
MOTION PLANNING

FOR CONSTRAINED MOBILE ROBOTS

IN UNKNOWN ENVIRONMENTS

LAI XUECHENG

(B.Eng, Zhejiang University)

(M.Eng, Zhejiang University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2007

Acknowledgements

I am grateful to all the people who have encouraged and supported me during my

PhD study, which led to this thesis. Firstly, I am full of gratitude to my supervisor,

Professor Shuzhi Sam Ge, for his constant and patient guidance, and inspiration,

especially for his selflessly sharing his invaluable experiences and philosophies in and

beyond research. I sincerely thank my second supervisor, Assistant Professor Abdul-

lah Al Mamun, for his constant guidance, help, and support during my PhD study.

Without their guidance or support, I would not have made this thesis accomplished.

At work I have had the great fortune of working with brilliant people who are

generous with their time as well as being good friends. Special thanks must be made

to Mr Fua Cheng Heng and Mr Tee Keng Peng, with whom a number of discussions

on research have been made. Lots of thanks to Dr Wang Zhuping for her friendly help

and willing guidance ever since the day I joined NUS. Thanks to Mr Kong Cheong

Yeen and Mr Ong Phian Ting, who worked closely with me and contributed much

valuable programming and experiment work during their FYP projects. Thanks Mr

Jiang Jinhua and other VIP students for all your help with setup of Linux and our

Magellan Pro robot.

Thanks to Mr Tian Zhiling, Ms Liu Jing, Dr Chao Zhijun, Dr Tang Kok Zuea, Dr

Xiao Peng, for providing valuable help for my research to progress. Special thanks

to Assistant Professor Nicholas Roy, who has continuously provided answers or clues

to my questions related to CARMEN based development. Thanks Dr Jia Li for your

friendship. Thanks to Mr Yang Yong, Mr Wang Liwang, Mr. Wu Zhenyu, Mr Tao

Pey Yuen, Mr Han Thanh Trung, Mr Yang Chenguang, Mr Wang Huafeng, Mr Guan

Feng, Mr Zhao Guang, Dr Chen Xiangdong, Dr Huang Loulin, Dr Zhang Jin, and

other fellow students/colleagues for their help and friendship.

I am thankful to the National University of Singapore for providing me with the

research scholarship to undertake the PhD study.

Last but not least, I would like to thank my wife, my parents and my sister for

their generous and unconditioned support. Their example has always been the source

of my ambitions.

ii

Abstract

This thesis considers developing a framework of and the associated technical issues

with path planning and motion planning in unknown or partially known environments

for mobile robots subject to various constraints.

The research addresses how to navigate a robot to the destination without a priori

information about obstacles. Both purely-sensor-based and map-aided approaches,

combined with different strategies, are considered in order to accomplish global con-

vergence to the goal, the primary aim of a path planning task. One effort is to develop

a technique for guiding a physical robot to continuously follow an obstacle of arbitrary

shape in the desired direction, knowing that a proper combination of it with moving

straight forward to the goal may eventually lead the robot to its destination. The

other one is to gradually build a model of the environment and search for a possible

route to the goal with the periodically updated model, while a suitable technique is

explored in order to drive the robot to the waypoints (which the route consists of).

Robot dynamic constraints and requirement of a smooth motion pose additional

challenges to the above research – a physical robot might not be able to track the

velocities commanded, which may introduce problems not only to the motion planning

itself but also to the safety of the robot or the surroundings. In view of this, these

constraints are taken into account in the process of path planning (where the major

concern is to find a smooth path satisfying the various robot constraints) or motion

planning (where the major concern is to generate an optimized, waypoint-directed

motion command satisfying a certain objective function).

With the above objectives and guidelines in mind, the technical contributions of

this thesis are generally applicable to a wide variety of sensor-based path/motion

planning, online map building, simultaneous mapping building and path planning,

and motion planning considering robot dynamics problems. The proposed solutions,

which are demonstrated theoretically and empirically, include:

iii

i) A practical approach of boundary following for a mobile robot with limited

sensing ability. The robot follows an obstacle of arbitrary shape continuously in

the desired direction by locating a series of Instant Goals. Based on it, a prac-

tical globally convergent path planner is presented for mobile robot navigation

in unstructured, complex environments.

ii) A polar polynomial curve method for smooth, feasible path generation for non-

holonomic mobile robots with collision test carried out in real-time. The path

and associated velocity profile are generated such that dynamic and curvature

constraints are satisfied. Based on it, a sensor-based hybrid approach is pro-

posed for smooth path planning for differential drive robots.

iii) A simple yet efficient methodology of automatic online map building for mobile

robots. Laser and sonar data are fused in a selective way to produce a better

representation of the environment and to achieve better obstacle detection.

iv) A hierarchical framework for incremental path finding and optimized dynamic

motion planning in unknown environments. It searches a periodically updated

map containing unknown information and finds a global optimal path robustly.

To trace the path, an optimized motion minimizing a situation-dependent ob-

jective function is searched within a one-dimensional velocity space such that

the robot can move at a relatively high speed and effectively avoid collision with

obstacles.

iv

Nomenclature

−−→
AB straight-line segment starting from point A to point B;

AB non-directional straight-line segment with end points A and B;
|AB| straight-line distance between point A and point B;−−−→
A(B) straight-line starting from point A and passing point B;

ÂB circular arc starting from point A to point B;
nAB unit vector pointing from A to B;

ΥB
A(r) rectangular ray expanded from line segment

−−→
AB by a radius r;

C(A, r) circular disk centered at point A and with radius r;
(x, y) coordinates with respect to (w.r.t.) the global frame;
ϑ angle w.r.t. the global frame, or orientation (angle of the main axis) of the

robot;
q configuration of the robot;
(xb, yb) coordinates w.r.t. the body frame attached to the robot;
θ angle;
RP reference point, the fixed point designated on a robot for it to track a

path/route;
v linear velocity/translation velocity (defined at the reference point for a robot

to trace a path);
ω angular velocity/rotation velocity;
V front-wheel velocity, which is defined as the velocity of the mid point of the

front axle of a car-like robot;
ϕ steering angle of the front wheels of a car-like robot w.r.t. the body frame;
al and an longitudinal and centripetal accelerations of the robot;
a longitudinal acceleration of the robot;
ε angular acceleration of the robot;
IC instant center, turning center of the robot;
IG Instant Goal;
Θ search range to obtain an Instant Goal;
r turning radius (distance from the turning center) of the robot;
κ signed curvature of a curve;
Rj measured distance of the obstacle detected in the jth direction, where j =

1, 2, . . . , Ns (Ns is the number of laser readings in one scan);
ρ distance from the robot coordinate frame;
Ω origin of a polar coordinate frame;

v

% and φ polar radial and polar angle in a polar coordinate frame (origin not at the
robot), respectively;

Φ polar angle span of a polar polynomial curve;
S, G initial position of the robot, and the goal;
P point or its coordinates;
µ friction coefficient between the wheel tires and the ground;
∆t sampling interval, or period between two successive moving actions;
t current time instant;
t0, and tf initial and final time instant for the robot to travel between two

configurations;
s(t) arc length of robot trajectory from time 0 to time t;
τ duration of the motion for the robot to travel between two configurations,

i.e. τ = tf − t0;
Pt and ϑt position and orientation of the robot at the time instant t.

vi

Contents

Contents

Acknowledgements ii

Abstract iii

Nomenclature v

Table of Contents xi

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Motivation of Research . 1

1.2 Global Convergence of Path Planning 2

1.2.1 Sensor-based Path Planning 2

1.2.2 Map Building and Map-aided Path Planning 4

1.3 Motion Planning Addressing Robot Constraints 9

1.3.1 Robot Constraints . 9

1.3.2 Geometric Approaches for Smooth Path Generation 10

1.3.3 Dynamic Motion Planning in Velocity Space 11

1.4 Research Objectives and Scope . 12

1.5 Contributions . 14

1.6 Thesis Outline . 15

2 Modeling of Differential Drive and Car-like Nonholonomic Mobile

Robots 17

2.1 Nonholonomic Mobile Robots . 17

vii

Contents

2.1.1 Fundamentals . 17

2.1.2 Kinematics of Nonholonomic Mobile Robots 18

2.2 Modeling of Differential Drive Mobile Robots 21

2.2.1 Kinematic Modeling . 21

2.2.2 Forward Kinematics . 22

2.3 Modeling of Car-like Mobile Robots 23

2.3.1 Rear-wheel Drive Car-like Robots 23

2.3.2 Shifted Reference Point . 25

2.3.3 Reference Point Selected at W 26

2.4 Robot Dynamic Constraints . 28

2.5 Summary . 30

3 Boundary Following and Convergent Path Planning Using Instant

Goals 31

3.1 Introduction . 31

3.2 Representation and Modeling of Local Environment 32

3.2.1 Vector Representation of Local Environment 33

3.2.2 Modeling of Sensed Environment 36

3.3 Boundary Following through Instant Goals 38

3.3.1 New Strategy of Boundary Following 39

3.3.2 Search Range for Instant Goal Determination 41

3.3.3 Algorithm to Determine Instant Goals 43

3.3.4 Potential Field Method for Collision Avoidance 45

3.4 Instant Goal Based Convergent Path Planning 48

3.4.1 Path Planner Design . 48

3.4.2 Direction for Boundary Following 51

3.5 Simulation Studies . 52

3.5.1 Simulation Setup . 52

3.5.2 Boundary Following . 54

3.5.3 Path Planner . 56

3.5.4 Comparison with Other Approaches 58

3.6 Summary . 60

viii

Contents

4 PPC Based Constrained Path Generation and Hybrid Dynamic Path

Planning Approach 61

4.1 PPC Curve Based Smooth and Feasible Path Generation 61

4.1.1 PPC Curve . 62

4.1.2 Combination of Curves to Connect Two Configurations 68

4.2 Collision Test of PPC Curve for Path Generation 70

4.2.1 Collision Checking for PPC Curve 71

4.2.2 Collision Checking for PPC Ray 73

4.2.3 PPC Based Path Generation Algorithm 75

4.3 Hybrid Path Planning for Differential Drive Mobile Robots 76

4.3.1 Approach Overview . 77

4.3.2 Velocity Adjustment . 78

4.3.3 Deliberative Planning: IG Locating 80

4.3.4 Reactive Motion Planning: Fuzzy Wall Following 82

4.4 Simulation Experiments . 84

4.4.1 Test on a Differential Drive Robot 84

4.4.2 Test on a Car-like Robot . 88

4.5 Discussions and Comparisons . 93

4.6 Summary . 94

5 Online Map Building for Autonomous Mobile Robots 95

5.1 Incremental Map Building . 95

5.1.1 Sensor Model . 95

5.1.2 Bayesian Map Updating . 97

5.1.3 Scan Matching for Pose Estimation 99

5.2 Fusion of Laser and Sonar Data for Better Obstacle Detection 102

5.2.1 Motives of Fusing Laser and Sonar Data 102

5.2.2 Selective Method to Fuse Laser and Sonar Data 103

5.3 Topological Map Creation . 104

5.3.1 Motivation . 104

5.3.2 Skeletonization and Chaining Algorithms 105

5.3.3 An Example of Topological Map Creation 106

5.4 Simulations and Experiments . 107

5.4.1 Occupancy Grid Mapping and Scan Matching 108

5.4.2 Sensor Fusion of Laser and Sonar Data 109

ix

Contents

5.4.3 Sensor Fusion for Better Collision Avoidance 111

5.5 Summary . 112

6 Hierarchical Framework: Incremental Path Planning and Optimized

Dynamic Motion Planning 114

6.1 Incremental Dynamic Path Planning with Partial Map 114

6.1.1 Modified A* Search for Partially Known Environments 115

6.1.2 Obstacle Enlarging and Addition of Obstacle Cost 116

6.1.3 Path Straightening and waypoint Generation 117

6.1.4 Incremental Planning Algorithm 117

6.2 Predicted Admissible Robot Trajectory under Robot Dynamics . . . 120

6.2.1 Forward Kinematics of Differential Drive Robots 120

6.2.2 Admissible Motions Satisfying Dynamic Constraints 121

6.2.3 Trajectories Generated by Admissible Motion Commands . . . 122

6.3 Situation-dependent Motion Optimization in Reduced Velocity Space 123

6.3.1 Admissible Collision Avoidance Considering Accelerations . . 123

6.3.2 Motion Optimization in Event of Potential Collision 127

6.3.3 Motion Optimization in Absence of Potential Collision 129

6.3.4 Optimization Algorithm in Reduced Velocity Space 130

6.4 Simulation and Experimental Results 132

6.4.1 Reactive Point-To-Point Target Tracing 133

6.4.2 Simulation Results of Optimized Dynamic Motion Planning . 136

6.4.3 Experimental Results of Optimized Dynamic Motion Planning 139

6.5 Discussions and Comparisons . 141

6.5.1 Performance of Incremental Search 143

6.5.2 Robot’s Average Speed . 146

6.5.3 Collision Avoidance When Very Close to Obstacles 150

6.5.4 Comparison with Other Approaches 152

6.6 Summary . 155

7 Conclusions and Recommendations 156

7.1 Summary and Contributions . 156

7.2 Suggestions for Future Work . 159

Bibliography 161

x

Contents

A Frame Transformation 174

B Robot System for Experiments 176

B.1 Hardware System . 176

B.2 rFLEX . 178

C Software Package 181

C.1 IPC for Inter-process Communication 181

C.2 System Architecture and Modules . 182

D Author’s Publications 186

xi

List of Tables

List of Tables

4.1 Important Features of a PPC curve. 63

4.2 Rules for Controlling Translational/Rotational Velocities. 83

4.3 Statistics of Time Used in Motion (145 samples in total, counted from

the first motion command). 92

6.1 Special Cases of Possible Robot Trajectories. 122

6.2 Time Used by Search and Number of Path Nodes in Simulation Tests

of Optimized Motion Planning. 149

6.3 Time Used by Search and Number of Path Nodes in Experimental

Tests of Optimized Motion Planning. 149

B.1 Technical Specifications for SICK LMS 291. 178

xii

List of Figures

List of Figures

2.1 Top and side views of a wheel that is attached to robot rigid frame. . 18

2.2 A nonholonomic robot differentially driven by two rear wheels. 21

2.3 Kinematics of a differential drive mobile robot. 22

2.4 Rear-wheel drive car-like robot with the RP shifted to K. 24

2.5 Trajectories of the center of the rear wheel axis and that of the steering

wheels when following a path consisting of both line and arc segments. 28

2.6 Frame attached to a nonholonomic mobile robot. 29

3.1 Obstacles sensed by a laser rangefinder attached to a circular robot. . 33

3.2 Representations of local environment sensed by a laser rangefinder. . 35

3.3 Straight path segment: the space inside thick solid lines. 38

3.4 Illustration of directional obstacle range and angle range. 39

3.5 Robot may exhibit an improper behavior during wall following. . . . 40

3.6 Find out point HAct
i,k and thus SchFromi,k+1 and Θi,k+1. 42

3.7 Determination of neighboring area NEIGH. 44

3.8 A path generated by the path planner with the proposed leave condition. 51

3.9 Sensor model of range readings of a laser rangefinder (σρ = 0.05m,

σθ = 0.25 degree, and Pc=0.1). 53

3.10 Following a large U-shaped obstacle consisting of convex and concave

corners. A round obstacle is placed near the U-shaped obstacle. . . . 55

3.11 Following a complex curve with some disturbing obstacles. 56

3.12 Robot trajectories in a low obstacle density environment. 56

3.13 Navigation in a high obstacle density environment. 57

xiii

List of Figures

3.14 Statistics of erroneous simulated measurements. The horizontal axes

plot the index of laser scans. The vertical axes plot “percentage of

errors” and “mean of erroneous values” in diagrams (a) and (b), re-

spectively. 58

3.15 Results of navigation using a classic potential field method. 59

4.1 Polar polynomial curve connecting two straight lines. 62

4.2 PPC curves for different Φ, with %0 set to be 1. 63

4.3 Curvatures of PPC curves (%0 = 1) for different Φ. The curvature of

each curve reaches its maximum value(s) one time for small Φ, and

twice for large Φ. 65

4.4 Maximum Curvature of PPC curves for different values of %0 are plotted

vs. Φ. The bottom thick line plots the ratio φmax/Φ. The upper thick

line plots the ratio κmax/κ|φ=Φ

2

. 66

4.5 Maximum values of 1√
1+κ2
|dκ
dφ
| at different Φ. 67

4.6 Combinations of a PPC curve and a line segment to connect q0 and

q1 for a robot performing translation. 68

4.7 Combinations of half PPC curve and straight line segment to connect

q0 and q1 for a turning robot. 69

4.8 Collision checking between obstacle line segment and PPC curve. . . 71

4.9 Surface swept by a rectangular robot. 74

4.10 Safety and buffer zones of a robot. 79

4.11 Determination of Xig,act, the set of feasible IG∗s. 81

4.12 Membership functions for input distances. 82

4.13 Membership functions for output velocities. 83

4.14 Initial pose and trajectories of robot. 85

4.15 Velocity profiles of output path. Dash line denotes curve type (1: PPC

curve, 0.5: half PPC curve, 0: line segment, and 0.75: other curve.) . 86

4.16 Actual velocities executed by the robot. 87

4.17 Sequence of robot motions and laser scans obtained in the second test. 88

4.18 Initial and final (upon reaching the goal) poses of the robot. 88

4.19 Sequence of robot motions and laser scans about the environment. . . 89

4.20 Curvature and velocity profiles of the output path. 90

4.21 Robot trajectories and obtained grid map of the environment. 90

4.22 Curvature and velocity profiles and curve type of the output path. . 91

xiv

List of Figures

4.23 Laser time stamp, and reaction time for motion commands. 91

4.24 Reaction time for motion commands upon arrival of sensor data. . . . 92

5.1 An approximated Gaussian sensor model, where “distance from mea-

surement” means d− zt in Eq. (5.3) and ∆d3 = 2∆d2. 97

5.2 Effect of Bresenham’s algorithm: a close view of a portion of an occu-

pancy grid map produced by the laser rangefinder 100

5.3 A single iteration of incremental scan matching algorithms. 100

5.4 Selective use of sonar readings by comparison with corresponding laser

readings. 104

5.5 An illustration of the thinning algorithm. 106

5.6 Nodes (depicted by small circles) are added to the skeleton by the

chaining algorithm. 107

5.7 Resultant topological map created from an occupancy grid map. . . . 107

5.8 Another test of topological map creation. 108

5.9 Simulation of collecting laser data without/with scan matching used. 108

5.10 Tests of scan matching and map building in laboratory environments. 109

5.11 A failing of the scan matching method. 110

5.12 Both laser and sonar range data are plotted onto the same map. . . . 110

5.13 A comparison of maps built with laser data only and with the selective

method of sensor fusion. 111

5.14 A test of sensor fusion at the Lab Room and the outside corridor. . . 111

5.15 Laser and sonar data collected in a simulation test of wall following. . 112

5.16 Laser and sonar readings, robot trajectories, and grid map obtained

by an experimental test of wall following. 112

6.1 Flowchart of incremental search and planning algorithm. 119

6.2 Region of admissible translation and rotation velocities. 121

6.3 Trajectories generated during the last 1
60

second, and distinguished by

different colors according to the value of ending translation velocities.

(The entire trajectories for v1 = 0 are plotted in black color.) 124

6.4 Trajectories generated during the last 1
60

second, and distinguished by

different colors according to the values of ending rotation velocities. . 125

xv

List of Figures

6.5 Trajectories (in black color) along which robot moves at admissible

velocities for a duration of ∆t = 0.2s, and trajectories (in blue color)

that robot undergoes for it to be stopped subsequently. 126

6.6 Illustration of allowed travel distance sstop(O) for the robot to safely

stop without touching obstacles. 127

6.7 Profiles of translation and rotation velocities of two simulation tests of

point-to-point target tracing. 134

6.8 Snapshots of the experimental test. Robot was stopped by setting the

original initial position as the target. 135

6.9 Sequence of path nodes (denoted by small red squares) obtained in

each search and final robot trajectories in the experimental test. . . . 135

6.10 Path nodes obtained by each search in first simulation test. 137

6.11 Laser scans and robot’s final trajectories in the first simulation (ro-

bot navigated from top left to bottom right). The position of the

goal relative to the initial robot pose is (11.28, -16.14), or they are of

straight-line distance 19.69 m. 138

6.12 Profiles of translation and rotation velocities of the first simulation test.139

6.13 Robot’s final trajectories and final grid maps of second simulation test. 140

6.14 Profiles of translation and rotation velocities of second simulation test. 141

6.15 Velocity profiles of the third and fourth simulation tests. 142

6.16 Robot’s final trajectories, and grid map for A* search in the fourth

simulation test (robot navigated from top to bottom). 142

6.17 Magellan pro robot and laboratory environment for experiments. . . . 143

6.18 Sequence of path nodes obtained in each search and robot trajectories

in the first experiment. 144

6.19 Snapshots of the first experiment when the robot was to search a path

or when the robot was stopped. 145

6.20 Profiles of translation and rotation velocities of the second experiment. 146

6.21 Sequence of path nodes obtained in each search and robot trajectories

and velocity profiles of the third experiment. 147

6.22 Some snapshots of the third experiment when the robot was to search

a path or when the robot was stopped. 148

xvi

List of Figures

6.23 Statistics of time used vs. different map scales. The “600×600” group

includes all the three experimental results, as they use grid maps of

the same size. 150

6.24 Average speeds achieved under different dynamic settings: “simula-

tion (slow stop)” (the third and fourth simulation tests, Chapter 6.4.2),

“simulation (normal stop)” (the first and second simulation tests, Chap-

ter 6.4.2), “experiment” (the first and second experimental tests, Chap-

ter 6.4.3). 151

6.25 Snapshots of the first experiment before the third search. Diagram

(a)-(e): snapshots of the robot in the experiment. Diagram (f)-(g):

snapshots of current laser scan and robot’s motion direction. Diagram

(h): robot trajectories when the robot was stopped. 152

6.26 Profiles of translation and rotation velocities of the first experiment. . 153

6.27 Robot’s final trajectories, and search map in a simulation test (robot

navigated from bottom to top). 154

A.1 Global and localized frames (robot is at its initial robot pose). 175

B.1 Picture of the Magellan Pro robot. 177

B.2 Top view schematic of a Magellan Pro robot, with the front of the

robot facing to the top of the diagram. 177

B.3 Velocity profiles of experimental tests on command interval. 179

B.4 Velocity profiles of experimental tests on translation or rotation veloc-

ity commands. 180

C.1 Main modules of the software architecture used for experimental tests. 182

C.2 Block diagrams of the CARMEN architecture for experimental tests

involving simultaneous mapping and path planning. 184

C.3 Main modules of the software architecture used for simulation tests. . 185

xvii

Chapter 1

Introduction

This chapter presents motivation and background for carrying out the research work

of this thesis, which is on path planning, motion planning and map building for

autonomous mobile robots, followed by the research objectives and scope of this

research as well as the outline of this thesis.

1.1 Motivation of Research

In recent years, research on autonomous mobile robots has been one of the key

focuses in the robotics and automation community. Autonomous mobile robots have

a number of military, industrial, and domestic applications. They can be used in

hazardous environments to save manpower cost and accomplish tasks dangerous to

human beings, such as nuclear plant maintenance or search and rescue after disaster.

In order for a mobile robot to accomplish a designated mission independently, one of

the fundamental functions that it must have is path planning, which is to obtain a fea-

sible and safe path for the robot to navigate from its initial position to its destination

without collision with the obstacles in the environment [1]. Path planning and motion

planning can either be treated separately as two sequential tasks, or be dealt with as

a single task, i.e., motion planning is to generate appropriate control commands for

the robot to move toward the destination and avoid obstacles simultaneously.

Many achievements have been gained in the areas of robotics research, especially

in the fields of positioning and map building, and path planning during the past

two decades. Yet, much more work is needed to develop new theories and algorithms

because of the following complexities in achieving truly autonomous robot navigation:

1

1.2 Global Convergence of Path Planning

• Complexity in mobile robots: mobile robots are typically subject to various

robot constraints (kinematics, dynamics, etc.) and uncertainties in control; and

• Complexity in environmental modeling: no a priori or only limited knowl-

edge of the environment is available, and uncertainties/errors exist in sensing

and positioning inevitably.

The subsequent sections will present background and literature review on mo-

tion/path planning for mobile robots, focusing on achieving global convergence1 of

path planning and considering robots constraints in motion planning.

1.2 Global Convergence of Path Planning

Depending on whether there is complete information about the environment that

the robot navigates in, path planning of mobile robots can be divided into two cate-

gories [2]: path planning with complete a priori knowledge of the environment, and

path planning with no a priori or partial knowledge of the environment. Both cate-

gories of approaches have their own pros and cons.

1.2.1 Sensor-based Path Planning

When no complete a priori knowledge of the environment is available, on-board

sensors have to be employed to perceive the environment, in order for a robotic sys-

tem to accomplish online navigation or path planning. A number of local approaches

have been proposed which do not build a global world model. Potential field meth-

ods [1,3–5] initiated by [6] have been extensively studied because of its efficiency and

mathematical elegance. Classical potential field methods involve an artificial force

acting upon the robot, derived from the vector summation of an attractive force rep-

resenting the goal and a number of repulsive forces associated with the individual

known obstacles. A successful local approach called vector field histogram (VFH)

method [7] uses the histogram built from obstacles to achieve fast obstacle avoid-

ance for mobile robots. Other local approaches include subsumption method [8],

“behavior-based approaches” [9,10], and the “wander” routine (which generates ran-

dom movements for the robot). Most of them adopt a strategy of behavior-based

1If the goal is reachable, the path planner generates a continuous collision-free path from the
start location to the goal; otherwise, it reports the failure.

2

1.2 Global Convergence of Path Planning

reaction to the local environment information for robot navigation.

Local approaches handle uncertainty and unpredictable changes well by giving

up the idea of modeling and reasoning about the environment and the future conse-

quences of actions. Some of them have been used successfully in obstacle avoidance.

However, the robotic systems based on such approaches have the following draw-

backs: (i) behavior-based systems are memoryless, which leads to the phenomenon of

repeated behavior or cycles without optimization of the path [5]; and (ii) the robot

may be stuck in a local minimum without being able to get out of it. The likely

occurrence of cyclic behaviors as well as local minima make any system that relies

solely on local navigation approaches somewhat unreliable.

Harmonic potential functions [11,12] were used to solve the local minima problem

of potential field methods, based on the assumption of full a priori knowledge of the

goal’s location and of the obstacles’ trajectories. Randomized path planning methods

[13,14] have been successfully applied with the central concept being that the robot’s

free space is not explicitly represented but randomly sampled. Hsu et al. [15] presented

a randomized motion planner for robots to achieve a specified goal under kinematic

and dynamic constraints while avoiding collisions with moving obstacles with known

trajectories. The probability that such methods find a path when one exists increases

with their running time. However, global convergence is not guaranteed. Moreover,

in order to build a roadmap, complete or partial knowledge of the environment must

be provided beforehand.

In order to achieve global convergence, Lumelsky and Stepanov [2] proposed Bug

algorithms which keep the robot switching between two motion modes: moving di-

rectly to the goal, and following an obstacle. The algorithms require only limited

global information (e.g. the robot position), in addition to local sensory information.

Later, Lumelsky and Skewis [16] incorporated range sensing into their robot naviga-

tion function based on the Bug algorithms. Some variations of the Bug algorithms

have been proposed, such as DisBug algorithm [17], TangentBug [18], 3DBug algo-

rithm [19] and “pursuit-evasion” Bug algorithm [20]. In these algorithms, transition

between the two motion modes is governed by a criterion ensuring the distance to

the goal decrease monotonically. In this way, the problem of path planning with in-

complete information is mathematically proved to be solvable with guaranteed global

convergence. However, the Bug algorithms and their variations assume a perfect ca-

pability of boundary following, which is often too ideal for a physical robot to possess.

3

1.2 Global Convergence of Path Planning

To solve the problem of how to actually navigate a robot to follow an obstacle,

Krogh and Feng [21] proposed the “subgoal method” which locates a series of local

goals for navigating a point robot in polygon environments. A strategy similar to the

Bug algorithms is used for switching between the two motion modes. The method sets

a certain distance from edges of polygon obstacles to locate subgoals. This however

is unable to guarantee that further subgoals can be generated, e.g. when the next

edge is currently invisible to the robot. The limitations of the subgoal method have

prevented it from being widely used for a physical robot to carry out a practical path

planning task in realistic environments. Noborio et al. [22] attempted to solve the

problem of navigating a nonholonomic mobile robot around an uncertain obstacle in

a non-heuristic way by using Best-first and Depth-first algorithms for searching the

state-space graph of the system’s configuration space (C-space).

Boundary following is taken as a basic function or behavior by many navigation

approaches [1, 3] including the Bug algorithms. Wall following, as a useful technique

for following an obstacle in structured or known environments, has been extensively

studied. Based on a sensing method to process the direct signal received from sonar

sensors to get a better angle resolution, Yata et al. [23] proposed a wall following

algorithm where the robot moves perpendicular to the direction of the nearest re-

flecting point. As it may provide a good setting for pose prediction and sensor fusion,

Kalman filtering is commonly used to produce a good approximation of distance and

angle from a known wall. Bemporad et al. [24] introduced several constraints such as

velocity and maximum angle deviation from the wall to achieve better wall following.

Among reactive systems, fuzzy logic approaches are characteristic in that they deal

with various situations without analytical modeling of the environment. For example,

a human makes decisions based on his perceptions of obstacles, terrain and the goal,

and not by mathematical analysis and models of obstacles. Fuzzy logic approaches

have been used for wall following (e.g. Taheri and Sadati [25]), knowing that the

natural linguistic language used in fuzzy logic would be able to capture the human

sensing and intuitive reasoning for wall following. Though robust in continuously

producing wall following motions upon sensory inputs, slow and jerky movements

may frequently happen in such approaches.

1.2.2 Map Building and Map-aided Path Planning

One of the most important and useful features of autonomous mobile robots is their

4

1.2 Global Convergence of Path Planning

ability to adapt themselves to operate in unstructured and unknown environments.

Promising path planning and navigation algorithms require the availability of both a

sufficiently reliable estimation of the current vehicle location and a sufficiently precise

map of the navigation area.

Map Building and SLAM Problem

The fact that a priori model maps are rarely available motivates research into

the problem of automatic construction of a global map from sensory information

by an autonomous mobile robot. A variety of representations have been proposed

in mapping research. Topological representations [26,27] use graph-like structures to

represent the environment, by associating nodes to significant places, and arcs to paths

between them. Geometric approaches [28,29] use geometric primitives (line segments,

circles, etc.) for representing the environment, and mapping is thus to estimate the

parameters of the primitives that best fit the observations. Occupancy grid mapping

algorithms [30–32] represent maps by equal-sized grids where each cell stores the

probability that the corresponding place is occupied, empty or unknown. Compared

with other representations, occupancy grids provide more detailed information about

the environment, and can be easily updated when there is sensor input due to the

probabilistic nature of grids. In indoor environments lack of global positioning system

(GPS) or landmarks, and considering that a laser rangefinder is used to perceive the

surroundings, occupancy grid map is used in this research.

Generally, the process of building a grid-based map is a cycle divided into two

parts: “Sensor modeling” and “Updating”. In “Sensor modeling”, sensor (sonar,

laser or vision) data collected is used as input into a sensor model which will give

information about the occupancy states of the grids scanned. In the “Updating”

process, the output values from “Sensor modeling” are used to update the map’s

corresponding grids’ probability values. The cycle goes on if a further step is taken

to collect more sensor data of the environment.

For “sensor modeling”, most researchers interpret range sensor data in a proba-

bilistic approach using Gaussian distribution, but different updating techniques are

employed, including Bayes’ Theorem [33], Dempster-Shafer theory of evidence [34,35],

and fuzzy logic approaches [36, 37]. Comparison studies [38] have shown that each

technique has its own pros and cons. Vector field histogram approach [7] attempted

to simplify the complicated sensor model in grid-based mapping by modeling a sonar

5

1.2 Global Convergence of Path Planning

sensor using a straight line instead of a beam-width cone.

To acquire a map, a mobile robot must possess sensors that enable it to perceive

its surrounding environment. Sensors for this task include cameras, rangefinders using

sonar, laser, and infrared technology, radar, tactile sensors, compasses, encoders, and

global positioning systems (GPS). However, all these sensors are subject to errors,

either as noise in perception (e.g., range measurements) or as noise in odometry

(e.g., wheel encoders). Furthermore, motion commands issued during environment

exploration carry information subject to errors, and the controls alone are therefore

insufficient to determine a robot’s pose. In indoor environments, without GPS, active

beacons, or predefined landmarks, the robot has to rely on its on-board sensors to

determine its position. Without a map the robot cannot determine its own pose due

to sensor noise and motion errors, and, without knowledge about its own pose, the

robot cannot build a map of the environment. Thus, mapping is often referred to as

the problem of concurrent mapping and localization [39], or simultaneous localization

and mapping (SLAM) [40,41].

Kalman filters have been widely employed to estimate the map and the robot

location [40–45]. Such approaches have mainly been applied where the environment

contains landmarks. The resulting maps are usually described by landmarks, or

other significant features in the environment. Another group of algorithms considers

simultaneous localization and map building as a global optimization problem [46].

EM-based techniques [39,47] address the correspondence problem in mapping, i.e, to

determine whether sensor measurements recorded at different locations correspond

to the same physical entity. They are applied to mapping large cyclic environments

with highly ambiguous features. However, they require multiple passes through the

entire data set and thus are not suitable for online simultaneous localization.

Scan matching [48,49] is the process of matching two range scans obtained from a

range device such as a laser rangefinder, or matching a range scan and a map. Being

one commonly used method, incremental ML (maximizes likelihood) scan matching

determines the most likely new pose that maximizes the consistency of the measure-

ment with the map and the consistency of the new pose with the control action and

the previous pose. Like most of other scan matching methods, it approximates align-

ment of two scans partially based on odometry readings. Because of its high accuracy

and reliability, scan matching has been applied to many SLAM algorithms [50–52].

It should be noted that initial relative position is required by scan matching for later

6

1.2 Global Convergence of Path Planning

pose estimation. Therefore, scan matching is most suitable for pose tracking rather

than global localization.

Map-based or Map-aided Path Planning

It is essential for mobile robots to utilize partial knowledge obtained from sensory

information in order to accomplish tasks such as autonomous exploration and path

planning, as a priori model maps are not always available. As higher computational

capability is available nowadays, it will be meaningful to build a map online to gain

more knowledge of the environment, so that the system can enhance the probability

of finding a solution if one exists, by searching the obtained partial map.

To find a path between two points in a known environment, graph search al-

gorithms such as Dijkstras, A* algorithm [53], Bellman-Fords algorithms [54], wave

front algorithm [55], visibility graph approaches [1], or Voronoi Diagram or its vari-

ations [56] can be used. A visibility graph is a set of straight lines connecting the

start, the goal and obstacle vertices, where each point is connected to all viewed

points without intersecting obstacles. A* and similar algorithms have emerged to

solve the problem when complete information of the environment is available. The

A* search algorithm is an effective heuristic improvement over the Dijkstras algo-

rithm, and yields a better average performance when one only needs the optimum

path between two grid cells in a directed graph with non-negative weights. Due to

its efficiency and robustness in finding an optimal solution, the A* search algorithm

is well used in gaming and path searching.

Wave front algorithm requires a grid-based map for locating a possible path. The

strategy is based on the propagation of wavefronts that encodes the distance from the

robot to each cell as well as the occupancy information (occupied, empty or unknown)

of the cell. The planner grows a wave front from the goal position until the wave front

reaches the cell that the robot is currently at: at each iteration, all cells on the wave

front have the same distance from the goal cell; all cells accessed in this step are

finally assigned a “plan cost” proportional to its distance from the goal. Once the

evaluated costs are defined for each cell by the planner, the robot can simply follow

the gradient of cells’ costs until it reaches the goal.

In the field of path planning, there are a number of search-based methods [37,

57, 58] which exhaustively explore the C-space. They attempt to capture the global

connectivity of a robot’s free space by searching the C-space in a manner similar to

7

1.2 Global Convergence of Path Planning

graph search in artificial intelligence. Constructing and searching the C-space for a

robot of complex shape or with limited mobility (possible directions of movement)

is time-consuming. This problem is partially relaxed by cell decomposition methods

[59], which decompose the C-space into an array of small rectangloids (box shaped

elements). As obstacles in the workspace have been explicitly taken into account,

search-based methods can solve the problem of collision avoidance in the process of

locating a feasible path.

Instead of assuming a priori information of the environment available before path

planning, a couple of approaches build a global world model (e.g. an occupancy

grid map) based on sensory information and use it for planning a path. Choset

and Burdick [60, 61] attempted to construct Generalized Voronoi Graph (GVG) or

Hierarchical GVG for incremental sensor-based path planning and exploration. GVG

is efficient in regularly-shaped environments such as corridors where it is bounded

by smooth walls on both sides. However, when the robot moves into vast open

spaces, it would be unable to function as it cannot find an equidistant path to trace.

Stentz proposed D* algorithms [62] and Focussed D* algorithms [63] to produce an

optimized (in the sense of obtaining the shortest path) solution to path planning

of mobile robots in known or partially known environments. As a dynamic version

of the A* algorithm, D* algorithm and its variations [64] plan optimal traverses by

incrementally repairing paths to the robot’s state as new information is discovered.

Compared to A* algorithm, they are much more complex for an implementation, and

not so robust in finding an optimal solution.

One obvious advantage of “global” sensor-based path planning approaches is that,

as the global world model is gradually constructed, the problem of sensor-based path

planning can be converted to the problem in a known environment, and it is possible

to obtain a more optimal path in the global sense. However, they have the disad-

vantage of being computationally expensive, since much memory and computation

are involved in the process of updating the world model (which is typically done at

frequencies of more than 1 HZ) or searching for a solution from it, especially when

the size of the environment model is relatively large.

8

1.3 Motion Planning Addressing Robot Constraints

1.3 Motion Planning Addressing Robot Constraints

1.3.1 Robot Constraints

One class of mobile robots uses a steering mechanism for which the translational

motion is independent of the orientation, i.e. they are able to move in any direction

without turning their robot body [65–67]. Such robots have full omnidirectionality

with simultaneous and independently controlled rotational and translational motion

capabilities, which provide them with not only the advantage of continuous steering

functions, but also good maneuverability. Most of conventional path planning meth-

ods mentioned previously are based on ideal movement, or omnidirecional motion of

such a mobile robot.

Yet, in practice, due to the shortcomings of omni-directional robots, such as having

a complex structure and relatively low payload, most of the mobile robots in use

are nonholonomic ones with either a two independent driving wheels mechanism or

a single wheel (or wheel pair) steering mechanism (e.g. car-like robots). Due to

the existence of the nonholonomic constraint(s)2, such robots are unable to move

sideways. Moreover, various dynamic constraints, including velocity and acceleration

limits, significantly restrict the motion capabilities of mobile robots. In addition,

an abrupt change in the curvature of a path is not desirable, since it will cause a

discontinuity in the centripetal acceleration when a robot follows the path. Among

the nonholonomic systems, car vehicles are the most common ones used in practice.

A car-like robot is a wheeled vehicle built based on the model of conventional cars,

and is capable of autonomous motion. Its turning radius is lower bounded due to the

mechanical limits on the steering angle, which imposes a curvature constraint on the

path that they are able to move along. Therefore, a path for car-like robots to follow

should be lower-bounded as well as continuous in its curvature.

Path planning normally considers a robot moving in a non-clear area, and therefore

the robot is subject to kinematic constraints imposed by obstacles and the robot’s

physical dimensions. In summary, a collision-free, curvature-smooth (and curvature-

bounded), and feasible (i.e. the robot dynamic constraints are satisfied) path is

desirable for path planning and motion planning for nonholonomic mobile robots.

2Nonholonomic constraints involve the system configuration parameters and their time derivatives
(velocity parameters) that are not integrable.

9

1.3 Motion Planning Addressing Robot Constraints

1.3.2 Geometric Approaches for Smooth Path Generation

Dubins [68], Reeds and Shepp [69] showed that the shortest path between two

configurations for a simplified car can always be built by concatenating at most five

linear or circular segments. Since then, a number of methods [70–72] compute the

final path by concatenating elementary paths, such as straight-line segments and arc

segments, in order for the path to meet the maximum curvature limit imposed on

car-like robots. A disadvantage is that the path curvature is not continuous at the

ends of the circular arc – it changes suddenly between zero and the inverse of the

circular radius.

Geometric approaches use a certain complex curve, varying from cubic spirals,

clothoids, harmonics function to polar polynomials, to create a smooth path with

continuous position and velocity. Initiated by Kanayama and Miyake [73], arcs of

clothoids, defined in the 2-dimensional Cartesian plane by means of Fresnel integrals,

were used to generate a path with its curvature changing continuously and linearly

along the entire path length. Fleury et al. [74] tried to combine clothoids with other

complex curves to obtain a smooth path for a line-arc-line transition. Scheuer and

Fraichard [75, 76] proposed a clothoids based steering method, CC Steer, in order

to take into account the upper-bounded curvature derivative of car-like robots. The

robot position is given in the form of Fresnel integrals, and can be only obtained by

an integration over a period of time. Such methods are thus not suitable for path

planning applications requiring information about the robot positions. Kanayama

and Hartman [77] introduced a set of curves called cubic spirals which represent the

curvature of the path by a second-order function of t such that the angle of the tangent

is a third-order polynomial. Instead of time or path length, the curve is optimized by

using the path curvature and the derivative of the curvature as criteria. Similar to the

clothoids method, it does not provide a closed form solution for the robot position.

Nelson [78] suggested the use of polar polynomials to model the curve of the turns

in line-arc-line transitions. A polar polynomial curve provides a closed-form expres-

sion of the coordinates, and is able to smoothly connect two line segments such that

the curvature changes continuously. Pinchard et al. [79] pointed out that the max-

imum curvature of Nelson’s curve should be less than robot’s maximum admissible

centrifugal acceleration divided by square of robot velocity, in order for such a curve

to be used in path planning for car-like robots. However, the work didn’t provide the

way to explicitly compute the maximum curvature. In addition, the curve has yet

10

1.3 Motion Planning Addressing Robot Constraints

to be adapted for use with boundary conditions (e.g. transition between arcs) other

than the transition between two line segments.

It is generally computationally heavy to use a complex curve for planning smooth

paths, especially when the task of collision checking/test is involved. Collision check-

ing is to verify that all configurations on a continuous path in the C-space are collision-

free. Bounding-volume (BV) approaches [80] usually partition the curve by recursively

bisecting and testing intermediate configurations along the curve until a collision is

found or any two successive configurations are less than some pre-specified ε apart.

Such approaches can either be very inefficient or have a risk of missing collision

detections, depending on the size of ε. Swept-volume intersection methods [81] com-

pute the volumes swept by the objects in the workspace and test these volumes for

overlap. Exact computation of such volumes is time consuming, especially when ro-

tations and/or geometrically complex objects are involved. Other approaches include

feature-tracking methods [82], which assume that the pair of closest features between

two objects in relative motion changes only at discrete points of time.

1.3.3 Dynamic Motion Planning in Velocity Space

If a series of waypoints connected with their adjacent ones are provided by a

high-level path planner, the remaining problem is to generate appropriate motion

commands for the robot to trace them sequentially (and avoid collision with obsta-

cles at the same time). To accomplish this task, a number of approaches use local

sensory information in a purely reactive fashion for robustness to uncertainties, and

address the task of collision avoidance meanwhile. One category of such approaches

is directional approach and the other is velocity space (translational-rotational ve-

locity space) approach. Directional approach computes a direction for the robot to

head in, in Cartesian space or configuration space. For instance, potential field meth-

ods [1,3–6] use the vector summation of an attractive force representing the goal and

a number of repulsive forces associated with obstacles to determine the desired robot

heading. By computing a one-dimensional polar histogram from detected obstacles,

vector field histogram (VFH) approach [7] improves over the traditional potential

field methods, in the sense that it can achieve smoother navigation and has more

chances to successfully find paths through narrow openings. Nearness Diagram algo-

rithms [83, 84] proposed by Minguez and Montano navigate a robot reactively based

on situations to simplify the difficulty of navigation in troublesome scenarios. Path

11

1.4 Research Objectives and Scope

deformation method [85] iteratively deforms the current path using potential fields

over the C-space in order to achieve collision-free smooth motions.

Though simple and efficient in producing a direction command for a collision-free

motion, direction approach is inadequate to take the robot dynamics into account,

which may result in slow or jerky movements. Velocity space approach, on the other

hand, incorporates vehicle dynamics and decides both rotation and translation veloci-

ties at the same time. For example, Dynamic Window approaches [86–89] initiated by

Fox et al. search the velocity space for a heading close to the goal direction without

hitting obstacles within several command intervals. Among them, the works in [88,89]

are global approaches which apply navigation function NF1 or D* algorithm for de-

signing subgoals. Simmons’s Curvature-Velocity method [90] searches the velocity

space for a point that satisfies the velocity and acceleration constraints and maximizes

an objective function. Though it produces reliable, smooth and speedy navigation

in office environments, it has the shortcomings such as passing some collision-free

paths with a high turning angle. Ko and Simmons’s LCM method [91] incorporates

both directional and velocity space command approaches, but it considers collision

avoidance repeatedly.

Velocity space approaches typically search the velocity space for a velocity pair

minimizing a single objective function. The optimized motion command found in this

way may not be suitable for a real scenario, since the performance targets in the real

world could be too complex to be defined as a single objective function. To find the

best motion command, it is insufficient to simply define a single objective function

for the constrained optimization problem [92].

1.4 Research Objectives and Scope

Based on the previous literature review, the research in this thesis looked into

developing path/motion planning algorithms for autonomous mobile robots subject

to various robot constraints, with the aim to achieve global convergence to the goal in

unknown or partially known environments. The objectives of the research presented

in this thesis were:

i) to develop a practical boundary following approach for guiding a physical robot

to continuously follow an obstacle in the desired direction (i.e. on the left or

right hand side) in obstacle-cluttered, complex environments. On-board sensors

12

1.4 Research Objectives and Scope

such as rangefinders are used for perception of obstacles in indoor environments

where path and motion planning algorithms are to be examined. The function

of boundary following is used to achieve globally convergent path planning.

ii) to explore the use of complex curve to produce smooth, curvature-continuous

(and curvature-upper-bounded), and feasible paths that connect two arbitrary

configurations for a differential drive robot or a car-like robot. To achieve real-

time path planning, a computationally efficient algorithm is to be developed

for collision test of the complex curve. The path generation algorithm is to be

used for a hybrid (deliberative and reactive planning) sensor based approach

for smooth nonholonomic path planning.

iii) to examine a natural consideration of dynamic constraints in motion planning

for a differential drive robot. The robot should be able to navigate at a rela-

tively high speed and with robust collision avoidance capability in a dynamic,

obstacle-cluttered unknown environment. In addition, convergence to each sub-

goal (supplied by a high-level path planner for instance) is expected for the path

planning task to be accomplished.

iv) to establish a framework of hierarchical path planning capable of pose estima-

tion and online map building, high-level path planning, and low-level motion

planning. It is believed that gradual learning about the surroundings with the

capability of simultaneously planning a path often results in better plans. On

the other hand, deliberative planning and reactive control compliments and

compensates for each other’s deficiencies [93]. In this framework, the robot

builds a map of the environment for better planning, and at the same time

performs feasible, collision-free motions at a relatively high speed.

The research is critical because it is to deal with the difficulties of robot motion

planning due to the complexities in both the environment modeling and the mobile

robot itself, while global convergence to the goal is achieved in unknown environments.

The study is to develop theoretical and practical algorithms for path planning and

motion planning for mobile robots subject to various robot constraints and with

limited information about their surroundings. One focus is to develop path planners

that guaranteed global convergence to the goal, while two different methodologies

(complex curve method for smooth path generation, and optimized dynamic motion

13

1.5 Contributions

planning for relatively high speed navigation) are proposed to take care of robot

dynamics and curvature constraints. Furthermore, the system builds a model of the

environment incrementally such that global optimal solutions can be found.

An efficient method for pose estimation and online map building is considered for

the purpose of hierarchical planning. However, the focus of the research is not to

study the problem of simultaneous localization and map building itself. Designing

a low-level controller to execute the motion commands for the robot to track the

reference route exactly is beyond the scope of this study.

1.5 Contributions

The work presented in this thesis focused on the development of a framework for

path planning and motion planing with global convergence property for mobile ro-

bots with limited information about the environment and subject to various dynamic

constraints. The major contributions of this thesis are listed below:

• Kinematic and dynamic modeling of differential drive and car-like nonholonomic

mobile robots. Accelerations in translation and rotation velocities in a control

period have been taken into account in forward kinematics, which may help an

accurate estimate of the robot poses and trajectories.

• A polar polynomial method real-time generation of a smooth, feasible path

between two arbitrary robot configurations for a differential drive or car-like

nonholonomic mobile robot. A velocity profile is associated with the generated

path such that the robot dynamic constraints are satisfied.

Compared with traditional complex curve approaches, the proposed method

achieves efficient collision test by utilizing the particular properties of the curve.

In addition, it improves over the work in [78,79] with the capabilities of checking

constraints and connecting between two arbitrary robot configurations.

• A practical approach of boundary following for mobile robots by continuously

locating a series of Instant Goals. Based on it, a realistic globally convergent

path planner was presented for robot navigation in unstructured, complex envi-

ronments. This approach is improved by considering dynamic constraints using

the polar polynomial method.

14

1.6 Thesis Outline

One significance of this approach is that it may be used as a practical navigation

function or behavior that is required by the Bug algorithms and a number of

behavior-based navigation approaches.

• A practical methodology for automatic online map building by mobile robots.

It fuses laser and sonar data in a selective way, in order to produce a better

representation of the environment and achieve better obstacle detection.

• A hierarchical framework for incremental path planning and optimized dy-

namic motion planning in unknown environments. A deliberative path planner

searches for an optimal path robustly with a periodically updated map, and a

reactive motion planning approach generates optimized smooth, feasible robot

motions for the robot to trace the path at a relatively high speed and avoid

collision with obstacles effectively.

The proposed path planner improves over the A* algorithm by handling a

map containing unknown information. Accelerations in a control period are

considered for the first time for dynamic motion planning such that obstacle

constraints are appropriately converted to velocity limit. Compared with the

velocity space approaches, multi-situations are considered in searching for an

optimized velocity pair for the first time.

1.6 Thesis Outline

Following this chapter, the structure of the remaining part of this thesis is orga-

nized as follows:

Chapter 2 presents a derivation of kinematic models for differential drive and car-

like nonholonomic mobile robots, and investigates how the robot dynamic constraints

limit the mobility of a robot. It focus on modeling on forward kinematics, steering

functions, curvature of path, and choice of reference point, and robot dynamics.

Chapter 3 proposes an Instant Goal approach for collision-free boundary fol-

lowing of an obstacle of arbitrary shape and globally convergent path planning in

unknown environments for a holonomic robot. Collision avoidance is done reactively

with a potential field approach. Based on this function of boundary following, a re-

alistic sensor-based path planner with global convergence property is designed which

uses a Bug-like strategy and makes decisions from discrete, and noisy range data.

15

Chapter 4 examines smooth path generation and path planning for differential

drive and car-like robots. It investigates the use of polar polynomial curve to connect

two arbitrary configurations smoothly while addressing the dynamic constraints. A

computationally effective method is proposed for collision test of the complex curve

to achieve real-time path generation. For differential drive robots, a hybrid planning

approach generates a proper “Instant Goal” (and a series of deliberately plan smooth

motions) and, when needed, switches to reactive planning using as a fuzzy logic

controller for wall following.

Chapter 5 presents a practical method for automatical online map building.

Pose estimation is achieved by applying incremental Maximum Likelihood (ML) scan

matching. A selective method is proposed to fuse laser and sonar data for better

obstacle detection and enhanced representation of the environment. The research

also examines extracting information from grid maps to construct topological maps,

which might better suit for outdoor or large-scaled environments.

Chapter 6 studies a hierarchical approach for incremental path planning and

optimized dynamic motion planning in unknown environments. A* algorithm was

modified to handle a map containing unknown information. A high-level planner

based on it searches for an optimal (possible) path (represented by waypoints) to the

goal incrementally using the periodically updated map. With the discrete path, a

waypoint-directed motion command is searched in a 1D velocity space by evaluating

situation-dependent objective optimization functions. To better predict the resulting

robot pose and trajectories, the method considers accelerations from the current

translation and rotation velocities to the commanded ones.

Chapter 7 summarizes the work presented in this thesis. It concludes this thesis

and highlights the major contributions. It also discusses the limitations of this thesis

and suggests future research directions that can be extended from the current research

results.

16

Chapter 2

Modeling of Differential Drive and

Car-like Nonholonomic Mobile

Robots

Modeling is a prerequisite to path planning, trajectory generation and control design

for mobile robots. This chapter derives kinematic models for differential drive and car-

like nonholonomic mobile robots, followed by an investigation of the robot dynamic

constraints, which significantly limit the mobility of the robots.

2.1 Nonholonomic Mobile Robots

2.1.1 Fundamentals

We assume that, during the motion of a robot, denoted as R, the plane of each

wheel remains vertical, and the wheel rotates about its horizontal axis. Regarding

the contact between each wheel and the ground, we assume that there is only pure

rolling and no slipping. This rolling condition ensures that the contact point has a

zero velocity and, for any point on the wheel, the velocity has a zero component in

the direction orthogonal to the wheel plane. To satisfy this assumption, the robot

is assumed to move at a speed not too high in a 2D environment on a horizontal

and even surface. This is to ensure that the ground friction force is great enough to

prevent the robot from slipping or even turning over – the center of gravity (CG) of

the robot should keep a constant distance from the ground.

17

2.1 Nonholonomic Mobile Robots

As shown in Fig. 2.1, the center of a wheel, denoted by A, is a fixed point on

the robot rigid frame. The pose of the wheel can be characterized by the position

(ρ, θ) and the angle of the wheel plane w.r.t. the robot’s body frame ϕ(t). Let β(t)

denote the rotation angle of the wheel about its rotation axle. Depending on whether

the orientation of its horizontal axle is fixed w.r.t. the rigid frame, the conventional

wheels can be categorized into two types, i.e. fixed wheels and orientable wheels.

For a fixed wheel, the orientation of the wheel plane is a constant angle ϕ. For an

orientable wheel, the orientation of the wheel plane can be changed from time to time,

that is to say, the wheel plane can rotate about a vertical (w.r.t. the ground) axis.

If the vertical axis is passing through the center of the wheel, the wheel is a centered

orientable wheel; otherwise, it is an off-centered orientable wheel, i.e. castor wheel.

bx

by

bO
�

�

θ

ρ
()tϕ

()tβ

()tβ

�

()tϕ

Figure 2.1: Top and side views of a wheel that is attached to robot rigid frame.

2.1.2 Kinematics of Nonholonomic Mobile Robots

There are two kinds of commonly used nonholonomic mobile robots: differential

drive robots and car-like robots. A differential drive mobile robot has two rear wheels,

as well as a possible castor wheel to support the robot, while a car-like robot has two

rear wheels and two front wheels. The two rear wheels in both cases are fixed wheels,

mounted on the same axis and aligned with the robot body. For path planning, a

nonholonomic mobile robot can be modeled from a differential geometric point of

view by considering only the classical hypothesis of “rolling without slipping”.

The robot body frame, obxbyb, is established such that the origin is located at the

mid point of the rear axis, W, and the xb axis coincides with the main axis of the

robot. The configuration of the robot is defined by

q = [x y ϑ]T , (2.1)

18

2.1 Nonholonomic Mobile Robots

where (x, y) and ϑ are the position and orientation of the robot w.r.t. the global

coordinate frame, respectively.

To plan a path for the robot to follow, it should be known beforehand which point

on the robot body is used to track a path. One reason is that linear velocity normally

varies at different points of the robot, whereas angular velocity, ω, is uniform on every

part of the rigid body of the robot.

Definition 2.1. Reference point, RP, is defined as the fixed point designated on a

robot for it to track a path/route.

Definition 2.2. Robot velocity, v, is defined as the velocity (magnitude) at the RP

for the robot to follow a path/route.

Generally, there are both translation and rotation involved in the motion of a

rigid body. Instant center (IC), or instantaneous center of zero velocity, is a point

associated with a rigid body that has zero velocity at that instant. The two fixed rear

wheels of a nonholonomic robot apply a constraint on the robot such that it cannot

have any movement along the rear wheel axis. At each time instant, its motion can

be viewed as an instantaneous rotation about the vertical axis passing through the

IC, which is changing from time to time. For a nonholonomic mobile robot, the

velocities consist of linear velocity and angular velocity (or translation velocity and

rotation velocity), as the motion of such a robot involves both translation and rotation

(straight line movement can be regarded as rotation with a zero angular velocity).

For the purpose of trajectory planning, the current state of a nonholonomic mobile

robot can be expressed as a 5-tuple:

X = [x y ϑ v ω]T , (2.2)

for the reason that the state of a mobile robot is not just determined by the robot

configuration, but also the velocities of the robot.

As no slip is allowed along the rear wheel axis, the velocity at W will be zero

when projected onto the rear wheel axis. This results in the following nonholonomic

velocity constraint:

ẋ sin ϑ− ẏ cos ϑ = 0. (2.3)

For a plane curve given by Cartesian parametric equations x = x(t) and y = y(t),

the equation of the curvature is given by

κ =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)
3

2

. (2.4)

19

2.1 Nonholonomic Mobile Robots

The longitudinal and centripetal accelerations of the robot moving along a curve

are given by:

al(t) = dv/dt, (2.5)

an(t) = κv2. (2.6)

For path planning purpose, we are interested in the curvature of a path evaluated

at the reference point (based on which a robot path is defined). Note that the

curvature value should be evaluated by means of the above curvature equation and

the robot’s kinematic model, which may be varied depending on the chosen reference

point.

Trajectories may also be represented by polynomials based on the polar coordinate

system instead of the more general time-polynomials:

%(φ) =
n∑

i=0

aiφ
i, (2.7)

where % and φ are the polar radial and polar angle, respectively.

The tangent angle of the curve or the heading angle of the robot in polar coordi-

nates can be expressed as

γ =
π

2
+ φ− tan−1 %′

%
, with %′ =

d%

dφ
. (2.8)

A local cartesian coordinate frame OXY is established with its origin located at

the origin of the polar coordinate frame, and its X axis coinciding with the polar axis

of the polar frame. Polar coordinates can be transformed into the (local) cartesian

coordinates by {
X = % cos φ

Y = % sin φ.
(2.9)

If the cartesian coordinates (X,Y) is known, the corresponding polar coordinates

can be given as {
% =
√

X2 + Y 2

φ = Atan2(Y,X).
(2.10)

Curvature in the polar coordinate system is expressed by:

κ =
%2 + 2%′2 − %%′′

(%2 + %′2)
3

2

, with%′′ =
d2%

dφ2
. (2.11)

The speed of the robot moving along a curve can be given by the following in the

polar coordinate system:

v(t) =
√

%2 + %′2 dφ

dt
. (2.12)

20

2.2 Modeling of Differential Drive Mobile Robots

2.2 Modeling of Differential Drive Mobile Robots

2.2.1 Kinematic Modeling

A typical differential drive mobile robot has two rear wheels which are indepen-

dently driven by two actuators for motion and orientation. A schematic of such a

robot in rectangular shape is shown in Fig. 2.2. The dimensions of the robot are

width L1 and length L2, and the distance between the two rear wheels is b. The body

coordinate frame obxbyb is established as previously stated.

v

o

yb

xb

1L
Rv

ϑ

2L
W

Lv

y

x

Figure 2.2: A nonholonomic robot differentially driven by two rear wheels.

From now on, (for a differential drive robot or a car-like robot) the RP is desig-

nated at the midpoint of rear-axle, W, unless otherwise stated. The robot’s transla-

tion velocity v is thus defined at this point. Thus, we have

ẋ = v cos ϑ, ẏ = v sin ϑ, ϑ̇ = ω. (2.13)

If the control input is defined as v = [v ω]T , the kinematic model for R can be

obtained as follows by deriving the robot configuration (2.1) to the time t:

ẋ

ẏ

ϑ̇

 =

cos ϑ 0

sin ϑ 0

0 1

[
v

ω

]
. (2.14)

Fig. 2.3 shows the kinematics of the robot. The instant center, IC, can be obtained

as the intersection of the drive axis and the line formed by the end points of the vectors

21

2.2 Modeling of Differential Drive Mobile Robots

ϑ

�

�

�

v

�
�

�
�

d

IC

α

C

W

W2R

r

ω

A

B

�

Figure 2.3: Kinematics of a differential drive mobile robot.

vL and vR. When projected onto the line AB, the velocity vector v will be zero as

no slip is allowed along AB.

The robot velocities at any time are related to the velocities of the left and right

wheels (vL and vR) as follows:

v(t) =
vR(t) + vL(t)

2
, ω(t) =

vR(t)− vL(t)

b
. (2.15)

2.2.2 Forward Kinematics

Forward kinematics is to predict the behavior of a mechanical system based on

the inputs to that system, i.e. in this research how to find out the robot trajectory if

the speeds are known. Let (x0, y0, ϑ0) denote the initial pose of the robot. When the

wheels turn at fixed velocities, the differential equations (2.13) are solvable as follows:

x(t) = x0 + v0

ω0
(sin(ω0t + ϑ0)− sin ϑ0)

y(t) = y0 − v0

ω0
(cos(ω0t + ϑ0)− cos ϑ0)

ϑ(t) = ϑ0 + ω0t,

(2.16)

which implies that the trajectory that the robot follows is a circular path with its

radius r = v/ω.

Many researchers (e.g. [84, 86]) assume that the robot velocities remain constant

in each control period such that the robot path will be a straight line or a circular

path. However, the velocities are normally time-varying in a control period as robot

are frequently accelerated or decelerated during navigation. Thus, the differential

22

2.3 Modeling of Car-like Mobile Robots

equations (2.13) must be evaluated using numerical methods. At a relatively short

interval of ∆t, we may take that the wheels undergo a fixed rate of acceleration or

deceleration, i.e.

vL(t) = vL0 + aLt, vR(t) = vR0 + aRt. (2.17)

where vL0, vR0 and aL, aR are the initial velocities and accelerations of left and right

rear wheels, respectively.

Given (2.17), Eq. (2.15) can be converted to the following:

{
v(t) = aR+aL

2
t + vR0+vL0

2
= at + v0

ω(t) = aR−aL

b
t + vR0−vL0

b
= εt + ω0,

(2.18)

where v0, ω0, a, ε are the initial values of translation and rotation velocities, the

longitudinal acceleration, and the angular acceleration of the robot, respectively.

With Eqs. (2.18) and (2.13) and the initial condition of integral as (x0, y0, ϑ0),

the solution for the robot pose is:

x(t) =
∫ t

0
(at + v0) cos

(
1
2
εt2 + ω0t + ϑ0

)
dt + x0

y(t) =
∫ t

0
(at + v0) sin

(
1
2
εt2 + ω0t + ϑ0

)
dt + y0

ϑ(t) = 1
2
εt2 + ω0t + ϑ0,

(2.19)

where the position can be obtained only through numerical integration method such

as Simpson’s Rule.

2.3 Modeling of Car-like Mobile Robots

2.3.1 Rear-wheel Drive Car-like Robots

Car-like nonholonomic robots may be categorized into rear-wheel drive, front-

wheel drive, or four-wheel drive ones. Four-wheel drive car-like robots can be viewed

as those having both rear-wheel drive and front-wheel drive capabilities, and being

able to perform rear-wheel drive or front-wheel drive when needed. This research

considers rear-wheel drive ones, as shown in Fig. 2.4. The two front wheels are

centered orientable wheels, which steer the robot to the desired orientation. Either

the front or rear wheels can be taken as driving wheels. L denotes the wheelbase, i.e.

distance between the rotation axis of the front wheels and that of the rear wheels.

23

2.3 Modeling of Car-like Mobile Robots

x

y

�

bx
by

bz

ϑ

ϕ

�

�

�

vr
�

�

υ
Fr

�

z

��

��

�

γ

Figure 2.4: Rear-wheel drive car-like robot with the RP shifted to K.

The configuration of a car-like robot can be defined by the 4-tuple

[x y ϑ ϕ]T , (2.20)

where ϕ is the steering angle of the front wheels w.r.t. the body frame. ϕ is mechan-

ically limited and bounded by an angle, ϕmax, that is less than 90◦ in practice:

|ϕ| ≤ ϕmax. (2.21)

Similar to the derivation of (2.3), the component of velocity normal to the steering

wheels should be zero, from which we have

ẋ sin(ϑ + ϕ)− ẏ cos(ϑ + ϕ)− Lϑ̇ cos ϕ = 0. (2.22)

Front-wheel velocity V is defined as the velocity at F, the mid point of the front

axle of the car-like robot. According to relative motion principles, the motion of point

F is relative to that of point W by Lϑ̇ = V sin ϕ. Therefore, the vehicle heading ϑ

can be integrated from the following equation:

ϑ̇ = V sin ϕ/L. (2.23)

A car-like robot is not always turning around a fixed IC and ϕ is not always

constant – the robot can be steered to a different robot velocity. However, the front

velocity at that time can be considered as a constant, i.e. dV/dt = 0 for a very short

duration.

24

2.3 Modeling of Car-like Mobile Robots

2.3.2 Shifted Reference Point

Although the RP may be somewhat arbitrarily designated, the choice of RP affects

the kinematics of a robot, the space that the robot is able to cover, and the steering

functions. These, in turn, will influence path planning for a mobile robot.

In this sub section, the RP is shifted forward from W along the main axis by a

distance LK to point K, as shown in Fig. 2.4. In addition to that the vehicle heading

ϑ can be integrated using the relationship in Eq. (2.23), the derivatives of the position

at this RP are related to the front-wheel velocity and steering angle pair (V , ϕ) by

the following kinematic equations:
{

ẋK = V(cos ϑ cos ϕ− sin ϑ sin ϕLK/L)

ẏK = V(sin ϑ cos ϕ + cos ϑ sin ϕLK/L).
(2.24)

As v is now defined at K and thus v =
√

ẋ2
K

+ ẏ2
K

holds, using Eq. (2.24), the

relationship between v and V can be derived as follows:

V = v/
√

cos2 ϕ + (L2
K/L2) sin2 ϕ. (2.25)

The values of ẍK and ÿK may be obtained by differentiating Eq. (2.24), with in

mind that dV/dt = 0, ϑ and ϕ are functions of t. Knowing that v =
√

ẋ2
K

+ ẏ2
K

and

Eq. (2.23) holds, by substituting the obtained values of ẍK and ÿK, and Eq. (2.24)

into the curvature equation (2.4), we have the following equation for the curvature:

κK =
V3

v3

(
LKϕ̇

LV +
sin ϕ

L3

(
L2 cos2 ϕ + L2

K sin2 ϕ
))

. (2.26)

With Eq. (2.25), the relationship between v and V , Eq. (2.26) can be simplified

as follows:

κK =
LLK

v

ϕ̇

L2 cos2 ϕ + L2
K sin2 ϕ

+
sin ϕ√

L2 cos2 ϕ + L2
K sin2 ϕ

. (2.27)

The curvature (2.27) is a function not only of ϕ and v but also of ϕ̇, which is

correlated to the “flatness” properties [94] of the car-like model. As shown in Eq.

(2.27), the function of steering angle, ϕ, is not easy be derived if the path (and thus

the values of v and κK) is given.

When the front (steering) wheel is selected as the RP, i.e. LK = L, the derivatives

of the state at this RP are related to the pair (V , ϕ) by the following kinematic

equations: {
ẋF = V cos(ϑ + ϕ)

ẏF = V sin(ϑ + ϕ).
(2.28)

25

2.3 Modeling of Car-like Mobile Robots

Now v is equal to V , i.e. V = v. The curvature of the path is then given by

κF =
ϕ̇

v
+

sin ϕ

L
. (2.29)

If the boundary condition is known (e.g. ϕ(0)), the nonlinear differential equation

(2.29) can be integrated numerically to find the equation for the steering angle ϕ,

which however is still unable to be written into an explicit form.

As pointed out by [95], the discontinuities in the steering functions when track-

ing a non-continuous curve can be eliminated by shifting the RP. When there is a

non-continuous change in the curvature κF, the solution to the nonlinear differential

equation (2.29) is not necessarily non-continuous (as ϕ̇ could be non-continuous in

Eq. (2.29) while ϕ is continuous). Of course, it can be seen from Eq. (2.25) that

there will be no discontinuity on the front-wheel velocity V either.

The vehicle heading is now not aligned with the path after the RP starts to track

the arc, and until when a distance L along the new line segment has been traversed

by the RP. That is to say, a certain amount of distance is required for the robot to

properly align its orientation after following a turn. Therefore, path planning may

become more complex with this setting of RP.

2.3.3 Reference Point Selected at W

In the remaining part of this thesis, the RP is chosen to be W (as normally is),

unless otherwise stated. v is now the velocity at W. Therefore, we have

v = V cos ϕ. (2.30)

Knowing that ẋ = v cos ϑ, ẏ = v sin ϑ, we have

{
ẋ = V cos ϕ cos ϑ

ẏ = V cos ϕ sin ϑ.
(2.31)

If the control input is defined as v = [v ϕ̇]T , the kinematic model for rear-wheel

drive car-like robots can be derived from Eqs. (2.31), (2.23) and (2.30) as follows:

ẋ

ẏ

ϑ̇

ϕ̇

=

cos ϑ

sin ϑ

tan ϕ/L

0

v +

0

0

0

1

ϕ̇, (2.32)

26

2.3 Modeling of Car-like Mobile Robots

where the first vector field has a discontinuity at ϕ = ±π/2 (i.e. the front wheels are

normal to the main axis of the vehicle). However, this singularity seldom occurs in

practical cases, where the range of the steering angle ϕ is restricted.

Instead of the model (2.32) that is convenient for control, we are more interested

in obtaining the steering functions for the purpose of path planning.

The values of ẍ and ÿ may be obtained by differentiating Eq. (2.31) while noticing

that dV/dt = 0, ϑ and ϕ are functions of t. Knowing that v =
√

ẋ2 + ẏ2 and Eqs.

(2.23) and (2.30) hold, by substituting the obtained values of ẍ and ÿ, and Eq. (2.31)

into the curvature equation (2.4), we have

κ = ϑ̇/v = ω/v = tan ϕ/L, (2.33)

which shows that the curvature can be obtained from the values of the velocity at the

RP and the angular velocity of the robot.

The steering functions to derive the front-wheel velocity and steering angle are

then given by:

ϕ = tan−1(Lκ), (2.34)

V = v/ cos ϕ, (2.35)

which implies that there will be an abrupt change in the steering angle if there is a

non-continuous change in the curvature.

The curvature κ at the RP is now equal to the inverse of r, the distance of the IC

from W, i.e.

r = 1/κ. (2.36)

Let rmin denote the minimum turning radius of a car-like robot. From Eqs. (2.21),

(2.33) and (2.36), we know that the following curvature constraint is imposed on the

robot’s path:

κ ≤ 1/rmin = tan ϕmax/L. (2.37)

Fig. 2.5 shows the trajectories of the RP and the steering wheel, when the robot

follows a path consisting of two line segments and one arc with radius rC . In this

case, the circular center of the arc, ΩC , is at the same time the IC of the robot motion

during its moving along the arc. This path is smooth in the sense that there is no

abrupt change of direction along the path.

As the RP moves along line segment
−→
AB or

−−→
CD, the front (steering) wheel moves

along the line segment or its extension. When the RP moves along the arc segment,

27

2.4 Robot Dynamic Constraints

ϕ

� �

�

�

CΩ
Cr

Fr

��
�

�
��

Cr

	
�����������

r

��

Figure 2.5: Trajectories of the center of the rear wheel axis and that of the steering
wheels when following a path consisting of both line and arc segments.

the robot rigid body is rotating around the IC, i.e. ΩC . When the RP is at B or C,

the front wheel will be located at FB or FC, respectively. Thus, as the RP moves along

the arc segment, the front wheel moves along the dashed arc segment of radius rF

and starting from FB and ending at FC. When the front wheel completes the dashed

arc, the vehicle heading is aligned with the line segment
−−→
CD. The vehicle heading

is continuously aligned with the line segment, or the tangent to the arc segment,

whichever is being tracked.

As can be seen from Fig. 2.5, there will be an abrupt change (between zero and

tan−1(L/rC)) in the steering angle when the RP is at a line-arc transition. This fact

also can be deduced from the steering functions (2.34) and (2.35): as the curvature

value of the path is zero on line segments, and 1/rC on arc segments, both the steering

angle and the steering speed will have a discontinuity when the RP is at a line-arc

transition.

2.4 Robot Dynamic Constraints

Fig. 2.6 shows the dynamic model of a nonholonomic mobile robot. The xb axis

of the body coordinate frame coincides with the vector tangent to the path γ at W.

The zb axis is chosen such that (xb, yb, zb) forms a right-handed coordinate system.

According to Newton’s first law of motion, a moving body travels along a straight

path with a constant speed unless it is acted on by an external force, say Fxb
, to make

it accelerate or decelerate. For a circular motion to occur, there must be a force Fyb

28

2.4 Robot Dynamic Constraints

x

y

�

γ

�

�

z

bx
by

bz

Figure 2.6: Frame attached to a nonholonomic mobile robot.

acting on a body, pushing it toward the center of the circular path. The magnitude

of this centripetal force is equal to the mass m of the body times its velocity squared

and divided by the turning radius. The motion along the path γ obeys Newtonian

dynamics:

mal = Fxb

mκv2 = Fyb

0 = Fzb
−mg,

(2.38)

where g is the constant gravitational acceleration, and Fzb
is the normal force by the

ground.

The component of
−→
F in the plane represents the friction applied from the ground

to the wheels. Since no sliding is allowed, there is a friction constraint as follows:

√
F 2

xb
+ F 2

yb
≤ µFzb

, (2.39)

where µ is the friction coefficient between the wheel tires and the ground.

Substituting the results of Eq. (2.38) into Eq. (2.39), we have

|al| ≤
√

µ2g2 − κ2v4. (2.40)

There is also a bound on the torque (or force) Fmax applied by the engine on the

wheels. Together with the friction constraint (2.40), it yields the following feasible

range of the acceleration:

|al| ≤ min(Fmax/m,
√

µ2g2 − κ2v4). (2.41)

Besides the maximum velocity vmax determined by the rotational speed of the

wheels and the air friction force, the velocity v is constrained by the requirement

29

2.5 Summary

that the square root in Eq. (2.41) should be nonnegative. The feasible range of the

velocity is then given by

|v| ≤ min(vmax,
√

µg/κ). (2.42)

The maximum angular velocity is also limited due to the actuators’ capability:

|ω| ≤ ωmax. (2.43)

For a car-like robot, due to the actuators’ limits, there is a constraint on the

steering velocity, i.e. the changing rate of the steering angle:

|ϕ̇| ≤ ϕ̇max. (2.44)

2.5 Summary

The kinematic models of differential drive and car-like nonholonomic mobile robots

have been derived in this chapter. In addition, the robot dynamic constraints, which

significantly influence a robot’s motion capabilities, were developed. Compared with

the modeling of wheeled mobile robots [96, 97] or robot carts [95], this chapter is

focused more on modeling issues related to forward kinematics, steering functions,

curvature of path, and choice of reference point and robot dynamics, which are directly

correlated with the research work of this thesis.

The main contribution of this chapter is its investigation of kinematic modeling,

steering functions and robot dynamic constraints of differential drive and car-like

robots, which is a basis for subsequent path planning and motion planning. Accel-

erations in translation and rotation velocities in a control period have been taken

into account in the study forward kinematics, which may help to estimate the robot

poses and trajectories more accurately. In addition, it presents new understandings

about the choice of reference point for a robot to track a nominal path as well as its

influence on path planning and motion planning.

30

Chapter 3

Boundary Following and

Convergent Path Planning Using

Instant Goals

In this chapter, Instant Goal approach is proposed for collision-free boundary fol-

lowing of an obstacle of arbitrary shape and globally convergent path planning in

unknown environments. Firstly, for effective knowledge representation and manipu-

lation, a vector representation is presented to represent the local environment based

on sensory range data. Next, the concept of Instant Goal is introduced for a holo-

nomic robot to perform boundary following in a “natural” human-like manner. The

robot moves “forward” along the boundary, even if the obstacle is of arbitrary shape

and other obstacles are present nearby. Then, a potential field based reactive collision

avoidance is performed simultaneously and, when needed, is efficiently incorporated

in. Based on the boundary following function, a realistic sensor-based path plan-

ner with global convergence property is designed for a robot that is able to acquire

discrete, and noisy range data.

3.1 Introduction

Considering the fact that any smooth boundary can be partitioned as piecewise

linear, based on previous work on wall following [23, 24], the related problems of

boundary following can be solved without any difficulty by traveling in a parallel

direction to the curve tangent. However, a robot is usually only able to have a discrete

31

3.2 Representation and Modeling of Local Environment

approximation of its surroundings, which makes the problem difficult. Moreover, with

the presence of nearby obstacles which may disturb the moving direction of the robot,

the problem is not just following a curve while keeping a constant distance from it,

but also involves making decisions as to which obstacle to follow. There is no ready

solution for a robot to follow obstacles of complex shape – the Bug algorithms and

their variations thus make an ideal assumption about the capability of boundary

following.

This chapter presents an Instant Goal approach which allows a physical robot

equipped with a rangefinder to follow an obstacle of arbitrary shape. “Instant Goal”

is a local target specially designed for action planning based on sensory input. Instant

Goal Driven method was first presented in [98] where Instant Goals are generated at

each time instant for behavior-based navigation. In this research, the robot is enabled

to move forward along the boundary of an obstacle without collision in an obstacle

cluttered environment. A vector representation saving much on memory space is

used to represent the local environment sensed by a rangefinder. The search range

to determine an Instant Goal is restricted to a certain scope computed based on the

previous navigation status and the current range data input, to ensure that boundary

following is performed in the desired direction. The concept of “safe path” is used to

distinguish the “disturbing” obstacles from the desired one such that Instant Goals

can be determined under any complex obstacle condition.

Based on the boundary following function, a practical convergent path planner

is presented for mobile robot navigation without first building a global map of the

environment. It uses a Bug-like strategy to switch between the two motion modes

in order to achieve global convergence of path planning. A special leave condition

is proposed for the robot to decide whether it should leave the currently followed

obstacle and switch back to move toward the goal. Rather than assuming the robot

is able to follow an obstacle, the path planner is based on the Instant Goal approach,

and does not require a range sensor to have a perfect sensing ability.

3.2 Representation and Modeling of Local Envi-

ronment

Many approaches of modeling have been suggested in the literature for local-

ization, map building and path planning for robotic systems. In reactive motion

32

3.2 Representation and Modeling of Local Environment

planning, representations of the local environment should aid motion determination

or behavior generation and satisfy the real-time requirement. The robot has limited

memory that only allows it to store a limited number of important points, which

makes it often insufficient, for example, for storing incremental maps which may be

very large. In this section, a simple vector is used to represent the local environment

and a simple way is proposed to model the sensed environment based on range data.

3.2.1 Vector Representation of Local Environment

On-line sensors are utilized by the robot to sense the environment where the robot

navigates. For an indoor environment, rangefinders such as ultrasonics and laser

scanners are often used because they can directly measure the ranges of obstacles.

In this research, a laser scanner is used, considering that it may provide much better

angular resolution and there are less spurious readings. It is assumed that the laser

scanner is able to provide Ns equally spaced angular readings for a rotation of 360◦.

As shown in Fig. 3.1, the detectable area of the laser sensor is denoted by the dashed

circle of radius Rd centered at Ob, while the sensed free-space is denoted by the region

encircled by solid dashed lines.

��

��

�

���

��

�	

�

	�

�

�

1R∂2R∂

3R∂
4R∂

Figure 3.1: Obstacles sensed by a laser rangefinder attached to a circular robot.

A holonomic robot is assumed to be used in this chapter. Define effective size

of a robot as the diameter (denoted by 2Rrob) of the robot body which can be the

actual diameter for a circular robot or the diagonal length for a rectangular robot.

33

3.2 Representation and Modeling of Local Environment

The Ns beams of range readings are indexed in a counterclockwise (CCW) manner

with the direction of the first beam coinciding with the xb axis (or the orientation

of the right side of R if the angular range is 180◦). The 2D rangefinder information

obtained in the jth beam direction is represented as pairs pj = (ρj, θj), j ∈ [1, Ns],

in polar coordinates with respect to the sensor coordinate frame attached to the

laser scanner, where ρj is the measured distance of the detected object, and θj is

the measured azimuth angle between the direction of the beam and the x axis of the

sensor’s frame. If the relationship between the index and the beam angle is known

for each beam, the measured point can be represented in a more convenient form:

pj = (ρj, j), j ∈ [1, Ns]. (3.1)

A point on an object (an obstacle or the goal) is detectable if and only if it is within

the sensor range. A point is visible if and only if it is detectable and its viewing line

(the straight line segment from P to the point) does not intersect any other object(s).

Furthermore, it is known that, if a point is visible from point P , it is also visible from

any point between it and P .

Grids are often used to represent the navigable space around the robot due to their

simplicity [99]. Grid representations are arbitrarily tessellated regions surrounding the

robot and can vary in resolution, shape, and uniformity. The simplest version involves

a two-dimensional array of cells, where each cell in the array corresponds to a square

of fixed size in the region being mapped. Radial sector grid representations [100,101]

have also been used for motion planning. One drawback of grid representations is that

if the sensed area is large, they may consume a large amount of memory resources and

require a long computation time to generate appropriate motion behaviors. Another

disadvantage is that the distances from the robot to the obstacles, which are often

measurements obtained directly from onboard sensors and the input to a motion

generator, are hidden in the grid representations and need to be inferred from the

indices of the grids. Moreover, at each instant, the information of the obstacle(s)

hidden behind the detectable ones is not needed for the purpose of local navigation.

Taking these into account, a simple vector proposed in the work of [98] is used to

represent the local environment:

R = [R1, ...Rj , ...RNs
]T ∈ RNs , (3.2)

where Rj (j = 1, 2, . . . , Ns) is the measured distance between the robot and the

obstacle detected in the jth direction. When no obstacle is detected, Rj is set as Rd.

34

3.2 Representation and Modeling of Local Environment

As shown in Fig. 3.2, the vector map saves much space compared to a grid map

or a radial sector grid map. For instance, if the beam number is eight, the vector map

can be described by a vector R = [R1, R2, Rd, R4, R5, Rd, R7, R8]
T . To represent the

same local space, the radial sector grid map will use a 8×Nd matrix in the following

form, where Nd is the grid dimension along the range:

MT =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 × 0 1 1

· ·
1 × 0 1 × 0 × ×

,

where a zero value, a non-zero value or “×” indicates that the corresponding space is

free, occupied, or undetermined, respectively.

� � ��� ��

���	

��

��

�

��

��

	

�	

�� ��

�

��

Figure 3.2: Representations of local environment sensed by a laser rangefinder.

In actual implementations, the laser rangefinder is often mounted at the center

of the robot. In that case, the sensor reference coincides with the body coordinate

frame, and the local coordinates of each obstacle point can be easily converted from

the expression of Eq. (3.2). Let RG denote the distance of the goal from the robot,

and jG denote the index of the beam nearest to θG, the direction of the goal. When

the goal is detected by the sensor, the area behind the goal will be of no interest to

the robot. Taken this into account, a modified version of the vector representation,

R̂ ∈ RNs , is used to describe the local environment by defining the jth element of R̂

35

3.2 Representation and Modeling of Local Environment

as follows:

R̂j =

{
Rj, j ∈ (1, 2, . . . , Ns), j 6= jG

min(Rj, RG), j = jG.
(3.3)

The vector representation is natural in the sense that it resembles the distribution

of sensory data. Such a representation is suitable for behavior generation and obstacle

avoidance of a robot with a rangefinder. In potential field methods, for example, the

repulsive forces associated with the individual known obstacles can be directly derived

from the vector representation.

Remark 3.1. The vector representation of the local environment has the following

advantages: i) it can be directly constructed based on the range measurements from

range sensors such as sonar array, laser rangefinder or infrared, etc.; ii) compared

with grid representations, it saves greatly on memory space, considering that it is a

vector of dimension Ns rather than a Ns×Nd matrix of the same element size; and iii)

it is able to represent the local environment sensed by a rangefinder, and is suitable

for behavior generation and obstacle avoidance of a robot with a rangefinder.

3.2.2 Modeling of Sensed Environment

Grouping of Object Points into Obstacles

The above representation of the local environment has not taken into account the

uncertainties of measurements, which however should be properly incorporated in for

safe navigation. The distance uncertainty of range sensors is often a function of range

and identified by range error variance σ2
ρ. For example in the work of [43], a fit for

the range error curve of a laser scanner is given as σρ = 9.6× 10−7ρ2− 5.6× 10−4ρ +

21.213 (mm). Maximum range error is denoted by σRd since it typically occurs when

the value of a range measurement is around Rd.

A set of object positions can be obtained from one laser scan. If a range value

is less than the maximum limit, it implies that an obstacle has been detected. The

scanned sequence of range, S = {pj|j = 1, . . . , Ns}, can be divided into obstacle point

set and non-obstacle point set as follows:

nO⋃

k=1

Ok = {pj|pj ∈ S, ρj < Rd − σRd
}, (3.4)

Ō = {pj|pj ∈ S, ρj ≥ Rd − σRd
}, (3.5)

36

3.2 Representation and Modeling of Local Environment

where nO is the number of obstacles. With this partition method of measured points

in mind, the sensed free-space around R in Fig. 3.1 can be denoted by the region

encircled by solid dashed lines.

As noticed from Fig. 3.1, these obstacle points can be grouped into several obsta-

cles at a glance. Using the discontinuity property between adjacent observed points,

the obstacle points may be divided into several different obstacles using a simple

criterion that is based on constant thresholds such as:

‖pj − pj+1‖ < ε.

For example, an obstacle can be regarded as connected by the criterion that the

distance between the associated n adjacent obstacle points is smaller than the effective

size of the robot, i.e.,

∂R = {pj|
√

R̂2
j + R2

j+1 − 2R̂jR̂j+1 cos(2π
Ns

) < 2Rrob, j = j1, . . . , j1 + n− 1}. (3.6)

However, such approaches may be unable to cope with range data, because the

distance between two measured points depends on both the angle formed by the

beams and the normal vector of the surface being scanned. For example, although

the distance of two adjacent obstacle points A and B in Fig. 3.1 is greater than

R’s effective size, for navigation purposes, they should be regarded as two points

belonging to the same obstacle.

Range-based Straight Path and Obstacle/Angle Scope

The term path refers to the shape of a motion, that is, the shape of the curve in

the robot’s configuration space. In this research, “straight path segment” is used to

determine if it is safe for R to move from its current position in a certain direction.

Straight path segment γAB(r) is defined as the segment consisting of a straight line

segment
−→
AB with a thickness radius r and the semi-disk centered at B with a radius

r which is not overlapped with the “thick” line segment
−→
AB. As shown in Fig. 3.3,

γAB(r) is the space inside the thick solid lines b2a2, a2a1, a1b1 and arc b1b2 and it does

not equal to γBA(r). The length of γAB(r), measured by |AB|, is denoted as `. In the

context of discrete range data, γj,`(r) denotes the straight path segment of length `

in the jth beam direction.

Definition 3.1. The straight path segment γAB(r) is said to be safe for the robot with

an effective radius Rrob to move from its current position A to its destination B, if

37

3.3 Boundary Following through Instant Goals

� �

���

���

���

��

�� 	�

	�
��

��

��

rRRob ,

Figure 3.3: Straight path segment: the space inside thick solid lines.

and only if r ≥ Rrob holds and all the obstacle points are not in the path segment. In

addition, a function SafeSP(γAB(r)) is defined to check if the straight path γAB(r) is

safe for the robot.

In Fig. 3.3, the measured position value of each obstacle point is denoted by

the center of a small dashed circle and, due to the uncertainties in range sensing,

the actual position of the point is however only known to be confined to the circle.

Suppose that a robot of effective radius Rrob = r moves from A to B, γAB(r) is safe

for obstacle points Oj1 and Oj2 . However, when uncertainties of the range sensing are

considered, γAB(r) is not safe for obstacle point Oj3 .

There exists a safe straight path from point A to point B for the robot, if and only

if the straight path segment γAB(Rrob + σRd
) is safe for the robot to move from point

A to point B. If any of the beams on the right-hand side of a1a2 does not intersect

line segments b2a2, a1b1 or arc b1b2, there is no safe path from point A to point B for

the robot.

As shown in Fig. 3.4, left obstacle range ∂RL
C(A,B) is defined as the continuous

obstacle boundary (denoted as ∂R1) from the start visible point A to the end visible

point B on the left (CCW) direction w.r.t. the start line (here is
−→
CA) direction. Left

angle range ∂θL
C(A,B) is defined as the corresponding angle range. Right obstacle

range ∂RR
C(A,B) and right angle range ∂θR

C(A,B) can be similarly defined. Note

that ∂RL
C(A,B) 6= ∂RR

C(A,B), and ∂θL
C(A,B) 6= ∂θR

C(A,B).

As such, if
−→
CA and

−−→
CB correspond to the j1

th and j2
th range readings respectively,

left obstacle range ∂RL
C(A,B) can be denoted as ∂RL

C(j1, j2) and left angle range can

be denoted as ∂θL
C(j1, j2).

3.3 Boundary Following through Instant Goals

In this section, a range-based method is proposed to determine a series of Instant

38

3.3 Boundary Following through Instant Goals

�

� �

ABθ

BAθ

1R∂

2R∂

Figure 3.4: Illustration of directional obstacle range and angle range.

Goals which guide the robot to follow the boundary of an obstacle of arbitrary shape.

3.3.1 New Strategy of Boundary Following

The basic idea of conventional wall following algorithms is to maintain a set of

(fixed) distance to a wall using a series of range measurements. The surface is followed

by moving in a perpendicular direction to the nearest point on an obstacle. Using

this strategy, a convex corner, concave corner or even a curve surface can be followed

[23]. Such algorithms assume a sufficiently fast measurement (to obtain the nearest

reflecting point) relative to the velocity of the robot and a capability of accurately

measuring the direction to the reflecting point.

However, the reliance on measurement of the nearest reflecting point to determine

the motion direction not only requires a very good signal processing, but may also

bring about improper behavior when the obstacle consists of some special shapes, or

if there are other obstacles detected very close to the one currently followed. In Fig.

3.5(a), ideally the robot’s proceeding direction should be kept as right when following

boundaries ∂R1 and ∂R2, and left when following ∂R3. However, it can be seen that,

due to uncertainties, the directions obtained have a 50% probability of turning out to

be incorrect. In an obstacle cluttered environment as in Fig. 3.5(b), the robot may

unexpectedly turn to follow other obstacle rather than the original one.

Instant Goal approach is proposed for a holonomic robot to follow an obstacle

in complex, obstacle-cluttered environments. At each step, an Instant Goal (IG for

short), a point serving as a temporary goal for the robot to reach, is computed. The

robot will move forward in the sense of following the obstacle, by restricting the search

range of each IG to a special scope of the boundary. In the context of using a laser

rangefinder, suppose that an IG is in the jIG
th beam direction and of a distance rIG

(not necessarily equals to R̂jIG
) from the laser sensor. If the sensor is mounted at the

39

3.3 Boundary Following through Instant Goals

����

������	

���	

���������
�����	��

1R∂

2R∂

3R∂

1P 2P
3P

(a) A U-shaped obstacle.

����

����
��	�

�����������������

�������������
������������

(b) Cluttered obstacles.

Figure 3.5: Robot may exhibit an improper behavior during wall following.

center of the robot, the IG can be expressed in the polar coordinate form w.r.t. the

robot as follows:

(rIG, θIG) = (rIG,
2π

Ns

(jIG − 1)). (3.7)

In the boundary following mode, until the IG is reached or need to be revised, the

robot will keep moving toward it with its orientation as follows:

ϑ = ∠
−−−→
PtPIG. (3.8)

Start, Si, is defined as the location at which the robot decides either to follow

an obstacle or to move directly toward the goal, where i = 1, 2, · · · is the index of

the obstacle met by the robot. The robot position at which an IG is determined is

named as Instant Start, Si,k, where k = 1, 2, · · · is the index of Instant Starts during

the following of the ith obstacle. Similarly, an IG is denoted by Gi,k. Algorithm 1

briefly describes the procedure of following an obstacle.

Algorithm 1 Following An Obstacle.
1: Si ← Pt, k ← 1
2: Assign a following direction
3: while the whole boundary is not covered do
4: Si,k ← Pt . Set current Instant Start

5: Compute search range
6: Determine Instant Goal Gi,k

7: while Gi,k is not reached do

8: Move toward Gi,k in
−−−−→
PtGi,k direction

9: if Instant Goal need to be revised then
10: Exit While
11: end if
12: end while
13: k ← k + 1
14: end while

When R is moving toward an IG, only the range data in “front” of R are consid-

ered to be “concerned” for the purpose of obstacle avoidance (to be described in the

40

3.3 Boundary Following through Instant Goals

next section). The “concerned” beams are of an absolute angle not more than (π/2)

from the robot orientation (3.8). Nearest concerned range, Rmin(ϑ), is defined as the

shortest range value among the concerned beams. For the safety of navigation, the

robot velocity is constantly adjusted based on the value of Rmin(ϑ). It will be set

as relatively high when R is far from the “concerned” obstacles; and vice versa as

follows:

vt =

|PtPIG|
∆t

, if
|PtPIG|

∆t
<

Rmin(ϑ)

Rmin(ϑ)+ROB
vopt

Rmin(ϑ)

Rmin(ϑ)+ROB
vopt, otherwise,

(3.9)

where vopt < vmax denotes the reasonable speed thatR can drive stably in an obstacle-

free environment, and ROB is the obstacle influence range given as Eq. (3.19).

In Eq. (3.9), by comparing the velocity magnitude with (|PtPIG|/∆t), the robot is

ensured not to pass beyond the IG after driving at the obtained speed for a duration

of ∆t. In addition, even if Rmin(ϑ) � ROB or Rmin(ϑ) � ROB, due to the robot’s

physical dimension and the limit of range measurements, vt will be bounded by

Rrob

Rrob + ROB

vopt ≤ vt ≤
Rd

Rd + ROB

vopt. (3.10)

3.3.2 Search Range for Instant Goal Determination

The search range to find an IG is restricted to a special scope of the obstacle

boundary, in order for the robot to move forward along the boundary of an obsta-

cle in the desired direction, even in the presence of other obstacles. Three critical

parameters to determine a search range are defined first: SchFrom and SchEnd are

the beam indices from which the search process starts and ends, respectively, while

SchDir is the left (CCW) or right (CW) hand side of the SchFrom direction. Then,

search range of IG candidates (denoted as IG∗s), given that the robot is currently at

Pt, is expressed as follows:

Θ = ∂θSchDir
Pt

(SchFrom, SchEnd). (3.11)

Before searching for the kth IG during following the ith obstacle, the values of Θi,k

and that of SchFromi,k are required to be known (SchEndi,k can be assigned with

a value equal to SchFromi,k + π). Algorithm 2 describes how SchFrom and Θ are

determined. As shown in Fig. 3.6, Actual Hit Point HAct
i,k−1, k = 1, 2, · · ·, is defined

as the obstacle point (on the boundary) nearest to R at the time when Gi,k is to be

determined. HAct
i,k−1 is obtained in the way as defined in Algorithm 2. SchFromi,k

41

3.3 Boundary Following through Instant Goals

is then set as the direction of HAct
i,k−1, and Θi,k is then given as in Eq. (3.11). The

sequence of actions to obtain the search range can be summarized as follows:

Gi,k−1 ⇒ HAct
i,k−1 ⇒ SchFromi,k ⇒ Θi,k. (3.12)

When k = 1, Gi,k−1 is undefined and we initialize HAct
i,k−1 (i.e. HAct

i,0) as H1
i , the near

hit point at the ith Start (which is defined as the visible obstacle point on
−−→
SiG). In

other cases, the value of Gi,k−1 is required for computation of HAct
i,k−1.

iS ,i kS
,i kG

,0
Act

iH

tP

, 1−
Act

i kH
,
Tar
i kH

Θ

point to be located

G

Figure 3.6: Find out point HAct
i,k and thus SchFromi,k+1 and Θi,k+1.

Algorithm 2 GetSearchRange(Gi,k).
1: if k = 0 then
2: HAct

i,k ← H1
i . Initialize the first Actual Hit Point.

3: else
4: HAct

i,k := HTar
i,k ← obstacle point nearest to Gi,k.

5: if R is not at Gi,k then
6: HAct

i,k ← obstacle point nearest to R

7: if
−−−−−→
PtH

Act
i,k 3 ∂θSchDir

Pt
(HAct

i,k−1, H
Tar
i,k) then

8: HAct
i,k ← HAct

i,k−1 . HAct
i,k is ensured to be between HAct

i,k−1 and HTar
i,k .

9: end if
10: end if
11: end if
12: SchFromi,k+1 ← direction of HAct

i,k ; Obtain Θi,k+1 using Eq. (3.11)

In the remaining part of this subsection, more descriptions are provided on how

HAct
i,k is determined according to three different cases. Note that no matter the current

IG is reached or not, there may exist a situation where a new IG needs to be deter-

mined. For example, the current IG is not reachable, or approaching it any further

will cause the robot to follow an obstacle that is not desired.

i) The IG has been reached, i.e. |PtGi,k| ≤ εIG or |PtGi,k| � |Si,kGi,k|. Reasonably,

take the current Target Hit point obtained as the Actual Hit point:

HAct
i,k = HTar

i,k .

42

3.3 Boundary Following through Instant Goals

ii) Otherwise, it will be approximated by the point that R encounters first by

imagining that its dimensions are big enough for it to contact the boundary.

HAct
i,k is determined in a way that

−−−−→
PtH

Act
i,k is perpendicular to

−−−−→
Si,kGi,k such that:

n
PtHAct

i,k

=

[
cos θ⊥ − sin θ⊥

sin θ⊥ cos θ⊥

]
nSi,kGi,k

,

where θ⊥ is (π/2) if SchDir is RIGHT or −(π/2) otherwise.

iii) In case (ii), if
−−−−→
PtH

Act
i,k is not within ∂θSchDir

Pt
(HAct

i,k−1, H
Tar
i,k). Then R’s current

position, Pt, may not lie exactly on line segment
−−−−→
Si,kGi,k. Furthermore, since

R is required to follow the boundary forward in the direction of SchDir, point

HAct
i,k should be “between” points HAct

i,k−1 and HTar
i,k on the boundary. Considering

these two factors, in this case, HAct
i,k is set conservatively as HAct

i,k−1, i.e.

HAct
i,k = HAct

i,k−1.

3.3.3 Algorithm to Determine Instant Goals

After the search range Θ = ∂θSchDir
Si,k

(SchFrom, SchEnd) is determined, an IG

will be obtained by checking each beam within it using the following procedure. Let

variables jcur and jold record the current and last “searched” beams respectively, and

initially set as jcur = jold = SchFrom.

Step 1:Set jcur as the index of the next beam in the SchDir within the search range.

There will be an IG candidate in the direction of current or last “searched” beam if

either i) the distance between the two successive measured points exceeds a certain

threshold εr > 2σRd, i.e.,

‖pjcur − pjold
‖ =

√
R̂2

jcur
+ R̂2

jold
− 2R̂jcurR̂jold

cos
2π

Ns

≥ εr, (3.13)

or ii) after checking a certain number (for example five) of beams, Eq. (3.13) does

not hold for any of them.

If there is an IG candidate, go to Step 2, otherwise, repeat Step 1.

Step 2: Determine the parameters of IG∗:

The direction of IG∗ is set to be that of the longer of the jcur
th and jold

th beams:

jIG∗ =

{
jcur, if R̂jcur > R̂jold

jold, otherwise.
(3.14)

43

3.3 Boundary Following through Instant Goals

If R̂jIG∗ ≥ Rd − σRd
, i.e. no obstacle is detected in the direction of IG∗, R can

move along the direction as far as (R̂jIG∗ − Rrob) (there is little knowledge of the

environment beyond this distance). Otherwise, R can go as far as (R̂jIG∗ − 2Rrob)

rather than (R̂jIG∗ −Rrob) so as not to collide with the obstacles nearby. That is, the

distance of IG∗ is given by

rIG∗ =

{
R̂jIG∗ −Rrob, if R̂jIG∗ ≥ Rd − σRd

,

max(R̂jIG∗ − 2Rrob, r0), otherwise,
(3.15)

where r0 is a constant to ensure that rIG∗ is not shorter than a minimum value.

Step 3: IG∗ will be taken as IG in either of the following two cases:

i) The distance between two successive measured points pjold
and pjcur (as shown

in Fig. 3.7) is greater than the robot size, i.e.,

‖pjcur − pjold
‖ > 2Rrob. (3.16)

If Eq. (3.16) is satisfied, there is possibly a passage between the two points

and thus check if an IG exists near them. As shown in Fig. 3.7, point M is

on line segment −−−−−→pjold
pjcur and is of a distance min(‖pjcur − pjold

‖/2, ROB) from

point pjcur . Point C is on the same side as the robot with respect to the line
−−−−−→pjold

pjcur and is perpendicular to the line with a distance of (ROB+Rrob)/2 from

point M . Then the neighboring area NEIGH to choose IG∗s is given by a disc

C(C, (ROB−Rrob)/2). There will be a point in the area that R can reach safely

if

{j|SafeSP(γj,rj
(Rrob + σRd

)) = True, (rj, j) ∈ NEIGH, j ∈ Θ} 6= ∅. (3.17)

������

�����	

��	�

	��
����

�	��

����

�

�
������

Figure 3.7: Determination of neighboring area NEIGH.

ii) There exists a safe path with length rIG∗ in the direction of the jIG∗
th beam,

that is,

SafeSP(γjIG∗ ,rIG∗ (Rrob + σRd
)) = True. (3.18)

44

3.3 Boundary Following through Instant Goals

In the first case, let jnear denote the nearest one in the set J with respect to the

jold
th beam and set jIG∗ := jnear and rIG∗ := rjnear

. In either case, an IG is found. If

neither case is met, continue the IG search cycle.

Remark 3.2. During following of the boundary of an obstruction O, if there is an

obstacle, say Odis, very close to obstacle Oi and the robot, the approach will determine

the obstacle to follow in the following manner: if there is a passage (a safe path with

length bigger than Rrob) between the two obstacles, an Instant Goal will be generated

between the two obstacles and the robot will continue to follow obstacle Oi; otherwise,

obstacle Odis is regarded as part of obstacle Oi and the robot continues to follow the

“expanded” obstacle.

A number of path planning approaches navigate a robot through local goals. For

example, the subgoal method [21] chooses subgoals as the points at a certain distance

ε w.r.t. their associated obstacle vertices. The setting of a certain distance ε is to

ensure that the subgoal for an edge is not on another obstacle (“which must be at

least a distance ≥ 2ε from the edge”). To achieve the task of following an obstacle,

the Instant Goal approach has several advantages over the subgoal method:

(i) It does not require obstacles to have a certain geometric properties. In contrast,

the subgoal method assumes a point robot and a polygonal environment consisting of

convex polygonal obstacles. It is therefore not directly applicable to the navigation

of a physical robot in a real environment.

(ii) The subgoal method sets a certain distance to ensure that the subgoal for

an edge is not on another obstacle. The Instant Goal approach uses the concept of

“safe path” and “passage” and thus is more appropriate to distinguish the disturbing

obstacles from the desired one.

(iii) Just setting a certain distance may be not able to guarantee that further sub-

goals will be generated, for example if the next edge is currently invisible. In contrast,

IGs are able to be determined in any environment containing complex obstacles due

to the following reasons: i) IGs are dynamically determined based on new sensory

information, unlike subgoals which are all determined at one time; and ii) as in Step

1 of Sec 3.4, the condition to determine an IG∗ ensures that there is always an IG

candidate that will be obtained within the searching scope.

3.3.4 Potential Field Method for Collision Avoidance

The generation of an IG has taken the locations of obstacles into account as

45

3.3 Boundary Following through Instant Goals

well as the robot dimensions and the range uncertainty (σRd
). Boundary following

through IGs can solve obstacle avoidance problem to some extent. However, due to

the unpredictability of the surrounding environment, sensor noise and imperfectness

of control, the robot may still face the threat of collisions. In order to fully guarantee

the safety of navigation, a special obstacle avoidance is considered here when some

obstacles are near enough in the moving direction of the robot.

Critical Obstacle Avoidance

For a robot with velocity vt in the duration of ∆t, a collision with one or more

obstacle(s) is possible only when it is within a certain range of the obstacles. If R is

out of this range, it can move safely with the velocity in any direction. This obstacle

influence range, denoted as ROB, can be represented with respect to R as a circle

centered at R with radius

ROB = Rrob + vt∆t + σRd
. (3.19)

However, even if an obstacle is within this influence range, it will not directly

affect the motion of R to an IG if the obstacle is behind the IG. This IG influence

range is given by

RIG = |PtPIG|+ Rrob + σRd. (3.20)

Our strategy is that obstacle avoidance is triggered only when the nearest con-

cerned range Rmin(ϑ) is within ROI, the minimum value of ROB and RIG, i.e.

Rmin(ϑ) ≤ ROI = min(ROB, RIG). (3.21)

At each time instant, every detected obstacle within the influence circle ROI exerts

on the robot a repulsive force which opposes the direction from the center of the

robot to the obstacle. The total repulsive force exerted on the robot by all obstacles

is the sum of the repulsive force in each beam direction. The repulsive potential Uj

generated by the obstacle in the jth beam direction is constructed in a way similar

to [98]:

Uj =

1
2

(
1
R̂j

− 1
ROI

)2

, if R̂j ≤ ROI

0, if R̂j > ROI.

(3.22)

Only the concerned range data need to be considered for collision avoidance, and

those of a smaller angle relative to the direction of the robot velocity affect motion

46

3.3 Boundary Following through Instant Goals

more significantly. To reflect these factors, a coefficient function is introduced:

λ(j) =
1 + sgn(π

2
− ∠j,jIG

)

2
(C0 +

π
2
− ∠j,jIG

π
2

), (3.23)

where ∠j,jIG
∈ [0, π] denotes the absolute angle between the jth and jIG

th beam

directions; the parameter C0 is a positive constant, for instance 0.1, to make sure

that the obstacles detected in the direction perpendicular to vt may also have some

effect (though relatively small) on collision avoidance.

With the information of both obstacle ranges and distance from IG, obstacle in-

fluence map R̃ is used to reveal in which direction there exist obstacles that may

collide with the robot:

R̃ =

[
1− sgn(R̂j −ROI)

2
λ(j)

]
∈ RNs , (3.24)

which implies that R̃ will be nonzero only if R̂j < ROI.

The repulsive force required to avoid the obstacles in the direction of the j th beam

is then given by

f j = R̃j

(
1

ROI

− 1

R̂j

)
1

R̂2
j

, (3.25)

where only for R̃j 6= 0 does f j need to be calculated.

Integration of Collision Avoidance into Boundary Following

During boundary following, collision checking is made at each time instant. Normally

R moves directly toward an IG except when there are obstacles detected as near as in

Eq. (3.21), in which caseR will move in a different direction temporarily (for a period

of ∆t). There are two basic behaviors: motion toward the IG (called Instant Goal

driven behavior or IG behavior), and motion due to the repulsive force generated by

close obstacles (called Obstacle Avoidance behavior or OA behavior). Coordination

of the two behaviors is via vector summation, which retains the advantage of coor-

dination in the motor schema method [9, 10], i.e., simplicity. Obstacle avoidance is

integrated into the whole navigation in a way without affecting the nature of bound-

ary following. After that, if obstacle avoidance is no longer necessary, R will switch

back to move directly toward an IG.

After the IG is determined, IG behavior can be expressed in the robot body

coordinate frame by a unit vector originating from the center of the robot and pointing

47

3.4 Instant Goal Based Convergent Path Planning

to the IG:

FIG = [cos θIG sin θIG]T ∈ R2. (3.26)

It can be known that the total repulsive force summed by Eq. (3.25) is inversely

proportional in its magnitude to a cubic distance. A scalar ξ > 0 is thus used to scale

the repulsive force to a level comparable to FIG :

FOA = ξ

Ns∑

j=1

f j. (3.27)

Considering that, if the range value of the jIG beam is as short as the minimum

collision-free distance Rrob, the magnitude of the repulsive force in this beam direction

should be much greater than FIG , in order to make sure that OA behavior dominates

in the behavior combination. In addition, it is noted that in this case λ(jIG) = 1

holds for Eqs. (3.23) and (3.24). In view of these, from Eqs. (3.27) and (3.25), ξ can

be determined via the following equation:

ξ

(
1

Rrob

− 1

ROI

)
1

R 2
rob

= Cf , (3.28)

where Cf is a predefined constant much greater than 1.

The orientation of R, initially set as in Eq. (3.8), is now re-determined by the

summation of the vectors FIG and FOA:

ϑ = ∠(FIG + FOA). (3.29)

3.4 Instant Goal Based Convergent Path Planning

Based on the Instant Goal approach of boundary following rather than assuming a

perfect capability of boundary following, a realistic globally convergent path planner

is presented in this section for mobile robot navigation.

3.4.1 Path Planner Design

Leave Condition

A Bug-like strategy is used to switch between the two basic motion modes. Ini-

tially, the robot moves directly toward the goal until it encounters an obstacle in its

48

3.4 Instant Goal Based Convergent Path Planning

direct path. At each Start, if no obstructing obstacle is detected, R moves directly

toward the goal until one is detected; otherwise, it will enter boundary following mode

and move along the boundary of the current blocking obstacle using the Instant Goal

approach.

During boundary following, upon the receipt of a laser scan, if a certain condition

is satisfied, R will leave from current blocking obstacle Oi, and either move toward

the goal or start following another obstacle. The robot’s current position is denoted

as “leave point” Li, and in the meantime it will be set as the next Start, Si+1.

In the work of [2], a basic leave condition is proposed as follows: R moves along

the line segment
−→
SG until an obstacle, Oi, is encountered where a hit point H1

i is

defined; then it follows the boundary of the obstacle until
−→
SG is met at a distance d

from G such that d < |H1
i G|, where a new hit point H1

i+1 is defined. After leaving the

obstacle, R continues to move along
−→
SG. To improve navigation performance such

as shorter paths, some Bug algorithms [17,18,20] adapt the tangent graph to obtain

the locally shortest path, define several different transition conditions for switching

between the two motion modes.

In this research, we propose the following leave condition, upon which the robot

will leave the obstacle:

Case (i): no obstructing obstacle is detected and the distance from the goal is less

than |S1
i G|; or

Case (ii): a new obstacle, rather the original obstructing one, is detected to be

obstructing, and the distance from current near hit point H1
i+1 to the goal is

less than |H1
i G|.

Test of Goal Reachability

It is natural to think that the goal is unreachable if the robot has returned to a

previous position after having traversed the whole boundary of an obstacle. But in

the presence of sensing uncertainties, it is not easy to accurately determine whether

a location has been accessed for a second time. Furthermore, returning to a previous

position is only a special case that the goal is unreachable.

Lemma 3.1. While following an obstacle boundary from Start Si, if R traverses the

line segment
−−−→
H1

i H2
i in the same direction twice, then R completes a loop around the

obstacle, which implies that the goal is unreachable.

49

3.4 Instant Goal Based Convergent Path Planning

Proof: If the current moving mode is decided to be boundary following, subse-

quently R will attempt to follow the blocking obstacle continuously. When
−−−→
H1

i H2
i is

traversed by R in the same direction for a second time, it means that R has traveled

at least 360o around all the obstacle points on boundary ∂Ri (note that boundary

∂Ri may be inside the obstacle Oi). This implies that either the robot or the goal is

trapped – in either case, the goal is unreachable.

Lemma 3.1 relaxes the requirement that the robot need to return to the hit point

H1
i before it identifies the next hit point. In addition, R is not required to return

exactly to a previously covered position in order to test the goal reachability. The

opposite situation is that the robot rather than the goal is trapped, where the goal

is also not reachable.

Convergence Analysis

While R moves toward the goal, it may meet a series of obstacles, which are

sequentially indexed. Suppose that i is the index of the current blocking obstacle. Si

denotes the ith Start and accordingly H1
i denotes the near hit point at Start Si, as

shown in Fig. 3.8. An analysis about the convergence of the proposed path planner

under the proposed leave condition is made as follows:

i) if R leaves the boundary according to Case (ii) of the proposed leave condition,

it will ensure that

|H1
i G| > |H1

i+1G|. (3.30)

For example, in Fig. 3.8, |H1
i+1G| > |H1

i+2G| and |H1
i+2G| > |H1

i+3G| hold.

ii) if R leaves the boundary according to Case (i) of the proposed leave condition,

we then have

|SiG| > |Si+1G|
|SiG| = |SiH

1
i |+ |H1

i G|
|Si+1G| = |Si+1H

1
i+1|+ |H1

i+1G|
|SiH

1
i | ≤ Rd < |Si+1H

1
i+1|

⇒ |H1
i G| > |H1

i+1G|. (3.31)

For example, in Fig. 3.8, |H1
i+3G| > |H1

i+4G| holds.

iii) if current motion mode is direct moving to the goal, it is known that |H 1
kG| >

|H1
k+1G| , since R moves along

−−→
SkG before an obstacle is detected. For example,

in Fig. 3.8, |H1
i G| > |H1

i+1G| holds.

50

3.4 Instant Goal Based Convergent Path Planning

�

��

��

�
����

��

�
���	

����

�
����

�
�

1
1+iH

1
3+iH

1
iH 1

4+iH

�
1

2+iH

Figure 3.8: A path generated by the path planner with the proposed leave condition.

As the above has included all the three possible cases, it can be concluded that the

distance between each near hit point and the goal decreases monotonically. Moreover,

from the assumption that all obstacle boundaries are of a finite length, we know that

the path length from a Start to the leave point is finite. If the goal is reachable,

convergence to the goal is guaranteed by the leave condition. Let H1
n denote the last

hit point before the robot reaches the goal, the finite sequence of the distance function

between the Starts and the goal can be given by

|H1
1G| > |H1

2G| > · · · > |H1
i G| > · · · > |H1

nG|. (3.32)

3.4.2 Direction for Boundary Following

From the global performance standpoint, neither local direction for boundary fol-

lowing can be judged better than the other as long as no complete information is

available. Local direction will directly affect the performance of subsequent bound-

ary following. It can be deduced that the likelihood of obtaining a better global

performance will increase by choosing a locally preferable direction at each Start. In

the work of [18], the local direction is chosen based on the orientation of the boundary

at the hit point (similar to H1
i in this research), and it is expected that following the

direction would take the robot closer to the goal. However, only partial information,

that is, the information of the hit point, is utilized in that work.

In this research, determination of the following direction, SchDir, takes into ac-

count as much information of the blocking obstacle as possible. It is achieved by

searching for an IG at the Start in a way similar to the “Algorithm to Determine

Instant Goals” in Section 3.3.3, except that i) the search scope is now changed to the

concerned beams; ii) checking is conducted simultaneously on the left- and right-hand

sides of the jG
th beam direction; and iii) the search will be stopped only after all the

51

3.5 Simulation Studies

beams within the search scope have been checked.

Let P(j) denote the probability of being the IG direction for the j th beam. When

Eq. (3.13) is satisfied, P(jIG∗) is given by

P(jIG∗) = min(1,
‖pjcur−pjold

‖
2Rrob

) +
|R̂jcur−R̂jold

|
Rd

− ∠jIG∗ ,jG
π/2

, (3.33)

where, on the right-hand side, the first term represents the possibility of a passage for

R to go toward somewhere near the two successive obstacle points, the second term

relates to how far the obstacles are in this direction, and the third term is about how

big the angle is between this direction and the goal direction.

If in the meantime, Case (i) of Step 3 in Section 3.3.3 is satisfied, which means

that there is a passage for R to go toward somewhere near the two successive obstacle

points, the probability of the beam to be the final IG direction is greatly increased.

Thus, a bonus value of 1 is added:

P(jIG∗) = P(jIG∗) + 1. (3.34)

The maximum probability, Pmax, is updated with the obtained probability if it

is greater than the recorded Pmax. The procedure then continues checking the next

beams in the two directions.

Finally, the local direction for boundary following is determined according to the

direction of the beam where Pmax is found.

3.5 Simulation Studies

Extensive simulations were carried out to study the effect of the Instant Goal approach

and the path planner. “Sensor data” are simulated with noise information based on

the sensor’s characteristics and behavior, such that the algorithms can be tested in a

more realistic way.

3.5.1 Simulation Setup

In practice there are always some uncertainties associated with sensor readings. A

sensor model describes how a sensor interacts with the environment and gives some

information about the properties the sensor reports. For the time-of-flight range

sensors like sonar or laser, the measured value represents reflection from the nearest

surface (for sonar, specular reflection of the wave is not negligible). Since Moravec

52

3.5 Simulation Studies

and Elfes [33], a number of research interprets sonar sensor data in a probabilistic

approach using a Gaussian distribution.

In the simulations, the probability density of the laser sensor is given by a constant

Pc plus a Gaussian function which is multiplied by α(ρ), an attenuation of detection

with distance:

P(ρ|z, θ) = Pc +
α(ρ)

2πσρσθ

exp

[
−1

2

(
(ρ− z)2

σ2
ρ

+
θ2

σ2
θ

)]
, (3.35)

where ρ is the range reading, θ is the angle with the optical axis of the sensor, z is

the true space range value, variance σ2
ρ is a measure of range error, and variance σ2

θ

is a measure of angular error. In Fig. 3.9, the vertical axis plots the likelihood of the

detected object being at a given range and a given angle while the horizontal axes

plot the distance from the range reading and the angle respectively.

−0.5

0

0.5
−1

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

0.8
1

0.2

0.4

0.6

0.8

θ (in degree)

 ρ−z	
distance from z

Figure 3.9: Sensor model of range readings of a laser rangefinder (σρ = 0.05m, σθ =
0.25 degree, and Pc=0.1).

In addition to the errors represented by range/angle variance, two other kinds

of errors are introduced to the simulated perception of range values. Sometimes in

some directions a laser rangefinder erroneously obtains maximum range measurements

due to laser reflection of some objects, which may cause “holes” in the perception

of the obstacles. Let Prandmax denote this probability for each direction. A laser

rangefinder may also erroneously give some random measurements in some directions.

This probability for each direction is denoted by Pranduni, and can be modeled

as getting a random range reading with a uniform distribution between 0 and Rd.

53

3.5 Simulation Studies

In simulations, the jth element of the vector representation (3.2) is obtained via

Algorithm 3 in order to emulate1 sensor errors of a laser rangefinder.

Algorithm 3 Add Sensor Error to the jth Reading.

1: θ̂j ← θj + RandGau(0, σθ) . Add angular error to θj

2: Obtain ρ
θ̂j

, the distance of obstacles in the direction of θ̂j

3: if RandUni(0, 1.0) < Prandmax then
4: R̂j ← Rd

5: else if RandUni(0, 1.0) < Pranduni then
6: R̂j ← RandUni(0, Rd)
7: else
8: R̂j ← ρ

θ̂j
+ RandGau(0, σr)

9: end if

The basic settings of the simulation tests are listed as follows:

• An omni-directional robot is used with optimal velocity vopt = 0.40 m/s.

• Laser rangefinders’ detectable range is 15 m and its angular resolution is ∆αs = 1◦

(Ns = 360).

• Period between two successive motions is set as ∆t = 0.5 s and the robot trajectories

are plotted at an interval of 10 periods.

• Parameters of sensor errors are σρ = 0.05 m, σθ = 0.25◦, Prandmax=0.01 and

Pranduni=0.01.

• εr in Eq. (3.13), is set as 0.12 m.

• Obstacles can be configured to be of any shape and no model of the world was pre-

created. Decisions were based directly on simulated range data obtained upon receipt

of a laser scan.

3.5.2 Boundary Following

In the simulations, the effective radius of the robot is set as Rrob = 0.40m. The

algorithm was first tested in an environment as shown in Fig. 3.10. The navigation

began at the point labeled as “Start” in Fig. 3.10(a). The robot followed the obstacle

for one full loop in a clockwise direction (labeled as a line with an arrow) and stopped

1The uniform random function RandUni(min,max) generates a set of random variables x with a
uniform distribution within the scope [min,max]. As opposed to a Gaussian function N (x̄ , σ), the
Gaussian random function RandGau(x̄, σ) generates a set of random variables x with a Gaussian
(or Normal) distribution.

54

3.5 Simulation Studies

at the location labeled as “Stop”. The final robot trajectories are plotted with a

series of rectangles where the orientation of the robot is denoted by a straight line

on each rectangle. It is shown that the robot is able to track around both convex

and concave corners even with obstacles nearby. Note that the trajectories are not

completely parallel to the straight lines of the obstacle because the robot does not

use any reasoning about the obstacle shape it follows.

(a) Trajectories. (b) Instant Goals.

Figure 3.10: Following a large U-shaped obstacle consisting of convex and concave
corners. A round obstacle is placed near the U-shaped obstacle.

The algorithm was then tested in a densely cluttered environment as shown in

Fig. 3.11. Initially, the robot was at the left bottom of the biggest obstacle in the

figure. It then followed the obstacle for one full loop in a clockwise direction. It can

be observed that the robot was able to track around the obstacle properly even with

obstacles nearby. When the distance between two adjacent obstacle points is smaller

than the effective size of the robot, it is reasonable to regard them as two points of

the same obstacle even if they actually belong to two different obstacles. In addition,

when there is a passage between two obstacles, the robot should continue following

the original obstacle rather than the other one that had been detected.

The IGs during the robot’s motion in the two environments are represented as

a series of small circles in Fig. 3.10(b) and 3.11(b) respectively. It is shown that,

generally, the generated IGs were able to guide the robot move forward correctly. The

IGs are frequently generated or revised where they are densely plotted; sometimes

they are located very close to or even within the obstacles. This will not affect the

correct motion of the robot, since collision checking was made at each time instant

and the IGs can be revised when they are found to be inappropriate.

55

3.5 Simulation Studies

(a) Robot trajectories. (b) Instant Goals.

Figure 3.11: Following a complex curve with some disturbing obstacles.

3.5.3 Path Planner

The effective radius of R is set as Rrob = 0.30m. The algorithm was tested in an

environment with convex and concave obstacles. Figs. 3.12(a) and 3.12(b) show the

robot trajectories under the basic leave condition and the proposed one, respectively.

The local direction was determined using the same approach for searching IGs. The

performance of a path planner can be evaluated by the path length and the time

used. One can see that the proposed leave condition generated shorter paths (also

with less time), which is generally the case for an environment of low obstacle density.

However, this is not necessarily true in an obstacle-cluttered environment, in which

case there are much less chances for R to detect a new obstructing obstacle rather

than the original one before meeting the line
−−→
H1

i G.

(a) Basic leave condition. (b) Proposed leave condition.

Figure 3.12: Robot trajectories in a low obstacle density environment.

56

3.5 Simulation Studies

Figs. 3.13 (a) and (b) show the robot trajectories and the generated IGs obtained

by the test in an obstacle-cluttered environment. Fig. 3.14 shows the statistics of

the errors introduced to the sensor data in this simulation test. A “measurement”

is regarded as “erroneous” if the distance between the measured point detected in

some direction and the true obstacle point is greater than 0.10 m (2σρ). It will be

regarded as “large error” if the distance is more than 0.30 m (6σρ). As shown in Fig.

3.14(a), in each scan of 360 “measured” range values, the percentage of erroneous

measurements and “large error” are around 9% and 2.5%, respectively. Fig. 3.14(b)

shows that the average value of the erroneous measurements and the “large error” are

around 2m and 10m, respectively, under the setting of maximum range 15m. Other

simulations were also carried out using laser data carrying noise at a similar level.

(a) Trajectories. (b) Instant Goals.

Figure 3.13: Navigation in a high obstacle density environment.

All the tests are based on range data from the laser rangefinder, and there is

no requirement for an analytical expression of obstacle boundaries. It is shown that

during boundary following, the robot can detect a small gap, and then enter into it

to check if there is a passage there, which is important for the robot not to miss any

passage during boundary following. It is also shown that the Instant Goal approach

is suitable for discrete, noisy range data as the generation of IGs does not solely

rely on a one time scan, and a wrong decision is able to be corrected in subsequent

steps. However, continuous presence of misleading and noisy data with large errors

may cause the approach to fail, e.g., moving back along the obstacle or, even worse,

following a diverging path.

57

3.5 Simulation Studies

0 250 500500 750 1000 1250 1500
0

2

4

6

8

10

12

14

16

18

20
PERCENTAGE OF ERRONEOUS LASER DATA

INDEX OF MEASUREMENTS

percentage
 of error percentage

of large error

(a) Percentage of errors.

0 250 500 750 1000 1250 1500
0

2.5

5

7.5

10

12.5

15

INDEX OF MEASUREMENTS

MEAN VALUE OF ERRONEOUS LASER DATA (m)

mean value of error

mean value of large error

(b) Mean of erroneous values.

Figure 3.14: Statistics of erroneous simulated measurements. The horizontal axes
plot the index of laser scans. The vertical axes plot “percentage of errors” and “mean
of erroneous values” in diagrams (a) and (b), respectively.

3.5.4 Comparison with Other Approaches

Sensor-based local path planners such as potential field methods and behavior-based

systems use local sensory information in a purely reactive fashion, and thus are usually

much simpler to implement than global ones. However, they may get trapped in a

local minimum, and subsequently follow a diverging path or a loop while attempting

to escape from the local minimum. Fig. 3.15 shows the results of navigation of the

mobile robot using a classical potential field method, in the same environments as in

Figs. 3.12 and 3.13. Though the algorithm itself is much simpler than the Instant

Goal approach, the robot may be easily trapped at local minimums. In Fig. 3.15(a),

the robot was stuck around the location LM1. As shown in Fig. 3.15(b), at first,

the robot was stuck around the location LM1 for some time, and then got trapped

at the location LM2 without being able to move out of the local minimum. In the

simulations, sensor errors were added at a level similar to before, which however was

unable to help the robot to go out from local minima.

Like the Bug algorithms, the Instant Goal approach combines global information

and local sensory data, and is able to achieve convergence to the goal. In addition,

it does not need to maintain a global map of the overall navigation environment as

required by global sensor-based path planners. Therefore, it shares the property of

real-time planning like reactive systems. Compared with the Bug algorithms, the

Instant Goal approach is more practical for a real world application considering the

58

3.5 Simulation Studies

(a) Low obstacle density. (b) High obstacle density.

Figure 3.15: Results of navigation using a classic potential field method.

following aspects:

(i) It does not assume a perfect capability of boundary following, and the Instant

Goal approach is used instead: by reaching a series of IGs, the robot moves

“forward” along the boundary even if the obstacle is of arbitrary shape and

“disturbing” obstacles are present.

(ii) The proposed approach is fully based on realistic (discrete, noisy) range data

received from a rangefinder. In contrast, the range sensor is assumed to be

able to present a disc of radius rv [2, 16] or to provide perfect readings of the

obstacles [17,18].

(iii) Some algorithms [2,21] assume and represent the robot as a point, which results

in the need to extract boundary expression from range information, and trans-

form a physical robot into a point using the C-space approach. In comparison,

the proposed approach does not require a treatment of the robot as a point. By

following the boundary of the obstacle for a non-point robot, the Bug strategy

is applicable for it to achieve convergence to the goal.

(iv) The subgoal method [21] requires the environment to consist of only convex

polygonal obstacles, which is obviously not applicable in a real environment. In

comparison, the proposed approach makes no assumption about the geometric

properties of obstacles.

A complete path planner can always guarantee global convergence. Bug algorithms

[2, 17] are proved mathematically to be able to guarantee global convergence. Using

59

3.6 Summary

a Bug-like strategy to switch between motion modes, the proposed path planner is

theoretically complete. However, global convergence may be violated if the robot is

unable to leave the obstacle at the place as decided by the leave condition or boundary

following is not achieved as expected. Such cases may be caused by the discrete, noisy

nature of range sensors, other uncertainties (e.g. missing the detection of passing the

line SG), or failure of planning a suitable motion (especially when the robot dynamics

is taking into account).

3.6 Summary

This chapter presents a vector to represent the local environment, which saves

much memory space and is suitable for behavior generation and obstacle avoidance.

Then, we propose the Instant Goal methodology to keep the robot moving forward

along the boundary of an obstacle of arbitrary shape even in the presence of dis-

turbing obstacles. Based on this approach of boundary following, a practical globally

convergent path planner is presented for mobile robot navigation in a unstructured,

complex environment. The effectiveness of the algorithms has been validated through

realistic simulations with noisy range data.

The main contributions of the research presented in this chapter are: i) an Instant

Goal approach is proposed for collision-free boundary following along an obstacle of

arbitrary shape. The robot is able to continuously follow the desired obstacle in the

desired direction even in the presence of disturbing obstacles; ii) based on the Instant

Goal approach, rather than assuming the capability of boundary following, a practical

globally convergent path planner is presented for mobile robot navigation in unknown

environments; and iii) the proposed approach does not require a range sensor to have

perfect sensing and is based on discrete, noisy range sensory data.

60

Chapter 4

PPC Based Constrained Path

Generation and Hybrid Dynamic

Path Planning Approach

Complex curve is a direct method to solve the problem of planning smooth paths

for nonholonomic mobile robots, since it is able to address dynamic and curvature

constraints simultaneously. In this chapter, we investigate the use of polar polynomial

curve (PPC) since it provides a closed-form expression for the robot position, which

is convenient for robot path planning. Another motivation is that collision test,

generally difficult for a complex curve, can be done efficiently using PPC curve’s

properties. Then, a hybrid path planning approach is presented in this chapter to

guide the robot to follow an obstacle of arbitrary shape, by generating a proper

“Instant Goal” (and a series of deliberate, feasible motions) and planning reactively

when needed using a fuzzy controller for wall following. PPC curve based method

is also applied for real-time path planning to produce smooth, feasible paths with

continuous and upper-bounded curvature for car-like robots.

4.1 PPC Curve Based Smooth and Feasible Path

Generation

This section presents a polar polynomial method to provide a smooth transition curve

with a velocity profile satisfying the robot dynamic constraints.

61

4.1 PPC Curve Based Smooth and Feasible Path Generation

4.1.1 PPC Curve

PPC Curve Connecting Lines

This subsection recalls the works in [78,79] which uses a polar polynomial curve to

replace the circular arc which connects two line segments tangentially. Let Φ be the

angle between the two line segments, and Ω be the circular center of the arc (denoted

by dashed line) determined by the two lines. As shown in Fig. 4.1, a polar frame is

established such that Ω is the origin and line
−−−→
Ω(q0) is the polar axis.

0v

0ρ

ρ

φ

Φ

0ρ
0v

Ω 0q

1q

Figure 4.1: Polar polynomial curve connecting two straight lines.

The curve starts from (%0, 0) and ends at (%0, Φ), where %0 is called the initial

and/or final radii. The six constraints of the position, tangent (orientation) and

curvature are given by:

{
% = %0, %

′ = 0, κ = 0, at φ = 0

% = %0, %
′ = 0, κ = 0, at φ = Φ,

(4.1)

which, together with Eqs. (2.7) and (2.11), yield a fifth order polar polynomial:

%(φ) = %0

(
1 +

φ2

2
− φ3

Φ
+

φ4

2Φ2

)
= %0

(
1 +

(Φ− φ)2φ2

2Φ2

)
. (4.2)

Fig. 4.2(a) shows polar polynomial curves designed as Eq. (4.2) (or called PPC

for short) for different values of Φ. According to Eq. (4.2), the maximum range value

of a PPC curve is %0(1+Φ2/32) and occurs at φ = Φ/2. The function (not the curve)

does not have a single concavity w.r.t. φ, as shown in Fig. 4.2(b).

A velocity profile can be associated with a PPC curve for it to be used as robot

trajectory. As required by the boundary condition, the final speed is equal to the

62

4.1 PPC Curve Based Smooth and Feasible Path Generation

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x(m)

y(
m

)

POLAR CURVES FOR DIFFERENT Φ (ρ
0
=1)

Φ=0.25π
0.5π

0.75π

π

1.25π
1.5π

1.75π

2π

(a) Shape of PPC curves.

0 1 2 3 4 5 6
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

POLAR ANGLE φ (rad)

POLAR DISTANCES FOR DIFFERENT Φ (ρ
0
=1)

ρ (m)

Φ=0.25π 0.5π 0.75π π 1.25π 1.5π 1.75π 2π

(b) % projected to polar angle φ.

Figure 4.2: PPC curves for different Φ, with %0 set to be 1.

initial one, v0. The velocity profile is designed such that dφ/dt is a constant, i.e.

φ(t) =
Φ

τ
t, (4.3)

where the duration of the motion τ can be obtained as follows by substituting the

derivative of (4.3) and t=0 into Eq. (2.12):

τ =
%0Φ

v0

. (4.4)

Properties of PPC Curves

Table 4.1 lists the important features of the function %(φ) (4.2), where φ1 = 3−
√

3
6

Φ

and φ2 = 3+
√

3
6

Φ. As there are two inflexions (located at φ = φ1, φ2), the function

(not the curve) does not have a single concavity as shown in Fig. 4.2(b).

Table 4.1: Important Features of a PPC curve.

φ (0, φ1) φ1 (φ1,
Φ

2
) Φ

2
(Φ

2
, φ2) φ2 (φ2,Φ)

%′ + + + 0 - - -
%′′ + 0 - - - 0 +

Property 4.1. A PPC curve is symmetrical w.r.t. the line φ = Φ/2.

Proof. ∀ (Φ− φ), φ ∈ [0, Φ], we have:

(Φ− φ) ∈ [0, Φ], and

63

4.1 PPC Curve Based Smooth and Feasible Path Generation

%(Φ− φ) = %0

(
1 + (Φ−φ)2

2
− (Φ−φ)3

Φ
+ (Φ−φ)4

2Φ2

)

= %0

(
1 + (Φ−φ)2φ2

2Φ2

)
= %(φ) (according to Eq. (4.2)).

Property 4.2. The function %(φ) increases and decreases monotonically in the first

and last half segments of the PPC curve, respectively.

Proof. The first, second and third derivatives of the curve to the polar angle are:

%′ = %0(φ− 3φ2

Φ
+ 2φ3

Φ2) = 2%0

Φ2 φ(φ− Φ
2
)(φ− Φ)

%′′ = %0(1− 6φ
Φ

+ 6φ2

Φ2) = %0[
6(φ−Φ/2)2

Φ2 − 1
2
]

%′′′ = d3%
dφ3 = %0(− 6

Φ
+ 12φ

Φ2).

(4.5)

According to Eq. (4.5),

%′ > 0,∀ φ ∈ (0, Φ/2)

%′ = 0,∀ φ = Φ/2

%′ < 0,∀ φ ∈ (Φ/2, Φ).

(4.6)

Therefore, the curve is monotonous in the first and second half segments.

Property 4.3. The curve combined by a PPC curve and two line segments is con-

tinuous in curvature.

At φ = 0, Φ, both the PPC curve and the two line segments have a curvature

of zero. In addition, the curvature of the PPC curve is continuous within the whole

spectrum [0, Φ], if we substitute %, %′ and %′′ (which are all continuous as in Eq. (4.5))

into the curvature (2.11).

Maximum Curvature of PPC Curve and Maximum Associated Velocity

To compute the maximum value of v(t) in Eq. (2.12), we first consider that of

Z = %2 + %′2. We have

dZ

dφ
= 4

%2
0

Φ2
φ(φ− Φ

2
)(φ− Φ)[

φ2

2
(
1

Φ
φ− 1)2 +

6

Φ2
(φ− Φ

2
)2 +

1

2
]. (4.7)

The continuous function Z has extremum values at the roots (φ = 0, Φ/2, Φ) of

the equation dZ
dφ

= 0 and the boundaries (φ = 0 and φ = Φ). The maximum value of

Z (and thus that of v(t)) is found to be at φ = Φ/2. Thus, we have

max(v(t)) = v|φ=Φ

2

= %0

(
1 +

Φ2

32

)
Φ

τ
=

(
1 +

Φ2

32

)
v0. (4.8)

64

4.1 PPC Curve Based Smooth and Feasible Path Generation

Fig. 4.3 plots the curvatures of PPC curves of different values of Φ for %0 = 1.

For a PPC curve, the derivative of its curvature to φ is given by

dκ
dφ

= (−%3%′ − %3%′′′ + 3%2%′%′′ − 4%%′3 + 3%%′%′′2 − %%′2%′′′ − 3%′3%′′)/(%2 + %′2)
5

2 .

(4.9)

As it can be verified in Eq. (4.9) that dκ
dφ
|φ=Φ

2

= 0 holds, one extremum value of

the curvature occurs at φ = Φ/2 and its value is

κ|φ=Φ

2

=
32(48 + Φ2)

%0(32 + Φ2)2
. (4.10)

0 1 2 3 4 5 6

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ANGLE (rad)

Φ=0.1π 0.5π π 1.5π 2π

2π
1.5π

π

Φ=0.1π

0.5π

CURVATURE OF PPC CURVES FOR DIFFERENT Φ

Figure 4.3: Curvatures of PPC curves (%0 = 1) for different Φ. The curvature of each
curve reaches its maximum value(s) one time for small Φ, and twice for large Φ.

As shown in Fig. 4.4, the polar angle at which the maximum curvature oc-

curs, φmax, is Φ/2, for any choice of %0 when Φ ≤ 1.20π. For Φ > 1.20π, the ratio

κmax/κ|φ=Φ

2

1 can be well fitted by the following 3rd order polynomial (with the ab-

solute error ≤ 0.001m−1):

f(Φ) = −0.0054Φ3 + 0.1145Φ2 − 0.6221Φ + 2.0063. (4.11)

Therefore, the maximum value of the curvature of a PPC curve can be given as

max(κ(φ)) =

{
κ|φ=Φ

2

, if Φ ≤ 1.20π

f(Φ)κ|φ=Φ

2

, otherwise.
(4.12)

1φmax is chosen to be the one not larger than Φ/2 if there are two maximum curvatures.

65

4.1 PPC Curve Based Smooth and Feasible Path Generation

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

VALUE OF Φ (rad)

κ
max

, maximum curvature (1/m)

ρ
0
=2

ρ
0
=1

(for all ρ
0
)

ρ
0
=0.5

ratio φ(κ=κ
max

) / Φ, for φ<=Φ/2

ratio κ
max

 / κ(φ=Φ/2)

(for all ρ
0
)

Figure 4.4: Maximum Curvature of PPC curves for different values of %0 are plotted
vs. Φ. The bottom thick line plots the ratio φmax/Φ. The upper thick line plots the
ratio κmax/κ|φ=Φ

2

.

Design Constraints Imposed by Curvature and Velocity

As the value in the square root in (2.41) cannot be negative and the maximum

velocity of the curve is (4.8), we have

κ ≤ µg

[max(v(t))]2
=

µg

(1 + Φ2/32)2v2
0

. (4.13)

Remark 4.1. The work in [79] reported that the maximum curvature of PPC curve

should be less than robot’s maximum admissible centrifugal acceleration divided by

square of robot velocity, which is obvious based on an = κv2. In comparison, our work

directly relates the curvature limit to the friction constraint, considering that the limit

of centrifugal acceleration is not specified for a robot.

Furthermore, our work provides a way (see Section 4.1.1) to explicitly compute the

maximum curvature. Based on it, we develop design constraints imposed by curvature

and velocity in this subsection.

The velocity limit (2.42) and the maximum velocity (4.8) along a PPC curve

impose the following constraint under the velocity profile design (4.3):

%0

(
1 +

Φ2

32

)
Φ

τ
≤ vmax. (4.14)

The curvature constraints (2.37) and (4.13) impose the following constraint:

max(κ) ≤ min
(

µg
(1+Φ2/32)2v2

0

, 1
rmin

)
. (4.15)

66

4.1 PPC Curve Based Smooth and Feasible Path Generation

Deriving from Eqs. (2.33), (2.12) and (2.11), we have:

ω(t) = v(t)κ(t) =

(
1 +

%′2 − %%′′

%2 + %′2

)
v0

%0

. (4.16)

It can be known that
(
1 + %′2−%%′′

%2+%′2

)
is a function of φ and Φ without %0. By trying

different values of Φ, its maximum value is found to occur at φ = Φ/2. Therefore, the

maximum angular velocity equals to (vk)|φ=Φ

2

2. As the actuator limit (2.43) holds,

we have the following constraint:

max(ω) = (vk)|φ=Φ

2

=

(
1 +

16

32 + Φ2

)
v0

%0

≤ ωmax. (4.17)

Differentiate Eq. (2.33), i.e. κ = tan ϕ/L to t, we have

κ̇ =
dκ

dt
=

dκ

dφ

dφ

dt
=

1

L cos2 ϕ

dϕ

dt
=

√
1 + κ2

L
ϕ̇. (4.18)

Substitute Eqs. (4.4) and (4.3) into Eq. (4.18) and notice that Eq. (2.44) holds,

we have

|ϕ̇| = Lv0

%0

1√
1 + κ2

|dκ

dφ
| ≤ ϕ̇max, (4.19)

where dκ
dφ

is given by Eq. (4.9). As shown in Fig. 4.5, the maximum value of
1√

1+κ2
|dκ
dφ
| (a function of (φ, ϕ)) vs. Φ can be approximated as a polynomial about Φ,

say fdk(Φ) = max 1√
1+κ(Φ)2

|dκ(Φ)
dφ
|.

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

y = 0.01443*x8 − 0.4025*x7 + 4.684*x6 − 29.5*x5 + 108.9*x4

 − 239.4*x3 + 303.5*x2 − 204.7*x + 62.39

Φ (rad)

MAX VALUE OF dκ/dφ /(1+κ2)0.5 AT DIFFERENT Φ

fitting curve

Figure 4.5: Maximum values of 1√
1+κ2
|dκ
dφ
| at different Φ.

Considering that Lv0 is known and, for a particular %0 designed, the value of Φ

can be determined geometrically, we are able to check whether the constraint (4.19)

is satisfied. It is also noted that fdk(Φ) is relatively small for Φ ≥ 1.

2This is reasonable due to the fact that max(v(t)) occurs at φ = Φ/2 (Eq. (4.8)), and max(κ(t))
occurs at φ = Φ/2 for Φ ≤ 1.2π.

67

4.1 PPC Curve Based Smooth and Feasible Path Generation

4.1.2 Combination of Curves to Connect Two Configurations

Sensor-based path planning methods often navigate a robot from its current pose

to its local destination without placing a requirement on the robot’s final orientation.

This section explores the use of a combination of curves to connect two configurations

of this type.

PPC Curve for Robot Performing Translation

If the robot is currently performing a pure translation, we can use a PPC curve

followed by a straight line segment to connect two configurations q0 and q1. In other

words, a PPC curve is used to connect two straight line segments, which satisfies the

required boundary conditions. As illustrated in Fig. 4.6, two circles of radius %0 are

established such that they are tangential to the orientation of q0. The corresponding

intermediate point PR or PL is determined such that, at this location, a tangential

line segment connects q1 and the circle on the right or left hand side of v0. Then,

a PPC curve is designed to connect q0 and PR or PL, using the proposed design

methodology. The resulting path can be either q̂0PR plus
−−−→
PRq1, or q̂0PL plus

−−→
PLq1.

0q
1q

LΩ

RΩ

RP

LP

0ρ

0v

RΦLΦ

Figure 4.6: Combinations of a PPC curve and a line segment to connect q0 and q1

for a robot performing translation.

Half PPC Curve or Circular Arc for Turning Robot

If the robot is currently turning, the boundary conditions (4.1) are no longer

satisfied, since κ 6= 0 at q0 now. One solution is to letting the robot continue turning

around the current IC. That is, the circular arc centered at the current IC is to be

used as the transition curve. In order for such a solution to exist, it is required that

q1 must be on the circular arc. Apparently, this condition rarely holds.

68

4.1 PPC Curve Based Smooth and Feasible Path Generation

Alternatively, we can utilize the second half part of a PPC curve (half PPC curve

in short) and a straight line segment to connect q0, which is located at the middle

of the PPC curve, and q1, as shown in Fig. 4.7. The half PPC curve is tangential

to the orientation of q0. A line segment starting from q1 is tangential to a circle of

radius %0 at point PR or PL. According to Eq. (2.8), the robot heading at q0 w.r.t.

the polar axis can be expressed as

γ =
π

2
+ φ− tan−1 %′

%
|φ=Φ

2

=
π + Φ

2
. (4.20)

0q

1q

Ω

LP

0ρ

Φ

0v

xo

y

0ϑ

X

Y

Figure 4.7: Combinations of half PPC curve and straight line segment to connect q0

and q1 for a turning robot.

If the angle of the polar axis w.r.t. the global frame is ϑX , it may be related to

ϑ0, the robot heading at q0, as follows:

ϑ0 = ±(π + Φ)/2 + ϑX , (4.21)

where the sign of (π + Φ)/2 is determined by whether the polar frame is established

to be CCW or CW.

Utilizing Eqs. (2.9) and (4.21), the polar coordinates of any point (%, φ) on the

half PPC curve can be transformed into the global cartesian coordinates as follows:

x = xΩ + % cos(±φ + ϑ0 ∓ π+Φ
2

)

y = yΩ + % sin(±φ + ϑ0 ∓ π+Φ
2

).
(4.22)

For the point PL or PR, denoted here as P , we know that %(Φ) = %0. Thus, we

have:
xP = xΩ + %0 cos(ϑ0 ∓ π−Φ

2
)

yP = yΩ + %0 sin(ϑ0 ∓ π−Φ
2

).
(4.23)

69

4.2 Collision Test of PPC Curve for Path Generation

According to Eq. (4.2), we know that %(Φ/2) = %0(1 + Φ2/32). At the configura-

tion q0, we have:

x0 = xΩ ± %0(1 + Φ2

32
) sin ϑ0

y0 = yΩ ∓ %0(1 + Φ2

32
) cos ϑ0.

(4.24)

As the line q1P is perpendicular to the line ΩP and (xP −xΩ)2 +(yP − yΩ)2 = %2
0,

we have:

(x1 − xΩ)2 + (y1 − yΩ)2 = (x1 − xP)2 + (y1 − yP)2 + %2
0. (4.25)

There is a constraint about %0 and Φ as in (4.10), where κ|φ=Φ

2

is now the curvature

of the path when the robot is at q0, and can be obtained using (2.33). It is noted

that xΩ, yΩ, xP , and yP in Eqs. (4.23), (4.24) and (4.25) are unknown, and %0 and

Φ are to be evaluated. With some necessary mathematical operations, we have the

following constraint about Φ:

(x1 − x0) sin
(
ϑ0 ± Φ

2

)
− (y1 − y0) cos

(
ϑ0 ± Φ

2

)

= ± 32(48+Φ2)
κ0(32+Φ2)2

[
1− 32+Φ2

32
cos Φ

2

]
.

(4.26)

By geometry, there will be at most one solution of PL or PR, respectively, and thus

%0, and Φ. As such, bisection, secant, or inverse quadratic interpolation methods can

be used to find the zero (if any) of the function (4.26).

The maximum value of v(t) occurs at φ = Φ/2, i.e. at the location of q0. There-

fore, according to Eq. (4.8), the duration of the motion along the entire PPC curve,

can be given as follows:

τ =

(
1 +

Φ2

32

)
%0Φ

v0

. (4.27)

Remark 4.2. Under the velocity profile (4.3), the velocity of a robot which moves

along the curve does not change significantly. The design of combining a (half) PPC

curve with a line segment allows the steering method to adjust the robot velocity when

it moves along the line segment.

4.2 Collision Test of PPC Curve for Path Gener-

ation

This section presents a simple yet time-efficient way for collision test of PPC curve

in order for path generation/planning applications.

70

4.2 Collision Test of PPC Curve for Path Generation

4.2.1 Collision Checking for PPC Curve

Lemma 4.1. A PPC curve is concave, viewed from the polar origin.

The curvature of a PPC curve is non-negative, as it is given by Eq. (2.11) and

the following holds:

%2 − %%′′ = %(%− %%′′) = %%0

(
3
2

+ (Φ−φ)2φ2

2Φ2 − 6(φ−Φ/2)2

Φ2

)
≥ 0. (4.28)

A curve is convex or concave, if the curvature along the curve has the same sign3.

This implies that a PPC curve has a single concavity (which is concave, viewed from

the polar origin) within the polar angle range [0, Φ].

0ρ

0ρ

1q

0q

Ω

1P

2P

1Xφ

���������	
�����������

A

1X

1Y

P

Φ

X

1 1(,)C ρ φ

2 2(,)D ρ φ

3 3(,)E ρ φ'E

Figure 4.8: Collision checking between obstacle line segment and PPC curve.

According to the definition of concavity4, we can come to the following corollary,

provided that a PPC curve is concave w.r.t. the polar origin.

Corollary 4.1. The straight line segment formed by any two points on a PPC curve

is within the curve w.r.t. the polar origin, and does not intersect the curve other than

the two points.

As an obstacle can be regarded as a polygon consisting of line segments, collision

test between a line segment and a PPC curve is studied in this section. The following

pre-processing, without changing the result of collision test, is made: if a line segment

3The neighboring points at a curve of a point has the same concavity of that of the circle of
curvature.

4If the curve of a function f always remains above the tangent lines for every point in the interval
I, we say that the curve is concave upward on that interval.

71

4.2 Collision Test of PPC Curve for Path Generation

intersects straight line
−−→
Ω(q0) or

−−→
Ω(q1), the end(s) of the line is(are) replaced by the

corresponding intersection point(s). Suppose that the such obtained line segment is

expressed as P1P2, as shown in Fig. 4.8. The possible range of the two polar angles

of the two end points must be either φ1, φ2 ∈ [0, Φ], or φ1, φ2 3 [0, Φ]. In the latter

situation, there is apparently no intersection between the line and the curve. When

φ1, φ2 ∈ [0, Φ], there can be a further categorization into the following three cases for

analysis:

(i) If the two end points are not on the same side of the PPC curve, i.e.

|ΩPi| ≤ %(φi), |ΩPj| ≥ %(φj), i, j = 1, 2, i 6= j,

the obstacle line segment intersects the PPC curve, as the PPC curve completely

separates the two regions on the two sides.

(ii) If the two end points are on the inner side of the PPC curve, i.e.

|ΩPi| < %(φi), i = 1, 2,

there will be no intersection according to corollary 4.1.

(iii) Otherwise, i.e. the two end points are on the outer side of the PPC curve, i.e.

|ΩPi| > %(φi), i = 1, 2 :

As shown in Fig. 4.8, a coordinate frame O1X1Y1 is established with its origin

located at Ω, and its axis X1 being perpendicular to
−−→
P1P2. At point P , axis

X1 intersects the infinite straight line passing through points P1 and P2. By

geometry, we can see that
−−→
P1P2 intersects the PPC curve if and only if the

maximum value of the PPC curve segment (φ1 ≤ φ ≤ φ2) projected to axis X1

is not smaller than that of the line segment.

Let X1(·) denote the X1 coordinate of the point given in the bracket, φX1
denote

the angle of axis X1 w.r.t. the polar axis, A denote the point which, among

all the points on the PPC curve segment, has the maximum X1 value. The

condition for the existence of an intersection can be expressed as

X1(A) = max
φ∈[φ1,φ2]

[% cos(φ− φX1
)] ≥ X1(P). (4.29)

72

4.2 Collision Test of PPC Curve for Path Generation

As the function % cos(φ−φX1
) is continuous, it has extremum values at the roots

(if any) of its derivative and the boundaries φ = φ1 and φ = φ2. By comparing

all the extremum values, the maximum value can be obtained. The derivative

of the function is

d[% cos(φ−φX1
)]

dφ
= %0

(
φ− 3φ2

Φ
+ 2φ3

Φ2

)
cos(φ− φX1

)

− %0

(
1 + φ2

2
− φ3

Φ
+ φ4

2Φ2

)
sin φ,

(4.30)

where the approximate numeric roots within [φ1, φ2] can be obtained using

secant method, or inverse quadratic interpolation method, or method of false

position etc.5. In the case that f is (4.30), φ1, φ2 can be chosen as the initial

values since the range [φ1, φ2] is relatively small and contains the root (according

to the meaning of X1(A)).

4.2.2 Collision Checking for PPC Ray

Collision checking should be done between an obstacle and the surface swept by

a robot due to the existence of the robot dimensions. When a rectangular robot

follows a circular arc or a PPC curve, two curves are used to define its reach area, as

shown in Fig. 4.9: “inner curve”, combination of circular arc or PPC curve (radius

(%0− |CD|/2), center angle Φ1) starting from B0 and ending at B1, and line segment

B1G1; and “outer curve”, combination of line segment A0F0, and circular arc or PPC

curve (radius (%0 + |CD|/2), center angle Φ2) starting from F0 and ending at F1.

Φ1 = Φ2 = Φ. The surface swept by the robot is then obtained by the sum of the

following three items: i) the region (ray) enclosed by the inner and outer curves

as well as line segments B0A0 and G1F1; ii) the rectangle C0D0B0A0; and iii) the

triangle G1E1F1. Collision checking for the last two items can be done by checking

intersection between two line segments.

There remains the problem of collision checking between the ray and the obstacle.

The same pre-processing as before is first made about each obstacle line segment

without changing the result of collision test. The possible range of the two polar

angles of P1P2 can only be either φ1, φ2 ∈ [0, Φ3], or φ1, φ2 3 [0, Φ3] (no intersection

in this situation). A polar frame is established with its origin located at Ω, and the

polar axis coinciding with line
−−−→
Ω(F1). Let functions %in(φ) and %out(φ) compute the

5The method of false position can be used in this research considering that it guarantees a solution
if it exists.

73

4.2 Collision Test of PPC Curve for Path Generation

1q

Ω

1P

2P

��

2Φ
1Φ

��

��

��

��
��

��

��

��	
�����

���
�����

���	��

��

��
��

��

��

3Φ0q

Figure 4.9: Surface swept by a rectangular robot.

distance between Ω and the point which has a polar angle φ, and is on the inner curve

and the outer curve, respectively. When φ1, φ2 ∈ [0, Φ3], there are three different cases

to be analyzed:

(i) No intersection if the ranges of the two end points from the polar origin are

within the inner curve, i.e.

|ΩPi| < %in(φi), i = 1, 2.

(ii) If the ranges of the two end points from the polar origin are outside the outer

curve, i.e.

|ΩPi| > %out(φi), i = 1, 2,

the obstacle line segment intersects the ray if and only if it intersects the line

segment A0F0 or the outer arc or PPC curve. Intersection checking with a PPC

curve can be done using the method in Sec. 4.2.1. For the case of a circular

arc, intersection checking can be easily done.

(iii) Otherwise, there exists an intersection, either the two end points are located on

different sides of the ray, i.e.

|ΩPi| < %in(φi), |ΩPj| > %out(φj), i, j = 1, 2, i 6= j,

or at least one of the them is located within the ray, i.e.

∃i ∈ [1, 2] : %in(φi) ≤ |ΩPi| ≤ %out(φi).

74

4.2 Collision Test of PPC Curve for Path Generation

4.2.3 PPC Based Path Generation Algorithm

In the presence of obstacles, collision checking between obstacles and the PPC

curve is carried out as previously stated. Before a collision test is carried out, range

data obtained from laser rangefinders are filtered to exclude obviously erroneous ones,

and then stored using the vector representation. In addition, the vector presentation is

transformed into obstacle points, and each adjacent pair of obstacle points is assumed

to form an obstacle line segment.

Algorithm 4 Con2Cnfgs(q0,q1, v, ω)

1: turn dir ← direction of
−−→q0q1 w.r.t. ϑ0

2: k% ← 1.2, n% ← 0
3: if ω ≈ 0 then
4: TryRho: %0 ← k%rmin, n% ← n% + 1, Obtain Ω,Φ, P
5: if n% < n%, max and constraint (4.17), (4.14), or (4.15) is not satisfied then
6: Adjust k% according to the type of violation; go to TryRho
7: end if
8: else . Robot is rotating.
9: turn dir ← direction of ω; r ← v/|ω|, κ0 ← 1/r; ΩC ← q0, r, turn dir

10: if |ΩCq1| = r then . Circular arc is used for connection.

11: τ ← ∠(
−−→
Ωq1,

−−→
Ωq0)/|ω|

12: else . Design a half polar curve.
13: Obtain Φ (solving (4.26)), %0 (4.10), Ω (4.24), P (4.23), τ (4.27)
14: end if
15: end if
16: if collision detected then
17: if Translation and turn dir = direction of

−−→q0q1 w.r.t. ϑ0 then
18: turn dir ← opposite of turn dir; go to Line 4 of this procedure
19: end if
20: report failure
21: end if
22: t← 0 (polar curve) or t← τ/2 (half polar curve)
23: for t < τ ; t = t + tL do
24: Compute φ (4.3), % (4.2), v(t) (2.12), κ(t) (2.11), ω(t)← vκ · turn dir
25: enqueue (MotionCmds, v(t), ω(t))
26: end for
27: enqueue (MotionCmds) if includes a line segment

Algorithm 4 describes the procedure of connecting two configurations with a PPC

curve and a line segment. The procedure searches the (%, Φ) space to find a tran-

sition curve that satisfies the smoothness and feasibility requirements as well as the

boundary conditions. If any of (4.14), (4.17), or (4.15) is not satisfied, the maximum

velocity or the maximum curvature on the designed path will exceed the allowed one.

If the maximum angular velocity or curvature exceeds the allowed one, we can try

enlarge % (and thus Φ) by increasing the value of k%, such that this maximum value

75

4.3 Hybrid Path Planning for Differential Drive Mobile Robots

can be reduced. If the maximum velocity exceeds the allowed one, we may try de-

creasing the value of k%. Note that varying % will change both the curvature and

velocity profile of the PPC curve. If a curve is found, the algorithm checks whether

there is any collision between the curve and the obstacles. It also tries the PPC curve

with a different turning direction when no solution is found under the preferred one.

Remark 4.3. The proposed method of collision checking is in general relatively ef-

fective in the following senses:

(i) Actual collision test between a line segment and a PPC curve is done only when

a collision is “really” possible – only if φ1, φ2 ∈ [0, Φ] and the two end points

are on the outer side of the PPC curve. Otherwise (φ1 3 [0, Φ] or φ2 3 [0, Φ]),

or case ii) or case iii) of Sec. 4.2.1, only 2 times of comparisons of polar angles

or polar radii are needed to get the result of collision test;

(ii) Collision test is transformed into the problem of root finding. We may choose

a fast algorithm of root finding which requires the evaluation of the function

(rather than its derivative); and

(iii) Actual collision test for a PPC curve is done only on a part (φ1, φ2) of the PPC

curve rather than the entire curve (though the root found corresponds to the

“deepest state” of collision out of the two possible intersections between a line

and a PPC curve).

The proposed method of collision checking can be applied to the case of half PPC

curve/ray, since the two types of curves share same properties in nature.

Remark 4.4. Since the proposed method relies on Lemma 4.1 for collision test, it

can be known that the method is in general applicable to any curve that has a single

concavity or whose curvature is of the same sign.

4.3 Hybrid Path Planning for Differential Drive

Mobile Robots

This section presents a sensor-based hybrid approach for planning smooth, feasible

paths for differential drive robots, by switching between instant goal generation and

a fuzzy controller for wall following.

76

4.3 Hybrid Path Planning for Differential Drive Mobile Robots

4.3.1 Approach Overview

Instant Goal (IG) is a point serving as a temporary goal for regulating a robot

to keep moving along an obstacle. In the work presented in Chapter 3, IGs are

determined for a holonomic robot without considering the robot dynamics or the

requirement of curvature continuity. This however may result in the generation of

IGs and paths that are non-feasible, and thus cannot be reached by a robot subject

to nonholonomic and dynamic constraints.

Algorithm 5 Navigation to the Goal
1: Initialize S,G; i← 0; mode← MoveToG; Subscribe to laser messages
2: Accelerate R to a certain speed and move forward
3: MotionCmds=Con2Cnfgs(q0, G, v, ω, PolarCurveOnly) . Algorithm 4
4: Turn until MotionCmds is Empty; mode← MoveToG
5: while G is not reached do
6: if laser messages are ready then
7: Transform LaserData into obstacle points
8: if mode = MoveToG then
9: Move directly toward G

10: if Meet an obstacle then
11: mode← FollowObs; decide SchDir; i← i + 1; k ← 0
12: end if
13: else . mode = FollowObs
14: if queueIsNotEmpty(MotionCmds) then
15: Move/Turn at velocity of dequeue(MotionCmds)
16: if leave condition is satisfied then
17: mode← MoveToG
18: end if
19: else
20: k ← k + 1; Si,k = Pt; Adjust velocity . Chapter 4.3.2
21: if failure=SearchIG(v, ω, Si,k) then
22: Generate Pf (dtran, θrot) by fuzzy controller . Chapter 4.3.4
23: MotionCmds=Con2Cnfgs(q0, Pf , v, ω)
24: end if
25: end if
26: end if
27: end if
28: end while

This section presents a path planning approach which locates IGs and paths sat-

isfying the various robot constraints and the smooth motion requirement. Similar to

the work presented in Chapter 3, it employs a Bug-like strategy to switch between the

two motion modes in order to lead the robot to the goal. Algorithm 5 describes the

procedure of navigating R to G from its initial position S. R first moves forward for a

relatively short distance, and performs a turning so that it faces directly to G. Then,

R decides either to follow an obstacle or to move directly toward the goal, based on

77

4.3 Hybrid Path Planning for Differential Drive Mobile Robots

whether there is any obstacle blocking the robot from the goal. While following the

ith obstacle, R is guided to reach a series of IGs, Gi,k, k = 1, 2, · · ·, until a certain

leave condition (e.g. the basic leave condition, see Chapter 3) is satisfied.

Each IG is determined by Algorithm 6 SearchIG (see Chapter 4.3.3). However,

sometimes it might not be able to locate a proper IG, either because it has not

searched the entire space or because the module takes too much time. The robot is

thus unable to plan subsequent motions, which may lead to the failure of the operation

of the whole autonomous system. Considering that a fuzzy controller can be robust in

producing a motion as long as there is an arrival of sensory input, the above limitation

of the path planner may be overcome by introducing a motion planned by a fuzzy

controller for wall following. In the proposed approach, reactive motion planning is

incorporated into path planning in a complementary way: a fuzzy reactor generates

a number of motions when deliberate planning fails to, as shown in Algorithm 5.

For the purpose of better collision avoidance, the robot velocity is adjusted ac-

cording to its surroundings before determining an IG or making a movement (Sec.

4.3.2). This is to ensure that the robot moves at a suitable speed while keeping a safe

distance from obstacles.

Remark 4.5. At the start of boundary following, the robot locates an IG and plans a

number of motions toward it. The task of boundary following is achieved by locating

a series of IGs. As such, the selection of IGs affects the path that the robot is to

follow. As each IG is planned based on limited information obtained from online

sensors, the proposed approach has yet to take into account global optimality of the

path, which is one of the performance targets considered by many search-based path

planning algorithms.

4.3.2 Velocity Adjustment

The system makes a maintenance of a safety zone, and a safety-buffer zone (or buffer

zone for short) around the forward path of the robot such that the robot will always

be able to halt in time to prevent collisions. The safety zone Zsafe ∈ R2 is defined

as the minimum obstacle free region that is required for the robot to stop (i.e. when

maximum deceleration ad, max is applied), given its current velocity, say v. The range

of the safety zone is then given as follows, if sensing uncertainties are considered:

Rsafe = max(v2, v2
min)/(2ad, max) + Rrob + σS, (4.31)

78

4.3 Hybrid Path Planning for Differential Drive Mobile Robots

optR

minR
sfR

Safety Zone

safeZ

Buffer Zone

buffZ

Figure 4.10: Safety and buffer zones of a robot.

where max(v2, v2
min) is used instead of v2 by taking into account the minimum velocity,

vmin, that the robot is able to produce.

The safety-buffer zone Zbuff ∈ R2 is a user defined buffer region that extends the

safety zone Zsafe outward viewed from the robot, as shown in Fig. 4.10. The range

of the buffer zone is the minimum distance (relative to the safety zone) required for

the robot to reach its maximum allowed speed, given its current velocity:

Rbuff = Rsafe + (v2
max − v2)/(2as, max), (4.32)

where as, max is the maximum acceleration /deceleration that the robot is able to be

accelerated/deccelerated comfortably and smoothly.

Before determining an IG or making a movement, the robot velocity is adjusted

if needed. The robot is to slow down in the presence of obstacles around it. If

the obstacles present are within the safety zone Zsafe, the robot is slowed down

by applying the maximum permissible deceleration that does not cause skidding to

occur. When the front of the robot is clear of obstacles, the robot can be accelerated

gradually up to its optimal velocity. Otherwise, the velocity will be adjusted according

to the surroundings, where the resulting acceleration is made sure to be within the

acceptable bounds on a smooth acceleration:

vd =

max(0, v − ad, max∆t), if obstacle in Zsafe or stop requested

min(vmax,
√

µg
κ

, v + as, max∆t), if no obstacles in Zbuff

min(fv(Rmin, v),
√

µg
κ

), otherwise,

(4.33)

where Rmin, the minimum distance of the robot to the obstacles in the front of it, and

79

4.3 Hybrid Path Planning for Differential Drive Mobile Robots

the function fv, are defined as follows:

Rmin = min
|θj |∈π/4

(1 + sin θj)Rj, (4.34)

fv(Rmin, v) =

{
min(

Rmin
Rbuff

vmax, v + as, max∆t), if
Rmin
Rbuff

vmax ≥ v

max(
Rmin
Rbuff

vmax, v − as, max∆t), otherwise.
(4.35)

In order for the robot to achieve a smooth and (actuator) feasible motion, the

desired angular velocity is also limited to the following range:

max(−ωmax, ω − εmax∆t) ≤ ωd ≤ min(ω + εmax∆t, ωmax), (4.36)

where εmax is the maximum rotational acceleration of the robot.

In addition, we note that the current speed of the robot may prevent any suitable

IG from being found. For such cases, the set of points reachable by the robot can be

expanded through a reduction in velocity, which enhances the probability of finding

an IG.

4.3.3 Deliberative Planning: IG Locating

Algorithm 6 describes the procedure of locating the IG Gi,k (and generating a series

of motions). The algorithm first computes SchFromi,k and Θi,k, using the procedure

GetSearchRange(Gi,k−1) (if k = 1, Gi,k−1 is undefined but any value passed to the

function will make it work). Note that this step is exactly the same as that of the

Instant Goal approach.

The algorithm then computes the IG∗ set Xig,act. Within the search range Θ, not

all the points can be taken as an IG∗, since some areas are not reachable for the robot

due to the dynamic constraints. In order to satisfy the constraints on acceleration

(2.41) and velocity (2.42), the set of points, Xrch, that is reachable by the robot,

should exclude the region within the two circles of the minimum turning radius, i.e.

r ≥ rmin = v2/(µg). As shown in Fig. 4.11, the set of feasible IG∗s is thus obtained

as Xig,act = Xrch ∩ Θ. This ensures that the IG∗s are in the set of feasible solutions

that satisfy the robot constraints, and that approaching an IG∗ within this set will

keep the robot follow the obstacle in the desired direction.

Next, the algorithm computes IG∗ sampling region χ using the procedure Get-

SamplingRegion(Xig,act, SchFromi,k, Θi,k), which checks each beam within Xig,act to

decide a local sampling region in the beam’s neighborhood. Let pnear and pfar denote

80

4.3 Hybrid Path Planning for Differential Drive Mobile Robots

Goal

Θ

rchX

,ig actX

IC

r

2
min /()� � ���

min�

Figure 4.11: Determination of Xig,act, the set of feasible IG∗s.

the two obstacles points corresponding to the current beam and its next beam, with

the subscript indicating whether a point is close to the robot or not. M is defined

as the middle point of them. The local sampling region is then given as a disc,

C(C,Rrob/2), located on the same side as the robot w.r.t. the line segment −−−−−→pnearpfar.

Point C is defined such that
−−→
MC⊥−−−−−→pnearpfar and |MC| = Rsf + Rrob/2. The final

sampling region χ is then obtained by summing all the local sampling regions.

Algorithm 6 SearchIG(v, ω,q0)
1: SchFromi,k,Θi,k ← GetSearchRange(Gi,k−1) . Algorithm 2, Chapter 3.3.2
2: Xig,act = Xrch ∩Θi,k

3: χ =GetSamplingRegion(Xig,act, SchFromi,k,Θi,k)
4: for jcur = SchFromi,k + 1; jcur ∈ Θi,k; jcur ← jcur + 1 do
5: Randomly sample a number of points ∈ χ around jcur

th beam
6: for each sampled point q1 do
7: if Succeed=Con2Cnfgs(q0,q1, v, ω) then
8: return Gi,k and queue of MotionCmds
9: end if

10: end for
11: end for
12: report failure

Finally, the algorithm searches for an IG with the priority of search given to the

IG∗s that are close (in the angular distance) to the direction of SchFromi,k. For

the point currently sampled, the procedure Con2Cnfgs (Algorithm 4) is used to test

whether the two configurations can be connected by a combination of a PPC curve

and a line segment.

81

4.3 Hybrid Path Planning for Differential Drive Mobile Robots

4.3.4 Reactive Motion Planning: Fuzzy Wall Following

Expertise human knowledge is useful for wall following, and the natural linguistic

language used in fuzzy logic would be able to capture this human sensing and intuitive

reasoning. For example, a human controlling the robot makes decisions based on his

perceptions of the obstacles, terrain and the goal and not by the mathematical analysis

and models of the obstacles. Due to its robustness in producing a motion, a fuzzy

controller for wall following is used to output a motion when no IG (and motion

plans) can be found by the IG planner.

The design of such a fuzzy controller begins with the identification of the basic set

of rules that provide guaranteed safe movements in dynamic unstructured environ-

ments. For wall following in the left direction of the robot (i.e. following an obstacle

in the CW direction), the inputs are defined as the minimum range reading from

the “right” (−70◦ to −90◦ w.r.t. the main axis) of the robot, dR, and that from the

“front” (0◦ to −20◦) of the robot, dF. If the robot is to carry out wall following in the

CCW direction, we only need to change the definitions of the two inputs accordingly

and reverse the sign of the output angular velocity that is obtained as described later.

The two numerical inputs are fuzzified by the membership functions as shown

in Figs. 4.12(a) and 4.12(b), respectively. These membership functions are defined

based on the expert knowledge, and not directly related to the size of the robot; that

is, the inputs are the distances of obstacles from the center of the robot body. To be

free from collision, certainly the distances should be larger than the robot’s effective

radius. The two fuzzified inputs (represented by the fuzzy sets) are then passed into

a fuzzy controller to generate the translational velocity v and the rotational velocity

ω.

�� � �� ��� ����

��	
���	
� ��	
� ���� ��
� ��	
���
�

��� ��� ��� ��� ���

(a) Input: dR

�� �

��������	
�� ���	
��

�� ��� ��

�

����

(b) Input: dF

Figure 4.12: Membership functions for input distances.

The fuzzy controller, consisting of 15 rules, is designed as in Table 4.2. The rules

82

4.3 Hybrid Path Planning for Differential Drive Mobile Robots

are to allow the robot to keep a constant distance away from the obstacles in the

right side of it. The values of dR and dF are regulated to keep the robot at a distance

not too far away from the wall and in the meantime safe from collision with the wall.

Due to the heuristic nature of a fuzzy system, each rule is determined by a trial and

error basis according to the human expertise knowledge of driving a vehicle, until the

desired results can be achieved. The two outputs of the fuzzy controller are fuzzified

values of the translational and rotational velocities.

Table 4.2: Rules for Controlling Translational/Rotational Velocities.

H
H

H
H

HH
dF

dR
VN N OK FAR VFAR

VC S PB S PB S PB S PB S PB
C S PB MS PS M PS MS NS S NS
O MF PB F PS MF Z MF NB M NB

v ω v ω v ω v ω v ω

In order to be able to serve as the velocity commands to drive the robot, the

two outputs of the controller are defuzzified using the membership functions in Figs.

4.13(a) and 4.13(b), respectively. A negative ω indicates clockwise direction and

vice versa. When designing the output membership functions, the translation and

rotation velocities should be within their corresponding range that is confined by the

maximum translation or rotation speed, respectively.

� �� � �� �

������ ��	
���������
	�� ��	
������ ������

��� ��� ��� ��� ���

(a) Translational velocity v

�� �� � �� ��

����	�
�� ����	����� ������ ����	����� ����	�
��

���� ���� � ��� ���

(b) Rotational velocity ω

Figure 4.13: Membership functions for output velocities.

The proposed approach is a hybrid between a path planner and a reactor, and

generates a series of motions ahead of the execution of them. The output velocities of

the fuzzy controller are then converted to a motion vector (dtran, θrot), which includes

translation displacement and angular displacement relative to the current robot pose.

As illustrated in Algorithm 5, the function Con2Cnfgs(q0, Pf , v, ω) is used to produce

83

4.4 Simulation Experiments

a PPC curve plus a line to connect to Pf , determined by the motion vector (dtran, θrot).

If a series of motions cannot be planned, the approach then directly uses the output

velocities of the fuzzy controller for reactive planning.

The switching to reactively planning motions is worthwhile, in that a non-smooth

motion is robustly produced, and thus the robot may continue to move forward, rather

than becoming stuck and failing completely to carry out the path planning task.

4.4 Simulation Experiments

The proposed hybrid approach and the path generation algorithm were imple-

mented within the CARMEN architecture (see Appendix C) in C programming lan-

guage on a Linux operating system. In all the simulations, the same set of parameter

values as shown below were used:

• Two laser rangefinders with detectable range 20 m, angular resolution is 1◦ (i.e.

Ns = 360), and sampling rate 5 HZ, are mounted in the front and rear of the robot.

• Errors are introduced to sensory perceptions. Both range error variance and azimuth

error variance are set as 0.1%. The probabilities of erroneously obtaining maximum

and random range measurements are both set as 0.01%.

• A differential drive robot in rectangular shape was used to test the proposed hybrid

path planning approach. Its dimensions are width L1 = 0.40 m, length L2 = 0.60 m,

and d = 0 m. The robot dynamics is set as vmax = 0.5 m/s and ωmax = 2.0 rad/s,

ad, max = 1.2 m/s2, as, max = 0.5 m/s2, and εmax = 2.0 rad/s2.

• A car-like robot was used to test the path generation algorithm. Its dimensions are

width L1 = 0.40 m, length L2 = 0.60 m, and L = 0.45 m. Minimum turning radius

of the robot is rmin = 0.60 m. The robot dynamics is set as vmax = 0.60 m/s,

ωmax = 0.80 rad/s, and ϕ̇max = 5 rad/s, respectively.

4.4.1 Test on a Differential Drive Robot

A typical test of the proposed hybrid path planning approach was conducted in

an environment as shown in Fig. 4.14(a), where the robot is plotted as a rectan-

gle, its orientation as a line segment, and the goal as a circle. Fig. 4.14(b) shows

the trajectories of the robot which navigated from left to right in the figure. After a

slight movement, the robot performed rotations and turned left before moving directly

84

4.4 Simulation Experiments

toward the goal. The robot made this turning because it does not have full omnidirec-

tionality with simultaneous and independently controlled rotational and translational

motion capabilities to change its orientation instantly. In contrast, many path plan-

ning approaches assume that the robot can be steered in any desired direction without

the need of turning the robot first.

(a) Environment, initial pose of robot,
and goal.

(b) Sequence of robot motions and laser
scans obtained.

Figure 4.14: Initial pose and trajectories of robot.

The velocity profiles of the output path are shown in Fig. 4.15. The types of

robot paths included “straight line”, “PPC curve”, “half PPC curve”, “circular arc”

and “other curve” (which is produced by the fuzzy controller). The velocities had a

continuous change especially over the part of path that is a PPC curve or a half PPC

curve. In contrast, the Instant Goal approach considers a holonomic robot that is

able to move directly to a position with an abrupt change in its motion direction. In

addition, it does not respect the bound limit of the curvature of path, and the robot

can move along a path with the curvature being discontinuous.

For some PPC curve parts of the path, the angular velocity reached its maximum

close to the maximum allowed value ωmax while the linear velocity at that moment

was much smaller than the allowed one. This can be explained by taking a look at

Eqs. (4.14) and (4.17), when %0 is of a small value (e.g. 0.06), the angular velocity

constraint (4.17) is easier to be violated under the current settings of vmax and ωmax.

Therefore, in order for Algorithm 4 to find a solution curve, it will enlarge % (and

thus Φ) and reduce the maximum value of the angular velocity.

The linear velocity along the whole path was relatively low (average speed was

a bit below 0.2 m/s), which may be explained by the effect of the dynamics on

85

4.4 Simulation Experiments

10 20 30 40 50 60 70 80 90 100 110
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

TIME (sec)

VELOCITY PROFILES OF OUTPUT PATH

linear velocity v(m/s)
angular velocity w(rad/s)
type of curve/ray

Figure 4.15: Velocity profiles of output path. Dash line denotes curve type (1: PPC
curve, 0.5: half PPC curve, 0: line segment, and 0.75: other curve.)

robot safety in an obstacle-cluttered surrounding. As boundary following is normally

carried out when the robot is relatively close to obstacles, the robot needs to move

with limited speed in order to stay within the buffer zone as defined in Section 4.3.2

or farther from the obstacles. Fig. 4.15 shows that parts of the motion commands

were generated through the fuzzy controller. It is illustrated that, when no IG (and

motion plans) can be found by the IG path planner, it is able to produce a motion

plan as long as there is an arrival of sensory input. The proposed approach thus

incorporates reactive motion planning into path planning in a complementary way.

A robot in reality is not always able to exactly track the motion commands, due to

constraints imposed by the robot dynamics. This may cause problems not only to the

path/motion planning itself (i.e. the resulting path/trajectory could be very different

from the expected ones), but also to the safety of the robot or the surroundings.

Fig. 4.16 plots the “actual” velocities, which were generated through the simulator

module that has modeled the dynamics of a differential drive robot. Compared to

the result in Fig. 4.15, the actual velocities tracked the motion commands well

when the path is relatively smooth, but the robot was unable to rapidly follow the

angular velocity with a relatively big magnitude. This problem may be partially

solved by designing a trajectory tracking control algorithm [102]. It is noted that the

actual velocities became zero at some specific intervals. This may be because collision

avoidance, having a higher priority, was occasionally triggered and thus prevented

86

4.4 Simulation Experiments

motion commands from being executed.

10 20 30 40 50 60 70 80 90 100 110 120
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

TIME (sec)

ACTUAL ROBOT VELOCITIES

linear velocity v(m/s)
angular velocity w(rad/s)

Figure 4.16: Actual velocities executed by the robot.

Fig. 4.17 shows the laser measurements and the robot trajectories obtained in

another test. During the entire planning process, laser scans were continuously added

to the plot without erasing the previous plotted scans. At the beginning, the robot

chose the left direction to follow the obstacles, which led to its subsequent movement

in the direction not optimal in the global sense and eventually entering the state of

following the long corridor. Nevertheless, the robot was able to follow the obstacles

in the desired direction. At the sharp turns when the robot entered or exited the U-

shaped obstacles, the robot constantly needs to make a decision out of possible moving

directions, and performed a series of rotations before successfully bypassing the sharp

turns. These negotiations are attributed to the effects of the dynamics restrictions

(that is, the robot’s inability to make sharp turns), and the smaller probability in

finding a solution combined by a PPC curve and a line segment. On the other hand,

it is noted that the robot moved in the straight-line direction at a relatively fast

speed when following a wall. It is also shown that at the places consisting of small

corners, the robot was slowed down and made some turnings instead of moving in

a straight-line direction. The robot tried to follow the obstacle’s boundary without

missing out possible passage at those moments.

The effect of a discrete sensor (i.e. the number of beam readings) on path planning

results has yet to be studied through simulations using different settings of laser range

angular resolution. However, the authors believe that the reduction of this resolution

87

4.4 Simulation Experiments

Figure 4.17: Sequence of robot motions and laser scans obtained in the second test.

(which is currently set as the commonly used one, i.e. 1◦) is expected to decrease the

probability of finding a suitable IG, as fewer beams will be searched.

4.4.2 Test on a Car-like Robot

Analysis of Paths Generated

A test of the path generation algorithm was conducted on the car-like robot in

an environment as shown in Fig. 4.18(a). The robot is denoted by a rectangle and

its orientation is denoted by a straight line. The goal is denoted by a circle. It can

be seen that the robot was able to reach the goal at the final pose (Fig. 4.18(b)) by

moving from its initial pose (Fig. 4.18(a)).

(a) Initial pose of the robot. (b) Final pose of the robot.

Figure 4.18: Initial and final (upon reaching the goal) poses of the robot.

88

4.4 Simulation Experiments

Fig. 4.19 shows the laser measurements and the trajectories of the robot, where

each robot pose is plotted as a rectangle. During the entire process, laser scans were

continuously added to the plot without erasing the previous plotted scans. After

moving a bit in straight line direction, the robot turned to right and moved toward

the goal. This is due to that a car-like robot does not have full omnidirectionality,

and the collision test, based on the range readings, detected a possible collision if

turning to left.

Figure 4.19: Sequence of robot motions and laser scans about the environment.

The curvature and velocity profiles of the output path are shown in Fig. 4.20.

The curvature κ changed continuously throughout the entire path length, and its

maximum value was around 1.28 m−1, which is lower than the maximum limit (1/0.6)

m−1. The steering angle ϕ and the front-wheel velocity V changed continuously, and

their magnitude increased or decreased in the trend similar to that of κ. These

observations suggested that the proposed method is able to generate smooth paths

and continuously-changing motion commands for a car-like robot.

Path Including Half PPC Curve

In another test, half PPC curve was used in addition to PPC curve. Fig. 4.21(a)

plots the trajectories of the robot. The turning was found to be not a curve symmet-

rical to the polar angle φ = Φ/2, one of the properties that a PPC curve possesses.

During navigation, an occupancy grid map of the environment was built online, as

shown in Fig. 4.21(b).

The curvature and velocity profiles of the output path are shown in Fig. 4.22,

where dash-dotted lines denote the curve types of the different segments. The tran-

sition from “PPC curve” to “half PPC curve” is because the laser range readings

(can be very noised) obtained online imply potential collisions if continuing following

89

4.4 Simulation Experiments

0 5 10 15 20 25 30
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

TIME (sec)

CURVATURE AND VELOCITY PROFILES

curvature κ (1/m)
steering angle φ (rad)
steering velocity V (m/s)
linear velocity v (m/s)
angular velocity ω (rad/s)

Figure 4.20: Curvature and velocity profiles of the output path.

(a) Robot motions. (b) Constructed grid map.

Figure 4.21: Robot trajectories and obtained grid map of the environment.

the path, and the robot was performing rotations at that time. It is shown that

the curvature and velocities changed continuously at all the transition points, which

suggested that the proposed method is capable of making a smooth connection when

the robot performs either translation or rotation. For the PPC and half PPC curves,

the maximum curvatures occurred at places other than Φ/2 as Φ = 1.42π or 1.99π.

Analysis of Time for Path Generation

Fig. 4.23(a) shows tL, relative laser time stamp between two continuous batches

of laser readings, and the corresponding reaction time tR used to generate a motion,

in the first test on the car-like robot in Chapter 4.4.2. It is shown that the actual

90

4.4 Simulation Experiments

0 5 10 15 20 25 30
0

0.25

0.5

0.75

1

1.25

1.5

TIME (sec)

CURVATURE AND VELOCITY PROFILES

curvature κ (1/m)
steering angle φ (rad)
steering velocity V (m/s)
linear velocity v (m/s)
angular velocity ω (rad/s)
type of curve/ray

Figure 4.22: Curvature and velocity profiles and curve type of the output path.

time for generating laser data was generally slightly longer than 0.2 s, and at several

sample periods, its value differed significantly from the average one. Fig. 4.23(b)

shows that each reaction time spent to produce a motion command was within 0.2

s, and its average value was 0.0258 s. These observations suggest that the proposed

approach, where PPC curve design and collision test are involved, is able to produce

collision-free motion plans in real-time.

0 25 50 75 100 125
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

INDEX OF SAMPLES

TI
M

E
 (s

ec
)

LASER TIME STAMP AND REACTION TIME

time stamp of laser readings (relative to the last laser data) (s)
reaction time for motion commands (s)

(a) Laser time tL and reaction time tR.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

INDEX OF SAMPLES

TI
M

E
 (s

ec
)

TIME STAMP OF MOTION COMMANDS

(b) Motion time stamp tM .

Figure 4.23: Laser time stamp, and reaction time for motion commands.

Table 4.3 shows a statistics of the time used. The laser time stamp to generate the

9th laser data, 0.6597 s, was the maximum one, and was comparatively longer than

91

4.4 Simulation Experiments

the required time, 0.2 s. Accordingly, the motion time stamp reached the maximum

value 0.7693 s, at the 9th sample period. These phenomena can also be seen from

Figs. 4.23 (a)-(b). They explain the big time difference between the two commands

at the time of around 2.5 s in Fig. 4.20.

Table 4.3: Statistics of Time Used in Motion (145 samples in total, counted from the
first motion command).

Average Max Sample Index
Value (s) Value (s) Max Occurs

Laser time stamp 0.2130 0.6597 9
Reaction Time 0.0258 0.1755 17

Motion time stamp 0.2126 0.7693 9

Laser time stamp and reaction time of the first test on a differential drive robot

presented in Chapter 4.4.1 is shown in Fig. 4.24. Again, the actual time for generating

laser data tL was generally slightly longer than 0.2 s, and at several sample periods,

its value differed significantly from the average one. It is shown that each reaction

time spent to produce a motion command was within 0.2 seconds, and its average

value was less than 0.05 s. Therefore, the algorithms for curve design and collision

checking are suitable for real-time implementation.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

INDEX OF SAMPLES

TI
M

E
 (s

ec
)

TIME STAMP OF LASER DATA AND REACTION TIME

time stamp of laser readings (relative to last data) (s)
reaction time for motion commands (s)

Figure 4.24: Reaction time for motion commands upon arrival of sensor data.

92

4.5 Discussions and Comparisons

4.5 Discussions and Comparisons

The work in [22] presents sensor-based path planning algorithms which adopt a

Bug-like strategy for navigating around an obstacle. They assume that the robot

has at most six possibilities to move at a certain position, such that Best-first and

Depth-first algorithms can be used for searching the state-space graph of the system’s

C-space and thus an optimal solution may be found by comparing search costs. In

comparison, the proposed approach attempts to use a complex curve to connect the

current position to a candidate local goal. Furthermore, it incorporates both the

dynamic constraints and the curvature-continuous requirement into motion planning,

rather than considering the nonholonomic constraints only.

The proposed IG planner uses a combination of PPC curve and line segment to

connect the robot’s current position with the IG, in order to plan a path with smooth

velocity profile satisfying the robot dynamics constraints. In this way, it plans a

series of smooth, feasible motions before actually executing them, and thus avoids

unnecessary jerky manoeuvres that may happen in many purely reactive approaches

such as potential field methods or fuzzy approaches of wall following [103]. However,

sometimes it might not be able to locate a proper IG, probably because it has not

searched the entire space (i.e. combinations of PPC curves and line segments are

only part of the entire possible solution set to the problem of smooth path planning).

Such cases hinder the robot from being able to plan subsequent motions, which may

lead to failure of operation of the whole system.

In comparison, fuzzy approaches for wall following plan each motion in a purely

reactive manner according to the local sensory input rather than planning paths de-

liberatively. Unlike the IG planner, such approaches seldom consider the requirement

of smooth motion when generating motion commands. In addition, a simple imple-

mentation of such approaches is insufficient to ensure that the robot always follows an

obstacle properly. However, considering its robustness in producing a motion when-

ever there is sensory input, a fuzzy controller is introduced to overcome the limitation

of the IG planner. By combining the two kinds of planners in a complementary way,

the proposed approach is thus a complete path planner.

The proposed PPC-based method is able to directly address dynamic and con-

straints during design, provides closed expression of robot position, and carries out

collision test efficiently. However, a complex and parameterized curve only provides

93

4.6 Summary

a limited set out of the entire solution set for smooth path planning. The com-

bined curve consisting of a PPC curve or a half PPC curve covers only part of the

many possible feasible paths. When applied to path planning for car-like robots in

a sensor-based scenario, the PPC based method magnifies its limitation that it may

have a small probability in finding a suitable solution based on limited information.

In Chapter 6, an optimization approach will be presented which searches the entire

feasible velocity space for the best motion satisfying dynamic and other constraints.

4.6 Summary

This chapter has proposed a hybrid approach for planning smooth paths satisfying

dynamic constraints for differential drive robots in an unknown environment, and a

constrained, smooth path generation algorithm for car-like robots.

We first investigated the use of polar polynomial curve (PPC) for smooth, feasi-

ble vehicle motions between two arbitrary robot configurations. A computationally

efficient method is proposed for collision checking of the designed curve, for it to

be used in real-time path planning. The PPC-based steering method is applied to

path generation for car-like robots, where the curvature of the path is required to be

continuous and upper-bounded.

Then, we presented a hybrid planning approach to guide the robot to move forward

along the boundary of an obstacle of arbitrary shape, leading the robot to the goal, by

generating Instant Goals (and a series of deliberate motions) and planning reactively

using a fuzzy controller when needed. In order to achieve smooth and feasible vehicle

motions, the current robot position is connected with its local goal using PPC based

curves.

Finally, simulation experiments have verified the effectiveness of the proposed

approaches in planning collision-free, feasible paths for differential drive and car-like

robots in a real-time manner. In addition, extensive discussions were provided on the

effect of the robot dynamics on robot motions and on convergence to the goal.

94

Chapter 5

Online Map Building for

Autonomous Mobile Robots

This chapter presents a practical method for building maps online with laser and sonar

data fused to produce a better representation of the environment. Range data are

translated into grid status information of the (local) map, which is then updated to

the global map using Bayes’ rules. To achieve the task of online mapping, incremental

Maximum Likelihood scan matching is applied for online pose estimation before a local

map can be updated to the global one correctly. Next, a selective method is proposed

to fuse laser and sonar data for better obstacle detection and mapping. Then, the

system is able to build maps autonomously with a fuzzy controller for wall following.

Finally, an off-line method is implemented to convert the constructed occupancy grid

map into a topological one that could be suitable for large map applications.

5.1 Incremental Map Building

5.1.1 Sensor Model

Compared with geometric or topological maps, occupancy grids provide more detailed

information about the environment, and can be easily updated when there is a sensor

input due to the probabilistic nature of grids. This research uses occupancy grid map

for mapping and path planning in a non-large-scaled indoor environment. Occupancy

grid is probabilistic in nature and inaccuracies in laser readings can be taken into

account. As more laser scans are plotted down, the plot of laser scans becomes

95

5.1 Incremental Map Building

cluttered as small errors in the laser readings cause the walls to become thicker and

thicker. The use of occupancy grids allows to demarcate the occupied, unoccupied and

unknown areas. In addition, it has a certain ability to handle dynamic environments,

since objects which move during mapping tend to be erased off (because of the map

updating process) in the map as more readings are taken in.

A sensor model must interpret (range) sensor data based on the sensor’s charac-

teristics and behavior. In the Gaussian sensor model, the sensor probability function

can be given by

p(r|z, θ) =
1

2πσrσθ

exp

[
−1

2

(
(r − z)2

σ2
r

+
θ2

σ2
θ

)]
, (5.1)

where r is the range reading, θ the angle with the optical axis of the range sensor, z

the true space range value, σθ a measure of angular error, and σr a measure of range

error. We may model the probability density of an range sensor with a Gaussian

function multiplied by α(r), an attenuation of detection with distance, and added by

a constant pc, in a form similar to Eq. (3.35).

An angle measurement of a laser rangefinder can be represented by a normally

distributed random variable whose 95% error bound is given by its angular resolution.

In this case, if the angular resolution is given as ∆αs, we have

2σθ =
∆αs

2
⇒ σθ =

∆αs

4
. (5.2)

A typical value of σθ would be 6 degrees (for a sonar sensor with a nominal beam

width of 24 degrees), or 0.25 degree for a laser rangefinder. The range error σr of a

Polaroid sonar sensor is on the order of 1%, and a conservative function we may use

is: σr = 0.01 + 0.015r. For a laser rangefinder, range error is typically as small as

±5cm.

To reduce computation load, a numerical function can be used to interpret sensor

data into grid status. For each cell ml in the sensor cone we compute the distance

d from the current robot pose xt. Let N(θ) denote a weighted Gaussian function
α√

2πσθ
exp

(
−1

2
θ2

σ2

θ

)
. In order to reduce the time and memory consumed in updating

maps, the occupancy probability at the cell, P (ml|zt, xt), can be computed using an

96

5.1 Incremental Map Building

approximated Gaussian model as follows:

P (ml|zt, xt) =

P (ml) +

−N(θ), d < zt −∆d1 −∆d2[
1 + 2d−(zt−∆d2)

∆d1

]
N(θ), zt −∆d1 −∆d2 ≤ d < zt −∆d2

N(θ), zt −∆d2 ≤ d < zt + ∆d3[
1− d−(zt+∆d3)

∆d4

]
N(θ), zt + ∆d3 ≤ d < zt + ∆d3 + ∆d4

0, zt + ∆d3 + ∆d4 ≤ d,

(5.3)

where we can set α = 0.2 in practice, and, considering that obstacles (such as a wall)

have a certain width, ∆d3 > ∆d2. Fig. 5.1 shows such a model for sonar, where

σθ = 0.1 (6 degrees) and σr = 0.06m (the measured range is about 3m).

−1

−0.5

0

0.5

1

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

DISTANCE FROM MEASUREMENT (m)

THETA (rad)

Figure 5.1: An approximated Gaussian sensor model, where “distance from measure-
ment” means d− zt in Eq. (5.3) and ∆d3 = 2∆d2.

5.1.2 Bayesian Map Updating

Bayes’ Theorem [33] is chosen here considering its efficiency for updating a mea-

surement to a grid map over other updating techniques, such as Dempster-Shafer

theory of evidence [34, 35], and fuzzy logic approaches [36, 37]. Firstly, we assume

that the robot knows its position and orientation while mapping the environment.

Let x1:t = x1, x2, ...xt denote the pose series of the robot at each time instant and

z1:t = z1, z2, ...zt the perceptions of the environment. The solution is to find the map

P (m|x1:t, z1:t) expressed in the form of the current measurement. A number of works

97

5.1 Incremental Map Building

have developed their own formula for updating the latest measurement to the global

map. The following derivation is most similar to the one in [104].

If we apply Bayes rule given map m is known, we have

P (m|x1:t, z1:t) =
P (zt|m,x1:t, z1:t−1)P (m|x1:t, z1:t−1)

P (zt|x1:t, z1:t−1)
. (5.4)

Assuming measurement zt is independent from the previous poses x1:t−1 and mea-

surements z1:t−1, Eq. (5.4) can be rewritten as

P (m|x1:t, z1:t) =
P (zt|m,xt)P (m|x1:t, z1:t−1)

P (zt|x1:t, z1:t−1)
. (5.5)

For the item P (zt|m,xt) in Eq. (5.5), again apply Bayes rule:

P (zt|m,xt) =
P (m|zt, xt)P (zt|xt)

P (m|xt)
, (5.6)

where P (m|xt) can be replaced by P (m) considering that xt does not carry informa-

tion about the map m.

Substituting Eq. (5.6) into Eq. (5.5), we have

P (m|x1:t, z1:t) =
P (m|zt, xt)P (zt|xt)P (m|x1:t, z1:t−1)

P (m)P (zt|x1:t, z1:t−1)
. (5.7)

Considering that each cell m(l) is a binary variable, i.e. each cell is either occupied

or empty, we have

P (m̄|x1:t, z1:t) =
P (m̄|zt, xt)P (zt|xt)P (m̄|x1:t, z1:t−1)

P (m̄)P (zt|x1:t, z1:t−1)
. (5.8)

Dividing Eq. (5.7) by Eq. (5.8) and knowing that P (A) = 1− P (A), we have

P (m|x1:t, z1:t)

1− P (m|x1:t, z1:t)
=

P (m|zt, xt)

1− P (m|zt, xt)

1− P (m)

P (m)

P (m|x1:t, z1:t−1)

1− P (m|x1:t, z1:t−1)
, (5.9)

or

O(m|x1:t, z1:t) = O(m|zt, xt)O(m)−1O(m|x1:t, z1:t−1), (5.10)

if we define odds operation O(x) = P (x)
1−P (x)

, which means O(A) = P (A)
1−P (A)

= P (A)

P (Ā)
and

O(A|B) = P (A|B)
1−P (A|B)

= P (A|B)

P (Ā|B)
.

Using a logarithmic form results in a more natural additive scale for representing

odds:

log O(m|x1:t, z1:t) = log O(m|zt, xt)− log O(m) + log O(m|x1:t, z1:t−1). (5.11)

98

5.1 Incremental Map Building

Knowing that P (x) = O(x)
1+O(x)

, the occupancy possibility can be recovered from Eq.

(5.10) and be expressed as follows:

P (m|x1:t, z1:t) =

[
1 +

1− P (m|zt, xt)

P (m|zt, xt)

P (m)

1− P (m)

1− P (m|x1:t, z1:t−1)

P (m|x1:t, z1:t−1)

]−1

. (5.12)

Eq. (5.12) is on how to update the occupancy probability of a grid map. Whenever

a new measurement at location xt is received, the occupancy probability is updated

using the current measurement and the map built from the recent measurements.

Often, the prior probability of m and the initial belief of the map are both assumed

to be 0.5, while unknown, free, and occupied status are indicated by -1, 0, and 1,

respectively.

To facilitate the updating of each block in the grid, and in particular, the area

covered by the robot sensors, Bresenham’s algorithm [105] is used which is optimal

in the number of cells visited to project a line in a grid. The input arguments are the

two ends (given in the form of integer) of a laser beam. Its usefulness is evident for

the case of a laser beam, which in any case, may cover several grid blocks from the

robot to the point where an obstacle is detected. Since we know the coordinates of

both ends of the laser beam, (one end being the coordinates of the robot plus sensor

offsets and the other end which can be calculated using simple trigonometry), the

task is to find all points in between which correspond to a grid on the map.

To see the effect of Bresenham’s algorithm, a close view of a portion of an occu-

pancy grid map produced by a laser range finder is shown in Fig. 5.2. All grids which

are in the path of a laser beam are updated accordingly. The choice of which grid to

update is determined by Bresenham’s algorithm. As more laser scans are read and

updated, the map will get clearer. The advantage of using Bresenham’s algorithm is

its speed, since no floating point calculations are needed.

5.1.3 Scan Matching for Pose Estimation

The accuracy of updating a metric map depends crucially on the alignment of the

robot with the map. The assumption that poses are known during mapping typically

is not realistic due to slippage and drift and the existence of odometry noise, especially

in the lack of a global positioning system, active beacons, or predefined landmarks.

Incremental scan matching is an efficient, robust (relative) localization algorithms.

To obtain the best estimate of poses, the process repeats of the following steps (see

Fig. 5.3) until all the laser scans are mapped or user exits:

99

5.1 Incremental Map Building

Figure 5.2: Effect of Bresenham’s algorithm: a close view of a portion of an occupancy
grid map produced by the laser rangefinder

(i) at the (t−1) time instant, the robot is given an estimate of its pose and a global

map;

(ii) take a new measurement (odometry or perception), and create a local map using

N previous laser scans;

(iii) find the best fit for the latest laser scan in the local map. Take the new robot

pose which gives the best probability of fitting the local map; and

(iv) update the global map with the latest scan and the estimated robot pose.

Figure 5.3: A single iteration of incremental scan matching algorithms.

100

5.1 Incremental Map Building

In particular, incremental ML (maximizes likelihood) scan matching determines

the most likely new pose such that the consistency of the measurement with the map

and the consistency of the new pose with the control action and the previous pose

are maximized. It makes a search in the space of all poses when a new (laser range)

data item arrives, to maximize the likelihood of the tth pose and map relative to the

(t − 1)th pose and map, given the motion model multiplied by the likelihood of the

scan at that pose [52]:

x̂t = argmax {P (zt|xt, m̂(x̂t−1, zt−1))× P (xt|ut−1, xt−1)}, (5.13)

where the term P (zt|xt, m̂(x̂t−1, zt−1)) is the probability of the most recent measure-

ment zt given that the pose is xt and the map built by far is m̂(x̂t−1, zt−1), and the

term P (xt|ut−1, xt−1) is the probability that the robot is at pose xt given that the

robot was previously at xt−1 and the last control command of motion is ut−1.

With a stream of odometry o1:t−1 and perception measurements z1:t, the mapping

problem can be phrased as recursive Bayesian Filtering for estimating the robot poses

[106]:

P (x1:t,m|o1:t−1, z1:t) = αP (zt|xt,m)

∫
P (xt|xt−1, ut−1)P (x1:t−1,m|z1:t−1, u0:t−2)dx1:t−1.

(5.14)

To reduce the complexity of this approach, the map built by far is instead con-

structed based on the most recent measurements only. There are two reasons for

this, one being that the whole environment cannot be covered in a single scan, and

the other one being that objects in the environment lead to occlusions so that many

aspects of a given area are invisible from other positions. Therefore, measurements

obtained from distant places often provide little information to maximize xt.

Such a method does not keep tracking of any residual uncertainty. The advantage

of this lies in its simplicity, which accounts for its popularity. The weakness is that,

once the best pose is chosen, it will not be revised based on future data. The problem

manifests itself in the inability to map big-scaled cyclic environments, where errors in

the poses may grow without bounds. This is a general limitation of algorithms that

do not consider uncertainties when building maps and that possess no mechanism to

use future data to adjust past decisions.

101

5.2 Fusion of Laser and Sonar Data for Better Obstacle Detection

5.2 Fusion of Laser and Sonar Data for Better Ob-

stacle Detection

5.2.1 Motives of Fusing Laser and Sonar Data

When modeling a range sensor, we have assumed that a range reading indicates

the presence of a target at that range. This is based on a diffuse reflection of energy

from the target: if the surface roughness of the target is larger than the wavelength of

the impinging beam, it will act like a point reflector, scattering energy equally in all

directions. Specular reflection [107] of the wave occurs when the wave hits a surface

at some angles or the surface of an object is smooth with respect to the wavelength of

the beam. In this case, the reflected wave does not return to the sensor and thus the

measured time-of-flight does not represent reflection from the nearest surface. This

happens frequently for sonar especially in a confined environment. The consequence

is that longer range readings will be resulted than the actual distances.

Sensor fusion involves the integration of data from various sensors into a uniform

data structure. For the purpose of mapping, sensory information from various sensors

need to be combined in order to get the best view of the surroundings of the robot.

Compared to sonar, a laser rangefinder offers a more reliable system for measuring

distances. Hence, it will be used as the primary device for robot mapping purposes.

However, it is important to note the following:

(i) multiple sonar sensors provide redundancy and enables cross checking;

(ii) the properties of laser are such that a laser rangefinder cannot accurately sense

materials like glass or mirrors, whereas the ultra sound wave sent by sonar can

be easily reflected on glass;

(iii) commercial laser rangefinders are normally able to scan the surroundings two

dimensionally only. In contrast, a sonar sensor detects obstacles in a cone-

shaped range.

Therefore, a sensible solution to improve the quality of mapping, especially those

used for navigation purpose, is to incorporate the various sensors available to the

robot and to make full use of the advantages of various available sensors for robust

map building and navigation.

102

5.2 Fusion of Laser and Sonar Data for Better Obstacle Detection

5.2.2 Selective Method to Fuse Laser and Sonar Data

The first step of sensor fusion for a particular system is sensor modeling, which is

to describe the sensor returns with a mathematical expression. Next, pre-processing

of sensor data, such as filtering out noised sensor data, is necessary to ensure that data

containing no or less erroneous ones are supplied to the sensor fusion process. Finally,

a mathematical technique, like Bayesian algorithms or Kalman filtering, should be

used to produce merged (fused) data, with uncertainties in data sources taken into

account.

It is possible to use laser and sonar sensor readings at the same time to update

the occupancy probability of a cell using Bayesian rule such as Eq. (5.12). How-

ever, laser and sonar sensors differ much in their sensor characteristics, especially on

measurement accuracy and sensor noise. A grid map fused in this way is apparently

not suitable for a scan matching algorithm to estimate robot poses. For this reason,

two separate grid maps are maintained: one is ml, the map built from only laser

data, and the other is mf , the map constructed by fusing laser and sonar data. After

building the laser map ml for pose estimation, the two types of sensor readings are

integrated to build the fused map, which is to represent the environment for mapping

or navigation purpose.

As specular reflections result in longer range readings than actual distances, Po-

laroid sonar sensors almost never underestimate the distance to an obstacle [108]. The

proposed solution is to use laser range data as the primary mapping source, which is

supplied to scan matching for pose estimation, while sonar data are used selectively

to update the fused map mf . The laser rangefinder is normally mounted facing the

front. In this selective method, a sonar reading, say zs
t , is used only when it is from

one of the sonar sensors mounted in the front of the robot, and at the same time its

value is shorter than the laser readings within the sonar cone αs:

P (mf
l |zl

t, z
s
t , xt) =

P (ms
l |zs

t , xt), if zs
t < min

i∈αs

zl
t(i)

P (ml
l|zl

t, xt), otherwise,
(5.15)

where zl
t represents the measured range readings (zl

t(i) is the ith reading) from the

laser rangefinder within the angle δ that covers the same area as the sonar cone, as

shown in Fig. 5.4.

Fuzzy logic approaches are characteristic in that they deal with various situa-

tions without analytical modeling of the environment [25]. To facilitate autonomous

103

5.3 Topological Map Creation

δ

����������	�
�������
 ���������

Sα

	�
���
������

Figure 5.4: Selective use of sonar readings by comparison with corresponding laser
readings.

map building, we implement a fuzzy controller for wall following similar to the one

presented in Chapter 4.3.4. During navigation using this fuzzy controller for wall

following, obstacle avoidance is achieved by constantly checking the area around the

robot using both laser and sonar sensors. For the purpose of obstacle avoidance, sonar

data have priority over laser range data because of their area of coverage — in the

shape of a cone, which allows for better obstacle detection. In addition, sonar may

detect some obstacles of materials that are difficult to be detected by a laser sensor.

For collision avoidance purpose, only sonar range readings not too big (e.g. less than

2m) are taken, considering that sonar data with big range value are not very reliable

and that reactive collision avoidance is determined by the immediate surrounding of

the robot. If obstacles are detected, the fuzzy controller for wall following will make

an appropriate change in the robot’s moving direction.

5.3 Topological Map Creation

5.3.1 Motivation

Occupancy grid map is used to represent the (global) environment in this re-

search most of time. Nevertheless, topological maps have certain advantages over

occupancy grid maps: they take up less memory space and allow for various efficient

path planning approaches. They are suitable to represent environments of bigger size

or outdoor environments, where there are more chances to utilize landmarks for lo-

calization. As the size of a map increases, more resources must be allocated for map

storage, and computation of searching for a path within the map. This may make

occupancy grid map based navigation difficult to be carried out in real-time. On the

104

5.3 Topological Map Creation

other hand, topological maps are not as detailed as occupancy grid maps. It would

be good to be able to rely on both types of maps.

Therefore, it will be meaningful to convert an occupancy grid map into topological

one after a significant portion of the environment has been mapped. We implement

the process of converting an occupancy grid map into a topological map in a way

similar to the methods mentioned in [109]. It involves the use of a thinning algorithm

to reduce the unoccupied space in a grid map, and adding and chaining nodes using

the skeleton to form the desired topological map.

In essence, topological map creation is normally an offline process which can be

run after receiving a fixed number of laser range scans (e.g. 2500 range scans) or at

the end of the whole process of constructing an occupancy grid map. The constructed

grid map is then processed using techniques similar to image processing.

5.3.2 Skeletonization and Chaining Algorithms

The process of skeletonization involves the use of a thinning algorithm to reduce

the unoccupied space in a grid map into a series of lines the width of one grid. This

skeleton links together possible paths on which the robot may travel. This path is

not optimized and merely leads to other unoccupied regions on the map.

Thinning algorithm is commonly used in image processing, e.g. Zhang-Suen thin-

ning algorithm [110]. To reduce an occupancy grid map into the required skeleton,

this research implemented a thinning algorithm with its pseudo code shown in Algo-

rithm 7. For efficiency, a second round of thinning is exerted on the resulting nodes

obtained from first iteration of thinning.

Algorithm 7 Thinning algorithm
Neighbors - Pi, i = 2, 3, · · · , 9 are the defined as the 8 neighbors of a pixel P1, or (x, y). The indices
of them are counted in a CW manner, with the first one being P2, or (x− 1, y).
Z01(P1) - the number of zero to nonzero translations in the sequence P2, P3, P4, P5, P6, P7, P8, P9, P2.
NZ(P1) - the number of nonzero neighbors of P1.
1: Scan through all the points of the image.
2: Calculate Z01(P1), NZ(P1), for all points.
3: Delete P1 if all of the following conditions are satisfied:

i) 2 ≤ NZ(P1) ≤ 6,
ii) Z01(P1) = 1,
iii) P2 ∗ P4 ∗ P8 = 0,
iv) P2 ∗ P4 ∗ P6 = 0.

Fig. 5.5(b) illustrates the result of applying the thinning algorithm to the original

shape (Fig. 5.5(a)), which is derived from an occupancy grid map that only contains

105

5.3 Topological Map Creation

information of free space.

(a) Original shape derived from an occupancy grid map, with
black region depicting unoccupied space.

(b) The shape is reduced into a series of lines.

Figure 5.5: An illustration of the thinning algorithm.

Before the chaining process is started, nodes must be found out first from the

skeleton obtained by the thinning process. Nodes are defined as either end points

or cross points. Each node stores the coordinates of its location and a link to any

neighboring node. If only one neighbor of a pixel P1 is free, i.e. NZ(P1) = 1, this

pixel is added to the topological map as an end node. If three or more neighbors of

a pixel P1 are free, i.e. NZ(P1) ≥ 3, and Z01(P1) ≥ 2, this pixel is added to the

topological map as a cross node.

Next, the process of chaining tries to link all nodes to their neighboring nodes.

The process of linking all nodes together is done recursively, which makes the code

simple and efficient.

Fig. 5.6 illustrates the result of applying the chaining algorithm to the skeleton

shown in Fig. 5.5(b).

5.3.3 An Example of Topological Map Creation

Creation of a topological map from the currently available occupancy grid map

will be useful, since an occupancy grid map can be obtained in many scenarios. Fig.

5.7 shows the resultant topological map created from the occupancy grid map in Fig.

5.15. The process of skeletonization is used to reduce the unoccupied space into a

106

5.4 Simulations and Experiments

Figure 5.6: Nodes (depicted by small circles) are added to the skeleton by the chaining
algorithm.

series of lines the width of one grid. Eventually, the topological map will consist of

only nodes and edges. The nodes are defined as either end points or branches.

Figure 5.7: Resultant topological map created from an occupancy grid map.

Fig. 5.8(b) shows the resultant topological map created from a slightly modified

version of the same occupancy grid map. It shows that there are fewer nodes in the

room in the resultant topological map. This is attributed to the fact that the room

is well defined in this case before creating the topological map.

Comparing the two resultant topological maps, it can be seen that the thinning

algorithm tends to produce more lines when the shape to be reduced has a lot of noise

in it – in the form of numerous objects or unclear areas. This is a general limitation of

the thinning algorithm. Due to this reason, the thinning algorithm may not work well

for cluttered environments. A solution to this would be to ensure that an occupancy

grid map is properly built and contains as little ambiguous areas as possible.

5.4 Simulations and Experiments

The online mapping program is implemented in C programming within the CAR-

MEN architecture (see Appendix C). A desktop PC equipped with a Pentium III

900M CPU and 256M memory was used for computation (scan matching and map-

ping) and displaying. In experiments, the Magellan Pro robot was responsible for

acquiring sensor data supplied to the PC and executing motion commands received.

107

5.4 Simulations and Experiments

(a) A slightly modified occupancy grid map with clearer
objects in the room.

(b) Resultant topological map.

Figure 5.8: Another test of topological map creation.

The robot is with 16 sonar sensors (with a beam width of 30 degrees), and a laser

rangefinder, SICK LMS 291 (see Table B.1 in Appendix B for more information such

as its resolution).

5.4.1 Occupancy Grid Mapping and Scan Matching

(a) Plots of odometry and laser scan raw data. (b) Result of simulation with scan matching.

Figure 5.9: Simulation of collecting laser data without/with scan matching used.

Fig. 5.9 shows the results of the simulation tests to plot laser scans when the robot

was teleoperated. The robot started in a corridor, turned right into a room, made

a turn and exited the room. The path, starting from the point labeled as “Start”

and ending at the point labeled as “End”, is denoted by solid lines. In Fig. 5.9(a),

odometry (robot position) and laser scan data are plotted without using localization

to correct the robot positions. A test (Fig. 5.9(b)) was run in a similar manner except

108

5.4 Simulations and Experiments

that scan matching was applied for pose estimation. This time, the mapping result

looks more plausible as the scans are aligned correctly. The need for pose estimation

such as scan matching is obvious, since laser scans of the corridor after the robot

exited the room need to be aligned with previous scans.

Actual tests of the mapping and scan matching algorithms were run at the Stu-

dent Projects Lab, National University of Singapore. It contains obstacle cluttered

laboratory environments. As shown in Fig. 5.10, the results of mapping and scan

matching at the Lab Room (E4A-06-11, NUS) and its nearby areas look good.

(a) Test at Lab Rom and its adjoining room.

door to the corridor (opened)

(b) Test at Lab Room and corridor.

Figure 5.10: Tests of scan matching and map building in laboratory environments.

Note that failing of the scan matching method is possible. This happened one time

during about thirty experiment tests of mapping in non-large-scaled environments.

As the robot entered the corridor from the Lab Room, it came into close proximity of

2 passers, by which caused the robot to misinterpret the laser range data, resulting

in a misalignment of the outside corridor. The scan matching methodology is not

robust enough to handle the dynamic change of environments (moving obstacles)

when transiting from its current surrounding to a much different one.

A possible solution is to add a people tracker module which can stop the mapping

process once a moving object is detected. Alternatively, a dynamic scan matching

algorithm may have to be considered. An example would be DOGMA – dynamic

occupancy grid mapping algorithm [111], which learns models of the dynamic envi-

ronment.

5.4.2 Sensor Fusion of Laser and Sonar Data

Fig. 5.12 shows the resulting map obtained in a trial test by plotting both laser

and sonar range data onto the same map. Fig. 5.12(a) plots the accumulated laser

109

5.4 Simulations and Experiments

Figure 5.11: A failing of the scan matching method.

scans and the sonar readings as well as the robot trajectories. It can be observed that

a simple combination of both laser and sonar range data does not necessarily produce

a good map. As shown in Fig. 5.12(b), the inaccuracies of sonar measurements may

distort the map constructed based on both sonar and laser data.

(a) Laser and sonar data. (b) Map constructed.

Figure 5.12: Both laser and sonar range data are plotted onto the same map.

Another test used laser range data as the primary mapping source while sonar

readings were used selectively using the method presented in Section 5.2.2. The

resultant map in Fig. 5.13(b) compares favorably to the map in Fig. 5.13(a), which

is constructed from laser data only. It is shown that the laser rangefinder is unable

to detect all obstacles in the room out of its plane of vision, such as those objects

indicated by small circles in Fig. 5.13(b).

Another test of the selective sensor fusion method is presented in Fig. 5.14 for

further analysis. To help differentiate the two types of sensor data, purple patches

are plotted to indicate the obstacles detected by sonar data. Though sonar data are

usually inaccurate, they come in useful for the purposes of obstacle detection, and

thus collision avoidance – allowing the robot to navigate safely without colliding into

110

5.4 Simulations and Experiments

(a) Map built with only laser range data. (b) Map constructed using laser and sonar data.

Figure 5.13: A comparison of maps built with laser data only and with the selective
method of sensor fusion.

objects of height not at the same level of the laser rangefinder’s view plan or hidden

objects such as a glass door.

Figure 5.14: A test of sensor fusion at the Lab Room and the outside corridor.

5.4.3 Sensor Fusion for Better Collision Avoidance

The fuzzy controller for wall following was tested through both simulation and

experiment. The robot was ensured that it kept a distance of about 0.8m (from

the center of the robot) to the wall on its right at all times while exploring the

environment. Fig. 5.15 plots a simulation result of the wall following algorithm. It

shows the path taken by the robot at the top part of the figure, and the resulting

occupancy grid map at the bottom part.

Fig. 5.16(a) shows the result of the accumulated laser scans, and the accumulated

sonar data as well as the robot trajectories obtained in an experiment of wall following

in the corridor environment. A combination of both laser and sonar data were used in

this experiment. At the end of the corridor is a closed glass door which the robot was

able to detect with the use of sonar sensors. To illustrate this, the resulting occupancy

111

5.5 Summary

Figure 5.15: Laser and sonar data collected in a simulation test of wall following.

grid map created with laser data only is shown in Fig. 5.16(b). It is obvious that

the laser rangefinder was unable to correctly detect the closed glass door. The use

of sonar sensors allows the system to detect objects better, and thus improves the

robustness of obstacle avoidance.

(a) Laser and sonar data, and robot trajecto-
ries.

(b) Map constructed during wall following
using laser data only.

Figure 5.16: Laser and sonar readings, robot trajectories, and grid map obtained by
an experimental test of wall following.

5.5 Summary

This chapter has presented a practical methodology for building occupancy grid

maps online for autonomous mobile robots. The latest laser or sonar measurements

are efficiently updated to the global grid map using Bayes’ theorem. Incremental ML

scan matching is applied for pose estimation, such that relative position localization

can be done in permitted time for map building to be carried out online. The selective

method makes use of the advantages of both laser and sonar sensors, and improves

112

5.5 Summary

both obstacle detection and mapping accuracy. The fuzzy controller for wall following

allows the robot to build maps autonomously, and an offline method is implemented

to convert the constructed occupancy grid map into a topological one for large maps

and outdoor environment applications.

As verified by the simulation and experimental results, the proposed approaches

have the following advantages: i) the selective method, by maintaining a laser map

and a fused map, enables satisfactory pose estimation achieved based on available

scan matching techniques; ii) fusion of laser and sonar data improves both obstacle

detection and mapping accuracy, which helps to achieve better representation of the

environment and robust collision avoidance that may not be achievable with 2D laser

range readings alone; and iii) the fuzzy controller for wall following allows the robot to

build occupancy grid maps autonomously with enhanced obstacle detection by using

both laser and sonar data.

113

Chapter 6

Hierarchical Framework:

Incremental Path Planning and

Optimized Dynamic Motion

Planning

This chapter studies a hierarchical approach for incrementally driving a mobile robot

to its destination in unknown environments. A* algorithm is modified to handle

a map containing unknown information, and based on it, optimal (discrete) paths

are incrementally generated with a periodically updated map. Next, accelerations in

varying velocities are taken into account in predicting the robot pose and the robot

trajectory resulting from a motion command. Obstacle constraints are transformed to

suitable velocity limits for the robot to perform relatively high-speed navigation while

avoiding collisions when needed. Then, to trace the waypoints, the system searches

for a waypoint-directed optimized motion in a reduced one-dimensional translation

or rotation velocity space. Various situations of navigation are dealt with by using

different strategies rather than a single objective function.

6.1 Incremental Dynamic Path Planning with Par-

tial Map

The section presents an incremental search algorithm for replanning robot paths

with a periodically updated map.

114

6.1 Incremental Dynamic Path Planning with Partial Map

6.1.1 Modified A* Search for Partially Known Environments

A Star Search

A* search employs a “heuristic estimate” that ranks each node by an estimate of the

best route that goes through that node. It visits the nodes in order of this heuristic

estimate. In each step of a search, a weight function f is used to order the queue.

Let a state correspond to a grid cell of the map, and define the following two cost

functions:

• g(s) - the actual cost of going from the initial state to the current state s; and

• h(s) - a heuristic estimate of the cost of going from the current state s to the

solution (goal) state.

The potential of reaching the goal via state s is then evaluated by the estimated

total cost given by:

f(s) = g(s) + h(s), (6.1)

where g(s) can be taken as the length of the path linking the geometric centers of

the traversed regions (cells), and h(s) as the straight-line distance from state s to

the goal position. Since h(s) is an optimistic estimate which never overestimates the

actual cost, it is then guaranteed that the first plan that is encountered is an optimal

plan w.r.t. the real cost function g(s) (though not necessarily optimal in the global

sense).

An open list and a closed list are maintained to keep track of the progress of A*

search. The open list is initialized with the start state as the first node, and the

closed list is initialized to be empty. The following steps are repeated until the open

list is empty:

1: The node with the lowest f -value in the open list is removed, and labeled as

the current node. If the removed node is the goal node, A* search will exit and

return a complete chain of nodes for the path to the goal.

2: A neighboring node s (in the eight directions) of the current node is added to

the open list at a place according to its f -value, if it is not in the open list or

it is matched to a node inside the open list which has a higher f -value.

115

6.1 Incremental Dynamic Path Planning with Partial Map

3: If node s is matched to a node inside the closed list (which consists of nodes that

have been checked) which has an equal or lower f -value, no further processing

will be done on node s. Otherwise (i.e. if node s has lower cost than the stored

node), the stored node is replaced by node s.

Dynamic Searching in Partially Known Environments

The robot may have only partial information about the environment before it

begins its A* search, as a priori model maps are rarely available. D* algorithms are

capable of planning paths in partially known, and changing environments. However,

D* search is much harder to implement successfully because of the added dimensions

characteristic to the problem of attempting to navigate with real-time replanning in

partially known environments.

Similar to the work of [112], this research uses A* algorithm for search considering

its robustness in finding an optimal path. To handle a map containing unknown

information, the condition of finding a path is accordingly defined as follows [113]:

if the removed node is the goal node, the successful path is reconstructed, and the

algorithm ends; or if the removed node is unknown, a possible path is found, and the

algorithm ends. In the latter case, no sufficient knowledge is available to ensure that

there exists a feasible path planned between the second last node and the goal node.

6.1.2 Obstacle Enlarging and Addition of Obstacle Cost

In this research, occupancy grid map is used since it provides more detailed infor-

mation about the environment (compared with geometric or topological map), and

can be easily updated when there is a sensor input due to the probabilistic nature of

grids. The planner first creates a configuration space from the grid map considering

the robot dimensions: the grid map is processed by enlarging each occupied grid to

its neighboring free grids by a value bigger than the size of the robot (or rrob, the

radius of a circular robot):

renlarge = cenlarge · rrob, (6.2)

where cenlarge (larger than one, and typically in the range [1.2, 1.5]) is a coefficient

about how conservative the safety margin should be to ensure the safety of the robot.

If the A* algorithm is applied onto such a configuration space, it can be found

that some parts of the obtained optimal path may be located very close to obstacles.

116

6.1 Incremental Dynamic Path Planning with Partial Map

“Obstacle cost” is thus assigned to each free cell based on dnearest, its distance from

its nearest obstacle cell(s) in the C-space constructed. Obstacle cost is defined as

follows such that it will be infinitely big if the distance is within renlarge, zero if the

distance reaches the obstacle influencing distance, rmax(> renlarge), and proportional

to the inverse of the distance otherwise:

cobs =

∞, dnearest < renlarge

αobs/dnearest, renlarge ≤ dnearest ≤ rmax

0, dnearest > rmax,

(6.3)

where αobs is a pre-defined coefficient to determine the significance of obstacle cost.

In this way, the planner is ensured not to generate waypoints that are too close to

obstacles while still able to provide a path optimal or almost optimal.

During the search subsequently carried out, both occupied and unknown cells

are treated as occupied ones, and each free grid node in the constructed C-space is

assigned two values: a g-value and an h-value, with an addition of obstacle cost to

g(s), i.e.

g(s) = ga(s) + cobs(s), (6.4)

where ga(s) is the cost of traveling a cell length or
√

2 fold of a cell length, depending

on whether node s is directly or diagonally neighboring to the current node that is

just removed from the open list as the root node.

6.1.3 Path Straightening and waypoint Generation

The discrete search (A* search algorithm or other path planners) may result in

jagged across grids. Straight paths typically look more plausible than jagged paths,

particularly through open spaces. Therefore, after the discrete path sequence is ob-

tained, redundant points are removed and only a set of waypoints which are connected

by straight line segments are left. Algorithm 8 describes such a method to further

optimize the path generated by the search. The algorithm outputs a set of waypoints:

(xi, yi), i = 0, 1, · · ·, where the first point is the start point of the robot and the last

one is the goal point.

6.1.4 Incremental Planning Algorithm

Fig. 6.1 shows the flowchart of the proposed incremental planning algorithm.

Initially, it sets up basic settings such as the robot’s initial pose, the goal and the

117

6.1 Incremental Dynamic Path Planning with Partial Map

Algorithm 8 waypoint Generation.
1: Choose the first and the last path nodes as the start and end node, respectively. The first start

node is set as the new waypoint.
2: while waypoints cannot be reduced any more do
3: Connect the start and end nodes with a straight line.
4: if this line collides with obstacles then
5: Choose the mid path node between the start and the end nodes as the new end node.
6: else
7: The end node is added in as a new waypoint and set as the start node.
8: The last path node is set as the new end node.
9: end if

10: end while

information (size and resolution) of the grid map1. After a partial map is created

with laser and odometry sensory data, the planner is able to plan/replan a path with

the following procedure:

1: Search and Planning

Based on the C-space and the obstacle cost information, an optimal path, in

the form of a series of nodes, is planned from the current state to the goal using

the modified A* search algorithm. As only a partial map is available, such a

path can be either a path to the goal node, denoted by “Path To Goal”, or a

possible path to it (i.e. the path from the second last node to the goal node

contains unknown areas), denoted by “Possible Path”.

2: Moving and Sensing

The robot moves toward its target node while collecting information about its

surroundings. When the target node is reached (i.e. within a certain distance

from the robot), the robot will decide its next action as follows:

i) If the target node is the goal, the path planning task is accomplished;

ii) If the target node is the second last node in the series of nodes and the

search result is “Possible Path”, the procedure will go to Step 3;

iii) Otherwise, the robot will continue this step to approach the remaining

nodes in the plan.

1Coordinate transformation is frequently involved when implementing the proposed incremental
path planning algorithm. Appendix A describes about converting coordinates between different
coordinate frames.

118

6.1 Incremental Dynamic Path Planning with Partial Map

Start

End

No Map?

Stop Robot;
Request a New Map

New Map
Available?

Enlarge Obstacle
Compute Cobs

Y

N

Y

N

Goal Reached?

Path_To_Goal
?

Y

Y

N

Trace Path
Until Goal

PathNodes>1?

N

2nd Last Node
Reached?

Trace Path Until
2nd Last Node

N

Y

N

Y

return
Path_To_Goal
or Possible Path

A* Searching
(current, goal)

Setup of Basic Settings

Figure 6.1: Flowchart of incremental search and planning algorithm.

3: Re-localization for Next Round of Planning

Before the robot is able to go to Step 1 to replan a new path, the robot sends

requests for the best estimate of the relative position between it and the goal

as well as the updated map information of the world.

Remark 6.1. Because it takes a while to update/recieve the map supplied for search

and to carry out such a graph search, we do not want to update this map while the

robot is moving or else, it may run into an obstacle or deviate from the planned

path. The robot is therefore commanded to stop, and the system subsequently replans

a new path (a series of waypoints) to the goal. To the best of our knowledge, grid-

map-based deliberate planning approaches seldom choose to continue driving the robot

during that period unless there is a global path to guide the robot to continue moving

forward. Nevertheless, the system’s performance (mainly the average robot speed)

could be enhanced if this restriction can be relaxed.

119

6.2 Predicted Admissible Robot Trajectory under Robot Dynamics

6.2 Predicted Admissible Robot Trajectory under

Robot Dynamics

This section presents admissible robot motion subject to various dynamic/actuator

constraints and resulting robot trajectories that conforms to forward kinematics of a

robot.

6.2.1 Forward Kinematics of Differential Drive Robots

We recall the kinematic modeling of differential drive robots that is presented in

Chapter 2.2. As the reference point (RP) to trace a path is chosen at the midpoint

of rear-axle, the robot’s translation velocity v is defined at this point. Thus, we have

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, (6.5)

where θ denotes angle (of the main axis of the robot) w.r.t. the global frame, in this

chapter.

Since the robot is frequently adjusted (accelerated or decelerated) during navi-

gation, the velocities are normally time-varying in a control period. At a relatively

short interval of ∆t, we may take that the wheels undergo a fixed rate of acceleration

or deceleration and thus we have
{

v(t) = aR+aL

2
t + vR0+vL0

2
= at + v0

ω(t) = aR−aL

b
t + vR0−vL0

b
= εt + ω0,

(6.6)

where v0 and ω0 are the initial values of translation and rotation velocities, respec-

tively.

With Eqs. (6.6) and (6.5) and the initial condition of integral as (x0, y0, θ0), the

solution for the robot pose is:

x(t) =
∫ t

0
(at + v0) cos

(
1
2
εt2 + ω0t + θ0

)
dt + x0

y(t) =
∫ t

0
(at + v0) sin

(
1
2
εt2 + ω0t + θ0

)
dt + y0

θ(t) = 1
2
εt2 + ω0t + θ0,

(6.7)

where the position can be obtained only through numerical integration method such

as Simpson’s Rule.

120

6.2 Predicted Admissible Robot Trajectory under Robot Dynamics

6.2.2 Admissible Motions Satisfying Dynamic Constraints

Due to the actuators’ limits, there exist maximum limits on the robot velocities

and the robot accelerations. Let as, max denote the maximum acceleration that the

robot can be comfortably and smoothly accelerated, and amax denote the maximum

permissible deceleration that the robot can be slowed down and stopped without

causing skidding to occur. If no reverse movement is allowed for the robot, to achieve

a smooth and (actuator) feasible robot motion or simply called “admissible” motion,

the following constraints will be imposed on the desired translational and rotational

velocities (v1, ω1):

0 ≤ v1 ≤ vmax, v0 − amax∆t ≤ v1 ≤ v0 + as, max∆t, (6.8)

−ωmax ≤ ω1 ≤ ωmax, ω0 − εmax∆t ≤ ω1 ≤ ω0 + εmax∆t. (6.9)

where vmax, ωmax, and εmax are the maximum translation velocity, maximum rotational

velocity, and maximum rotational acceleration of the robot, respectively.

Admissible Area

0

maxω

maxω−

0 0(,)v ω
ω

ω

v ω

v

maxvv

Figure 6.2: Region of admissible translation and rotation velocities.

As shown in Fig. 6.2, the admissible motion commands are confined by a rectan-

gular region, i.e.

Va = {(v1, ω1)|v ≤ v1 ≤ v, ω ≤ ω1 ≤ ω}, (6.10)

where
v = max(0, v0 − amax∆t), ω = max(−ωmax, ω0 − εmax∆t),

v = min(vmax, v0 + as, max∆t), ω = min(ω0 + εmax∆t, ωmax).

121

6.2 Predicted Admissible Robot Trajectory under Robot Dynamics

6.2.3 Trajectories Generated by Admissible Motion Com-

mands

What would be the robot trajectory like within the duration of ∆t if it is com-

manded to a certain motion, under the constraints (6.10)? Let us first consider the

initial and final turning radii (the distance from the rotation center to the RP). If the

desired target velocities are known as v1 ∈ [v, v] and ω1 ∈ [ω, ω], the turning radius

at a given time instant t ∈ [0, ∆t] can be evaluated using the following formula:

r(t) =
v0 + (v1 − v0)t/∆t

ω0 + (ω1 − ω0)t/∆t
. (6.11)

Apparently, the turning radius at the initial and final robot configurations will be

given by

r0 = v0/ω0, r1 = v1/ω1. (6.12)

Unfortunately, r1 is often not known beforehand as normally the target velocities are

to be decided.

Without losing generality, suppose that ω0 > 0 and ω > 0 (like the one illustrated

in Fig. 6.2). Table 6.1 lists the special cases of possible final turning radii if (fixed)

acceleration/deceleration is imposed on v and ω. Next, let us explore some useful

properties about robot trajectories.

Table 6.1: Special Cases of Possible Robot Trajectories.

Final Turning Radius Trajectory Remarks
1r1 = v/ω traj 1 max deceleration on v and

max acceleration on ω applied.
2r1 = v0/ω0 traj 2 no acceleration.
3r1 = v/ω traj 3 max acceleration on v and

max deceleration on ω applied
4r1 = v/ω traj 4 max deceleration v and

max deceleration on ω applied.
5r1 = v/ω traj 5 max acceleration on v and

max acceleration on ω applied.

Property 6.1. The value of r(t) belongs to a certain range determined by 1r(t), 3r(t)

and 4r(t).2 Specifically,
{

r(t) ∈ [1r(t), 3r(t)], if ω > 0

r(t) ∈ [1r(t),∞]
⋃

[−∞, 4r(t)], if ω ≤ 0.
(6.13)

2Prefix superscript of r(t) or s(t) denotes the numbering of turning radius or arc length.

122

6.3 Situation-dependent Motion Optimization in Reduced Velocity Space

Proof. The above can be proved by evaluating Eq. (6.11).

Property 6.2. Arc length s(t) at any time from the robot’s initial position is between
1s(t) and 3s(t), arc lengths of trajectories 1r(t) and 3r(t), respectively.

Proof. Arc length s(t) can be expressed by

s(t) =
∫ θt

θ0
r dθ =

∫ t

0
r dθ

dt
dt =

∫ t

0
rω(t) dt =

∫ t

0
v(t) dt

=
∫ t

0
v0 + t(v1 − v0)/∆t dt = v1−v0

2∆t
t2 + v0t,

(6.14)

from which we know that the arc length is proportional to the final translation velocity

(when other variables in the equation are fixed), and thus it can be proved that

s(t) ∈ [1s(t), 3s(t)].

To illustrate this property more clearly, Fig. 6.3 plots the trajectories of a robot3

with v0 = 0.3, ∆t = 0.5. The left and right diagrams show the robot trajectories

generated during the last 1
60

s for ω0 = 1.4 (and thus ω ≥ 0) and for ω0 = 0.2

(and thus ω < 0), respectively. The trajectories are distinguished by different colors

according to the values of final velocities. It is shown that the arc length of an

admissible trajectory is directly related to the value of v1: the larger v1 is, the longer

the trajectory is.

In Fig. 6.4 the trajectories generated during the last 1
60

s are now distinguished by

different colors according to the values of ending rotation velocities. It shows that ω1

determines the angular displacement of the robot (for same v1).

6.3 Situation-dependent Motion Optimization in

Reduced Velocity Space

6.3.1 Admissible Collision Avoidance Considering Accelera-

tions

The robot position at the end of a certain control period can be computed through

numerical integration as Eq. (6.7). As shown in Fig. 6.3 and 6.4, in most cases

3The robot’s dynamic constraints are vmax = 0.8 m/s, ωmax = 2.0 rad/s, amax = 0.8 m/s2,
as,max = 0.5 m/s2, and εmax = 1.6 rad/s2.

123

6.3 Situation-dependent Motion Optimization in Reduced Velocity Space

−0.1 −0.08 −0.06 −0.04 −0.02 0 −0.04 −0.02 0
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

v
0
=0.3;ω

0
=1.4

∆ t=0.5

v

1
 ∈ [0, 0.55]

ω
1
 ∈ [0.6, 2]

v
1
=0

v
1
=0.55

v
1
=v

0
=0.3

v
1
=0.5

v
1
=0.05

.

.

.

.

.

.

v
0
=0.3;ω

0
=0.2

∆ t=0.5

v

1
 ∈ [0, 0.55]

ω
1
 ∈ [−0.6, 1]

Figure 6.3: Trajectories generated during the last 1
60

second, and distinguished by
different colors according to the value of ending translation velocities. (The entire
trajectories for v1 = 0 are plotted in black color.)

trajectories can be much different (especially when the duration is big) from the

circular one, and thus may not be able to be approximated by a circle. This research

takes into account the existence of accelerations, which is the general case, rather

than assuming that the robot velocities remain constant in each control period and

the robot path is thus a straight line or a circular path.

To obtain a satisfactory trajectory, first the commanded velocities should be ad-

missible as discussed in the previous section. In addition, the selected motion com-

mand should result in a trajectory without intersecting with obstacles and at the

meantime allow the robot to stop before it touches an obstacle, given the current

robot position, and the actuator’s deceleration capability of the robot. If the robot

is commanded to (v1, ω1), the minimum time for the robot to be stopped is obtained

by decelerating the robot with maximum acceleration without causing it to skid, i.e.

tstop = v1/amax. (6.15)

Similar to the proof of Property 6.2, the total arc length traveled by the robot,

which moves for ∆t and is subsequently commanded to stop, can be derived as follows:

s =
∫ θt

θ0
r dθ =

∫ ∆t

0
v(t) dt +

∫ ∆t+tstop
∆t v(t) dt

= v0+v1

2
∆t +

v2
1

2amax
,

(6.16)

124

6.3 Situation-dependent Motion Optimization in Reduced Velocity Space

−0.1 −0.05 0 0.05 0.1

0

0.05

0.1

0.15

0.2

v
0
=0.3; ω

0
=1.4

v
1
 ∈ [0,0.55]

ω
1
 ∈ [0.6,2]

v
0
=0.3; ω

0
=0.2

v
1
 ∈ [0,0.55]

ω
1
 ∈ [−0.6,1]

ω
1
 ∈ [1.4,1.6]

ω
1
 ∈ [1.8, 2]

ω
1
 ∈ [1,1.2]

ω
1
 ∈ [0.6,0.8]

ω
1
 ∈ [0.8,1]

ω
1
 ∈ [0.4,0.6]

ω
1
 ∈ [0,0.2]

ω
1
 ∈ [−0.4,−0.2]

Figure 6.4: Trajectories generated during the last 1
60

second, and distinguished by
different colors according to the values of ending rotation velocities.

which implies that the arc length of the extended trajectory for stopping the robot is

proportional to the square of v1.

Fig. 6.5 shows the entire trajectories generated if the robot moves at any ad-

missible velocities for a duration of ∆t = 0.2s and is subsequently commanded to

stop. Let A,B,C,D denote the endpoints of the extended special trajectories (which

include the extended part for the robot to stop) traj 1, traj 4, traj 5 and traj 3,

respectively. For collision test purpose, the set of the robot trajectories obtained in

a control period (0.2 s or less), could be approximated by a circular path, starting

from the robot’s current position and ending at a point denoted by E.

As shown in Figs. 6.5 and 6.6, the total area covered by the trajectories can be

approximated by a region γ formed by points O,A,B,C,D, and E: the circular arc

passing O and E, the sector EÂB, and the sector ÂBĈD. Of course, if ω ≥ 0,

ÂBĈD is not so accurate to represent the corresponding part of the trajectories, but

still sufficient for predicting any potential collision.

The allowed travel distance sstop(O) is defined as the maximum possible arc dis-

tance for the robot to travel from the robot’s current position O at any admissible

velocity (under the current translation and rotation velocities and the robot dynamic

constraints) for a duration of ∆t, and subsequently to be commanded to stop without

touching the obstacles (denoted as obs). It can be approximated as follows without

125

6.3 Situation-dependent Motion Optimization in Reduced Velocity Space

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

traj5

traj1

traj1 traj4

traj3

traj3

Left Group of Trajectories:
v

0
=0.6, ω

0
=1.4

v
1
 ∈ [0.44, 0.7] ω

1
 ∈ [1.08, 1.72]

trajectories for
∆ t=0.2s
(in black color)

Right Group of Trajectories:
v

0
=0.6, ω

0
=0.2

v
1
 ∈ [0.44, 0.7] ω

1
 ∈ [−0.12, 0.52]

C

D

C
D

A B

A

B

o o

E E

Figure 6.5: Trajectories (in black color) along which robot moves at admissible veloc-
ities for a duration of ∆t = 0.2s, and trajectories (in blue color) that robot undergoes
for it to be stopped subsequently.

being over-estimated:

sstop(O) ≈

∞, if obs
⋂

γ = ∅
|Ôobs|, else if obs

⋂
ÔE 6= ∅

sstop(O)
�

AB
E + |ÔE|, else if obs

⋂
EÂB 6= ∅

sstop(O)
�

CD
�

AB
+ |ÔE|+ |E, ÂB|, otherwise,

(6.17)

where sstop(O)
�

AB
E is part of the allowed travel distance sstop(O) counted from E to arc

ÂB while sstop(O)
�

CD
�

AB
is part of sstop(O) counted from arc ÂB to arc ĈD, and |Ôobs|

is the arc (whose radius is approximated as v0/ω0) distance from O to the obstacle(s),

respectively.

Then we are able to compare the value of the allowed travel distance sstop(O) with

that of the furthest arc length s(tstop) [as in Eq. (6.16)]. Collision-free motion can be

ensured if the following constraint is satisfied:

s(tstop) ≤ sstop(O), i.e.
v0 + v1

2
∆t +

v2
1

2amax

≤ sstop(O). (6.18)

Given that v1, ∆t and amax are all nonnegative values, the limit of maximum

translation velocity due to the obstacle constraints, vstop, may be derived as follows:

Vs = {(v1, ω1)|v1 ≤ vstop = −amax∆t
2

+

√
amax(2sstop(O)− v0∆t) + a2

max∆t2

4
}.
(6.19)

126

6.3 Situation-dependent Motion Optimization in Reduced Velocity Space

Target Node

(v0, w0)

0 0/� � ��

Admissible
trajectories

 5����

 3����

Admissible
velocities

0

0 0(,)v ω

ω

v

D

C

E

B

A
Trajectories
for robot to
be stopped

(a) ω ≥ 0.

Target

(v0, w0)

0 0/� � �� Admissible
trajectories

Admissible
velocities

0

0 0(,)v ω

ω

v

B
A

C
D

Trajectories
for robot to
be stopped

�(CD)
����
�

E

(b) ω < 0

Figure 6.6: Illustration of allowed travel distance sstop(O) for the robot to safely stop
without touching obstacles.

In comparison, Dynamic Window approaches consider velocities that do not hit an

environment obstacle based on only the chosen velocity command and the assumption

of circular robot motion:

{(v1, ω1)|v1 ≤
√

2dist(v1, ω1)amax, ω1 ≤
√

2dist(v1, ω1)εmax}, (6.20)

where the function dist(v1, ω1) represents the distance to the closest obstacle on the

curvature defined by the velocity pair (v1, ω1), measured by the product of the radius

of the circular trajectory r = v/ω and the angle of the circular path that touches the

nearest obstacle.

Combining Eqs. (6.10) and (6.19), the search space of admissible and collision-free

velocities in this research will be

V1
4
= [v1, v1]× [ω1, ω1] = Va

⋂
Vs. (6.21)

6.3.2 Motion Optimization in Event of Potential Collision

Provided that the robot has physical dimensions, the admissible region which

covers all admissible trajectories is expanded by a radius defined as Eq. (6.2) before

sstop(O) is computed. To reduce the computational load, we consider only a subset of

127

6.3 Situation-dependent Motion Optimization in Reduced Velocity Space

laser scans, which are of range within the maximum possible traveled distance that

is determined by the current robot speed and the dynamics of the robot.

Situations of potential collision with obstacles and no potential collision are dealt

with different strategies when searching for an optimized motion. In this chapter,

potential collision is said to exist if and only if any laser scan of the subset falls

within the expanded admissible region. The main task under this situation is to avoid

collision with obstacles while approaching, if possible, the intermediate waypoint (or

the target, denoted as g). The following are the optimization targets when searching

for a desired motion command:

i) Move to space with a bigger opening. The movement of the robot is now

expected to drive it to a place that is safe from collision with obstacles. In

addition, alignment with the target or convergence to it is now of low priority.

ii) Direct connectivity with the target. To avoid being trapped in local min-

ima, it is important to ensure a direct (straight-line) connectivity between the

resulting robot position q1(x1, y1) (corresponding to velocity (v1, ω1)) and the

position of the target qg.

The requirement of Item (i) results in the robot favoring a rotation that drives

it to a space within a subset of admissible angular velocities. Before searching for

an optimized motion, the rotational velocity is randomly assigned a value within the

favorable set of angular velocities which drive the robot to the space with bigger

opening. This favorable set, denoted by [ωα, ωβ], is determined when sstop(O) is

computed.

Item (ii) is to ensure that the robot is able to reach each target, while it is

noted that generally reactive planning methods (including direction and velocity space

approaches) may get trapped in local minima. Collision test is carried out between

the obstacle points and the rectangular ray expanded from the line segment q1qg. A

cost function about connection cost is defined as follows:

linkcost(q1,qg) =

1, if C(q1, renlarge)
⋂

obs 6= ∅
1
2
, if Υ

q
g

q
1

(renlarge)
⋂

obs 6= ∅
0, otherwise.

(6.22)

The objective function to be evaluated in this situation is defined as follows:

fc,1 = cv
|min(v0,v1)/2−v1|

vmax
+ cllinkcost(q1,qg), (6.23)

128

6.3 Situation-dependent Motion Optimization in Reduced Velocity Space

where cv and cl are weights to adjust the importance of each item, and the first term

in the right hand side of the equation indicates a preference for the robot to travel

at around half of the minimum value between the maximum allowed speed and the

current speed, i.e. min(v0, v1).

6.3.3 Motion Optimization in Absence of Potential Collision

The robot under this situation is expected to be commanded to approach the inter-

mediate waypoint as fast as possible. Specifically, the following are the optimization

targets when searching for a suitable robot motion:

i) Better alignment with the target. The alignment of the robot heading at

q1 with the target should be relatively favorable compared with other motion

candidates. It will be maximized if the robot faces directly to the target.

ii) Decreasing distance to the target. The distance of q1 from the target

should decrease w.r.t. that of q0. This is to ensure that the robot converges to

each waypoint given by the planner.

iii) Direct connectivity with the target. It will be favorable if there exists a

direct (straight-line) connectivity between q1 and the target.

First the robot’s new pose q1 is obtained through integration as in Eq. (6.7).

Item (i) can be measured by the difference between θb
g and θb1

g , the target direction

in the current robot body frame {b}, and that in the final robot body frame {b1}. In

addition, the rotation should not be too large, as it accounts for localization errors

(but this is of lower priority compared to the alignment to the target). A certain

angular acceleration may occur when adjusting the angular velocity, and thus the

orientation change, θb
1, should be computed as follows, rather than being evaluated

by ω1∆t as is commonly done:

θb
1 = θ1 − θ0 =

1

2
ε∆t2 + ω0∆t =

1

2
(ω0 + ω1)∆t. (6.24)

Item (ii) is evaluated directly based on the difference between the distances of the

target from q1 and from q0. As before, Item (iii) can be evaluated via Eq. (6.22).

A minimization objective function is then designed as follows:

fc,2 = cg
|θb1

g |−|θb
g |

π
+ cd(|q1qg| − |q0qg|) + cllinkcost(q1,qg) + cθ

|θb
1
|

ωmax
4
= f g

c,2 + fd
c,2 + f l

c,2 + f θ
c,2,

(6.25)

129

6.3 Situation-dependent Motion Optimization in Reduced Velocity Space

where cg, cθ, cd and cl are weights to adjust the importance of each term.

The “stage” of the robot’s current motion is determined according to the dis-

tances from the robot to the target waypoint and to the start waypoint (qs), and is

categorized as follows:

stage =

STarget(VeryClose), if |q0qg| < dreached

STarget(Close), else if |q0qg| ≤ max(dclose, v0)

SStart, else if |qsq0| ≤ dclosetostart

SMiddle, otherwise,

where dreached < dclosetostart < dclose holds for the constants.

The parameter cd is defined as follows such that decreasing distance to the target

is preferred in the stage of SMiddle:

cd =

{
c∗d, if in SMiddle and |q1qg| > |q0qg|
0, otherwise,

(6.26)

where c∗d [and c∗θ in Eq. (6.27)] is a pre-defined constant. In addition, only motions

satisfying f g
c,2 +fd

c,2 < 1 can be accepted in order to facilitate convergence to the goal.

The parameter cθ is defined as follows, in view that bigger rotations are allowed

when the robot is close to the start/target:

cθ =

{
c∗θ, if stage = SMiddle

c∗θ/2, otherwise.
(6.27)

6.3.4 Optimization Algorithm in Reduced Velocity Space

The objective (minimization) functions (6.23) and (6.25) are highly nonlinear.

The solutions to them might be obtained only via numerical approaches. In this

research, they are searched in the discretized set of velocity space. Algorithm 9

presents the procedure of obtaining a series of optimized motions for the robot to

reach the specified waypoint. Uni rand(min,max) is a uniform random function.

Unlike traditional velocity space approaches, translation velocity or rotation ve-

locity is chosen before optimization is carried out. As shown in the procedure

choose speed (Algorithm 10), if no potential collision is detected, typically the ro-

bot favors a relatively low but accelerated speed when it moves from the start, a

relatively low and decelerated speed when it is close to the target, and relatively

high speed in the middle of moving to the target. In event of potential collision, as

130

6.3 Situation-dependent Motion Optimization in Reduced Velocity Space

Algorithm 9 MotionOptimization(waypoint qg)

1: while qg is not reached do
2: Update (v0, ω0) with odometry sensory data.
3: wait until a new laser scan is ready.
4: Va ← (v0, ω0) and robot dynamics. . Eq. (6.10)
5: sstop(O), favorite set [ωα, ωβ] ← v0, ω0, Va, laser scan. . Eq. (6.18)
6: vstop ← sstop(O); V1 ← Va

⋂
Vs. . Eqs. (6.19), (6.21)

7: if potential collision detected then
8: fold

c,1 ← 2; OptVelFound ← FALSE.
9: while OptVelFound=FALSE do

10: ω1 ← (ωα + ωβ)/2 + uni rand(ωα, ωβ).
11: for each v1 ∈ “discretized set of”[v1, v1] do
12: if fc,1 < fold

c,1 then

13: fold
c,1 ← fc,1; OptVelFound ← TRUE; break. . Eq. (6.23)

14: end if
15: end for
16: end while
17: else
18: fold

c,2 ← 4; OptVelFound ← FALSE; searches ← 1.
19: while OptVelFound=FALSE do
20: v1 ← choose speed(v0, v1, v1, searches); searches++.
21: for each ω1 ∈ “discretized set of”[ω1, ω1] do
22: if fc,2 < fold

c,2 and fg
c,2 + fd

c,2 < 1 then

23: fold
c,2 ← fc,2; OptVelFound ← TRUE; break. . Eq. (6.25)

24: end if
25: end for
26: end while
27: end if
28: send velocity command (v1, ω1) to robot.
29: end while

Algorithm 10 choose speed(v0, v1, v1, searches)

1: Step 1: Adjust v1 if necessary according to Stage:
2: SStart: v1 ← v0 + 0.5 · as,max ·∆t, if v0 < vmax/4.
3: SMiddle: k ← 1 if v0 < vmax/2, k ← 0.5 otherwise; v1 ← v0 + k · as,max ·∆t.
4: STarget(VeryClose)/STarget(Close):
5: if target is the goal or the 2n last waypoint then
6: if STarget(VeryClose) then
7: v1 ← vmin.
8: else
9: v1 ← v0 − amax ·∆t, if v0 > vmax/2.

10: v1 ← v0 − 0.5 · amax ·∆t · v0/(vmax/4), if v0 ∈ [vmax/4, vmax/2].
11: end if
12: else
13: k ← 0.5 if v0 > vmax/2, 0.25 if v0 ∈ [vmax/4, vmax/2], 0 otherwise.
14: k ← k · 1.5 if STarget(VeryClose). v1 ← v0 − k · as,max ·∆t.
15: end if
16: Step 2: Obtain v1 by adding some variation:
17: if searches > 1 then
18: v1 ← v1 + uni rand(−vmin, vmin) · (v1 < 2vmin?0.5 : 1).
19: end if
20: v1 ← v1 if v1 < v1; v1 ← v1 if v1 > v1.

131

6.4 Simulation and Experimental Results

shown in Algorithm 9, rotation velocity is set as the median value of the favorable

set [ωα, ωβ].

Search in the two dimensional velocity space is thus reduced to one dimensional

one. Of course, if, under the chosen translation/rotation velocity, no satisfactory ro-

tation/translation velocity can be found, another translation/rotation velocity would

be chosen for a new search.

In the process of generating a motion command, alignment to the target and

convergence to it are considered with high priority, which are typically not taken into

account by velocity space approaches. Waypoints in this research are designed in such

a way that each pair of adjacent waypoints are visible to each other without being

blocked by obstacles in the obstacle-expanded grid map. By ensuring connectivity and

a decrease in the distance/angle to the target waypoint when possible, and applying

the above velocity choice strategy with target-distance lookahead, the robot is able

to reach a neighborhood area (radius < dreached) of the goal or a second last waypoint

(for the case of “Possible Path”). For other kinds of waypoints, the robot need to

reach a neighborhood area of bigger size in order to perform less deceleration in the

robot speed. No investigation has been made on landing the robot at a target exactly

considering it is beyond the research’s main topics.

6.4 Simulation and Experimental Results

The proposed hierarchical framework was implemented in Linux/C programming

language within the CARMEN architecture (Appendix C). In simulations and ex-

periments, the same set of parameter values as shown below were used:

• Differential drive robot is circular and with radius 0.406 m.

• A laser rangefinder is mounted in the front of the robot. Its detectable range is 50

m, angular resolution 1◦, and sampling rate 5 HZ.

• In simulations, errors (both range error and azimuth error) were introduced to the

perceptions of the environment.

• Scan matching is used for the localization of robot poses.

• Computation and graphics display were performed on a Pentium IV PC (CPU 2.4G

HZ and memory 1G byte) unless otherwise stated.

132

6.4 Simulation and Experimental Results

6.4.1 Reactive Point-To-Point Target Tracing

For comparison purpose, a reactive local motion planner is presented here which

drives the robot from one waypoint to the next, which is provided by the same high-

level path planner. A point-to-point motion command is generated4 reactively as

follows upon a receipt of perception sensory data:

(tran, rot) =

{
(0, rotmax), if |θb

g| >= θmax

(min(tranmax, |q0 − qg|), θb
g), otherwise,

(6.28)

where tranmax and rotmax are the maximum allowed translational distance and the

maximum allowed rotational angle for a smooth motion, respectively, and θmax (≤
rotmax) is a threshold angle – when the magnitude of θb

g exceeds it, the robot will be

commanded to rotate only.

With the above strategy, the robot will try to track a straight line leading to the

current target node from its current position, such that the distance traveled will be

minimized unless the target waypoint’s direction w.r.t. the robot is relatively big –

in that case, the robot will be commanded to rotate (only) to face its front directly

to the waypoint before further approaching it.

In the simulation and experimental tests presented in this subsection, additional

parameters were set as follows:

• Maximum linear, and angular velocities of the robot are vmax = 0.30 m/s, and ωmax =

1.0 rad/s, respectively. tranmax = 0.30 m and rotmax = 0.20 rad.

• Resolution of global grid maps is 0.025 m×0.025 m per cell, and size of the maps is

100 m × 100 m.

• Safety margin coefficient cenlarge is set as 1.5 in simulations and 2.0 in experiments.

A simulation test was conducted where the position of the goal relative to the

initial robot pose is (13.65, 14.83). Total time taken by the robot to reach the goal

is 279.00 s, and the length of the entire path is 42.62 m. Another simulation test

was conducted in the same environment. Total time taken by the robot to reach

the goal, (-11.4, -20.18), is 311.23 s, and the length of the entire path is 44.97 m.

The velocity profiles of the two simulation tests are depicted in Fig. 6.7(a) and Fig.

6.7(b), respectively. In the first simulation, the average speed (which has accounted

4which is subsequently converted to an optimized velocity command using a certain controller –
this of course needs to be supported by the system.

133

6.4 Simulation and Experimental Results

for the periods when the robot was stopped during a search) is 0.153 m/s, about

half of the max speed setting. In another simulation test, the average speed is 0.154

m/s, again about half of the max speed setting. It is also noted that sometimes the

actual velocities became zero, during which the robot was stopped for replanning a

new path.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 50 100 150 200 250

−1

−0.5

0

0.5

1

TIME (sec)

ROTATION VELOCITY PROFILE.

(a) First simulation result.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 50 100 150 200 250
−1

−0.5

0

0.5

1

TIME (sec)

ROTATION VELOCITY PROFILE.

(b) Second simulation result.

Figure 6.7: Profiles of translation and rotation velocities of two simulation tests of
point-to-point target tracing.

The Magellan Pro robot (see Appendix B) was used for experiments. The desktop

PC for computation (mapping and path planning) and displaying is equipped with

a Pentium III 900M CPU and 256M memory. For the safety reason, the enlarging

radius is set as 2 times of the robot’s radius. Fig. 6.8 shows some of the scenes

captured when the experiment was carried out.

The goal relative to the initial robot pose is approximately (3.6, 6.3). Fig. 6.9

shows the sequence of the robot trajectories (denoted by red circles of the robot

size) right before each search and the path nodes or waypoints (denoted by small red

squares) obtained subsequently by that search. Green color denotes the expanded

part of the grid map that is supplied to search.

134

6.4 Simulation and Experimental Results

(a) Robot started from its initial
position.

(b) Corridor environment in ex-
periment.

(c) Robot stopped.

Figure 6.8: Snapshots of the experimental test. Robot was stopped by setting the
original initial position as the target.

(a) Path nodes 1 (b) Path nodes 2 (c) Path nodes 3 (d) Path nodes 4

(e) Path nodes 5 (f) Path nodes 6 (g) Path nodes 7 (h) Final trajectories

Figure 6.9: Sequence of path nodes (denoted by small red squares) obtained in each
search and final robot trajectories in the experimental test.

135

6.4 Simulation and Experimental Results

6.4.2 Simulation Results of Optimized Dynamic Motion Plan-

ning

Additional parameters were set as follows in simulations and experiments of opti-

mized dynamic motion planning:

• Robot’s dynamic constraints are vmax = 0.8 or 1 m/s, ωmax = 2.0 rad/s, amax = 1.2

m/s2, as,max = 0.5 m/s2, and εmax = 2.0 rad/s2. In addition, vmin is set as 0.06 m/s.

• Resolution of global grid maps is 0.05 m×0.05 m per cell.

• Safety margin coefficient cenlarge is set as 1.3.

• Optimization parameters are set as cg = 1, c∗θ = 0.2, c∗d = 10, cv = 1, and cl = 1.

• dreached = 0.1 m, dclose = 0.3 m, dclosetostart = 0.15 m.

Normal Stop Setting

In the first simulation test (of the optimized motion planning approach), the whole

process of navigation to the goal took the robot 12 times of search. Fig. 6.10 shows

the sequence of incremental search. Each diagram plots grid map (supplied to the

search), path nodes (denoted by small squares in red, and wired to their adjacent

nodes), and robot trajectories.

Fig. 6.11 shows the laser measurements and the final robot trajectories of this

test, where each robot pose is plotted as a circle of the robot size in red. Laser scans

were continuously added to the plot without erasing previous ones along with the

progress of navigation. To reach the goal, the robot took 83.44 s and traveled for a

distance of 37.76 m.

The velocity profiles obtained in this simulation are depicted in Fig. 6.12. It can

be seen that the translation and rotation velocities were frequently adjusted, which

was to speed up the robot when it was clear of obstacles or to avoid (potential)

collision with obstacles. The average speed (which has accounted for the periods

when the robot was stopped during a search) is 0.487 m/s. In addition, it can be

seen that both the translation and rotation velocities are relatively smooth except

that some vibrations of relatively small magnitude occur at some places. It is also

noted that, sometimes, the actual velocities became zero, during which the robot was

stopped for replanning a new path.

136

6.4 Simulation and Experimental Results

(a) Result of 1st search. (b) Result of 2nd search. (c) Result of 3rd search.

(d) Result of 4th search. (e) Result of 5th search. (f) Result of 6th search.

(g) Result of 7th search. (h) Result of 8th search. (i) Result of 9th search.

(j) Result of 10th search. (k) Result of 11th search. (l) Result of 12th search.

Figure 6.10: Path nodes obtained by each search in first simulation test.

137

6.4 Simulation and Experimental Results

Figure 6.11: Laser scans and robot’s final trajectories in the first simulation (robot
navigated from top left to bottom right). The position of the goal relative to the
initial robot pose is (11.28, -16.14), or they are of straight-line distance 19.69 m.

Another simulation test was conducted in the same environment. The goal was

located at (10.27, -22.00) relative to the robot’s initial pose, or the straight-line dis-

tance between the start and the goal is 24.28 m. Fig. 6.13(a) shows the laser scans

and the final robot trajectories (circles of the robot size in red). Fig. 6.13(b) plots

the map supplied to the last search as well as the robot trajectories as a series of dots

(the robot can be taken as a point in the C-space). The total time taken by the robot

to reach the destination is 79.80 s, and the length of the entire path is 37.53 m. This

result is similar to that of the first simulation test.

The velocity profiles of this simulation test are depicted in Fig. 6.14. The average

speed is 0.469 m/s.

Slow Stop Setting

In order to achieve a smoother stop when needed, we attempted to use as,max

instead of amax in Eqs. (6.15) and (6.19) to compute tstop and sstop(O). In addition,

the maximum speed is set as vmax = 0.8 in this subsection. The third simulation test

was carried out in the same environment as that of the first simulation test, while

the fourth simulation test in a corridor environment. The velocity profiles of the two

simulation tests are depicted in Fig. 6.15(a) and Fig. 6.15(b), respectively. In the

third simulation, the average speed is 0.355 m/s, while the average speed is 0.370 m/s

in the fourth simulation.

138

6.4 Simulation and Experimental Results

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 10 20 30 40 50 60 70 80
−2

−1

0

1

2

TIME (sec)

ROTATION VELOCITY PROFILE.

Figure 6.12: Profiles of translation and rotation velocities of the first simulation test.

Fig. 6.16(a) shows the laser scans and the final robot trajectories obtained by the

fourth simulation test. The goal was located at (-10.69, -9.22) relative to the robot’s

initial pose, or a straight-line distance of 14.11 m. The total time taken by the robot

to reach the goal is 244.94 s, and the length of the entire path is 86.96 m. Compared

with the third simulation test, it took the robot much more time to reach the goal

that is closer to the robot’s initial pose. The explanation of this could be that at

some key turning points, the partial map led the robot to decide a path that is not

so optimal in the global sense. In a structured environment like the one in this test,

the robot tends to travel a unnecessarily longer distance before it is able to “realize”

it.

6.4.3 Experimental Results of Optimized Dynamic Motion

Planning

The Magellan Pro robot was used for experiments. The deceleration limit amax

was set to be 1.0 m/s2 instead of 1.2 m/s2, because because it was observed that,

when moving at its maximum speed limit, the robot may easily become unstable if

it is exerted a too big deceleration (close to or around 1.2 m/s2). Experiments were

carried out in an unknown, unstructured laboratory environment as shown in Fig.

6.17.

139

6.4 Simulation and Experimental Results

(a) Occupancy grid map and robot trajectories. (b) Map supplied to search.

Figure 6.13: Robot’s final trajectories and final grid maps of second simulation test.

In the first experiment, the goal relative to the initial robot pose was set to be

(3.5 -5.2). The size of grid maps is 30 m × 30 m. Fig. 6.18 shows the robot

trajectories (denoted by solid lines) right before each search and the path nodes

(denoted by squares) obtained subsequently by that search. It is shown that the

hierarchical algorithm is able to lead the robot to get closer to the goal incrementally.

In addition, appropriate, optimized motions can be produced to drive the robot to

its intermediate target, which might be located close to obstacles.

At the same time of online map building and displaying of the current laser scan

and the robot trajectories, a video was taken during the experimental test. Fig. 6.19

shows the video captures when the robot was to search a path or when the robot was

stopped.

The velocity profiles of this test are depicted in Fig. 6.26. The average speed is

about 0.289 m/s. The velocity profiles of another test, which was carried out in the

same environment, are depicted in Fig. 6.20. The average speed is about 0.337 m/s,

a little bit higher than that of the previous experiment. The translation and rotation

velocities are smoother than those obtained in the simulations. This is attributed

to the fact that a robot in reality is not always able to rapidly track the motion

commands, that is, the actual robot velocities will change more smoothly than the

commanded ones as long as the change in the commanded ones are not too big. No

trajectory controller other than a PID controller has been used in this research for

140

6.5 Discussions and Comparisons

0 10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 10 20 30 40 50 60 70 80
−2

−1

0

1

2

TIME (sec)

ROTATION VELOCITY PROFILE.

Figure 6.14: Profiles of translation and rotation velocities of second simulation test.

the robot to track the commanded velocity. On the other hand, the average speeds

are slightly less than those indicated in the simulation tests.

In another experiment, the goal relative to the initial robot pose is approximately

(3.2 -5.2). Fig. 6.21 shows the sequence of the robot trajectories (denoted by solid

lines) right before each search and the path nodes (denoted by squares) obtained

subsequently by that search. The velocity profiles of this test are depicted in Fig.

6.21(g). The average speed is significantly less than those indicated in the previous

experiments. This is because the velocity commands were sent to the robot only

upon a receipt of laser scan, i.e. about every 0.2 s, rather than upon a receipt of base

message, i.e. about every 0.1 s –which is the right way to command the robot to the

desired one (see Appendix B.2 for more explanations).

At the same time of online map building and displaying of the current laser scan

and the travel robot trajectories, a video was taken during this experimental test.

Fig. 6.22 shows the video captures when the robot was to search a path or when the

robot was stopped.

6.5 Discussions and Comparisons

141

6.5 Discussions and Comparisons

0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 10 20 30 40 50 60 70 80 90

−1

−0.5

0

0.5

1

1.5

2

TIME (sec)

ROTATION VELOCITY PROFILE.

(a) Third simulation result.

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 50 100 150 200 250
−2

−1

0

1

2

TIME (sec)

ROTATION VELOCITY PROFILE.

(b) Fourth simulation result.

Figure 6.15: Velocity profiles of the third and fourth simulation tests.

(a) Laser scans and robot’s trajectories. (b) Path nodes returned by the last search.

Figure 6.16: Robot’s final trajectories, and grid map for A* search in the fourth
simulation test (robot navigated from top to bottom).

142

6.5 Discussions and Comparisons

Figure 6.17: Magellan pro robot and laboratory environment for experiments.

6.5.1 Performance of Incremental Search

Table 6.2 presents the time used by each search in the four simulation tests, where

start nodes are excluded when counting the number of path nodes (waypoints). It

shows that a search of a map of scale 1600×1600 normally takes hundreds of ms or

less and occasionally (1 out of 11 or 1 out of 25 here) takes about 2 or 3 seconds

(note that localization, mapping and displaying modules cost much computational

resources). Table 6.3 presents the time used by each search in the three experimental

tests. The scales of grid maps are all 30 m × 30 m. Tens of other simulation tests

suggested that the time spent to find a solution is of the same level.

Fig. 6.23 plots a statistics of time used vs. different map scales. Generally,

the average value and the maximum value of search time increase with map size.

However, it is not a proportional relationship, because search is performed on free

space only (the size of which increases with each search) instead of the entire map. It

is shown that a search of such a map of scale 800×800 or 1200×1200 (60 m × 60 m)

takes average time of about 0.32 s (or less) and maximum time of about 0.96 s (or

less). This is acceptable for most of indoor applications considering that simultaneous

mapping and path planning is involved. When the map scale is 30 m × 30 m, the

search time drops to 0.053 s (average value) or 0.28 s (maximum value).

Note that display of three maps (grid map to represent the environment, map

for incremental search, and accumulated laser scans) at the same time costs much

computation power and time, considering that drawing/displaying is done every 0.2 s

143

6.5 Discussions and Comparisons

(a) 1st search. (b) 2nd search.

(c) 3rd search. (d) 4th search.

(e) 5th search. (f) Final robot trajectories.

Figure 6.18: Sequence of path nodes obtained in each search and robot trajectories
in the first experiment.

144

6.5 Discussions and Comparisons

(a) Searching for 1st path. (b) Searching for 2nd path.

(c) Searching for 3rd path. (d) Searching for 4th path.

(e) Searching for 5th path. (f) Robot was stopped.

Figure 6.19: Snapshots of the first experiment when the robot was to search a path
or when the robot was stopped.

145

6.5 Discussions and Comparisons

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 5 10 15 20 25 30 35 40

−2

−1

0

1

2

TIME (sec)

ROTATION VELOCITY PROFILE.

Figure 6.20: Profiles of translation and rotation velocities of the second experiment.

for as many as 1200×1200 pixels (for instance). If not for illustration purpose, display

of the three maps can be disabled in order to enhance the system’s performance (such

as reducing the time used by the planner). In addition, for indoor applications, the

detectable range of the laser scanner can be set as a smaller value (e.g. 20 m) instead

of 50 m, to further reduce the time/computation used by the map updating process

upon receiving of a new laser scan. It would be beneficial to apply these two measures,

although no obvious timing or computational issues have been observed on the system

throughout the simulation and experimental tests.

6.5.2 Robot’s Average Speed

Factors such as actuator capabilities could significantly influence the average speed

that a robot may achieve. Fig. 6.24 shows the average robot speeds grouped by

different dynamic settings. In the “simulation (slow stop)” group, as,max was used

instead of amax in Eqs. (6.15) and (6.19) to achieve a smoother and elegant stop. As

a result, the average speed dropped to 0.355 m/s or 0.370 m/s, compared to 0.469

m/s or 0.487 m/s in the “simulation (normal stop)” group. This is more obvious

in experiments – the average speed could drop to a third of that the values in the

“experiment” group. This observation can be explained by the fact that the robot

dynamics and the forward kinematics have been taken into account to compute the

146

6.5 Discussions and Comparisons

(a) Path nodes 1. (b) Path nodes 2. (c) Path nodes 3.

(d) Path nodes 4. (e) Path nodes 5. (f) Robot trajectories.

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 20 40 60 80 100 120 140
−1.5

−1

−0.5

0

0.5

1

1.5

TIME (sec)

ROTATION VELOCITY PROFILE.

(g) Profiles of translation and rotation velocities.

Figure 6.21: Sequence of path nodes obtained in each search and robot trajectories
and velocity profiles of the third experiment.

147

6.5 Discussions and Comparisons

(a) Searching for 2nd path. (b) Searching for 3rd path. (c) Searching for 4th path.

(d) Searching for 5th path. (e) Robot drove to goal. (f) Robot was stopped.

Figure 6.22: Some snapshots of the third experiment when the robot was to search a
path or when the robot was stopped.

value of sstop(O), which in turn determines the value of maximum translation velocity

due to the obstacle constraints as in Eq. (6.19). A decrease in amax (and thus tstop)

may cause a significant reduction in the allowed travel distance sstop(O), and the robot

thus need to accelerate or decelerate much more frequently even when the obstacles

are faraway.

The surroundings of the robot also have much influence on the average robot speed.

It, together with the maximum deceleration amax, determines the value of sstop(O).

Since the experimental environment is relatively obstacle-cluttered, the velocities were

adjusted more frequently as more often there is a need to avoid (potential) collisions

with obstacles. This explains why the robot’s average speed in the “experiment”

group (where amax is set to be 1.0 m/s2) is about 0.289 m/s or 0.337 m/s, and is a bit

lower than that of the simulated robot. This also explains why only a small reduction

is found in the average speed obtained by the simulation tests (less obstacle-cluttered

environments) in which as,max is used instead of amax.

Besides, the maximum speed setting has some impact on the possible average

speed. Nevertheless, a decrease of the maximum speed from 1 m/s to 0.8 m/s alone

may not result in a 20% decrease in the average speed. This can be easily seen from

the robot’s translation velocity profile – only for a small section of the whole time is

148

6.5 Discussions and Comparisons

Table 6.2: Time Used by Search and Number of Path Nodes in Simulation Tests of
Optimized Motion Planning.

First Test Second Test Third Test Fourth Test Fourth Test(cont.)
Index of No. of Time No. of Time No. of Time No. of Time No. of Time
Search Nodes Used (s) Nodes Used (s) Nodes Used (s) Nodes Used (s) Nodes Used (s)
1 (14) 2 <0.01 2 <0.01 2 <0.01 2 <0.01 5 0.43
2 (15) 3 0.05 3 0.96 3 2.26 3 0.02 3 0.06
3 (16) 3 0.43 2 0.24 2 0.09 2 0.29 3 0.25
4 (17) 3 0.31 3 0.50 3 0.45 3 0.66 3 0.21
5 (18) 2 0.13 3 0.31 3 0.15 3 0.24 3 0.66
6 (19) 2 0.33 3 0.30 3 0.12 3 0.23 3 0.08
7 (20) 2 0.41 3 0.28 3 0.08 4 0.48 2 0.14
8 (21) 4 0.69 2 0.18 4 0.15 3 0.30 4 0.28
9 (22) 3 0.19 3 0.32 8 0.40 3 0.59 4 0.16
10 (23) 3 0.05 3 0.37 3 0.18 4 3.03 4 0.07
11 (24) 3 0.23 3 0.06 2 0.13 3 0.08 3 0.10
12 (25) 2 0.02 3 0.59 2 0.12

13 3 0.28
Map Size 1200 × 1200 800 × 800 2000 × 2000 1600 × 1600

Table 6.3: Time Used by Search and Number of Path Nodes in Experimental Tests
of Optimized Motion Planning.

First Test Second Test Third Test
Index of No. of Time No. of Time No. of Time
Search Nodes Used (s) Nodes Used (s) Nodes Used (s)

1 2 <0.01 2 <0.01 2 <0.01
2 3 0.04 3 0.02 2 0.04
3 3 0.05 3 0.09 3 0.11
4 4 0.02 3 0.01 4 0.06
5 2 0.02 3 0.09 3 0.28
6 2 0.01

Map Size 600 × 600 600 × 600 600 × 600

the robot able to reach the maximum speed.

It is noted that the maximum speed setting (1 m/s, determined based on the

actuator capability of the Magellan Pro robot) and the average speed in our tests could

be sub-par to that of state-of-the-art, though they are already high for a commonly

used indoor mobile robot. The performance of the robot is, however, not necessarily

sub-par, considering that the evaluation should instead be judged based on average

robot speed, smoothness of motion, robustness in collision avoidance, convergence to

the goal, optimality of path, among others, under the same conditions such as the

test environment, and the availability of a priori map or a global path. Even when

the robot speed alone is evaluated, the nature of our methodology should allow the

robot to perform collision-free navigation at a higher average speed, under a higher

149

6.5 Discussions and Comparisons

0

0.5

1

1.5

2

2.5

3

600*600 800*800 1200*1200 1600*1600 2000*2000

NUM OF MAP CELLS

TI
M

E
 (s

)

AVERAGE TIME (s)
MAX TIME (s)

Figure 6.23: Statistics of time used vs. different map scales. The “600×600” group
includes all the three experimental results, as they use grid maps of the same size.

maximum speed setting, or if a global path to the goal is provided (i.e. the robot is

not required to stop in order to find a path to the goal).

6.5.3 Collision Avoidance When Very Close to Obstacles

The waypoints provided by the high-level planner are not always far from obstacles,

though obtained in a way not too close to obstacles. As a consequence, in some

instances, the robot needs to manoeuvre in obstacle-cluttered surroundings when

approaching some waypoints. Figs. 6.25 (a)-(d) present some snapshots (with relative

time stamp) of the first experiment before the robot was stopped for the third search

[Fig. 6.25 (e)]. The robot was approaching a waypoint very close to the cabinets.

Figs. 6.25 (f)-(g) show the laser measurements, the robot’s location, and the motion

direction, where both the robot dimensions and the obstacles are plotted in the same

scale. The robot trajectories when the robot was stopped are plotted in Fig. 6.25

(h).

The corresponding translation velocity profile (Fig. 6.26) indicates that the robot

started to decelerate from a speed of around 0.75 m/s at the time of about 3 seconds

(see Fig. 6.25(a)) before the third search, which is located around 17.5 s in the velocity

profile. From then on, the speed was observed to decrease rapidly (probably at the

robot’s maximum deceleration capability). Finally the robot was able to successfully

stop itself with a small distance from the cabinets, as can be seen from the robot

trajectories plotted in Fig. 6.25(h).

150

6.5 Discussions and Comparisons

AVERAGE SPEED (m/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

SIMULATION (SLOW STOP) SIMULATION (NORMAL STOP) EXPERIMENT

LOW

HIGH

Figure 6.24: Average speeds achieved under different dynamic settings: “simulation
(slow stop)” (the third and fourth simulation tests, Chapter 6.4.2), “simulation (nor-
mal stop)” (the first and second simulation tests, Chapter 6.4.2), “experiment” (the
first and second experimental tests, Chapter 6.4.3).

As shown in Figs. 6.19(d) and 6.19(e), the robot passed the door, a narrow

passage, between the 4th and 5th searches (more accurately, during the period of

approaching the 1st waypoint obtained by the 4th search). The translation velocity

profile indicates that the robot accelerated itself when passing the door.

Fig. 6.27 shows the result of another simulation test taken under the “slow stop”

setting, where the robot managed to navigate through a series of narrow surroundings

and reach the goal.

Since the incremental search algorithm heavily relies on the accuracy of grid maps,

the robot may be unable to accurately reach the waypoints or the goal due to localiza-

tion errors. Fortunately, the robot is able to efficiently avoid collision with obstacles

reactively based on sensory data with the proposed approach. Fig. 6.25(h) shows

that the cabinets are not properly plotted on the map of C-space, as some misalign-

ment happened, but the robot was able to approach the waypoint without touching

the obstacles. Nevertheless, it will be beneficial to implement a localization method

other than scan matching used by this research in order to correct localization error

before it evolutes to be large.

Though moving obstacles have not been explicitly considered, the proposed ap-

proach is able to deal with mobile robot path planning in non-stationary environments

consisting of moving obstacles. The allowed travel distance sstop(O) is reactively com-

puted based on the surroundings and the robot’s deceleration capability. Thus any

151

6.5 Discussions and Comparisons

(a) 2.8 s before stop. (b) 2.1 s before stop. (c) 1.5 s before stop. (d) 0.4 s before stop.

(e) Robot was stopped. (f) 1.7 s before. (g) 0.5 s before. (h) Trajectories.

Figure 6.25: Snapshots of the first experiment before the third search. Diagram (a)-
(e): snapshots of the robot in the experiment. Diagram (f)-(g): snapshots of current
laser scan and robot’s motion direction. Diagram (h): robot trajectories when the
robot was stopped.

change of obstacles is able to be converted to proper velocity limit for the robot to

perform necessary collision avoidance. The control period and interval of laser scan

should be short enough for the robot to react in a timely way against the moving

speed of the obstacles. In comparison, there exist motion planning approaches which

explicitly consider moving obstacles in a dynamic environment [5, 114–116]. They

assume that the trajectories or velocities of the moving obstacles are known a priori,

or measurable. Nevertheless, if the velocities of the moving obstacles are measurable,

the proposed robot system is able to detect potential collision more accurately via

intersection test between the predicted extended trajectories and the sensed obstacles

expanded by the trajectories (in the same period) of the moving obstacles.

6.5.4 Comparison with Other Approaches

The results of optimized dynamic motion planning compares favorably with those

created by the reactive point-to-point target tracing algorithm presented in Chapter

6.4.1, which reactively generates a point-to-point motion command based on the rel-

ative position of the target waypoint. Optimized dynamic motion planning produces

relatively smooth velocity profiles and relatively high speed. More importantly, it is

robust in obstacle avoidance. In contrast, instead of dealing with collision checking

directly, point-to-point target tracing attempts to avoid collision by setting a speed

152

6.5 Discussions and Comparisons

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

−0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

−2

−1.5

−1

−0.5

0

0.5

1

1.5

TIME (sec)

ROTATION VELOCITY PROFILE.

1st search
2nd search

3rd search

4th search
5th search

Figure 6.26: Profiles of translation and rotation velocities of the first experiment.

limit as small as 0.3 m/s and by setting a bigger safety margin coefficient cenlarge (1.5

in simulations and 2.0 in experiments). With such measures alone, the robot may

still be endangered, as have been found in both simulations and experiments.

The Nearness Diagram algorithm [83] navigates a robot reactively based on sit-

uations of the surroundings and the goal’s relative position to simplify the difficulty

of navigation in troublesome scenarios. The work in [84] further considers shape and

kinematics together in an exact manner in its obstacle avoidance process. However,

being directional approaches, they may be inadequate to take the robot dynamics

into account, which may result in slow or jerky movements.

Dynamic Window approaches and Nearness Diagram assume circular robot motion

in a control period and in the period for the robot to stop. Our collision avoidance

methodology has taken into account the existence of accelerations in varying the

current translation and rotation velocities to the commanded ones. In this way,

the predicted extended trajectories could be more accurate, and so is the value of the

allowed travel distance sstop(O) thus computed. Via computing the limit of translation

velocity with Eq. (6.19), the obstacle constraints are transformed to suitable velocity

limits for the robot to perform relatively high-speed navigation while avoiding collision

153

6.5 Discussions and Comparisons

(a) Robot’s final trajectories and global map. (b) Map for last search.

Figure 6.27: Robot’s final trajectories, and search map in a simulation test (robot
navigated from bottom to top).

when needed. In comparison, Dynamic Window approaches consider the stop distance

based on the chosen velocity command and the assumption of circular robot motion

as in Eq. (6.20).

Velocity space approaches (Dynamic Window approaches [86–88] or Curvature-

velocity method [90]) typically search in the velocity space for a velocity pair mini-

mizing a single objective function. The optimized motion command found in this way

may not be suitable for a real scenario. Our method attempts to use various strategies

and objective functions to cater to different situations that the robot is currently in

(e.g. the surroundings, and whether the robot is leaving or approaching a waypoint),

rather than trying to design a universally applicable single objective function. Each of

the weights mentioned in Chapter 6.3.2 was roughly assigned a value (same for all the

simulations and experiments) to indicate its significance relative to others. It is found

out that such a parameter set, without being fine-tuned, suffices for our program to

run successfully in different scenarios and for both simulations and experiments.

In the potential-field-based controllers proposed by Pathak and Agrawal [117], the

effects of dynamic constraints on the torque inputs to the robot motors are considered

directly using a dynamic model instead of the kinematic model. This might result in a

smoother control and a smoother robot trajectory. However, the obstacle constraints

have yet to be transformed to suitable torques for the robot to accelerate/decelerate

at the right time and in the right magnitude in order for high-speed navigation and

154

6.6 Summary

effective collision avoidance. In addition, differential drive mobile robots typically

accept translation and velocity control (only), and thus the torque-based control may

have to be converted back to velocity control via integration, as in the experiments

of [117].

There are a number of learning based methods for mobile robot motion planning,

for example, a method to detect dynamic local minima through learning [118], and

a probabilistic learning approach [119] to compute the feasible paths for the robots.

Some neural-network models [120, 121] were proposed to generate collision-free ro-

bot trajectories through learning. However, robot path planning is not efficient and

computationally expensive, especially in its initial learning phase. Though requiring

a certain amount of time in searching global optimal paths, the modified A* algo-

rithm only need to perform search periodically and inherits the robustness of the

A* algorithm in finding a path. Furthermore, the proposed collision avoidance tech-

nology enables the robot to move at a relatively high speed based on local sensory

information, which makes it robust to change of the environment.

6.6 Summary

This chapter has presented a hierarchical approach for incrementally planning

optimal paths and subsequently tracing them in unknown environments. The high-

level planner based on the modified A* algorithm is able to handle maps containing

unknown information and can robustly plan optimal (possible) paths incrementally.

Situation-dependent object functions and strategies, instead of a single objective func-

tion, are employed to search for an optimized, waypoint-directed motion in a reduced

one-dimensional velocity space. Accelerations in varying translation and rotation ve-

locities are taken into account, and obstacle constraints are transformed to suitable

velocity limits for the robot to achieve collision-free, relatively high-speed navigation.

Convergence to each target is achieved by ensuring connectivity and a decrease in

the robot’s distance/orientation angle to the target waypoint when possible. Exten-

sive simulation and experimental results verified the efficacy and robustness of the

proposed algorithm in incrementally obtaining a series of optimal paths, and success-

fully tracing them at a relatively high speed without collision with obstacles. Finally,

thorough discussions of the test results and comparisons with other approaches are

provided.

155

Chapter 7

Conclusions and Recommendations

The work presented in this thesis focused on the development of a framework for path

planning and motion planning for mobile robots with limited information about the

environment and subject to various robot constraints. In this chapter, the results

of the research work described in the previous chapters are summarized and the

major contributions of this work are reviewed. Suggestions for future work are also

presented.

7.1 Summary and Contributions

The research has covered modeling of nonholonomic mobile robots, sensor-based

path planning and motion planning, online map building, and simultaneous mapping

building and motion planning. It has examined and taken robot constraints into ac-

count in motion planning while ensuring the robot’s convergence to the goal. In this

thesis, an attempt has been made to develop necessary techniques and demonstrate

theoretically and empirically that the proposed solutions satisfy the constraints im-

posed by the overall problem. The principal theoretical and practical results include:

• Boundary Following Using Instant Goals and Globally Convergent

Path Planner (Chapter 3): A practical approach has been proposed for

a holonomic mobile robot to achieve the task of boundary following by con-

tinuously locating a series of Instant Goals, instead of assuming that a robot

is always able to properly follow an obstacle in an unknown, obstacle-cluttered

environment. One significance of this approach is that it may be used as a prac-

tical navigation function or behavior that is required by the Bug algorithms and

156

7.1 Summary and Contributions

a number of behavior-based navigation approaches. A potential field method

is used to perform reactive collision avoidance, which can be incorporated into

boundary following when needed.

Based on the boundary following function and a Bug-like strategy, we propose a

realistic sensor-based path planner with global convergence property. The robot

navigates in an unstructured, complex environment, and makes decisions based

on discrete, and noisy range data. By utilizing all available local information,

the path planner decides an optimal local direction to follow an obstacle. Com-

pared to the Bug algorithms, the proposed path planner is more practical as it

does not require ideal assumptions such as perfect sensing ability or boundary

following capability.

• PPC Curve for Smooth, Constrained Path Generation for Nonholo-

nomic Robots and Sensor-based Hybrid Path Planning (Chapter 4):

The PPC based geometric method generates a robot path that is smooth (con-

tinuous) and upper-bounded in curvature, and with a velocity profile satisfying

the robot dynamics, which is desirable for path planning for differential drive or

car-like robots. The robot constraints and the curvature requirement are exam-

inable for the velocity profile associated with the designed path. Two arbitrary

robot configurations, rather than two straight lines, are able to be connected.

For real-time, collision-free path planning, a simple yet efficient method utiliz-

ing the particular properties of the curve is proposed for collision test of the

complex curve.

The Instant Goal approach was further adapted and improved for differential

drive mobile robots by planning smooth paths and considering the robot dy-

namics. Each time a PPC based curve is constructed to test if it can smoothly

connect the current robot position with a candidate Instant Goal, such that

the generated path to it is smooth and satisfies the dynamic constraints. The

hybrid approach plans a series of motions before actually executing them, while

a motion is generated by a fuzzy controller for wall following to overcome the

limitation that sometimes the proposed approach might not be able to locate

an Instant Goal.

• A Practical Methodology of Online Map Building for Autonomous

Mobile Robots (Chapter 5): Bayesian theorem is used to update recent

157

7.1 Summary and Contributions

measurements to an occupancy grid map for its efficiency. The application of

incremental ML scan matching helps solve the problem of simultaneous local-

ization and map building (SLAM) in a simple way. Sensor fusion of laser and

sonar data with a selective method improves map performance in obstacle de-

tection and mapping accuracy. Collision avoidance is also made more robust

to obstacles by using both laser and sonar data. Finally, an off-line method is

implemented to convert the constructed grid map into a topological one, which

may be better suited for large maps and outdoor environment applications.

• A Hierarchical Framework for Incremental Path Planning and Opti-

mized Dynamic Motion Planning in Unknown Environments (Chap-

ter 6): This research has established a hierarchical framework, for producing

optimal paths robustly with a periodically updated map via deliberative path

planning, and for tracing subgoals at a relatively high speed free of collision

with obstacles. The following lists the main contributions of the framework:

i) A high-level planner based on a modified A* algorithm: the planner is

able to handle a map containing unknown information, and is robust in

finding optimal (possible) paths. Furthermore, addition of “obstacle cost”

ensures the waypoints planned located not too close to obstacles, which

helps subsequent motion planning and collision avoidance.

ii) Accelerations in a control period are considered for the first time for dy-

namic motion planning: this enables the system to accurately predict the

robot pose and trajectory resulting from a velocity command. The such

computed allowed travel distance sstop(O) allows obstacle constraints to be

transformed to suitable velocity limits – the robot is thus able to perform

high-speed navigation while avoiding collision when needed.

iii) Multi-situations are considered in searching for an optimized velocity pair

for the first time: various strategies and objective functions are defined

to cater to different navigation situations that the robot is in. In this

way, rather than trying to design a universally applicable single objective

function, the system is able to handle different situations more easily and

robustly. There is no need to fine-tune special parameters/weights to

make the optimized motion planning approach work.

158

7.2 Suggestions for Future Work

iv) Convergence to waypoints is ensured in local motion planning and thus

global convergence to the goal: in the process of generating a motion com-

mand, alignment to the target and convergence to it are considered with

high priority, such that the robot is able to reach each subgoal as expected.

This is normally not taken into account by velocity space approaches.

7.2 Suggestions for Future Work

After a review of this research work, this section presents the directions that are

recommended for extending the results developed in this thesis:

• One limitation of the Instant Goal approach is that it employs a potential

field based method for reactively avoiding collision with obstacles. The motions

generated may not be smooth, and may not be always feasible for a mobile robot

to achieve continuous motions. This problem has been partially addressed in

the improved Instant Goal approach by applying a PPC method for smooth,

feasible connection. A possible alternative is to apply the collision avoidance

algorithm of the hierarchical planning framework to achieve relatively high-

speed and smooth navigation.

• When applied to path planning for car-like robots in a sensor-based scenario, the

PPC based method magnifies its limitation that it may have a small probability

in finding a suitable solution based on limited information. This is because the

requirement of a minimum turning radius greatly limits the possible directions

of motions of a car-like robot, while the combined curve consisting of a PPC

curve or a half PPC curve covers only part of the many possible feasible paths.

If partial knowledge of the environment is available, a graph-search method may

be used to search for a solution made up by a combined curve in the searched

space. This may help enhance the possibility of finding a solution which could

be more optimized as well. However, the proposed collision test method might

not be applicable since in this case it must be performed in a discrete space.

In addition, it is assumed that a car-like robot moves at a relatively low speed,

which could be acceptable in a laboratory environment. However, for a high-

speed vehicle like a car in an outdoor environment, more investigations should be

made to ensure that the processes for motion planning and collision test satisfy

159

7.2 Suggestions for Future Work

the critical requirement of time. A possible solution is to develop an intelligent

steering method capable of learning and adapting to the new environmental

knowledge, like the behavior of a human being driving a car, such that an

autonomous car is able to achieve proper maneuvers in real-time in a dynamic

and changing environment.

• Localization errors could manifest themselves when the scale of the environment

becomes large, or a cycle of navigation is made. Due to the nature of a graph

search algorithm, the modified A* algorithm inevitably relies heavily on the

accuracy of the map that it used. Therefore, localization errors may prevent

the robot from accurately reaching the goal or a waypoint. An improvement

might be made to the current incremental Maximum Likelihood algorithm, such

that posterior poses can be corrected once a loop is determined to be closed.

This might mean halting the robot exploration so that the global map can be

realigned. Possible methods like Expectation Maximization Algorithms can be

considered. An alternative is to apply feature (such as corners, straight lines)

detection, or even an approach combined by both topological and geometric

mapping, to correct these obvious localization errors.

• 3D sensing (sonar, or 3D laser rangefinder) can be implemented in order to

improve the robustness of the proposed collision avoidance methodology, es-

pecially when the robot is tested in a highly dynamic environment involving

moving obstacles or consisting of more unstructured obstacles.

• Our work could be extended to the applications of multiple mobile robots. It

is well known that coordination or collaboration among multiple mobile robots

could enhance the robustness of a system to a failure of parts of robots and

improve the efficiency in accomplishing an assignment through proper task al-

location. Yet, the robot constraints, especially the robot dynamics, have seldom

been considered in the prevailing research activities on multi-robot path plan-

ning or exploration, where typically each robot is assumed to be able to move

exactly as commanded. Therefore, it would be interesting to extend our work,

especially the hierarchical framework of incremental path planning and opti-

mized dynamic motion planning to multi-robot applications. This extension

however might arouse additional problems due to the gap between the nature

of multi-robot applications and that of single-robot applications.

160

Bibliography

Bibliography

[1] J. C. Latombe, Robot Motion Planning. London: Kluwer Academic Publishers,

1991.

[2] V. Lumelsky and A. A. Stepanov, “Path-planning strategies for a point mobile

automaton moving amidst unknown obstacles of arbitrary shape,” Algorithmica,

no. 2, pp. 403–430, 1987.

[3] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile ro-

bots,” IEEE Transactions on Systems, Man and Cybernetics, vol. 19, no. 5,

pp. 1179–1187, 1989.

[4] Y. Koren and J. Borenstein, “Potential field methods and their inherent lim-

itations for mobile robot navigation,” Proceedings of the IEEE International

Conference on Robotics and Automation, vol. 2, pp. 1398–1404, Apr 1991.

[5] S. S. Ge and Y. J. Cui, “Dynamic motion planning for mobile robots using

potential field method,” Autonomous Robots, vol. 13, no. 3, pp. 207–222, 2002.

[6] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”

The International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[7] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle avoidance

for mobile robots,” IEEE Transactions on Robotics and Automation, vol. 7,

no. 3, pp. 278 –288, 1991.

[8] R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE

Journal of of Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

[9] R. C. Arkin, “Motor-schema-based mobile robot navigation,” The International

Journal of Robotics Research, vol. 8, no. 4, pp. 92–112, 1989.

161

Bibliography

[10] R. C. Arkin, “Behavior-based robot navigation for extended domains,” Adaptive

Behavior, vol. 1, no. 2, pp. 201–225, 1992.

[11] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial poten-

tial functions,” IEEE Transactions on Robotics and Automation, vol. 8, no. 5,

pp. 501–518, 1992.

[12] J. O. Kim and P. K. Khosla, “Real-time obstacle avoidance using harmonic

potential functions,” IEEE Transactions on Robotics and Automation, vol. 8,

no. 3, pp. 338–349, 1992.

[13] J. Barraquand and J. C. Latombe, “Robot motion planning: A distributed rep-

resentation approach,” The International Journal of Robotics Research, vol. 10,

no. 6, pp. 628–649, 1991.

[14] J. Barraquand, L. Kavraki, J. C. Latombe, T. Li, R. Motwani, and P. Raghavan,

“A random sampling scheme for path planning,” The International Journal of

Robotics Research, vol. 16, no. 6, pp. 759–774, 1997.

[15] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinodynamic

motion planning with moving obstacles,” The International Journal of Robotics

Research, vol. 21, no. 3, pp. 233–255, 2002.

[16] V. Lumelsky and T. Skewis, “Incorporating range sensing in the robot naviga-

tion function,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 20,

no. 5, pp. 1058–1069, 1990.

[17] I. Kamon and E. Rivlin, “Sensory-based motion planning with global proofs,”

IEEE Transactions on Robotics and Automation, vol. 13, no. 6, pp. 814–822,

1997.

[18] I. Kamon, E. Rimon, and E. Rivlin, “Tangentbug: A range-sensor-based nav-

igation algorithm,” The International Journal of Robotics Research, vol. 17,

no. 9, pp. 934–953, 1998.

[19] I. Kamon, E. Rimon, and E. Rivlin, “Range-sensor based navigation in three

dimensions,” Proceedings of the IEEE International Conference on Robotics and

Automation, vol. 1, pp. 163–169, 1999.

162

Bibliography

[20] S. Rajko and S. M. LaValle, “A pursuit-evasion bug algorithm,” Proceedings

of 2001 IEEE International Conference on Robotics and Automation, vol. 2,

pp. 1954–1960, 2001.

[21] B. H. Krogh and D. Feng, “Dynamic generation of subgoals for autonomous mo-

bile robots using local feedback information,” IEEE Transation on Automatic

Control, vol. 34, no. 5, pp. 483–493, 1989.

[22] H. Noborio, I. Yamamoto, and T. Komaki, “Sensor-based path-planning algo-

rithms for a nonholonomic mobile robot,” Proceeding of the IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pp. 917–924, 2000.

[23] T. Yata, L. Kleeman, and S. Yuta, “Wall following using angle information

measured by a single ultrasonic transducer,” Proceedings of 1998 IEEE Inter-

national Conference on Robotics and Automation, vol. 2, pp. 1590–1596, May

1998.

[24] A. Bemporad, M. D. Marco, and A. Tesi, “Sonar-based wall-following con-

trol of mobile robots,” ASME J. Dynamic Systems, Measurement and Control,

vol. 122, pp. 226–230, 2000.

[25] J. Taheri and N. Sadati, “A fully modular online controller for robot navigation

in static and dynamic environments,” Proceedings of 2003 IEEE International

Symposium on Computational Intelligence in Robotics and Automation, vol. 1,

pp. 163–168, 2003.

[26] M. J. Matarić, A distributed model for mobile robot environment-learning and

navigation. Master’s thesis, MIT, Cambridge, MA, Jan 1990.

[27] H. Choset, Sensor Based Motion Planning: The Hierarchical Generalized

Voronoi Graph. PhD thesis, California Institute of Technology, 1996.

[28] J.-S. Gutmann, T. Weigel, and B. Nebel, “A fast, accurate, and robust method

for selflocalization in polygonal environments using laser-range-finders,” Ad-

vanced Robotics Journal, vol. 14, no. 8, pp. 651–668, 2001.

[29] P. Newman, J. Leonard, J. Neira, and J. Tardós, “xplore and return: Experi-

mental validation of real time concurrent mapping and localization,” Proceed-

ings of the IEEE International Conference on Robotics and Automation, 2002.

163

Bibliography

[30] A. Elfes, “Sonar-based real-world mapping and navigation,” IEEE Journal of

Robotics and Automation, vol. 3, no. 3, pp. 249 –265, 1987.

[31] A. Elfes, Occupancy Grids: A Probabilistic Framework for Robot Perception

and Navigation. PhD thesis, Carnegie Mellon University, 1989.

[32] H. P. Moravec, “Sensor fusion in certainty grids for mobile robots,” AI Maga-

zine, vol. 9, no. 2, pp. 61–74, 1988.

[33] H. P. Moravec and A. Elfes, “High resolution maps from wide angle sonar,”

Proceedings of IEEE International Conference on Robotics and Automation,

vol. 2, pp. 116–121, Mar 1985.

[34] F. Gambino, G. Ulivi, and M.Vendittelli, “The transferable belief model in

ultrasonic map building,” Proceedings of 6th IEEE International Conference on

Fuzzy Systems, vol. 2, pp. 601–608, Jul 1997.

[35] D. Pagac, E. Nebot, and H. Durrant-Whyte, “An evidential approach to map-

building for autonomous vehicles,” IEEE Transactions on Robotics and Au-

tomation, vol. 14, no. 4, pp. 623–629, 1998.

[36] G. Oriolo, G. Ulivi, and M. Vendittelli, “Fuzzy maps: A new tool for mobile

robot perception and planning,” Journal of Robotic Systems, vol. 14, no. 3,

pp. 179–197, 1997.

[37] G. Oriolo, G. Ulivi, and M. Vendittelli, “Real-time map building and naviga-

tion for autonomous robots in unknown environments,” IEEE Transactions on

Systems, Man and Cybernetics, Part B: Cybernetics, vol. 28, no. 3, pp. 318–333,

1998.

[38] M. Ribo and A. Pinz, “A comparison of three uncertainty calculi for building

sonar-based occupancy grids,” Proceedings of 7th International Symposium on

Intelligent Robotic Systems, pp. 235–243, Jul 1999.

[39] S. Thrun, W. Burgard, and D. Fox, “A probabilistic approach to concurrent

mapping and localization for mobile robots,” Autonomous Robots, vol. 5, no. 3,

pp. 253–271, 1998.

164

Bibliography

[40] J. Castellanos, J. Montiel, J. Neira, and J. Tardós, “The spmap: A probabilistic

framework for simultaneous localization and map buildingn,” IEEE Transac-

tions on Robotics and Automation, vol. 15, no. 5, pp. 948–953, 1999.

[41] G. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and M. Csorba, “A

solution to the simultaneous localisation and map building (slam) problem,”

IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 229–241,

2001.

[42] O. Karch and H. Noltemeier, “Intelligent robots and systems,” Proceedings of

the 1997 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, vol. 2, pp. 850–856, Sep 1997.

[43] J. A. Castellanos and J. D. Tardós, Mobile Robot Localization and Map Building:

A Multisensor Fusion Approach. Norwell, Massachusetts: Kluwer Academics

Publishers, 1999.

[44] J. Guivant and E. Nebot, “Optimization of the simultaneous localization and

map building algorithm for real time implementation,” IEEE Transactions of

Robotic and Automation, vol. 17, no. 3, pp. 242–257, 2001.

[45] H. Durrant-Whyte, S. Majumder, S. Thrun, M. de Battista, and S. Sched-

ing, “Bayesian algorithm for simultaneous localization and map building,” Pro-

ceedings of the 10th International Symposium of Robotics Research (ISRR01),

pp. 249 –265, Jun 2001.

[46] S. Thrun, “Robotic mapping: A survey,” In G. Lakemeyer and B. Nebel, editors,

Exploring Artificial Intelligence in the New Millenium, 2002.

[47] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions. New York:

Wiley Series in Probability and Statistics, 1997.

[48] F. Lu and E. Milios, “Optimal global pose estimation for consistent sensor data

registration,” Proceedings of IEEE International Conference on Robotics and

Automation, vol. 1, no. 1, pp. 93 – 100, May 1995.

[49] F. Lu and E. Milios, “Globally consistent range scan alignment for environment

mapping,” Autonomous Robots, vol. 4, p. 333C349, 1997.

165

Bibliography

[50] F. Lu and E. Milios, “Robot pose estimation in unknown environments by

matching 2d range scansg,” Journal of Intelligent and Robotic Systems, vol. 18,

pp. 249–275, 1997.

[51] D. Hähnel, W. Burgard, D. Fox, and S. Thrun, “An efficient fastslam algorithm

for generating maps of large-scale cyclic environments from raw laser range

measurements,” IEEE/RSJ International Conference on Intelligent Robots and

System, 2003, vol. 1, pp. 206 – 211, Oct. 2003.

[52] D. Hähnel, D. Schulz, and W. Burgard, “Mobile robot mapping in populated

environments,” Advanced Robotics, vol. 17, no. 7, pp. 579–597, 2003.

[53] N. J. Nilsson, Principles of Artificial Intelligence. Tioga Publishing Company,

Jan 1980.

[54] D. Kortenkamp, R. Bonasso, and R. Murphy, Artificial Intelligence and Mobile

Robots. AAAI Press/The MIT Press, 1998.

[55] L. Dorst and K. I. Trovato, “Optimal path planning by cost wave propagation

in metric configuration space,” Mobile Robotics III, SPIE proceedings, vol. 1007,

pp. 186–197, 1989.

[56] S. S. Keerthi, C. Ong, E. Huang, and E. Gilbert, “Equidistance diagram – a

new roadmap method for path planning,” Proceedings of 1999 IEEE Conference

on Robotics and Automation, pp. 682–687, 1999.

[57] J. Barraquand and J. C. Latombe, “Nonholonomic multibody mobile robots:

Controllability and motion planning in the presence of obstacles,” Proceedings

of the IEEE International Conference on Robotics and Automation, pp. 2328–

2335, 1991.

[58] Y. Hwang, P. Xavier, P. Chen, and P. Watterberg, Motion planning with SAN-

DROS and the configuration space toolkit, In K.K. Gupta and A.P. del Pobil,

editors, Practical Motion Planning in Robotics. John Wiley & Sons, 1998.

[59] J. Barraquand and J. C. Latombe, “On nonholonomic mobile robots and op-

timal maneuvering,” Revue d’Intelligence Artificielle, vol. 3, no. 2, pp. 77–103,

1989.

166

Bibliography

[60] H. Choset and J. Burdick, “Sensor based planning, part ii: Incremental con-

struction of the generalized voronoi graph,” Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, 1995.

[61] H. Choset and J. Burdick, “Sensor-based exploration: The hierarchical gener-

alized voronoi graph,” The International Journal of Robotics Research, vol. 19,

no. 2, pp. 96–125, 2000.

[62] A. Stentz, “Optimal and efficient path planning for partially-known environ-

ments,” Proceedings of the IEEE Conference on Robotics and Automation,

pp. 3310–3317, 1994.

[63] A. Stentz, “The focussed d* algorithm for real-time replanning,” Proceedings of

International Joint Conference on Artificial Intelligence, 1995.

[64] A. Yahja, S. Singh, and A. Stentz, “An efficient on-line path planner for out-

door mobile robots operating in vast environments,” Robotics and Autonomous

Systems, vol. 32, no. 2&3, pp. 129–143, 2000.

[65] F. Pin and S. Killough, “A new family of omnidirectional and holonomic

wheeled platforms,” IEEE Transactions on Robotics and Automation, vol. 10,

no. 4, pp. 480–489, 1994.

[66] K. Watanabe, “Control of an omnidirectional mobile robot,” 2nd Int. Conf.

Knowledge-Based Intell. Electro. Sys., pp. 51–60, 1998.

[67] T. Yamada, K. Watanabe, and K. Kiguchi, “Dynamic model and control for a

holonomic omnidirectional mobile robot,” Autonomous Robots, vol. 11, no. 2,

pp. 173–189, 2001.

[68] L. E. Dubins, “On curves of minimal length with a constraint on average curva-

ture, and with prescribed initial and terminal positions and tangents,” Ameri-

can Journal of Mathematics, vol. 79, pp. 497–517, 1957.

[69] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both forwards

and backwards,” Pacific Journal of Mathematics, vol. 145, no. 2, pp. 367–393,

1990.

167

Bibliography

[70] P. Jacobs and J. Canny, “Planning smooth paths for mobile robots,” Proceedings

of 1989 IEEE International Conference on Robotics and Automation, vol. 1,

pp. 2–7, May 1989.

[71] J.-P. Laumond, P. Jacobs, M. Taix, and R. Murray, “A motion planner for

nonholonomic mobile robots,” IEEE Transactions on Robotics and Automation,

vol. 10, no. 5, pp. 577 – 593, 1994.

[72] J.-P. Laumond, S. Sekhavat, and F. Lamiraux, Guidelines in nonholonomic

motion planning, in J.-P. Laumond, editor, Robot motion planning and control.

Berlin, DE: Springer-Verlag, 1998.

[73] Y. Kanayama and N. Miyake, “Trajectory generation for mobile robots,” Ro-

botics Research, vol. 3, pp. 333–340, 1986.

[74] S. Fleury, P. Soueres, J.-P. Laumond, and R. Chatila, “Primitives for smoothing

mobile robot trajectories,” Proceedings of 1993 IEEE International Conference

on Robotics and Automation, vol. 1, pp. 832–839, May 1993.

[75] A. Scheuer and T. Fraichard, “Continuous-curvature path planning for car-

like vehicles,” Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, vol. 2, pp. 997 – 1003, Sep. 1997.

[76] T. Fraichard and A. Scheuer, “From reeds and shepp’s to continuous-curvature

paths,” IEEE Transactions on Robotics, vol. 20, no. 6, pp. 1025–1035, 2004.

[77] Y. Kanayama and B. I. Hartman, “Smooth local path planning for autonomous

vehicles,” The International Journal of Robotics Research, vol. 16, no. 3,

pp. 263–283, 1997.

[78] W. Nelson, “Continuous-curvature paths for autonomous vehicles,” Proceedings

of 1989 IEEE International Conference on Robotics and Automation, vol. 3,

pp. 1260–1264, May 1989.

[79] O. Pinchard, A. Liegeois, and F. Pougnet, “Generalized polar polynomials for

vehicle path generation with dynamic constraints,” Proceedings of 1996 IEEE

International Conference on Robotics and Automation, vol. 1, pp. 915–920,

April 1996.

168

Bibliography

[80] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast distance queries

with rectangular swept sphere volumes,” Proceedings of IEEE International

Conference on Robotics and Automation, vol. 4, no. 6, pp. 3719–3726, April

2000.

[81] S. A. Cameron, “Collision detection by four-dimensional intersection testing,”

IEEE Transactions on Robotics and Automation, vol. 6, pp. 291–302, 1990.

[82] M. C. Lin and J. F. Canny, “A fast algorithm for incremental distance calcula-

tion,” Proceedings of IEEE International Conference on Robotics and Automa-

tion, pp. 1008–1014, 1991.

[83] J. Minguez and L. Montano, “Nearness diagram (nd) navigation: Collision

avoidance in troublesome scenarios,” IEEE Transactions on Robotics and Au-

tomation, vol. 20, no. 1, pp. 45–59, 2004.

[84] J. Minguez and L. Montano, “Abstracting vehicle shape and kinematic con-

straints from obstacle avoidance methods,” Autonomous Robots, vol. 20, pp. 43–

59, 2006.

[85] F. Lamiraux, D. Bonnafous, and O. Lefebvre, “Reactive path deformation for

nonholonomic mobile robots,” IEEE Transactions on Robotics, vol. 20, no. 6,

pp. 967–977, 2004.

[86] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision

avoidance,” IEEE Robotics and Automation Magazine, vol. 4, no. 1, pp. 23–33,

1997.

[87] O. Brock and O. Khatib, “High-speed navigation using the global dynamic

window approach,” Proceedings of IEEE International Conference on Robotics

and Automation, vol. 1, pp. 341–346, May 1999.

[88] P. Ogren and N. Leonard, “A tractable convergent dynamic window approach

to obstacle avoidance,” Proceeding of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, vol. 1, pp. 595–600, 2002.

[89] M. Seder, K. Macek, and I. Petrovic, “An integrated approach to real-time

mobile robot control in partially known indoor environments,” In Proceeding of

the 31st Annual Conference of the IEEE Industrial Electronics Society, 2005.

169

Bibliography

[90] R. Simmons, “The curvature-velocity method for local obstacle avoidance,”

Proceedings of the IEEE International Conference on Robotics and Automation,

vol. 4, pp. 22–28, April 1996.

[91] N. Y. Ko and R. Simmons, “The lane-curvature method for local obstacle avoid-

ance,” Proceedings of 1998 IEEE/RSJ International Conference on Intelligent

Robots and Systems, vol. 3, pp. 1615 –1621, Oct. 1998.

[92] Y. Wang and D. M. Lane, “Solving a generalized constrained optimization prob-

lem with both logic and and or relationships by a mathematical transformation

and its application to robot motion planning,” IEEE Transactions on Systems,

Man, and Cybernetics, Part C, vol. 30, no. 4, pp. 525–536, 2000.

[93] J. K. Rosenblatt and C. E. Thorpe, “Combining multiple goals in a behavior-

based architecture,” Proceedings of 1995 IEEE/RSJ International Conference

on Intelligent Robots and Systems, vol. 1, pp. 136–141, 1995.

[94] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-

linear systems: introductory theory and examples,” International Journal of

Control, vol. 61, no. 6, pp. 1327–1361, 1995.

[95] W. Nelson, “Continuous steering-function control of robot carts,” IEEE Trans-

actions on Industrial Electronics, vol. 36, no. 3, pp. 330–337, 1989.

[96] B. d’Andréa Novel, G. Bastin, and G. Campion, “Modelling and control of

non-holonomic wheeled mobile robots,” Proceedings of 1991 IEEE International

Conference on Robotics and Automation, vol. 2, pp. 1130–1135, April 1991.

[97] G. Campion, G. Bastin, and B. d’Andréa Novel, “Structural properties and

classification of kinematic and dynamic models of wheeled mobile robots,” IEEE

Transactions on Robotics and Automation, vol. 12, no. 1, pp. 47–62, 1996.

[98] S. S. Ge, Y. J. Cui, and C. Zhang, “Instant-goal-driven methods for behavior-

based mobile robot navigation,” Proceedings of 2003 IEEE International Sym-

posium on Intelligent Control, pp. 269–274, Oct 2003.

[99] Y. K. Hwang and N. Ahuja, “Gross motion planning — a survey,” ACM Com-

puting Surveys, vol. 24, no. 3, pp. 219–291, 1992.

170

Bibliography

[100] P. Malkin and S. Addanki, “Lognets: A hybrid graph spatial representation for

robot navigation,” Proceedings of the Eighth National Conference on Artificial

Intelligence (AAAI-90), pp. 1045–1050, 1990.

[101] M. Piaggio and A. Sgorbissa, “Ai-cart: an algorithm to incrementally calculate

artificial potential fields in real-time,” 1999 IEEE International Symposium on

Computational Intelligence in Robotics and Automation, pp. 238–243, 1999.

[102] S. L. Tan and J. Gu, “Investigation of trajectory tracking control algorithms for

autonomous mobile platforms: Theory and simulation,” Proceedings of the 2005

International Conference on Mechatronics and Automation, vol. 2, pp. 934–939,

2005.

[103] M. Mucientes and J. Casillas, “Obtaining a fuzzy controller with high inter-

pretability in mobile robots navigation,” Proceedings of IEEE International

Conference on Fuzzy Systems, vol. 3, pp. 1637–1642, 2004.

[104] S. Thrun, “Learning metric-topological maps for indoor mobile robot naviga-

tion,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[105] J. Foley, A. Dam, S. Feiner, and J. Hughes, Computer Graphics, Principles And

Practice, second ed. Addison Wesley, 1990.

[106] S. Thrun, “A probabilistic online mapping algorithm for teams of mobile ro-

bots,” International Journal of Robotics Research, vol. 20, no. 5, pp. 335–363,

2001.

[107] J. H. Lim and D. W. Cho, “Specular reflection probability in the certainty grid

representation,” Transaction of the ASME Jour. of Dynamic System, Measure-

ments and Control, vol. 116, pp. 512–520, 1994.

[108] iRobot Inc., Mobility Robot Integration Software User’s Guide, Part Number:

2841; Rev. 5. iRobot, Inc., USA., 2002.

[109] R. Szabo, “Topological navigation of simulated robots using occupancy grid,”

International Journal of Advanced Robotic Systems, vol. 1, no. 3, pp. 201–206,

2004.

[110] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital

patterns,” Communications of ACM, vol. 27, no. 3, 1984.

171

Bibliography

[111] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun, “Towards object mapping

in dynamic environments with mobile robots,” Submitted for publication, 2002.

[112] Y. Hao and S. K. Agrawal, “Formation planning and control of ugvs with trail-

ers,” Autonomous Robots, vol. 19, no. 3, pp. 257–270, 2005.

[113] X. C. Lai, S. S. Ge, P. T. Ong, and A. A. Mamun, “Incremental path planning

using partial map information for mobile robots,” Proceedings of the 9th Inter-

national Conference on Control, Automation, Robotics and Vision, ICARCV

2006, pp. 133–138, 5-8th December 2006.

[114] K. Fujimura and H. Samet, “A hierarchical strategy for path planning among

moving obstacles,” IEEE Transactions on Robotics and Automation, vol. 5,

no. 1, pp. 61–69, 1989.

[115] N. Y. Ko and B. H. Lee, “Avoidability measure in moving obstacle avoidance

problem and its use for robot motion planning,” Proc. IEEE/RSJ Int. Conf.

Intell. Robots and Sys., vol. 3, pp. 1296 –1303, 1996.

[116] R. A. Conn and M. Kam, “Robot motion planning on n-dimensional star worlds

among moving obstacles,” IEEE Transactions on Robotics and Automation,

vol. 14, no. 2, pp. 320–325, 1998.

[117] K. Pathak and S. K. Agrawal, “An integrated path-planning and control

approach for nonholonomic unicycles using switched local potentials,” IEEE

Transactions on Robotics, vol. 21, no. 6, pp. 1201–1208, 2005.

[118] L. M. Gambardella and C. Versino, “Robot motion planning integrating plan-

ning strategies and learning methods,” Proceedings of 2nd IEEE International

Conference on AI Planning Systems, June 1994.

[119] P. Svestka and M. H. Overmars, “Motion planning for carlike robots using a

probabilistic approach,” International Journal of Robotics Research, vol. 16,

no. 2, pp. 119–145, 1997.

[120] E. Zalama, P. Gaudiano, and J. L. Coronado, “A real-time, unsupervised neural

network for the low-level control of a mobile robot in a nonstationary environ-

men,” Neural Network, vol. 8, no. 1, p. 103C123, 1995.

172

Bibliography

[121] A. Willms and S. Yang, “An efficient dynamic system for real-time robot-

path planning,” IEEE Transactions on Systems, Man and Cybernetics, Part

B, vol. 36, no. 4, pp. 755– 766, 2006.

[122] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardization in

mobile robot programming: the carnegie mellon navigation (carmen) toolkit,”

Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots

and Systems, vol. 3, pp. 2436–2441, Oct. 2003.

[123] R. Simmons and G. Whelan, “Visualization tools for validating software of au-

tonomous spacecraft,” Proceedings of the International Symposium on Artificial

Intelligence, Robotics, and Automation in Space, July 1997.

[124] R. Simmons and D. James, Inter-process communication: a reference manul.

Carnegie Mellon University, 2005.

173

Appendix A

Frame Transformation

In implementations, it is often necessary to convert robot or goal coordinates

between global (Fig. A.1(a)), localized (Fig. A.1(b)) or grid coordinate frames. For

easier formulation, a 3rd row is added to 2D coordinates, such that the position is

expressed by P = (x, y, 1). In Fig. A.1(c), it is known that the coordinates of a point

(say C) in frame A, APC , can be obtained if we know its coordinates in frame B, BPC ,

and the translation (xAB, yAB) and the rotation (theta θ) from frame A to frame B.

The transformation is given by:

AxC

AyC

1

 =

cos θ − sin θ xAB

sin θ cos θ yAB

0 0 1

BxC

ByC

1

 . (A.1)

If A
BR represents the 2D homogeneous transformation (translation and rotation)

to shift frame A to frame B, Eq. (A.1) can be expressed in the following compact

form:
APC =A

B R BPC , (A.2)

where A
BR can be also considered as the origin of frame B and the rotation vector of

frame B in frame A.

In our programs to implement the proposed mapping or motion planning algo-

rithms, the types of the robot coordinate systems include the global, simulator and

localized ones, among others. Since the initial simulator pose and the initial local-

ized pose w.r.t. the global frame are both known, the transformation matrix from

the simulator frame and the localized frame to the global frame can be obtained as
G
S R and G

LR, respectively. Therefore, the coordinates of point C can be obtained as

174

(a) Global frame. (b) Robot frame.

A

yB

xB

Bθ
B

yA
C

xA

Cθ

xAB

xA

yAB

(c) Frame Transformation.

Figure A.1: Global and localized frames (robot is at its initial robot pose).

follows:
GPC =G

S RSPC =G
L R LPC . (A.3)

In view of the above, the transformation from simulator coordinates SPC (which

is known) to localized coordinates can be done as follows:

LPC = (G
LR)−1 G

S R SPC . (A.4)

If the location to place the first localized pose in an occupancy grid map is known,

the transformation matrix from the localized frame to the occupancy grid frame can

be obtained as O
LR. Therefore, the transformations between localized coordinates

LPC and grid coordinates OPC can be given by:
{

OPC =O
L R LPC

LPC = (O
LR)−1 OPC .

(A.5)

Suppose that a grid map’s resolution is γ (in unit m2/cell) and its size is omax

m2. If the middle point (Lxm,L ym) of the initial robot position and the goal is located

at the center of the grid map and if there is no rotation during transformation, the

transformation from localized coordinates LPC to grid coordinates OPC is:

OPC =
1

γ

1 0 γ
omax

2
−L xm

0 1 γ
omax

2
−L ym

0 0 1

LPC . (A.6)

The inverse transformation of (A.6) can be given by

LPC = γ

1 0
Lxm

γ
− omax

2

0 1
Lym

γ
− omax

2

0 0 1

OPC . (A.7)

175

Appendix B

Robot System for Experiments

B.1 Hardware System

A Magellan Pro mobile robot, manufactured by iRobot Inc., was used to carry out

experimental tests for the proposed map building, motion planning and path planning

algorithms. The robot is 40.6 cm in diameter and 25.4 cm in height, with a payload

of 9.1 kg. Its weight is about 16 kg (not inclusive of additional components such as a

laser scanner). The computer system for a Magellan Pro mobile robot is an on-board

Pentium-based EBX (Embedded Board eXchange) system, a single-board computer

for embedded applications. It offers functionality equivalent to a conventional PC.

Our robot is equipped with an Intel Pentium III 962 MHz CPU and 128M Memory.

It can communicate with other computers via ethernet interface as well as serial

interface. A picture of the robot is shown in Fig. B.1.

There are 16 sonars (with a beam width of 30 degrees), infra-red (IR), and Bumper

sensors equally distributed around the robot base. The Magellan Pro robot comes

with 2 lead acid batteries which supplies power for 2-3 hours (when no laser scanner is

used). Two 24V DC servomotors are used to differentially drive the robot. This two

wheel differential design gives it the ability to turn on the spot. It has a maximum

translational speed of 1 m/s and rotational speed of 120◦/s. The readers may refer

to the manuals and user’s guide of Magellan Pro robots [108] for more details.

Fig. B.2 is a top view schematic of a Magellan Pro robot, showing the rFLEX

(see next section) screen, emergency stop button, joystick port and charger port. An

176

B.1 Hardware System

Figure B.1: Picture of the Magellan Pro robot.

Orinoco Ethernet Converter 10BaseT (the box in Fig. B.1) is connected to the ether-

net on the robot’s mother board. Inside the box is an Orinoco Classic Gold Card 11b

manufactured by Proxim. The robot is thus able to perform wireless communication

with other computers via an access point, Cisco Airnet 340 Series Base Station.

Figure B.2: Top view schematic of a Magellan Pro robot, with the front of the robot
facing to the top of the diagram.

On top of the robot, a laser rangefinder, SICK LMS (Laser Measurement System)

291, is installed facing the front, and can scan the surroundings two dimensionally.

The device provides relatively accurate and unambiguous sensor readings (see Table

B.1). Such a system can be used for various applications, including area monitoring,

object measurement and detection and determining positions.

177

B.2 rFLEX

Table B.1: Technical Specifications for SICK LMS 291.

Max Scanning Angle Resolution / Typical Angular Typical Range
Measurement Accuracy Resolution with 10% Reflectivity

180◦ 10mm / ± 60mm 0.25/0.5/1◦ 30m

B.2 rFLEX

The user interface of the robot is the rFLEX control system, which is hardware-

control software flashed in robot’s ROM. rFLEX is used to debug and monitor the

hardware system such as sonar sensors, motors. rFLEX has its own monitor screen

installed on board.

Pre-filtering is applied before raw sonar data is used. Since the standard Polaroid

sonar sensors never return values that are closer than the closest obstacle [108], we

can take the closest reading in the recent readings. In our experiments, the latest

two readings are taken to find out the correct sonar reading. Since the time interval

between two odometry readings (including sonar data) is as small as 0.1 s, the system

is still able to obtain pretty recent sonar data, while the erroneous large values can

be filtered out.

Magellan Pro robots (and other rFLEX based robot) will stop if they do not receive

a command for a certain length of time. A number of experiments were carried out

to find out a suitable interval before two motion commands. Fig. B.3(a) shows the

resulting velocity profiles when velocity command (0.5, 0) was continuously sent to

the robot for 20 s only upon a receipt of laser scan, i.e. at an interval of about every

0.2 s. Fig. B.3(b) shows the result by sending the same velocity commands upon

a receipt of base message, i.e. about every 0.1 s. It can be seen that in the former

case, the robot first attempted to accelerate to the desired velocity, but it then tended

to stop itself since it did not receive a command for a while. It was observed that

the robot was unable to track the desired translation velocity. Therefore, the robot

should be updated with motion commands every 0.1 s.

Since the units used by the rFLEX for odometry appear to be arbitrary and

different on each model of robots, this coefficient is needed to convert to meters: m

= (rFLEX units) / (odo distance conversion). The robot’s conversion factor can be

determined by driving the robot for a known distance and observing the output of

the rFLEX through a few experimental tests. Fig. B.4(a) shows the resulting velocity

178

B.2 rFLEX

20 22 24 26 28 30 32 34 36 38
−0.05

0

0.05

0.1

0.15

TIME (sec)

TRANSLATION VELOCITY PROFILE.

20 22 24 26 28 30 32 34 36 38
−0.3

−0.2

−0.1

0

0.1

0.2

TIME (sec)

ROTATION VELOCITY PROFILE.

(a) Interval at 0.2 s.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.1

0.2

0.3

0.4

0.5

0.6

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

−0.2

0

0.2

0.4

0.6

TIME (sec)

ROTATION VELOCITY PROFILE.

(b) Interval at 0.1 s.

Figure B.3: Velocity profiles of experimental tests on command interval.

profiles when velocity command (0.3, 0) was continuously sent to the robot upon a

receipt of base message. Finally, the coefficient’s value is determined as follows by

comparing the actual traveled distance and the commanded translation velocity times

the execution time:

odo distance conversion = 39009.7.

Conversion coefficient for rotation odometry can be obtained in a way similar to

that of odo distance conversion. Fig. B.4(b) shows the resulting velocity profiles

when velocity command (0, 45◦) was continuously sent to the robot upon a receipt of

base message. The coefficient’s value is determined as:

odo distance conversion = 5834.0.

Another reason for a need of determining the robot’s conversion factors is that

ground condition also has an effect on the actual velocities that can be achieved

by the robot. In addition, Figs. B.3 and B.4 show that the actual translation or

rotation velocity were not zero even it was commanded to. This is partially attributed

to the disturbances of the outside environment and the effect of the castor wheel’s

movements on robot motions.

The operating system of a Magellan Pro mobile robot is RedHat 6.2 Linux sys-

tem. The robot comes installed with MOBILITYTM software for data acquisition and

robot control. The MOBILITY is an Object-Oriented software, CORBA-based Ro-

botics Control Architecture. The Mobility Object Manager (MOM) is MOBILITY’s

179

B.2 rFLEX

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.3

−0.2

−0.1

0

0.1

0.2

TIME (sec)

ROTATION VELOCITY PROFILE.

(a) Result of translation velocity commands.

0 2 4 6 8 10 12 14 16
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

TIME (sec)

TRANSLATION VELOCITY PROFILE.

0 2 4 6 8 10 12 14 16
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

TIME (sec)

ROTATION VELOCITY PROFILE.

(b) Result of rotation velocity commands.

Figure B.4: Velocity profiles of experimental tests on translation or rotation velocity
commands.

Java-based graphical user interface. We can observe, tune, configure and debug Mo-

bility robot control environment, as programs are running. MOM can run on Linux,

Windows95, and Windows NT. MOM shows any kind of data such as graphical read-

ing, sonar data, images and text.

180

Appendix C

Software Package

Instead of using the MOBILITY software that comes with the robot, we choose

the Carnegie Mellon Robot Navigation Toolkit (CARMEN) [122] to develop and

implement the proposed algorithems presented in Chapters 4, 5 and 6. One reason is

that CARMEN is an open-source software package providing useful functions, such

as data logging, off-line map building, and simulator. In addition, it also includes its

own rFLEX driver to acquire sensory data and to control a Magellan Pro robot.

C.1 IPC for Inter-process Communication

CARMEN uses the inter-process communication platform, the IPC software pack-

age developed by Reid Simmons [123]. An IPC-based system consists of an appli-

cation independent central server and any number of application-specific processes.

As stated in IPC manual [124], the basic IPC communication package is essentially

a publish/subscribe model, where tasks/processes indicate their interest in receiving

messages of a certain type, and when other tasks/processes publish messages, the

subscribers all receive a copy of the message. Since message reception is asynchro-

nous, each subscriber provides a callback function (a “handler”) that is invoked for

each instance of the message type. Tasks/processes can connect to the IPC network,

define messages, publish messages, and listen for (and process) instances of messages

to which they subscribe.

To facilitate passing messages containing complex data structures, IPC provides

utilities for marshalling a C or LISP data structure into a byte stream, suitable for

publication as a message, and for unmarshalling a byte stream back into a C or LISP

181

C.2 System Architecture and Modules

data structure by the subscribing handlers.

C.2 System Architecture and Modules

Fig. C.1 shows a list of modules of the CARMEN-based software system to run

for experimental tests on a robot. Those modules in colored boxes, i.e. “motion

planning”, “scan matching” and “online mapping”, are newly built in this research.

The system can be categorized into the following modules:

Param_Server

Laser
Module

BASE/
rFLEX

Robot
Module

Scan
Matching

Motion
Planning

Data
Logger

Vasco
Mapping

Robot
Graph

Online
Mapping

Figure C.1: Main modules of the software architecture used for experimental tests.

1: Centralized Parameter Server. ParamServer module provides other mod-

ules with information (position, sensor data, map, etc.) about the robot. Behind

it is the “central” program, which enables communication between these other

programs. It keeps track of what is published and delivers it to the subscribers.

2: Base Services. This category of programs controls the movement of the ro-

bot and accepts inputs from the sensors. These programs should run on the

computer attached to the robot hardware.

• Base module (rFLEX in our case) provides raw odometry data and may

provide sonar data, bumper data and IR data.

• Laser module provides laser data obtained from a laser rangefinder.

182

C.2 System Architecture and Modules

3: Graphics Display. Modules involved in graphics display are recommended to

run on other computers instead of the computer attached to the robot hardware,

because much time may be needed for a computer to display and (frequently)

update graphics.

• Vasco module creates a map from sensor and odometry data stored in a

log file.

• Online Mapping module creates maps online from sensor and odometry

data received from ParamServer.

• Robotgraph module provides a simple graphic interface for the robot, al-

lowing direct motion control and a display of current sensor information.

4: Message Transformation. This category of programs transforms data/message

into another format.

• Robot module wraps sensor and odometry data into a new format that is

convenient for a use in mapping or motion planning.

• Scan Matching module does scan matching online to estimate the best

robot pose.

5: Autonomous Navigation Such programs produce motion instructions based

on sensor data and/or map information of the environment to enable autonomous

navigation. Motion Planning enables both reactive autonomous navigation

based on current sensor data, and deliberative path planning with partial map.

6: Data Logging Data Logger module stores sensor and odometry data, and

motion instructions with time stamps into a log file.

The small arrows in Fig. C.1 indicate the flow of data to and from the ParamServer.

Taking the advantage that IPC provides flexible, efficient message passing between

processes, all modules are able to access the latest data (e.g. sensor readings, grid

maps, way points, or goal position).

Sensor data comes from one of two sources: the base module (rFLEX in our case)

and the laser module. While it is (obviously) possible to send messages directly to

the base module, this is not an exposed interface. Instead, motion commands are first

183

C.2 System Architecture and Modules

processed by the “robot” module before reaching the base module. The big arrows

in Fig. C.1 indicate the flow of motion instructions to the robot to and from the

ParamServer. Data logger provides functions to log all kinds of messages including

motion instructions.

Fig. C.2 plots the block diagrams of the CARMEN architecture to run in our

experiments. From this diagram, we can clearly see the data flow between different

processes. Note that vasco off-line mapping is not included. Data logger module

is not necessary but it is beneficial to record sensory data for analysis carried out

off-line.

laser scans

k/b mouse control

base, laser,
map data

velocity

Laser Module BASE/ rFLEX

Robot Module

Scan Matching

Motion Planning

Robot Graph

Online Mapping

Data Logger

Central
Param_Server

 T, R velocity
commands odometry

sonar,
bumper data

RobotBoard

C

S velocity odometry
sonar,
bumper
data

S

LaserScanner

S

C

C

C

C

C

C
C

state

Legend
C=IPC connection
S=Serial line

process

Figure C.2: Block diagrams of the CARMEN architecture for experimental tests
involving simultaneous mapping and path planning.

Fig. C.3 shows a list of modules of the CARMEN-based software system to run

on a simulated robot for simulation tests.

• Simulator module provides simulated data generation from a virtual robot. It

requires a pre-built map to represent the environment.

• Navigation Panel module is a graphic interface which shows the robot’s position

and the destination on the pre-built map. It also allows setting of the current

robot position and the robot orientation, and selection of the destination.

184

C.2 System Architecture and Modules

It is noted that the base and laser modules that are used in an experiment running

are replaced by the simulator module. The robot module is not needed any more,

since the message/data generated by the simulator module is already in the form of

robot messages. In addition, a graphics module “navigation panel” is now provided

for settings of the robot pose and destination.

Param_Server

Data
Logger

Simulator
Module

Scan
Matching

Motion
Planning

Vasco
Mapping

Navigati-
on Panel

Robot
Graph

Online
Mapping

Figure C.3: Main modules of the software architecture used for simulation tests.

While the robot is mainly used to collect data and execute motion commands,

computation (scan matching, mapping, motion planning) and graphics display may

be performed by other computers such as a PC or a laptop. We mainly use a PC

equipped with a Pentium III 900 MHZ CPU and 256 M memory to carry out the

mapping and reactive motion planning tasks. For hierarchical path planning, which

involves heavier computation load due to graph search and additional mapping and

graphics display, we use a more powerful PC which is equipped with a Pentium IV

2.4 GHZ CPU and 1 G memory.

185

Appendix D

Author’s Publications

Journal Papers:

[1] S. S. Ge, X. C. Lai, and A. A. Mamun, “Boundary following and globally

convergent path planning using instant goals”, IEEE Transactions on Systems,

Man and Cybernetics Part B: Cybernetics, vol. 35, no. 2, pp. 240-254, April

2005.

[2] S. S. Ge, X. C. Lai, and A. A. Mamun, “Sensor-based path planning for nonholo-

nomic mobile robots subject to dynamic constraints”, Robotics and Autonomous

Systems, vol. 55, no. 7, pp. 513-526, July 2007.

[3] X. C. Lai, S. S. Ge, and A. A. Mamun, “Hierarchical incremental path plan-

ning and situation-dependent optimized dynamic motion planning considering

accelerations”, IEEE Transactions on Systems, Man and Cybernetics Part B:

Cybernetics, vol. 37, no. 6, December 2007.

Conference Papers:

[1]X. C. Lai, C. Y. Kong, S. S. Ge, and A. A. Mamun, “Map building for au-

tonomous mobile robots by fusing laser and sonar data”, Proceedings of 2005

IEEE International Conference on Mechatronics and Automation, Niagara Falls,

Canada, pp. 993-998, 2005. (Best Student Conference Paper Award Finalist)

186

[2] X. C. Lai, S. S. Ge, P. T. Ong, and A. A. Mamun, “Incremental path planning

using partial map information for mobile robots”, Proceedings of the 9th Inter-

national Conference on Control, Automation, Robotics and Vision, (ICARCV

2006), Singapore, pp. 133-138, 2006.

[3] Z. P. Wang, S. S. Ge, T. H. Lee, and X. C. Lai, “Adaptive smart neural network

tracking control of wheeled mobile robots”, Proceedings of the 9th International

Conference on Control, Automation, Robotics and Vision, (ICARCV 2006),

Singapore, pp. 983-988, 2006.

[4] X. C. Lai, A. A. Mamun, and S. S. Ge, “Polar polynomial curve for smooth,

collision-free path generation between two arbitrary configurations for nonholo-

nomic robots”, Proceedings of the 22nd IEEE International Symposium on In-

telligent Control (ISIC2007), Singapore, 2007.

187

