will define C∗u and C∗w to be the amplitude of u and ω on the limit cycle in the

numerical simulation. This allows us to define the error between the limit cycle solution obtained

through the harmonic balance method and the limit cycle solution obtained through a numerical

simulation,

e =
√

(uc − u∗c)2 + (Cu − C∗u)2 + (Cw − C∗w)2 (3.7)

The error was found to be e = 8.6e− 3 which is two orders of magnitude smaller than the values of

the coefficient (uc, Au, Bu, Aw, Bw). In Fig. 3.1 we can see further agreement between the analytical

solution of the limit cycle and one obtained through direct numerics. The dotted graph shows a
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trajectory with generic initial values of (u, ω) converging to the analytically predicted limit cycle

(solid line).

3.2 Effect of forcing amplitude and frequency on motion

The motion of sleigh due to changes the amplitude and frequency of oscillation of the rotor,

shows a rich variety of dynamics. The effect on the average longitudinal velocity, u0, of the knife edge

and hence the average velocity, vnet of the sleigh due to the variations in the forcing amplitude,A

and the frequency Ω are shown in Fig. 3.2.
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Figure 3.2: Velocity of the sleigh for different inputs. a) shows u0 and b) shows vnet for amplitudes
of up to 40 and values of Ω up to 20.

The average longitudinal velocity of the wheel u0 only increases with amplitude and shows

little variation with respect to the forcing frequency Ω at low amplitudes. This means that the

instantaneous speed of the sleigh along its path is higher for higher amplitude input. The average

velocity of the sleigh in the plane vnet appears to reach a local maximum and then decrease to zero

before increasing again for higher amplitudes. Figure 3.4 shows a plot of u0 and vnet for a fixed Ω

and a large range of amplitudes. We note that although u0 monotonically increases with A, vnet

can decrease or increase touching vnet = 0 at discrete points. This results in a closed trajectory in

the (x, y) plane. Two such trajectories are shown in Fig. 3.3.

Figure 3.5 shows the transitions in steady paths of the sleigh in x− y plane as A increases.

These are the paths of the sleigh when the velocities u and ω are on or very close to the limit cycle

in the reduced velocity space. The net displacement of the sleigh in a time period T shrinks, with

the path curving back onto itself, as illustrated in the paths for A = 5 and A = 10. As A increases
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further, path of the sleigh forms a closed loop at A ≈ 16.82. This is when vnet converges to zero for

the first time. As A increases further, vnet becomes nonzero again and the figure eight path breaks

open to produce a net displacement, as shown for A = 20. Larger values of A lead to the path

increasingly close onto itself, eventually leading to a closed path as shown in fig. 3.5.
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Figure 3.3: Simulations of the chaplygin sleigh executing a closed trajectory in the (x, y) plane.
Input parameters are Ω = 1 and (a) A = 16.82, (b) A = 175.4.
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Figure 3.4: Velocity of the sleigh for different amplitudes. a) shows u0 and b) shows vnet for
amplitudes of up to 1000 with Ω set to 15.5.

3.3 Hybrid Control of the Chaplygin Sleigh

The approximate solution to the limit cycle shows that the average angular velocity of the

sleigh converges to zero, i.e. the change in the heading angle of the sleigh during one time period
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Figure 3.5: Trajectories of the sleigh for four different values of A with Ω = 1. Each starts with
(u, ω) = (0, 0). Each trajectory is shown for t > 4T allowing for the velocities u and ω to converge
to the limit cycle. The trajectories for the transient phase are not shown.

T = 2π
Ω is

∆θ =

∫ T

0

ωdt =

∫ T

0

(Aw sin Ωt+Bw cos Ωt)dt = 0. (3.8)

The average longitudinal velocity of the sleigh u0 is in general non zero. This is also borne out in the

simulated trajectories of the sleigh in Fig. 3.1(a). On the velocity limit cycle, the average velocity

of the sleigh can be defined as

v =
1

T

∫ t1+T

t1

(ẋî+ ẏĵ)dt (3.9)

Since the average heading angle converges to a constant value, for the purpose of computing the

average speed, one can assume that the average heading angle is θ = 0, i.e., 1
T

∫ t1+T

t1
ẏdt = 0. The
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average speed of the sleigh is then

v =
1

T

∫ t1+T

t1

ẋdt =
1

T

∫ t1+T

t1

(ux cos θ − ωb sin θ)dt (3.10)

where it should be noted that 1
T

∫ t1+T

t1
ωb sin θdt = 0.

Suppose the reference average speed of the sleigh is vr. The amplitude of the applied torque,

τ = A sin Ωt, can be be used as the control input to track this reference speed. In Fig. 3.4 (b) we

see that many such velocities are possible for a fixed input frequency. The maximum speed possible

before inefficient motion is v̄ ≈ 1 for the sample parameters in Fig. 3.2. We now treat the amplitude

A required to achieve vr as an unknown. In this case (3.6a)-(3.6e) together with (3.10) (evaluated

at v = vr) form six equations in the six unknowns, (Aw, Bw, Au, Bu, u0, A). These unknowns can be

found using a numerical algorithm like the Newton-Raphson method.

When the solution to (5.5) and (5.7) converge to the limit cycle, the average heading angle

of the sleigh converges to a constant value, as shown in Fig. 3.1 (c) and Fig. 3.1 (d). In order to

control the average heading angle to some desired angle θr it is intuitive to consider an additional

term in the torque input that is proportional to the error in average heading angle, i.e.

τI = −KI

∫ t

t−T
(θ(t)− θr)dt. (3.11)

Numerical simulations for a large range of sleigh parameters, reference angles and average velocities

of the sleigh show that an input torque of the form

τ = A sin Ωt+ τI (3.12)

allows simultaneous control of the average speed of the sleigh and its heading. The first term

A sin(Ωt) allows the sleigh to track reference average speed and the second term τI allows the sleigh

to track a desired average angle.

The utility of the hybrid control law is shown in Fig. 4.2 where we see the sleigh execute

a turn after tracking a zero reference angle while also tracking vnet = 0.2. The sleigh’s average

heading angle first converges towards zero and then to 90o (Fig. 4.2(d)) while its average speed

tracks the reference value (Fig. 4.2(b)). The sleigh’s angular velocity converges to the limit cycle,

then experience a perturbation away from the limit cycle when the torque τI is added to the input
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and converge back to the limit cycle as τI converges to zero, see 4.2(c). The control input for

executing this maneuver is such that τI is much smaller in magnitude than A as shown in Figs.

4.2(e) and (f).

τI → 0 ⇐⇒
∫ t
t−T θ(t)dt

T
→ θr.

The average heading angle approaches the desired average heading angle.
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Figure 3.6: Required input for simulation with θr = 0. Input due to integral control is shown in (a)
and total input in (b).

3.4 Chaplygin Sleigh as a Surrogate Model for a Swimming

Joukowsli Foil

The dynamics of the swimming Joukowski foil are described by a high dimensional dynamical

system. However the dynamics of the system are confined to a low dimensional attractor that is

topologically similar to the attractor of the velocity equations of the Chaplygin sleigh. The existence

of such a low dimensional attractor allows the Chaplygin sleigh to serve as a surrogate model for

the swimming Joukowski foil. We use the harmonic balance equations to define such a reduced

order surrogate model of the foil. The Chaplygin sleigh with a no slip constraint will be used as the
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surrogate model as opposed to the sleigh with an affine constraint, even though the unsteady Kutta

condition could impose a small periodic affine constraint. As observed in [67] the limit cycles for

both the types of sleigh are nearly identical when the prescribed slip velocity is small in magnitude.

The analytical approximation of the limit cycles are, however, easier to compute if the surrogate

model is the Chaplygin sleigh with the homogeneous constraint.

A surrogate model for the swimming foil is constructed by first finding the amplitudes

(Ax,Bx,Aw,Aw) of the harmonics of the limit cycle solution as well as the velocity constant uc

from (4.5) and (4.6). With an approximate solution for the foil limit cycle known, the remaining

problem is to determine the parameters of a Chaplygin sleigh that produce a limit cycle with the

same solution. This requires the solution to an inverse problem where the parameters (m, b, c, α =

I + mb2) are the unknowns and the parameters (Ax, Bx, Aw, Aw, uc) in (3.6) are known. The

parameters (Ax, Bx, Aw, Aw, uc) are determined from the foil simulations by first assigning the cosine

(A) amplitudes based on the foil velocities at the beginning of one input period. Next an initial

sine (B) amplitude is assigned and the error is summed between the estimated velocities and the

simulation data for one complete time period. The (B) values are updated based on the error from

the previous iteration and the process is repeated until the errors converge. The same iterative

process is then repeated to determine the uc value. This leaves the system of equations (3.6)

overdetermined with five equations and four unknowns.

The overdetermined system of equations can be approximately solved through a constrained

least squares method, the constraint being that all the four unknowns (m, b, c, α) should be non

negative,

min
x

1

2
||C~x− ~d||22

s.t. A~x ≤ ~b
(3.13)
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where

C =



A2
w +B2

w 0 −2uc 0

B2
w −A2

w −4ΩAx −2Bx 0

AwBw 2BxΩ −Ax 0

AxAw +BxBw + 2ucBw 0 0 2ΩAw

BxAw −AxBw − 2ucAw 0 0 2ΩBw


,

~x =



δ

m

c

α


, ~d =



0

0

0

2A

0


,A = −I4×4,~b =



0

0

0

0


.

We used MATLAB’s lsqlin function to perform this calculation. As an example, using

the limit cycle parameters Ax = 0.001779, Bx = −0.000932, Aw = 0.115531, Bw = 0.699560,

and uc = 0.434879 the least squares computation yielded the following surrogate sleigh parameters

m = 401.2119, b = 0.0959, c = 22.3925, α = 0.4450. These parameters were plugged into the sleigh

equations (5.5)-(5.7) to simulate the dynamics of the surrogate sleigh. The solution of (5.5)-(5.7) is

shown in (red) fig. 3.7(a). For comparison the same trajectory for the swimming foil is shown in

red. As the sleigh and foil approach their steady state speeds the figure 8 limit cycles emerge. The

trajectories of both the systems converge to limit cycles that are nearly identical. The limit cycles

themselves, obtained from the simulations are shown in fig. 3.7(b).
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Figure 3.7: (a) Foil and sleigh velocities as they converge to their respective limit cycles. (b) Foil
and sleigh limit cycles. (c) The average velocities of the foil and the equivalent sleigh converge to
nearly the same value.
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It should be noted from fig. 3.7(a) that the transient trajectories of the foil do not match

those of the sleigh very well. This is expected since only dynamics on the limit cycles have been

modeled and matched with each other.

Beyond a qualitative match of the limit cycles, the average speeds of the sleigh and foil

can be used as a quantitative measure of the accuracy of the sleigh as a surrogate model for the

swimming foil. Their average speeds, v, calculated using (3.10) are shown in fig. 3.7(c). In fig. 3.7(c)

the blue dashed line is the average velocity for the foil, while the red solid line is the average velocity

of the equivalent sleigh given the same periodic input. It is obvious that the transient dynamics of

the two systems differ but both the foil and the sleigh’s average speeds converge to nearly the same

value, with the difference in the two being ≈ 0.0006 [BL/s] or ≈ 0.18%. The small error arises due

to the least squares approximation of the sleigh model, (3.13). The closeness of the average speeds

is also seen in fig. 3.7(b). The point of intersection of the two branches of the limit cycle which also

lies on the horizontal axis is the average speed. This is very close in magnitude for both the limit

cycles shown in fig. 3.7(b).

Here we remark once again that while Kutta condition could lead to an affine nonholonomic

constraint, the limit cycle of the foil’s dynamics are close to that of the Chaplygin sleigh with a

homogeneous nonholonomic constraint. Since it was shown that the limit cycle of the sleigh with

an affine periodic constraint is nearly the same, it implies that the limit cycle of the foil’s dynamics

is close to that of the sleigh with an affine periodic constraint.

3.5 Turning Control

The utility of having a low dimensional Chaplygin sleigh surrogate model for the swimming

foil is that it can prove useful in controlling the dynamics of the swimming foil. Determining the

control input that produces the desired motion and path of the swimming foil is greatly simplified

by the very low dimensional equivalent sleigh model. Essentially a control input is designed to steer

the surrogate Chaplygin sleigh with prescribed average speed. Such an input is given by (3.12). The

same control input is then applied to the swimming foil.

This control via the surrogate Chaplygin sleigh is demonstrated through a numerical sim-

ulation of the turning maneuver of the foil. The foil first starts from rest and tracks an average

speed of v = 0.385 body lengths per second and an average heading angle θ = 0. It is then re-
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quired to make a 90 degree turn while tracking the same speed. The necessary control inputs for

the turning maneuver are the amplitude and frequency of oscillations of the applied torque via the

internal reaction wheel. One can freely choose a frequency and determine the necessary amplitude

of the torque to accomplish the prescribed maneuver. The frequency of the control torque is chosen

to be the same as in the computations described earlier. The amplitude of the control torque is

determined by first obtaining the equivalent sleigh parameters, (m, b, I, c). These parameters of

such an equivalent sleigh were computed in the previous section from the numerical simulations of

the foil-vortex interactions and using (3.13), where the parameters are determined described in the

previous section. Once the equivalent sleigh parameters are determined using (3.13), the control

torque (3.12) is applied on the foil to steer it to make a 90 degree turn, while tracking the average

speed of v = 0.385.
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Figure 3.8: Turning maneuver of the foil by 90 degrees while tracking a specified average speed,
with control torque computed from the surrogate sleigh model. (a) Average heading angle of the
foil (blue solid line) and equivalent sleigh (red dashed line). (b) Average speed of the foil (blue solid
line) and equivalent sleigh (red dashed line). (c) The sleigh’s velocity and angular velocity undergo
a perturbation from the limit cycle during the turn, but converge back to the limit cycle.

The average heading angle from the simulation of the surrogate Chaplygin sleigh and the

coupled fluid-foil is shown in Fig. 3.8(a), where the angle (θ̄) is the angular position of the body

averaged over one time period of the forcing function. In Fig. 3.8(a) the red dashed line is the

average heading angle for the surrogate Chaplygin sleigh while the blue solid line is the average

heading angle for the foil with the same torque input. The heading angle is originally 0 degrees

with the foil swimming along a horizontal line. The foil begins its turning maneuver at t = 50.

At about t = 70 the difference in the final heading angle of the foil and the sleigh was ≈ 1o. The

average speed of the foil and the surrogate sleigh are shown in fig. 3.8(b), which converges to the

desired speed and deviates only slightly during the turning maneuver. During the turning motion
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the trajectory of the foil deviates from the limit cycle before converging back to it as shown in fig.

3.8(c). Here we remark that the small differences between the average speed of the surrogate sleigh

and the foil during the turning motion seen in fig. 3.8(b) cannot be attributed solely to errors to

the numerics. The Chaplygin sleigh is a good surrogate model for the swimming foil, only when the

velocities of the two systems are close to their respective limit cycles. During the turning motion,

when the trajectories in the velocity space deviate from the limit cycle, differences arise between the

dynamics of the two systems.
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Chapter 4

Path Tracking for Underactuated

Nonholonomic Robots

In previous work it has been shown that the periodically forced Chaplygin sleigh with

frictional dissipation moves along a serpentine trajectory with an average heading angle that is

constant [3, 25, 27]. The periodic nature of the solutions allows us to apply the harmonic balance

method [30, 66] to find these solutions with high accuracy. In [?, ?, 67] the same method is also

extended to control the average velocity of the sleigh along the trajectory while a correction term in

the input is shown to simultaneously control the average angle. The angle correction was done by a

control term proportional to the average error in the angle for the last time period. In [46] another

method is used to control the angle which only relies on knowing the orientation of the sleigh at the

current time instant. We use the method in [46] in this paper to control the angle as it is found to

have faster convergence in simulations. Unlike in [46], however, we use nonautonomous propulsion

which allows us to accurately predict the periodic response. Since tracking both velocity and heading

angle are achieved in previous work, the ground has been laid to develop motion planning for the

Chaplygin sleigh. In this paper we address the problem of path tracking for the system. In particular

we exploit the periodic solutions of the system to control the sleigh along a desired path with some

specified average velocity.

Motion planning of nonholonomic systems with sinusoids has been addressed for kinematic

systems in works like [54]. In the context of dynamic systems there are also motion planning results
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for the snakeboard which take advantage of the geometric properties of the system [18,20]. Optimal

control has also been applied to the snakeboard [62], however optimal control is impractical due

to the computational intensity of finding optimal trajectories. Stability results can be shown for

pure pursuit path tracking of certain nonholonomic vehicles [58]. The analysis in [58], however, is

only applicable to autonomous systems. We seek to exploit the predictability of solutions of the

Chaplygin sleigh with a prescribed periodic torque to simultaneously control the velocity of sleigh

while steering along a path.

For path tracking of the Chaplygin sleigh we employ a vector pursuit algorithm [77]. In

pursuit a goal point is chosen to always be some lookahead distance L from the sleigh such that

pursuing the point naturally causes the robot to track the path. The two main variants of this

method in research and practice are pure pursuit [?] and vector pursuit [43,84]. The only difference

between the methods is that vector pursuit takes into account the instantaneous angle of the path

at the goal point. For the particular system considered in this Chapter, the eventual trajectory of

the sleigh with periodic actuation is always a serpentine curve. The mean of such a curve can track

a reference path, and at best the error between only the mean path and the reference path can be

expected to converge to zero. We account for this in the control algorithm by assuming the goal

point moves in a similar way. In order to prescribe the serpentine motion of the goal point, the

orientation of the path near the goal point must be known making the proposed algorithm of vector

pursuit type.

The contribution of this Chapter is a motion planning algorithm for the Chaplygin sleigh.

The algorithm involves simultaneous tracking of a reference limit cycle in a reduced velocity space

and the tracking of a path in the configuration (physical) space. This simultaneous tracking is

achieved by combining the calculations of matching the harmonics (the harmonic balance method)

and a vector pursuit algorithm. Circular and straight line reference paths are tracked with the

torque as the only control input.

4.1 Control via Harmonic Balance Method

In this section we present another method of controlling the average heading angle of the

sleigh and extend the results of Chapter 3 to the case where the torque has a nonzero mean. The

equations of motion of the Chaplygin sleigh with friction are reminded to be
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u̇ = bω2 − c

m
u (4.1)

ω̇ =
−mbuω
I +mb2

+
τ

I +mb2
(4.2)

θ̇ = ω. (4.3)

A periodic torque on the sleigh, applied through the periodic rotation of the rotor, can propel the

sleigh forward. It was shown in [25,27,68,70] that the solution to (5.5) and (5.7) when τ = A cos Ωt

is a limit cycle shaped as a figure eight in the reduced velocity space. The existence of limit cycle

solutions was proven in [3] using the Brouwer fixed point theorem for the associated Poincare map.

An analytical approximation to this limit cycle was constructed in [?] and it was shown that tracking

a reference average speed was equivalent to generating a desired limit cycle in the reduced velocity

space which was accomplished by computing the required periodic torque. The limit cycle in the

reduced velocity space produces a serpentine path in the configuration space.

We extend this method of tracking limit cycles in the reduced velocity space to simultane-

ously track a reference average velocity and a reference path in the configuration space. The assumed

control input is a sum of three inputs of the form

τ = τ0 +A cos(Ωt) +K sin(θ − θr). (4.4)

We may still find the solution due to the above torque using harmonic balance method. The constant

torque τ0 is largely responsible for steering the sleigh at a constant rate along circular arcs. The

torque K sin(θ − θr) is similar to a proportional controller for tracking a reference angle θr as was

shown in [46]. This term produces faster convergence to a reference heading than the averaging used

in [25].

We make the ansatz that the solution to (5.5)-(4.3) due to the torque (4.4) is a sum of

harmonics of the form
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u = u0 +Au1 sin(Ωt) +Bu1 cos(Ωt)

+Au2 sin(2Ωt) +Bu2 cos(2Ωt) (4.5)

ω = ω0 +Aw1 sin(Ωt) +Bw1 cos(Ωt)

+Aw2 sin(2Ωt) +Bw2 cos(2Ωt). (4.6)

Therefore the solution to (4.3) should follow

θ(t)− θ(0) =

∫ t

0

ω(τ)dτ = ω0t−
Aw1

Ω
cos(Ωt)

+
Bw1

Ω
sin(Ωt)− Aw2

2Ω
cos(2Ωt)

+
Bw2

2Ω
sin(2Ωt) +

−2Aw1 −Aw2

2Ω
. (4.7)

The average velocity of the sleigh in one time period of the periodic component of the torque

is

v =
1

T

√(∫ t2+T

t2

ẋdt

)2

+

(∫ t2+T

t2

ẏdt

)2

(4.8)

where ẋ and ẏ can be expressed using the reduced velocities and θ. If the sleigh traverses a circular

path on the average, then the radius of the circular path is R = v̄
ω0

.

The torque term K sin(θ − θr) is expanded to the third order as

sin(θ − θr) ≈ (θ − θr)−
(θ − θr)3

6
.

This third order expansion allows for the term to be accounted for in the harmonic balance method

by rewriting it as a sum of sine and cosine functions.

Two specific types of reference paths will be considered in this paper : a straight line and a

circle and in each case a reference average velocity will also be tracked. The assumed solutions (4.5)

and (4.6) can be substituted into the reduced equations (5.5)-(5.7) and a reference average speed

given by (4.8). The corresponding harmonics on each side of the equations can then be matched. This

leads to a system of 11 nonlinear equations with 11 unknowns (u0, Au1, Bu1, Au2, Bu2, Aw1,Bw1, Aw2,
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Bw2, τ0, A). Since the equations are nonlinear we use Newton’s method to solve them numerically to

calculate the input required to produce the desired motion. In the absence of τ0 the average motion

is along a straight line and ω0 will be zero.

The reference angle θr is of course known in the preceding calculations. This reference angle

will be the means of steering the sleigh for the path tracking algorithm.

4.1.1 Path Tracking

The schematic Fig. 4.1 shows the geometric setup of vector pursuit in a plane.

X

Y

X b

Y b

X p

Y p

θ
t

θ

δ

θ
r

Figure 4.1: Diagram of the path and goal point. The Xp − Yp coordinate system is such that the
Xp axis is tangent to the path point closest to the goal point. The red line represents a sample path
and δ is the lateral offset to account for serpentine motion of the sleigh.

To calculate the reference angle required for the sleigh to track the path we employ a vector
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pursuit path tracking problem. First we define the coordinates and orientation of the path at the

goal point to be (xt, yt, θt). The goal point is defined to be one look ahead distance L from the sleigh

at any given time. The desired reference angle is then

θr = sign(yt − (y − b sin(θ))) cos−1
(xt − (x− b cos(θ))

L

)

which is the angle of the line connecting point P of the sleigh to the goal point as shown in Fig. 4.1.

Note that if the goal point is always on the path, the serpentine motion of the sleigh will

cause oscillations in the reference angle. Such oscillations are undesirable as the harmonic balance

assumes the reference angle to be either constant or linearly increasing and the harmonic balance

solutions would not be valid when the reference angle is oscillating. In order to take this into account

we require that the goal point executes serpentine motion around the path similar to the sleigh. This

ensures that in the ideal case when the sleigh is following the path, θr remains constant or linearly

increasing as necessary.

Serpentine motion of the target can be prescribed by assuming ideal limit cycle motion for

the target. We define δ(t) to be the signed distance between the sleigh and its average path for

t ∈ [0, T ] where T = 2π/Ω is the time period. The goal point is then calculated using the following

procedure

1. Find the point on the path closest to the sleigh

2. Beginning from this point search along the path for the first point that is a distance L from

the sleigh

3. Find the point δ(mod(t, 2π)) away from the above path point along the Yp direction as shown

in Figure 4.1 and set this to be the goal point

4.2 Simulation

The effectiveness of the path tracking algorithm was tested with numerical simulations. In

this section we show the sleigh’s ability to track both linear and circular paths using the proposed

algorithm. In each case we specify a velocity of v̄d = 0.2 and for the circle we chose a radius of
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R = 10. We define the normalized error in the velocity of the sleigh to be

ev =
v̄ − v̄d
v̄d

Figure 4.2 demonstrates the convergence of the proposed control law for a set of parameters.

For the straight line trajectory the initial conditions are some distance away from the from the path

to show convergence to the path. In Figure 4.2 (a) we see that the sleigh is able to recover and track

a straight line path. In Figure 4.2 (b) we see that as the sleigh converges to the desired path, the

velocity also converges to the desired velocity as the normalized error goes to zero. From Figure 4.2

(c) we see that convergence to the specified limit cycle is excellent. The sleigh is also able to track

a circular path as shown in Figure 4.2 (d). Convergence to the desired path is not as good as for

the linear motion due to the fact that the goal point is always some distance away from the sleigh.

However in Figure 4.2 (e) we see that convergence to the desired velocity is also achieved for motion

of nonzero curvature. The dots in Figure 4.2 (e) are due to the chord length only being checked
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Figure 4.2: Simulation of sleigh tracking the line x = 3 (top row) and circle of radius R = 10 (bottom
row). The velocity specified in each simulation is v̄d = 0.2. Figures (a) and (d) are the path of the
sleigh in the (x, y) plane where the black line shows the reference path. Figures (b) and (e) the error
in v̄ and figures (c) and (f) the limit cycle in the reduced velocity space where the desired limit cycle
is shown as a blue dashed line. The parameters are m = 1, b = 1, I = 1, c = 1, K = −1, L = 2 for
motion on a line and L = 1.5 for motion on a circle.
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when the sleigh crosses its average path. In Figure 4.2 (f) we see that there is more error between

the limit cycle seen in simulation and calculated by the harmonic balance method. This error is

likely due to the increased number of equations to be solved for the circular motion and due to the

target being some distance away causing the sleigh to track a circle of slightly smaller radius.

Figures 4.3 (a) and (b) show the convergence of the solution of the reduced velocity equations

(5.5) and (5.7) to the reference limit cycles for the case of tracking a straight line and a circle

respectively. From Figures 4.3 (b) and 4.3 (d) we see that the input is bounded and continuous

throughout the motion and eventually converges to a periodic solution. In the case of the straight
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Figure 4.3: Convergence to specified limit cycles and input for the line (top) and circle (bottom)
simulations. The subfigures are (a,c) the limit cycle in the (u, ω) space where the desired limit cycle
is shown as a magenta dashed line and (b,d) the torque input for each motion. The parameters are
m = 1, b = 1, I = 1, c = 1, K = −1, L = 2 for motion on a line and L = 1.5 for motion on a circle.
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line motion the steady state solution is

τ = A cos(Ωt) +K sin(θ(t)− π

2
)

and for the circular motion it’s

τ = τ0 +A cos(Ωt) +K sin(θ(t)− ω0t)

where τ0, A and θ(t) are known from the harmonic balance calculation

Periodic forcing is one of the most common methods used to control nonholonomic systems.

In literature there is a lot of work addressing the motion planning of kinematic nonholonomic systems

using periodic inputs [54]. Gait generation for low dimensional dynamic systems has been addressed

in [75]. There are also motion planning results for the snakeboard which take advantage of the

geometric properties of the system [18, 20]. In this paper harmonic balance method is shown to

accurately predict and control the velocity of the sleigh by exploiting the periodic nature of the

solutions. The sleigh can be simultaneously steered via feedback using the same input of a torque on

the sleigh. Control of the velocity and heading of the sleigh is used to generate path tracking with

velocity control. This work introduces a novel method of motion planning for highly underactuated

dynamic nonholonomic systems.
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Chapter 5

Chaotic Dynamics of a Chaplygin

Sleigh Due to Passive Unbalanced

Rotor

The first version of the two link Chaplygin sleigh was studied in [17] where it is referred

to as the landfish. There, the case of periodic actuation is considered on the frictionless two link

sleigh. The problem of controllability of the two link sleigh with friction is addressed in [24]. The

free response of the two link sleigh with a small rotor is explored in [22]. We summarize these results

here to show how the motion of the Chaplygin sleigh is modified in the presence of a passive internal

degree of freedom.

A schematic of the Chaplygin sleigh is shown in Fig. 8.1. The sleigh has a runner or a

slender wheel at the rear that contacts the ground at the point P . The runner is assumed to able to

slide smoothly in its longitudinal direction but not in a transverse direction. The mass of the sleigh

is denoted by mc and the moment of inertia about its center by Ic. An internal rotor of mass mr

and moment of inertial Ir are hinged to the center of the sleigh, such that the rotor can rotate freely

without any resistance. The configuration of the Chaplygin sleigh is parameterized by the location

its the center of mass, (x, y) and its orientation θ, with respect to an inertial frame of reference.

The configuration of the internal rotor an be parameterized by the angle β ∈ S1. The configuration

space of the system is Q = SE2× S1.
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Figure 5.1: The Chaplygin sleigh consists of a sleigh of mass mc with a rear wheel or a sharp runner
at a distance of b from the center of mass. The runner makes contact with the ground at point P .
An internal rotor of mass mr is attached to the center of the sleigh. The center of mass of the rotor
is at a distance of a from the center of the sleigh.

The Lagrangian for the two link sleigh is given by

L =
1

2
m(ẋ2 + ẏ2) +mraβ̇(ẏ cosβ − ẋ sinβ)

+
1

2
Icθ̇

2 +
1

2
(Ir +mra

2)β̇2 (5.1)

where m = mr +mc. By deriving the Euler Lagrange equations and, once again, using a body-fixed

velocity we can eliminate θ yielding the equations of motion as

I 0

0 1




u̇

Ω̇

ω̇

δ̇


=



mcbΩ
2 +mraω

2 cos δ

−mcbuΩ−mrabω
2sinδ

−mrauω cos δ

Ω− ω


(5.2)

where Ω = θ̇, ω = β̇, δ = θ − β is the angle made by the internal rotor with respect to the body Xb

axis and I represents the locked inertia tensor,

I =


m 0 mra sin δ

0 Ic +mb2 mrab cos δ

mra sin δ mrab cos δ Ir +mra
2

 . (5.3)
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We consider the special case where the mass, moment of inertia and length of the internal

rotor are small compared to the corresponding parameters of the sleigh. We choose the small

parameter

mr

m
=
a

b
= ε� 1. (5.4)

The reduced equations of motion are then defined by the dynamical system

u̇ =
K4bΩ2 + ε(K2 − 1)(bΩ2 cos2 δ + uΩ sin δ cos δ)

ε(K2 − 1) cos2 δ +K4

+
bω2ε(ε(K2 − 1) +K2)) cos δ

ε(K2 − 1) cos2 δ +K4
(5.5)

Ω̇ = − K2(ε2bω2 sin δ + uΩ)

b(ε(K2 − 1) cos2 δ +K4)
(5.6)

ω̇ = − (K2 − 1) cos(δ)(ε2bω2 sin δ + uΩ)

εb(ε(K2 − 1) cos2 δ +K4)
(5.7)

δ̇ = Ω− ω (5.8)

where K2 = 1 + Ir
mb2 . This is a dynamical system that defines a flow on the manifoldM = R3×S1.

We will denote the flow map of this dynamical system by ΦTt :M 7→M. A discussion of the fixed

points of eqs. (5.5)-(5.8) is given in [26] and repeated in the next section. For the purposes of this

work it is relevant that there are no stable fixed points for this system. We will demonstrate that

the dynamics become chaotic for all parameter values.

5.1 Simulation Results

A direct simulation of the equations of motion of the sleigh with an internal rotor shows

dramatically different dynamics from those of the classical sleigh. A sample simulation of (5.5), (5.6)

and (5.7) for generic initial conditions is shown in Fig. 5.2. The evolution of u and Ω occurs with

two distinct transient stages before convergence to a nearly periodic solution. These transient stages

of dynamics are common to any initial condition, with variations in the time periods associated with

these individual stages.

In the first transient phase highlighted in Fig. 5.2 (a) and (b) it can be seen that for a short
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Figure 5.2: Simulation of the Chaplygin sleigh with a small internal rotor with ε = 0.1 and initial
conditions u(0) = 0, Ω(0) = 0.1, ω(0) = 1. Energy is E = 0.1127

duration of time (t < 100), the dynamics of the sleigh are nearly the same as that of a Chaplygin

sleigh without the internal rotor. In this short interval the angular velocity of the sleigh becomes

very small and the longitudinal velocity and u reaches a nearly constant value.

In the second transient stage (100 < t < 8, 700), u(t) decays with oscillations and Ω(t)

oscillates about zero but with an increasing amplitude. The angular velocity of the rotor increases,

but with very small amplitude oscillations. At about t = 8700 a steady state is reached and as will

be discussed later, a trajectory converges to an attractor A ⊂ M. From here on the longitudinal

velocity of the sleigh has a nearly oscillatory behavior with two frequencies of oscillation. The

longitudinal velocity is the sum of two periodic functions, one with a large time period of about

2200 and zero mean and the other a periodic function with a very small time period. The angular
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velocity of the sleigh oscillates about zero, but with sudden spikes occuring at intervals of about

t = 2200. The angular velocity of the passive rotor show small oscillations around a non zero mean.

The heading angle of the sleigh, θ, is nearly piecewise constant with sudden jumps at time intervals

of about 2200.

The transient dynamics of the sleigh and convergence to the attractor follow the same pat-

tern for any initial conditions. Initial conditions of the sleigh with distinct kinetic energies converge

to distinct attractors. Conversely all initial conditions with the same kinetic energy converge to a

unique attractor. This is shown most clearly in Fig. 5.3 where the angular velocity of the rotor

for two sample sets of initial conditions on the same energy level is seen to converge to the same

function for all initial conditions with the same energy. Furthermore, the initial transient dynamics

are qualitatively the same for all the initial conditions shown in fig.5.3.
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Figure 5.3: Trajectory of the sleigh for different initial conditions on a level set of kinetic energy.
(a) E = 0.1184 and (b) E = 0.2313.

5.2 Transient Dynamics of the Sleigh and Regular Perturba-

tion Expansion

The first transient stage of the dynamics of the sleigh can be explained using a regular

perturbation analysis of (5.5) - (5.8). Such regular perturbation analysis has been employed for the

analysis of other nonholonomic systems such as the twist car, [14,32,83]. We expand the states into
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a power series in ε.

u(t) =u0(t) + εu1(t) + ε2u2(t) + ... (5.9)

Ω(t) =Ω0(t) + εΩ1(t) + ε2Ω2(t) + ...

ω(t) =ω0(t) + εω1(t) + ε2ω2(t) + ...

δ(t) =δ0(t) + εδ1(t) + ε2δ2(t) + ...

The right hand side of the preceding equations are expanded in a power series of ε. We first note

that K2 − 1 = O(ε). The denominators in each of the right hand side of the equations can then be

expanded in a power series in ε,

1

ε(K2 − 1) cos2 δ +K4
=

1

K4
(1− εK

2 − 1

K4
cos2 δ

+ ε2
(K2 − 1)2

K8
cos4 δ). (5.10)

We will also use the following,

sin δ = sin δ0 + (εδ1 + ε2δ2 + ...) cos δ0 + ... (5.11)

cos δ = cos δ0 − (εδ1 + ε2δ2 + ...) sin δ0 + ...

Substituting equations (5.10), (5.11) and the assumed power series expansion for u, Ω and

ω into the (5.5), (5.6) and (5.7) and equating the coefficients of the corresponding powers of ε, one

obtains the following equations for the three leading orders,
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u̇0 =bΩ2
0 (5.12)

u̇1 =2bΩ0Ω1 (5.13)

u̇2 =
1

K6
u0Ω0 sin δ0 cos δ0 + bΩ2

1 + 2bΩ0Ω2 + bK2ω2
0 cos δ0 (5.14)

Ω̇0 =− u0Ω0

bK2
(5.15)

Ω̇1 =− u1Ω0

bK2
− Ω1u0

bK2
(5.16)

Ω̇2 =
1

bK6
u0Ω0 cos2 δ0 −

u2Ω0

bK2
− u1Ω1

bK2
− u0Ω2

bK2
− 1

K2
ω2

0 sin δ0 (5.17)

ω̇0 =− u0Ω0

bK4
cos δ0 (5.18)

ω̇1 =− 1

bK4
(u1Ω0 + u0Ω1) cos δ0 (5.19)

ω̇2 =
( 1

bK8
u0Ω0 cos2 δ0 −

u2Ω0

bK4
− u1Ω1

bK4
− u0Ω2

bK4

− 1

K4
ω2

0 sin δ0

)
cos δ0 +

1

K4b
u0Ω0δ2 sin(δ0).

(5.20)

The validity of the regular perturbation expansion for short time periods is borne from the

close match between the solution u0(t) + εu1(t) + ε2u2(t) with the solution of (5.5) as shown in Fig.

5.4 (a). A similar comparison for the angular velocities is shown in Figs. 5.4 (b) and (c). The

initial conditions for a direct numerical simulation of (5.5), (5.6) and (5.7) are (u(0) = 0,Ω(0) =

0.1, ω(0) = 1). Since the perturbation expansion, (5.9) is valid for any arbitrarily small value of ε,

the initial conditions for simulation of the perturbation expansion equations are (u0(0) = 0, u1(0) =

0, u2(0) = 0), (Ω0(0) = 0.1,Ω1(0) = 0,Ω2(0) = 0) and (ω0(0) = 1, ω1(0) = 0, ω2(0) = 0).
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Figure 5.4: Simulation of the Chaplygin sleigh with a small internal rotor for initial conditions
u(0) = 0, Ω(0) = .1, ω(0) = 1 (u0(0) = 0, Ω0(0) = .1, ω0(0) = 1 and other initial conditions are zero
for the regular expansion). The solution due to the perturbation expansion is shown as a dashed
line and the exact solution as a solid line.

41



In Fig. 5.4 (a) and (b) we see that the longitudinal velocity of the sleigh increases from

zero and begins to show small oscillations with a non zero mean. The angular velocity of the sleigh,

Ω, decays to zero with small oscillations. Except for the oscillations in the growth of u and the

decay of Ω, the evolution of these velocities is similar to those of the regular Chaplygin sleigh. But

more significantly there is a transfer of kinetic energy to the motion of the internal rotor, with ω(t)

experiencing slow growth with oscillations. The oscillations in u(t), Ω(t) and ω(t) can be explained

by the regular perturbation expansion equations. The error between the perturbation solution for

ω and a direct numerical simulation grows faster and even on a time scale of 100s the error is about

2%. This can be expected since the angular velocity ω(t) can have secular growth as seen in fig. 5.2

Equations (5.12) and (5.15) represent the leading order equations for the evolution of the

velocity of the sleigh. These equations are the same as those that describe the motion of the

Chaplygin sleigh without an internal rotor, (5.5), (5.7). The leading order solutions u0 and Ω0 are

shown in Fig. 5.5(a) and (c). The O(ε0) solutions exhibit the behavior of a regular Chaplygin sleigh

without an internal rotor.

The right hand sides of equations (5.13) and (5.16) are zero since the initial conditions

(u1(0) = 0,Ω1(0) = 0, ω1(0) = 0) are the fixed points of the O(ε) equations. Therefore the O(ε)

solution is always zero.

The first term on the right hand side of (5.18) decays to zero since Ω0 decays to zero.

Therefore ω0 converges to a constant value as shown in Fig. 5.5 (e). The first term on the right

hand side of (5.14) decays to zero since Ω0 decays to zero. The second term bΩ2
1 is zero and the

third term 2bΩ0Ω2 decays to zero. Therefore the equation (5.14) can be approximated as

u̇2 ≈ bK2ω2
0 cos δ0. (5.21)

We next make a series of approximations for the relative angle δ by first noting that

δ(t) =δ(0) +

∫ t

0

(Ω− ω)dt

=δ(0) +

∫ t

0

(Ω0 − ω0)dt+ ε2
∫ t

0

(Ω2 − ω2)dt+ .... (5.22)

Since Ω0 decays to zero rapidly and ω0 reaches a constant value rapidly, we will make the approxi-
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mation

δ0 ≈ δ(0)− ω0t (5.23)

Assuming δ(0) = 0, it is clear from (5.21), u2 shows oscillatory behavior, with the oscillations

becoming nearly periodic after a short transient, as shown in Fig. 5.5(b).

A similar argument can be made for the right hand side of (5.17). First we set u1(t) = 0,

Ω1(t) = 0 and let Ω0 → 0 to obtain

Ω̇2 ≈ −
u0Ω2

bK2
− 1

K2
ω2

0 sin δ0. (5.24)

The stable solutions to the leading order equations are such that u0 > 0. Therefore first term on

the right hand side of (5.24) causes a decay of Ω2 → 0. The second term causes periodic oscillations

around zero, as shown in Fig. 5.5 (f). Equation (5.24) is a linear differential equation with a periodic

forcing, the steady state solution for which is also periodic with the same frequency as the forcing

frequency,

Ω2 = −

 1√
ω2

0 +
u2
0

b2K4

 ω2
0

K2
sin (δ + φ1) (5.25)

where φ1 = tan−1(−ω0bK
2

u0
) = 0.4705π ≈ π/2. The amplitude of the steady solution of Ω2 is 0.892.

The evolution of u2 and Ω2 by the simulation of (5.12)-(5.20) is shown in Fig. 5.5 (b) and

(d). The two velocities converge to oscillatory solutions with a time period of T1 = 6.276 that is

nearly equal to 2π
ω0

= 6.277, which bears out the validity of the series of approximations we made

leading to (5.25).

The steady state behavior of ω2 , seen in Fig. 5.5 (f) is a periodic function with time period

T2 = 3.138 which is half that of T1. This can be understood by examining the several terms on the

right hand side of (5.20). Since Ω0 → 0 and u1 = 0 and Ω1 = 0, the steady state evolution of ω2 is

approximately governed by the equation

ω̇2 =− u0Ω2

bK2
cos δ0 −

1

K2
ω2

0 sin δ0 cos δ0

≈u0A

bK2
cos2 δ0 −

1

2K2
ω2

0 sin 2δ0.

where we substituted for the steady state solution of Ω2 from (5.25) with the further approximation

that the phase angle φ1, in (5.25) is approximately π/2. It is straightforward to show that
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Figure 5.5: Order ε0 and order ε2 solutions for the velocities of the sleigh with initial conditions
u0 = 0, Ω0 = .1, ω0 = 1, δ0 = 0 and all other initial conditions zero. Order one ε1 solutions remain
zero for all time.
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ω̇2 =
u0A

2bK2
+

u0A

2bK2
cos 2δ0 −

ω2
0

2K2
sin 2δ0

=
u0A

2bK2
−B sin (2δ0 − φ2)

≈ u0A

2bK2
+B sin (2ω0t+ φ2) (5.26)

where

B =

√(
u0A

2bK2

)2

+

(
ω2

0

2K2

)2

and φ2 = tan−1
(
u0A
bω2

0

)
. The constant term and the periodic term on the right hand side of (5.26)

produce respectively a linear growth in ω2 and an oscillatory response with time period T2 = π
ω0

.

Using the previously obtained values of ω0 and u0 we find that T2 = 3.135, B = 0.238 and the

average value of Ω2 grows linearly at a rate of 0.0415. A direct simulation of equation (5.20) shown

in Fig. 5.5 (f) show that time period T2 = 3.138, B = 0.241 and the linear growth rate is 0.0445

which are in very good agreement with the values obtained through the analytical approximations.

Note that the growth rate is approximate and any discrepancy from the true growth rate causes the

error in ω to accumulate. This is why in Fig. 5.4 (c) we see the approximate and actual solutions

slowly growing apart.

As Fig. 5.2 (a) shows the longitudinal velocity decays with oscillations after about t > 100

until about t = 8, 700. In the same time period the angular velocity of the sleigh oscillates about

zero with the amplitude steadily increasing until it reaches a nearly steady value as seen in Fig.

5.2 (b). This second transient phase is generic to any initial conditions with positive longitudinal

velocity, although the time period associated with this transient behavior changes with the initial

conditions.

This second transient phase cannot be explained through a perturbation analysis. The third

order perturbation solutions, u3, Ω3 and ω3 turn out to be zero. The equations for the fourth order

variables contain many secular terms, leading to unbounded solutions. It is however easy to see that

the velocities, u, Ω and ω should remain bounded since the kinetic energy is invariant. We first

point out that the second order solution, ω2 itself grows without a bound. Therefore in the second

transient stage the decay of the longitudinal velocity u is due to the conservation of the kinetic

energy of the sleigh.
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5.3 Chaotic Dynamics of the Sleigh on the Attractor

Numerical simulations show that for all initial conditions, except those of a zero measure,

the longitudinal velocity of the sleigh converges to a periodic function with multiple frequencies.

This is shown in Fig. 5.2 (a) where from about t = 8, 700 the velocity u undergoes rapid oscillations,

with the mean value of u itself oscillating at a much lower frequency. The angular velocity of the

sleigh also undergoes high frequency oscillations with zero mean, along with a spike that occurs

between much longer time intervals, Fig. 5.2 (b). The angular velocity of the rotor also oscillates

with a high frequency with the mean value oscillating at a lower frequency, Fig. 5.2 (c). We will

denote this state of motion of the sleigh as the steady state. To explain this steady state behavior

we show in Fig. 5.6 the kinematic variables over a smaller time window along with the trajectory

of the sleigh in the plane during this time window.
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Figure 5.6: Steady State behavior of the sleigh. Initial conditions are u0 = 0, Ω = .1, and ω = 1.
Subfigures a), b), d) and e) show the parameters of the sleigh over time. Subfigure c) shows the
trajectory of the sleigh for the time window t = 9, 000s to t = 11, 500.

In Fig. 5.6 (a) at about t = 9, 800, despite the oscillations, the maximum longitudinal

velocity of the sleigh is negative, i.e. the cart moves backwards. As shown in the phase portrait for

the zeroth order dynamics, the motion of the Chaplygin sleigh in the backward direction is unstable.

Therefore at about t = 10, 000 u increases, resulting in an increase in magnitude of Ω. This sudden

increase in the angular velocity of the sleigh is reflected in the spike in Fig. 5.6 (b). Figure 5.6 (c)

shows the trajectory of the sleigh in the physical plane during this spike in angular velocity. In the

first transition, between position A and position B, shown in Fig. 5.6 (c) the sleigh’s orientation
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changes by a large amount (nearly π radians) due to the spike in the angular velocity of the sleigh.

The motion of the sleigh changes from the backward (in body frame) direction to forward direction,

i.e. u becomes positive. At about t = 12, 000 the longitudinal velocity of the sleigh is once again

wholly negative. The average motion of the cart is once again in the backward direction (in the body

frame). What appears to be a sharp turn in the trajectory of the sleigh in the x−y plane is actually

the second transition which is characterized by the average longitudinal velocity becoming negative.

So the sleigh does not execute a turn at this point, it simply changes the direction of travel.

-50 0 50
x

-50

0

50

y

Figure 5.7: Path of the sleigh after t = 100, 000s. Initial conditions are taken after the transient
phase to capture the steady state trajectory.

As the mean value of the longitudinal velocity itself undergoes low frequency oscillations

(Fig. 5.6 (a)) the trajectory of the sleigh in the x − y plane undergoes what seem like many sharp

turns. Figure 5.7 shows a generic trajectory of the sleigh in the x − y plane. This trajectory of

the sleigh in the x − y plane is in sharp contrast to the trajectory of the Chaplygin sleigh without

the internal rotor, whose angular velocity converges to zero for almost all initial conditions. The

trajectory of a Chaplygin sleigh without the internal rotor converges asymptotically to a straight line

in the x− y plane and the trajectory is not bounded, see Fig. 2.1 (b). In contrast the trajectory of

the sleigh with even a small passive rotor is bounded as shown in fig. 5.7. Moreover numerical

simulations suggest that the path of the sleigh is not periodic. To illustrate the non periodic
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nature of the trajectories of the dynamical system (5.5)-(5.8), we consider the Poincare section,

Σ2π = {u,Ω, ω, δ = 2nπ} where n = 0, 1, 2, 3... and the first return Poincare map to the Poincare

section,

P2π : (un,Ωn, ωn, 2nπ) 7→ Φ
tn+1

tn (un,Ωn, ωn, 2(n+ 1)π). (5.27)

Figure 5.8(a) shows the Poincare map for a large number of iterations. The Poincare map is not

periodic for thousands of iterations and fills out a closed curve. We further consider the Poincare

section, Σπ/2 = {u,Ω, ω, δ = nπ/2} and the first return Poincare map, Pπ/2 to this section Σπ/2.

Figure 5.8 (b) shows a large number of iterations of this map, which form four distinct closed loops.

In the steady state the trajectory of the dynamical system (5.5)-(5.8) lies on an attractor A. The

iterations of these Poincare maps lie on the projection of the attractor, πA ⊂ R3 which is the

projection of the flow map πΦ : R3 × S1 7→ R3. The attractor, πA, is shown by the small dots in

Fig. 5.8 (b).

The reduced equations of motion of the sleigh, (5.5) - (5.8) are dissipative in the sense of

decreasing phase space volumes. The trace of the Jacobian obtained by linearizing these reduced

velocity equations is nonzero for almost any (u,Ω, ω, δ). However the kinetic energy of the sleigh is

an invariant. The manifoldM is foliated by level sets of the kinetic energy. Trajectories that lie on a

level set of the kinetic energy converge to an attractor that is a subset of this level set. The attractor

and its projection shown in Fig.5.8 (b) are subsets of an invariant level set of the kinetic energy.

The attractor is dependent on the kinetic energy of the sleigh as well as the value of ε. However the

topology of the attractor persists across a broad range of values of ε, and E. For example Fig. 5.8

(c) shows the attractor for a different energy E = 0.8313 and the same ε = 0.1 while Fig. 5.8 (d)

shows the attractor for the same energy and ε = 0.01. For the combination of larger values of ε and

smaller values of total energy E, the attractor πA can be flatter with smaller variations in the range

of the ω.

The dynamics on the attractor have sensitive dependence on initial conditions. This can

be seen through the computation of the Lyapunov exponents. Adopting the algorithm proposed

in [23], we computed the four Lyapunov exponents for the dynamical system, (5.5)-(5.22). The four

Lyapunov exponents are 2.9e−4, 2.203e−4, −2.2e−4 and 2.02e−5. The Lyapunov exponents were

computed for a simulation time of 4000s at intervals of 0.01s. A pre simulation for an initial run

time of 10000s performed first to allow the transient dynamics to decay to very small values. We
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Figure 5.8: (a) Iterations of the Poincare map P2π. (b) Iterations of the Poincare map Pπ/2 shown
by the large filled circles forming four closed loops lie on the attractor πΦA shown by the smaller
dots, energy is E0 = 0.1127 and ε = 0.1 (c) attractor πΦA for ε = 0.1 and an energy of E = 0.8313
and (d) for ε = 0.01 and E = 0.1127.

verified the convergence of the computation of the Lyapunov exponents by checking the variation in

the computed values of these exponents. This variation of the Lyapunov exponents between time

steps oscillated between 7× 10−8 and −9× 10−8 for the last 200s of the simulation. This variation

is of the order of 0.01% in the values of the positive Lyapunov exponents.

The leading Lyapunov exponents are calculated for different energy levels, E, holding the

values of ε = 0.1 and b = 1, to verify that the chaotic behavior does not depend on the energy

on the system. The highest Lyapunov exponent plotted against the energy is shown in Fig. 5.9.

The highest Lyapunov exponent increases with the energy associated with the system and the LE

is positive for energy as low as 10−4. Similarly changes to the parameters ε and b across a range of

values of the energy E produce chaotic dynamics, with the largest Lyapunov exponent always being
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Figure 5.9: Maximum Lyapunov exponent for energies ranging from E = 10−3 to E = 103 with
ε = 0.1. The smallest value of leading Lyapunov exponent in the above graph is about 1.1× 10−4.

positive. The leading Lyapunov exponent is shown in Fig. 5.10 for a range of values of b and ε with

E = 0.1127. The smallest value of the leading Lyapunov exponent in Fig. 5.10 is greater than 10−4.

The calculations of the Lyapunov exponents strongly suggest the existence of sensitive dependence

of initial conditions, positive Lyapunov exponents and a chaotic attractor for the dynamical system

(5.5)-(5.8) for a broad range of parameters ε, b and E.

In order to further verify the aperiodic behavior of flow of (5.5)-(5.8) we plot the return

times for the map P2π. The return times for two different values of ε are shown in Fig. 5.11 for a

large number of iterations of the map P2π are shown. The return times for both the cases in fig. 5.11

are such that they are bounded in an interval. Furthermore, no two return times are the same upto

a precision of 10−7. Return time computations for the map P2π for a broad range of values of ε, E

and b show a similar behavior, suggesting the presence of a large or infinite number of frequencies

for the function δ(t).

The dynamics on the attractor are also aperiodic. A power spectral density plot of u(t)

and Ω(t) reveal that a very large number of frequencies are present clustered into two regions of the

frequency spectrum. These plots for the case of ε = 0.1 is shown in Fig. 5.12 and for the case of

ε = 0.01 in fig. 5.13. In Fig. 5.12 (a)-(b) the clustering of the power spectrum for the u(t) and Ω(t)
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Figure 5.10: Maximum Lyapunov exponent for E = 0.1127 for a range of ε and b. The largest
Lyapunov exponent is always positive.
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Figure 5.11: Return times tn of the Poincare map P2π for (a) ε = 0.1 and (b) ε = 0.01 with an
energy of E = 0.1127.

around the frequency zero has many distinct well defined peaks, which broaden as the frequency

increases, suggestive of quasiperiodic behavior. The power spectrum away from zero is clustered in

a broadband on a frequency interval that is approximately f ∈ [1.45, 1.8]. The frequency spectra are

computed in MATLAB using the fft function with an input signal on a time interval 5000s with
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time steps of 10−3. As in the computation of the Lyapunov exponents a pre simulation for 10000s

was performed to allow the transient dynamics to decay to negligible values.
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Figure 5.12: Power spectral density plots for u and Ω. Amplitude S(f) is plotted against frequency
f . ε = 0.1 and E = 0.1127.

For a smaller value of ε = 0.01, Fig. 5.13, the frequency spectra of u(t) and Ω(t) have a

narrower the frequency interval [0.56, 0.6] in which a very large number of frequencies are present

in a continuous band. At the zero frequency the frequency spectra has many but distinct peaks,

suggestive of quasiperiodic behavior in this small frequency band.
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Figure 5.13: Power spectral density plots for u and Ω. Amplitude S(f) is plotted against frequency
f . ε = 0.01 and E = 0.1127.

The power spectrum plots for u(t) and Ω(t) together with the return times suggest that

within a small interval all frequencies are present demonstrating the aperiodic behavior. At the

same time, the presence of fat peaks in the frequency spectra for smaller ε (Fig. 5.13) along with the
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the smaller difference in the return times of the map ¶2π (Fig. 5.11) suggest a possible quasiperiodic

route to chaotic behavior. Such chaotic behavior can be verified numerically for values of ε as small

as 10−5. However the numerics become unreliable for as the parameetr ε becomes smaller. Similarly

for very large values of ε, exceeding 20, the leading Lyapunov exponents become smaller than 10−5

suggesting that the chaotic behavior could disappear in atleast some windows as the parameters of

the system vary.

An analytical approach to the possible bifurcations in the dynamical system (5.5)-(5.8)

present many challenges because of the singular nature of ε. In the absence of the internal rotor,

i.e. ε = 0, the dynamical system (5.5)-(5.8) reduces to a two dimensional system. The solution to

this case is that the angular velocity of the sleigh, Ω, decays to zero and the longitudinal velocity of

the sleigh, u, converges to a constant value. For any small but finite ε, the dimension of the system

increases to four. This singular nature of ε does not allow a traditional analysis of bifurcations (if

any) of the invariant sets of the dynamical system (5.5)-(5.8) and the route to chaos. The numerical

analysis however indicates that the system follows a quasiperiodic route to chaos around ε = 0.
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Chapter 6

Dynamics Due to a Passive Degree

of Freedom and Elastic Potential

In this section we consider the same system as above but also in the presence of a spring

connecting the sleigh and the rotor. Here we summarize the results of [26]. Overall we will see that

the presence of a spring stabilizes many of the fixed points of the above system, replacing chaotic

dynamics with convergence to fixed points or limit cycles. In order to model the effect of a Duffing

spring we introduce a nonzero potential energy of the form

V(δ) = k1δ
2 + k2δ

4

where k1 ∈ R and k2 > 0. In order to derive the equations of motion we follow the steps in chapter 2

and then manually eliminate the Lagrange multiplier as in the previous section to get

Mb 0

0 1

 ξ̇ =



ω2
1(mra cos δ +mb) +mraω

2
2 cos δ + 2amrω1ω2 cos(δ)

mrabω
2
2sinδ + 2mrabω1ω2 sin(δ)− uω1(mra cos(δ) +mb)

−mrauω1 cos δ −mrabω
2
1 sin(δ)− 2k1δ − 4k2δ

3

ω2


(6.1)
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where ω1 = θ̇, ω2 = δ̇, and δ is the angle made by the internal rotor with respect to the body Xb

axis and Mb represents the locked inertia tensor,

Mb =


m −mra sin(δ) −mra sin(δ)

−mra sin(δ) Ic + Ir +mb2 +mra
2 + 2abmr cos(δ) mrab cos δ + Ir +mra

2

−mra sin(δ) mrab cos δ + Ir +mra
2 Ir +mra

2

 . (6.2)

6.1 Fixed Points of the Elastic Chaplygin Sleigh System and

Their Stability

The block diagonal matrix

Mb 0

0 1

, hereafter denoted by A, is invertible since the diagonal

blockMb is the locked inertia tensor, a symmetric positive definite matrix. Denoting the right hand

side of (8.17) by g(ξ), dynamical system (8.17) can be rewritten as

ξ̇ =

Mb 0

0 1


−1

g(ξ) =

M−1
b 0

0 1

g(ξ) ≡ f(ξ). (6.3)

The fixed points of (8.12), denoted by ξe = (ue, ωe1, ω
e
2, δ

e) satisfy f(ξe) = 0, i.e., A−1g(ξe) =

0. Since A−1 and M−1
b are obviously invertible, the only solution to A−1g(ξe) = 0 is the trivial

solution g(ξe) = 0. The last equation of (8.17), δ̇ = ω2, implies ωe2 = 0, for any fixed point of (8.17).

The total energy of the system, E, the sum of the kinetic energy of the sleigh, T (q, q̇) and the

potential energy, V(q) stored in the elastic element is a constant, since the nonholonomic constraint

force does not do any work. The velocity of the sleigh u can be eliminated in the dynamical system,

u(ω1, ω2, δ;E) =
1

m

(
sin (δ) amrω1 ± ( (sin (δ))

2
a2mr

2ω1
2 − 2 cos (δ) abmmrω1

2 − a2mmrω1
2

− b2m2ω1
2 − 2 δ4k2 m− Ir mω1

2 − Icmω1
2 − 2δ2k1m+ 2Em)

1/2
)

(6.4)

Similarly, for a triplet ωe1, ωe2 = 0 and δe, a one parameter set ue(E) exists. For instance an inspection

of (8.17) together with (6.4) shows that one set of fixed points are given by (ωe1 = 0, ωe2 = 0, δe = 0)
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and

ue =

√
2E

m
. (6.5)

The fixed points of dynamical system (8.17) are nonisolated. The stability of such nonisolated fixed

points can be analyzed by first reducing the dimension of (8.17).

If the four components of the vector field f(ξ) are denoted as f(ξ) = [f1(ξ), f2(ξ), f3(ξ), f4(ξ) =

ω2]T , then the equations of motion reduced to a constant energy manifold are the last three equations

of (8.12) with the velocity u replaced by (6.4)


ω̇1

ω̇2

δ̇

 =


f2(E;ω1, ω2, δ)

f3(E;ω1, ω2, δ)

ω2

 ≡ fR. (6.6)

The fixed points of (6.6), denoted by (ωe1, ω
e
2 = 0, δe) satisfy fR(E(ue);ω1, ω2, δ) = 0. Equiv-

alently the fixed points satisfy g2(E(ue);ωe1, ω
e
2, δ

e) = 0, g2(E(ue);ωe1, ω
e
2, δ

e) = 0 and ωe2 = 0. Every

nonisolated fixed point ξe of the original dynamical system (8.12), leads to an isolated fixed point

(ωe1, ω
e
2 = 0, δe) on the manifold of constant energy, E(ue). To analyze the stability of these isolated

fixed points we linearize the system about (ωe1, ω
e
2 = 0, δe). This allows us to determine whether the

fixed point is stable or unstable by examining the eigenvalues of the Jacobian DfR, is these eigenval-

ues do not lie on the imaginary axis. Supposing the eigenvalues of the Jacobian DfR(ωe1, ω2 = 0, δe)

are denoted by (λ1, λ2, λ3) and

σ = max
i=1,2,3

(Re(λi))

then the fixed point (ωe1, ω
e
2 = 0, δe) is stable if σ < 0 and unstable if σ > 0.

Due to the large parametric space in (6.6), the following scaling will be introduced,

mc

m
= ε,

b

a+ b
= ε, Ic = Kmcb

2 = Kml2ε3, Ir = Kmra
2 = Kml2(1− ε)3 (6.7)

where l = a + b. The spectral stability of the fixed points of (6.7) is investigated numerically for

values ε ∈ (0, 1). The cases of ε = 0 and ε = 1 are singular, with either the head or the tail

link becoming negligible. The stability analysis of fixed points of (6.6) shows dependence on the

parameters ε and the total energy E, with bifurcations occurring as the parameters change. The

following sections contain a detailed analysis of fixed points of (6.6). The fixed points and their
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stability are summarized in Table 6.1.

k1, k2 Case Nonisolated Fixed Points λ(DfR(E(u∗);ω∗1 , ω
∗
2 , δ
∗)) Path

k1 > 0
k2 ≥ 0

1 ue(E) > 0, ωe1 = 0, ωe2 = 0, δe = 0 [−a1,1,−a1,2,−a1,3] (S/U) Line
2 ue(E) < 0, ωe1 = 0, ωe2 = 0, δe = 0 [a2,1, a2,2 + a2,3i, a2,2 − a2,3i] (U) Line
3 u∗(E) > 0, ω∗1(E), ω∗2 = 0, δ∗ [−a3,1,±a3,2 − a3,3i,±a3,2 + a3,3i] (S/U) Circle
4 u∗(E) < 0, ω∗1(E), ωe2∗ = 0, δ∗ [a4,1,−a4,2 − a4,3i,−a4,2 + a4,3i] (U) Circle

k1 < 0
k2 > 0

5 ue(E) > 0, ωe1 = 0, ωe2 = 0, δe = 0 [a5,1,−a5,2,−a5,3] (U) Line
6 ue(E) < 0, ωe1 = 0, ωe2 = 0, δe = 0 [a6,1,−a6,2, a6,3] (U) Line
7 ue(E) > 0, ωe1 = 0, ωe2 = 0, δe ∈ {δ1, δ2} [−a7,1 + a7,2i,−a7,1 − a7,2i,−a7,3] (S/U) Line
8 ue(E) < 0, ωe1 = 0, ωe2 = 0, δe ∈ {δ1, δ2} [a8,1 + a8,2i, a8,1 − a8,2i, a8,3] (U) Line
9 u∗(E) > 0, ω∗1(E), ωe2 = 0, δ∗ [−a3,1,±a3,2 − a3,3i,±a3,2 + a3,3i] (S/U) Circle
10 u∗(E) < 0, ω∗1(E), ωe2 = 0, δ∗ [a10,1,±a10,2 − a10,3i,±a10,2 + a10,3i] (U) Circle

k1 = 0
k2 = 0

11 ue(E) > 0, ωe1 = 0,ωe2 = 0, ∀δ [0, 0,−a11,1] (U) Line
12 ue(E) < 0, ωe1 = 0, ωe2 = 0, ∀δ [0, 0, a12,1] (U) Line
13 u∗(E) > 0, ω∗1(E), ωe2 = 0, δ∗ [−a13,1, a13,2 − a13,3i, a13,2 + a13,3i] (U) Circle
14 u∗(E), 0, ω∗1(E), ωe2 = 0, δ∗ [a14,1,−a14,2 − a14,3i,−a14,2 + a14,3i] (U) Circle

Table 6.1: Fixed points of the dynamics (8.17) of the sleigh with various spring parameters. The
fixed points are denoted by (ue, ωe1, ω

e
2, δ

e) in the case of straight line motion and by (u∗, ω∗1 , ω
∗
2 , δ
∗)

in the case of circular motion by the sleigh. Here ue(E) is given by (6.5), ω∗1 is given by (6.9), u∗ is

given by (6.10) and δ∗ = cos−1
(
−mb
mra

)
. In cases 1, 3, 7 and 9, where there are multiple fixed points,

(ue, ωe1, ω
e
2, δ

e), some of are stable and some are unstable which are indicated by (S/U). The fourth
column shows nature of the eigenvalues of the Jacobian of the reduced system (8.12). The notation
employed is that each aj,k > 0 corresponds to the j’th case for j = 1, 2, 3 and i =

√
−1. The letter

(U) indicates that the fixed point is unstable for all values of E and ε.

6.2 Motion Along a Line

The first category of equilibrium motion of the sleigh is motion along a straight line in x−y

plane (cases 1, 2, 5, 6, 7 and 8 in Table 6.1). Inspecting (8.17) these fixed points are such that

ωe1 = 0, ωe2 = 0. The value of δe is given by the third equation of (8.17), −2k1δ − 4k2δ
3. When

k1 > 0 and k2 ≥ 0 this implies δe = 0. When k1 < 0 and k2 > 0 however, three fixed points exist

for δe ∈ {0, δ1, δ2} where δ1 and δ2 are the minima of the elastic potential, δ1,2 = ±
√
−k2k1 . These

are the same fixed points for the reduced system, (8.12).

A sample trajectory for the sleigh converging to a straight line motion (case 1 with σ < 0)

is shown in Fig. 6.1. In Fig. 6.1a the trajectory of the sleigh in the plane converges to a straight

line whose slope is determined by the transient dynamics. The straight line motion is indicated in

Figs. 6.1b and 6.1c as the longitudinal velocity, u(t) converges to the equilibrium value ue > 0 and

the angular velocities, ω1 and ω2 converge to zero.
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Figure 6.1: Trajectory of the sleigh when ε = 0.3 for case 1. Other parameters are K = 1, k1 = 1,
k2 = 0 and l = 1. The (x, y) trajectory of the sleigh (blue) and the rotor (black) are showin in (a),
the longitudinal velocity in (b). the angular velocities of the sleigh (blue) and rotor (black) in (c).

When ue < 0, in cases 2, 6 and 8, one of the eigenvalues of the Jacobian, DfR(ωe1, ω
e
2, δ

e)

lies in the right half plane, showing that these fixed points are unstable. In cases 1, 5 and 7,

the equilibrium velocity of the sleigh is positive, ue > 0. For case 5, when k1 < 0 and k2 > 0

the equilibrium state of δe = 0 is unstable. In the remaining two cases, 1 and 7, the eigenvalues of

DfR(ωe1, ω
e
2, δ

e) lie in the left half plane for a range of values of ε and E, showing that fixed points are

stable. However these stable fixed points undergo bifurcations and loss of stability as the parameter

ε changes.

The fixed point in case 1 undergoes a Hopf bifurcation around ε = 0.707. The real part of

the three eigenvalues (one complex conjugate pair, and a real eigenvalue) of DfR evaluated at the

fixed point are shown in fig. 6.2a. The fixed point changes stability only once at ε ≈ 1√
2

in the range

of (0, 1) when the real part of the complex conjugate eigenvalues becomes positive. The complex

conjugate eigenvalues are plotted in fig. 6.2b showing a crossing from the left half to the right half

complex plane when ε ≈ 1√
2
. Figure 6.2a shows these changing eigenvalues as the parameter ε is

varying for an energy of E = 1. Numerical simulations show that the critical value of ε varies by

less than 10−4 from 0.707 for E = (0, 106).

In case 7, the stability of the fixed point undergoes three changes as the paramter ε varies

in the interval (0, 1).The real parts of the three eigenvalues of DfR at the fixed point are plotted

in Fig. 6.2c. For ε < 0.349 the eigenvalues of DfR are real with one of them being positive, with

the fixed point being a rank-1 saddle. At ε ≈ 0.349 the fixed point changes stability from a rank-1

saddle to a stable node. A second bifurcation occurs at ε ≈ 0.351 when the stable node becomes

a stable focus. Here two of the distinct real eigenvalues of DfR transition to complex conjugates.
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This is shown in the inset figure in Fig. 6.2c. A third bifurcation occurs at ε ≈ 0.698 when the two

complex conjugate eigenvalues cross the imaginary axis into the right half of the complex plane.
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Figure 6.2: (a) Real parts of eigenvalues of D(fR) for ε ∈ (0, 1) for case 1 with k1 = 1 and k2 = 0.
(b) A pair of eigenvalues crosses the imaginary axis as ε increases for case 1. The numbers on the
plots indicate ε. (c) Real parts of eigenvalues of D(fR) for ε ∈ (0, 1) for case 7 with k1 = −7 and
k2 = 1. Other parameters are K = 1, E = 1 and l = 1.

6.3 Motion on a Circle

The second category of equilibrium motion of the sleigh is that of a circle in the x − y

plane. The fixed points of the dynamical system (8.17) that correspond to this motion are that

of cases 3, 4, 9, 10, 13 and 14 in Table 6.1. For these cases the fixed points will be referred to

as ξ∗ = (u∗, ω∗1 , ω
∗
2 , δ
∗). Inspecting (8.17), ω∗2 = 0 and δ∗ = ± cos−1(−mbmra

) cause all but the third

equation to become zero. The existence of δ∗ requires that mb
mra

< 1, that is the internal rotor has

to have a larger mass and inertia than the mass of the main body. Due to this feature of the system

a bifurcation occurs for all such fixed points such that the fixed point does not exist beyond a value

of ε defined by

mb

mra
=

ε

(1− ε)2
= 1.

Using the fact that ε ∈ (0, 1) we find that this bifurcation occurs at ε = 3
2 −

√
5

2 ≈ 0.382. In the

alternate physical interpretation of the system, shown in Fig. 8.1b, this implies that the ‘tail’ is

smaller than the main body or the ‘head’. Inspecting the third equation of (8.17), we find that

equilibrium values u∗ and ω∗1 satisfy

0 = −mrau
∗ω∗1 cos δ∗ −mrab(ω

∗
1)2 sin(δ∗)− 2k1δ

∗ − 4k2δ
∗3. (6.8)
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The fixed point can be obtained by eliminating ue from (6.8) using (6.4). This gives

ω∗1 = ±

√
A±
√
B

D
, where (6.9)

A = amr(δ
4k2 + δ2k1 − E)(cos(δ))2 + 4 δ sin(δ)(δ2k2 + 1/2 k1)mra cos(δ)

+ 4 bmδ sin(δ)(δ2k2 + 1/2 k1)

B = (a2mr
2(δ4k2 − 4 δ3k2 + δ2k1 − 2 δ k1 − E)(δ4k2 + 4 δ3k2 + δ2k1 + 2 δ k1 − E)(cos(δ))2

+ (8 amr(δ
4k2 + δ2k1 − E) sin(δ)− 32 bmδ (δ2k2 + 1/2 k1))δ (δ2k2 + 1/2 k1)mra cos(δ)

− 16 δ (−1/2 abmmr(δ
4k2 + δ2k1 − E) sin(δ) + δ (δ2k2 + 1/2 k1)(−a2mr

2 + a2mmr

+m(mb2 + Ic + Ir )))(δ2k2 + 1/2 k1))(cos(δ))2

D = mr((a
2mr + Ic + Ir )(cos(δ))2 + 2 cos(δ)abmr +mb2)a

Once ω∗1 is calculated, u∗ can be calculated using (6.8) to get

u∗ = −abmrω
∗
1

2 sin (δ∗) + 4 k2δ
∗3 + 2 k1δ

∗

amrω∗1 cos (δ∗)
. (6.10)
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Figure 6.3: Sleigh trajectory converges to motion on a circle (case 9 with σ < 0). Parameters are
ε = 0.35, K = 1, k1 = −7, k2 = 1 and l = 1. The trajectory of the sleigh (blue) and the rotor
(black) are shown in (a), the longitudinal velocity in (b). the angular velocities of the sleigh (blue)
and rotor (black) in (c). (d) The sleigh traces out a circular path, in cases 3 and 9, with the relative
angle between the rotor and the sleigh being constant, δ∗. The dashed line shows the path of the
unbalanced rotor and the solid line shows the path of the sleigh.

In order to determine the path of the sleigh in the x− y plane, first note the fact that there
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is no relative motion between the rotor and the sleigh body, δ(t) = δ∗, and the sleigh moves with

a constant velocity u∗ and ω∗1 . Therefore θ(t) = ω∗1t and we can substitute these values into the

equations of a point on a circle to get

ẋ = A cos(ω∗1t+ φ), and ẏ = A sin(ω∗1t+ φ) where

A =
√
u∗2 + b2ω∗21 and φ = tan−1(

u

bω∗1
)

Integrating these we have

x− xc =
A

ω∗1
sin(ω∗1t+ φ), and

y − yc = − A

ω∗1
cos(ω∗1t+ φ).

Therefore we get

(x− xc)2 + (y − yc)2 =
A2

ω∗21

=

(
u∗

ω∗

)2

+ b2,

clearly the sleigh’s path is a circle of radius

√(
u∗

ω∗

)2
+ b2. An example of the simulation of the

sleigh’s motion in case 9 is shown in Fig. 6.3a trajectory of the sleigh converging to motion on a

circle with the trajectory of the sleigh in blue and that of the rotor in black. In this case ω1 → ω∗,

u(t) → u∗ and ω2 → 0 (Fig. 6.3c). Consequently, the angle of the sleigh grows at a linear rate

proportional to ω∗ and δ → δ∗. The equilibrium circular path of the sleigh is shown in 6.3d.

We find that for any given energy where the fixed point exists there are eight fixed points

ξ∗ = (u∗, ω∗1 , ω
∗
2 , δ
∗) due to the positive and negative values of δ∗ as well as the four solutions of (6.8)

for (u∗, ω∗). As we vary the energy, the location of each such fixed points in the (u,ω1) plane changes.

Different (u∗, ω∗1) are shown in Fig. 6.4a for energies ranging from 4.7 to 300 and a representative

value of ε = 0.35. The stability for these fixed points varies depending on the energy as well as the

stiffness values k1, k2. This is seen in Fig. 6.4b where we fix the energy and vary the stiffness. Red

regions are where the fixed point does not exist. The blue parameter regions are where the fixed

point ξ∗ exists but is unstable and green regions are where the fixed point, ξ∗ is stable.

As expected, the dynamics are symmetric about the ω1 axis due to the symmetry in rota-

tional dynamics. We can identify eight unique branches of fixed points (ξ∗1 , .., ξ
∗
8) beginning from

E ≈ 4.7, four with u∗ > 0 (case 9) and four with u∗ < 0 (case 10). We can take (ξ∗1 , .., ξ
∗
4) to be the
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Figure 6.4: (a) Fixed points ξ∗ (case 9) in the plane of u and ω1 for energies ranging from 4.7 to
300. Here δ = δ∗, ω2 = 0, k1 = −7, k2 = 1, and ε = 0.35. Solid lines indicate stable fixed points and
dotted lines are unstable foci. These fixed points do not exist for energies lower than 4.7. Numbers
on the plot indicate the energy for different points of interest. (b) Existence and stability of the ξ∗

fixed point for various values of k1 and k2 with a fixed energy of E = 100. Either the fixed point
does not exist (red), it exists but is unstable (blue) or it exists and it stable (green).

four branches in the top half plane (ω1 > 0). Let ξ∗1 refer to the branch with higher ω∗1 for u∗ > 0

in the first quadrant of Fig. 6.4a and let ξ∗2 be the other branch with u∗ > 0 in the first quadrant.

Figure 6.4a shows the result of a numerical computation of the stability, and it can be see that for

the given parameters ξ∗1 is stable for low energies and becomes unstable for higher energies. For

this value of ε = 0.35 we also find that the branch ξ∗2 is unstable for all energies. The other two

branches are unstable due to the negative value of u∗. In Fig. 6.5 we investigate the stability of ξ∗2

as a function of epsilon. We see in Fig. 6.5b that when we fix the energy and vary epsilon, ξ∗2 is

stable for lower values of ε and becomes unstable after ε = 0.2. A plot of (ξ∗1 , .., ξ
∗
2) is shown in Fig.

6.5a for ε = 0.1. We find that the general shape and stability of the branches changes as we vary ε.

Consider k1 = −7, k2 = 1 and take ξ∗1 in the first quadrant of Fig. 6.4a for an energy of

E = 100. The eigenvalues of Df in this case are of the form λ = [−a9,1,−a9,2− a9,3j,−a9,2 + a9,3j],

therefore σ < 0 making ξ∗1 is a stable focus at this point. In Fig. 6.6a we see convergence to three

different stable fixed points (one for case 7 and case 9 fixed points ξ∗1 and ξ∗5) for different initial

conditions at three constant energies (E = 80, 100, 120). The fixed points are shown as a function

of energy with black lines. The trajectories corresponding to case 7 converge to the ω1 = 0 axis and

the trajectories converging to circular motion in case 9 are symmetrically placed around this fixed
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Figure 6.5: (a) Fixed points ξ∗ (case 9) in the plane of u and ω1 for energies ranging from 4.7 to
300. Here δ = δ∗, ω2 = 0, k1 = −7, k2 = 1 and ε = 0.1. Solid lines indicate stable fixed points and
dotted lines are unstable foci. These fixed points do not exist for energies lower than 4.7. Numbers
on the plot indicate the energy for different points of interest. (b) Real eigenvalues as a function of
ε when the energy is E = 700

point at ±ω∗1 . All three fixed points are stable for the three energy levels shown. This figure shows

that for any given energy cases 7 and 9 can both be stable simultaneously with asymptotic behavior

of trajectories being dependent on initial conditions.

As the energy E increases σ changes sign and ξ∗1 becomes locally unstable. The eigenvalues

of Df cross the imaginary axis into the right half plane at E = 208.1, (Fig. 6.6c). A stable limit

cycle is formed around the unstable fixed point in a supercritical Hopf bifurcation. This is clearly

shown in Fig. 6.6b where we see how the fixed point ξ∗1 is at first a stable focus for energies of

E = 180 and 200 and a stable limit cycle is formed around it for higher energies of E = 220 and

E = 240. Note that the limit cycle is present in four dimensions. That is ω2 and δ also converge to

periodic functions.

In order to identify other bifurcations the fixed point ξ∗ may undergo we vary ε ∈ (0, 0.382)

and plot the complex eigenvalues of DfR(ξ∗1) of case 9 as well as a fixed point of the same energy for

case 3. As ε is varied, holding the energy constant, the stability of these fixed points does not change

for energies below E ≈ 520. However for higher energies, we find a double Hopf bifurcation where

the complex eigenvalues cross the imaginary axis twice as ε is varied. This is seen in Figs. 6.7(a)

and 6.7(b) where we vary ε for cases 3 and 9 respectively. We find that both cases undergo a similar

bifurcation for an energy of E = 700. In case 9, the imaginary eigenvalues of fR cross the imaginary

axis from left to right near ε = 0.25 and then in the opposite direction at ε = 0.36. Before the first
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Figure 6.6: (a) Three stable trajectories of the sleigh corresponding to cases 7 and 9 with σ < 0 at
energies of E = 80, E = 100, and E = 120. Initial conditions are chosen to lie on the corresponding
energy level and the trajectory is plotted in the (u, ω1, E) space. The fixed points as functions of
energy are shown by the black lines. The trajectory where ω → 0 corresponds to case 7 and the
trajectories to either side correspond to case 9 with symmetrically placed fixed points at ±ω∗ (ξ1
and ξ5 in Fig. 6.4a). (b) Fixed point ξ∗1 goes from being stable to unstable and a stable limit cycle
is formed around it (case 9 with transition from σ < 0 to σ > 0 as we vary energy). Convergence
to the stable focus is shown for energies E = 180 and E = 200 and convergence to a stable limit
cycle is seen for E = 220 and E = 240 (c) Eigenvalues cross the imaginary axis and a supercritical
Hopf bifurcation occurs at an energy of E = 208.1. Other parameters are ε = .35, k1 = −7, k2 = 1,
K = 1, m = 1, and l = 1

transition ξ∗ is a stable focus. After the first crossing the point becomes unstable and a stable limit

cycle is created around the fixed point, but as we increase ε further the fixed point becomes a stable

focus once again.
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2 and k2 = 1

4 .
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6.4 Dynamics of the System with no Elastic Element

If the spring element between the rotor and the sleigh’s body is absent, the rotor is free to

spin without any restoring torque. The fixed points for the case k1 = 0 and k2 = 0 correspond to

cases 11-14 in Table 6.1. Two of these cases correspond to straight line motion and two to circular

motion. However two of the eigenvalues of the DfR are zero in case 11, where ue > 0. Here a

linearized analysis of stability is insufficient. However extensive numerical simulations have shown

that fixed point in case 11 is unstable. The fixed points in the other cases 12-14 are similarly

unstable. The solutions to the dynamical system (8.17) converge to a chaotic attractor. For a

thorough analysis of this case for a small rotor, we refer readers to [22].
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Chapter 7

Passive Degrees of Freedom for

Improving Locomotion

In this chapter we show that the Chaplygin sleigh with an internal degree of freedom is able

to achieve much higher velocities and efficiency of motion for the same inputs as the sleigh without

one. We are able to compare the systems by assuming the total mass of the systems is the same,

with the same location of the overall center of mass and same moment of inertia when the interlink

angle δ = 0. This is shown in Figure 7.1. The relative size of the two links once an internal joint is

introduced is quantified by parameter ε which represents the size of the tail link.

l

m

(1-ϵ)m

ϵm

(1-ϵ)l

ϵl
x

y
P

X b

Y b

θ

δ

l

(1-ϵ)m

ϵm

Figure 7.1: Chaplygin sleigh (left) and Chaplygin sleigh with internal degree of freedom (right)

For many cases the moment of inertia of the sleigh may be written as I = γm(a2 +b2) where
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γ is a parameter that determines the shape of the sleigh and a and b are some characteristic lengths.

Since we assume the sleigh to be of uniform rectangular shape, the moment of inertia of the sleigh

without a passive degree of freedom is taken to be I = 1
12m(l2 + (2l)2) = 5

12ml
2. The moments of

inertia for the two link system are similarly calculated. As before we represent the dynamics of the

two link system using u, the velocity of the nonholonomic wheel, the angular velocity of the tail link

ω1 = θ̇, and the relative angular velocity ω2 = δ̇ and the relative angle δ.

7.1 Dynamics of two link sleigh with periodic forcing

In order to facilitate the comparison between the systems we nondimensionalize the equa-

tions of motion with respect to lengths and mass so that there are less parameters to consider. This

is accomplished with the change of variables and parameters

u→ ul, A→ Aml2, K → Kml2, cω → cωl
2, cδ → cδl

2

where K is the spring constant for the sleigh with a passive degree of freedom. We also introduce

dissipation in u, ω (ω1 for the two link system) and the interlink angle δ. The dissipation coefficients

are cu, cω and cδ respectively.

The nondimensional equations of motion for the Chaplygin sleigh become

u̇ = ω2 − cuu

(5γ + 1)ω̇ = −uω +A cos(Ωt)− cωω
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and the equations of motion for the sleigh with a passive degree of freedom and spring are


1 − sin (δ) (ε− 1)

2 − sin (δ) (ε− 1)
2

− sin (δ) (ε− 1)
2 M2,2 M2,3

− sin (δ) (ε− 1)
2 M2,3 M3,3




u̇

ω̇1

ω̇2

 =


(ω2 + ω1)

2
(ε− 1)

2
cos (δ) + (−2 ε+ 3) ε ω1

2 − cuu

3 ε (2ω1 + ω2) (ε− 1)
2
ω2 sin (δ)− ω1u (ε− 1)

2
cos (δ) + (2ε− 3)ω1uε− cωω1

−ω1u (ε− 1)
2

cos (δ)− 3ω1
2ε (ε− 1)

2
sin (δ)−K δ − ω2cδ + A cos (Ω t)


where

M2,2 = 6 ε (ε− 1)2 cos(δ)− 9 ε3 + (12 γ + 12)ε2 + (−12 γ − 3)ε+ 5 γ + 1

M2,3 = −(ε− 1)(4 ε2γ − 3 ε2 cos(δ)− 8 ε γ + 3 ε cos(δ) + ε2 + 5 γ − 2 ε+ 1

M3,3 = − (ε− 1)
(
4 ε2γ + ε2 − 8 ε γ − 2 ε+ 5 γ + 1

)
With the above dynamic equations we observe a range of behaviors, both regular and chaotic. The

trajectory of the sleigh for a nonzero torque can be of three primary types: converging to a limit

cycle such that the sleigh moves in a straight line on average similar to the one link sleigh, converging

to a limit cycle such that the sleigh moves on a circle on average, or a chaotic trajectory. An example

of each of the three types is shown in Fig. 7.2.

The trajectory where the sleigh travels on a circle (Fig. 7.2 (b)) arises from oscillations

about the δ∗ fixed point discussed in Chapter 6. Similar as with the sleigh with no forcing, the type

of motion exhibited by the sleigh can depend just on the initial conditions. For the first two types of

motion, we see a limit cycle in the velocity space (Fig. 7.2 (d-e)) similar to one seen for the classical

sleigh. For the straight line motion, the limit cycle is such that
∫ t0+T

t0
ωdt = 0. For motion on a

circle
∫ t0+T

t0
ωdt 6= 0 but as shown in Chapter 4 such motion can also be predicted via harmonic

balance method.
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Figure 7.2: Sample trajectories of the Chaplygin sleigh with a passive degree of freedom. The paths
in the (x, y) plane are shown for (a) A = 15, Ω = 20 (b), A = 50, Ω = 20 and (c) A = 100, Ω = 20.
Initial conditions are all zero.

7.2 Efficiency Comparison

To compare the sleigh with a degree of freedom without one, we calculate the efficiency of

motion for the three systems over a range of amplitudes and frequencies. The efficiency of motion

may be defined as

µ =
1
2mv

2
net

Ein

The efficiency of the Chaplygin sleigh without a degree of freedom is plotted for amplitudes

up to 200 and frequencies up to 50 in Fig. 7.4 (a). Note that efficiency of motion is maximized for

a particular set of of torque inputs. As also shown in Chapter 3, the velocity of the sleigh decreases

for large amplitudes due to self-enclosing trajectories. Note that efficiency is maximized at a lower

amplitude than vnet. The magenta line in each of the three plots represents a level set of input

energy when µ = maxµ. We compare the two systems using the level set of energy which produces
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Figure 7.3: Power spectrum density plot for the Chaplygin sleigh with a passive degree of freedom
for input A = 100, Ω = 20. Parameters are cu = 1, cω = 1, cδ = 1, ε = 0.1, and K = 10

the highest efficiency for the single link sleigh. Note that for the single link sleigh efficiency is nearly

constant for a level set of energy. This means that for a given input energy a particular velocity is

achieved regardless of the torque used to achieve this energy. This makes it beneficial to use low

frequency inputs as the same velocity and efficiency can be achieved with low torque required by

the rotor.

In contrast we see the efficiency for the Chaplygin sleigh with a spring plotted in Fig. 7.5

(a). For this system we see a fundamentally different frequency response. It is important to note

that the sleigh with a passive degree of freedom can exhibit a larger range of dynamics including

chaos and oscillations about the δ∗ fixed point discussed in Chapter 6. The behavior of the system

can change with the parameters as well as input and initial conditions. For this reason we plot

the efficiency of the modified system for a lower range of amplitude inputs where only serpentine

straight line motions are observed. Such motions can be approximated with the harmonic balance

method. We see that the efficiency of motion increases with both frequency and amplitude over a

large range of inputs.

Perhaps the most interesting difference between the two systems is in the dynamics on level

sets of input energy. Unlike for the single sleigh, for the same input energy we see an increase
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Figure 7.4: Frequency response of Chaplygin sleigh with friction. The magenta line represents the
level set of energy Ein|µ=maxµ (a) Efficiency of motion (b) Average velocity of the sleigh in the (x, y)
plane (c) Input energy per time period.

in velocity as higher torque is applied. Although the system may be less efficient for low torque

inputs, it can achieve much higher efficiency than its single link counterpart if high torques can be

generated. This is shown clearly in Fig. 7.6 where the efficiency and the corresponding velocities are
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Figure 7.5: Frequency response of Chaplygin sleigh with a passive degree of freedom and friction (a)
Efficiency of motion (b) Average velocity of the sleigh in the (x, y) plane (c) Input energy per time
period. Parameters are cu = 1, cω = 1, cδ = 1, ε = 0.1, and K = 10

plotted for two constant energy levels. It is convenient to plot them against input frequency since

the amplitude does not change as much for constant energy.

From Fig. 7.6 (a) we see that if a high frequency input can be generated, the sleigh with a
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Figure 7.6: Dynamics on constant energy surfaces Ein = Ein|µ=maxµ (left) and Ein = 10 (right).
(a-b) Efficiency of motion (c-d) Average velocity of the sleigh in the (x, y) plane. Parameters are
cu = 1, cω = 1, ε = 0.1, and K = 10

passive degree of freedom can move much faster than the sleigh without one. This could motivate

the use of vibration motors. In Fig. 7.6 (b), however, we see that for higher energy limit cycles,

higher efficiency can be achieved at lower input frequencies. Another interesting thing to note is

that for the sleigh with a passive degree of freedom, the velocity of the sleigh appears to increase

linearly with respect to the input frequency as seen in Fig. 7.6 (c-d). Efficiency, therefore, increases

as µ ∝ Ω2.

73



Chapter 8

Compliance in Nonholonomic

Systems

Compliant mechanisms convert an input displacement and force into a displacement and

force at another part of the body using elastic body deformations only. Compliant mechanisms

have made their way into many common tools and machines from lids, bows and bicycle breaks [34]

to end effectors for robotic arms and compliant grippers [1, 16, 19]. In mobile robotics, legged

mobile robots have seen the utilization of compliant joints that seek to mimic the compliant joints

of animals [33, 37, 52, 73]. Two features of compliant mechanisms stand out from the perspective

of their applications to robots, a large number of unactuated or passive degrees of freedom and

multiple stable configurations which can be retained with no applied forces [38,59]. Passive degrees

of freedom are naturally utilized by animals to facilitate efficient motion. Examples are the passive

flapping of wings by insects to generate lift in hovering flight [21, 82] and passive deformations of

fish to extract energy from ambient wake in a stream [65,72].

While motion in a compliant mechanism is achieved through elastic deformation of the

body as opposed to the interaction of rigid bodies, such mechanisms can nevertheless be modeled

using rigid links by constructing pseudo rigid body models (PRBM) or rigid body approximations

of compliant mechanisms. Such PRBM models have been used extensively in mechanism synthesis.

Virtually all theoretical work on the dynamics of compliant mechanisms has subjected them to

holonomic constraints alone. However nonholonomic constraints arise naturally in the dynamics of
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mobile robots; mainly due to rolling no-slip constraints in wheeled robots.

Another method of introducing compliance in nonholonomic systems is origami. Origami

is an ancient art of paper folding. One can create complex 3-D structures and mechanisms by

simply folding a 2-D flat sheet along the prescribed fold lines. Fabrication of such complex shapes

via traditional manufacturing techniques would indeed be very difficult if not impossible. The

principle of origami is geometric and scale-independent, thus one can essentially apply the same

design to create micro to macro-scale mechanisms. The absence of bulky rigid linkages in origami

makes the resultant mechanism extremely lightweight and simplified. In addition, many origami

mechanisms exhibit exceptional properties such as, multi-stability [2,48,49,85], auxetics [48,74,85],

tunable nonlinear stiffness [29,47,48], etc. In particular, a multi-stable system is one which possesses

multiple stable equilibrium configurations and perturbations around any equilibrium configuration

remain bounded in the absence of external inputs. Each of the stable configurations corresponds to

a minima of the potential energy function associated with the mechanism. All these aforementioned

properties make origami an attractive candidate for designing novel very high degree of freedom

robots and mechanisms. Such origami systems can have many potential applications for robots that

can slide, crawl and climb. In all such applications the origami robots would have to contend with

nonholonomic constraints.

8.1 The Compliant Chaplygin Sleigh Example

In this section we bring together the themes of compliant mechanisms and their associated

passive degrees of freedom with the theme of nonholonomic constraints to develop the dynamic

model of a nonholonomic bistable planar compliant mechanism. This system can be thought of as a

Chaplygin sleigh whose center of mass is able to move along the line joining the center of mass and

the point where the velocity constraint is applied. The system is envisioned as being actuated by an

internal balanced momentum wheel whose motion exerts a torque on the sleigh. The compliance of

the mechanism introduces a passive degree of freedom with a quartic elastic potential. This leads to

multiple stable static equilibrium configurations for the system. When the mechanism is subjected

to a periodic torque, the result is limit cycle oscillations in a reduced velocity space and serpentine

motion in the physical plane results. The limit cycles and the resulting motion of the sleigh are

dependent on the amplitude and frequency of the forcing. The stable velocity of the sleigh can also
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change depending on which potential well the limit cycles are near. This allows the sleigh to be

steered in a desired direction by changing the frequency of the input. These findings are relevant to

future work on compliant robots with wheels.

8.1.1 Pseudo Rigid Body Model (PRBM) of a Compliant Chaplygin

Sleigh

Figure 8.1 (a) shows a four link mechanism with three compliant joints. Assuming that the

compliant mechanism is always symmetric about the dashed line in Fig. 8.1 (b), the two joints at

the rotor are equivalent to a single compliant joint. Such symmetry is maintained if m3 = m4, for

then the constraint force at m1 produces identical deflections about the dashed line. Therefore the

equivalent model has a total of two compliant joints one at m1 and one at m2 with stiffnesses k1

and k2 respectively. The mechanism is similar to a Young mechanism [39] in that it consists of two

compliant segments and two pin joints, however the two pin joints are opposite to each other, unlike

a Young mechanism where they are adjacent. One node in this mechanism has a wheel that cannot

slip in the transverse direction. Two casters support the mechanism at the front allowing motion

in any direction. The system is modification of the Chaplygin sleigh, which consists of a platform

and blade or runner (replaced in our model by a wheel) on one side that is in contact with the

ground. The wheel reduces frictional dissipation for motion in the longitudinal direction, and while

it does not slip in the transverse direction, it could either roll or slip in the longitudinal direction.

A balanced rotor is placed at the joint with the wheel. This rotor is imagined to be driven by a

motor at a desired angular velocity. We will further restrict the angular velocity of the rotor to be

periodic with a chosen frequency and amplitude.

An equivalent pseudo rigid body model of the system is shown in fig. 8.1(b). The body

fixed frame is denoted by Xb−Yb attached to point P , while the spatially fixed frame is denoted by

X − Y . The body fixed frame makes an angle of θ with respect to the spatial frame. A vector in

the spatial frame ηs is related to a vector in the body frame, ηb through a rotation transformation

ηs = Rηb where

R =

cos θ − sin θ

sin θ cos θ.


The mass of each of the links is concentrated at the four node points, with masses m1, ...,m4. The
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Figure 8.1: The bistable Chaplygin sleigh

choice of concentrating the mass at four nodes does not affect the qualitative behavior of the system

as our analysis in will show, only the location of the center of the mass and its motion is important.

The particular choice of lumped masses merely reduces the length of the calculations. In this paper

we restrict ourselves to the case where the sleigh is balanced about the nonholonomic constraint,

i.e. m4 = m3. The node at which the nonholonomic constraint is applied is denoted by P . The

configuration of the compliant Chaplygin sleigh is parameterized by the location of the first mass,

(x1, y1), its orientation θ and its internal shape variable φ. The joints at m1 and m2 each have a

torsional spring of stiffnesses k1 and k2 respectively. The fixed lengths of the links l1 and l2 are

not configuration variables but determine the physical shape of the sleigh and potential function.

The configuration space of the system is Q = SE2 × S1, where G = SE2 is often defined as the

fiber group and the group S1 the shape manifold [7]. The tuple (x1, y1, θ, φ) will be represented by

q = [q1, q2, q3, q4]T for convenience. The Lagrangian for the compliant sleigh is

L(q, q̇, t) =
1

2
q̇TM(q)q̇ − V(φ) (8.1)

where M(q) is a locked inertia tensor and V(φ) is the potential energy stored in the spring. In the

undeflected position the two shorter links lie along the same line, therefore the angle φ is π
2 in the
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undeflected position. The potential energy is given by

V(φ) =
1

2
k1(2φ− π)2 + 2k2φ

∗2, where (8.2)

φ∗ = arcsin

(
l1
l2

sinφ

)

where k1 > 0 and k2 > 0 since both of the springs are resistive. The angle φ∗ represents the angle

between one of the long links and the −Xb axis as shown in Fig. 8.1. Since φ∗ = 0 in the undeflected

position the potential energy in the corresponding compliant joint is given by 1
2k2(2φ∗)2 = 2k2φ

∗2.

The extrema of V(φ) are given by {φ|∂V(φ)
∂φ = 0}. By examining Fig. 8.1 and considering that

φ ∈ (0, π) we see that there are two possibilities for the extrema of Eqn. (8.2). Either the potential

function is bistable with an unstable position at φ = π
2 and a stable position on either side or there

is a single stable position at φ = π
2 . The parameters which cause each of the above cases can be

found by checking the sign of ∂2V
∂φ2

∣∣∣∣
φ=π

2

, i.e. the condition for bistability is ∂2V
∂φ2

∣∣∣∣
φ=π

2

< 0. Direct

calculation shows this condition to be

k1

k2
<
l1 arcsin

(
l1
l2

)
√
l22 − l21

γ. (8.3)

When Eqn. (8.3) is satisfied, the potential function has two new minima, the first at φ1 <
π
2

corresponding to what we will call the ”closed” position of the compliant mechanism and the second

at φ2 >
π
2 corresponding to the ”open” position.

The system must also satisfy a nonholonomic constraint that the rear wheel is not allowed

slip in the transverse (Yb) direction, i.e.

W(q)q̇ = 0, where W(q) =

[
− sin θ cos θ 0 0

]
(8.4)

with Pfaffian one form being

− sin θdx+ cos θdy = 0. (8.5)

We also introduce viscous frictional forces by means of a Rayleigh dissipation function that

is proportional to the speeds of the each of the masses, m1 to m4. We also assume the structure is

damped with the damping force being proportional to φ̇. This means the rate at which energy is
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being dissipated is

R =
1

2
c1(ẋ1 cos θ + ẏ1 sin θ)2 +

1

2
c2(ẋ2

2 + ẏ2
2)

+
1

2
c3(ẋ2

3 + ẏ2
3) +

1

2
c4(ẋ2

4 + ẏ2
4) +

1

2
cmφ̇

2.

We will use c = [c1, c2, c3, c4, cm]T to denote the vector of dissipation coefficients. The equations of

motion of the Chaplygin sleigh can be derived using the method outlined in Chapter 2 to be

Mb 0

0 1

 ξ̇ =



−1
B0(φ)3 (B1(ω2

1 + ω2
2) +B2ω

2
1)

−ω1

2B0
(B3u+B4ω2) + τ

−l1
B4

0
(B5(ω2

1 + ω2
2) +B6ω

2
1)− k

8B7

ω2


+Dξ. (8.6)

where u is the velocity of point P , ω1 is the angular velocity of the system, and ω2 = φ̇. Also Mb

represents the locked inertia tensor, and D(φ)ξ are the dissipation terms which are linear in the

reduced velocities. The expressions for B0..B7 are given in the appendix.
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Direct calculation shows that Mb takes the form

Mb =


A1 0 A2

0 A3 0

A2 0 A4

 (8.7)

where the terms A1 to A4 are given in the appendix. The equations of motion can then be rewritten

as

ξ̇ =

Mb 0

0 1


−1

g(ξ) = f(ξ) (8.8)

where g(ξ) is the right hand side of (8.12).

8.1.2 Nonlinear Dynamics of the Compliant Chaplygin Sleigh

To examine the role of compliance in the dynamical system Eqn. (8.17) it is useful to first

examine the equations of motion of a rigid Chaplygin sleigh, i.e, one where the angle φ is a constant.

It is natural to frame the equations of motion of such a system in terms of the variable,

lc(φ) =
(B0(φ)− l1 cosφ)m2 − 2l1 cosφm3

m1 +m2 + 2m3
(8.9)

c Case Fixed Points µ Path

c = 0
k1 < γk2

1 ue(E) > 0, ωe1 = 0, ωe2 = 0, φe = φ1 [a1,1, a1,2i,−a1,2i] (U) Line
2 ue(E) > 0, ωe1 = 0, ωe2 = 0, φe = φ2 [−a2,1, a2,2i,−a2,2i] (U) Line
3 u∗(E) > 0, ωe1 = 0, ω∗2 = 0, φe = π

2 [−a3,1, a3,2i,−a3,2i] (U) Line
4 ue(E) < 0, ωe1 = 0, ωe2 = 0, φe = φ1 [−a4,1, a4,2i,−a4,2i] (U) Line
5 ue(E) < 0, ωe1 = 0, ωe2 = 0, φe = φ2 [a5,1, a5,2i,−a5,2i] (U) Line
6 ue(E) < 0, ωe1 = 0, ω∗2 = 0, φe = π

2 [a6,1, a6,2i,−a6,2i] (U) Line
c = 0
k1 > γk2

7 u∗(E) > 0, ωe1 = 0, ω∗2 = 0, φe = π
2 [−a7,1, a7,2i,−a7,2i] (U) Line

8 ue(E) < 0, ωe1 = 0, ω∗2 = 0, φe = π
2 [a8,1, a8,2i,−a8,2i] (U) Line

Table 8.1: Fixed points of the equations (8.12). The fixed points are denoted by (ue, ωe1, ω
e
2, φ

e). The
fixed points are divided according to the nature of the potential function (bistable when k1 < γk2).
For bistable case we use k1 = 0.578, k2 = 2.289 and for the single well potential we use k1 = 1,
k2 = 2. The fourth column shows the nature of the eigenvalues of the Jacobian of the reduced
system (8.12) for the cases where c = 0. The notation employed is that each aj,k > 0 corresponds
to the j’th case for j = 1, 2, 3... and i =

√
−1. The letters (S) and (U) indicate stable and unstable

fixed points respectively.
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which is the x coordinate of the center of mass the sleigh in the body fixed frame Xb − Yb. Setting

φ equal to a constant in Eqn. (8.15) the reduced equations of motion are well known to be [6,8,15]

u̇ = lcω
2
1

ω̇1 =
−mlcuω1

I +ml2c
(8.10)

where m = m1 +m2 +m3 +m4 and I is the moment of inertia of the sleigh about the center of mass.

The dynamical system Eqn. (8.10) is dissipative in the sense that volumes in phase space shrink;

the trace of the Jacobian of the vector field Eqn. (8.10) is negative. The system however converges

the total energy. From Eqn. (8.10) it is obvious that ω1 → 0 for all initial conditions and that the

set {(u, ω1)|ω1 = 0} is a set of nonisolated fixed points for the system. These fixed points are stable

when sign(u) = sign(lc). In other words the stable motion of the sleigh is such that the velocity

of the point P is pointing towards the center of mass. This stable direction of motion persists even

when the sleigh is actuated by a periodic torque [3, 25]; the periodically forced sleigh is shown to

have motion such that u > 0 on average when lc > 0. Therefore relative location of the center of

mass with the point of contact determines the preferred direction of travel for the sleigh.

This feature can be exploited in the compliant mechanism since the center of mass is able to

change location. The length parameter lc for the stable equilibria of the structure becomes lc(φ1) and

lc(φ2) for the closed (φ1 <
π
2 ) and open (φ1 >

π
2 ) positions respectively. We show that a compliant

mechanism can be designed such that lc(φ1) < 0 and lc(φ2) > 0 making use of the bistability to

manipulate the preferred direction of travel of the compliant sleigh.

From the above equations one can see that any fixed point requires ω2 = 0 i.e. internal

angle, φ, is fixed. When the internal angle is fixed the equations of the system reduce to that of a

rigid Chaplygin sleigh where fixed points are of the form (u, ω1) = (u0, 0) where u0 is a constant.

Setting ω1 = ω2 = 0 in the equations leaves only the potential energy terms which are zero when

φ ∈ {φ1, φ2,
π
2 }. Therefore all fixed points are of the form (E, 0, 0, φe) where φe is one of the equilibria

for the potential function and E > 0 is the energy. These fixed points correspond to fixed points of

the form ξ = (u0, 0, 0, φe) for (8.17) where

u0 = ±
√

2E

m1 +m2 + 2m3
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In order to make full use of the bistability to change the location of the center of mass it

becomes useful to find a set of parameters such that lc(φ1) = −lc(φ2). This will allow us to apply

any control law we use in one stable configuration to the other stable configuration. Substituting

?? into the aforementioned condition we get

m2

√
l2e − 4l22 = 0. (8.11)

Therefore in order to satisfy lc(φ1) = −lc(φ2) we require that either m2 = 0 or
√
l2e − 4l22 = 0 which

only happens if le = 2l2. However since l1 ≤ l2 for bistability to be physically possible and by

definition le ≤ 2l1, the constraint le = 2l2 requires that le = 2l2 = 2l1 which is no longer bistable as

the links are all along a line in the stable position. Therefore lc(φ1) = −lc(φ2) requires that m2 = 0.

8.1.3 Unforced Dynamics

We first note that Mb is symmetric and positive definite. Therefore the block diagonal

matrix on the left side of Eqn. (8.17) is invertible. This implies that ξ̇ = 0 is and only if the right

hand side of Eqn. (8.17) is zero. In particular the equation describing ω̇1 can be directly obtained

as

A3ω̇1 =
−ω1

2B0
(B3u+B4ω2)

in the absence of forcing or dissipation. From the above we see that for the unforced case ω1(0) =

0 → ω1(t) = 0. Therefore if ω1(0) = 0, ω̇1 = 0, i.e., ω1 = 0 is an invariant manifold of Eqn. (8.17)

just as in the case of the rigid Chaplygin sleigh. Dynamics on this invariant manifold correspond to

the motion of the sleigh along a straight line in the longitudinal (Xb) direction, with perhaps φ̇ that

is not identically zero.

Other invariant manifolds of Eqn. (8.17) exist when the viscous dissipation is absent and

the applied torque on the sleigh is zero. In such cases the energy is an integral of motion of Eqn.

(8.17) and we can further reduce the number of variables by writing one of the velocities in terms

of the energy. We can confine our analysis of the stability of invariant manifolds of Eqn. (8.17) to

level sets of the energy E by solving the energy equation for u to get u(E,ω1, ω2, φ) and substitute
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this expression into the equations of motion. The equations of motion can then be written as


ω̇1

ω̇2

φ̇

 =


f1(E,ω1, ω2, φ)

f2(E,ω1, ω2, φ)

ω2

 = h(ξ) (8.12)

From Eqn. (8.12) one can see that any fixed point requires ω2 = 0 i.e. internal angle, φ, is

fixed. When ω2 = 0 we see from the first equation of Eqn. (8.17) that ω1 = 0 is also necessary for

any fixed point. Setting ω1 = ω2 = 0 in the equations leaves only the potential energy terms which

are zero when φ ∈ {φ1, φ2,
π
2 }. Therefore all fixed points are of the form ξ0 = (u0(E), 0, 0, φe) where

φe is one of the equilibria for the potential function and

u0(E) = ±

√
2(E − V(φe))

m1 +m2 + 2m3
(8.13)

Due to the complexity of the equations, analysis of the eigenvalues of the Jacobian, Dh, of

h(ξ) around the fixed points is cumbersome; however using the parameters chosen for our simulations

(see Fig. 8.3) we can check the eigenvalues for each value of φe and values of u ∈ [−10, 10]. The

nature of eigenvalues, µ, of Dh(ξ0) is shown in Table 8.1. We see from Table 8.1 that Dh(ξ0) for

any fixed point ξ0 of h has a pair of imaginary eigenvalues showing that none of the fixed points are

asymptotically stable.

We find that the sign of the real eigenvalue in each case varies as

sign(u0) = sign(lc(φ
∗))→ aj,1 < 0

sign(u0) 6= sign(lc(φ
∗))→ aj,1 > 0.

The real eigenvalue corresponds to an eigenvector of the form [1, 0, 0]T implying ω1 either

grows or decays exponentially in the neighborhood of any fixed point. For any given energy and

specified φe there are two fixed points corresponding to positive and negative values of u0 Eqn.

(8.13). This is due to the fact that E(u0, 0, 0, φ
e) = E(−u0, 0, 0, φ

e). Therefore for any given energy

there always exists at least one fixed point for which sign(u0) 6= sign(lc(φ
∗)) and in the neighborhood

of such a fixed, any local perturbation of ω1 would grow locally. On the other hand for the fixed

83



-100 0 100

t

0.8

1

1.2
u

-100 0 100

t

0

0.2

0.4

1

(a) (b)

1 1.5 2

-0.2

-0.1

0

0.1

0.2

2

-100 -50 0 50 100

t

-0.2

0

0.2

0.4

0.6

0.8

l
c
(φ
1
)

l c
l
c
(�/2)

l
c
(φ
2
)

(c) (d)

Figure 8.3: A simulation of the unforced mechanism without dissipation. The orange dotted line
shows the forward time motion and the solid black line shows backward time motion. The horizontal
lines in (e) correspond to the extrema of V(φ). Parameters are l1 = 1, l2 = 2, k1 = 0.578, k2 = 2.289,
m1 = .5, m2 = .5, m3 = 1, c1 = 0, c2 = 0, c3 = 0 and c4 = 0.

point for which sign(u0) = sign(lc(φ
∗)) any perturbation in ω1 decays to zero in the neighborhood

of a fixed point. Physical motion that corresponds to such a fixed point of the reduced equations

is such that the velocity of point P points towards the center of mass. Furthermore when ω1 = 0,

ω̇1 = 0 and the system reduces to a two degree of freedom system with two first integrals being

the linear momentum and the energy. As a completely integrable system its motion must then be

confined to a torus. This suggests that the fixed points of the unforced system are locally centers

as the eigenvalues in the (ω2, φ) directions are imaginary and the solutions are all quasiperiodic.

Numerical simulations show that any generic trajectory approaches oscillations in (ω2, φ) around

this fixed point as ω1 → 0 exponentially. The convergence of ω1 → 0 is consistent with the behavior
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c Case Fixed Points µ

c > 0
k1 < γk2

1 ue = 0, ωe1 = 0, ωe2 = 0, φe = φ1 [−a9,1,−a9,2 + a9,3i,−a9,2 − a9,3i,−a9,4] (S)
2 ue = 0, ωe1 = 0, ωe2 = 0, φe = φ2 [−a10,1,−a10,2 + a10,3i,−a10,2 − a10,3i,−a10,4] (S)
3 ue = 0, ωe1 = 0, ωe2 = 0, φe = π

2 [−a11,1,−a11,2, a11,3,−a11,4] (U)
c > 0
k1 > γk2

4 ue = 0, ω∗1(E), ωe2 = 0, φe = π
2 [−a12,1,−a12,2 + a12,3i,−a12,2 − a12,3i,−a12,4] (S)

Table 8.2: Fixed points of the equations Eqn. (8.17). The fixed points are denoted by (ue, ωe1, ω
e
2, δ

e).
The fixed points are divided according to the nature of the potential function (bistable when k1 <
γk2). The fourth column shows the nature of the eigenvalues of the Jacobian of the system Eqn.
(8.17). The notation employed is that each aj,k > 0 corresponds to the j’th case for j = 1, 2, 3...
and i =

√
−1. The letters (S) and (U) indicate stable and unstable fixed points respectively.

of the rigid Chaplygin sleigh; all solutions of Eqn. (8.10) are such that ω → 0. The dynamics of the

rigid Chaplygin sleigh are therefore embedded within the dynamics of the compliant mechanism.

This behavior is demonstrated in Fig. 8.3. Beginning with initial conditions (1, 0.1, 0, φ1) note that

for the chosen parameters lc(φ1) < 0. Therefore for u(0) > 0 we expect a perturbation of ω1(0) = 0.1

to grow locally until lc or u changes sign (case 1 in Table 8.1). This is what we see in Fig. 8.3 (b),

the perturbation in ω1 initially grows until lc begins to exhibit interwell oscillations around a fixed

point corresponding to case 3 in Table 8.1 where lc > 0 on average (Fig. 8.3 (d)). When this

happens ω1 decays and converges to zero. Starting with the same initial conditions, in backwards

time we see that ω1 → 0 exponentially. In this case the trajectory converges to a periodic solution

with intrawell oscillations about φ1. In both forward and backward the torus dynamics obtained by

setting ω1 = 0. These are characterized by the closed curves we see in Fig. 8.3 (c).

8.1.4 Limit Cycles of the System With Dissipation

When viscous dissipation is non zero, in the absence of forcing the system will continue

to dissipate energy as long as any of the velocities are not zero. Therefore the only fixed point of

the system with dissipation is (u, ω1, ω2) = (0, 0, 0). Setting the velocities to zero leaves only the

potential forces on the right hand side of Eqn. (8.17). Therefore the compliant sleigh with viscous

dissipation has fixed points corresponding to the extrema of the potential energy. Each, therefore

takes the form ξ = (0, 0, 0, φe) where φe is one of the extrema of the potential energy. As a result

we see three fixed points when k1 < γk2 and one fixed point otherwise. These fixed points as well

as the eigenvalues of the Jacobian of f(ξ) are listed in Table 8.2.

Since all the velocities associated with these fixed points must be zero, they correspond to
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the sleigh being at rest such that φ = φe. These fixed points are stable as long φe is one of the

minima of the potential energy as we see in cases 1, 2, and 4. For case 3, any perturbation will cause

convergence to either of the fixed points of cases 1 or 2. These static fixed points play a key role in

influencing the dynamics of the compliant sleigh even when it is subjected to a periodic forcing.
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Figure 8.4: (a) Limit cycles of the compliant Chaplygin sleigh. (b) Position of the center of mass.
Black solid line is for the case τ = 1.5 cos(1.5t) beginning from the closed position, the blue dashed
line for τ = 2.2 cos(1.5t) also beginning from the closed position and the dotted orange line for
τ = 1.5 cos(1.5t) beginning from the open position. Parameters are l1 = 1, l2 = 2, k1 = 0.578,
k2 = 2.289, m1 = m2 = 0.5, m3 = 1, c1 = c2 = c3 = c4 = 0.05.

When a periodic input is applied on the compliant sleigh, for instance through the periodic

oscillations of a balanced rotor carried on the sleigh, it exhibits limit cycle motions near one of

the stable equilibrium positions. We denote (ū, ω̄1, ω̄2, φ̄) to be the average values of the reduced

velocities and φ on the limit cycle. In particular, three types of motions were identified. Forward

(ū > 0) or backward (ū < 0) motion can be generated for the closed position (φ̄ < π
2 ) depending

on the amplitude and frequency of the input. Forward motion can also be generated for the open

position (φ̄ > π
2 ). These three types of limit cycles are shown in Figure 8.4 for a sample set of sleigh

parameters. These parameters are chosen such that the center of mass is lies on the negative Xb

axis close to the point of contact in the closed position, i.e. lc(φ1) = −ε where ε � 1. This allows

the sleigh to achieve both forward or backward motion for the closed position. For the solid black

and dashed blue lines, we have φ(0) = φ1 and for the dotted orange lines we have φ(0) = φ2. In

each case the resulting oscillations are close to φ(0).

Figure 8.4 (a) shows that when the center of mass is close to the point of contact (lc(φ) ≈ 0),

the sleigh exhibits large amplitude oscillations in the angular velocities. For the same input applied
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in the open position we get a different limit cycle such that ū is much higher and the average velocity

is greatly increased (Fig. 8.4 (a)). Conversely the oscillations in the angular velocity are reduced.

Note that near the closed position both forward and backward motion can be achieved by changing

the periodic input. The change in direction of travel is only achieved, however, when the point of

contact is close to the center of mass of the sleigh in the closed position (lc(φ1) ≈ 0) and such that

lc(φ1) < 0 as seen in Fig. 8.4b. This effect is caused by the fact that increasing the amplitude of the

input causes the limit cycle oscillations in φ to be not about the equilibrium position exactly but

around a higher value (lc(φ̄) > 0 > lc(φ1)). The reversal in direction is consistent with the behavior

of the unforced compliant sleigh and the classical Chaplygin sleigh in that the position of the center

of mass relative to the constraint determines the preferred direction of travel.

This change in direction of travel is clearly seen in Fig. 8.5 (a) where we see that starting

from the same position, one input causes the sleigh to propel itself forward while another causes

motion in the opposite direction but at a similar velocity (Fig. 8.5 (b)). As discussed, this is due to

the sign of lc(φ̄) being different for each of the two cases. The ability to change direction of travel

demonstrates a potential way to exploit the compliance of the system. Compliance and bistability

also give us variations in the speed of the system as seen in Fig. 8.5b.
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Figure 8.5: (a) trajectories in the (x, y) plane, the trajectory for the open position is only shown for
the first 20 seconds (b) average velocity of the sleigh. Parameters are l1 = 1, l2 = 2, k1 = 0.578,
k2 = 2.289, m1 = .5, m2 = .5, m3 = 1, c1 = .05, c2 = .05, c3 = .05 and c4 = .05. Initial conditions
are all zero except for φ as indicated.
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8.2 An Origami Inspired Nonholonomic System

In this section we develop an equivalent Chaplygin sleigh-like model for the locomotion of a

bistable origami pattern called the generalized Kresling pattern. This work was done in collaboration

with Doctor Suyi Li and Priyanka Bhovad from the Dynamic Matter Group at Clemson University.

They are experienced with origami and performed the experimental work in this section. The origami

system is modeled as a Chaplygin sleigh with an internal nonlinear oscillator. By using the nonlinear

spring-like behaviors from the bistable Kresling origami, we show that intrawell oscillations of the

Kresling pattern can cause the sleigh to travel in a circle on average. The radius and the average

velocity of the circle are different when the Kresling pattern is oscillating around different equilibria.

Moreover the physical space occupied by the mechanism is different in each of the two equilibrium

configurations, with the mechanism moving faster in the larger configuration. We show that by

taking advantage of the bistability of the Kresling pattern it is possible to switch the configuration

of sleigh from the larger to the smaller one. Such switches in configuration are useful for a mobile

robot that has to for instance navigate in narrow confined spaces.

8.2.1 Generalized Kresling Pattern

The ”traditional” Kresling pattern was developed by Biruta Kresling [45] and its geometric

design and bistability is extensively studied in literature [31,35,40,64]. It is designed as a flat-foldable

mechanism, that is, its length at fully-contracted stable state is exactly zero. In this study, we use

a ”generalized” Kresling pattern, which has a non-zero length at fully-contracted stable state [2].

This non-zero length is described by a new design parameter H, and it opens up a new design space

for the Kresling pattern. Moreover, the generalized Kresling pattern can better accommodate the

realistic sheet material thickness in its design.

The design parameters of the generalized Kresling pattern are: n (number of sides of the base

and top polygon), p (side length of the base and top polygon), µi (angle ratio), and H (Kresling

segment length at the fully-contracted stable state). The crease pattern is composed of equally

spaced mountain and valley creases (Figure 8.6 (a)). The first and last valley creases are glued

together to generate an axisymmetric twisted polygonal prism (Figure 8.6 (b)). The base and top

of the cylinder create regular polygons that remain rigid during the folding motion. To design the

generalized Kresling pattern, we start from the traditional Kresling, with its geometry given by
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Figure 8.6: The design of the generalized Kresling pattern (a) Crease pattern depicting the design
parameters. The creases marked with (*) are glued together to create a Kresling segment. (b)
Isometric view and top view of folded Kresling segment depict the important geometric parameters
and the sign convention for rotation angle α

φ =
π

n
, R =

p

2 sin(φ)
, γ =

π

2
− φ,

where φ is half the internal angle of the base and top polygon, R is the circumscribed radius of the

base and top polygon, γ is the angle between the radius vector and polygon side as shown in Figure

8.6 (b). The strain-free lengths of the valley and mountain creases are then given by
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di = 2R cos(γ − µiγ),

bi =
√
p2 + d2

i − 2pdi cos(µiγ).

The top polygon of traditional Kresling segment is translated away from the bottom polygon

by a distance of H to create the generalized Kresling. The resulting crease pattern is no longer flat-

foldable; but retains an identical range of rotation as viewed from the top. The new strain-free

lengths of valley and mountain crease and the angle of inclination of valley crease are given by

dg =
√
d2
i +H2,

bg =
√
b2i +H2,

µgγ = cos−1(
p2 + d2

g − b2g
2pdg

)

Here, the subscript i refers to the parameters for traditional Kresling and subscript g refers to those

for generalized pattern. The angle of rotation (α) is used to characterize the folding motion of a

segment (Figure 8.6 (b)). The length of the segment (l) is defined as the perpendicular distance

between top and bottom polygon. The lengths of valley and mountain crease are then calculated as

d =
√

2R2(1− cos(α+ 2φ)) + l2,

b =
√

2R2(1− cos(α)) + l2. (8.14)

From the fully-contracted geometry we can determine the upper limit for α to be, αc = 2µiγ. The

lower limit for α can be computed by setting the length b equal to the natural length bg and solving

for α.

αe = {min(α)|b(α) = bg}.

The mountain and valley creases in Kresling segment can be assumed as truss members connected

by pin joints [40]. It can be assumed that the length of the valley crease (d) remains constant and

only mountain crease (b) is compressed or stretched throughout the folding motion [31]. With this

assumption, the derivative of d with respect to α is zero so that

l =
√
H2 + 2R2( cos(α+ 2φ)− cos(αc + 2φ)). (8.15)
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Thus, we have closed form solutions for describing the folding kinematics. The strain (ε)

and strain energy (U) due to folding can now be calculated as

ε =
b

bg
− 1, and U =

1

2
Kε2,

where K is the material stiffness. For the purpose of this analysis we normalize the strain energy

U by K, and define the non-dimensional strain energy as E = 1
2ε

2. The normalized strain energy

of the Kresling segment is minimum at its two stable configurations (Figure 8.7). Thus, we have

two distinct potential energy wells separated by a peak. This bistability in a Kresling segment

arises due to the non-rigid foldable nature of the facets. That is, its facets are undeformed at the

two stable states, but they have to undergo some deformation while folding between the two stable

states. We will use this property of bistable generalized Kresling segment to get two distinct modes

of locomotion in Chaplygin sleigh.
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Figure 8.7: The normalized strain energy versus rotation angle for bistable generalized Kresling
segment. (i) denotes fully-extended stable state, le = l(αe) and (ii) denotes fully-contracted stable
state. n = 8,p = 30 mm, µi = 0.8 and H = 20 mm
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8.2.2 Experimental Results

We have experimentally verified the bistability of generalized Kresling segment. The ex-

perimental setup is shown in Figure 8.8. The tests were performed on ADMET Universal Testing

Machine (eXpert 5601). The generalized Kresling segment was fabricated from paper (Daler -

Rowney Canford 150 gsm). First, the 2-D drawing of the pattern was prepared in the Solidworksr

software. This pattern was then cut out of the paper with perforated creases using CricutMakerr.

Additional reinforcement triangles were attached to the triangular facets using double sided tape.

Finally, the segment was folded by hand and the top and bottom polygons were attached to the

segment using double sided tape. A custom rotation fixture was designed using dual ball-bearing

hub to allow for free rotation of one end of the Kresling segment. One end of the Kresling segment

was fixed to the rotation fixture mounted on the lower base plate and the other end was fixed to the

upper platen.

ADMET UTM

Upper Platen

Sample

Custom Fixture

Figure 8.8: Experimental setup for verification of bistability for generalized Kresling segment

Some modifications to the pattern were deemed necessary in the fabrication of Kresling
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Figure 8.9: Verification of the bistability of Kresling segment (a)Experimental results: Force versus
segment length. Red line represents reaction force under contraction and the black line represents
reaction force under extension. The blue line is the averaged reaction force. (b) Analytical predic-
tions: Normalized force versus segment length. (i) denotes the fully-extended stable state, le = l(αe)
and (ii) denotes the fully-contracted stable state. n=8, p=30 mm, µi=0.8, H=20 mm

segment. During the initial testing it was observed that excessive stresses were developing along

the mountain creases. This caused the bistable segment to tear after a few cycles of testing. Thus,

the mountain creases were cut to allow smooth folding motion of the segment. A similar approach

is used in literature, where the resulting pattern is called Flexigami [57]. Additionally, triangular

reinforcements were added to the triangular facets to increase their relative stiffness compared to

creases and get stronger bistability. The elasticity of paper, fabrication defects, contact between

the deforming triangular facets, and internal friction cause the contraction and extension path to

vary slightly. As a result, we see a hysteresis loop forming instead of a single curve for force

versus displacement as seen in analytical prediction. The bistable nature of the generalized Kresling

segment is evident from the Figure 8.9.

8.2.3 Dynamic Model

In this section we develop model of a Chaplygin sleigh like nonholonomic system based

on the Kresling origami pattern. The Chaplygin sleigh is modeled as vertical plate connected to

the wheel via a rigid arm. The sleigh has mass mc and moment of inertia I1. The sleigh has a
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Figure 8.10: Origami inspired Chaplygin sleigh: (a) Schematic of the system depicting design pa-
rameters and co-ordinate systems (b) 3D visualization of the origami sleigh. The nonholonomic
constraint is applied to the sleigh at point P.

nonholonomic constraint applied to point P on the wheel which does not allow motion in the Yb

direction (Figure 8.10 (a)). The Kresling segment is mounted on the sleigh such that its base and

top polygon are perpendicular to the (x, y) plane and segment’s axis of rotation is aligned with Yb

(Figure 8.10 (b)). One face of the segment is fixed to the Chaplygin sleigh and the other face is free

to rotate about its rotation axis. The torque (τ) is applied to the free face about Yb axis . This face

is weighted with mass mk and moments of inertia about the z axis and its own axis are I2 and I3

respectively.

The system has a configuration manifold SE(2)×S1 parameterized by q = [x, y, θ, α]T where

(x, y) is the position of the sleigh, θ is the orientation and α is the rotation angle of the Kresling

segment. The positions and velocities of the free face can be written as

xk = x− l(α) sin(θ)

yk = y + l(α) cos(θ)
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and

ẋk = ẋ− l̇(α, α̇) sin(θ)− l(α)θ̇ cos(θ)

ẏk = ẏ + l̇(α, α̇) cos(θ)− l(α)θ̇ sin(θ).

The Lagrangian of the system (L) is then given by

L =
1

2
mc(ẋ

2 + ẏ2) +
1

2
mk(ẋk

2 + ẏk
2)

+
1

2
(I1 + I3 +ml2)θ̇2 +

1

2
I2α̇

2 − U(α)

The system must satisfy the nonholonomic constraint that the velocity of point P parallel to the

origami structure is zero

− sin(θ)ẋ+ cos(θ)ẏ = 0.

with Pfaffian one form being

− sin θdx+ cos θdy = 0. (8.16)

The system is also subject to Raleigh dissipation modeled by the dissipation function

R =
1

2
cuu

2 +
1

2
ck l̇

2

where u is the velocity of point P in the axis pointing to the center of mass and ck is the damping

in the Kresling pattern. Let us define the body-fixed state vector ξ = [u, ω1, ω2, α]T where u is the

velocity of P , ω1 = θ̇, and ω2 = α̇. The following reduced equations are then obtained

Mb(α) 0

0 1

 ξ̇ =


f1(u, ω1, ω2, α)

f2(u, ω1, ω2, α)

f3(u, ω1, ω2, α)

 (8.17)

where f1, f2, f3 and the elements of Mb(α) are described in the appendix.

8.2.4 Limit Cycles of the Origami Chaplygin Sleigh

We simulate the equations of motion (8.17) under the effect of a periodic torque τ . The

origami robot exhibits limit cycle motion for a large range of parameters and control inputs. Al-
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though the system may also exhibit chaos in the presence of large interwell oscillations, we focus

on control of the mobile robot through intrawell oscillations exploiting the bistability of the origami

structure to achieve multiple motion regimes. Since the origami structure will exhibit this bistability

for a large range of parameters, we chose different parameters in the robot design than those used

in the experiment. However we emphasize that origami is scalable making the units and scale of

motion less relevant for our analysis. Limit cycle motion of the system is shown in Figure 8.11. Each

of the velocities oscillates with the same frequency as that of the input making the limit cycle a loop

in the (u, ω1, ω2) space as shown in Figure 8.11 (c). Let us define (ū, ω̄1, ω̄2) to be the average values

of the velocities over one time period on the limit cycle. We find that ū > 0 and ω̄1 > 0 making the

limit cycle motion in the (x, y) plane a circle on average as seen in Figure 8.11 (a).
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Figure 8.11: Sleigh response to periodic torque with A = 100, and Ω = 1. Initial conditions are
all zero except α(0) = αe for the blue dashed trajectory and α(0) = αc for the black solid lines
in each subfigure. (a) The limit cycle in the velocity space, (b) The trajectory of the sleigh in the
(x, y) plane, (c) The length of the Kresling segment versus time, (d) schematic of the system in
the fully-contracted position and (e) schematic of the sleigh in the fully-extended position. The
geometry of the Kresling segment are n = 8, p = 7, H = 5, and µi = 0.8 with stiffness K = 5× 104

and damping ck = 1. Other parameters are m1 = 0.5, m2 = 0.5, I1 = I2 = I3 = 0.01, a = 10m and
cu = 0.1.

We find that the average values of all the limit cycle velocities change for each equilibrium

position. When α(0) = αe we get ū = 1.75 × 10−2, ω̄1 = 1.47 × 10−2 and ω̄2 = 0 whereas for

α(0) = αc we get ū = 4.15 × 10−3, ω̄1 = 7.94 × 10−3 and ω̄2 = 0. We find that when the Kresling

segment rotation angle is close to αe at which the segment is fully-extended we get both a higher ū

and ω̄; which means the sleigh absorbs more of the energy from the input torque in this position.
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The radius of motion in the (x, y) plane, however, depends on both of these. A similar effect is shown

analytically for the elastic Chaplygin sleigh analyzed in [26] For this reason we see from Figure 8.11

(a) that the radius for α(0) = αc is actually smaller despite ω̄1 being lower. We also find that in

the fully-extended position, the robot occupies more space (Figures 8.11 (d) and (e)). This becomes

another trade-off for the robot moving faster in this configuration. Based on the required task the

robot is able to move faster, with a larger radius while occupying more space or move on a tight

circle as a smaller robot.
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Figure 8.12: Sleigh transition procedure with Kp = 400 and Kd = 400. Initial conditions are all
zero except α(0) = αc. (a) The angle of rotation of the Kresling segment, (b) The length of the
Kresling segment (c) Applied torque and (d) The trajectory in the (x, y) plane. The geometry of
the Kresling segment are n = 8, p = 7, H = 5, and µi = 0.8 with stiffness K = 5× 104 and damping
ck = 1. Other parameters are m1 = 0.5, m2 = 0.5, I1 = I2 = I3 = 0.01, a = 10 and cu = 0.1.

In order to make use of the bistability we must be able force the Kresling segment to
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transition from one potential well to another. Since α and l are mutually increasing and decreasing,

a torque on the free face of the segment can be efficiently used to transition the segment to the other

potential well. We show that this can be done with PD control. The proportional term allows us

to define the desired potential well and the derivative term serves to compound with dissipation to

decrease the convergence rate of the response. When we require the segment to transition wells; we

switch off the periodic input and apply a control law of the form

while (|α− αd|> e) do

τ = −Kp(α− αd)−Kdω2

end while

where e is some chosen small error, αd ∈ {αe, αc} is the desired value of the Kresling segment

rotation angle and Kp and Kd are coefficients for the controller. The controller gains must be large

enough to force a transition over the unstable position. The exact values required depend on initial

conditions so we simply chose large values and show that that the control input is still of the same

order as the periodic input. The feedback control law allows us to switch wells immediately even

while the sleigh is moving. We first show a transition with zero initial conditions to focus on the

dynamics of this controller.
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Figure 8.13: Robot switching from the fully-contracted position to the fully-extended potion. Os-
cillations about the fully-contracted position are shown in black lines, the transition in magenta
dash-dotted lines and oscillations about the fully-extended position in blue dashed lines. (a) The
trajectory in the plane. (b) The length of the Kresling segment. The geometry of the Kresling
segment are n = 8, p = 7, H = 5, and µi = 0.8 with stiffness K = 5 × 104 and damping ck = 1.
Other parameters are m1 = 0.5, m2 = 0.5, I1 = I2 = I3 = 0.01, a = 10 and cu = 0.1.

In Figure 8.12 (a) and (b) we see that the segment is able to smoothly transition from one
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equilibrium position to the other in under 5 seconds. Figure 8.12 (c) shows that the input required

to transitions is of the same order as the sinusoidal input we use to steer the sleigh. The response

of the sleigh itself is seen in Figure 8.12 (d).

A simulation of the control law is shown in Figure 8.13. The sleigh begins with α(0) = αc

and we apply a periodic input with A = 100 and Ω = 1 for t ∈ [0, 300) and then the origami sleigh

is required to transition to the other stable configuration using the transition procedure. We then

apply the same periodic input until t = 600. We see that during the first three hundred seconds the

sleigh first travels backward briefly during the transient phase and then travels along a circle with

ū = 4.15 × 10−3 and ω̄1 = 7.94 × 10−3 (Figure 8.13 (a)). The system then transitions to the other

stable configuration. Once the periodic input starts again we see another transient phase where

u is on average less than zero before the sleigh settles to a limit cycle with ū = 1.75 × 10−2 and

ω̄1 = 1.47× 10−2. The system can therefore change its speed and radius travel using the torque on

the Kresling segment as the only control input.
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Chapter 9

Conclusion

Many recent works use techniques in [75] to develop gaits for underactuated nonholonomic

systems. Most such works, however, consider systems with only one dynamic variable and the

dynamic equations are driftless allowing for generation of simple gaits via Stokes theorem techniques.

In this dissertation we have developed motion planning for underactuated systems that require

modeling through multiple dynamic equations but contain only one control input. This is done

by modeling the steady state dynamics of the system through the harmonic balance method. We

map the relationship between an input periodic torque and the steady state periodic response of

a system and use this relationship to achieve desired motion in the (x, y) plane. This is a novel

method to control a planar mobile robot and similar techniques are now being implemented in fish

robots [46, 68]. Future work on this will involve controlling the transient phase of the motion as

well as the error in following a path. There is also much more work that can be done in applying

the techniques in this dissertation to swimming robots. Preliminary results on this are discussed

in Chapter 3 and published in [68, 70]. Similar work is now also being done at the University

of Maryland [46] using feedback instead of a time dependent periodic input. Using feedback has

some advantages like often being easier to work with analytically, however accurately predicting the

eventual motion of the sleigh can be very difficult without potentially unrealistic assumptions.

Underactuated systems such as those considered in this dissertation often arise due to the

presence of passive degrees of freedom. We show how passive degrees of freedom can increase the

range of dynamics exhibited by a nonholonomic system leading to phenomena such as chaos and limit

cycles. The presence of a spring on such a passive degree of freedom was found to have a stabilizing
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influence leading to regular dynamics such as limit cycles and convergence to fixed points. This

is also true for periodically forced systems. In Chapter 7 we show that the addition of a passive

degree of freedom can improve the locomotion characteristics of a nonholonomic system by allowing

for higher speed and energy efficiency to be achievable. We also introduce two additional ways

that elastic potentials can be introduced in nonholonomic systems, namely compliance and origami.

Such mechanisms exhibit many mechanical and dynamic properties which can be useful in designing

robots.
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