
NASA-CR-199036
/,t,i) .- t- 7_LD

/,,_/ /3 -c" f :"

CENTER FOR SPACE STRUCTURES AND CONTROLSCU-CSSC-90-17

COMPUTATIONAL METHODS AND

SOFTWARE SYSTEMS FOR

DYNAMICS AND CONTROL OF

LARGE SPACE STRUCTURES

July 1990

(NASA-CR-19903b) COMPUTATIONAL
HETHOOS AND SOFTWARE SYSTENS FCR

DYNANICS AND CONTROL CF LARGE SPACE

STRUCTURES Final Report (Colorado

Univ.) 265 p

by

K. C. Park, C. A. Fel|ppa,

C. Farhat and E. l_ramono

COLLEGE OF ENGINEERING

UNIVERSITY OF COLORADO

CAMPUS BOX 429

BOULDER, COLORADO 80309

G3/la

N95-3220_

Unclas

0060393

https://ntrs.nasa.gov/search.jsp?R=19950025783 2020-06-16T06:12:15+00:00Z

COMPUTATIONAL METHODS AND SOFTWARE SYSTEMS

FOR

DYNAMICS AND CONTROL OF LARGE SPACE STRUCTURES

K.C. PARK, C.A. FELIPPA, C. FARHAT AND E. PRAMONO

Department of Aerospace Engineering Sciences and

Center for Space Structures and Controls

University of Colorado, Boulder, CO 80309-0429

July 1990

Report No. CU-CSSC-90-17

Final Report on Grant NAG1-756, funded

by NASA Langley Research Center

TABLE OF CONTENTS

SUMMARY

Task 1: MULTIBODY DYNAMICS

Task 2: FINITE ELEMENT COMPUTATIONS

ON A MASSIVELY PARALLEL COMPUTER

REFERENCES

ENCLOSED PAPERS

K. C. Park, J. C. Chiou and J. D. Downer

Staggered Solution Procedures for

Multibody Dynamics Simulation

J. D. Downer, K. C. Park and J. D. Chiou

A Computational Procedure for Multibody

Systems Including Flexible Beam Dynamics

K. C. Park and J. C. Chiou

Stabilization of Computational Procedures for

Constrained Dynamical Systems

K. C. Park, J. C. Chiou and J. D. Downer

Explicit-Implicit Staggered Procedure

for Multibody Dynamics Analysis

J. C. Chiou, K. C. Park and C. Farhat

A Natural Partitioning Scheme for

Parallel Simulation of Multibody Systems

C. Farhat, N. Sobh and K. C. Park

Transient Finite Element Computations on

65536 Processors: The Connection Machine

C. Farhat

Which Parallel Finite Element Algorithm for

Which Architecture and Which Problem?

TABLE OF CONTENTS (Continue)

ENCLOSED PAPERS (Continued)

C. Farhat, E. Pramono and C. A Felippa

Towards Parallel I/O in Finite Element Simulations

C. Farhat and F.-X. Roux

A Method of Finite Element Tearing and

Interconnecting and Its Parallel Solution Algorithm

C. Farhat and M. Geradin

Using a Reduced Number of Lagrange Multipliers

for Assembling Parallel Incomplete Field

Finite Element Approximations

SUMMARY

This is a final report on the tasks supported by NASA Langley Research Center under

Grant NAG1-756, Computational Methods and Software Systems for Dynamics

and Control of Large Space Structures. The report covers progress to date, projected

developments in the final months of the grant and conclusions. Pertinent reports and

papers that have not appeared in scientific journals (or have not yet appeared in final

form) are enclosed.

The grant has supported research in two key areas of crucial importance to the

computer-based simulation of large space structure. The first area involves multibody

dynamics (MBD) of flexible space structures, with applications directed to deployment,

construction and maneuvering. The second area deals with advanced software systems,

with emphasis on parallel processing. The latest research thrust in the second area, as

reported here, involves massively parallel computers.

Task 1: MULTIBODY DYNAMICS

Background

This is a continuing research task that began in June 1986 and has progressed steadily

over the past three years. The work has emphasized the following research components:

(1) Formulation of flexible multibody dynamics in a computationally oriented context.

(2) Formulation, implementation and evaluation of flexible three-dimensional beam el-

ements capable of arbitrary motions and implementable in energy-conserving time

integration methods.

(3) Development of a library of joint constraints to connect beam elements.

(4) Development, formulation and evaluation of energy-conserving time integration proce-

dures, with emphasis on explicit-implicit partitioned solution algorithms for treating

translational, rotational and constraint degrees of freedom in a staggered manner.

(5) Parallel implementation of multibody dynamics, including interconnection topology

analysis and direct time integration.

(6) Completion of joint constraint library with contact-impact effects.

Over the past year work has concentrated on areas (4), (5) and (6). The principal investi-

gator in areas (1) through (5) is Professor K. C. Park, whereas area (6) is jointly supervised

by Professors Park and Felippa. Three doctoral students have carried out research in these

areas: Jin-Chern Chiou (fully supported by this grant), Janice Downer (supported by a

NASA fellowship) and Horacio de la Fuente (partly supported by this grant).

Following is a summary of accomplishments in areas (4) through (6), which are treated

more fully in the enclosed reports (References 1-5).

Staggered Solution Procedures for MBD

An efficient staggered solution procedure for treating MBD systems has been developed,

tested and implemented. The MBD equations of motion are partitioned so that the con-

straint forces appear as independent variables that can be integrated in time, separately

from the mechanical variables. The latter are in turn partitioned into translational and

rotational variables. The resulting partitioned equations of motion are integrated by a

two-stage stabilized algorithm for updating both the translational coordinates and the

angular velocities. Details of this procedure are given in Ref. 1, included in this report.

The application of these procedure to simulation of flexible MBD systems composed of

three-dimensional beams is described in Ref. 2, which is also included in this report.

MBD Topology Analysis for Parallel Implementation

A parallel partitioning schemebasedon physical coordinate variables was developed to
eliminate constraint forcesand yield the MBD equation of motion in terms of independent

coordinates. This schemefeatures an explicit determination of independent coordinates
and the parallel computation of the null spaceof the constrained Jacobian matrix. This

work is described in Ref. 3, which is included in the present report.

Parallel Direct Time Integration of MBD

Using the topological analysis developedunder the previous task, a two-stage staggered

algorithm for parallel computations has been developed, implemented and tested on a
shared-memoryparallel computer. The solution schemefeaturesa new Schur-complement-

basedparallel preconditioned CG algorithm. This solution schemeis a "spin out". This
work is describedin Ref. 3.

Development of Contact-Impact Algorithms

This task began in May 1990 because of delayed funding and is in progress at the time of

writing. Contact impact is represented by a fictitious, time-varying penalty spring that is

designed to absorb the impulse of the contacting bodies in the form of a "penalty spring

energy". This energy is released totally or partially on separation (partial release is used

to model dissipation effects) and eventually the spring disappears. This new technique

offers implementation advantages in that it can be easily accommodated in a variable

step explicit time integration and this appears well suited to implementation on massively

parallel computers. Preliminary results on simple impact problems are encouraging as

regards general physical behavior as well as energy conserving characteristics.

Task 2: FINITE ELEMENT COMPUTATIONS ON

A MASSIVELY PARALLEL COMPUTER

Background

This task represents the final phase of the software systems thrust. It was started in

July 1989. The principle investigators are Professors C. Farhat and C.A. Felippa. Post-

doc Research Associate E. Pramono has presently worked full-time on this project, which

has also supported a graduate student (L. Crivelli) half-time. The main objective is the

evaluation of the suitability of the Connection-Machine 2 (CM-2), a massively parallel

computer, for large-scale finite element computations with emphasis on static analysis.

This work did not begin from scratch, but has substantially benefited from prior efforts.

Investigation of the potential of the CM-2 for explicit dynamic calculations began in 1987

under NRL funding. This work involved Professors Farhat and K.C. Park, and post-doc

3

ResearchAssociate N. Sobh. Work wascarried out on the CM-2 computer at NRL, which

is a half configuration of 32768 processors. The results of this study are presented in an

enclosed report (Ref. 6), which is to appear shortly in International Journal of Numerical

Methods in Engineering. Portions of that work have appeared in Ref. 7, which is also

included.

In 1988 DARPA donated a small CM-2 (8192 processors) to the University of Colorado.

The machine is presently installed at the National Center for Atmospheric Research

(NCAR) and connected to the Campus Unix network. Although only one eighth of a full

configuration, the increased availability and our deployment of real-time on-line graphics

have substantially improved our ability to develop and test software. The CM-2 is not

an easy machine to program because of its unconventional nature and the initial support

of only two major programming languages with parallel constructions: CM-Lisp and C*.

Virtually all programming has been done in C*, which is an object oriented superset of C

and C++.

In August 1989 Dr. Sobh left us to take a faculty position at Old Dominion University.

Dr. Pramono, whose prior experience in parallel processing had been on shared memory

machines (especially Cray 2, Alliant and Convex using the Force Preprocessor) had to take

over and gradually became an expert on the Connection Machine over the past six months.

Progress

Our work on the CM-2 to date has concentrated on the following software modules.

Decomposer. A general-purpose finite element model decomposer, described in Ref. 3,

that takes as input an arbitrary mesh description, and produces a set of finite element

data structures that can be loaded within one generic CM-2 chip.

Mapper. A general purpose mapper that assigns each of the data structures produced by

the decomposer to a well defined chip. The goal of this allocation strategy is to reduce the

distance that information has to travel between neighboring finite elements.

Residual Evaluator. This is a computational kernel that controls the direct calculation of

element residuals, where "direct" means that no element stiffness matrices are evaluated.

This kernel interacts with both a transient dynamics algorithm based on Central Difference,

as well as an iterative solver based on Jacobi-Preconditioned Conjugate Gradients.

Element Library. This includes a 3D 2-node truss, a 3D 2-node beam, a 3D 8-node brick,

a 2D 4-node quadrilateral and a 4-node ANS shell element. The shell element has been

the latest one incorporated in this library, and testing was completed during May 1990.

4

Visualization. A parallel visualization kernel that operates in real time and which displays

both wire frame representations of the initial and deformed mesh and shaded contour-value

finite element plots as they are being computed.

Parallel I/O Manager. A kernel used to archive the computed results on the CM-2 data

vault. It is based on the Parallel I/O Manager written by E. Pramono and described in

Ref. 8.

These software modules together comprise a massively parallel prototype finite element

code that effectively embeds MIMD computations on a SIMD hardware architecture.

Conclusions

Preliminary results using the prototype code with emphasis on truss and frame structures

are reported in References 6 through 10. In general, it has been found that this highly par-

allel processor can outperform vector supercomputers such as the Cray family on explicit

computations but not on implicit ones.

Several features distinguish the CM-2 from earlier SIMD hypercubes. On the hardware side

we note the impressive number of crunching power and the fast parallel I/O capabilities.

On the software side we note the virtual processor concept, which may be viewed as the

dual of the better known virtual memory concept.

Mesh decomposition and processor-to-element mapping are the fundamental software mod-

ules that hold the key to massively parallel finite element computations. A given mesh is

partitioned into 16 element subdomains that correspond to the 16-processor chips of the

CM-2. This partitioning is carried out in a way that minimizes the number of nodes at

the interface between the subdomains. As a result, only those processors that are mapped

onto finite elements at the subdomain boundary communicate with processors packaged

onto finite elements at the subdomain boundary communicate with processors packaged

on different chips. Moreover, this partitioning is such that the bandwidth of the resulting

subdomain is large enough to allow efficient use of the 12 interchip wires.

The mapping algorithm attempts at reducing the distance information has to travel over

the communication network. It searches iteratively for an optimal mapping through a

2-step minimization of the communication costs associated with candidate mappings.

The following is a summary of the key conclusions reported in the referenced papers.

(1) The current CM-2 processor memory size of 64 Kbits penalizes high order elements

in the sense that only small VP (virtual processor) ratios can be achieved. Thus the

current configuration favors simpler elements. (This restriction should disappear in

5

the CM-3 model, which will have 1Mbit of memory per processorand an aggregate
computing power of over 1000Gflops.)

(2) Three-dimensional and higher-order finite elements induce longer communication
times.

(3) Mesh irregularities slow down the computation speedin various ways.

(4) The Data Vault is very effective at reducing I/O time.

(5) The Frame Buffer is ideal for real-time visualization.

(6) The Virtual Processorconcept outperforms substructuring.

Ongoing Work

We havefound that the CM-2 canoutperform the Cray-2 on explicit calculations for which

sustained rates over 1 Gigaflop arepossible. Given the intrinsic scalability of the massively

parallel architecture (for example, the 1 Tera£1opCM-3 under development for DARPA)
there is little question asto the future potential for that classof computations which arise
naturally in dynamic simulations. Projections are for 100-1000times what the fastest Cray
can achieve.

On the other hand, implicit calculations arise naturally in the solutions of static problems.

This class of calculation places a higher burden on communication, which has a detrimental

effect on performance. For such algorithms the vector supercomputers still outperform the

CM-2. Semi-iterative methods such as the conventional Conjugate Gradient (CG) also

suffer to some degree from communications overhead since information has to be gathered

from shared finite element nodes in residual calculations.

Over the past six months, Professor Farhat in collaboration with Dr. Roux of ONERA

(France) has developed an unconventional form of the CG algorithm called the "hybrid" or

"tearing" method. The primary objective in this development is to reduce communication

overhead on local memory parallel computers. A secondary objective is to reduce the

number of iterations for convergence. The present version of algorithm is described in

some detail in Refs. 11, 12 and 13. The initial version was coded in Fortran augmented

with the Force preprocessor and tested on the Cray YMP. These tests provided confidence

in the convergence characteristics on static problems involving up to 48,000 equations. A

subsequent version was ported to the Los Alamos iPSC Hypercube, on which the reduced

communication overhead was verified. As final tests, we plan to recode the algorithm in

C* for the CM-2 and compare with the conventional CG implementation. Because of the

local memory limitations, however, the domain decomposition on the CM-2 is done at the

element level.

Final Benchmarking Work

During the period of March to date (July 1990) we have benchmarked large-scalestatic

problems on the CM-2 versus the Cray 2 and Cray YMP. The results are being analyzed

at the time of the writing and will be subsequently reported in the literature.

7

REFERENCES

References marked with an asterisk (*) are enclosed in the present report.

1. * K. C. Park, J. C. Chiou and J. D. Downer, "Staggered Solution Procedures for Multibody

Dynamics Simulation," December 1989, submitted to J. Guidance 8J Control.

2. * J. D. Downer, K. C. Park and J. C. Chiou, "A Computational Procedure for Multibody

Systems Including Flexible Beam Dynamics," presented at the SDM Conference, Long Beach,

CA April 1990; manuscript submitted to Computer Methods in Applied Mechanics and En-

gineering.

3. * J. C. Chiou, K. C. Park and C. Farhat, "A Natural Partitioning Scheme for Parallel Simu-

lation of Multibody Systems," to be presented at the SDM Conference, Dec 1990; manuscript

to be submitted to Computer Methods in Applied Mechanics and Engineering.

4. * K. C. Park and J. C. Chiou, "Stabilization of Computational Procedures for Constrained

Dynamical Systems," Journal of Guidance Controls and Dynamics, 11, (1988) pp. 365-370.

5. * K. C. Park, J. C. Chiou and J. D. Downer, "Explicit-Implicit Staggered Procedures for

Multibody Dynamics Analysis," J. of Guidance, Controls and Dynamics, 13, (1990) pp.
562-570.

6. * C. Farhat, N. Sobh and K.C. Park, "Transient Finite Element Analysis on 65536 Processors:

The Connection Machine," Int. J. Num. Meth. Engrg., in press.

7. * C. Farhat, "Which Parallel Finite Element Algorithm for which Architecture and which

Problem," Proceedings Session in Computational Structural Mechanics and Multidisciplinary

Optimizations, ed. by R.V. Grandhi, W.H. Stroud and V.B. Venkayya, ASME Winter Meet-

ing San Francisco, Dec 10-15 (1989), submitted to Engineering Computations.

8. C. Farhat, N. Sobh and K.C. Park, "Dynamic Finite Element Simulation on the Connection

Machine," Int. J. High Speed Computing, 1, No. 2 (1989) pp. 289-302.

9. C. Farhat, "On the Mapping of Massively Parallel Processors onto Finite Element Graphs,"

Computers and Structures, 32, No. 2 (1989) pp. 347-354.

10. C. Farhat, E. Pramono and C.A. Felippa, "Towards Parallel I/O in Finite Element Compu-

tations," Int. J. Num. Meth. Engrg., 28, (1989) pp. 2541-2553.

11. C. Farhat and F.X. Roux, "An Unconventional Domain Decomposition Method for an Ef-

ficient Parallel Solution of Large-Scale Finite Element Systems," presented at the SIAM

Symposium on Parallel Computation, Copper Mountain, CO., April 1990

12. * C. Farhat and F. Roux, "A Method of Finite Element Tearing and Interconnecting and its

Parallel Solution Algorithm," May 1990, submitted to SIAM J. Scientific Computations.

13. * C. Farhat and M. Geradin, "Using a Reduced Number of Lagrange Multipliers for Assem-

bling Parallel Incomplete Field Finite Element Approximations," July 1990, to be submitted

to Computer Methods in Applied Mechanics and Engineering.

8

Staggered Solution Procedures for

Multibody Dynamics Simulation

K. C. Park, J. C. Chiou, and J. D. Downer

Department of Aerospace Engineering Sciences

and Center for Space Structures and Controls

University of Colorado at Boulder

Boulder, CO 80309-0429, USA

I. Introduction

Simulation of multibody dynamics systems - such as robotic manipulators, automo-

biles maneuvering and satellites deployment - remains a challenge to the dynamist due to

its increasing roles in design improvements, control and safe operation. Because of sub-

stantial progress made during the past three decades in formulation 1-19, constraint treat-

ment and solution techniques 21-3_ and the availability of multibody dynamics simulation

packages 37-42, it has now become almost a routine practice to perform realistic modeling

and assessment of some practical problems such as mechanical linkages and manipulations

of robotic arms if multibody components consist mostly of rigid bodies, discrete springs and

dampers (see, e.g., Haug15). However, substantial advances in modeling, formulation and

computational methods are necessary in order to develop a real-time simulation capabil-

ity for ground vehicle maneuvering dynamics, robotic manipulations and space structures

deployment/assembly.

Specifically, improved modeling of flexibility for localized motions and geometric non-

linearities, material nonlinearities and contact/friction phenomena, robust and accurate

treatment of the system constraint conditions and efficient use of emerging computer hard-

ware/software technology continue to offer intense research opportunities. Thus, the de-

velopment of a real-time multibody dynamics simulation capability requires a concerted

integration of various modeling, formulation and computational aspects. These include:

selection of a data structure for describing the system topology, computerized generation

of the governing equations of motion, implementation of suitable solution algorithms, in-

corporation of constraint conditions and easy interpretation of the simulation results. Of

these, this chapter is concerned with three computational aspects of multibody dynamics

simulation: direct time integration of the governing equations of motion, stabilization of

constraint solution process and their computer implementation aspects.

From the computational viewpoint, multibody dynamics (MBD) problems are distinct

from the structural dynamics problems in that the solution of MBD problems must also

satisfy, at each time integration step, the attendant kinematic and equilibrium constraints.
This hasmotivated many dynamists to developvarious techniques,in addition to direct in-
tegration algorithms, for accurately and efficiently handling the systemconstraints. Hence,
reliability and cost of existing MBD simulation packageshave been strongly affected by
how efficiently and accurately the constraints are preservedduring the numerical solution
stage.

In general, there have been two types of direct time integration algorithms for the
transient responseanalysis of dynamical systems: explicit and implicit algorithms (see,
e.g., Hughesand Belytschko43, Park 44 and Belytschko, Englemarm and Liu45). Currently,

implicit algorithms appear to be favored by many MBD specialists when both the gen-

eralized coordinates and the constraint forces are treated as the unknowns. In this case,

the corresponding formulations incorporate the system constraints by the Lagrange mul-

tipliers method. It has been well known that the resulting Newton-like solution matrix is

stiff. This has led to implicit time discretization of the constraint-augmented equations

and simultaneous solution of both the generalized coordinates and the Lagrange multipli-

ers. This approach has been extensively investigated by Gear 21 , Baumgarte 22'29 Orlandea,

Chase and Calahan 23, Petzold 27, Nikravesh 31 , among others. Because these methods solve

both the generalized coordinates and the constraint forces simultaneously, they will be

called the simultaneous solution me_hoda in this chapter.

On the other hand, if the constraints are eliminated so as to reduce the number of

unknowns, it is possible for one to employ either implicit or explicit algorithm. For this

situation, one may invoke either a geometric or algebraic procedure to streamline the re-

sulting equations of motion if the system topology is an open tree. In essence, geometric

procedures have utilized an open-tree topology such as the use of the incidence matrix by

Wittenburg 1° and the body array matrix by Huston 19. Some of the proposed algebraic

procedures include the singular decomposition by Walton et al20 the use of the general-

ized speed of Kane and Levinson 2°, the coordinate partitioning technique by Wehage and

Haug 2s, the selection of independent coordinates through the natural-coordinate formu-

lation of Garcia de Jalon et al ss and the so-called order-N procedures of Armstrong 11,

Hollerbach 12, Schwertassek and Roberson 1T, Orin, et al25, among others.

As the complexity of MBD systems increases, the simultaneous solution methods

have become less attractive. This is due to matrix ill-conditioning especially for the so-

called index two and higher index problems (see, e.g., Ref. 27 and Brenan, Campbell

and Petzold 46 for the definition of index for constraint characterization), divergence of the

solution away from the constraint conditions, and ultimately, due to a large size of the

equations that must be handled. As an alternative to the simultaneous solution methods,

a series of computational methods that employ a divide-and-conquer strategy have been

developed, which are termed as partitioned 8olu_ion procedure8 presented in Park 47, Felippa

and Park 4s and Park and Felippa 49. As an example, partitioned solution procedures allow

one to analyze fluid-structure interaction problems with two separate single-field analysis

packages, namely, the structural dynamics module and the fluid dynamics analyzer. At

each time integration step, one may advance the solution of structural equations of motion

by treating the fluid coupling term as an external force. Once the structural coordinates

are advanced, the fluid state variables can be advanced by treating the structural coupling

2

terms as a source term. A naive partitioned procedure, however, can suffer from a loss of

accuracy as well as computational stability. Thus, a combination of equation augmentation

and stabilization should be devised to recover the accuracy loss and maintain unconditional

stability. Such a solution procedure is in contrast to a practice of embedding both the

structural and fluid dynamics attributes into a combined analysis program.

The numerical solution procedure for MBD systems which we advocate in this chapter

is termed a _taggered MBD solution porcedure that solves the generalized coordinates in a

separate module from that for the constraint force. This requires a reformulation of the

constraint conditions so that the constraint forces can also be integrated in time. A major

advantage of such a partitioned solution procedure is that additional analysis capabilities

such as active controller and design optimization modules can be easily interfaced without

embedding them into a monolithic program. To this end, the rest of the chapter is organized

as follows.

After introducing the basic equations of motion for MBD system in the next sec-

tion,-Section III briefly reviews some constraint handling techniques and introduces the

staggered stabilized technique 34,35 for the solution of the constraint forces as independent

variables.

The numerical direct time integration of the equations of motion is described in Sec-

tion IV. As accurate damping treatment is important for the dynamics of space structures,

we have employed the central difference method and the mid-point form of the trapezoidal

rule since they engender no numerical damping. This is in contrast to the current prac-

tice in dynamic simulations of ground vehicles by employing a set of backward difference

formulas 46. First, the equations of motion is partitioned according to the translational and

the rotational coordinates. This sets the stage for an efficient treatment of the rotational

motions via the singularity-free Euler parameters. The resulting partitioned equations of

motion are then integrated via a two-stage explicit stabilized algorithm for updating both

the translational coordinates and angular velocities 34. Once the angular velocities are ob-

tained, the angular orientations are updated via the mid-point implicit formula employing

the Euler parameters.

When the two algorithms, namely, the two-stage explicit algorithm for the generalized

coordinates and the implicit staggered procedure for the constraint Lagrange multipliers,

are brought together in a staggered manner, they constitute a staggered explicit-implicit

procedure which are summarized in Section V. Section VI presents some example problems

and discussions concerning several salient features of the staggered MBD solution procedure

are offered in Section VII.

II. Governing Equations of Motion

The Lagrangian equations of motion for mechanical systems that axe free from any

constraint can be written, for the generalized coordinate component ui, as

d OL OL

dtOiti Oui -Qi' i= 1...n. (1)

where L is the system Lagrangian, t is the time, (") denotes time differentiation and Qi

is the generalized applied force. It is well-known that, if there are m-constraint conditions

3

imposed on {ui, i = 1... n}, the above equation must be modified as

l'ft.

d OL OL E'_kBki' i 1
dt OiLi Oui - Qi + = . . . n,

k----I

(2)

where A is the Lag'range multiplier and Bki is the i-th gradient component of the k-th

constraint equation, viz, for configuration constraints

_k(U) =0, Bki _ " _,O_k k _-. 1...m (3)
Oui

and for motion constraints

a_k k = 1 m. (4)
_k(U, 1:1) = O, Bki _- O_---_' "'"

Therefore, regardless of the nature of constraints one may express the equations of

motion with constraints in the following form:

(5)

where M is a positive-definite matrix and c depends on the nature of constraints. For

example, for configuration constraints we have

0 &_. 0 04i. 02_

c = -N(Nu)- 2N(Nu) &_ (6)

and for motion constraints

c = (7)

An implicit time integration formula to solve (5) may be written as

fl" = _ii" + h_u n --6d" + h i (8)

where _ is a stepsize that is dependent on the choice of formula, and h_ and h i are

formula-dependent historical vectors that consist of past-step solution components*S, 5°.

As an example, the trapezoidal rule has the following 6 and historical vectors

_=h/2
h_ = fl"-] + _i:l n-1

h_ = u n-1 + _d n-]
(9)

where h is the time-step increment.

4

Substitution of (8) into (5) yields

.r, Bh" + 62c)
(10)

In practice, in order to avoid pivoting and to maintain high accuracy, the solution of

the above difference equations is carried out as follows. First, since M is nonsingular for

properly formulated dynamical problems, one computes

--1 nu,=M r,, C-M-1B T, A=BC (11)

and factors A. Second, one obtains 2_" by solving

"=A-l(Buu-r)/_ 2 (12)

Finally, u" is obtained from

u" -- u. - 62CA" (13)

It should be noted that the accuracy loss associated with the factoring of an ill-

conditioned matrix BA-1B T and the subsequent backsubstitutions can severely influence

the solution accuracy of not only the Lagrange multipliers but also the generalized coordi-

nates as seen from (12) and (13). This has motivated many numerical analysts to undertake

the development of methods for differential-algebraic systems as the recent monograph 46

and references therein attest to their rich numerical properties. It is generally agreed that

the present status of differential-algebraic methods yield robust solutions for problems of

index one, but can suffer from inaccurate solutions of the Lagrange multipliers for higher

index problems. Observe that many practical multibody dynamics problems are charac-

terized by index greater than one. Hence, the need to compute accurately the constraint

forces remains a challenge. For instance, for lock-up mechanisms that are activated when

truss structures are fully deployed in space often introduce stiff responses with nearly

singular state of BM-1B T. It is with these problems for which more robust constraint

computation algorithms are called for.

One way to improve the accuracy of constraint force computations is to adopt index

reduction strategies as discussed in Ref. 46. However, index reduction inevitably intro-

duces additional system degrees of freedom in the resulting differential-algebraic equations,

thus destroying the matrix sparsity of (5) in addition to the increased size of the matrix B.

In what follows we present an alternative approach based on a parabolic regularization of

the equations for the Lagrange multipliers, which preserves the first row of (5) and enables

us to solve A from the parabolic differential equations.

III. Constraint Handling Techniques

As alluded to in Introduction, techniques for handling the system constraints consti-

tute a major part of solution procedures for the numerical simulation of multibody dy-

namics systems. In this section, we will first review the coordinate partitioning technique,

Baumgarte's technique and the penalty technique. The staggered stabilization procedure

5

which we advocate will then be described in detail. A distinct feature of the staggered

stabilization procedure is that it can be implemented in a stand-alone module, thus can

be interfaced not only with the equation solver for rigid-body systems but with that for

flexible-body systems as well.

A. Coordinate Partitioning Technique

In the coordinate partitioning 28'33 or singular decomposition technique 2°'3°, one se-

lects a rank sufficient part of B and partitions it as

B= [Bi B_J, u= [Ul q_J (14)

where the rank of Bi(m × m) is rn and the subscripts (i, e) refer to internal and external

variables, respectively. First, we express ui in terms of ue as

-. u_' = B_-l(r_- B_u_) (15)

Since we have

L-Br, B7T I J{ BTB r} =o (16)

The first row of (10) reduces to

I"1(M_ + TT_IiT)q_ ' = r e (17)

where

and

[._] {r"}
T = B_-IBe, M = i 0 " _' (18)

M, ' re = r"
re

= r n _ TTr nr_ _. ., + TTMiB_lr'_ (19)

" " from (15) and similarly _ from (12). Note thatOnce one obtains ue, one can obtain u e

even though (17) has a smaller dimension than that of (10a), its left-hand side matrix is in

general full since T given by (18a) is in general full. Hence, unless T is a constant matrix,

one must refactor the solution matrix in (17) whenever a new T is formed.

B. Baumgarte's Technique

Baumgarte's technique 22'29 is based on the observation that the errors committed

in computing the constraint conditions (3) or (4) can either be critically damped out or

exponentially decreased as the integration process continues. Mathematically, this can be

stated for the configuration constraint equation(3) as

+ 2a¢ + 8# = 0

or the motion constraint equation(4) as

(20)

+ 7# = o (21)

In terms of the general constraint equation augmentation as given by (5b), the pre-

ceding stabilization is equivalent to modifying c in (5b) accordingly. Hence, the technique

can be implemented within the standard augmented form of the equations of motion (5).

However, if BM-1B T is ill-conditioned, which can happen since B is in general state-

dependent, the accuracy of generalized constraint force, X, can be considerably degraded.

This can occur if any two rows of B are physically similar (i.e., when two members form

a straight line) or numerically close during three-dimensional orientations.

C. Penalty Technique

In the two constraint handling techniques outlined so far, the objective was to satisfy

the constraint condition

=0 (22)

whose differentiatedforms were augmented to the equations of motion. In the penalty

procedure, one adopts
I

= ±¢, o (23)

as the basic constraint equations instead of the twice-differentiated form adopted in (5).

It is noted that the penalty formulation tacitly assumes that there will be violations

of the constraint condition in actual computations as discussed in Lanczos 51. If one sub-

stitutes (23) into the governing equations of motion, the resulting equation becomes

Mfi + I BTo = Q (24)
e

A major drawback of the above penalty procedure is that, once an error is committed

in computing A, there is no compensation scheme by which the drifting of the numerical

solution can be corrected. This has led to the development of a staggered stabilized

procedure as described below.

D. Staggered Stabilization Procedure

To illustrate this procedure we will consider the case of nonholonomic constraints.

Instead of substituting the penalty expression directly into the governing equations of

motion, first we differentiate (23) once to obtain

= l(Bfi + -_-)

where we assume the penalty parameter, e, to be constant.

Second, we obtain for ii from (5a) in the form

ii = M-I(Q - BTA)

and substitute it into (25) to yield

0#
E_ + BM-1BTA = r_, = BM-1Q + cO'--t"

(25)

(26)

(27)

Notice that the homogeneous part of the above stabilized equation in terms of the

generalized constraint forces, .X, has the following companion eigenvalue problem:

('7 + BM-1BT/e)Y = 0 (28)

where {_'k, k = 1... m} are the eigenvalues of the homogeneous operator for the new

stabilized constraint equations (27). Since _'k also dictates how the errors in the constraint

forces will diminish with time, the errors committed in the constraint conditions will decay

with their corresponding different response time constants. This physically oriented stabi-

lization property of the present technique is in contrast to that of Baumgarte's technique

wherein all the error components diminish according to a single time constant.

Third, this technique enables one to solve for ,k from the stabilized differential equa-

tion (27). Specifically, one now has two coupled equations, one set for the generalized

coordinates u and the other for the generalized constraint forces A, which are recalled here

from-(5a) and (27) for the case of nonholonomic constraints:

M 0 u 0 B T u -0
Note that the above coupled equations directly provide the desired differential equations

forapairof Lu AJ.

For holonomic constraints, one has several stabilization possibilities. The one we have

chosen is to integrate the governing equations of motion once to obtain

fin = 5M-I(Q,, _ BTA,) + h_ (30)

which is substituted into
1 0_

J_ = _(Bfl + _-)

to yield:

eA"+ 5BM-1BT,X '_ = B(SM-I(_" 4- ha) + _-

(31)

(32)

It is observed that, even if BM-1B T is almost singular, this stabilization tech-

nique as derived in (27) and (32) would not cause numerical difficulty in computing

since the solution iteration matrix becomes (e + gBM-IB T) for nonholonomic cases

and (e + 62BM-1B T) for holonomic cases. It is noted that one must choose e in such

a way to maintain robust solution when BM-1B T becomes ill-conditioned by choosing

e ,--, c/[(BM-1BT)-I[• IBM-1BT[where c is the solution accuracy desired for A.

Integration of the above equation by the mid-point implicit rule yields the following

difference equation:

h -1BT)_n+I/4
(eI + _BM = h(r]+_ + r_,) + e,k _

).+_/2 = 2).+1/4 _ ,k.
(33)

8

It has been shown that the staggered stabilized procedure for the solution of the
constraints offers not only a modular software package to treat the constraints but also

has been found to yield more robust solutions compared to the techniques proposed by

Baumgaxte as reported in Park and Chiou 35. In particular, even when BM-1B T be-

comes nearly singular, the staggered stabilized procedure (33) gives stable and acceptable

solutions whereas the constraint forces computed by the Baumgarte's technique diverge.

IV. Solution Algorithms for Generalized Coordinates

In addition to the choice of implicit and explicit formulas, the recognition that the

equations of motion for multibody systems with constraints are not ordinary differential

equations (ODEs) (see, e.g., Petzold 27) has placed a unique requirement in the selection

of solution algorithms for multibody dynamics problems. From the user's viewpoint, one

has the option of either employing one of the available ODE packages (see Enright 32 for

existing ODE packages) or building a special solution module. It should be noted that,

since the integration of angular velocity vector does not lead to angular orientations, one

must solve a set of kinematical equations to obtain the desired angular orientations.

In this section we describe an explicit-implicit transient analysis algorithm that ex-

ploits the special kinematical relationships of the generalized rotational coordinates vs.

the angular velocity, namely, the Euler parameters 34. The integration of the translational

coordinates and the angular velocity is accomplished by the central difference formula. It

should be mentioned that the use of the central difference formula does impose a stepsize

restriction due to its stability limit (_,na_h < 2) where Wma _ is the highest angular veloc-

ity of the system components for rigid-body systems or the highest frequency of the entire

flexible members for flexible-body systems. The simplicity of its programming effort and

robustness of its solution results can often become compelling enough to adopt an explicit

formula, which is the view taken here.

In conventional structural dynamics analysis, explicit time integration of the equations

of motion by the central difference formula involves the following two updates per step:

u "+1/2 = d "-1/= + hii" (34)u "+1 = u" + hu "+1/2

Unfortunately, this simplistic procedure is not directly applicable to the rotational part of

the equations of motion as w is not directly integrable, except for some special kinematic

configurations. This motivates us to partition (1 into the translational velocity vector, cl,

which is directly integrable and the angular velocity vector, w, which is not, and treat

them differently, viz.:

ii= d_ ' w

The equations of motion (5a) can be partitioned according to the above partitioning:

Md 0 ¢l Q,_} (36)

9

where

fd-- Dd(_l) -- Sd(d, e)- BdT_

in which the subscripts (d,w) refer to the translational and the rotational motions, re-

spectively, f is the external force vector, D is the generalized damping force including the

centrifugal force, S is the internal force vector including member flexibility, q is the angular

orientation parameters, B d and Bw are the partition of the combined gradient matrices

of the constraint conditions (3) or (4) that are symbolically expressed as

B - BN + BH, _ -- ,_g +),H (38)

To effect the body-by-body integration for the rotational degrees of freedom, we par-
tition d_ further into

,;.,= Lwl, w2,... ,,;.,v J T (39)

where d_(j) is a (3xl) angular acceleration vector for the j-th body,

_(j) I (j) (j) _/)j= LWl ,w2 , (40)

We now present the update algorithm for both translational and rotational coordi-
nates.

A. Update of Translational and Angular Velocity

First, assume that d n+l/2 and qn+l/2 are already computed so that we can compute

c1n+l/2 and _n.+l/2 by (36), namely,

,+I/2 { D_+_ + S_+_ _ BTA_+_ }{&"+1/2} =-M-1 D:+_ + S:+_ BT_"+_
(41)

Second, we update the translational velocity and the angular velocity vectors at the step

(n+l) by

{ d"+1 = + hdw ''+1 ¢0'_ + halo,+1�2 (42)

Third, we update the translational displacement, d, by

d"+3/2 = d"+I/2 + hcl n+1 (43)

However, the updating of the angular orientation requires somewhat involved computa-

tions. To this end, we will employ the Euler parameters and update them accordingly.

10

B. Update of Euler Parameters and Angular Velocity

As mentioned in conjunction with a direct use of (34) for integrating the rotational equa-

tions of motion, it is necessary for one to introduce a set of generalized coordinates whose

time rate can be related to the angular velocity. To this end, we employ the four-parameter

Euler representation of the angular velocity for each body as (see, e.g., Wittenburgl°):

110cl= _ w -_ q=A(w)q, q= [q0 ql q2 qsJ T (44)

that is subject to the constraint:

qTq = 1 (45)

where
0 --033 032

033 0 --031

-032 031 0

w = [03x w2 03sJ T (46)

and the nodal-designation superscript is omitted for notational simplicity.

We adopt the mid-point implicit procedure to integrate the Euler parameters:

{ _ln+l __ A(uan+l). qn+l

qn+l _ qn+l/2 + hft-+l2

qn+3/2 _ Oqn+l qn+l/2

(qn+3/2)T. qn+3/2 __. i

(47)

It should be noted that the mid-point implicit update is no more costly than any explicit

as the solution matrix inversion can be explicitly obtained.

Finally, once qn+3/2 iS computed from (47), it is often required to compute the body-

fixed basis vector, b = [ba b2 b3J T in terms of the inertial basis vectors, e --

[el e2 e3JT. These two vectors are related by

b = Re (48)

where

R

2(q_ + q_)- 1

2(qlq2 -- qoq3)

2(qlq3 + qoq2)

2(qaq2 + qoq3)

2(qo2 + q22) -- 1

2(q2q3 -- qoql)

2(qlq3 - qoq2)

2(q2q3 + qoqa)

2(%2 + q2)_ I

(49)

11

C. Update of cl, ua, d, q at the (n + 2)-step

So fax we have advanced from the step (n+l) to the step (n+3/2). In other words, we have

advanced only half of the total step. For the next step, viz, the step (n+2) from (n+3/2),

we employ the following sequence of computations:

&,+x = -M-1 D_+I + s_+I - BT)_"+xD_+I + S_+1 _ BTA,+I (50)

{ dn%3/2 _. dn..{-1]2 -I- h_ln+lw "+3/2 w,+1/2 + h_,+ 1 (51)

d"+ =dn+ I + hcl n+3/2

tl"+3/: = A(w"+3/2)q"+3/2

qn+3/2 _ qn+1 + hqn-{-3/2--
qn+2 __ 2qn+3/2 qn+l

(qn+2)Tqn+2 _. 1

(52)

Note that we do not use d "+3/2 and qn+a/2 in advancing from the step (n+3/2) to the

present step (n+2) in computing d n+2 and qn+2. Instead, we employ d n+l and qn+l, hence

the name two-stage staggered explicit procedure a4. The net result is that, even though we

take a full step (h instead of h/2), we only advance half the step at a time. In other words,

we evaluate the acceleration and the angular acceleration vectors twice for each full step.

Given:

Compute:

Advance:

V. Implementation

We will now outline the implementation aspects of the the partitioned MBD solution pro-

cedure. The procedure is implemented into two separate integration modules: generalized-

coordinate integrator (CINT) and Lagrange multiplier solver (LINT). The generalized-

coordinate integrator employs a two-stage modified form of the central difference method

for updating the angular velocity vector and the mid-point implicit rule for updating the

angular orientations via the Euler parameters. The Lagrange multipliers solver adopts a

staggered form of the mid-point implicit method.

A. Generalized-Coordinate Integrator (CINT)

The module receives f_, -- BT)_ n from LINT and advances the solution of the MBD

equation (1) from time t n to t n+l. At each integration step, CINT performs the following

computations.

p" = (cl "-1/2, d n, w n-1/2, qn) and g_ = (w", f_ = BT_"))

cl" and &" by (41)

el"+1/2 = cl"-1/2 + h l"d"+l d - + hcl n+1/2
(53)

12

/ w,,,+1/2 _ w,.,-1/2 + h&"

, ,, -,,

q.+l = 2_-+z12 _ q- (q.+1)T. q.+l = 1

(54)

Output:

Module Invoke: Call CINT (p", gn, h, p.+l)

where k is the stepsize and A(w) is given by

p.+l _ (d.+l12, d.+1 ' _.+I/2, q.+l)

0 -Wl -w2 -ws"

1 Wl 0 w3 -w2

-w3 0

W3 W2 --_1 0

(55)

and _,+1/2 is an intermediate vector and (54c) must be solved to obtain q,+l so as to to

satisfy the linear dependency constraint, qTq = 1.

Given:

Compute:

Advance:

B. Lagrange Multiplier Solver (LINT)

This module receives (cl, d, w, q) from CINT and performs the following computations.

p+1/2 = (_1"+1/2, d-+1/2, _a-+1/2, qn+l/2, _kn)

B "+_/2, BM-:B T and r_ +1/2 by (3) and (4)

{ _.+1/4 = (_ + hBM_IBT)_,(e.X. + _(r_ + r_+'/2))
_n+l/2 = 2_n+1/4 An

f_+,/2 = (B.+,/2)T..k.+,/2

(56)

Output:

Module Invoke:

An+l/2, f_+l/2

Call LINT (_.+1/2, h, A "+1/2, f_+l/2)

C. Two-Stage Explicit-Impllcit Staggered Procedure

In order to evaluate _bn+l, tO n+l must be known. Notice from the preceding section that

only &,+1/2 is available. Because inaccurate treatments of the gyroscopic damping and the

centrifugal force terms can lead quickly to computational instability in computing ¢b"+1,

it is not advisable to obtain w "+1 by extrapolating with w "+1/2 and w "-1/2. To mitigate

13

this difficulty, we advanceonly to the next half step, at each CINT and LINT call. This

is illustrated as follows:

_---t n

Call CINT (p", g", h, p,,+l)

Call LINT (_rt+l/2 h, _t n'4"1/2, f_4-1/2)

t = t" + h/2 (n _--- n + 1/2)

Call CINT (pn+l/2, gn+l/2, h, p,+3/2)

Call LINT (l "+1, h, IX"+1, f_+l)

t=t"+h

Note that

together with

=

pn+I/2 _. (_i n, dn+I/2, Wn, qn+I/2)

provides the necessary input data to compute _n+l/2 and &n+l/2 in the second call of

CINT in the above calling sequence. In summary, the present procedure requires two

function evaluations and two h-solutions per each full step, hence the name "two-stage

explicit-implicit staggered procedure".

VI. Numerical Examples

The two modules, the generalized coordinate integrator (CINT) and the Lagrange multi-

pliers solver (LINT), have been implemented in Fortran 77. In solving the following three

example problems, we have incorporated the constraint conditions through the use of La-

grange multipliers instead of eliminating the constraints. It is therefore necessary to solve

the governing equations of motion in a way that satisfies the constraint equations. Hence,

efficient and accurate solutions of these problems will confirm not only the viability of the

present integration procedure for the solution of the multibody equations of motion with

or without constraints but also the constraint stabilization procedure in their combined

totality.

A. Plane Three-Link Manipulator

The first problem tested is a simplified version of the seven-link manipulator deployment

problem 52. The three links are initially folded and, for modeling simplicity, between the

two joints is a coil spring which resists a constant deploying force at the tip of the third

link. Also, the left-hand end of the first link is fixed through the same coil spring to the

wall. These three coil springs are to be locked up once the links are deployed straight. The

deployment sequence of the manipulator is illustrated in Fig. 1. The time-discretized dif-

ference equations both for Baumgarte's technique and the staggered stabilization technique

have been solved at each time increment by a Newton-type iterative procedure to meet

14

a specified accuracy level. Hence, the performance of the two techniques can be assessed

by the average number of iterations taken per time increment. This is presented in Fig.

2 for the accuracy of 10 -4. Notice that the staggered stabilization technique requires on

the average about 4.5 iterations per step, whereas Baumgarte's technique requires about

22 iterations per step.

Note that Baumgarte's technique fails to converge for time, t _ 1.1 as manifested in Fig. 2

because the rows in B become numerically dependent upon one another when the links are

in a straight configuration. This corroborates the theoretical prediction of non-convergence

whenever the solution matrix, BM-1B T, for Baumgarte's technique (see Eqs.(5b), (20)

and (21)) becomes singular. On the other hand, the staggered stabilization technique still

converges within 30 iterations, because it overcomes this singularity difficulty, since _Xstill

exists, as can be seen from Eqs. (27) and (32).

It should be noted that, in order to avoid such ill-conditioning, one must differen-

tiate the constraint equations once or twice more and recast the resulting higher-order

constraint equations in terms of first-order equations with increased number of equations.

This process is known as an index reduction strategy 46. Thus, one must restructure the

augmented equations of motion (5) with the net result of increased solution variables.

Other techniques involve singular value decompositions, e.g., as advocated by F(ihrer and

Leimkuhler s3. On the other hand, the present staggered stabilization technique overcomes

the ill-conditioning difficulty without restructuring the governing equations of motion. In-

stead, the constraint equations are enforced in a separate module by the parabolically

regularized equations for the Lagrange multipliers as derived in (.27) and (32).

Although not reported here, the same relative performance has been observed for different

accuracy levels, i.e., for the accuracy of 10 -s and 10 -6.

From this test problem, we conclude that the staggered stabilization technique yields

both improved accuracy over and greater computational robustness than the Baumgarte

technique. In addition, the staggered stabilization technique offers software modularity in

that the solution of the constraint force, ,k, can be carried out separately from that of the

generalized displacement, q. The only data each solution module needs to exchange with

the other is a set of vectors, plus a common module to generate the gradient matrix of the

constraints, B. However, one should be cautioned not to extrapolate blindly to complex

problems the results of the present simple examples. Further judicious experiments are

needed in applying the present staggered stabilization technique to complex production-

level problems before it can be adopted for general applications in multibody dynamic
simulations.

B. Three-Dimensional Double Pendulum

The second problem with which we have tested the present procedure is a spatially moving

double pendulum as shown in Fig. 3. The governing equations of motion become those of

two separate rigid bars, except they are connected by two spherical joints. From Fig. 3

15

we have the the following quantities:

_/ d/ 1 /
= -_..,' xz/=0, i= 1, 2. (57)

M=diag{m 1, j1, m 2, j2} (58)

{,.lxo 0]B = _ 1-x -_'z x_z x -- i-2
(59)

0

0

fi=__ 0
','2,03(J2 - J_)
_3_l(JS - .11)

.'.,'1'_2(J1 - J_)

gi __ [_, O, _]T,

, i=l, 2. (60)

{i'= { g, ,:.,}', ,;.,'= [al, ,;.,2,,;.,3]r (61)

= [Ax,._2,._3,A4,_5, ._6]T (62)

In the preceding equations, ½z is the vectorial distance from the center of the bar to

the spherical joint constraints, m and J are the three translational and rotatory inertia

matrices, _ is the skew symmetric matrix formed by the three components of z, x implies

a vector cross multiplication, and the superscript designates the i-th bar.

The pendulum is originally positioned in a gravity field with initial horizontal angular

velocities (w (1) = w (z) = 1). Figure 4 shows the spatial trajectories of the two mass centers

as projected on the horizontal surface and on the vertical plane. It is noted that the two

trajectories form a similar pattern. The constraint forces and angular velocities, although

not reported herein, exhibit patterns that are analogous in their characteristics for the two

joints and two mass centers, respectively.

We have performed convergence studies by using different stepsizes h. Numerical evalua-

tions indicate, as with the rigid-link problem, that when the stepsize samples more than

20 per period, the present procedure yields both good accuracy and stability.

C. Open-Loop Torque for Three-Link Manipulator

The third problem is a three-link manipulator maneuvering under a specified nonholonomic

tip velocity constraint. For this problem, both rigid links and flexible links with four

beam elements per link have been investigated. The flexible beam was modeled with a

constant-strain Timoshenko beam element that allows large rotations. The three joints are

modeled as spherical ones and the Lagrange multipliers have been introduced to enforce

16

the joint constraints and well as the nonholonomic constraint at the manipulator tip. The

trajectories of the manipulator and the tip velocity specification are shown in Figs. 5

and 6. The corresponding joint torques for the rigid and flexible finks are also shown in

Figs. 7 and 8, respectively. Note that even though there exists little difference in the two

trajectories of the rigid and flexible cases, there are significant differences in the open-loop

joint torques. These will play an important role in the design of controller for vibration

suppression in the manipulator arms.

VII. Discussions

In this chapter, we have presented a computational procedure for direct integration of the

multibody dynamical (MBD) equations with constraints.

Because of its step-advancing nature, the procedure is labeled as a two-stage staggered

explicit-implicit algorithm: explicit for solving the generalized coordinates (CINT) and

implicit for Lagrange multipliers to incorporate constraints (LINT). Our numerical exper-

iments indicate that it is essential to enforce the linear dependency constraint condition

on the Euler parameters at each integration step.

Numerical experiments reported herein and additional applications conducted so far in-

dicate that the present procedure yields robust solutions if the stepsize gives more than

twenty samples for the period of the apparent highest response frequency of a given multi-

body system. Hence, the present procedure appears to have accomplished the following:

• For closed loop multibody systems and/or problems with complex topology wherein it

is practically inadvisable to eliminate the constraints, the present procedure facilitates

a straightforward construction of the governing equations of motion with appropri-

ate constraints. The generalized coordinates and the system open and closed loop

Lagrange multipliers can then be solved by the present procedure in a partitioned

manner.

• For problems that involve lock-up mechanisms or similar discontinuities, the present

procedure appears to overcome numerical difficulties encountered in using the Baum-

garte stabilization. This may be an important impetus for applying the present pro-

cedure for the simulation of deployment dynamics of space structures.

• The angular velocity is obtained by an adaptation of the central difference algorithm

in a two-stage form and the update of angular orientations is based on the Euler pa-

rameters by adopting the mid-point implicit formula. Both of the integrators conserve

the system energy, which is important when the multibody simulation package is to be

, interfaced with an active control synthesis module. This is because stability margins

of active control systems are sensitive to the system damping characteristics either

physical or numerical.

• The present MBD solution procedure is implemented into two separate modules: the

generalized coordinates solver (CINT) and the constraint Lagrange multiplier solver

(LINT). Hence, the task for interfacing of the present MBD solution modules with

additional capabilities such as active controller, observer and other analysis and design

software modules becomes relatively straightforward. Such software architecture is

17

in contrast to most of the existing programming practice wherein several analysis

capabilities are embedded into a single monolithic program.

Applications of the present procedure to flexible multibody systems are currently being

carried out and preliminary results are quite encouraging. We hope to report on the results

of flexible-body dynamics as well as on large-scale multibody problems in the near future.

Acknowledgements

The work reported herein was supported by NASA/Langley Research Center under Grant

NAG-I-756. The authors wish to thank Dr. Jerry Housher for his keen interest and

encouragement during the course of the present work.

References

1. Hooker, W. and Margulies, G., "The Dynamical Attitude Equations for an N-body

Satellite," J. Astronautical Science, Vol. 12, 1965, pp. 123-12.

. Roberson, R. and Wittenburg, J., "A Dynamical Formalism for an Arbitrary Number

of Interconnected Rigid Bodies with Reference to the Problem of Satellite Attitude

Control," Proc. the Third Int. Congress of Automatic Control, Butterworth, London,
1965.

3. Roberson, R., "A Form of the Translational Dynamical Equations for Relative Motion

in Systems of Many Non-Rigid Bodies," Acta Mech. Vol. 14, 1972, pp. 297-308.

4. Huston, R. L. and PassereUo, C. E., "On Lagrange's Form of d'Alembert's Principle,"

The Matrix and Tensor Quarterly, Vol. 23, 1973, pp. 109-112.

5. Boland, P., Samin, J. and Willems, P., "Stability Analysis of Interconnected De-

formable Bodies in a Topological Tree," AIAA J., Vol. 12, 1974, pp. 1025-1030.

6. Likins, P., "Analytical Dynamics and Nonrigid Spacecraft Simulation," Jet Propulsion

Laboratory, Technical Report 32-1593, Pasadena, Ca., 1974.

7. De Veubeke, B. F., "The Dynamics of Flexible Bodies," Int. J. Engng. Sci., Vol. 14,

1976, pp. 895-913.

. Jerkovsky, W., "The Transformation Operator Approach to Multisystem Dynamics,

Part I: The General Approach," The Matrix and Tensor Quarterly, Vol. 27, 1976, pp.
48-59.

9. Ho, J. Y. L., "Direct Path Method for Flexible Multibody Spacecraft Dynamics,"

Journal of Spacecraft and Rockets, Vol. 14, No. 2, 1977, pp. 102-110.

10. Wittenburg, J., Dynamics of Systems of Rigid Bodies, B. G. Teubner, Stuttgart, 1977.

18

11.

12.

W. W. Armstrong, "Recursive Solution to the Equations of Motion of an N-Link

Manipulator," Proc. 5th World Congress, Theory of Machines, Mechanisms, Vol. 2,

1979, pp. 1343-1346.

HoUerbach, J., M., "A Recursive Lagrangian Formulation of Manipulator Dynamics

and a Comparative Study of Dynamics Formulation Complexity," IEEE Trans on

Systems, Man, and Cybernetics, SMC-10, 1980, pp. 730-736.

13. Kane, T. and Levinson, D., "Formulation of Equations of Motion for Complex Space-

craft," J. Guidance and Control, Vol. 3, 1980, pp. 99-112.

14. Keat, J. E., "Dynamical Equations of Body Systems with Applications Space Struc-

ture Deployment", PhD Thesis, MIT, 1983.

17.

18.

21.

22.

23.

24.

25.

Haug, E. J. (ed.), Computer Aided Analysis and Optimization of Mechanical System

Dynamics, Springer-Verlag, Berlin 1984.

Roberson, R. E. and Schwertassek, R., Dynamics of Multibody Systems, Springer-

Verlag, New York, 19842

Schwertassek, R. and Roberson, R. E., "A State-Space Dynamical Representation for

Multibody Mechanical Systems, Part II," Acta Mechanica, Vol. 51, 1984, pp. 15-29.

Bianchi, G. and Schielen, W. (eds), Dynamics and Multibody Systems, Springer-

Verlag, Berlin, Heidelberg, 1986.

Huston, R. L., Lecture Notes on Dynamics, Preprint, University of Cincinnati, 1988.

Walton, W. C. and Steeves, E. C., "A New Matrix Theorem and Its Application

for Establishing Independent Coordinates for Complex Dynamical Systems with Con-

straints," NASA TR-R326, 1969.

Gear, C. W., "Simultaneous Numerical Solution of Differential/Alge-braic Equations,"

IEEE Trans. Circuit Theory, CT-18, 1971, pp. 89-95.

Baumgarte, J. W., "Stabilization of Constraints and Integrals of Motion in Dynamical

Systems," Comp. Meth. Appl. Mech. Engr., Vol. 1, 1972, pp. 1-16.

Orlandea, N., Chase, M. A. and Calahan, D. A., "A Sparsity-Oriented Approach to

the Dynamic Analysis and Design of Mechanical Systems - Part I and II," Trans.

ASME, J. Eng. for Industry, Ser. B, Vol. 99, 1977, pp. 773-784.

LStstedt, P., "On a Penalty Function Method for the Simulation of Mechanical Sys-

tems Subject to Constraints," Royal Institute of Technology, TRITA-NA-7919, Stock-

holm, Sweden, 1979.

Orin, D. E., D. E., McGhee, R. B., Vukobratovic, M. and Hartoch, G., "Kinematic

and Kinetic Analysis of Open-chain Linkages Utilizing Newton-Euler Methods," Math.

Biosc., Vol. 43, 1979, pp. 106-130.

19

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Huston, R. L. and Kamman, J. W., "A Discussion on Constraint Equations in Multi-

body Dynamics," Mech. Res. Comm., Vol. 9, 1982, pp. 251-256.

Petzold, L., "Differential/Algebraic Equations are not ODEs," SIAM J. Sci. Star.

Comp., Vol. 3, 1982, pp. 367-384.

Wehage, R. A. and Haug, E. J., "Generalized Coordinate Partitioning for Dimension

Reduction in Analysis of Constrained Dynamic Systems," ASME J. of Mech. Design,

Vol. 104, 1982, pp. 247-255.

Baumgarte, J. W., "A New Method of Stabilization for Holonomic Constraints," Jour-

nal of Applied Mechanics, Vol. 50, 1983, pp. 869-870.

Ffihrer, C. and Wallrapp, O., "A Computer-Oriented Method for Reducing Linearized

Multibody System Equations by Incorporating Constraints," Comp. Meth. Appl.

Mech. Eng., Vol. 46, 1984, pp. 169-175.

Nikravesh, P. E., "Some Methods for Dynamic Analysis of Constrained Mechanical

Systems: a Survey," in: Computer Aided Analysis and Optimization of Mechanical

System Dynamics (E. J. Haug, ed.), NATO ASI series, F9, Springer-Verlag, Berlin,

1984, pp. 351-367.

Enright, W. H., "Numerical Methods for Systems of Initial Value Problems - The State

of the Art," in: Computer Aided Analysis and Optimization of Mechanical System

Dynamics(E. J. Haug, ed.), NATO ASI series, F9, Springer-Verlag, Berlin, 1984, pp.

309-322.

Garcia de Jalon, J., Unda, J., Avello, A. and Jimenez, J. M., "Dynamic Analysis

of Three-Dimensional Mechanisms in Natural Coordinates," Journal of Mechanisms,

Transmissions and Automation in Design, Vol. 109, 1987, pp. 460-465.

Park, K.C., Chiou, J.C. and J. D. Downer, "A Computational Procedure for Large

Rotational Motions in Multibody Dynamics ," Proc. the 29th Structures, Dynamics

and Materials Conference, AIAA Paper No. 88-2416, AIAA, 1988, pp.1593-1601 (also

to appear in J. Guidance, Control and Dynamics).

Park, K. C. and Chiou, J. C., "Stabilization of Computational Procedures for Con-

strained Dynamical Systems," Journal of Guidance, Control and Dynamics, Vol. 11,

July-August 1988, pp. 365-370.

Geradin, M. and Cardona, A., "Kinematic mud Dynamics of Rigid and Flexible Mech-

anisms Using Finite Elements and Quaternion Algebra," Computational Mechanics,

Vol. 4, 1989, pp. 115-135.

Bodley, C. S., Devers, A. D., Park, A. C. and Frish, H. P., "A Digital Computer Pro-

gram for the Dynamic Interaction Simulation of Controls and Structures (DISCOS),"

NASA Technical Paper 1219, 1978.

2O

40.

41.

42.

43.

4,

45.

46.

47.

48.

49.

50.

The ADAMS User's Guide, Mechanical Dynamics, Inc., Ann Arbor, Mich., 1979.

Schwertassek, R., "Der Roberson/Wittenburg Formalismus and das Programmsystem

MULTIBODY zur Rechnersimulation yon MehrkSpersystemen," Report DFVLR-FB-

78/08, DFVLR, KSln, 1978.

Huston, R. L., Harlow, M. W. and Gausewitz, N. L., "User's Mamaual for UCIN-

EULER- A Multipurpose, Multibody Systems Dynamics Computer Program," NTIS

Report AD-A120403, 1982.

Haug, E. d., Lance, G. M., Nikravesh, P. E., Vanderploeg, M. J. and Wehage, R. A.,

DADS (Dynamic Analysis and Design Systems), Computer Aided Design Software

Inc., Oakdale, Iowa, 1985.

Housner, J. M., McGowan, P. E., Abrahamson, A. L. and Powel, M. G., "The LAT-

DYN User's Mannual," NASA TM 87635, NASA/Langley Research Center, January

1986.

Hughes, T. J. R. and Belytschko, T., "A Precis of Developments in Computational

Methods for Transient Analysis," Journal of Applied Mechanics, 50, 1983, 1033-1041.

Park, K. C., "Transient Analysis Methods in Computational Methods," Finite Ele-

ments: Theory and Applications (ed. D. L. Dwoyer, M. Y. Hussalni and R. G. Voigt),

Springer-Verlag, 1988, 240-267.

Belytschko, T., Englemann, B. E. and Liu, W. K., "A Review of Recent Develop-

ments in Time Integration," in: State-of-the-Art Surveys on Computational Mechan-

ics (Noor, A. K. and Oden, J. T., editors), ASME, 1989, pp. 185-200.

Brenan, K. E., Campbell, S. L. and Petzold, L. R., The Numerical Solution of Initial

Value Problems in Ordinary Differential-Algebraic Equations, Elsevier Science Pub-

lishing Co., 1989.

Park, K. C., "Partitioned Analysis Procedures for Coupled-Field Problems: Stability

Analysis," Journal of Applied Mechanics, Vol. 47, 1980, pp. 370-378.

Felippa, C. A. and Park, K. C., 'Staggered Transient Analysis Procedures for Coupled

Mechanical Systems," Computer Methods in Applied Mechanics and Engineering, Vol.

24, 1980, pp. 61-111.

Park, K. C. and Felippa, C. A., "Partitioned Analysis of Coupled Systems," in Com-

putational Methods for Transient Analysis, T. Belytschko and T. J. R. Hughes (eds.),

Elsevier Pub. Co., 1983, pp. 157-219.

Felippa, C. A. and Park, K. C., "Computational Aspects of Time Integration Proce-

dures in Structural Dynamics, Part 1: Implementation," Journal of Applied Mechan-

ics, Vol. 45, 1978, pp. 595-602.

21

51. Lanczos, L., The Variational Principles of Mechanics,4th ed., University of Toronto

Press, 1970, pp. 141-147.

52. Housner, J. M., "Convected Transient Analysis for Large Space Structure Maneuver

and Deployment," AIAA-84-1023-CP, Proc. _5_h S_ruc_ures, S_ruc_ural Dynamic8

and Material Conference, Part 2, 14-16 May 1984, Palm Springs, pp. 616-619.

53. Fiihrer, C. and Leimkuhler, B., "Formulation and Numerical Solution of the Equations

of Constrained Mechanical Motion," Technical Report DFVLR-FB 89-08, DFVLR, D-

5000 KSln 90, 1989.

22

2.0

Time(t=0.3) Time(t=0.6)
•._ I.o F. T_,,_(_=o.s)

• //

1.1)

0.0

-1.0

0.0 1.5

Horizontal Dimension

3.0

Fig. 1 Deployment of Three-Link Remote Manipulator

I00

0
.wq

5O

Baumgarte's Technique

0 I I I I I I L--....

0.0 0.6

Time

1.2

5O

m,

O
,a,q

25

0

New Stabilized Technique

0.(} 0.6 1.2

Time

Fig. 2 Performance of Two Stabilization Techniques

for Three-Link Remote Manipulator

(Solution A_ccuracy-----10 -G)

Jolnt 1

Joint 2

!

Fig 3 Double Pendulum witlt Spatial .]oinLs

1.5

Z 0.0

-1.5

-1.5 0.0 1.5

X

Fig. 4a Trajectories of double pendulum on X-Z plane

Y

1.5

0.0

-1.5

Fig. 4b

I I I I I I I I

0.0 1.5

X

Trajcctories of double pendulum oa X-Y pl,'me

6O

tJ

0
0
ro

4O

2O

0

-20

-4O

4

_ JOINT_7 TIP TRAJECTO_7

JOINT 2 -_

] I] I 1 I [1 I

0 20 40 60 80 100

X-COORDINATE (inches)

, Fig. 5 Crane Tip Trajectory of Rigid and Flexible lVlembers

%-.
g]

o
0

6

4

2

._,__2 I 1 1 I I I I

0 2 4 6 8 I0

TIME (sec)

Fig. 6 Crane Tip Velocity of Rigid and Flexible Members

O'

0

0

1600

800

0

-800

-1600

•.. ! JOINT 1

_ "...................
0

_1 1 I I I I

2 4 6

I I I

8 I0

TIME (sec)

Fig. 7 Crane Joint Torque (Rigid Members) vs. Time

Or]

C_

0

0

1600

800

0

-800

-1600

JOINT 1

JOINT 2

I I ! I I I I I I

0 2 4 6 8 10

TIME (sec)

Fig. 8 Crane Joint Torque (Flexible Members) vs. Time

A Computational Procedure for Multibody

Systems Including Flexible Beam Dynamics

J. D. Downer, K. C. Park, and J. C. Chiou

Department of Aerospace Engineering Sciences

and Center for Space Structures and Controls

University of Colorado at Boulder

Boulder, CO 80309-0429, USA

Abstract

A computational procedure suitable for the solution of equations of motions for flexible

multibody systems has been developed. The flexible beams are modeled using a fully non-

linear theory which accounts for both _nite rotations and large deformations. The present

formulation incorporates physical measures of conjugate Cauchy stress and covariant strain

increments. As a consequence, the beam model can easily be interfaced with real-time strain

measurements and feedback control systems. A distinct feature of the present work is the com-

putational preservation of total energy for undamped systems; this is obtained via an objective

strain increment/stress update procedure combined with an energy-conserving time integra-

tion algorithm which contains an accurate update of angular orientations. The procedure is

demonstrated via several example problems.

1. Introduction

The simulation of flexible multibody systems is becoming an increasingly important

tool for the design and operation of many engineering applications. Typical examples of

such systems include deployable space structures, high precision machine dynamics and

robotics, and other problems containing controlled positioning of structural components.

The components of these articulated structures typically undergo large relative displace-

ments and rotations in order to carry out the intended operations. To perform the desired

kinematic motions, various types of mechanical joints are introduced to constrain the rel-

ative motion between the various components. New technology needs of both the space

and robotics industries have increased the demand for accurate numerical simulations of

the effect of component flexibility on the performance of multibody systems. A significant

coupling between the gross structural motion and the elastic deformation can be expe-

rienced by typical applications in which lightweight structures with higher flexibility are

required to operate with greater positioning accuracy and at higher speeds. To capture

this phenomenon, a realistic mathematical model of the structural component that can

readily be incorporated into a general multibody dynamics methodology is necessary.

Two basic approaches, the floating frame approach and the nonlinear continuum ap-

proach, exist for the modeling of flexible components within a general multibody system.

The floating frame approach introduces a moving referenceframe to follow someoverall
mean rigid body motion of the beam; the elastic deformation of the beam is then de-
scribed relative to this moving reference1-6. With this approach, the classicalmulti-rigid
body analysiswasextended to include structural flexibility by superposingexisting linear
deformation descriptions onto the rigid motions of the floating referenceframeT,s. The
definition of such a mean axis system and the corresponding deformation modes within
the general context of the finite elementmethod hasbeenpresented9-11. To minimize the

number of elastic coordinates, coordinate transformations from the physical elastic coor-

dinates to modal coordinates were performed within the multibody dynamics context 12,

and static correction modes were used in conjunction with the normal modes of vibration

to account for reaction forces and torques transmitted to the components through joint

connections 13'14. An alternative choice of a floating reference frame for finite element appli-

cations, termed the convected coordinate system, was introduced as a simple separation of

the rigid body motion and the structural deformation for a given finite element 15-1s. All of

these studies, however, are limited by the assumption of linear deformation theory which is

inadequate to capture certain nonlinear phenomena. Nonlinear deformation theories must

be taken into account for such instances as the geometric stiffening of a spinning beam 19,2°

in which the structural component experiences a centrifugal force as well as applications

in which the components necessarily have low mass and very high flexibility. Extensions

of the original approach to model the nonlinear effects include the substructuring tech-

nique in which the component is further partitioned into substructures each with a local

reference frame where normal vibration and static correction modes can then be used to

model the deformation 21, and the finite element incorporation of a nonlinear Green strain

measure 22'23. The resulting equations of motion of the floating frame approach, written in

terms of a set of reference coordinates and a set of relative elastic coordinates, inherently

contain a complex coupling of the gross motion and the elastic deformation modes.

Recently, a fully nonlinear continuum approach to describe the dynamics of the flexible

beam has been pursued 24-2s. Through the use of finite-deformation rod theories 29-s2, the

approach is capable of directly accounting for both finite rotation kinematics and large

deformations of the beam component. Since the motion due to rigid rotations of the beam

is not distinguished from that due to deformations, the need for a floating reference frame

is completely obviated and the component inertia is identical in form to that of a rigid

body. The inherent nonlinear coupling between the gross body motion and the elastic

deformation is transferred to the stiffness part of the equations of motion. The key to

the successful adoption of this approach is to develop a computational procedure for the

nonlinear internal force term that preserves rigid body motions.

The aim of this paper is to incorporate the nonlinear continuum formulation of the

spatial beam motion into a general multibody dynamics software methodology. The present

formulation employs a convected coordinate representation of physical Cauchy stresses

and corresponding set of physical strains. This representation naturally lends itself to the

"software in the real-time experiment" loop as sensors measure only physical quantities.

2

Another advantageof the formulation is that the degreesof freedomof the beam component
embody both the rigid and flexible deformation motions. The task for incorporating the
multibody system constraints becomesstraightforward, and the equations of motion for an
arbitrary configuration of flexible beamsand rigid bodiescan automatically be generated
in terms of an identical set of physical coordinates. Numerical solution procedures for
the integration of spatial kinematic systemscan then be directly applied to thesephysical
coordinates. Sucha universal treatment is not applicable within the context of the floating
frame approach as the referenceand elastic coordinate definitions are of highly different
character.

The rest of the paper will be organizedas follows. Section 2 will detail the kinematic
description of the continuum beam in which the total motion is referred directly to the
inertial referenceframe. The principle of virtual work of a continuum as specialized to
the spatial motion of the beam component is detailed in Section 3. The subsequentfinite
element discretization of the beam componentand overall multibody systemequations are
then presented. Section 4 will summarizethe staggeredprocedure for the integration of
multibody dynamic systems. The virtual work expressionis used to derive the method
of computation of the internal force, and Section 5 will addressthis algorithmic treat-
ment of the nonlinear stiffness operator. Section 6 will present someexample problems
demonstrating the softwarecapabilities.

2. Beam Kinematics

The present formulation adopts an inertial reference frame for describing the trans-

lational motions and a body-fixed frame for the rotational motions. The consequence of

this description is that the translational and rotational variables embody information due

to both rigid rotations and deformations of the beam. The configuration of the beam, as

shown in Figure 1, is completely characterized using a position vector locating the neutral

axis of the beam from the inertial origin and a body-fixed frame representing the orienta-

tion of the cross-section with respect to the inertial reference frame. The position vector

r locating an arbitrary particle point on the beam is thus described as

r = (X + u)re + eTb (2.1)

where "boldface" symbols represent three subscripted vectors and the normal type symbols

represent three components of a given vector; e = { el,e2, es }T represents the three

orthogonal vectors defining the inertial reference frame; b = { bl, bz, bn }T represents

the body-fixed reference frame which is attached to and rotates with the beam cross section;

X = { Xx,X2,X3 }T represents the inertial components of the original neutral axis

position; u = { ul,u2,u3 }T represents the inertial components of the subsequent total

translational displacement of the neutral axis, and gT = { 0, g2,g3 } are the body-fixed

components of the distance from the beam neutral-axis to the material point located on

the deformed beam cross-section. It is noted that the beam cross-section is allowed to

3

rotate such that it is not necessarily perpendicular to the neutral axis in order to model

transverse shear deformations. Warping deformation of the cross-section is not taken into
consideration.

In order to derive the necessary time derivatives for the description of the large rotation

dynamics, we employ the well known formula3a:

d d e d b

dt - dt dt + w × (2.2)

where w is the angular velocity vector and the superscripts e and b indicate that the

derivatives are to be those observed in the inertial (space) and body (rotating) system of

axes respectively. The above is expressed in the matrix form to act on the body frame

components of a given vector
d d b

dt - dt + _ ' (2.3)

and the velocity and acceleration of the position vector (2.1) are

dr du T
-- e q_ _T&T b

dt dt

d2r d2u T db&T

dt 2 -- dt 2 e + _T (d-"--_ -It- &T_T) b

Given the following relation between the b-basis and the e-basis

(2.4)

b = R e (2.5)

where 1_ is a (3 x 3) orthogonal transformation matrix, the body frame components of the

skew-symmetric angular velocity tensor (&r) are

_T = ___tR T

A conjugate virtual rotation tensor is defined analogous to the above as

(2.6)

_5 T = 6RR T ,

and the variation of the position vector (2.1) is given as

(2.7)

6r = _uTe -1- eT6_Tb (2.8)

The equations of motion as derived from the stated beam kinematic description will be
discussed next.

3. Spatial Beam Equations of Motion

The principle of virtual work, which is simply a 'weak' or variational form of Cauchy's

differential equations of motion for the equilibrium of a given set of particles of a continuum,
is stated as 34

_ri piZi dV + a_j _ dV = 6rifi dV + _riti dS
(3.1)

The cartesian coordinates xi represent the particle position after some deformation has

taken place, 6ri a kinematically admissible virtual displacement, /:i the acceleration, fi

the external force per unit mass, and ti the stress vector acting on a surface with outward

normal components hi. Likewise, a_j represents the cartesian components of the Cauchy

stress tensor, and p is the mass density. The expression is tailored for the continuum

beam by using the kinematic relations (2.1), (2.4), and (2.8) for the components zi, /_ri,

and /:i respectively. As well as providing the basis for a finite element approximation

techniques, the variational formulation readily lends itself to the derivation of incremental

strain-displacement relations as deduced from the derivatives of the virtual displacement

components. The present formulation employs a physical stress measure defined as a force

per unit deformed area and the conjugate physical strain increments based on the de-

formed coordinates. As such, the formulation can be recast into a convected coordinate

system moving with the beam, thus simplifying the stress and strain computational proce-

dures. The practical advantages of such a formalism are in real-time software simulation

experiments as the computed physical quantities correspond to the actual stress/strain

measurements of the sensors located and operating on the deformed structure.

For notational convenience and subsequent finite element discretization, the principle

of virtual work is expressed in the following operator form:

6F s + 6F s = _F E q- 6F T (3.2)

where the inertia operator 6F t, internal force operator 6F s, external force operator i_F E,

and traction operator _F T are identified from (3.1). Explicit expressions for the various

operators incorporating the large rotation beam kinematics are derived in Sections 3.1 to

3.3. The finite element discretizations are given in Section 3.4, and the incorporation of

the beam formulation into the multibody dynamics framework is discussed in Section 3.5.

3.1 Spatial Beam Inertia Operator

The inertia operator was defined from (3.1) as

5FI = Iv p Sriri dV = /v p $r. f dV (3.3)

from which an expressioncan be derived directly from the kinematic equations (2.4) and
(2.8). If the origin of the body-fixed basis is located at the centroid of the cross-section,
the following simple expressionresults for _FI:

where

---- J_s { GuT _O_T }
I d2 u }

pA
ds

db w
J --'_- + & J _v

(3.4)

A p _T dA J

represents the inertia tensor of the beam cross-section and ds represents the remaining

integration to be performed over a beam length parameter. The translational inertia is

completely decoupled from the rotary inertia and is of the same form as that seen in rigid

body dynamics. This is due to the dual choice of the translational displacements measured

in the inertial basis and the angular velocity measured in the body-fixed basis located at
the center of mass of the cross-section.

3.2 Spatial Beam Internal Force Operator

The internal force operator was defined in (3.1) as

6FS - /v O_ri-- __ Ox i a_i dV (3.5)

identifying as conjugate quantities the virtual displacement gradient and the Cauchy stress

tensor. This form of the internal force along with the beam kinematic description will be

used to deduce a set of virtual strain-displacement relations that are invariant to rigid body

motions. The corresponding conjugate stress tensor will be obtained from an objective

incremental procedure that relates incremental strains obtained from the virtual strain

tensor to Cauchy stress increments. Thus the internal force term will be derived completely

from the original definition of the beam kinematics without making an a priori definition

of the existing strains or stresses.

A physically appealing decomposition of the stress and virtual strain tensors into an

alternative beam reference frame which lies tangent to the deformed neutral axis is intro-

duced to provide conceptual simplifications in the derivation and subsequent computations.

Certain stress states referenced to this convected frame are kinematically required to van-

ish in a beam formulation. When applied to the convected frame stress components, this

choice also leads the task of stress update computations to a simple additive procedure.

To this end, we introduce a convected reference frame, denoted by a, which is related to

the inertial reference frame e by

a = T e , a = { al,a2,aa }T (3.6)

6

For implementation purposes within the context of the finite element method, the con-
vected frame will be constant on the element level and thus is similar in concept to that
introduced by Belytschkoet al.15,16.It is noted that this referenceframe doesnot coincide
with the body frame b attached to the cross-section.The relative differencebetween these
two referenceframes is representedby the rotation matrix S which models the effectsof
transverseshear and torsion deformation as

b = Sa , R = ST ,

and the latter interdependence between the rotation matrices is established.

(3.7)

The internal force operator, originally characterized by the inertial frame components

of the Cauchy stress tensor (a_i) and conjugate virtual displacement gradient, will equiv-

alently be expressed in terms of the convected frame components of the stress tensor (a_i)

and a corresponding convected virtual displacement gradient as

IV 06r i /V --6F s = _ a_i dV = Tmi OSri- O_k amk dV (3.8)

The symmetric portion of the transformed deformation gradient is used to define the virtual
{1

strain tensor _Semk as

1 0_r i O_ri

t_e_'k = 2 (Tin, c9_--_ + Tk, 0_---_) (3.9)

which is an objective tensor invariant to arbitrary rigid body motions. The internal force,

written in terms of the convected frame tensors, will be expressed in vector format as

_SFS = Iv 8¢_k a_nk dV = Iv { a_

where the notation

_,',7 _,*< } _,'. dV (3.10)

= { } = { } , ('),i = (+ (),,

denotes the coordinates of the convected reference frame and the engineering shear strain

definitions respectively. The rest of the convected frame strain components

6e_, 1 , /_¢¢ , 6_',_¢

are identically equal to zero due to the original assumptions of the beam kinematics.

A set of virtual strain-displacement relations can be derived from the expressions (2.8)

and (3.9). The final result is expressed as

= _,,/ ___ _T_E (3.11)

7

where

63' = T o-T + -6#3 , 6_ _ 6# = s T 6a (3.12)
6/h '

and is comparable to that of Reissner 31. In the above expressions, 67 represents the

membrane and two transverse shear strains, 6_ the torsion and two bending strains, and

6# the virtual rotations of the cross-section referred to the convected frame.

In an analogous manner the total stress state is expressed as

O'_ "_- O"r -[- _To'_ (3.13)

to be obtained from a separate stress update procedure. A substitution of (3.11) and (3.13)

into (3.10), and a spatial integration over a symmetric cross-sectional area results in the

following expression for the internal force

6F s = f_ { &r T N_ + 6_ T M_ } d_ (3.14)

where N. r represent the axial and transverse shear forces per unit length, and M,_ represent

the torsional and bending moments per unit length as given by

N7 = fA adA, M_ = /A _r a dA (3.15)

To be consistent with the inertia operator derived in (3.4), the above is written as

6FS -- o_ { 6uT 6aT} [B]T { N_ } d_M_ (3.16)

which involves a transformation back to the body frame components of the virtual rotations

and also an identification of the desired incremental strain-displacement matrix B. To

effect the change of the body reference frame of the cross-section orientation in space with

respect to the constant convected reference frame, we invoke the following relations:

Oa6# __ sT C'}a60_ __ sT ob60_

O_ O_ (O_ + _s 6a) (3.17)

OaS Sr (3.18)- o(

which are completely analogous to those relating changes in the time derivative given in

(2.3) and (2.6)• The strain operator [B] of (3.16)is then recognized as

TO--- _, S T]o_ 0 _ , _l =
[B] = 0 St(+ I)

0 0 0

0 0 -1

0 1 0

(3.19)

It remains to provide a procedure for updating a. r and an in order to compute N- t and

M_. For this purpose, we employ the following rate-type law that relates the instantaneous

rate of stress to the instantaneous rate of deformation:

• "-, "" (3.20)¢7tl -- Cklmp _mp

where Cklmp represents the material response tensor, and b_t and t_v represent the

convected frame stress and strain rates, respectively• This approximate constitutive law can

be derived by transforming the TruesdeU rate equation as, which is an objective equation

based on inertial components of Cauchy stresses and the velocity gradient tensor, to the

convected basis. This equation is then integrated in time as

tn+l

" f,. "" dta_ t ,,+t = a_,t + cklmv Smv

ri

= a_l + ckimV Aeamp

(3•21)

to define the stress update procedure. The evaluation of the strain increments A_ap, to

be defined from the virtual strains (3.12), will be detailed in Section 5.

3.3 Spatial Beam External Force and Traction Operator

The external force operator defined in (3.1) as

6FE = Iv _ri fi dY

has the final resultant form

_FE = f { 6uT _otT }{ fefb} d_ (3.22)

where fe represents the inertial components of a force per unit length acting on the beam

neutral axis and fb represents the body-fixed components of a moment per unit length

acting on the beam cross-section. The traction operator defined as

_FT = Jfs 3ri ti dS (3.23)

9

acts on the exterior surfaces of the beam as natural boundary conditions.

3.4 Finite Element Discretization

The variational form of the partial differential equations representing the spatial dy-

namics of a continuous beam presented in the preceding sections provide a basis for the

finite element method to be used as a spatial discretization procedure 36. In the present

study, we restrict ourselves to the use of linear shape functions to approximate the dis-

placement field along the beam, viz.,

npe

u = E Nz ul (3.24)
I--1

where Nz denotes the

at the element nodes,

inertia operator, from

spatial linear shape functions, ul represents the degrees of freedom

and npe denotes the number of nodes per element. The element

(3.4), is written as

npe ripe

_F'= EE{
I=1 K=I

d2u K
dt }

npe

I=l

(3.25)

where

represent the element mass matrix and nonlinear angular acceleration vector. The former

will be evaluated as a standard lumped mass matrix for the computational efficiency of

explicit integration techniques to be described in Section 4, and the latter will be evalu-

ated from an average of the element nodal angular velocities. The element internal force

operator, from (3.16), is written as

- {} -_F_= _ {6u, 6.,} [BS] _ N, E
I=1 M, = y_ { _ui

I----1

si }E (3.26)

where the evaluation of the element strain operator

[st] = /
T._-z

0
d_ (3.27)

10

and the resultant elementstressesN-f and M_, as defined in (3.19) and (3.15) respectively,

will be presented in detail in Section 5. The element external force operator, from (3.22),
is written as

_FE = E { _uI _olI } {{ f_,b = YI fe,b dE (3.28)
I=1

and the traction operator is implemented as boundary conditions on the nodes. The

equations of motion in terms of nodal degrees of freedom (6Ud, 6aa) for the entire beam are

obtained from an assembly of the above element operators. For the unconstrained beam,

these nodal virtual displacements and rotations are arbitrary independent variations, and

the discrete equations of motion are written as

Md 0

0 Jd &a Dd(w) Sbd f_

(3.29)

where Md, Jd represent the assembled mass and inertia matrices, and Dd(w), Sd, fd

represent the assembled nonlinear acceleration, internal force, and external force vectors

respectively.

3.5 Extension to Multibody Dynamics

The present formulation of spatial beam dynamics as given by (3.29) can readily be

incorporated into a general multibody dynamics methodology. The degrees of freedom of a

rigSd body, namely the inertially-based translational position of the center of mass and the

rotational orientation of the body reference frame, coincide with the degrees of freedom

of the nodal coordinates of the present beam components. Thus the equations of motion

(3.29) can be specialized to represent a rigid body system by setting the internal force Sd

equal to zero.

It remains to augment both the holonomic and nonholonomic constraint conditions

modeling the contacts among the various bodies to the equations of motion. For this pur-

pose, the Lagrange multiplier technique is used to couple the algebraic constraint equations

with the differential equations of motion of the generalized coordinates by augmenting the

virtual work of the unconstrained system (3.2) with the virtual work required to enforce

the constraints. Given a set of equations representing holonomic constraint conditions

between the displacement coordinates as

O H (U, t) --'--0 6_H -- (9 g2H 6U = BH 6U = 0 (3.30)
' (gu

and a set representing nonholonomic constraint conditions between the virtual displace-

ments and rotations as

,5oN = BN = 0 , (3.31)

11

the virtual work expression(3.2) of the unconstrained system is modified to' account for
the constraint via Lagrange's multipliers A as37

_Fz + gF s +)_H'_ H -_-)_N._N --_ _F E + _F T

The virtual displacements and rotations of the generalized coordinates can now be treated

as arbitrary independent variations in the modified virtual work expression. The equations

of motion for constrained flexible multibody systems with respect to a set of generalized

coordinates (/L,w) denoting both the nodal coordinates of the flexible members and the

physical coordinates of the rigid bodies can be expressed as

where

0 J 5; + A = Q_ (3.32)

= /b_ _ sb(,q) ' BN '

in which D(w) represents the nonlinear acceleration, S the internal force vector, f the

external force vector, and B T A the constraint force vector. As an additional number of

unknown Lagrange multipliers A for each constraint condition have been introduced along

with the generalized coordinates for each degree of freedom, the above system of equations

must be augmented with the constraint equations themselves to achieve a determined

system of equations.

4. Time Integration Techniques for Constrained Systems

The present methodology to formulate the equations of motion of an arbitrary assem-

blage of interconnected flexible beams and rigid bodies is readily adaptable for use with

existing multibody dynamics solution techniques. The equations (3.32) model the beam

components with degrees of freedom u and w that embody both the rigid and flexible

deformation motions. As such there is no need to solve separately generalized coordi-

nates denoting the flexible motion from a reference set of coordinates denoting the rigid

motion. In addition, as the nodal coordinates of the beam components are defined in

the same kinematic manner as the physical coordinates of the rigid body components, no

distinction need be made between the treatment of the flexible and rigid components of

the multibody system other than the calculation of the internal force of the flexible mem-

ber. Therefore, the salient feature of this type of formulation is that numerical solution

procedures for the integration of spatial kinematic systems can be directly applied to the

generalized coordinates of both the rigid and flexible components.

A multibody dynamics solution procedure, originally demonstrated on rigid body sys-

tems in previous studies 3s-41, is adopted for the above flexible multibody system equations

12

of motion. The key to the procedure is a staggered implementation of the separate gener-

alized coordinate integrator and constraint force solver modules. An improved variation of

the explicit central difference algorithm, described in Section 4.1, is used to integrate the

translational displacements and the angular velocity of the system. An algorithm based on

the Euler parameter representation of finite rotations, described in Section 4.2, is used to

update the configuration orientation from the angular velocity. The computations of the

Lagrange multipliers are then carried out in a separate routine, described in Section 4.3,

which implicitly integrates a stabilized companion differential equation for the constraint

forces in time.

4.1 Explicit Generalized Coordinate Integrator

The central difference explicit integration algorithm is written as

= d"-½ + h d"

dn+ 1 = d n + h d"+½

d,a+ x = M -a Q(d "+l , d n+a)

(4.1)

where the superscript n = 1,2, 3,. • • designates the discrete time station t n = n h and

h is the stepsize. Unlike in conventional structural dynamics, a straightforward application

of (4.1) on the rotational equations

J& + _ Jw = f_

inherent in the multibody system equations of motion (3.32) leads to computational dif-

ficulties. In order to compute &n+l, it is necessary to have w "+1. However, due to the

inherent nature of the algorithm, only wn+_ is available. It was shown 41 that the naive

approximation

4jn+ 1 , _j n--b _ (4.2)

results in a computationally unstable integration of the angular velocity ca. To correct

this within the context of explicit computational sequences, an interlaced application of

the central difference algorithm such that the displacements and velocities are advanced

one-half time step at a time was proposed 4°'41. The algorithm advances the solution to
n J" t nthe time station tn+_ given the solutions of the two preceding time stations t -2 and

as follows:

13

(a) u"+½ = u"-] + hit"

(b) itn+] = it,-] + h ii n

(c) _"+] = _"-] + h_"

(d) qn+] = q (wn+])

(e) S "+] = S (u"+],q "+])

(f) D "+½ = D (w"+½) , f"+½ =

(g) Q"+} = Q (fn+#,S"+],D"+})

(h) = (Q"+])

(i) /i "+] = M-' (Q_+½ - B T)_"+})

(j) &"+½ = S-'(Q,_+½ - B T $"+½)

f(t"+])

The evaluation of the generalized rotational parameters q to be obtained from the angular

velocity, as represented by step (d), will be detailed in Section 4.2. The evaluation of the

internal force S from the current configuration coordinates u and q, as represented by

step (e), will be detailed in Section 5. The evaluation of the Lagrange multipliers _, as

represented by step (h), will be detailed in Section 4.3. The algorithm proceeds to the next

half time station t n+l , now given the solutions at time stations t" and t"+_, and thus the

force and acceleration terms are evaluated twice each time step. The algorithm is initiated

for time t½ given initial conditions for time t o in the following manner:

(k) it½ = ito +

_0(t) = +

(m) u 1 = u ° +

1 1
(n) = - (u °

2

from which steps (d) through (j) can be performed.

h °'0

h &0

ht_

+ u 1)

One last remark will be made on the angular velocity integration. The equations of

motion were derived using body frame angular velocity components. The integration of

these quantities shown in step (c) is not formally correct as the components at different

time steps are defined with respect to different body-fixed frames. This concern can be

eliminated by applying the central difference update to the inertial components of the

angular velocity. Step (d) will then consist of an appropriate function of inertial angular

velocity components. The integrated inertial angular velocities must be transformed to the

moving reference frame before evaluating steps (f) and (j) since the equations of motion

are written with respect to the body frame angular velocity description. The angular

acceleration evaluated in step (j) must then be transformed back to inertial reference

frame before being integrated again in step (c).

14

4.2 Rotational Parameter Integration

The two-stage explicit integrator was applied to the translational displacement and

velocity coordinates and the angular velocity coordinates. As the rotational orientation

parameters are not directly integrable from the angular velocity vector, a procedure must

be developed to update the configuration orientation given the angular velocity. Any finite

rotation can be uniquely expressed by a rotation angle 8 and an appropriate rotation axis

n 42. Two rotational parameterizations based on this description are the rotational vector

(0) and the Euler parameters (q0, q) defined respectively as

o {q0}{q n sin _ (4.3)

The three parameters of the rotational vector are independent, while the four Euler pa-

rameters are subject to the constraints

qg + qTq = 1 (4.4)

The rotation matrix is represented as a function of the Euler parameters as

2(q02 + q_) - 1 2(qlq2 + q0q3) 2(qlqa - q0q2)

R = 2(qlq2 - qoqa) 2(% 2 + q2) _ 1 2(q2qa + qoql) (4.5)

2(qlq3 + qoq2) 2(q2q3 - qoql) 2(q 2 + q32) - 1

The body frame components of the angular velocity tensor defined in (2.6) as

0 _3 -_2 {031 /
&[= I_RT = --033 0 031 , 03b --" 032

032 --031 0 033 b

has the Euler parameter representation 42

{o ,o_q ,0i_](q } (4.6)

A similar expression for the inertial components of the angular velocity tensor

_ = R __R = R _ R (4.7)

can be derived as

{ 0)= 2 [q0 qT] (q0} (4.8)we --q qoI + Cl Cl

The above definitions can be inverted to yield the expressions

{ 00},el = -_1 [003b --03T] { q0 } =Ab(03b)&T q { q0}q (4.9)

15

for the body frame componentsand

for the inertial frame components. A general representation

f
q _ _ q0 _ (4.11)= A(w) q ,

l)q

will be used to denote (4.9) or (4.10) given the angular velocity description. These in-

verse expressions are derived from (4.6) and (4.8) by incorporating the derivative of the

constraint equation (4.4)

q0 q0 + _lWq = 0 (4.12)

The configuration orientation is obtained from a numerical time discretization of the

above Euler parameter - angular velocity representations. Among several possibilities, the

approximation that satisfies the constraint condition (4.12) in the discrete sense is the

following trapezoidal formula

1 qn+l qn 1 qn
(--) = A(wn+_) 5 (q"+' +) (4.13)

Due to the structure of A, the solution matrix can be analytically inverted such that the

discrete orientation update

where

qn+l 1 h h
= _ [I + _ A(w"+_)] [I + _A(_n+_)] q" (4.14)

h 2

D = 1 + --_-- (w_ + wg + w_)

results. The final result is normalized to satisfy the constraint (4.4). The above equation

is valid for either the body or inertial frame decomposition of the angular velocity as long

as the corresponding form of A from (4.9) or (4.10) is used. The resulting update (4.14)

involves only explicit computations and is readily incorporated into the two-stage explicit
integration procedure.

4.3 Constraint Force Solution Procedure

A partitioned solution procedure has been employed to solve the generalized coor-

dinates separately from the Lagrange multipliers. To effect a partitioned solution of the

constraints, a stabilized companion differential equation for the constraint forces is formed

by adopting the penalty procedure ss,sg. The penalty procedure uses the equations

/_H = --1 OH , iN _ _1 _N , e --* 0 (4.15)

16

as the basic constraint equations instead of (3.30) and (3.31) for the holonomic and the

nonholonomic constraint conditions respectively. The penalty equations can be written in

the general form, from (3.30) and (3.31), as

"_ = 1Br:'e z = {&}w (4.16)

The numerical solution to the above companion differential equation is obtained as follows.

The constrained equations of motion (3.32) are integrated once from (3.20) using the

implicit integration rule

h
i "+½ = i" + 5_/"+½ 5 =,

as

n+ _ _5.h1-1 (Qn+_i - B T A"+_) + _,n (4.17)

This expression is substituted into (4.16) to obtain the stabilized differential equation for

the Lagrange multipliers

eA"+½ + 5B M-1B T A"+_ = 5B M -1 Q"+½ + B _" (4.18)

The same integration rule is applied to this equation to result in the discrete update

(eI + 52 B M-IB T) A"+½ = cA" + r_ +_ (4.19)

r] +_ = 52BM-1Q"+_ + 5 B i'" (4.20)

The same procedure can also be derived with different integration rules. The update of

the Lagrange multipliers, performed for each half time step, is easily adapted into the

two-stage explicit integration procedure.

5. Internal Force Computations

The algorithmic treatment of the nonlinear stiffness operator is addressed in this

section. The explicit generalized coordinate integrator of the previous section requires an

evaluation of the internal force at a current time step t "+1 from the coordinates of the

beam configuration at that time. The internal force is first evaluated on the element level

for all the finite elements comprising the flexible component from (3.26) as

= [BS]
E

(5.1)

after which these individual element computations are assembled to form the internal force

of the discrete beam. The necessary computations to be described are the evaluations of

17

the discrete strain operator [B E] defined in (3.23) and the resultant stresses N- r and

Mr respectively.

The Timoshenko beam formulation in which the translational degrees of freedom are

independent from the rotational degrees of freedom requires an approximation within the

element such that these variables will be continuous across the element boundaries. Thus

a two node finite element representing a linear interpolation of the translational and rota-

tional variables is a sufficient discretization of the beam. To avoid the locking phenomenon,

the interpolation of the rotational degrees of freedom associated with the transverse shear

strain is underintegrated. After incorporating these concepts into (3.27), the resulting

expression for the discrete strain operator is given by

-+T +T +_1 Sl T l_"_,, ST

0 0 1- - sT(" + +I)
(5.2)

which acts on the virtual displacements and rotations

{ 6Ul 6u2 6a, 6a2 }T

where the subscripts refer to the element node number. The convected frame T matrix,

body frame curvature tensor ks, and element neutral-axis length _ are constant quantities

over the element domain, while the relative cross-section deformation S matrices are nodal

quantities. The computation of these terms from the nodal displacement and rotation

coordinates of the current configuration are detailed in Section 5.1.

A stress update procedure of the form

IN.,/ n-I-1 inM,, + A { N.f (5.3)

is used to derive the resultant stresses of the current configuration at time t "+1 from the

resultant stresses of the past configuration at time t n. The simple additive form of the

procedure, which was derived from the numerical integration of a rate-type constitutive

law, is due to the use of a convected frame stress and conjugate strain decomposition. The

resultant stress increments AN.y and AM_ are obtained via

A N-_

EA 0 0]

J0 GA 0

0 0 GA

A7 , A:_+l,,

GJ 0 0]

J0 EI_ 0

o o EI3
A_: (5.4)

A set of strain increments A 7 and A_, which denote the change from time t n to t "+1, are

defined as a finite analogy to the infinitesimal virtual strains 67 and 6,_ derived in Section

2. A specific computational procedure designed for use with this incremental interpretation

18

of the continuum-based formulation such that the computed finite strain increments are

invariant to arbitrary rigid body motions is discussed in Section 5.2.

5.1 Computation of the Strain Operator

The reference frames introduced in the formulation, namely the body frame b attached

to the cross-section and the convected frame a tangent to the deformed neutral axis, are

computed as follows. The Euler parameters representing the orientation of the beam cross-

section at the finite element nodes are output from the generalized coordinate integrator

at each time step. The rotation matrices RI , representing the b reference frame at each

element node, are thus computed directly from the Euler parameter representation of a

rotation matrix (4.5). This matrix contains rotational information of both that due to

the rigid motion of the convected reference frame and the transverse shear and torsional

deformations of the cross-section relative to the convected frame.

The neutral axis of the finite element is defined as the straight line connecting the

two element nodes, the tangent of which is trivial, and is directly calculated from the

translational displacements output from the generalized coordinate integrator. Given this

tangent al, the a2 vector is defined as the cross product of al with the ba axis of R1,

and the remaining axis aa defined to complete the right-hand coordinate system. The

computed axis { al , a2 , aa }, as shown in Figure 2, define the rows of the T matrix.

The rotation matrices Si , defined at each element node as the relative difference between

the element convected frame and the nodal body frames, are thus

Si = R, T T , i = 1,2 (5.5)

The procedure is an approximation applicable for moderate strains such that the S, matri-

ces contain information solely due to transverse shear and torsional deformations 4a. The

rotation matrices of the discrete strain operator (5.2) have thus been defined.

The body frame components of the curvature tensor &T defined in (3.18) as

0 a S
_T _ S T =

are equivalent to

0 /_3 --_;2

--/_3 0 /_1

m2 --ml 0

_- _2

_3

0 • R Rr (5.6)

as the convected frame T matrix is defined to be constant along the element domain where

the differentiation is performed. This definition is completely analogous to the angular

velocity tensor defined in (2.6) and motivates the use of an Euler parameter representation

of the curvature completely analogous to the Euler parameter representation of angular

19

velocity (4.6) as a basis for the computation of the element curvature from the nodal
rotational variables. The Euler parameter - curvature representation is

t¢ -q q0I - Cl _ - E(q,) 0._.qqcg_ (5.7)

subject to the constraints

Oqo Oq T

%2 + qTq _-- 1 , --_"q0 + _-_ q "- 0 (5.8)

An approximation to be used in (5.7) that satisfies the constraint conditions in the discrete

sense
i (ql + q2)

0q _ 1 (q2- q,), q. = _ (5.9)
0_ e 11½(ql -4-q2)ll

is evaluated using the Euler parameters of the element nodes output from the generalized

coordinate integrator. It will be shown that this discrete computation is invariant to rigid

rotations contained in the total nodal Euler parameters.

The simple normalized average of the nodal Euler parameters has a physical inter-

pretation. The Euler parameters qa correspond to an average orientation, in a geometric

sense, of the two nodal cross-section orientations. This is demonstrated from the following

example characterizing a state of constant curvature of a finite element shown in Figure 3.

The orientation of the convected element frame is characterized by a rotation of an angle

¢ about an axis na from the inertial reference frame, and the relative nodal cross-section

orientations are characterized by a rotation from the convected frame of angles -r and r

about axis n_ for nodes 1 and 2 respectively. The Euler parameters designating the total

cross section orientation of the two nodes due to these combined effects can be expressed

as

cos_cos_ + n..nb sin_sin7

ql = cos_sin_ nb+ cos7 n_ 7- " sin _ - sin _ sin _ .. x "b

cos2 ecos2 - n..nb sin_sin} "_q2 = cos2 _sin_ nb + cos2sin2 _ na + sin_sin_ na Xnb

(5.10)

which is obtained by applying the quaternion product rule 44 to the Euler parameter defi-

nitions

{ cos_ } { cos_ }' qa = {si:Oi2 _ }qr_ = --sin_ nb , qr2 = sin_ nb na

of the relative nodal orientations and the convected orientation respectively. The average

of the two nodal Euler parameters (5.10) is

2(ql + q2) = ,-
cos 7 sin 7 n, ,

2O

the norm of which is cos2" When normalized, the above average is identical to the average

orientation of the two nodes given by qa. It can be shown that for this example the dis-

cretization (5.9) when substituted into (5.7) gives the finite element curvature computation

/¢
4 T

= sin 5 nb

which approximates the true curvature strain -_rnb. The computation retains only the

rotation parameters r originally defined relative to the rigid body orientation, and is thus

invariant to the rigid body motions. For instances when the validity of the approximation

is challenged, an incremental curvature computation can be made as discussed in the next

section, from which the total curvature is obtained from an appropriate update procedure.

5.2 Computation of the Strain Increments

The strain increments are defined from the virtual strains (3.12) by replacing the

variational operator 6 with an incremental operator/k as

such that /ku and _/5 are finite analogs of the infinitesimal displacements and rotations

6u and 6/5. For computation purposes, it becomes necessary to decompose the convected

frame components of the virtual rotations of the of the cross-section 6/5 into a rotation due

to rigid body motion 6_ and that due to deformations 6r as

6/5 = 6r, + &2 (5.11)

This relation is derived by substituting the following definitions

6_ T = S T 6_ T S , 6_ T = 6RR T

6_ T = 6IT T , 6_ "T = 688 T , 6"r T = sT6T T S

into the identity

R = ST , 6R = 6ST + S6T

It is noted that 6oL, 6_, and 6r represent moving frame or spatial components referred to

the defining reference frame, whereas 6/3 and 6r, represent material components referred

back to the convected frame. From these definitions, the incremental strain _-_ is given

by

= W + +

21

representing the membrane strain and transverse shear strain increments. Likewise, the

incremental curvature representing the torsion and bending strains is given by

0 _ra

0_ (5.13)

as the incremental rotations Aqa defined from the T matrix are constant over the element

length.

Essential for the use of these incremental strains is a proper definition and subsequent

computation of the finite displacement and finite rotation increments. The incremental

translations are defined by

•Au =-. u n+l - u n (5.14)

as the displacements are true vector quantities. The incremental rotations are defined as

follows. Rotations are updated by the product of orthogonal matrices via either 24

S n+l = S(1) S n = e _r S n

= R" S(r) = S n e _gr
(5.15)

using the rotational vectors 0 or O based on the spatial or material reference frames

respectively. It can be seen from the linearizations of the left and right rotational updates 24

S n+l _ R n q- 6R

_R = 07"R" = R" _T

that the virtual rotations

¢_T -_- _T T T , 69T = S T _S

correspond to spatial and material rotation updates

T "+1 = AT T n , S n÷l =. S"AS (5.16)

respectively. Thus /_qa and z_r, axe defined as the rotational vectors parameterizing the

matrices AT and AS respectively. Two different approximate methods which then extract

this pseudovector from the given rotation matrix are used to obtain the incremental rota-

tions. The particular approximation methods are chosen such that objective computations

of the incremental strains (5.12) and (5.13) are achieved.

To this end, the first two terms of (5.12)

/xrl = T + -by3 (5.17)
2x 2

22

must be computed such that the/X_ rotation increment compensates for the rigid rotation

contained in the displacement increment Au defined in (5.14). To accomplish this, A_ is

computed by

h_ T = AT.+ } _ AT.+ } r (5.18)

where AT"+½ is defined from

T"+_ - exp (2Aq3 T) T n = AT "+_ T" (5.19)

The computation was derived from the linear approximation

T-+I _ (_r + a_r) T"

rewritten as

A#r = (T"+' - T") T"+_ (5.20)

and introducing (5.19) to achieve a skew symmetric matrix. In order to preserve rigid

motions, the matrix T in the first term of (5.17) must be evaluated as Tn+_. This is

shown as follows from an example of the rigid rotation of an element in which A71 _ 0.

From (5.20), it is seen that the rotational term of (5.17) becomes

(5.21)

The finite element evaluation of the displacement term of (5.17) is given by

TOhU 1
o_ - T _ (£u_- £ux) (5.22)

for the two-noded beam element of length ee. For the rigid rotation of the second node

about the first node, the incremental translational displacements are simply

, n , __ t_+l n£ul = o £u_ = e_ (tO+x-t_) o_ - _ '

as the direction cosines of the rotation are contained in the first row of the T matrix.

Thus for (5.17) to be identically equal to zero, it is necessary to evaluate (5.22) using

Tn+½. To obtain the true stretch with respect to the neutral-axis reference frame at

the current configuration, we simply rotate the mid-configuration computation up to the

current configuration as

AT"+½
T"+_ 0_ + -_,_3 (5.23)

23

As in the preceding analysis, the incremental displacementsfor an arbitrary rotation and
stretch are given by

£Ul = 0 , £u_ = ((e, + d)t_"+' - e, t_")

where d represents a stretch relative to the original element length ge. The rotational

expression (5.21) remains valid, and the bracketed term in (5.23) becomes

d n+l

Premultiplication of the above by AT"+½ results in the final computation

containing solely a measure of stretch regardless of the magnitude of the rigid rotation.

The incremental rotations _v_ used to compute the remaining terms,

representing transverse shear and curvature strains respectively, are computed indepen-

dently from z_ as follows. The rotation increments Ara are obtained from the matrix AS

defined in (5.16) denoting the relative orientation between the current deformation matrix

S "+1 and the past deformation matrix S n rigidly rotated to the current convected frame.

Another method to extract a rotation pseudovector from a given orthogonal rotation ma-

trix given by 43

h_r = 2 (as, - _s r,) i= 1,2 (5.25)
1 + tr ASi '

is used to define /_ra at each element node. The above method yields a simpler and

more accurate computation of a rotation vector than (5.18). Whereas (5.18) was necessary

to compute /_ such that the rigid rotations within (5.17) are preserved, (5.25) is used

within (5.24) as this computation is made from matrices which by construction contain

information solely due to deformation. Given the nodal rotation increments, the locking-

free form of the elemental shear strain is obtained from the nodal average as

1(0 1{0 --£Taa

24

and the elemental curvature is computed from the finite element approximation

1 (_ra 2 _7-al)=

This completes the computational procedures for the incremental strains. The detailed

straifi computations of (5.12) and (5.13) are used in (5.4) to determine the stress incre-

ments, from which the current stress state is obtained from the update procedure (5.3).

6. Numerical Examples

The computational techniques, namely the staggered multibody dynamics solution

procedure combining the generalized coordinate integrator and the constraint force solver

discussed in Section 4 and the finite element computations of the beam internal force

discussed in Section 5, have been implemented into a Fortran 77 software package. The

result is a robust method which solves the present formulation of the equations of motion

of an arbitrary assemblage of flexible beams and rigid bodies. In order to demonstrate the

current software capabilities, the following examples highlighting the flexible motion of the

beam component are presented.

The first example is included to verify the geometric stiffening phenomena exhibited

by a rotating beam 6'18'21'28. The beam is pinned at the left end; the other end remains

free. The following material and geometric properties were used:

EA = 2.S x lO T lb, GA = I.0 × 107lb, EI = l.4 x 104 lb in 2

pA = l.2 lbm/in, pI = 6.0 x 10 -4 Ibrn in, l=10in.

A prescribed angular rotation about the e3 axis of

{1-_ t2 15 2
0(t)= [__ +_ (cos2_t15 1)] tad 0<t<15_ec

(6t-45) tad t> 15_ec

is applied at the pinned end. The time history of the tip deflection relative to a refer-

ence frame coinciding with the prescribed angular position and the time history of several

configurations of the beam are given in Figure 4. As alluded to in the introduction, an

overall steady rotation of the beam gives rise to a centrifugal force which is responsible

for a change in the bending stiffness that cannot be predicted using linear deformation

theories. After initial increasing tip deflections, the beam begins to stiffen as the angular

velocity increases due to the centrifugal inertia force. As the angular velocity reaches a

constant state, the beam then reaches a steady state phase of small vibrations. This ex-

ample shows the capability of the nonlinear strain formulation to automatically account

for the geometric stiffening effect. The results are comparable to those presented by Simo

25

and Vu-Quoc2s. To reproduce these results with alternative methods as the substructur-
ing technique21, a convergenceanalysis based on the selection of mode shapesmust be
performed.

The next examplesexhibit the combined large deformation and large rotation capa-
bilities of the present formulation. In the first instance, the beam is pinned as aboveand
is subjected to given initial velocity impulsesexciting various deformation mode shapes
under planar motion. The following material and geometric properties were used in order
to witness finite deformations:

EA = 4.0 x lO Tlb, GA - 2.0 × 10 Tlb, EI = l.3 x 1071bin 2

pA --- .981bm/in, pI = 3.3 x 10 -2 Ibm in, l=200in.

The initial velocity profiles with the resulting time histories of several deformed config-

urations are given in Figures 5, 6, and 7. It is noted the versatility of the formulation

in its ability to capture the response to a variety of situations in which different funda-

mental modes of the beam are excited. The approach avoids the difficulty of tailoring

the selection of modes shapes of the flexible components to the given problem at hand.

The repeatability of the deformation shapes through time is due to the invaHance of the

internal force computations to the overall rigid motion. This property of computational

objectivity is further illustrated in Figure 8 which shows the time history of the strain,

kinetic, and total energy over four revolutions for the first bending mode example. The

nature of the time integration and internal force algorithms are such that. the conservation

of energy is retained computationally, as seen by the fact that the total energy remains

constant over all the revolutions. Similar results, not presented within, are obtained for

the other deformation examples.

To present the applicability of the flexible beam component within the multibody

dynamics framework, the final example of a spatial double pendulum is given. The double

pendulum is modeled with two beams; a spherical joint connects the last node of the first

beam to the first node of the second beam and also pins the first node of the first beam.

It is noted that the joint connection can easily be accounted for from a finite element

assemblage which leaves the rotational degrees of freedom free at the hinge location. The

method was used to verify the results obtained using the Lagrange multiplier solver on the

augmented equations described in Section 3.5. In the first case, the pendulum is subjected

to a gravity field in the vertical z-direction and an initial velocity impulse in the horizontal

x-y plane such that soley rigid motion is excited. The problem is run for four cases of

increasing beam flexibility as follows:

1. EA -- 1.0 x 104 lb GA -- 0.5 x 104 Ib

2. EA = 1.0 x 103 lb GA = 0.5 x 103 lb

3. EA = 2.0 x 102 lb GA = 1.0 x 102 Ib

4. EA = 1.0 x 102 Ib GA = 0.5 x 102 lb

with the remaining parameters

26

pA = 1 Ibm/in pI = .833 x 10 -3 lbm in l = 1 in

held constant. The initial velocity impulse, and the spatial trajectories of the mass

center of the second beam as projected on the x-y and x-z planes is given in Figure 9. The

trajectory of the first case coincides exactly with a rigid body solution to the problem,

and the slight deviation of the trajectories due to the increasing flexibility can be seen.

The energy time histories for the problem, given in Figure 10, verify the computational

objectivity of the algorithm as again energy is identically conserved. Again, the invariance

of the internal force calculations in the three dimensional environment is witnessed by the

negligible strain energy contribution for all of the flexible cases. The time integration of

the spatial kinematics preserves the balance between the kinetic and potential energies of

the problem. Next, the flexible double pendulum is given an initial velocity impulse to

excite deformation motion as well as the rigid motion. For this case the parameters used

were

EA = I.8 × 10 s Ib, GA = 0.9 x108 lb, EI = l.4 x 108 Ib in 2

pA =.98Ibm�in, pI = 0.67 Ibm in, l = 120 in.

The initial velocity profile, the resulting time histories of several deformed configurations

and energy time history are given in Figure 11, exhibiting the large spatial rotation and

deformation capabilities of the formulation. The energy conservation is retained for the

computations of spatial deformations.

Further examples of large scale multibody systems are in process, and these results

are to be presented in the near future.

7. Concluding Remarks

A flexible beam finite element that is readily incorporated into multibody dynamics

applications has been presented. The beam formulation is based on fully nonlinear strain

measures which remain invariant to rigid body motions. The model retains a Cauchy

stress and physical strain description, and as such it can be easily interfaced with real-

time slewing control applications as the measured strains can directly be used as a feedback

signal without requiring sophisticated transformations. In addition, the formulation uses

an inertial reference for the beam dynamics such that the degrees of freedom of the flexible

component are defined in the same sense as the rigid components by including without dis-

tinction both the rigid and flexible deformation motions. The consequence is adaptability

into multibody dynamics methodologies as numerical solution procedures for the integra-

tion of spatial kinematic systems can directly be applied to the generalized coordinates of

both the rigid and flexible components. The success of the approach relies on an accurate

computation of the nonlinear internal force term. For this reason, the calculation of finite

strain increments has been presented which are invariant to arbitrary rigid motions of the

beam. The proposed methodology is suitable to treat the dynamics of flexible beams which

27

undergo a variety of structural deformations in addition to the large overall motions. The

same approach can be used in formulating other types of structural components.

Acknowledge me nts

The work reported herein was supported by NASA/Langley Research Center under

Grant NAG-I-756. The authors wish to thank Dr. Jerry Housner for his interest and

support during the course of the present work.

8. References

1. Ashley, H., "Observation on the dynamic behavior of flexible bodies in orbit," AIAA

J. 5 (1967), 460-469

2. Canavin, J.R. and Likins, P.W., "Floating reference frames for flexible spacecraft," J.

of Spacecraft (1977), 724-732.

3. De Veubeke, B.F., "The dynamics of flexible bodies," Int J. Engng. Sci. 14 (1976),

895-913.

4. Grotte, P.B., J.C. McMunn, and R. Gluck, "Equations of motion of flexible space-

craft," J. of Spacecraft and Rocke_s 8 (1971), 561-567.

5. McDonough, T.B., "Formulation of the global equations of motion of a deformable

body," AIAA]. 14 (1976), 656-660.

6. Kane, T. and Levinson, D., "Simulation of large motions of nonuniform beams in orbit:

Part II - The unrestrained beam," J. Aatronautical Sciences 29, (1981), 245-275.

7. Bodley, C., Devers, A., Park, A., and Frisch, H., "A digital computer program for dy-

namic interaction simulation of controls and structures (DISCOS)," NASA Technical

Paper 1219, May 1978.

8. Song, J.O. and Haug, E.J., "Dynamic analysis of planar flexible mechanisms," Comp.

Meth. App1. Mech. Engr9. 24 (1980), 359-381.

9. Cavin, R.K. and Dusto, A.R., "Hamilton's principle: finite-element methods and

flexible body dynamics," AIAA J. 15 (1977) 1684-1690.

10. Agrawal, O.P. and Shabana, A.A., "Dynamic analysis of multibody systems using

component modes," Computers _ S_ructure8 21 (1985), 1303-1312.

11. Agrawal, O.P. and Shabana, A.A., "Application of deformable-body mean axis to

flexible multibody system dynamics, " Comp. Meth. Appt. Mech. Engrg. 56 (1986),

217-245.

12. Shabana, A.A. and Wehage, R.A., "A coordinate reduction technique for dynamic

analysis of spatial substructures with large angular rotations," J. Struct. Mech. 11

(1983), 401-431.

28

13. Yoo, W.S. and Haug, E.J., "Dynamics of articulated structures, Part I: Theow and

Part II: Computer implementation and applications," J. of Structure Mechanics 14

(1986), 105-126 and 177-189.

14. Yoo, W.S. and Haug, E.J., "Dynamics of flexible mechanical systems using vibra-

tion and static correction modes," d. Mechanisms, Transmissions, and Automation in

Design 108 (1986) 315-322.

15. Belytschko, T. and Hsieh, B.J., "Nonlinear transient finite element analysis with con-

vected coordinates," Int. J. Num. Meth. Eng. 7 (1973), 255-271.

16. Belytschko, T., Schwer, L., and Klein, M.J., "Large displacement, transient analysis

of space frames," Int. J. Num. Meth. Eng. 11 (1977), 65-84.

17. Housner, J., "Convected transient analysis for large space structures maneuver and

deployment," Proc. the 25th Structures, Structural Dynamics and Materials Confer-

ence, AIAA Paper No. 84-1023, (1984) 616-629.

18. Housner, J.M., Wu, S.C., and Chang, C.W., "A finite element method for time varying

geometry in multibody structures," Proc. the 29th Structures, Structural Dynamics

and Materials Conference, April 1988, AIAA Paper No. 88-2234.

19. Laskin, R.A., Likins, P.W., and Longman, R.W., " Dynamical Equations of a Free-

Free Beam Subject to Large Overall Motions," J. Astronautical Sciences 31 (1983),

507-528.

20. Kane, T.R., Ryan, R.R., and Banerjee, A.K., "Dynamics of a cantilever beam attached

to a moving base," J. Guidance, Control, and Dynamics 10 (1987) 139-151.

21. _Vu, S.C. and Haug, E.J., "Geometric nonlinear substructuring for dynamics of flexible

mechanical systems," Int. J. Num. Meth. Engrg. 26 (1988) 2211-2226.

22. Bakr, E.M. and Shabana, A.A., "Geometrically nonlinear analysis of multibody sys-

tems," Computers _ Structures 23 (1986) 739-751.

23. Christensen, E.R. and Lee, S.W., "Nonlinear finite element modeling of the dynamics

of unrestrained flexible structures," Computers _ Structures 23 (1986) 819-829.

24. Cardona, A. and Geradin, M., "A beam finite element nonlinear theory with finite

rotations," Int. J. Num. Meth. Eng. 26 (1988), 2403-2438.

25. Iura, M. and Atluri, S.N., "On a consistent theory, and variational formulation of

finitely stretched and rotated 3-D space-curved beams," Computational Mechanics

(4) (1989), 73-88.

26. Simo, J.C., "A finite strain beam formulation. Part I: The three dimensional dynamic

problem," Comp. Meth. Appl. Mech. Engrg. 49 (1985), 55-70.

27. Simo, J.C. and Vu-Quoc, L., "A three-dimensional finite strain rod model. Part II:

Computational aspects," Comp. Meth. Appl. Mech. Engrg. 58 (1986), 79-116.

28. Simo, J.C. and Vu-Quoc, L., "Finite-strain rods undergoing large motions," Comp.

Meth. Appl. Mech. Engrg. 66 (1988), 125-161.

29

29. Antman, S.S., "Kirchhoff problem for nonlinearly elastic rods," Quat. J. Appl. Math

XXXII 3 (1974), 221-240.

30. Reissner, E., "On a one--dimensional large-displacement finite--strain beam theory,"

Studies in Applied Mathematics 52 (1973), 87-95.

31. Reissner, E., "On finite deformations of space-curved beams," ZAMP 132 (1981),

734-744.

32. Wempner, G., Mechanics of Solids with Applications to Ttu'n Bodies, Sijthoff &: No-

ordhoff, The Netherlands (1981).

33. Goldstein, H., Classical Mechanics, 2nd ed., Addison-Wesley (1980).

34. Malvern, L.E., Introduction to the Mechanics of a Continuous Medium, Prentice-Hall,

Inc., Englewood Cliffs, N. J., (1969).

35. Eringen, A.C., Mechanics o£ Continua, Robert E. Krieger Publishing Co., Huntington,

N.Y., (1980).

36. Zienkiewicz, O.C., 1977, The Finite Element Method, 3rd ed., McGraw Hill Book

Company, Ltd, London.

37. Lanczos, L., The Variational Principles of IVlechanics, 4th ed., University of Toronto

Press, 1970.

38. Park, K.C., and Chiou, J.C., "Evaluation of constraint stabilization procedures for

multibody dynamical systems," Proc. the 28th Structures, Structural Dynamics and

Mater/als Conference, Part 2A, Monterey, CA, AIAA Paper No. 87-0927 (1987),

769-773.

39. Park, K.C., and Chiou, J.C., "Stabilization of computational procedures for con-

strained dynamical systems," Journal of Guidance, Control and Dynamics 11 (1988),

365-370.

40. Park, K.C., Chiou, J.C., and Downer, J.D., "A computational procedure for large

rotational motions in multibody dynamics," Proc. the 29th Structures, Structural

Dynamics and Materials Conference, Part 3, Williamsburg, VA, AIAA Paper No.

88-2416 (1988), 1593-1601 (also to appear in J. Guidance, Control and Dynamics).

41. Park, K.C., Chiou, J.C., and Downer, J.D., "An explicit-implicit staggered procedure

for multibody dynamics analysis, Part I: Algorithmic aspects," Report No. CU-CSSC-

88-08, Center for Space Structures and Controls, University of Colorado (1988).

42. Wittenburg, J., Dynamics o£Systems of Rigid Bodies, B.G. Teubner, Stuttgart, 1977.

43. Rankin, C.C. and Brogran, F.A., "An element independent corotational procedure

for the treatment of large rotations," J. of Pressure Vessel Technology 108 (1986)

165-174.

44. Geradin, M., Robert, G., and Buchet, P.,"Kinematic and dynamic analysis of mecha-

nisms: A finite element approach based on Euler parameters," in: Finite Element

Methods for Nonlinear Problems(P. Bergan, ed.), Berlin, Heidelberg, New York,

Springer, 1986.

3O

FIGURES

X

Figure i. Beam Kinematics

e2

e3

Figure 2. Convected Reference Frame

,%

I, ,%

1 a

Figure 3. Pure Bending of Beam Element

v

0

U

,i(...l

t-_

-,-I

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

I I I I I I I I I

0.0 6.0 12.0 18.0 24.0 30.0

Time (sec)

(4b)

0 8CC

Figure 4. Geometric Stiffening (5 Elements):

(a) Tip Deflection vs. Time

(b) Displacement History

t

600

U

M

200 in

(5a)

t = 1.15 sec

T

(su) L,

Figure 5. First Bending Mode (8 Elements):

(a) Initial Beam Position vs. Initial Velocity Profile

(b) Displacement History

300

U

.,..(

-300

(6a)

) X

(6b)

f

t

= 14.0 sec

t = .1 sec

Figure 6. Second Bending Mode (12 Elements):

(a) Initial Beam Position vs. Initial Velocity Profile

(b) Displacement History

Y

450

5 200 in
- 0

(7a)

= .1 sec

= 9.8 sec

Figure 7. Combination Bending Mode (16 Elements):

(a) Initial Beam Position vs. Initial Velocity Profile

(b) Displacement History

1.5 , . .

I o?tal
-i-I

/ Kinetic Energy
_4

O_I _ ., _ ^., ,Strain Energy
×

_J

: ..: ..; .:":: -: :........ :.: .: .: "..:,.:':. "...-...:..

QJ

f.,.1

o _ 1 3 4 5 6 7 8 9 ,o

Time (sec)

Figure 8.
First Bending Mode: Energy Conservation

>.

21
1.5

0.51

-0.5

-1

-I.5

-2
-2

(9a)
• - o..o -;%..._°

, t |

N

2

1.5

1

0.5

0

-0.5

-I

-1.5

-2
-2

(9b)

-l_ -',J_ _ 0'.5 ; L'._ z

Figure 9. Spatial Double Pendulum (16 Elements):

(a) Second Beam Trajectory: X-Y Plane

(b) Second Beam Trajectory: X-Z Plane

o

a_

o

. ._
0
[.-,

; O
, ,P4

V

i

<:........... >

"_:.._

.......•.......... "_.,_,
.J

°.¢..o *_-,..%._

3

.......... .-........... '........>

(, ;

L" l

................2:.'" ;.'£2...................
• r '_ , "% i i

(Ul qt) _:"J2

i

e_t

'III:. -:LL....'
°', ,.°° _.'"

•--...,.,..._,..

1.*" 1.,,,,,

< :,

..i:>..-.'.:i.......

(u! ql) '(_J_"_l

It

qr

f¢

0

° _,

II

o
!

i

qr

i
I

i

I

)-4 I

Pi

,al,a

o

v

| 1

• _._

r._

P.,i

.i-)
o

[-,

U
O

V

q. _t

°°°.1 ,

• oF"_"........... ... ¢'"_

........, :_:_.•

(_ "> !
"J'_ "k"_

.,...... _ ..,"_

""_':_"

.'}

-.:...::_ '_._

...,:>-":::.:iii..... .,.:,
s'" """ '........ i' _:::_'_

":':'J.'............... <:

i I ''_ | "'* I I '_l

vI r_ v1 _ _ o

(u_ ql) _J0u_

.....'...i:.'.-:_':;.....i......... ._

:'""..,..iii::_ :i

r_ _/"_ "'". r._ r.1

f#-" ...% '_

/

._,

"'2:'::.... _'i
s' "_ i_

":_-,:_" ._

' ,,.'| 1

...." >-<.................................:;i
I I" I ""1 I

(m. ql) ,(_Jou_

oo
N

_o

P4

o

oo

O

.,_

o

o

X X X

._ II If II

•_ × × ×

tl tl II

I-_ _ ,_ u _

t_O
.PI

',;'-POOR QUALITY

N

M

v

o

Lib:m3

,-4
.r-i

0
°°

.,-I
Q) U
El 0
G) e-4

[,.1 _.

.,-I

.el

o _

*--O 4_ 0 0

0 0 ._

._.-I _ (p I:::
._ a:_ _ o

r._ _1 e:l :>..,

• ._ r_

bO
._

A Natural Partitioning Scheme

for

Parallel Simulation of Multibody Systems

J. C. Chiou, K. C. Park, and C. Farhat

Center for Space Structures and Controls and

Department of Aerospace Engineering Sciences

University of Colorado, Campus Box 429

Boulder, Co. 80309

Abstract

A parallel partitioning scheme based on physical-coordinate variables is presented to sys-

tematically eliminate system constraint forces and yield the equations of motion of multi-

body dynamics systems in terms of their independent coordinates. Key features of the

present scheme include an explicit determination of the independent coordinates, a par-

allel construction of the null space matrix of the constraint Jacobian matrix, an easy

incorporation of the previously developed two-stage staggered solution procedure, and a

Schur complement based parallel preconditioned conjugate gradient numerical algorithm.

1. Introduction

In the past decade, several stand alone general-purpose multibody simulation codes [1-

11] have achieved progressive development for their capability to apply to multidisciplinary

engineering problems to improve either control system design and verification or system

design and dynamics analysis. As a result, these computer codes have been successfully ap-

plied to a number of multibody dynamics (MBD) problems such as robot arm maneuvers,

spacecrafts and ground vehicle dynamics. However, when systems become very complex,

computational efficiency becomes a dominant concern during the preliminary design stage

that require many analysis iterations. This has motivated us to make an effective use of

parallel computational technology in order to speed up the dynamics analysis of MBD

systems, thus ultimately achieving real-time simulation for large-scale problems. The is-

sues of exploiting the parallelism that are inherent in MBD systems include a versatile

data structure for describing system topology, an automatic procedure to generate system

equations of motion, a streamlined incorporation or elimination of system constraints, a

robust time integration algorithm, and an easy interpretation of the simulation results.

In general, the equations of motion for MBD systems can be generated by employing

a set of generalized coordinates to define the state of the system [6-8]. Note that, the

motions of each body in the system can initially be assumed to be independent of one

another. Kinematic relationships between bodies in the system are then imposed, which

result in the corresponding constraint conditions. If one augments the constraint equations

to the governing equations of motion by introducing the Lagrange multipliers, the resulting

equations of motion are characterized as differential-algebraic equations (DAE).

Since a closed-form solution of DAE is in general not attainable except for highly sim-

plified problems, two different approaches have been developed for the solution of DAE.

The first approach adopts so-called constraint stabilization methods [12,13,17-19,23] which

integrate and solve DAE while attempting to satisfy the constraint equations. From compu-

tational point of view, this approach utilizes a large number of equations yet preserves the

sparsity of the solution matrix and simple expression for the kinematic relationships. The

second approach eliminates system dependent coordinates which is equivalent to eliminat-

ing the Lagrange multipliers from DAE so that a set of second order differential equations

can be obtained. Schemes [7,10,20-22] leading to such approach include the generalized

coordinate partitioning (GCP) scheme, the singular vales decomposition (SVD) scheme

and the null space (NS) scheme. In contrast to the first approach, the second approach

enjoys a minimal set of equations of motion but suffers from dense solution matrices and

highly nonlinear kinematic descriptions.

Numerical experience indicates that constraint stabilization methods are generally

preferred for closed kinematic loops whereas constraint elimination methods are better

suited for open kinematic links. The objective of the paper is to present a parallel constraint

elimination algorithm by constructing the null space of the constraint Jacobian matrix, and

employ a parallel preconditioned conjugate gradient numerical algorithm to solve for the

equations of motion that are given in Schur complement form.

To address the present natural partitioning scheme, the paper is organized as follows.

Section 2 presents the equations of motion that have been derived in DAE form. Section 3

describes the natural partitioning scheme in detail with several example problems. Section

4 applies a parallel computational algorithm to the second order differential equations.

Section 5 describes a parallel preconditioned conjugate gradient scheme that is used to

find the solution for the independent accelerations. Section 6 reports on some preliminary

results that were obtained using the natural partitioning scheme and the staggered solution

procedure that has been previously developed [15,16].

2. Equations of Motion for Multibody Systems

The equations of motion for a MBD system can be derived and expressed in various

forms depending upon the type of coordinates one has chosen to describe the configuration

of the bodies in the system. In the present derivation, a spatial position vector with respect

to an inertial reference frame is described by using Cartesian coordinate. A body-fixed

coordinate is then attached to the center of mass of each body. The position of a body is

then defined from the origin of the inertial reference frame to the origin of the body-fixed

frame, and the position of a particle at the body is defined from the origin of the body-fixed

frame to the particle. A velocity vector fl contains the translational velocity /" which is

defined by the inertial frame and angular velocity ca which is defined by the body-fixed

frame. When d'Alembert's principle of virtual work is applied to the entire system plus

the constraint equations via Lagrange multipliers, the equations of motion for a multibody

dynamics system with n physical coordinates and m constraints can be expressed in the

following DAE form :

Mfi + BTA -- F

with holonomic constraints

®(u)=0

The first and second time differentiation of (2.2) yield

(2.1)

(2.2)

_'(u) = Bu = 0 (2.3)

and

_(u) = Bfi + 131k = 0 (2.4)

where M is the n x n constant mass matrix, B = @u is the m x n constraint Jacobian

matrix, ,/ is the m corresponding constraint forces, F is the n generalized forces that

include external forces and inertia forces due to centrifugal acceleration, and fi consists of

the translational and rotational accelerations.

Note that, for each body 6 consists of three translational velocity components ex-

pressed in the inertial frame and three angular velocity components expressed in the

body-fixed frame. In other words, they are physical coordinates which are a particular

set of generalized coordinates. In addition, due to the present representation of trans-

lational motion (referred to an inertial frame) and rotational motion (expressed in the

convected frame), the task for identifying the dependent and independent coordinates for

the system constraint equations becomes straightforward, thus leading to the development

of the present natural partitioning scheme.

3. A Natural Partitioning Scheme

In this section, the Lagrange multipliers are eliminated from (2.1) and a set of sec-

ond order differential equations are derived in terms of system independent coordinates.

To determine the system independent coordinates, a natural partitioning scheme is pro-

posed to efficiently construct the null space of the constraint Jacobian matrix. A parallel

methodology is demonstrated if system topologies consist of a number of tree structures.

For a system that contains closed-loops, a cut-joint technique is used so that the present

scheme can be equally applied.

3.1 Constraint Elimination Method For DAE

In constraint elimination, the main task isto find a projection matrix A such that,

when itstransposed ispost-multiplied by BTA, we have

ATBTA = 0 (3.1.1)

This projection matrix can be obtained by expressing the physical velocity _ in terms of

the independent velocities _ as

/I- Aft _ (3.1.2)

Time differentiationof (3.1.2) gives

fi = Aft _ + _,tP

Substituting (3.1.2) into (2.3) yields

(3.1.3)

Bd = BAIl i = 0

Since fiiisa set of independent velocitiesand in general fii_ 0, (3.1.4)implies

(3.1.4)

BA=0 ; ATB T=0

where A iscalled the null space of the constraint Jacobian matrix B.

structed, pre-multiplication of (2.1)by A T yields

(3.1.5)

Once A is con-

ATMfi + ATBTA -- ATF (3.1.6)

By (3.1.1), the second term on the left hand side of (3.1.6) is equal to zero, hence the

above equation reduces to

ATMfi = ATF (3.1.7)

Substituting (3.1.3) into. (3.1.7) yields the desired equations of motion in terms of their

independent velocities u' as

ATMAfi i : ATF - ATMjkfa i (3.1.8)

Once the right hand side of (3.1.8) is obtained, the system equations can be written in the

following form :

M'fii= b (3.1.9)

4

where

M ° = ATMA

b = ATF - ATM._d i

(3.1.1o)

(3.1.11)

3.2 A Natural Partitioning Scheme For Open-Loop MBD Systems

To demonstrate the present natural partitioning scheme for open loop systems, a

three-dimensional triple-pendulum problem (Fig. 1) is chosen. The constraint equations

for this problem can be written as

[Bill 0 0
[B2] 0

0 [Ss2] [B3s] _s

[-I] [Rs11] 0 0 0 0 {ill}
[I] JR.2,] [-I] [R.22] 0 0 u2 -0 (3.2.1)

0 0 [I] [R,32] [-I] [R,33] u3

where the bodies in this pendulum problem are connected by three spherical joints and Re

are function of rotational operators and position vectors from the center of mass of each

body to the position of their connecting joints. To obtain the necessary projection matrix

A, we start with the first row of (3.2.1) :

B11_1 =[-I, R,11]ul =0 (3.2.2)

that can be partitioned into

or

{u_ } = 0 (3.2.3)

d .d i .i
Bllul + Bllul = 0 (3.2.4)

where B_I = -I, B_I = R,11, and d represents the dependent coordinates and i represents

the independent coordinates. Since IBm1 [_: 0, the dependent velocity components of first

body can be calculated as

-Bf, ''' "' (3.2.5)-- Sllttl -- pitt 1

where P1 = -Bdl-IB_I = R,11. The velocity vector of first body fil can be written in

terms of independent velocities fi_ as

_1= _ = ul=Qlul (3.2.6)

whereQl= (/1). Likewise, B22 of the second row of (3.2.1) can be partitioned into

d .d i .i
B21i_l + B22u 2 + B2_u 2 = 0 (3.2.7)

or
i .i

for IBd21 _ 0. Substituting (3.2.6) into (3.2.8) yields

(3.2.8)

d -I i .i "i R26_ (3.2.9)= -B 2 (B2lq,6 + = +

= = r_a -1_ = B_2. The velocity vectorwhere Rt - -Ba22-1B21Qt B2tQI, and R2 -_'22 _'22

of second body, 62, can be expressed in terms of the independent velocities, 6_ and 6_, as

(3.2.10)

whereSt= (RI)andS2= (R2). Applying

(3.2.1), 63a can be expressed as

the same procedure to the third row of

6_ = B d " i .i i .i- ss(B32u2 + B33u3) = -Bas3[B32(S,6_, + $26_) + B3su3]

•' v," (3.2.11)= V1u1+ _"2 +

d -1 - _ l_d -11:_iwhere V1 = -B33 B32S1 = B32St, V2 = --Bd3 1B32S2 B32S2, V2 = -JJ33 A-n33

B_3 , and 63 can be written in terms of u_, 6_, and 6_ as

63= 6i3 = 0 0 I u,a u_a
(3.2.12)

whereWt= (Vt]0 ' W2= (V2), and W3 = (V2] Combining (3.2.6), (3.2.10), andi"

(3.2.12), we construct the physical velocities d in terms of d i as

[01062 = S, $2 0 u_
63 Wl W2 W3 u_

(3.2.13)

or

1:1= Au' (3.2.14)

where A is the null space of the constraint Jacobian matrix that has been exploited in the

previous section. Note that in the process of forming A, the inversion of the dependent

matrices can be obtained analytically as opposed to the generalized coordinate partitioning

scheme that the inversion of the dependent matrices have to be carried out numerically.

The scheme for constructing A provides a guideline to deal with MBD systems containing

different topologies such as multiple open kinematic links and closed kinematic loops, which

will be discussed in the following sections.

6

3.3 Natural Partitioning Scheme For Multiple Open Chain Systems

If the MBD systems have more than one branch as shown in Fig. 2, the present

scheme lends itselfto multiprocessor computers. This property can be demonstrated by

the following MBD system where the constraint equations are given by

[Bll] 0 0 0 0

[B211 [B221 0 0 0

0 [B32][B3_] o 0
[B,I] 0 0 [B4,I 0

o o o [B.,I[B..]

_2

_3

_4

'is

=o (3.3.1)

Applying the proposed scheme, the A matrix is selected as

_2

da

d4

_s

Q1

$1

_- W 1

Y1
Z1

0 0 0 0

$2 0 0 0

w_ ws o o
0 0]"4 0

o o z4 zs

u_
u_

Note that, in the natural partitioningscheme, once the firstrow of (3.3.2)isconstructed,

the second and fourth row of (3.3.2)can be constructed simultaneously according to given

QI. Again, ifthe first,second, and fourth rows of (3.3.2)are found, the third and fifth

rows of (3.3.2)can be obtained according to their dependent branches respectly. Since

MBD systems are the systems that include many kinematic loops, it isnatural to utilize

thisdevelopment in a multiprocessor computer to compute the nullspace (at each branch)
of the constraint Jacobian matrix.

3.4 Natural Partitioning Scheme For Closed-Loop MBD Systems

When the systems have one or more closed loops,difficultyarisesin constructing the

null space of the constraint Jacobian matrix as one willsee from examining the following

three body crank-slider problem (Fig. 3). The constraint equations for this problem are

given by

[BI,I o 0
[B_,] [B2_] o

o [m_]

d2

_a

= 0 (3.4.1)

It is obvious that joint I and 4 conflict in determining the null space of (3.4.1) according

to preceding scheme. Fortunely, there is a technique to overcome this difficulty. The

technique is called "cut joints" which means cut the joints that are necessary to force the

system topologies to become open loops so that the existing solution procedure could be

adopted. This technique is accomplished by partitioning (3.4.1) into the following form

or

[B11] 0 0

[B21] [B2 I o
o [Ba2] [Bss]

o o lB.,s]

u2 Bo

us = B_ £1 = 0
(3.4.2)

Bod = O, Bcfi = 0 (3.4.3)

where Bo represents the open loop constraint Jacobian matrix, and Bc represents the

remaining constraint Jacobian matrix after the joints have been cut. Performing the

natural partitioning scheme to construct the null space of Bo as

T T
BoAo=0 ; A oB o =0 (3.4.4)

Performing algebraical calculations as in section 3.1 yields the equations of motion for a
closed-loop MBD system as

T
Mfi +BoTAo + B c Ac = F

Premultiplying AoT to above equation yields

(3.4.5)

T T AoTFAoTM5 +AoB c Ae = (3.4.6)

which can be solved either by employing the penalty constraint stabilization technique

(P.C.S.T.) or by constructing the null space for the new equations of motion.

4. A Solution Procedure for MBD Systems

A common procedure for solving DAE is to augment (2.1) and (2.4) into the following
system of differential equations

M B T01/° (4.1)

so that numerical ordinary differential equation solvers can be applied. The drawbacks

of this approach axe : first, (2.4) does not represent the original constraint equations

(2.2) ; second, the violation of the constraints occurred during the process of numerical

integration. A constraint stabilization technique proposed by Baumgarte can be used to

stabilize (4.1). The disadvantages of this technique have been studied and a new stabilized

technique has been developed in [12,13] so that constraint violation can be stabilized

efficiently. An alternative approach to avoid constraint violation is to obtain the null

space of the constraint Jacobian matrix as suggested in the present scheme. De Ja/on et

a]. have developed a formulation using the so called natural coordinates so that similar

equations of motion to (3.1.8)are obtained. The drawbacks of their approach has been

discussed in [10,11].A solution that avoids these drawbacks can be achieved by augmenting

(3.1.7) and (2.3)into

--]3ti / (4.2)

which not only destroys the symmetry of the matrix in (4.2)but alsoviolatesthe constraint

conditions when time integration algorithms are used. The following section discusses an

approach that overcomes these difficultieswith parallelcomputation in mind.

4.1 Application of Parallel Computations

Since MBD systems may involve hundreds of bodies, solution for such systems require

large amounts of computations. For the purpose of real-time simulation, existing parallel

computers need to be utilized and new numerical algorithms need to be developed in

order to speedup the solution process. So, instead of solving the second order differential

equations (3.1.8), we augment (3.1.3) and (3.1.7) into the following form:

(4.3)

Following [24,25], we can partition M, fi, and MA into the the following form

2_f(1,1) 0 0 0 ... S(1,n+l)

0 2_f(2,2) 0 0 ... S(2,n4.1)

0 0 M(3,3 } 0 ... D(z,n+l)

0 0 0

............ ...
D(n+l,1) D(n+l,2) D(n+l,3) 0

where n is the total number of bodies in the system.

head matr/x (4.4)can be written as

¢ N

fi2

fi3

fin

Cl

C2

c3 (4.4)
°..

Cn

d

The above system with an arrow

- Mjfij + D(j,,.,+_)fi i = cj,

W.

_-'_D(,_+l,y)fij = d

j----1

j = 1, ..., n

(4.5)

where

D(_+1,i) = _ A[My

j=l j=l

D(j,_+I) = MjAy, j = l,...,n

cj =-(MAu')j, j = 1,...,n

n

d = _ ATFj

j=l

9

Each diagonal submatrix Mj represents the local mass matrix which is decoupled and can

be factorized concurrently. An off-diagonal submatrix Dy denotes the coupling between

two connecting bodies in the system. Since M is a constant matrix, (4.5a) becomes

fij = Mf x (D(j,n+l)fi _ - cy) (4.6)

Substituting (4.6)into (4.6b) gives the well-known Schur complement

Ft n _t

D(.+lj)M;XD(y,n+l))fi i = _ D(n+xj)M;1Fy - _ D(_+xj).,_.d, i (4.7)

$'----1 j=l j----1

where (3.1.8) is recovered. Several aspects of the present procedure have been observed :

(1) The parallelism in the multibody system is exploited by mapping each processor onto

a group of bodies so that independent computations such as the left hand side of (4.7)

can be performed concurrently.

(2) Since Mi is a constant mass matrix, it needs to be factored only once.

(3) To solve for fi', a parallel sparse solver such as described in [25] may be utilized.

(4) Once fii is obtained, the evaluation of fi from (4.6) is trivially parallelized.

4.2 Parallel Solution Procedure for MBD Systems

The solution procedure using the natural partitioning scheme can be summarized with

the following steps :

[1] Construct A at step n.

[2] Solve (4.3) at step n for fi, and fii.

[3] Integrate translational and angular velocities from n to n + 1 by using fl, and fii.

[4] Integrate translational displacements and angular orientations from n to n + 1 by

using u, and ui.

It is known that current MBD programs, which are developed in the last twenty years,

were tailored for sequential computers with core memory limitations. Limited core memory

is an issue motivating researchers to develop sparse matrix method that will dramatically

decrease computer storage. In selecting a solution scheme from a multiprocessing system,

iterative solution methods are often preferred over direct methods because they require

fewer synchronization and / or interprocessor communication. Most studies of MBD algo-

rithms often assume that the system equations have already been formed. As indicated in

(4.5), the system equations can be generated independently and in parallel. It would be

natural if the solution scheme can be processed at body-by-body level without forming the

system equations. Among the iterative solution methods, the conjugate gradient method

appears to be the most promising candidate because of its inherent parallelism [24-26].

The following parallel PPCG scheme, which is specified to MBD systems, is summarized

into two steps with 14.1.9) as the system equations :

(1) Solve in parallel using all the processors M*I_ i ---- b

10

• Form the right hand side of the Schur complement :

For j = 1 to Np do concurrently

Form T,(j) = M(j)-lc(j)

Form b(j) = d(j) - D(j)T,(j)

• Initialize :

2:0 --0

ro=b

For k = 1, , n

If rk-1 = 0 then quit

Else

• Compute new conjugate search direction :

Solve Pzk-1 = rk-1 for zk-i

pk = zk-1 + _kPk-_ (pl = zo)

• Form the left hand side of the Schur complement :

For j = 1 to N_ do concurrently

FormT (j) = Dr(j)pk(j)
Form T,(j) = M(j)-'T,(j)

Form M(j)'pk(j) = -D(j)Tt(j)

• Line search to update solution and residual :

ak = zr_lrk-1/p_M'pk

Xk -- Xk-1 -}- akPk

rk ----rk-i -- akM'pk

Endif

(2) Broadcast the part of x corresponding to the handled rows of D to neighboring pro-

cessors and solve for fi as in the following steps :

For j = 1 to Np do concurrently

• Receive x

• Back substitute for fi

• Send fi to host for output

As noted in (4.7), the conjugate gradient method is used to obtain system independent

variables without forming the null space matrix of the constraint Jacobian matrix. The

reason is that the major operation of the conjugate gradient involves the multiplication of

11

a matrix by a trial vector. Thus, wecan rewrite (4.7) as

v = BM-1BTp

n

= _ B(n+IJ)MTIB(J,n+I)P

j=l

n

--1 e

j--1
n

= _ B(n+lj)V"

i=1

(4.8)

where v e = [v(l),v(2),...,v(P)]. This multiplication is performed in three steps, and they

add different contributions from prospective bodies to the entry of the resulting vector.

The matrix-vector multiplications are performed directly on the body level and resulted

in the global vector v.

Preconditioning can be used to accelerate the convergence of the conjugate gradient

method. This is achieved by solving the modified system

PM*x = Pb (4.9)

where P is the preconditioning matrix. Selection of an optimal preconditioner for present

MBD problems will be addressed in future work.

A prototype code for dynamics analysis of MBD systems on a shared-memory mul-

tiprocessor is currently under development at Center for Space Structures and Controls

(CSSC). The software architecture and the numerical algorithm presented in this paper

are part of the code. A test version called PMBS (Parallel Multi-Body System) has been

implemented on the Alliant FX/8 by using Force macros [29]. Several example problems

have been experimented and the results will be shown in the following section.

5. Numerical Examples

Computer simulation of two MBD systems has been examined in this section by

using the scheme and the algorithm developed in previous sections. The resulting robust

algorithm solves the present equations of motion of any arbitrary system topologies.

5.1 Three Dimensional Three-Link Manipulator

In order to validate the feasibility, effectiveness, and accuracy of the present scheme, a

three-link manipulator, which has been studied by Gawronski and Ih [27,28], was performed

under the given specifications. The manipulator is under a specified nonholonomic tip

velocity constraints throughout the whole simulation as shown in Fig. 4. The joints that

connected the link are modeled as spherical and revolute joints. Initially, the Lagrange

multipliers are introduced to enforce the joint constraints as well as the nonholonomic

constraints at the tip of the manipulator. The Lagrange multipliers are then eliminated by

adopting the present scheme so that the numerical algorithms can be performed. When

12

time stepping, the manipulator is maneuvering under the desired trajectories which are

given in two different vertical planes as illustrated in Fig. 5 and 6. The corresponding joint

velocities and accelerations, which are matched quite closely to the results that are given

by Gawronski and In, are shown in Fig. 7 and 8. Numerical experiments, although not

reported herein, show the present scheme and algorithm provide considerably less CPU

time than the one with the penalty constraint stabilization technique due to the number

of the operation counts. These will play an important role in the real-time simulation.

5.2 Double-Wishbone Auto-Suspension Systems

To explore the parallelism of the present scheme, we select a vehicle model with

multiple suspension systems, in which the input data describing this system are provided

by Nikravesh of the University of Arizona, as shown in Fig. 9. According to the scheme

used in section 3, the vehicle can be easily partitioned into four subsystems where four

independent processors can be assigned to each of the subsystem so that the null space of

the constraint Jacobian matrix can be constructed in parallel.Note that the suspension

systems possess four sets of springs and dampers with given locations,spring and damping

coefficients. The tires of the vehicle are modeled by using unilateral spring elements.

Initially,the vehicle is positioned in a height of one meter from the ground with initial

velocitiesequal to zero. When the vehicle is been released,gravity acts as the external

loads that force the vehicle to fall. Fig. 10 illustratesone of the spring that reacts to

the given external load during one second simulation run time. The displacements of each

body, which simulate the behavior of the bodies in this system, are given in Fig. 11-15.

The interestingfeatures of this simulation are the CPU time consumption (Fig. 16) and

the speed-up (Fig. 17) of using differentprocessors in Alliant FX/8. Note that present

scheme (N.P.S.) has been used to compare the results that have produced by previous

developed penalty constraint stabilizationtechnique.

6. Conclusion

An efficientnumerical method for the dynamic analysisof MBD systems has been pre-

sented. A scheme that requires lessCPU time to generate the nullspace for the constraint

Jacobian matrix has been developed. The present scheme, which isrobust for kinematic

chains with variable degrees of freedom, provides the system independent coordinates that

can be integrated without violatingthe kinematic constraint conditions. A parallelpre-

conditioned conjugate gradient is also developed to solve the system governing equations

of motion which are written in the Schur complement form so that parallelcomputations

can be applied. Finally,the application of two example problems, dealing with holonomic

and nonholonomic constraints,show the generality of the scheme and itscapability for a

general purpose computer program for the dynamic analysis of MBD systems.

13

References

1. Bodley, C. S., Devers,A. D., Park, A. C., and Frish,H. P., _A Digital Computer Pro-

gram for the Dynamic Intera_:tionSimulation of Controls and Structures (DISCO),"

NASA Technical Paper 1219, May 1978.

2. Chace, M. A., and Smith, D. A., "DAM-Digital Computer Program for the Dynamic

Analysis of Generalized Mechanical Systems, _ SAE Paper No. 710244, Jan. 1971

3. Sheth, P. N., and Uicker, J. J., _IMP(Integrated Mechanism Program): A Computer-

Aided Design Analysis System for Mechanisms and Linkages,_ ASME Journal of En-

gineering for Industry, Vol. 94, 1972, pp. 454-464.

4. Paul, B., "Analytical Dynamics of Mechanisms-A Computer Oriented Overview,"

Mechanism and Machine Theory, Vol. 10, No. 6, 1975, pp. 481-507.

5. Schiehlen, W. O., "Dynaanics of Complex Multibody Systems," SM Archives, Vol. 9,

1984, pp. 159-195.

6. Orlandea, N., M. A. Chace, and D. A. Calahan, "A Sparsity-Oriented Approach to

Dynamic Analysis and Design of Mechanical Systems - Part 1 and 2," ASME J. Engr.

for Industry, Vol. 99, Aug. 1977, pp. 773-784.

7. Wehage, R. A., and E. J. Haug, "Generalized Coordinate Paxtitioning of Dimension

Reduction in Analysis of Constrained Dynamic Systems," ASME J. Mech Design, Vol.

104, Jan. 1982, pp. 247-255.

8. Nikravesh, P. E., and O. K. Kwon, "Euler Parameters in Computational Kinematics

and Dynamics, Part I amd If,_ ASME J. Mech. Tran. and Auto. in Design, Vol. 107,

No. 3, Sep. 1985, pp. 358-369.

9. Nikravesh P. E., Computer-Aided Ana/ys/s ofMechanical System, Prentice Hall, 1988.

10. Garcia de Jalon, J., Unda, J., Avello, A., and Jimenez, J. M., "Dynamic Analysis

of Three-dimensional Mechanisms in 'Natural' Coordinates, _ ASME J. Mech. Tran.

and Auto. in Design, Vol. 109, Dec. 1987, pp. 460-465.

11. Unda, J., Garcia de Jalon, J., Losantos, F., and Enparantza, R., "A Compaxative

Study on Some DifferentFormulations of the Dynamic Equations of Constrained Me-

chanical Systems, _ Transactions of the ASME, Vol. 109, Dec. 1987, pp. 466-474.

12. Park, K. C., and Chiou, J. C., "Evaluation of Constraint StabilizationProcedures

for Multibody Dynamical Systems, _ Proc. the 28th Structures,Structural Dynamics

and Materials Conf., 1987, Part 2A, Monterey, CA, AIAA Paper No. 87-0927, pp.

769-773.

13. Park, K. C., and Chiou, J. C., "Stabilizationof Computational Procedures for Con-

strained Dynamical System, _ Journal of Guidance, Control and Dynamical System,

1988, Vol. 11, No. 4, 3 pp. 65-370.

14. Park, K. C., Chiou, J. C., and Downer, J. D., _A Computational Procedure for Large

Rotational Motions in Multibody Dynamics, _ Proc. the 29th Structures, Structural

Dynamics and Material Conf., Part 3, 1988, Williamsburg, Va, AIAA Paper No. 88-

2416, pp. 1593-1601.

15. Park, K. C., Chiou, J. C., and Downer, J. D., "An Explicit-Implicit Staggered Pro-

cedure for Multibody Dynamics Analysis, Part 1: Algorithm Aspects," Report No.

CU-CSSC-88-08, Center for Space Structures and Controls, University of Colorado.

16. Park, K. C., Chiou, J. C., and Downer, J. D., _An Explicit-Implicit Staggered Pro-

cedure for Multibody Dynamics Analysis, Part 2: Implementation and Evaluations,"

Report No. CU-CSSC-88-09, Center for Space Structures and Controls, University of

Colorado.

17. Baumgarte, J. W., "Stabilization of Constraints and Integrals of Motion in Dynamical

System," Comp. Meth. Appl. Mech. Engr., 1, 1972, pp. 1-16.

18. Baumgarte, J. W., _A New Method of Stabilization for Holonomic Constraints," Jour-

nal of Applied Mechanics, 50, 1983, pp. 869-870.

19. Bayo, E., _A Modified Lagrangian Formulation for the Dynamic Analysis of Con-

strained Mechanical Systems," Comp. Meth. in Appl. Mech. and Eng. 71, 1988, pp.

183-195.

20. Walton, W. C., and Steeves, E. C., "A New Matrix Theorem and Its Application

for Establishing Independent Coordinates for Complex Dynamical Systems with Con-

straints," NASA TR-R326, 1969.

21. Singh, R. P., and Likins, P. W., "Singular Values Decomposition for Constrained

Dynamical Systems," Journal of Applied Mechanics, Vol. 52 Dec. 1985, pp. 943-948.

22. Liang, C. G., and Lance, G. M., "A Differentiable Null Space Method for Constrained

Dynamic Analysis, _ J. Mech. Tran. and Auto. in Design, Vol. 109, Sep. 1987, pp.

405-411.

23. Lanczos, C., The Variational Prlnciple of Mechanics, Dover, 1970.

24. Farhat, C., and Wilson, E., "A New Finite Element Concurrent Computer Program

Architecture," International Journal for Numerical Methods in Engineering, Vol. 24,

1987, pp. 1771-1792.

25. Farhat, C., Crivelli, L., "A General Approach to Nonlinear FE Computations on

Shared-Memory Multiprocessors," Comp. Meth. in App. Mech. and Engr. 72, 1989,

pp. 153-171.

26. Hughes, T. J. R., Ferencz, R. M. and Hallquist, J. O., "Large-Scale Vectorized Implicit

Calculations in Solid Mechanics on A Cray X-MP/48 Utilizing EBE Preconditioned

Conjugate Gradients," Comp. Meth. in App. Mech. and Engr. 61, 1987, pp. 215-248.

27. Gawronski, W., Ih, C-H, C.,_3D Rigid Body Dynamic Modeling of Space Crane for

Control Design and Analysis," JPL D-6878, Nov. 17, 1989.

28. Craig, J. J., Robotics, Mechanics and Control, Addison-Wesley, 1986.

29. Jordan, H., Benton M. and Arenstorf, N., Force User's Manua/, Department of Elec-

trical and Computer Engineering, University of Colorado, Boulder, CO, 1987.

2

e

JOINT 1

JOINT 2

mg :(2)

JOINT 3

Fig. 1 The Triple Pendulum Problem

(2)

(1)

Fig. 2 Example of MBD Systems with Multiple Branches

/

Pin. Joints •

on

Fig. 3 The Crank-Slider Problem

O

ct,

15

10

0

-5

-10

-15

-2O

-25
0

3-D SPACE CRANE

, •

/
....,,\\

\
\\

\

""....

V(x_z)

V(y)
•...•...,'

i ,, i i i | l

40 60 80 I00 120 140

/'

:/

/

/

}

/
?

/

/

/

/
/

160 180

Fig. 4 Tip Velocity for the Three-Link Manipulator

3000

250O

>2 2O00

1500

1000

50O

3-D SPACE CRANE SIMULATION
4000, , , , ,

I
........................ i ...

3500._....... A
b

............................i _/"........_...........i...............i.............._..............-i..........................i.........._"i...............i..............i..............i.............
1 F//._i i i !

.... ' i

0
-1000 -500 0 500 1000 1500 2000 2.500 3000

X, in

Fig. 5 Manipulator Configurations Along the X-Y Plane

4ooo

3500

300O

2500

_: 2000

1500

1000

50O

0
-1000 -500

3-D SAPCE CRANE SIMULATION

]A
• i !

.............. ;.......................... i.............. _............... :.............. !.............. ÷

!

: ! : :. !

.............i.....................8..............:................_..............!.............._.............

I : i i ! i

............._..................... _............._..............._...............
' i

, ! ".- !
............ i *.°..-I t

• t i _ _
L _ i".............

.............t i i

]3 i i
0 500 1000 1500 2000 2500 3000

g, in

Fig. 6 Manipulator Configurations Along the Z-Y Plane

0"015I

0.01

:_ 0.005
. 0

E

_ -0.005

;" .0.01

0
_ -0.015

-0.02

3-D SPACE CRANE. a_gulat velocities
i l i i)

•. JOINT I ,,''""'"'"'"i'

_ s d ..-

"'° .,...;'"

20 40 60 80 I00 120 140 160 180

TIME,

Fig. 7 Joint Angular Velocities for T = 180 sec

xl0 4 3-D SPACE CRANE, angular accelerations
12

10

u

-4_- ':..,' i ' "

6u "*.if*"'* l Io 20 _ 6_ 8'o ,6o ,_o ,,o ,_o _8o
TIMF..,r,_

Fig. 8 Joint Angular Accelerations for T = 180 sec

Z

(s) (4)
(_)

(R)

B2

'A 2

]

(s)

(8) (s)

.(R)_

R 1 R2 R6 RS

(a)

(i)

(b)

Fig. 9 Revolute and Spherical joints connecting different bodies of the system.

Top and rear views: (a) front and (b) rear suspension systems

xlO 4 J'EEP

"E
0

Z

uJ

0
LL

_3

2.5

2

1.5

1

0.5

0
0 0.! 0.2 0.3 0.4 0.5 0.6 0.7 0.8

TIME (sec)

Fig. 10 Force Storage in Front Springs

0.9

Z

o_

1

......

0.9

"%.

0.8

0.7

0.6

0.5

0.4

0.3 i

0.2

0.1

I

O0 O.1

JEEP : BODY - 1
i i

' 0'.3 ' o15 ' ' '0.2 0.4 0.6 0.7 0.8

TIME (sec)

Fig. 11 Displacement History of Body 1

I

0.9

JEEP : BODY - 2
1.3

m

<

1.2

1.1

1

0.9

0.8

0.7

0.6

X

.....,

Z

0.5 '"...

0.4 Y

03 ' '• I i I i I I i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TIME (sec)

Fig. 12 Displacement History of Body 2

E

Lt2

m
O
<

ct_

t_

JEEP : BODY - 3
1.4

X

1.2

0.4

Y

0"20 0.1 0 2

Z

i I i I i i i

0.3 0.4 0.5 0.6 0.7 0.8 0.9

TIME (sec)

Fig. 13 Displacement History of Body 3

E

<

eL
O'}

r_

1.4

1.2

0.8

0.6

0.4

0.2

JEEP : BODY - 4

i i i

X

Z

Y

i i i I I i i i i

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TIME (scc)

Fig. 14 Displacement History of Body 4

o

u_

eL.
c_

r_

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

JEEP : BODY - 5

i i i i ! | 1 i i

.,..__

"".. y

".....

"'...

'. Z

..,

X

-I
0

i I I I i i I I i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TIME (sec)

Fig. 15 Displacement History of Body 5

2oooI
1800_,,...,

,,
1600 "-,,.

9-Bodies Auto-Suspension System, Simulation Time • I sec

1400

"" 1200

_" 1O130

N 800

600

400

200

N.P.S.

i _, I I Il 5 2.5 3 3.5 4

Number ofProcessorson AlliantFX/8

Fig. 16 Comparison of Total CPU Time Used by Both Techniques on Alliant FX/8

g)

tL
¢,q

3.5

2.5

1.5

9-BodiesAuto-SuspensionSystem,SimulationTime :Isec

..""" P.C.S.T,

1.5 2 2.5 3 3.5 4

Number of Processors on ALLiant FX/8

Fig. 17 Comparison of Speed Up by Both Techniques on Alliant FX/8

Stabilization of ComputationalProceduresfor
ConstrainedDynamical Systems
K. C. Park and J. C. Chiou

Reprinted from

JournalofGuidance,Control,andDynamics
(_ i_!_,i_,_i_;..L_E_i!_;_o!._o_o_.,c.,.c

VOL. II, NO. 4, JULY-AUGUST 1988 J. GUIDANCE 365

PRECEDING P_C_E BLANK N_, F_;_.=_

Stabilization of Computational Procedures for
Constrained Dynamical Systems

K. C. Park* and J. C. Chiout

University of Colorado, Boulder, Colorado

A new stabilization method of treating constraints in multibody dynamical systems is presented, By tailoring a
penally form of the constraint equations, the method achieves stabilization without artificial damping and yields a
companion matrix differential equation for the constraint forces; hence, the constraint forces are obtained by
integrating the companion differential equation for the constraint forces in time. A principal feature of the method
is that the errors commitled in each constraint condition decay with its corresponding characteristic lime scale
associated with its constraint force. Numerical experiments indicate that the method yields a marked improvement
over existing techniques.

!. Introduction

HE dynamics of flexible multibody systems, such as the
design of robotic manipulators, mechanical chains, and

satellites, is becoming increasingly important in engineering.

Computer simulation of such multibody dynamical (MBD)
systems requires a concerted integration of several computa-
tional aspects. These include selection of a data structure for
describing the system topology, computerized generation of

the governing equations of motion, incorporation of con-
straint conditions, implementation of suitable solution al-

gorithms, and easy interpretation of the simulation results.
Traditionally, the task of formulating the equations of

motion has been of dominant concern to many dynamists. As
a result, several MBD formulations have been proposed; these

differ primarily in the manner in which they incorporate
constraints and in their resulting system topologies) -t_ Hence,
reliability and cost of existing MBD simulation packages have

been strongly affected by how well the equations of motion
have been streamlined and how well the constraints are pre-

served during the numerical solution stage.
As dynamists face more complex problems, particularly in

the field of large space structures, a new consensus is emerg-
ing: MBD simulation requires a data structure that can

accommodate various system topologies. A primary motiva-

tion for espousing a maximum flexibility in the data structure
is to allow, for each subsystem of a complex MBD system, the

adoption of different modeling assumptions, different formu-
lations of the equation_ of motion, and different solution

techniques. Once this need is recognized, compatibility of
subsystems as well a_, of various constraints becomes a focal

computational i.,,suc H_,_,cvcr. enforcing such subsystem and
kinematical comp_mhhtw, leads to a formulation that in-
volves a set of auxth.tr,, t,,n_.traints that must be satisfied at

each integration .,,tc[_

Because it is inq._,rt,tnt m the simulation of MBD systems

to treat the rcsultim: ,,,_,tt:_mt_ accurately and reliably, several
computational prot_,lulc, h:lxc been proposed. These include

the technique for _,mdcn.mg dependent variables via singular-
value decompo_lt,,n bx \Valllm and Steeves. 14 equilibrium

Received July 6. ILt_7; rc,.i,,ion received Sept. 16. 1987. Copyright
© American IIl_.llltllC OI .AcvonautJ¢,, and Astronautics, Inc.. 1987.
All rights reser_ cd

*Professor, I)cp;trtlncnt t,f Acro,.l_,ttc Engineering Sciences and
Center for Space Str t,, t,lc, .ind {"onlr,_!, Member AIAA.

"l'(;radualc Rc_c.,, _ \ Ianl. l)t'] ,hi IIllt nt of Aerospace |='nginccr-
ing Sciences and (_._!_: l,,t _,raccSlat,_.tt._ • and Controls.

correction strategies by Baumgarte, t_'t_ penalty formulation
by Orlandea et al) 7 and Lbtstedt, _ the coordinate partition-

ing technique by Wehage and Haug, n_ and the differ-
cntial/algebraic approach by Gear _° and Petzold. 2n In ad-

dition, recent reports by Huston and Kamman, _ Fuehrer and
Wallrapp, _4 Schwertassek and Roberson, _ and Nikravesl_ 6

address various related techniques.
Among the procedures cited, it is generally agreed that

Baumgarte's technique is the most reliable one for handling
constraints. Thus, we believe that new methods for constraint

_tabilization should be compared with Baumgarte's technique.

However, an examination of Baumgarte's technique has re-
vealed that it has three important algorithmic and software
difficulties.

First, according to Baumgarte's formulation that leads to
his constraint stabilization, the error committed in all the

constraint conditions during time integration steps can decay
only with a uniform characteristic time constant. In other
words, each of the constraint equations converges at the same
rate regardless of its physical nature. This uniform conver-
gence rate masks an important physical phenomenon: the
characteristic time constants of each constraint equation are

different, since Lagrangian multipliers associated with the

constraint equations exhibit different physical response char-
acteristics. Hence, Baumgarte's technique does not exploit the

well-known observation that the principal errors in multi-

degree-of-freedom systems behave the same way as do those
associated with the individual physical components.

Second, Baumgarte's technique requires that the solution
matrix, BrM nB, can be invertible, where B is the gradient of
the constraint equations and M is the mass matrix. It is noted

that the solution matrix becomes singular (or ill-conditioned)
if two or more constraints become numerically dependent (or
almost dependent) upon one another. When that happens, the

potential gain in accuracy realized by Baumgarte's stabiliza-
tion is lost.

Third, Baumgarte's technique requires the solution of an

augmented matrix equation that involves the constraint gradi-
ent matrix B. This means that whenever additional con-
straints are introduced or when some of the constraints are

relaxed, the matrix profiles of the total-system equations will
have to be varied. The task of dynamically varying matrix
profiles of the total-system equations can significantly com-

plicate software implementation.
The objective of the present paper is to report a new

stabilization technique that is aimed at mitigating the three

algorithmic and software difficulties of Baumgarte's technique.
First, the new technique induces the errors in the constraint

equations to decay according to their principal characteristic

POORQ

366 K. C. PARK AND J. C. CHIOU J. GUIDANCE

response time constants; the principal errors in the constraint
equations diminish according to their corresponding physical

response characteristics. Second, the new technique overcomes
the nonconvergence difficulty when two or more constraints

become numerically dependent. Third, the new technique yields
a matrix differential equation for the constraint forces. Hence,
the solution of the constraint forces can be carried out in a

separate module from that for the primary solution variables
(the position vector for the dynamical equations). To this end,

the paper is organized as follows.
Section II presents a review of the Lagrangian h-method 26

for formulating the equations of motion with constraints,

including both configuration (holonomic) constraints and

motion (nonholonomic) constraints. An examination of
Baumgarte's stabilization for constraints is offered in Sec. III,

delineating in detail the three noted algorithmic and software
implementation difficulties of the Baumgarte stabilization

technique.

Section IV presents a new stabilization technique based on
a control synthesis approach. First, we introduce the well-

known penalty technique so that the constraint forces are

made proportional to violations of the constraint conditions.
Second, by tailoring the governing equations of motion and by

augmenting the constraint equations with the tailored form of
the equations of motion, a stabilized differential form of
constraint equation is derived. The resulting stabilized con-
straint equations are shown to be matrix differential equations
with the constraint forces as the primary solution vector, yet
possessing no artificial damping as is the case with Baumgarte's
technique. Hence, one is left with a set of coupled differential
equations of motion in which the generalized displacements
and the constraint forces form a conjugate pair of unknowns.
It should be mentioned that a similar approach has been

successfully utilized for the solution of fluid-structure interac-
tion equations 2_ and of fluid-porous soil interaction equa-
tions 2s when the interaction equations axe partitioned 29"3°and

solved in a staggered manner. For this reason, the present
method will be called a staggered stabilization technique.

Section V reports numerical experiments that illustrate the

improved performance of the present staggered stabilization
technique. 3t The paper ends with concluding remarks regard-
ing computer implementation issues in production-level MBD
simulation modules.

II. Equations of Motion with Constraints

The Lagrangian equations of motion for mechanical sys-
tems with constraints can be written as

d OL 3L _.
dt Ogl, Oq, _Q,+ _B_,, i=l...n (1)

h-I

ek(q, q,/I) = 0 (2)

where L is the system Lagrangian, ek are the constraint

conditions imposed either on the subsystem boundaries or on
the kinematical relations among the generalized coordinates,

q, are the generalized coordinate components, t is time, (')
denotes time differentiation, h is the Lagrangian multiplier,

Q, is the generalized applied force, and B,, is the ith gradient
component of the k th constraint equation, Eq. (2).

In order to focus our subsequent discussions, we specialize

Eq. (2) to the holonomic (configuration) case:

0¢_
ek(q)=0, B_,- Oq, ' k-1...m (3)

and to nonholonomic (motion) case:

¢ , (q , ?l) _ O , B'_p - _q ,
k= 1... m (4)

It should be noted that the constraint forces Q_ are obtained

by

Q; - £ h_B_,. ,- 1..., (5)
k-I

and not by h_ alone.
Because the two constraints give rise to two different sets of

equations of motion, we will treat their time discretization
separately. It should be mentioned that a typical MBD system
involves both cases; hence, the solution procedure should
account for the two constraints concurrently.

Systems with Nonholonomic Constraints Only

When the system involves only nonlaolonomic constraints,
the equations of motion become

[MB Br](_}'(_} (6)

where M is the mass matrix, Q consists of the applied force

Q, the centrifugal and Coriolis force, and the internal spring
force, and c is given by

c - 0, (7)

Systems with Holonomic Conslraints Only

When the system involves only holonomic constraints, the

equations of motion become

!11. Baumgarte's Stabilization Technique

In Baumgarte's technique, one replaces the second row of
Eq. (6) for the case of nonholonomic constraints by

(_ + y¢ - 0 (9)

Hence, the right-hand side of the second row of Eq. (6) is
modified as

c- - _ - v¢ (lO)

Baumgarte sketched a solution scheme that uses the given
parabolic stabilization technique as follows. First, the para-

bolically stabilized equation may be expanded as

0¢
B/_+ _ +')'¢-0 (11)

By substituting/_ from the first row of Eq. (6), one obtains for
h in the form

(BM_ JBr)h_ BM_tO + 0¢-_- + v¢ (12)

Hence, k in the preceding expression can be substituted into

the governing equations of motion to yield

o¢ + r¢_
M_I-Q.- Br(BM-'Br)-'{ BM-'-Q+ _-f

(13)
)

which can be integrated by an explicit integration formula.

JULY-AUGUST1988 STABILIZATIONMETHOD FOR CONSTRAINED DYNAMICAL SYSTEMS

For holonomic cases, he has recommended the following

(14)

(15)

integro-differential form:n6

+ 2T_ + y2/i dt _ 0

so that one obtains

O0 72ft_ dtc- - _ - 2"t¢-
I0

In the paper where Baumgarte presented this procedure, no
solution scheme was suggested, except that he advocated the
adoption of generalized momenta as the primary variables. In
the present context of the generalized coordinates q, a plausi-
ble implementation of the stabilized integro-differential con-
straint equations may be realized as follows. First, one in-
tegrates the governing equation of motion, Eq. (8a), by an
implicit integration formula

q.+t _8_,+i +h_ (16)

where 8 is a formula-dependent stepsize and h i is a historical

vector. For example, for the trapezoidal rule, we have

8-(t,+ l -t,)/2, h_-qn+8_l" (17)

Integrating the equations of motion with holonomic con-
straints once, by the preceding implicit formula, one obtains

0"" =_M-'(Q -s,x"'') +h_ (18)

We now substitute the preceding equation into the stabilized

integro-differential constraint equation, Eq. (14), to yield

8BM-tBrh"+l =SBM-:Q+h¢ + 2Y_+72 t_dt (19)
tO

After substituting the given expression for _, one can in-
tegrate the resulting equation to obtain q"+_ by either an
implicit or explicit integration formula. We now offer the
following remarks.

Remark I

Each of the constraints for both the holonomic and nonho-

lonomic cases, {_k, k-1.., m }, possesses the same para-
bolic time constant y, since its solution can be expressed as

_, -C_e -v', k " 1...m (20)

Note that the errors committed in each of the constraints also

decay with the same single time constant. However, regardless
of their physical time constants, the errors in the constraint
conditions by the stabilized constraint equations, Eqs. (9) and
(14), are forced to decrease at the same rate. Hence, the
technique does not take advantage of physically different time
constants in order to minimize the errors being accumulated
in the constraint equations.

Remark 2

Note th,at the generalized constraint forces k in Eq. (12)
exist only when the matrix BM-nB r is not ill-conditioned.
Even though the constraints are theoretically independent,
such ill-conditioning can occur when two or more constraints
become numerically nearly dependent, as B is in general

state-dependent. If such situations develop, the accuracy of
generalized constraint force k can be considerably degraded,
thus leading to a dramatic loss of solution accuracy for q.

Remark 3

From computer implementation considerations, the solution
of MBD systems by Baumgarte's technique must be carried
out in a tightly coupled program module. Therefore, any

change in the number of constraints impacts the matrix strut-

367

ture of the solution procedures, requiting dynamically varying
matrix profiles. This can considerably complicate the task of

software implementation.
We will now present a new stabilization technique that

mitigates the three algorithmic and software implementation
difficulties in Baumgarte's stabilization technique pointed out

in the preceding remarks.

IV. New Technique: Staggered
Stabilization Procedure

In Baumgarte's stabilization technique, as discussed in the
preceding section, the objective was to minimize the errors
initiated in the constraint condition

_-0 (21)

First, the difficulty associated with numerically dependent
constraints alluded to in Remark 2 can be overcome by

adopting the penalty procedure

1
k- -_, c_0 (22)

as the basic constraint equations instead of Eqs. (3) and (4). It

is noted that the penalty procedure as given by Eq. (22) tacitly
assumes violations of the constraint condition in actual com-

putations. If one substitutes Eq. (22) into the governing equa-
tions of motion, the result becomes

1
M/_4- --/-BrO = _) (23)

It can be shown that this penalty procedure mitigates noncon-
vergence difficulties in the constraint conditions. However, its
major drawback is that once an error is committed in comput-

ing k, there is no compensation scheme by which the drifting
of the numerical solution can be corrected. It is this observa-

tion that has led to the development of a staggered stabiliza-
tion procedure as described in the following paragraphs.

To illustrate the new procedure we will consider the case of
nonholonomic constraints. Instead of substituting the penalty

expression directly into the governing equations of motion,
first we differentiate Eq. (22) once to obtain

where we assume the penalty parameter c to be constant.
Second, we obtain # from Eq. (6a) in the form

#= M-I(Q- Brx) (25)

and substitute it into Eq. (24) to yield

00 (26)c_+BM-IBr_=BM-I-_+ 0--{

Notice that the homogeneous part of this stabilized equation
in terms of the generalized constraint forces h has the follow-
ing companion eigenvalue problem:

(y + BM-'Br/,)y = 0 (27)

where {-:_. k = 1 ... m } are the eigenvalues of the homoge-
neous operator for the new stabilized constraint equations,
Eqs. (26). Since _'_ also dictates how the errors in the con-
straint equations will diminish with time, the errors committed

in the constraint conditions will decay with their correspond-
ing different response time constants. This physically oriented
stabilization property of the present technique is in contrast to

that of Baumgarte's technique wherein all the error compo-

nents diminish according to a single time constant.

368 K.C. PARK ANI).I. (. CHIC)U J. GUIDAN('E

Third, the new technique enables us to solve for X from the

stabilized differential equation. Eq. (26). Specifically, wc now

have a set of coupled equations, one for the generalized

coordinates q and the other for the generalized constraint

forces h, which are recalled here from Eqs. (6a) and (26) for
the case of nonholonomic constraints:

0f0/ 0 BT
0¢

(2s)

Note that these coupled equations directly provide the desired

differential equations for a conjugate pair of [q kJ.

Remark 4

For holonomic constraints, one has several stabilization

possibilities. The one we have chosen is to integrate the

governing equations of motion once to obtain

il"=8 M '(O"- Brk ") + h:i (29)

which is substituted into

1 30,
to yield

3O
,X"+SRM'STX"-S(SM '_"+h:;)+ W (31)

Remark 5

It is observed that even if BM- IBr is almost singular, the

new stabilization technique as derived in Eqs. (26) and (31)

would not cause numerical difficulty in computing X since the
solution iteration matrix becomes ((+ 8BM _B') for nonho-

lonomic cases and (¢ + 82BM - IBr) for holonomic cases.

Remark 6

The present staggered stabilization technique and Baum-

garte's technique can be presented in control-synthesis block

diagrams, as shown in Figs. la and lb. For nonholonomic

constraints, the present technique can be viewed as a combi-

nation of gain plus rate feedback stabilization, whereas

Baumgarte's technique is seen as a simple gain feedback
stabilization. For holonomic constraints, a similar distinction

can be observed. The resulting feature of a rate feedback

manifested in the present staggered stabilization technique

constitutes an important attribute as it copes with the dynami-

cal nature of the problem.

V. Numerical Evaluation

The first problem is a one-bar rigid pendulum problem

studied in Ref. 15. The equations of motion consist of both

horizontal and vertical trajectories of the pendulum's tip plus

one constraint equation for the circular motion of the tip;

thus, there are two position variables and one holonomic
constraint condition. First, we fix the integration stepsize and

carry out the numerical solution by the trapezoidal rule without

iteration for both stabilization techniques. Figure 2 shows the

errors in the constraint condition for the two techniques. The

results show that the present technique yields accuracy about

two orders of magnitude higher than that yielded by Baum-

garte's technique. In order to gain further insight, the accuracy
level in the constraint condition is fixed to be the same (10 6)

at each time step and the solution matrix is iterated to satisfy

the accuracy requirement. Figure 3 illustrates the number of
iterations needed at each step vs time. Note that the average

iteration number for the present technique is about four,

whereas with Baumgarte's technique it is about six.

a)

,i

b)

FIR. I Control synthesis representation of two stabilization tech-
niques: a) BaumRarle's technique, and b) stabilized technique.

10 °

_=

10 -4

d "'-. ...-

New Stabilized Technique

........... Baumgarte's Technique

0.0 O.T8 1.S

Time(Step S|ge = O.001)

FiR. 2 Error_ in constraint with no iteration, performance of I_o
stabilized techniques (`,ingle pendulum problem).

o

O

Z

10

-- " New Steblllted Technique

Baumgsrte's Technique

0.0 O.TS 1.5

Time(Step Stle = O,O3)

Fig, 3 Number of iterations required for gi,,en error tolerance, perfor-
mance of two `,tabili/ed techniques (,,ingle pendulum problem).

JULY-AUGUST 1988 STABILIZATION METHOD FOR CONSTRAINED DYNAMICAL SYSTEMS
369

The second example is a classical crank mechanism whose

governing equations of motion are characterized by the fol-

lowing matrices and constraints [see Eqs. (3-8) for their

deftnitions]:

M- J2
m

(32)

rcos0 - (x - I t cos_))r sin0 - (V - Ii sin_) = 0
(l - / I j sin_ + .V

(33)

,BT_

!

- rsinO r cosO 0 |

l-/lsinO IIcos_ (I-I l)cos_

-1 0 0

0 -1 1

(34)

and

. iT, . h3J Tq=[0 _ x v X=[X, X,

Q=(o o o -ms} _ (35)

Figure 4 shows the problem definition along with the numeri-
cal performance of the two procedures, Baumgarte's technique
and the staggered stabilization technique. The performance of

the Baumgarte technique and that of the staggered stabiliza-

tion technique for this problem are also presented in Fig. 4. In
carrying out the computations, the trapezoidal rule has been
used to time-discretize the equations of motion [Eqs. (2)], the

constraints [Eqs. (3)], and their stabilized forms [Eqs. (19) and
(28)i. A sufficiently small step increment was used, corre-

sponding to 82 increments for one cycle of the mechanism,
with the time increment h - 0.01 for the period T- 0.82. In
order to measure the performance of the two techniques
directly, in terms of violation of the constraint conditions vs
lime during one complete cycle, no iteration was performed at

each integration step. In each technique, the three constraint
conditions exhibited the same order of accuracy level. Hence,

be illustrate only one constraint violation history, i.e., the pin
joint constraint between the crank and the connecting rod.
Note that the error in the constraint condition for Baumgarte's

technique remains about two digits above that with the
staggered stabilization technique. In addition, we have experi-
mented with several values of a and B that are required in
Baumgarte's lechnique, and the best parameter choice was
found to be a - ,8 - 70. For the staggered stabilization tech-
nique, the penalty parameter chosen was c,,, 10 -_', which

vielded an accuracy level about I0- _ for the technique.
The third problem tested is a simplified version of the

,cv,.n-link manipulator deployment problem./_ The three links

ate initially folded and, for modeling simplicity, between the
two joints is a coil spring that resists a constant deploying

force at the tip of the third link. Also, the left-hand end of the

tirs_ link is fixed through the same coil spring to the wall.
These three coil springs are to be locked up once the links are
deployed straight. The deployment sequence of the manipula-
tor is illustrated in Fig. 5. The time-discretized difference
equations both for Baumgarte's technique and the staggered
stabilization technique have been solved at each time incre-

ment by a Newton-type iterative procedure to meet a specified
accuracy level. Hence, the performance of the two techniques

can be assessed by the average number of iterations taken per
time increment. This is presented in Fig. 6 for the accuracy of
10 4. Notice that the staggered stabilization technique re-

quires on the average about 4.5 iterations per step, whereas
Baumgarte's technique requires about 22 iterations per step.

O

ro

o
I,q

IO -s

_Co!strainta on

10°

New Stabilized Technique

I0-to
o. 0.4 0.8

Fig. 4 Error_ in pin-joint con,draint _th no iteralion, performance of
two techniques.

el

i

2.0

1.0

0.0

-1.0 __

0.0

Fig. 5

Time(t=0.3)
l-- Ti ,me(t=0.O) Time(t=0.S)

_ Time(t LI)

1.5 3.0

Horizontal Dlmenmion

Deployment of three-link remote manipulator.

Note that Baumgarte's technique fails to converge for time,
t ,_ 1.1, as manifested in Fig. 6 because the rows in B become

numerically dependent upon one another when the links are in

a straight configuration. This corroborates the theoretical pre-
diction of nonconvergence whenever the solution matrix

BM nBr for Baumgarte's technique [see Eq. (12)] becomes

singular. On the other hand, the staggered stabilization tech-
nique still converges within 30 iterations because it overcomes
this singularity difficuhy, since _. still exists, as can be seen

from Eqs. (26) and (31). Although not reported here, the same

relative performance has been observed for different accuracy
levels, i.e., for the accuracy of 10 -5 and 10- _.

From the sample test problems, we conclude that the
staggered stabilization technique yields both improved accu-

racy over and greater computational robustness than the
Baumgarte technique. In addition, the staggered stabilization

technique offers software modularity in that the solution of
the constraint force _. can be carried out separately from that
of the generalized displacement q. The only data each solution
module needs to exchange with the other is a set of vectors,

plus a common module to generate the gradient matrix of the

370 K. C. PARK AND J. C. CHIOU J. GUIDANCE

!
g

et

d
Z
el

.J

100

5O

Batumgmrte's 'rechaiqu,

50

i i i i i i i

0.0 0.6
T'um,

1.2

!
!

m,

,11

25

Ngw StakbU_ed T*r.,h_que

L , I I I

nn 0,8
Time

I I L I

1.2

Fig. 6 Performance of two slabilization techniques for three-link
manipulator (solulion accuracy _ I0 -6),

constraints, B. However, one should be cautioned not to

extrapolate blindly to complex problems the results of the

present simple examples. Further judicious experiments axe

needed in applying the present staggered stabilization tech-

nique to complex production-level problems before it can be

adopted for general applications in muhibody dynamic simu-
lations.

Acknowledgments

The work reported herein was supported by NASA Langley
Research Center under Contract NASl-17660. The authors

wish to thank Drs. Jerry Housner and Jeff Stroud for their keen

interest and encouragement during the course of the present
work.

References

nHooker, W. and Margulies, G., "The Dynamical Attitude Equa-
tions far an N-body Satellite," Journal of Astronau,cal Science, Vol.
12, 1965. pp. 123-128.

2 Roberson. R. and Wittenburg, J., "A Dynamical Formalism for an

Arbitra_ Number of Interconnected Rigid Bodies with Reference to
the Problem of Satellite Attitude Cnntrol," Proceedings of the Third
International Congress of Automanc Control. Buttcrworth, London,
1965.

3Likins, P., "Analytical Dynamics and Nonrigid Spacecraft Simula-

tion," TR 32-1593, Jet Propulsion Laboratory, Pasadena, CA, 1974.

4Ho, J., "The Direct Path Method for Deriving the Dynamic

Equations of Motion of a Multibody Flexible Spacecraft with Topo-
logical Tree Configuration," AIAA. Paper 74-786, 1974.

s Robert, on, R., "A Form of the Translational Dynamical Equations
for Relative Motion in Systems of Many Non-Rigid Bodies." Acta
Mechanica, Vol. 14, 1972, pp. 297-308.

_Boland. P., Samin, J., and Witlems, P., "Stability Analysis of

Interconnected Deformable Bodies in a Topological Tree." AIAA

Journal, Vol. 12, Aug. 1974, pp. 1025-1030.

7De Veubeke, B.F., "The Dynamics of Flexible Bodies," Interna-

tional Journal of Engineering Science, Vol. 14, 1976, pp. 895-913.
_Keat, J.E., l)vnamical Equations o/Body S;'stems with Application

to Space Structure Deployment, Ph.D. Thesis. Massachusetts Institute

of Technology, Cambridge, MA, 1983
9Kane, T. and Levinson, D., "Formulation of Equations of Motion

for Complex Spacecraft," Journal of Guidance and Control. Vnl. 3,
March-April 1980, pp. 99-112.

'°Bodley, C.S., Devers, A.D., Park. A.C., and Frish, HP. "A
Digital Computer Program for the Dynamic Interaction Simulation of

Control and Structures (DISCOSI," NASA TP-1219, May 1978.

nIThe ADAMS User's Guide, Mechanical Dynamics. Inc., Ann
Arbor, MI, 1979.

t2Keat. J.E., Dvnamwal Equations of Rigid Body Systentl with
Application to Space Structure Deployment, Ph.D. Thesis, Massachu-
setts Institute of Technology, Cambridge, MA, 1983.

t_Housner, J.M., "Convected Transient Analysis for Large Space
Structure Maneuver and Deployment," Proceedings of the 25th Struc-
tures, Structural Dynamics and Materials Conference, Part 2, AIAA
New York, 1984, pp. 616-619.

t4Walton, W.C. and Steeves, E.C., "A New Matrix Theorem and Its

Application for Establishing Independent Coordinates for Complex
Dynamical Systems with Constraints °' NASA TR-R326, 1969.

nSBaumgarte, J.W., "Stabilization of Constraints and Integrals of

Motion in Dynamical Systems," Computational Methods in Applied
Mechanics and Engineering, Vol. 1, 1972, pp. 1-16.

L_'Baumgarte, J.W., "A New Method of Stabilization for Holonomic

Constraints," Journal o/Applied Mechanics, Vol. 50, 1983, pp. 869-870.
X_Orlandea, N., Chase, M.A., and Calahan, D.A., '*A Sparsity-Ori-

ented Approach to the Dynamic Analysis and Design of Mechanical
Systems--Parts I and It," Transactions of the ASME, Journal of
Engineering for Industry, Series B, Vol. 99, 1977, pp. 773-784.

taL_,tstedt, P., "On a Penalty Function Method for the Simulation

of Mechanical Systems Subject to Constraints," TRITA-NA-7919,

Royal Institute of Technology, Stockholm. Sweden, 1979.
t'_Wehage, R.A. and Haug, E.J., "Generalized Coordinate Partition-

ing for Dimension Reduction in Analysis of Constrained Dynamic

Systems," ASME Journal of Mechanical Design, Vol. 104, 1982, pp.
247-255.

2°Gear, C.W., "Simultaneous Numerical Solution of "Differential/

Algebraic Equations," IEEE Transactions on Circuit Theory, CT-18,

1971, pp. 89-95.
21Petzold, L., "Differential/Algebraic Equations are not ODEs,"

SIAM Journal of Scientific Statistical Computation, Vol. 3, 1982, pp.
367-384.

UPenalty-Finite Element Methods in Mechanics, edited by J.N.

Reddy, American Society of Mechanical Engineers, AMD Vol. 51,
New York, 1982.

23Huston R.L. and Kamman, J.W., "A Discussion on Constraint

Equations in Muhibody Dynamics." Mechanical Research Communi-

cation, Vol. 9, 1982. pp. 251-256.
24Fuehrer, C. and Wallrapp, O., "A Computer-Oriented Method

for Reducing Linearised Multibody System Equations by Incorporat-

ing Constraints," Computational Methods in Apphed Mechamcs and
Engineering, Vol. 46, 1984, pp.169-175.

25Schwertassek, R. and Robcrson, R.E., "A State-Space Dynamical

Representation for Multibody Mechanical Systems, Part It,'" Acta

Mechanica, Vol. 51. 1984, pp. 15-29.
"_ N ikravesh, P.E, "Some Methods for Dynamic Analysis of Con-

strained Mechanical Systems: A Survey." Computer Aided Analysts
and Optmuzatlon of Mechanical System D_'namics, edited by E.J.

Haug. NATO ASI Series, F9, Springer-Verlag, Berlin. 1984. pp
351-367.

VLanczos, L., The Variational Principles of Mechanics, 4th ed.,

University of Toronto Press, Toronto, 1970, pp. 141-147.
-'NPark. K.C.. Felippa, C.A., and DeRuntz, J.A., "'Stabilization of

Stag.gored Solution Procedures for Fluid-Structure Interaction Analy-
sis," Computational Method_ /or Fluid-Structure Interaction Problems.
edited by T. Belytschko and T.L. Geers, ASME, AMD Vol. 26. New

York. 1977, pp. 95-124.
2'_Park, K.C., "Partitioned Transient Analysis Procedures for Cou-

pied-Field Problems: Stability Analysis," Journal of Apphed Mechan-
ws. Vol. 47. 1980. pp. 370-376.

_°Park, K.C., "Stabilization of Partitioned Solution Procedures for

Pore Fluid-Soil Interaction Analysis." Internaoonal Journal of

Numerwal Methods in Engineering, Vol. 19. 1983, pp. 1669-1673.
_JPark, KC., "Stabilization of Computational Procedures for Con-

strained Dynamical Systems: Formulation.'" AIAA Paper 86-0926,

May 1986.

Explicit-Implicit Staggered Procedure
for Multibody Dynamics Analysis

Chiou J _wnerK. C. Park, J.C. , . D. D_

Reprinted from

JournalofGuidance,Control,andDynamics
,,.,c

562

.,,,.,,,.-r._'_/_v_ -_',." e'_'_ _f ,,,e _-_.,.-.. "

J. GUIDANCE
VOL. 13, NO. 3

Explicit-Implicit Staggered Procedure for
Multibody Dynamics Analysis

K. C. Park,* J. C. Chiou,? and J. D. Downer?

University of Colorado, Boulder, Colorado 80309

An explicit-implicit staggeredtime-integration procedure is presented for the solution of multibody dynamical
equalions involving large rotalions and conslraints. The algorithm adopts a two-stage modification of the
central difference algorithm for inlegrating the translational coordinates and Ihe angular velocity veclor, and Ihe

midpoint implicit algorilhm to solve the kinematical relation in terms of the Euler parameters for updating the
angular orientations. The Lagrange multipliers to enforce the system constraints are obtained by implicitly
integrating a parabolically regularized differential equation for Ihe multipliers. The performance of the presenl
procedure has been evaluated by applying the procedure In solve _veral sample prohlems. The results indicate
that Ihe procedure is robust in dealing with a variety of constraints and spatial kinematic motions, hence it is
recommended for applications to general mullibody dynamics analy_s.

I. Introduction

OMPUTER simulation of multibody dynamical (MBD)
systems has enjoyed substantial progress during the past

several years. As a result, it is now almost routine to perform

realistic modeling and assessment of some practical problems

such as mechanical linkages and manipulations of robotic
arms. 7 Recently, a new need for the large-scale, real-time

simulation of flexible MBD systems is emerging primarily in
support of deployment and construction of large space struc-

tures in orbit. The development of an MBD simulation soft-

ware system for space applications must meet several needs,
which include a versatile data structure for implementation of

candidate MBD topologies, an automatic derivation of the

equations of motion, a streamlined incorporation of the sys-

tem constraints, a robust and efficient direct-time integration

package, a modular interface with active-control systems, and

timely visualization of the simulation results. Of these, the

present paper focuses on a robust and efficient time-integra-
tion package with parallel/concurrent computers as its pri-

mary Computational environment.

In general, there have been two types of direct-time integra-

tion algorithms for the transient response analysis of dynami-

cal systems: explicit and implicit algorithms. Currently, im-

plicit algorithms appear to be favored by many MBD

specialists when both the generalized coordinates and the La-

grange multipliers are treated as the unknowns. In this. case,

the corresponding formulations incorporate the system con-

straints by the penalty augmentation through the Lagrange
multipliers, it is well known that the resulting Newton-like

solution matrix is stiff. This has led to implicit time discretiza-

tion of the constraint-augmented equations and simultaneous
solution of both the generalized coordinates and the Lagrange

multipliers.*._3._5.::.2_

On the other hand, if the constraints are eliminated so as to

reduce the number of unknowns, it is possible for one to

Received July 19, 1988, revision received Nov. 17, 1988. Copyright
© 1989 American Institute of Aeronautics and Astronautics, Inc. All

rights reserved.
"Professor, Department of Aerospace Engineering Sciences and

Center for Space Structures and Controls. Member of AIAA.
_'Graduate Research Assistant, Department of Aerospace Engineer-

ing Sciences and Center for Space Structures and Controls.

employ either implicit or explicit algorithms. For this situa-
tion, if the system topology is an open tree, one may invoke

either a geometric or an algebraic procedure to streamline the

resulting equations of motion. Geometric procedures rely on
the use of the incidence matrix :_ and the body-array matrix. _

Some of the proposed algebraic procedures include singular
decomposition, 24 the use of generalized speed, t2 the coordi-
nate partitioning technique, 2_ and the so-called order-N proce-
dure. J_

In developing the present MBD solution procedure, we have

been guided by the following considerations, which have led to
the selection of an explicit algorithm. First, the algorithm
must be robust; experience suggests that explicit algorithms
remain robust provided computations are stable. Second, the

algorithm should be easily interfaced with a constraint proces-
sor as well as an active control synthesizer; the task of inter-
facing a software module with other software modules be-
comes easier if its data structure is simple, thus favoring an
explicit algorithm. To this end, as the central difference inte-
gration algorithm has been most widely used for the explicit
transient analysis of structural dynamics problems, we have

decided to adopt the central difference algorithm as our basic

integration algorithm. The rest of the paper is organized as
follows.

In Sec. I1, we introduce basic equations of motion for MBD

systems. For computational efficiency, the translational coor-
dinates are expressed in the fixed-inertial frame, whereas the
rotational coordinates are expressed in the moving body-fixed
frame in terms of the Euler parameters. Section III introduces
the partitioning of the governing equations of motion into two

groups: translational and rotational. Such partitioning paves
the way for the efficient treatment of the rotational motions
via the singularity-free Euler parameters, which treatment is a
major feature of the present paper.

Section IV introduces the standard form of the central
difference method for updating both the translational and the
angular velocities. Once the angular velocities are obtained,

the angular orientations are updated via the midpoint implicit
formula employing the Euler parameters; update of the trans-
lational coordinates is achieved by the central difference
method. It is shown that the standard form of the central-dif-
ference method is not applicable to the MBD equations, due to
the unavailability of the generalized velocity vector at the time

step at which the acceleration vector is evaluated. To over-
come this difficulty, a staggered form of the central-difference
method is developed.

MAY-JUNE 1990 PROCEDURE FOR MUI.TIBOI)Y I)YNANIlCS ANAI_'_SIS 503

To complete the description of the solution procedure for

constrained MBD systems in Sec. V, the staggered-stabilized

technique for the solution of the constraint forces as indepen-
dent variables is summarized from Park and Chiou. I_.: When

the two algorithms--namely, the two-stage explicit algorithm

for the generalized coordinates and the implicit, staggered

procedure for the constraint Lagrange multipliers--are

brought together in a staggered manner, they form an explicit-

implicit staggered procedure.

Numerical evaluations of the present algorithm are reported

in Sec. VI. Finally, Sec. VIII discusses several computational

aspects of the present procedure and summarizes the main

contributions of the present paper.

!I. Equations of Motion for Multibody Systems

The discrete equations of motion for flexible multibody

systems can be expressed a¢

Mii + D(i_) + S(u) + BrhN + BrXn = f(t) (1)

N(i,U ,t) = O, ¢bn(u,t) = 0 (2)

where M is the mass matrix, D(•) the generalized velocity-de-

pendent force operator, St-) the internal force operator due

to member flexibility, BN and Bn the gradients of the nonholo-

nomic and holonomic constraints [Eq. (2)], XN and hH are the

corresponding constraint forces, f(t) !s the applied force, u is

the generalized displacement vector, () denotes time differen-
tiation, and ()r designates the matrix transposition.

The numerical solution of the constrained dynamical system

governed by Eqs. (i) and (2) consists of two tasks: the satisfac-

tion of the constraint conditions [Eq. (2)] to obtain h and the

computation of the generalized coordinates u from Eq. (1). A

staggered, stabilized computational procedure to obtain XN

and hit by satisfying Eq. (2) was presented in Park and
Chiou)6.tr and is summarized in Se¢. IV. The major thrust of

the present paper is therefore devoted to the computation of
the generalized coordinates u.

I11. Partitioning of the Multibody Dynamical

Equations

A basic difficulty in direct integration of Eq. (1) is that _0 is

not directly integrable, except for some special kinematic con-
figurations, to yield angular orientations. This motivates us to

partition , into the translational velocity vector d, which is
directly integrable, and the angular velocity vector _o, which is

not, and to treat them by a partitioned solution proce-
dure, LIs-2° viz

The equations of motion [Eq. (1)] can be rearranged according
to the preceding partitioning:

°.11 l+I21: 1
where

cQ_(_,d,q,X) (O_(_o)+ S_(d,q) grXj

(4)

(5)

in which q is the angular orientation parameter vector, and Ba
and Bw are the partitions of the combined gradient matrices of

the constraint conditions (2) that are symbolically expressed as

B = B._. +Btt, h -_ t_ N -_- hll (6)

To effect the integration of the rotational degrees of freedom,

we partition 6_ further into

= L_l,_2 _ej r (7)

where 6ju) is a (3 × 1) angular acceleration vector for thejth

body,

,o= LoR),,&,,&j (8)

IV. Staggered Explicit Method for Multibody

Dynamical Equations

One of the most popular explicit time integration formulas
for the solution of the second-order dynamical equations is the

central difference method, which can be implemented as

an + J:2= U" -)/2+ h//" (9a)

i_" + z = u _ + hu" ÷)/2 (9b)

where the superscript n designates the discrete time station

t = nh and h is the step increment.
It should be noted that the conventional form of the central

difference method

t/n+l = 2//n --U n-I + h2_1n (10a)

n" + i = U" + (h/2)(u" + _ + it") (lOb)

is not applicable to the MBD equations since _o cannot in

general be directly integrated to yield suitable angular orienta-
tions, let alone unfavorable accuracy problems associated with

Eq. (10a) as succinctly discussed by Henrici. 8

A. Integration of the Translational Coordinates

Assuming that [d"-_/2,d",d",q',h"l are given at the time

steps, t = (n - l/2)h and nh, one can proceed to obtain from

the partitioned equations of motion [Eq. (4)], the translational

velocity and coordinates as

d"" 1/,. = d" - I/2 + hMa- t [J'_t - Qa(d',d",q",h")] (! la)

d" " l = d" + hdÈ-):z (lib)

Note that, due to the intrinsic time-stepping nature of Eqs. (9),

d" that is needed in computing Q_ is not available. This

difficulty can be overcome if Qa has the form

Qa = Dad + Sa(d,q) - Bd(d,q) (12)

where Da is a constant diagonal matrix. For this special case,

one can employ the averaging operator

Dfl" = Da(I/2)(d"" L'2+ d" -)/2)

so that Eq. (I la) is modified to

(m d + ll2hDa)d n * I/2 = (Ma - (hl2)Dd)d" - I'2

+ h(f,7 - Sd(d",q") -- B_h")

(13)

(14)

If, on the other hand, Da is not diagonal or Ba contains d,

the modification offered in Eq. (14) loses the advantage of the
central-difference method in that one must either factor the

matrix IMa + I/2hDa] or iterate on Ba. This difficulty is more

pronounced for updating the angular velocity vector as dis-
cussed next.

n. Integration of the Angular Orientations

One can update the angular velocity vector by Eq. (9a) using

6_ from Eq. (4b)

t_"" L/2 = t: - i/2 + half I if,, _ Q_(to,,,q,,d_ h_)] (15)

564 PARK,CHIOU,ANDDOWNER J.GUIDANCE

A keyfeatureof the present algorithm is the use of the

following kinematic relation (e.g., Wittenburg 26) to update the
angular orientations:

[0=;']q = 2 to , q = -_ A (to)q

q = Lqo ql q2

that is subject to

qr.q=l

where

q3J r (16)

(17)

= _1 0 I , to= Itol to.. to, jr (18)

to2 tol

Of several procedures tested, we have found the following
midpoint implicit rule is the most robust and accurate:

q.* I/2 = q. + (h/2q)_+ l,z

= q"+ (h/2)A(ton* I/2). q.. Iz (19a)

q.+l =2q"*l:2-q ", (q..I)r q,,.l= I (19b)

where q"+ _:'- is obtained by

q.+ J/2 = i/A[1 + (h/4)A (w "+ l/2)]q.,

A = I + (h2/4)(to_ + to_ + toz) (20)

Finally, once q"÷ _ is computed from Eq, (19), one can
update the angular orientation matrix R:

b =Re,

2(qd + qlz) - ! 2(qlq2 + qoq3) 2(qaq3 - qoq2) "]R = 2(qtq:-qoq3) 2(q0 z+q_)- 1 2(q2q_+qoch)]
[_2(qtq3 + qoqz) 2(q2q3 - qoql) 2(q0z + q_) -- i

(21)

which relates the body-fixed basis vector, b = [bt bz b3J r,

to the integral-basis vector, • = Let e., e3J r.
It should be remarked that the update of the angular orien-

tation parameters through the kinematical relation [Eq. (16)]
is in contrast to the conventional algorithm in which one

substitutes & in Eq. (4b) in terms of il and q by

& = T(q)q + T(q)q

I- - q2J

q_ qo qJ

T = 2 q2 - q3 qo qt

q3 qz - q_ qo

(22)

and integrates the resulting equations of motion to update q.

However, computations of to"+ _/2 by Eq. (15) assume that
to" is available for every integration step. Note the D,_(to) in Eq.

(5) takes for each body the form of

D_(to) = &Jto (23)

where J is the moment of inertia matrix. This term often

dominates the momentum exchange in multibody systems and

presents numerical difficulties if to" in D,_ is approximated by
_,,- _,2, leading to inaccurate solutions or numerical instabili-
ties.

A linearized computational stability analysis for the al-

gorithm based on Eqs. (15) and (19), although we do not

report it here, has been performed when D_(to") is approxi-

mated by D,(to'- _/2), The analysis result, as corroborated in
Sec. VI, shows that such a naive approximation leads to

unacceptable accuracy loss on outright instability. This has

motivated us to implement both Eqs. (1 I) and (15) in a two-
stage time-stepping procedure as detailed next.

C. Staggered Integration of the Translational and Rotational Coor-
dinates

To alleviate the computational and stability issues encoun-

tered in the single-stage implementation of the central-differ-

ence method for MBD simulations, the basic algorithm pre-
sented in the preceding section needs to be modified as

follows. Specifically, at an arbitrary integration step from

t = nh to t = (n + I)h, it is necessary for accuracy and stabil-
ity that d" and to" are available for Eqs. (! I) and (15), respec-

tively. Within the algorithmic context of the central difference

method, this can be accomplished if we stagger the integration
as follows.

First, instead of marching from the (n + I) to the (n + 2)

step at the completion of the (n + I) step, we go back one-half

step and march a full step from the (n + i/2) to (n + 3/2)

step:

d "*1 =d"+htt(d'_l/2,d"+WZ,q"*l/2.X "*1/2) (24a)

d" + 3/_"= d" + I/2 + hdn * I (24b)

for the update of the translational coordinates and

ton + I = ton + h&(to. + l/2,qn+ 112dn + 1t2X. + 1/2) (25a)

qn. t = (I/A)[/+ (hl4)A(to "+ t)]. qn. I/2 (25b)

q. ÷ 3/2 = 2q. ÷ t _ q. + l/z, (q. + 3/z)r. q. ÷ 3/2 = 1 (25c)

for the rotational coordinates.

For the next integration step, we march from the (n + 1)

step to the (n + 2) step, and so on, hence the name "two-stage

staggered explicit procedure." The net result is that, even

though we take a full step (h instead of h/2), we only advance

half the step at a time. In other words, we evaluate the acceler-

ation and the angular acceleration vectors twice for each full

step.

V. Implicit Solution of Constraint Forces

The solution of the governing equations of motion is carried

out by the two-stage explicit integration procedure presented

in the preceding section. For systems with constraints, one
must either eliminate the constraints or solve them as part of
the system unknown. Many MBD systems involve constraints

that are either difficult or computationally cumbersome to
eliminate. For this reason, we will adopt the staggered stabi-

lized procedure, j_: which is reviewed here for convenience.
First, instead of augmenting Eq. (2) to Eq. (9), and simulta-

neously solving the generalized coordinates and the Lagrange

multipliers, we employ a partitioned solution procedure L_9-2_
to solve the generalized coordinates separately from the La-

grange multipliers. To effect a partitioned solution of the
constraints, we introduce the following penalty expression

h, = (l/_yl, N(U,u,t), kn = (l/_)%4(u,t), 0<_._ ! (26)

It is noted that the penalty procedure as given by Eq. (26)

tacitly assumes violations of the constraint condition [Eq. (2)]

in actual computations. Now, to solve h separately, it is neces-
sary to cast X in a differential form instead of in the algebraic

form. This is accomplished as follows.

Instead of substituting the penalty expression directly into
the governing equations of motion [Eq. (I)], first we differen-

MAY-JUNE1990 PROCEDUREFORMULTIBODYDYNAMICSANALYSIS 565

tiateEq.(35)oncetoobtain

O*,_ (27a)kN=le B_,uN+ at/

(XH = l_eBHU. + --'_-/ (27b)

where we assume the penalty parameter (to be constant.

In practice, both the holonomic and the nonholonomic

constraints may be associated with a common set of general-

ized coordinates. For such cases, we time-differentiate the

holonomic constraints and combine those sets Olf_ u into @N in

Eq. (26). In this way hN and XN become uncoupled in Eq. (27)

Let use rewrite Eq. (1) in the form

I° lun = M. _ _p. Brhn) (28)

where p is a generalized momenta

p = D(U) + S(u) (29)

so that, upon substituting Eq. (28a) into Eq. (27a) for the

nonholonomic case, one obtains

N ÷ BxM, C i r ,9,I':
B,_.X_. = rxN = BNM_ lOrN -p._) + -_ (30)

For the holonomic case, we integrate uH once by the midpoint
implicit formula [see e.g., (Eq. (19a)] to obtain

•n+ I/2 /,inu_, _,, + (h/2)/i_. + L/2 •,= = U N

+ (h/2)Mff I (f_ + I/2 _ p7t÷ I/2 n r_. + i/2)- u.,_H (31)

Substituting Eq. (31) into the Eq. (27b), we obtain

h
utt '_ll = rxl#

f h (f_l+l/2)_pH l/2)] + Ol (32)= B H i4_ + "_M_ I ..÷ __Or_"

Equations (30) and (32) can be written as

X + BM-IBrX = r (33)

Integration of the preceding equation by the midpoint implicit
rule yields the following difference equation:

(e! + (h/4) BM-IBr)X"+ J/4 = (h/4)(r_ ÷ t/2 + r_') + chn

(34a)

,,, 1/2 = 2." + I/4 _)_,, (34b1

It has been shown that the preceding staggered, stabilized

procedure for the solution of the constraints offers not only a
modular software package to treat the constraints but also

yields more robust solutions compared to the techniques pro-
posed by Baumgarte. :._ In particular, even when BM tBt

becomes nearly singular, the staggered stabilized procedure
[Eq. (34)] gives stable and acceptable solutions, whereas the

constraint forces computed by the Baumgarte's technique di-
verge.

The present explicit-implicit, staggered procedure given by
Eqs. (11), (15), and (19) together with the constraint solver
[Eq. (9)] constitutes a complete solution procedure for a multi-

body dynamics analysis for systems with constraints that un-
dergo large motions.

VI. Computer Implementation and
Performance Evaluations

The preceding procedure for the numerical integration or
the equations of motion for constrained MBD systems has

been implemented in two separate integration modules: gener-

alized coordinate integrator (CINT) and Lagrange multiplier
solver (LINT). The CINT employs a two-stage modified form

of the central-difference method for updating the angular

velocity vector and the midpoint-implicit rule for updating the

angular orientations via the Euler parameters. The Lagran=e
multiplier solver adopts a staggered form of the midpoint

implicit method. It should be noted that CINT needs the

constraint force vector, viz, fx = Brx, as an applied force

from LINT. Similarly, LINT needs the generalized coordi-
nates and their time derivatives from CINT. Hence, the step

advancing of the present procedure is accomplished in a stag-

gered manner.

The module LINT receives f_' = Br'h " from LINT and ad-
vances the solution of the MBD equation 1(1) or (4)] from time

t" to t" _ _. Once (d, d, _0, q) are available at time t "÷ t from

C1NT, LINT computes the Lagrange multipliers from Eq.

(34).

To complete the solution of both the generalized coordi-
nates and the Lagrange multipliers, we invoke the following

sequence calls:

t=t"

Call CINT (p", gn, h,p"* =)
Call LINT (?'+ t:2, h, X"+ i/:, f_,+ i/2)

t =t'+h/2(n--n + !/2)

Call CINT (p"" I/'% g. + 1/2, h, p" * 3/2)

Call LINT (_'* i, h, h"÷l,f_ +l)
t =ln+h

where

p" = (d" - t,2, d", _" - 1/2, q.)

g" = [to", f_. = B r"h")]

f.* I/2 = (d" * J/2, d" * w2, _,, ÷ JJ:, q. . J_2, h")

In summary, the present procedure requires two function
evaluations and two h-solutions per each full step, hence the

name "explicit-implicit staggered procedure." We now pre-
sent three sample problems whose efficient and accurate solu-

tions will confirm in their combined totality not only the

viability of the present integration procedure for the solution

of the multibody equations of motion with or without con-
straints, but also the constraint stabilization procedure.

A. l)ynamies of a Bowling Ball

This problem was investigated by Huston el a[., r" however,
their equations do not involve the constraint force h. in the

present analysis, we employ a formulation that incorporates
the constraint force as part of the system variables. Figure 1

illustrates the ball, with its radius a and an offset center re that
is to follow a sine curve,

d/, = y -- sinx = 0 (35)

F-3

C2

\

\

,\

\

b2

b_

//'

_P "x J"

/

""\, z I

Fig. I Solid spherical ball rolling on a flat surface.

566 PARK, CHIOU, AND DOWNER J. GUIDANCE

Table ! Physical dimensions and initial conditions for
a rolling sphere

m =71.32 N, a = 10.9 cm, r0=0 or 0.15 cm

JI---J2=J3 =2/5 ma 2, e= 10 -6

[qg--1,

Fig. 2

I
Ball track projected on three-dimensional sphere surface.

The various matrices and vector quantities for Eqs. (26)

and (35) can be derived as

M _

"m 0 - mroet • b2 mroet • bt 0 -

0 m -mroez.b2 mroez'bj 0

Ji 0 0

sym. J2 0

(36a)

1B = 1 abl .el abz.el ab • et

cosx - ! 0 0

(36b)

Fd = -taro I _°l°_3el " b' + _°z°J3ez ' bz - (t°_ + t°_)el " b31 (37,

There is a total of eight variables to describe the equations

of motion for the constrainted ball. However, in adopting the

present solution procedure--viz, Eqs. (I-3)--we solve for nine

variables as we employ the four Euler parameters for angular
orientations.

Numerical solutions of the rolling of a sphere on a flat
sinusoidal curve have been obtained with the data summarized

in Table I.

The ball track that follows the constraint sinusoidai curve

[Eq. (26)1 is projected on the ball itself as shown in Fig. 2, with

the corresponding angular velocities in Fig. 3. The time histo-
ries of the three constraint forces are shown in Fig. 4, where h_

and hz correspond to the x and y components of the constraint
forces in order to maintain the rolling-contact condition, and

X3 corresponds to the constraint force to maintain the sinu-

soidal trajectory as imposed by Eq. (26). Hence, the first two
constraints are indicative of the skidding phenomenon,

whereas the third corresponds to the steering force required to
maneuver the ball. Notice that, although periodic, they exhibit

highly nonlinear behavior.

We have performed convergence studies with increasing

step sizes; these indicate that the present two-stage staggered
explicit procedure--viz, Eqs. (l-3)--maintains both the solu-

tion accuracy and stability for the step size up to h a 0.15.

Figure 5 shows the angular velocities for a ball with an

offset center (ro = 0/15a). Note that the angular velocities no

longer exhibit periodic response, whereas for the no-offset
case they are periodic (see Fig. 3). Likewise, the steering force

causing the ball to follow the sinusoidai curve O' = sirtx) be-

comes highly nonlinear (see Fig. 6) although it is nonlinearly
periodic. The x- and y-direction contact forces, which main-

tain the rolling-contact condition between the ball and the

'to2_0_(Jz - J_)'_

F,.,= -] o_3o_,(J3 - J,) t

L_°I°J2(JI- J")J 7

_e3.bz] 7,

a= Lx,yJL ,_= k_, _2 o,3jT, x= L×, x: x3J
(39)

2.0

where the inertial-basis vector e and the corotational-basis

vector b are related according to

b = Re (40)

o.0

-2.0

0.0

Fig. 3

0.3 [

/ U U
, £

20.0 40.0

Time(step size = 0.01}

Angular velocities of the sphere with no offset.

y-dlrectioa

Fig. 4

0.0

-0.3

I Steering Force(As}

ConstrLin_

7" lt

o.o 20.0 40.0

Time(step size -= 0.01)

Time histories of three constraint forces on Ihe rolling sphere.

MAY-JUNE 1990 PROCEDURE FOR MULTIBODY DYNAMICS ANALYSIS 567

l

3.0

td2

0.0

-3.0 _ I I L I I l I L

o.o 20.0 40.0

Timelstep _ize= 0.01_

Angular velocitiesof lhespherewithoffsetcenter.

1.0

Fig.5

"d

O

O.O

-I.0

eerxngforce(A_) I:

Fig.6

i i I I I : ; ; E

0.0 20.0 40.0

Time(step size_ 0.01}
Time histories of three constraint forces with offset center.

3,0

8
0.0 /

< _ i/"L..-- The converged solution i:
" i : _

...... Solution of present procedure with h=fl2 " ::.: _:i:

..........Solution of conventional procedure with h=0.2 '_I

0.0 20.0 "10.0

Time

Fig. 7 Convergence studies on present and conventional procedure.

surface, although bounded, manifest extremely nonlinear be-
havior.

To corroborate the instability of a naive approximation of

w" x co"- _/:for the computation of D_. in computing _"--as

alluded to in Sec. IV.B, the equations of motion for the rolling
ball have been integrated by the following formula:

con + ,/2 _ co. - 1:2 _ hM_ '[f_ + B(co'- ,/2 d,))hn _ F(co.- ,/2)1

(41)

Figure 7 shows co2 vs time for the converged solution, the

present two-stage, explicit-implicit, staggered procedure with

step size (h = 0.2), and the conventional procedure with step

size (h = 0.2). The diverging solution by the conventional

procedure is clearly manifested, thus confirming the instability
of the conventional procedure. On the other hand, th_ prG-ent

staggered procedure faithfully traces the converged solution.
Finally, the solution accuracy vs the step size has been

assessed for the offset center ball with different step sizes.

Figure 8 represents the performance of the present procedure

for different step sizes. Note that if one chooses the step size

that corresponds to more than 15 samples per period, viz.,

h _<0.2, a reasonable engineering accuracy can be maintained.

Although not reported herein, the problem was also solved by

the trapezoidal rule. For h _ 0.1, the computational overhead

with the trapezoidal rule was an order of magnitude higher

than by the present two-stage staggered explicit-implicit proce-

dure without an accuracy improvement. Our experience with
the example problem indicates that the present computational

procedure for handling large rotational and translational mo-

tions with constraints is robust and efficient. It is important to

note that the present procedure accurately traces not only the

angular motions but, more important, the constraint forces

and the four Euler parameters (although these are not pre-
sented here).

2,0

>r 0.0

-2.0 _-

0.0 20.0

Time

40,0

Fig. 8 Accuracy comparison on angular velocity _l for three dif-
ferent step sizes.

,I,,i. t _7 " d

Ii (1t S 111[111, / ,_'_

b ':' =]i'(:),, k '_ 1 _

/:--h

)_t g

F'i_. 9 I)onhlc pendulum with spatial joint,,.

568 PARK, CHIOU, AND DOWNER J. GUIDANCE

1.5

0.0

-1.5

Fig. 10a

1.5

n

I I A

-1.5 0.0 1.5

X

Trajectories of double pendulum on X-Z plane.

Y 0.0

-1.5

-1.5

Fig. 10b

l I I 1 I l I L_

0.0 1.5

X

Trajectories of double pendulum on X-Y plane.

B. Three-Dimensional Double Pendulum

The second problem with which we have tested the present

procedure is a spatially moving double pendulum as shown in
Fig. 9. The governing equations of motion become those of

two separate rigid bars, except that they are connected by two
spherical joints. From Fig. 9 we have the following quantities:

• s=d _- V2 toixC=0, i= 1,2

M = diag tin', J', m 2, d2]

l __ _

I V2_.t x 0 0 1B = I -*A_ Ix -I - V2] 2x

0 "

0

0

;o2w3(J 2 - J3)

o,f_o.,(Jt - J.,)

(42)

(43)

(44)

, i = 1, 2 (45)

[d, &]', @ = [2, y, _.1r O'= [&,, _2, &,it (46)#i=

X = [X_, X2, X_, M, Xs, Xd r (47)

In the preceding equations, V2z is the vectorial distance

from the center of the bar to the spherical joint constraints, m

and J are the three translational and rotatory-inertia matrices,

_: is the skew symmetric matrix formed by the three compo-
nents of z, x implies a vector cross multiplication, and the
superscript designates the ith bar.

The pendulum is originally positioned in a gravity field with

initial horizontal angular velocities (o_' = _21 = l). Figure l0

shows the spatial trajectories of the two mass centers as pro-

jected on the horizontal surface and on the vertical plane. It is

noted that the two trajectories form a similar pattern. The

constraint forces and angular velocities, although not reported
here, exhibit patterns that are analogous in their characteris-

tics for the two joints and two mass centers, respectively.

We have performed convergence studies by using different

step sizes h. Numerical evaluations indicate, as with the

rolling-ball problem, that when the step-size samples are more

than 20/period, the present procedure yields both good accu-

racy and stability.

C. Closed Four-Bar Linkage

The final problem is a simple closed four-bar linkage, com-
posed of four individual bars connected with five spherical

joints (see Fig. I I). The governing equations of motion for
this problem are identical with those of the previous section,

except that the gradient of the constraint equations B is given
by

R

B:

B: B:

B2 B/

B.'

(48)

where

[_,, _v,,xI (49)

,,.._,_._._4/ 5th joint, rrt t ---- rrt_ ---- trt a ---- rrt, = I

4th joint %t It =/, =/a=l, =1

_td 6___"--_3rd joint

- I "_ _* ""Y_ _

F_ = 2rid joint / L

x y
F_= 1

Fig. lla Initial configuration of the closed four-bar linkage.

t L
V

F'itl. l Ih Nt.tion anti Irajeclorie,_ of Ihe clo._ed four-bar linkal_e.

MAY-JUNE 1990 PROCEDURE FOR MULTIBODY DYNAMICS ANALYSIS 569

.v

-[

-l.S

0.0

1.5

Fig. 12a

0.0

w(_)

\\ W(I)

5.0 10.0

"rhne

Angular velocities of the closed four-bar linkage.

v

U

5.0

l.O

-3.0

Fig. 12b

)

0.0 5.0 10.0

Time

Constraint forces of the closed four-bar linkage.

The body-fixed coordinates and constraint conditions for

this problem have adopted the same procedure as in the pre-

ceding pendulum problem. To trigger large rotational mo-

tions, two vertical forces (F_ I) = F_ 2) = I) are applied at the
center of mass of the first and fourth bar (see Fig. lla). Figure
lib indicates the motion of each bar for 8 s run time. Note

that the trajectories of each joint can also be seen from thc
plot. Because of the symmetry of the geometry and the applied

forces, one should expect corresponding symmetries between

the angular velocities of the first bar compared with those of

the fourth bar, and so on (see Fig. 12a). This is also the case
with the constraint forces as manifested in Fig. 12b.

We investigated numerical solutions for different step sizes
h. The results show that when step size h is less than 0.075, the

procedure proposed here maintains stability with acceptable
accuracy.

VII. Discussion

In this paper, we have presented a computational procedure
for direct integration of the MBD equations with constraints.
Because of its step-advancing nature, the procedure is labeled
an explicit-implicit staggered algorithm explicit for solving the

CINT and implicit for Lagrange multipliers to incorporate
constraints (LINT). The present generalized coordinate solver

(CINT) carries out its task in a partitioned manner in which

the translational motions are integrated separately from those
of the rotational parameters.

Numerical experiments reported herein and additional ap-
plications investigated so far indicate that the present proce-
dure yields robust solutions if the step size gives more than 20
samples for the period of the apparent highest response fre-
quency of a given multibody system. 2_ Hence, the present
procedure appears to have accomplished the following.

Because of the modular implementation of the present

MBD solution procedure, the task of interfacing the present

MBD solution modules with additional capabilities such as

active controller, observer, and other analysis and design soft-
ware modules becomes relatively straightforward, Such soft-
ware architecture is in contrast to most existing programming

practice in which several analysis capabilities are embedded

into a single monolithic program.

For closed-loop multibody systems and/or problems with

complex topology, in which it is impractical and inadvisable to
eliminate the constraints, the present procedure facilitates a

straightforward construction of the governing equations of
motion with appropriate constraints. The generalized coordi-

nates and the Lagrange multipliers can then be solved in a

partitioned manner.

The update of angular orientations is based on the Euler
parameters by adopting the midpoint implicit formula. This

avoids potential computational complications, as the angular
orientation matrices remain singularity free.

Application of the present procedure to flexible multibody

systems is currently being carried out, and preliminary results
are quite encouraging. We hope to report in the near future on

results with flexible-body dynamics as well as on results with

large-scale multibody problems.
Finally, a preliminary stability analysis of the present proce-

dure, although not reported here, has been conducted. The

analysis results indicate that the procedure is stable provided

the step size satisfies

h _ 2/(_ + ,,,_+ ,,,_)_2 (50)

A separate article on the stability issue is presently under

preparation; we plan to publish it in the near future.

Acknowledgments

The work reported herein was supported by the NASA
Langley Research Center under Grant NAG-I-756. The au-
thors wish to thank Jerry Housner and Jeff Stroud for their

keen interest and encouragement during the course of the
present work. We also thank the reviewers for constructive

comments that have led to an improvement of this paper.

References

JArmstrong, W. W., "Recursive Solution to the Equations of Mo-
tion of an n-Link Manipulator," Proceedings of the 5th World Con-
gress, Theory of Machines, Mechanisms, Vol. 2, July 1979, lap.
13,13-1346.

2Baumgarte, J. W., "A New Method of Stabilization for Holo-

nomic Constraints," Journal of Applied Mechanics, Vol. 50, Dec.
1983, pp. 869-870.

JBaumgarte, J. W., "Stabilization of Constraints and Integrals of
Motion in Dynamical Systems," Computer Methods in Applied Me-
chanics Engineering, Vol. 1, 1972, pp. 1-16.

4Bodley, C. S., Devers, A. D., Park, A. C., and Frish, H. P., "A
Digital Computer Program for lhe Dynamic Interaction Simulation of
Controls and Structures (DISCOS)," NASA TP 1219, May 1978.

_Felippa, C. A., and Park, K.C., "Staggered Transient Analysis
Procedures for Coupled Mechanical Systems," Computer Methods in
Applied Mechanics and Engineering, Vol. 24, Oct. 1980, pp. 61-111.

6Gear, C. W., "Simultaneous Numerical Solution of Differential/

Algebraic Equations," IEEE Transactions Circuit Theory, CT-18,
1971, pp. 89-95.

7Haug, E. J. (ed.), Computer Aided Analysis and Optimization of
Mechanical System Dynamics, Springer-Verlag, Berlin, 1984.

aHenrici, P., Discrete Variable Methods in Ordinary Differential
Equations, New York, 1962, pp. 336-339.

9Hollerbach, J. M., "A Recursive Lagrangian Formulation of Ma-
nipulator Dynamics and a Comparative Study of Dynamics Formula-
lion Complexity, IEEE Transactions on Systems, Man, and Cybernet-
ics, SMC-10, 1980, pp. 730-736.

I°Huston, R. L., Passercllo, C. Winget, J. M., and Sears, J., "On
the Dynamics of a Weighted Bowling Ball," Journal of Applied
Mechanics, Vol. 46, Dec. 1979, pp. 937-943.

lIHuston, R. L., Lecture Notes on Dynamics, Preprint, Univ. of
Cincinnatti, Cincinnati, OH, 1988.

570 PARK, CHIOU, AND DOWNER J. GUIDANCE

12Kane, T., and Levinson, D., "Formulation of Equations of Mo-

tion for Complex Spacecraft," Journal of Guidance and Control,

Vol. 3, No. 2, 1980, pp. 99-112.
13Nikravesh, P. E., "Some Methods for Dynamic Analysis of Con-

strained Mechanical Systems: A Survey," Computer Aided Analysis

and Optimization of Mechanical System Dynamics, NATO ASI se-
ries, F9, edited by E.J. Haug, Springer-Verlag, Berlin, 1984, pp.
351-367.

t4Orin, D. E., McGhee, R. B., Vukobratovic, M., and Hartoch, G.,

"Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing

Newton-Euler Methods," Mathematics of Bioscience, Vol. 43, 1979,

pp. 106-130.
15Orlandea, N., Chase, M. A., and Calahan, D. A., "A Sparsity-

oriented Approach to the Dynamic Analysis and Design of Mechani-

cal System s-- Part 1 and 1I," Transactions of the American Society of

Mechanical Engineers for Industry, Ser. B, Vol. 99, 1977, pp.
773-784.

16Park, K. C., and Chiou, J. C., "Evaluation of Constraint Stabi-

lization Procedures for Multibody Dynamical Systems," Proceedings

of the AIAA 28th Structures, Structural Dynamics and Materials

Conference, Part 2A, AIAA, New York, 1987, pp. 769-733.

tTPark, K. C., and Chiou, J. C., "Stabilization of Computational

Procedures for Constrained Dynamical Systems," Journal of Guid-

ance, Control and Dynamics, Vol. 1 I, No. 4, 1988, pp. 365-370.
tSPark, K. C., "Partitioned Analysis Procedures for Coupled-Field

Problems: Stability Analysis," Journal of Applied Mechanics, Vol.

47, June 1980, pp. 370-378.
IqPark, K. C., and Felippa, C. A., "Partitioned Analysis of Cou-

pied Systems," Computational Methods for Transient Analysis, ed-

ited by T. Belytschko and T. J. R. Hughes, Elsevier, 1983, pp.
157-219.

2°Park, K. C., Felippa, C. A., and DeRuntz, J. A., "Stabilization

of Staggered Solution Procedures for Fluid-Structure Interaction
Analysis," Computational Methods for Fluid.Structure Interaction

Problems, edited by T. Belytschko, and T. L. Geers, American Soci-

ety of Mechanical Engineers, AMD Vol. 26, New York, 1977, pp.

95-124.

21Park, K. C., and Underwood, P. G., "A Variable-Step Central

Difference Method for Structural Dynamics Analysis--Part I. Theo-

retical Aspects," Computer Methods in Applied Mechanics and Engi-

neering, Vol. 22, Sept. 1980, pp. 241-258.

2lPetzold, L., "Differential/Algebraic Equations Are Not ODEs"

SIAM Journal of Scientific Statistical Computing, Vol. 3, 1982, pp.
367-384.

Z3Schwertassek, R., and Roberson, R. E., "A State-Space Dynami-

cal Representation for Multibody Mechanical Systems, Part I1," Acta

Mechanica, Vol. 51, 1984, pp. 15-29.
Z(Walton, W. C., and Sleeves, E. C., "A New Matrix Theorem and

its Application for Establishing Independent Coordinates for Com-
plex Dynamical Systems with Constraints," NASA TR-R326, 1969.

_Wehage, R. A., and Haug, E. J., "Generalized Coordinate Parti-
tioning for Dimension Reduction in Analysis of Constrained Dynamic

Systems," ASME Journal of Mechanical Design, Vol. 104, Jan. 1982,

pp. 247-255.
26Wittenburg, J., Dynamics of Systems of Rigid Bodies, B.G.

Teubner, Stuttgart, 1977.

TRANSIENT FINITE ELEMENT COMPUTATIONS

ON 65536 PI/.OCESSORS: THE CONNECTION MACIIINE

Charbel Farhat, N. Sobh and K. C. Park

Department of Aerospace Engineering Sciences

and Center for Space Structures and Controls

University of Colorado at Boulder

Boulder, CO 80309-0429

Abstract. This paper reports on our experience in solving large-scale finite ele-

ment transient problems on the Connection Machine. We begin with an overview

of this massively parallel processor and emphasize the features which are most

relevant to finite element computations. These include virtual processors, par-

allel disk I/O and parallel scientific visualization capabilities. We introduce a

distributed data structure and discuss a strategy for mapping thousands of pro-

cessors onto a discretized structure. The combination of the parallel data struc-

ture with the virtual processor mapping algorithm is shown to play a pivotal role

in efficiently achieving massively parallel explicit computations on irregular and

hybrid two- and three-dimensional finite element meshes. The finite element ker-

nels written in C* have run with success to solve several examples of linear and

nonlinear dynamic simulations of large problem sizes. From these example runs,

we have been able to assess in detail their performance on the Connection Ma-

chine. We show that mesh irregularities induce an MIMD (Multiple Instruction

Multiple Data) style of programming which impacts negatively the performance

of this SIMD (Single Instruction Multiple Data) machine. Finally, we address

some important theoretical and implementational issues that will materially ad-

vance the application ranges of finite element computations on this highly parallel

processor.

I. INTRODUCTION

Parallel computers are having a profound impact on computational mechanics.

This is reflected by the continuously increasing number of publications on finite

elements and parallel processing. Not only have some computational strategies

been re-designed for implementation on commercially available multiprocessors,

but also some innovative algorithms have been spurred by the advent of these new

machines. However, many of the reported parallel finite element simulations have

been on systems with a few processors. Examples of these systems are]ntel's iPSC

with 32 processors (reported by Farhat and Wilson [1]), JPL/Caltech's hypercube

with 32 processors (Lyzenga, Raefsky and IIager [2], and Nour-Omid and Park

[33]), Alliant's FX8 model with 8 processors (Belytschko and Gilbersten [3], and

Farhat and Crivelli [4]), and CRAY's systems with up to 4 processors (Benten,

Farhat and Jordan [5]). (For more complete lists of references on this topic see

White and Abel [6] and Noor [7].) While great speed-ups were measured on these

coarse to medium grain machines, Farhat [8] has shown that traditional vector

supercomputers could not be outperformed in finite element simulations (except

of course on systems which connect more than one vector superprocessor, such

as the CRAY X-MP and CRA¥-2 systems, each of which has 4).

Recently, massively parallel machines have demonstrated their potential to

be the fastest supercomputers, a trend that may accelerate in the future. While

solving the shallow water equations, McBryan has reported that the Connection

Machine (CM.2 in the sequel) (65536 processors) was three times faster than the

four-processor CI_AY X-MP [9]. Gustafson, Montry and Benner have developed

highly parallel solutions for baffled surface wave equations, unstable fluid flow

and beam strain analysis, and have reported performances on NCUBE's 1024-

processor hypercube which are close to those of vector supercomputers [10].

The objective of the present study has been: first, to evaluate the multipro-

cessing features of the CM_2 that are relevant to finite element computations,

second, to develop a suitable finite element data structure which exploits the

system architecture, third, to implement a decomposition�mapping procedure

that matches as far as possible the layout of the processors to the finite element

meshes, and fourth, to assess those implications of finite element analysis on the

CM.2 that should be considered in the design of future massively parallel pro-

cessors. Hence, we focus primarily on implementational issues that are critical

for the full exploration of the multiprocessing capabilities of the CM_2, and only

secondarily on solution algorithms, as far as they impact the present study on

implementational issues.

The finite element equations of motion for structural systems can be ex-

pressed as:

' Md -_ F_"(cl,d) --- F _ (1)

where M denotes the positive dennite lumped mass matrix, F i'_ and F _'x denote

the internal and external force vectors, and d, cl and d denote respectively the

2

acceleration, velocity and displacement vectors. In the linear case, the internal

force vector becomes:

F _'* = Dcl +Kd (2)

where D and K are the damping and stiffness matrices respectively, which are

positive semi definite. In this work, an eventual damping is assumed to be pro-

portional to the mass and stiffness.

The algorithmic nature of a candidate solution method for the structural

dynamics equation (1) can significantly influence the software requirements, data

communications and arithmetic efficiency. As our main focus is on hnplementa-

tional issues rather than algorithmic ones, we have decided on a simple explicit

time integration procedure. Hence, we choose to integrate equation (l) with the

fixed step explicit central difference algorithm because (a) it is inherently parallel,

and (b) it has the largest undamped stability limit among second-order accurate

explicit linear multistep algorithms, as has been demonstrated by Krieg [111 and

Park [12]. In our context, it is expressed as:

_1,,+,/2 = _1,,-,/2 + hM_,(F_=(t,,) _ F'" (el'*, dn))

= h_l "+1/2d "+1 d" +

(3)

where h is the fixed time step and the superscript n indicates the value at the

discrete time t'L

The remainder of this paper deals with the massively parallel solution of (1)

using (3), and is organized as follows. In Section II, we give an overview of the

CM_2 hardware configuration and empasize those features which are pertinent

to finite element computations. In particular, we address issues that are related

to the processor memory size, to the SIMD architecture, and to the fast inter-

processor communication package, the NEWS grid. In Section III, we discuss

the floating point arithmetic performance of the CM_2 and highlight its current

dependence on the selected language compiler. Algebraic manipulations coded

in *Lisp are shown to be three times as fast as when written in C*. A general

purpose finite element distributed data structure is presented in Section IV. De-

signed originally to handle massively parallel finite element explicit computations

on irregular and hybrid meshes, this parallel data structure is also very efficient

for parallel I/O manipulations and parallel graphic animation. Since the often-

encountered mesh irregularities inhibit the use of the NEWS grid communication

package, we discuss in Section V an alternative decomposition/mapping strategy.

The decomposition technique is designed to minimize both the amount of com-

munication between different chips and the amount of wire contention within a

chip. The mapping algorithm attempts to reduce the distance that information

must travel. Section VI summarizes the overall organization of the massively

parallel transient simulation. In Section VII, our parallel data structure and pro-

cessor mapping are applied to (3) for the solution of various large-scale transient

problems. Measured performances are analyzed in detail. Mesh irregularities

are shown to be the source of several factors which considerably slow down the

machine. Finally, in Section VIII, we address some important theoretical and im-

plementational issues that will materially advance the application ranges of finite

element computations on the CM_2. In particular, we note that time integration

numerical algorithms such as explicit finite differences and equation solvers such

as the preconditioned conjugate gradient are implemented using the same paral-

lel data structure and mapping algorithm which are presented in this paper. We

compare the substructuring technique and the virtual processor approach, and

comment on the implications of implicit algorithms for the effective use of the

CM_2.

II. THE CONNECTION MACHINE HARDWARE ARCHITECTURE

Here we present an overview of the CM_2 system organization and discuss issues

that are pertinent to massively parallel finite element computations. See tIillis

[13] for an indepth discussion on the rationale behind the CM_I (a previous model

of the Connection Machine), the Technical Summary of Thinking Machines Cor-

poration [14] for further architectural information, and McBryan [9] for initial

studies of scientific computations on the CM_I. For the sake of clarity, we sum-

marize the architectural features before discussing their impact on finite element

simulations.

H.1. System Organization

lI.l.1 CM__: The Parallel Processing Unit

The CM_2 is a cube 1.5 meters on a side, made of up to eight subcubes (fig.

1). Each subcube contains 512 chips and every chip includes 16 bit serial pro-

cessors which are connected by a switch. Each individual processor has 64 Kbits

(8 Kbytes) of bit-addressable local memory and an arithmetic-logic unit (ALU)

that can operate on variable-length operands. Every two chips may share an op-

tional Weitek floating point accelerator chip. A fully configured CM_2 thus has

4096 (212) chips, 2048 floating point accelerator chips, 65536 processors, and 512

Mbytes of memory. The chips are arranged in a 12 dimensional hypercube. A

chip i is directly connected to 12 other chips j, with the binary representation of

i and j differing only by 1 bit.

FIG. I. The CM_2

5

The CM.:?.system provides two forms of communication between the processors:

• a general mechanism known as the router which allows any processor to

communicate with any other processor. Each CM_2 chip contains one router

node i which serves the 16 processors on the chip, numbered 16i through

16i + 15. The router nodes on all the chips are wired together in a 12-

dimensional boolean cube and together form the complete router network

(fig. 2). For example, suppose that processor 117 (processor 5 on router

node 7), has a message to send to processor 361 (processor 9 on router node

22). Since 22 -" 7-F 24 -2 °, router 7 forwards the message to router 6

(6 - 7- 2 °) which forwards it to router 22 (6-b 24), which delivers the

message to processor 361.

• a more structured and somewhat faster communication mechanism called

the NEWS grid. Each processor is wired to its four nearest neighbors in a

two-dimensional rectangular grid (fig. 3). Communication on the NEWS

grid is extremely fast and recommended whenever it is possible.

An important practical feature of the CM_2 is the support for virtual pro-

cessors. When tile CM_2 is initialized for a run, the number of virtual processors

(vp in the sequel) may be specified. If it exceeds the number of available physical

processors, then the local memory of each processor is split up into a number of

regions equal to the ratio between the number of vps and the number of physical

processors. Automatically, for every Paris (PARallel Instruction Set) instxatction,

the processors are time-sliced among the regions. If a physical processor is sim-

ulating N vps, each Paris instruction is decoded by the sequencer (as explained

below) only once for N executions. This results in an enhanced user performance.

Also, the use of a vp > 1 allows the pipelining of floating point operations in the

Weitek chips, which provides an additional enhancement to machine performance.

The CM_2 is an SIMD machine. All processors must execute identical in-

structions or some processors may choose to ignore any instruction. Consequently,

an instruction which involves a nested binary branch can see its exection time in-

creased by a factor of two. The SIMD nature of the CM_2 has some disadvantages

in finite element computations, as will be shown.

6

FIG. 2. The Router Network

w<

N

/\

/

S

£

FIG. 3. The NEWS Grid

7

II.1.2 The Front End Computer

The parallel processing unit described above is designed to operate under the

programmed control of a front-end computer (FE in the sequel) which may be

either a Symbolics 3600 Lisp Machine or a DEC VAX 8000 series computer. Tile

FE provides the program development and execution environment. It transmits

instructions and associated data to the CM_2. Instructions from Paris are not

handled directly by the CM_2. After they are issued from the FE, they are

processed by a sequencer which broadcasts them to the CM_2 in the form of low

level operations.

ILl.3 The Data Vault System

I/O has traditionally been the Achilles heel of computers and supercomputers.

Moreover, it is very well known that I/O manipulations can easily dominate the

execution time of a finite element code. The CM_2 I/O system appears to offer

hope for the solution of this problem.

The Data Vault is the CM.2 mass storage system. Each Data Vault unit is

associated with one eighth of a fully configured CM_2. It stores its data in an

array of 30 individual disk drives. With this disk farming system, the concept of

performing parallel I[O is carried through: instead of regarding a file as a serial

stream of bits, the CM.2 file system regards it as many streams of bits, which are

read or written in parallel, one stream per processor. When eight Data Vaults

operate in parallel, they offer a combined data transfer rate of 320 mbytes per

second and hold up to 80 gigabytes of data.

1[.1.4 The Graphic Display System

The CM_2 graphic display system known as the Frame Buffer also incorporates

the concept of parallelism. It allows the user to visualize on a color monitor

screen the data in the processors. The display can be updated as computations are

performed. We have found this tool very useful, not only for real-time animations,

but also for debugging purposes.

The system organization of a CM_2 is summarized in figure 4.

ConnectionMachln:_.\///
Parallel Processing Unit IIII

Connection Machine

processors

Sequencer

0

. Seq_enccr_

Connection Machlnc /

processors /

I I Connection Machine

/I
Seq_ence, "-

i
i

-_eqnencer2 _

Connection Machine

_rocessors

I I r f

Connection Machine IlO System

/
Fzont end 0 |

k(DEC VAX Or

Symbolics)

Bus interface

l Front end 1

(DEC VAX or

Symbolics)

Bus interface

l Front end 2

(DEC VAX or

Symbolics)

Bl_s interface

Front end 3

(DEC VAX or

Symbolics)

B.s interface

Network

FIG. 4. System Organization of a CM_2

9

II.2. Impact on Finite Element Computations

It is well-known that the solution algorithm (3) can be implemented using only

element-level computations. Hence, if each vp of the CM.2 is mapped onto one

finite element, equation (1) can be efficiently integrated in parallel. The rationale

behind this processor-to-element assignment will be analyzed in Sections IV and

VIII. Here, we discuss the direct impact of the CM_2 hardware on such a decision.

The Local Memory and Element Level Computations

Consider the 9-node curved shell element shown in figure 5.

FIG:. 5. A 9-Node Shell Element

Three displacements and two rotations are attributed to each node, which

amounts to a total of 45 degrees of freedom per element. Consequently, the

symmetric part of the elemental stiffness matrix, K (_), contains 45"(45 + 1)/2 ---

1035 words. If double precision is used, the storage of K (e) amounts to 1035"64

- 66240 bits, which exceeds the 65536 bits that are available on a single CM_2

processor. On the other hand, if single precision is used, the storage of K (e)

requires 33120 bits, so that 32416 bits are left for the storage of the vectors d {_),

cl {e}, the elemental lumped mass vector M (c}, and the forces F cx(el and F I'(_).

However, even in the latter case, only a vp ratio of 1 can be used. This limits the

size of the finite element mesh to the maximum number of processors available on

10

the CM..2 at hand. Also, it inhibits further performance enhancement as outlined

in Section II.1.

Fortunately, in our case the above storage requirements can be considerably

decreased. The nature of explicit computations is such that Fi_(d '*) can be

directly computed from the displacements at t" and the stress-strain constitutive

equation. As a result, the solution process defined in (3) involves only vector

quantities which do not require a large amount of storage, so that vp ratios

between 1 and 4 are possible. However, the reader should keep in mind that the

current local memory size of a CM_2 processor may penalize sophisticated high

order elements and implicit finite element algorithms in general. This restriction

is not encountered on other commercially available hypercubes such as iPSC,

NCUBE and AMETEK among others.

The NEWS Grid and Finite Element Patches

Consider the regular finite element mesh shown in figure 6. Except on the bound-

aries, each element is connected in the same pattern to exactly eight other ele-

ments. Consequently, during the explicit time integration algorithm, each pro-

ccssor communicates with its neighbors in the same manner. Interprocessor com-

munication can be performed with a two step NEWS mechanism (fig. 6).

N
zt_

FIG. 6. tt Two Step NEWS Mechanism on a Regular Mesh

IIowever, the beauty of the finite element method resides in the fact that it solves

models with irregular meshes. Typically, a finite element mesh consists of several

11

patches which are connected together using irregular transition regions (fig. 7).

For these often encountered cases, the NEWS grid becomes impractical. Rather,

the rouler has to be utilized. In Section IV, we describe how a distributed data

structure can guide the router during this process.

\

FIG. 7. Transition Zones

SIMD Hardware vs. MIMD Finite Element Computations

Typical finite element meshes comprise more than one type of element. Con-

sider the case where a discretized region is modeled with shell elements that are

stiffened with beam elements. Clearly, the instructions associated with the shell

elements differ from those associated with the beam elements. Consequently, the

vps which are assigned to shell elements and the vps which are assigned to beam

elements cannot execute their segments of code in parallel; for example, the beam

processors have to execute first, then the shell processors. If Tb and To denote
the execution times associated with the instructions for a beam and a shell el-

ement respectively, the total elapsed parallel time for a single instruction over

the set (beams + shells) on an SIMD multiprocessor is Tb q- To. On an MIMD

multiprocessor, this elapsed parallel time is max(Tz,+To). Similar situations arise

when during the loading some elements turn to be materially nonlinear and some

remain linear. In this case, one should always compute the linear component

of the response (the elastic stiffness for example) before attempting to test the

yielding criterion. However, in spite of these disadvantages SIMD programs can

12

still be attractive, becausethey tend to be easier to debug and rarely suffer from

the synchronization errors which are typical of MIMD codes.

Parallel [//0 in Finite Element Computations

At each time step, the computed displacements, velocities, accelerations as well

as strains and stresses need to be stored on disks. This represents a significant

amount of I/0 traffic. It has been our experience that the CM_2 Data Vault

system is efficient at reducing the corresponding elapsed time (see Section VII).

Real-time Graphic Animations

The massively parallel real-time animation of the mesh deformations is a direct

consequence of the availability of the Frame Buffer and the decision of assigning

a vp to a finite element. At each time step, after the node displacements are

found all of the vps concurrently draw the outline of their assigned elements on

the graphic screen. The result is a real-time finite element animation.

III. BENCHMARKING TItE CM_2

At the time of writing this paper, the CM_2 supports three high level lan-

guages: C* (pronounced see-star), *Lisp (pronounced star-lisp), and CM-Lisp

(pronounced see-m-lisp). The first two are extensions of C and Lisp respectively.

Paris is somewhat the assembly language of this parallel processor.

In this section we comment on the results of a set of timing experiments

that were carried out on the CM_2 of the Center for Applied Parallel Processing

(CAPP), at the University of Colorado, Boulder. Since only one eighth of a cube

was available on this system, all results were obtained using 8192 processors.

McBryan [9] has shown that all results demonstrated on subcubes of the CM_2

scale essentially linearly to the 65536 processor system. Consequently, throughout

this paper, megaflop rates are reported after they are linearly scaled to the full

configuration. These experiments provided us with:

• a reference performance for the evaluation of our approach to massively

parallel finite element explicit computations.

• the influence of the vp ratio and that of the high level language compiler

on attainable performances. At this point, we remind the reader that, if

an application requires an amount of local memory (per processor) m,, the

highest vp ratio possible is equal to the closest power of two to the ratio

13

between the maximum amount of local memory available on the machine

(currently 8 Kbytes), and ma.

Table 1 reports tile megaflop rates for some scientific computations on the

CM_2 at different vp ratios. All statements were written in C*. Each statement is

performed by each processor on its variables. All variables were declared parallel

(local) and float (simple precision), except variable dp which was declared mono

(serial) float, and variable i which was declared mono integer. Timings were

measured using the emtimer routines. Each '+' operation or '*' operation was

counted as one flop.

TABLE 1. Megaflop Rates Using C*

Parallel Processor = CM_2 - Language = C* - Variable = float

Statement

y[il += a*x[il

y = y + Ot*x

z = x*y

dp += x*y

Vp Ratio

1 2 4 8 16

740 808 848 850 880

569 654 699 728 743

409 485 535 569 579

202 359 583 839 1075

32

761

585

1240

64

778

600

1348

128

791

610

1400

256

800

623

1500

Based on these results, we have observed the following:

1. Floating point performance is enhanced at higher vp ratios. This is due to

the fact that for vp ratios greater than one, computations in the Weitek chip

are pipelined.

2. vector saxpys are not slower than scalar ones. This is because memory

addresses are computed on the front end. The additional speed noticed for

14

,

vector saxpys is thought to be due to the overlapping of addressing and

floating point computations.

C* appears to handle poly (parallel) assignments poorly. This can be seen by

comparing the performances of the dot product and the vector multiply. Each

of these two vector operations requires one floating point per processor. In

addition, the dot product requires a reduction (accumulation phase) which

necessitates communication. However, at high vp ratios, the dot product

is twice as fast as the vector multiply! (At low vp ratios, the amount of

floating point computations is not large enough to amortize the price of

communication.) Since the dot product does not store any value in the

processor memory and the vector multiply stores the result of x * y back into

z, this leads us to believe that the C* compiler generates a code which is

very inefficient at handling assignments. This also explains why the saxpy

exhibits a higher megaflop rate than the vector multiply: it has twice as

many floating point computations for one assignment.

The same computations were repeated using *Lisp. The comparison of both

sets of timings for the maximum vp demonstrates a formidable superiority of the

*Lisp compiler (see fig. 8). This is partly due to the fact that it has been used

longer on the CM-2 than C*. In spite of the proven superior efficiency of *Lisp

over C*, we have chosen to implement our finite element code using C* because

of our familiarity with C.

38OO

, :)_OQ

3_

20_

2_

2_40
2:)00

219Q

2_4

1604

ISOQ

1200
1140

IOQO

9QQ

_0

4QO

3_

2_

0

FIG.

_ECo_LOPS

C"

8. A Comparison of *Lisp and C* Performances

15

IV. FINITE ELEMENT PARALLEL DATA STRUCTURES

Consider again the explicit central difference algorithm:

n'4"1/2 -- dn--l/2 1- + hM- (F'®Ct ") - F'"Cdn, d"))

= hd "+1/2d a+t d" +

(4)

The global mass matrix M is assembled once. At each time step t", the compu-

tations are dominated by the evaluation of the internal forces:

F _" = [LS[Ta dfl
(e)

where a is the stress vector, S are the shape flmctions, L is a partial derivative

operator and fl(_) is the area of the • - th finite element. Clearly, the parallel

computation of F in is best done element-by-element. Thus, equation C!) can be

efficiently integrated in parallel if the CM_2 virtual processors are mapped onto

the elements of the mesh. This is a departure from the grid point massively par-

allel computations advocated by Thinking Machines Corporation for the CM_2

[14]. First, all processors compute concurrently the local forces F_(_)(t") and

F_n{_)(_l'*,d"). Next, these contributions are accumulated through communica-

tions among processors that are mapped onto neighboring elements.

In this section, we describe the finite element data structures which we have

selected to drive the massively parallel computations on the CM_2. These are

element oriented, while similar data structures proposed for other hypercubes

are subdomain oriented (see Farhat, Wilson and Powell [15] and Fox et al. [16]).

In Section VIII, we give further comments on this difference. We group these

data structures into two sets.

The first set of data structures deals with element-level parallel computa-

tions. To be able to perform locally its assigned element-level computations

--that is, to perform these computations without interacting with the front-end

machine---each processor must store in its own memory its element type (truss,

beam, shell, ..., number of Gauss points, ...), its element material properties

(density, parameters and coefficients for constitutive equations, damping charac-

teristics, thickness, ...), its nodal geometry (nodal coordinates, number of nodes

per element), and its boundary conditions (fixed/free degrees of freedom at each

16

node, prescribed forces at each node). This information is compacted in one-

dimensional arrays. In addition, each processor must also store in its memory

a set of scalars corresponding to computational parameters such a.s the fixed

time step h, and a scalar or one-dimensional buffer for the temporary storage of

messages to be passed to neighboring processors.

The second set of data structures provides the router with the mechanism

for parallel interprocessor communication. The inability of the NEWS grid to

handle irregular communication patterns has been addressed in Section II.2. Let p

denote a virtual processor and e I, its assigned finite element. In order to exchange

Fin(_)(_ln) and F _x(_) (tn), virtual processor p must be able to identify at run time:

• the set of processors mapped onto elements ajacent to e v

• the nodes that e v shares with these elements

• at each shared node, the degrees of freedom which need to be assembled.

This particular information is vital for meshes with different types of ele-

ments. It guarantees that, for example, a moment is not accumulated with

a force, or that a force in the x direction is not accumulated with a force in

the y direction.

If the above information is gathered in a global form on the front-end ma-

chine, most of the execution time which elapses during the accumubttion phase

would be due to message-passing between the CM_2 processors and the front-end

computer. On the other hand, if this information is decentralized--that is, if the

memory of processor p is loaded only with the subset of that information which

is relevant to the connectivity of epDthe accumulation phase can be performed

without any message-passing between the CM_2 and the front-end computer.

Consequently, prior to any computation, the memory of processor p is loaded

with the following one-dimensional arrays:

Proe_att_to_node

Pointer

Location

For each node connected to ev, it contains the identitication of

the processors that are mapped onto elements which are also
connected to this node. These are stored in a stacked fashion.

This is a pointer array. It stores in position i, the location in

Proc_att_to_node of the list of vps that are attached to the node

in the i- th local position.

For each entry in Proc_att_to_node, this array specifies the local

position of the shared node in the processor that is mapped

onto an element adjacent to ep

The above arrays are set up by the dedicated finite element mesh analyzer

which was presented by Farhat, Wilson and Powell 115]. They require about

17

80 integer words per processor. Clearly, this is a very small overhead. The

mechanism of these arrays is depicted in figure 9 for element 1. The mesh patch

is composed of shell and beam elements.

4

3

Element 1

Proc_att_to_node

Pointer

Location

[2,3,3,2]

[1,2,2,3,5]

11,2,1,21

FIG. 9. A Distributed Data Structure

for Interprocessor Communication

18

There is however one penalty associated with assigning one element to each

vp. The nodes which are common to several elements are duplicated in their

corresponding processors. As a result, about 11°_ of the total memory available

on the CM_2 is wasted. This is a small price for the highly parallel computations

that are achieved. Given the low cost of memory nowadays, this seems a worth-

while trade. Moreover, this assignment allows I/O manipulations and graphic

post-processing to be trivially parallelized. At each time step, after the nodal

displacements are found, all of the processors draw concurrently the outline of

their assigned elements on the frame buffer and send back the results to the front

end in parallel.

V. THE DECOMPOSITION/MAPPING STRATEGY

Since the mesh irregularities inhibit the exploitation of the NEWS grfd, we rely on

the data structures of Section IV to guide the router during interprocessor com-

munication. However, there is still one additional problem to resolve. Efficiency

in massively parallel computations requires the minimization of both tile dis-

tance that information must travel and, more importantly, the "hammering" on

the router. In the case of finite element computations, this implies that adjaccnt

elements must be assigned, as much as possible, to directly connected processors,

and contention for the wire connecting neighboring chips must be reduced. This

defines the mapping problem- that is, it defines which hardware processor is to

be mapped onto which finite element of a given mesh.

Farhat [19] developed a heuristic algorithm for mapping massively parallel

processors onto finite element graphs and presented some analytical results for

corresponding efficiency improvement. Basically, the algorithm searches itera-

tively for a better mapping candidate through a two-step procedure for the mini-

mization of the communication costs associated with a specific parallel processor

topology. Because it seeks a very fast solution for a machine with thousands of

processors, this algorithm does not guarantee "the" optimal mapping. However,

it has produced very encouraging results on a variety of non-uniform two and

three-dimensional meshes.

In this work, we adapt the mapping algorithm of [19] to our target parallel

processor, the CM_2. The 65536 processors of this machine are packaged into

4096 16-processor chips, each having its own router node. The 4096 router nodes

are arranged in a hypercube of dimension 12. To cope with this topology, we

proceed in two steps. First, we decompose the given mesh into 4096 submeshes,

19

each containing 16 connected finite elements. Next, we apply the mapper given

in [19] to identify which hardware chip is to be mapped onto which submesh.

Finally, within each submesh, the elements are numbered randomly between the

chip number and the chip number + 15.

Given a finite element mesh, there are several ways to decompose it into

16-ehment submeshes (see for example Farhat [17] and Malone [18]). Here, each

submesh is to be assigned to one chip of the CM_2. In figures 10, 11 and 12, we

show two different decompositions for a discretized square domain, DL _md D2.

FIG. 10. Domain to be Decomposed

2O

|
r i i I w ! _ • • •

w w ! w w w _ • • •

i w i I w 1 °• • •

i _ i w _ w q • ' (

i "i i ¶r I w • • • •

I''7

• _ -q 11 •

]

• • --_ , • • , •

• • • • • • ',d

_ m

I

FIG. 11. Decomposition D1 - Bandw]th Minimization

............ L A _

....... °

FIG. 12. Decomposition D2 - Interface Minimization

21

Both decompositions yield 16 submeshes, each with 16 adjacent elements.

Decomposition Di was designed to minimize the communication bandwidth -

that is, the maximum number of different chips with which any chip need to

communicate. It can be seen (fig. 13) that for Di the bandwidth equals 2, while

for D2 it equals 8.
I | 4 S $ T I | 10 I1 II IS 14 I$ II

%I

2 X

$

4

$

|

?

I

|

I*

II

12

IS

14

IS

%

%

%

X

|

X

X

X X

X

x

X

x

X

X

X

X

X

X

%

X

X

X %

x

FIG. 13-a. Interchip Communication Pattern for D1

I 0 IO |l tSr I t 14 11 If! _ | 41 S $ T

l X X X

2 X X X X X

S X X % %]_

4 X X X

I;][% If X I

$ X % X X % • % X

I % X X X X X X X

8 X X X X X

X X X x x

IO x x x X x x x x

lI X £ X Ir X X x

11 Ir X X %

IS X % l

14 X X X % %

IS I X X %

IS X X I

FIG. 13=b. Interchip Communication Pattern for D2

22

It should be remarked that, if the substructuring approach [15, 16] had been

chosen u that is assigning a subdomain to a physical processor, DI would have

been more efficient than D2. For this decomposition, each chip would buffer the

contributions of its interface nodes and send only two messages, one to the chip

at its left and another to the chip at its right. The decomposition D2 requires the

same chip to send up to 8 buffered messages. These messages would eventually

be shorter, but would still render D2 more expensive because of message start-

up costs. However, we have opted for a virtual processor approach -- that is

assigning one element to a virtual processor, for reasons that are given in Section

VIII. For this case, processors exchange information one node at a time, so that

the number of interface nodes associated with a decomposition is more important

than its bandwidth. The reader can confirm that decomposition DL delivers 255

interface nodes, while D2 delivers only 93. Indeed, there is another equally, if not

more important, reason why D2 is better for the CM_2 than DL. In the case of

D1, all of the 16 processors of any chip communicate simultaneously with a set

o[processors which are on the same neighboring chip (fig. 14). This generates a

significant amount of contention for the single wire that connects these two chips.

In the case of D2 however, one can observe (fig. 15) that:

• for each chip, only 12 out of the 16 processors communicate with processors

onto another chip

• only 3 processors out of these 12 communicate simultaneously with the

same neighboring chip, so that much less contention occurs for the wire

connecting the two chips. We recall that each chip is connected with up to

12 other ones using 12 different wires which can operate in parallel.

"___2'_',

w.. '2_,

FIG. 14. Wire Contention Induced by Decomposition D1

23

B 3011 4k-

r.
- i -- }WII_ I I

- i

FIG. 15. Wire Traffic for Decomposition D2

The decomposition DI was obtained using a general purpose finite element

decomposer presented by the first author in reference [17]. We advocate its use in

conjunction with the mapper given in reference [19] for massively parallel compu-

tations on the CM-2. The efficiency improvement potential of this preprocessing

phase is demonstrated with the following finite element wave propagation prob-

lem. Figure 16 shows the discretization of a tapered cantilever beam. The beam

is modcled with 4-node isoparametric elements and linearly elastic plane stress

constitutive equations. It is fixed at one end and subjected at the tip of the other

to an impact point loading. The wave propagation nature of the problem dictates

the meshing technique to create elements which are, as far as possible, of equal

size. Since the beam is tapered, transition zones with irregular elements had to

be introduced. Other mesh irregularities are due to the presence of a region with

a hole. The complete mesh contains 8192 elements, which corresponds to an 8K

CM_2. The use of a naive mapping (element i into processor i - 1) would have

resulted in a maximum routing distance between adjacent elements equal to 9.

Our decomposer/mapper reduces this distance to 5. If EFF denotes the efficiency

(speed-up per processor) of the parallel computations using a naive mapping, and

24

f is the factor by which the decomposer/mapper reduces the maximum routing

distance between adjacent elements, the theoretical improved efficiency (Farhat,

[19]) is given by:

1

EFF" = (1-_)+_ (5)

For this problem, we have measured an efficiency EFF = 40% on an 8K CM_2.

Since f = 9/5, the predicted improved efficiency is EFF* = 54%. A second run

of the problem using the decomposer/mapper has revealed a measured improved

efficiency EFF* = 60%. The discrepancy between the predicted and measured

improved efficiencies is due to the fact that (5) does not account for the wire

contention problem.

FIG. 16. Discretization and Decomposition of a Tapered Beam

25

VI. FLOWCHART OF THE MASSIVELY PARALLEL TRANSIENT

SIMULATION

The overall organization of the solution on the CM_2 of a transient dynamic

problem using the explicit central difference algorithm is depicted in figure 17.

It consists of four phases, namely: mesh preprocessing, data loading, number

crunching, and data unloading.

Read Input File (Front End)

Decompose Mesh and Form Parallel Data Structure (Front End)

Load Parallel Data Structure (Front End - CM_2)

Compute Lumped Mass Matriz (CM_2)

Compute Critical Time Step (CM_2)

Loop on Time Steps (Front End)

{
Compute Internal and Ezternal Local Forces (CM_2)

Assemble Global Forces (Interprocessor Communication)

Compute Velocities, Displacements, Strains and Stresses (CM_2)

Visualize Results (CM_2 - Frame Buffer)

Archive Results (CM_2 - Data Vault)

FIG. 17. Solution of a Transient Problem on the CM_2

26

A conservative stable time step for the central difference algorithm is given

by

2

h _< (6)

where .._(_)_ is the maximum element frequency of the undamped dynamic prob-

lem. Belytschko has pointed out that it is in fact usually not practical to compute

the maximum eigenvalues of the element directly, for this would incre_e the cost

of computation considerably [20]. Instead, formulas for upper bounds on ,J{,_!,_

have been recommended. Itowever, on massively parallel processors such as the

CM.2, the parallelism inherent in the computation of w(me),_ is such that this

frequency is obtained at the cost of the frequency of one single element.

The interprocessor communication mechanism for a mesh with more than

one type of element is illustrated in figure 18. For the example shown, the d-node

elements are activated first. They communicate in four steps, one node at a time.

Next, the 4-node elements are de-activated and the truss elements are selected.

These communicate in two steps. As explained in Section II.2, the serialization

between different types of elements is due to the SIMD nature of the CM_2.

27

\
i-i

I--I
,=----1-i
I-I

J[_]
clr----= •

L-]
i-i

r7

/

IIInl

\

I I lit,

FIG. 18. Interprocessor Communication For a Hybrid Patch

28

VII. EXAMPLES

In this section, we apply our approach to massively parallel finite element explicit

computations to the solution of various transient problems on an 8K CM_2 with

Weitek accelerators. We analyze performance results in detail. We assess the effi-

ciency of our decomposition/mapping strategy at reducing communication time.

We highlight the impact on machine performance of variations in mesh topol-

ogy, finite element modeling, and problem nonlinearities. We also report on the

performance of the Data Vault system for problems that are I/O bound.

For each example, two simulations were carried out. The first one assumed

a linear elastic material. In the second simulation, the material was assumed to

have an elastoplastic behavior governed by a Von Miscs yield condition.

VII.1 El: Transient Response of a Cracked Aluminium Plate

The quarter of a mesh in figure 19 was generated to study the dynamic response

of a cracked aluminum plate under a uniform time varying loading. The full

mesh contained a total of 4008 plane stress elements and 4073 nodes. Mesh

irregularities were induced by transition zones. The NEWS grid could not be

used.

I 1

I III I, I,

Ill II III Ill[

FIG. 19. A Quarter of a Mesh for a Cracked Plate

29

'o ."

VII.P, Eg: Wave Propagation in a Three-Dimensional Bar

The second example considered was the impact of a metallic ball on an unsup-

ported glassy bar. The bar was discretized using 8160 brick elements (fig. 20).

The finite element mesh contained 13500 nodes and 40500 degrees of freedom.

Given the regularity of the discretization, the NEWS grid was used for inter-

processor communication. This example was also re-run using the router for

performance comparison.

FIG. 20. Finite Element Discretization of a Glassy Bar

VIL8 E3: Shuttle Docking Induced Vibrations in a Space Station

This dynamic analysis was carried out to investigate the vibrations of a space

station model assembled from 5-meter erectable struts. These vibrations were

assumed to be induced by a shuttle docking. The finite element model (fig.

21) comprised 7584 three-dimensional truss elements and 2304 nodes. It was

generated by aligning identical cells along various axes. However, each cell by

itself was irregular (fig. 22) and did not allow the use of the NEWS grid.

3O

_I _,L, ¸. •

FIG. 21. A Space Station Model

_ _ ___

FIG. 22. Irregular Cell

31

VH.4 E4: Three-Dimensional Glassy Bar on an Elastic Foundation

The wave propagation example problem E2 was repeated with different boundary

conditions. The glassy bar was assumed to be supported by a layer of foam. The

mesh was comprised of a total of 8164 elements (which is very close to the number

of elements in the former mesh), of which 1636 truss elements were used to model

an elastic foundation.

VIL5 Performance Results and Analysis

All segments of code were written exclusively in C*. Floating-point arithmetic

was performed in single precision (32 bit words). Measured performance results

are gathered in tables 2, 3, 4, 5 and 6. Only example E2 could make use of the

NEWS grid. However, all timings except those given in table 6 correspond to

runs where communication was carried through the router. Execution times are

given in seconds and correspond to a sample of 2000 time integration steps and

a vp ratio equal to 1.

TABLE 2. Overall Measured Performance

for Various Transient Finite Element Computations

Example

E 1 - elatie

E 1 - elastoplastie
E2 - elatie

E2 - elastoplastie
E 3 - elatie

E 3 - elastoplastie
E4 - elatie

E4 - elastoplastic

Mesh Data Loading Equation of Motion Sustained
Preorocessing. in the CM 2 Solving MFLOPS

1.04 sees 5.47 sees 861 sees 400
1.04 sees 5.47 sees 1033 sees 480

1.98 sees 31.78 sees 4139 sees 392
1.98 sees 31.78 sees 4718 sees 440
1.28 sees 13.56 sees 887 sees 254
1.28 sees 13.56 sees 896 sees 256
2.11 sees 33.00 sees 4770 sees 340
2.11 sees 33.00 sees 5440 sees 386

The mesh preprocessing phase corresponds to the decomposition of the finite

element mesh as explained in Section V. It also includes the setup of the finite

element parallel data structure, which is then distributed across the processors.

Both of these phases are shown to require relatively very little computer time. It

32

can also be observed that in the worst case, the nonlinear computations consume

only about 15_0 additional time. This is due to the explicit nature of the radial

return mapping algorithm that was used. Because of "what you see is what you

get", the reported mflop rates should be compared to those measured in Section

III and not to the theoretical peak performance of the machine. It should also be

noted that our C* code still leaves room for further optimizations.

TABLE 3. Data Vault System Performance

Example

El

E2

E3

Solving Equation

of Motion

Unloading Results

on Front End

Unloading Resuhs

on Data Vault

861 sees 5340 sees 3.81 sees

4139 sees 16400 sees 12.61 sees

887 sees 9500 sees 7.04 secs

For examples El, E2, and E3, the computed displacements, strains and

stresses were archived on secondary storage after each time integration step. Two

solutions were compared. In the first case, these results were brought back to the

front end and stored in appropriate disk files. For that case, the measurements

given in table 3 demonstrate that the amount of involved I/O dominated the

simulation total time. In the second case, the results were transferred in parallel

directly to a Data Vault System. The speed-up provided by the Data Vault is

shown to be of tile order of 1400! This parallel I/O capability is what was most

lacking on earlier hypercubes [18].

33

TABLE 4. Computation vs. Communication

Example

E1

E2

E3

E4

Solving Equation Computation Communication

of Motion Time Time

861 secs 460 secs 401 sees

4139 secs 1959 sees 2180 secs

887 secs 260 secs 627 sees

4770 sees 2340 sees 2430 sees

If Top and Tc,n are respectively the computation parallel time and the com-

munication parallel time, and Np is the number of available processors on a

given parallel machine, the achieved efficiency (speed-up per processor) can be

expressed as:

EFF =
1 N_,Tcp 1

N,, To,,+ 1+
Tap

The results given in table 4 indicate that efficiencies of 53°_, 47%, 29% and 49%

are achieved respectively for examples El, E2, E3 and E4. If one refers to the

performance results of Section III, it can be seen that the sustained mflop rates

reported in table 2 are consistent with these efficiencies. At the first glance, these

efficiency results appear to be very pessimistic. However, they are well above

the 10% often obtaincd on current vector supercomputers I21]. The reader can

observe that the timing results for example E4 are very close to the cumulative

timings of examples E2 and E3, which illustrates the impact of the SIMD nature

of the CM_2 on the MIMD nature of finite element computations. It should

also be noted that while the communication time is fixed for a given mesh, the

computation time increases with the complexity of the analysis. Thus, highly

nonlinear formulations which include large deformations are expected to yield
higher efficiencies than those deduced from table 4.

34

At this point, we give further details regarding interprocessor communication

in the context of finite element explicit computations. As outlined in Section

V, the finite elements of a mesh exchange their local contributions one node

at a time. For a given finite element, this information exchange procedure is

organized around two nested loops. The outer loop is carried over the nodes that

are connected to this element. The inner loop is carried over the neighboring

elements that are attached to each local node. Using a C notation, this is written

as:

for (node = 1; node < my_nodes; node++)

{
(7)

,tart = pointer[nodel;stop = pointer/node÷ 1/- 1;
for (position = start; position <_ stop; position÷÷)

{
neighbor = proe_att_to_node[position];

exchange (variable, mys elf, neighbor};

}

(s)

where my_nodes'is the total number of nodes that are connected to a given fi-

nite element and proe_att_to_node is the array containing the identification of the

neighboring elements. Clearly, these variables are element dependent. The total

number of communications to be performed by one processor is determined by

the product P_{_! = d * (pointer[my_nodes + 1]- 1) which is both element and

mesh dependent. The CM_2 being an SIMD machine, the communication time is

determined by max,{O{')l,c,,, j. For a regular mesh composed of three-dimensional

truss elements (d = 3) or 4-node plane elements (d = 2), every node is attached

to 4 elements, so that 24 communication instructions per time integration step

are required for the truss element and 32 for the 4-node plane element. However,

table 4 indicates that the space station example exhibits a longer communication

time than the aluminum plate problem. The reason is that in the mesh of exam-

ple E3, some truss elements are connected to I2 other elements. Because of the

SIMD nature of the CM_2, the element with the highest degree of connectivity

determines the communication time. For a regular mesh with 8-node solid ele-

ments (d = 3) each time integration step is followed by 192 communication steps,

since each node can be attached up to eight different elements. This is reflected in

table 4 where example E2 is shown to possess by far the longest communication

time (2180 sees). In summary, the amount of communication involved in finite el-

ement explicit computations on the CM_2 is determined by the element topology

and order, and the mesh irregularities. Because only d nodal information are ex-

changed at a time among the CM_2 processors, three-dimensional and high order

35

elements substantially increase the communication time. Mesh irregularities also

adversely affect the amount of communication because of the SIMD nature of the

CM_2. It is interesting to note that elements which transmit physical information

across edges and faces such as those proposed by De Veubeke, [22] would require
much less communication than traditional elements. These elements should be

revisited for computations on massively parallel processors such as the CM_2.

An in-depth investigation of the communication phase was carried out. It

was found that most of the communication time was elapsed in the header of loop

(8). This loop header involves the quantities start and stop which differ from one

processor to another in the presence of mesh irregularities and different element

types. Consequently, the front end computer has to process and manage several

different loops rather than a unique one, which is not very efficient on an SIMD

machine. The time associated with the headers of loops (7) and (8) is referred

to as software overhead in table 5. The true time that is elapsed in effective

communication among the processors is shown to be only a fraction of the overall

communication time {see table 5).

TABLE 5. True Communication Time

Example

El

E2

E3

Computation Effective Software

Time Coomunication Time Overhead

460 sees 81 sees 320 secs

1959 secs 1380 secs 1280 secs

260 secs 146 secs 481 secs

Because it was designed to handle arbitrary meshes, our C* code did not

make use of the NEWS grid package. However, a special module that incorporated

calls to the NEWS grid was written specifically for the regular mesh of example

E2. Execution times for this example using both the NEWS grid and the router

are shown in table 6. Clearly, a high price is paid for the handling of eventual

mesh irregularities.

36

However, the irregular pattern of communication is fixed in time. Thus, a

considerable improvement can be achieved if this pattern is evaluated at the first

time step, then somehow stored in the CM..2 for use during subsequent time steps.

We believe that this is an issue that massively parallel computer architects should

investigate.

TABLE 6. Router vs. NEWS Grid

Example Computation

Time

Communication Time

Using the NEWS grid

Communication Time

Using the Router

E2 4139 sees 560 sees 2660 sees

In order to assess the performance of the decomposer/mapper module, exam-

ples El, E2 and E3 were re-run with the naive shifted identity mapping (element

i in processor i - I). Figure 23 demonstrates that the true communication time

can be reduced by as much as 60 %. Unfortunately, the total execution time

is reduced only between 10% and 17_ because of the communication software

overhead associated with mesh irregularities.

37

2000 Time Integration Steps

SECONDS

E! E2 E3

m ToL w. DM

ToE wo. DM

El. Cm. wo.

i El. Cm. w.

FIG. 23. The Decomposer/Mapper Performance

VIII. CONCLUDING REMARKS

We have reported herein on our experience in performing transient finite element

computations on the CM_2. We have presented the architectural features of this

parallel processor and discussed their impact on finite element computational

strategies. In particular, those features which distinguish the CM.2 from earlier

hypercubes have been emphasized. These include the virtual processor concept

and the fast parallel [/O capabilities. The processor memory size of 64 Kbits

has been shown to penalize high order elements. We have also described and

discussed a domain decomposition strategy and a mapping algorithm which are

suitable for massively parallel processors such as the Connection Machine. The

main idea behind the decomposition technique is the minimization of both the

amount of wire contention within a chip, and the amount of communications be-

tween different chips. A given finite element mesh is partitioned into 16-element

38

subdomains which correspond to the 16-processor chips of the Connection Ma-

chine. This partitioning is carried out in a way that minimizes the number of

nodes at the interface between the subdomains. As a result, only those processors

which are mapped onto finite dements at the periphery of a subdomain commu-

nicate with processors packaged on different chips. Moreover, this partitioning is

such that the connectivity bandwidth of the resulting subdomains is large enough

to allow an efficient use of the interchip wires. The mapping algorithm attempts

at reducing the distance information has to travel throug the communication

network. In essence, it searches iteratively for an optimal mapping through a

two-step minimization of the communication costs associated with a candidate

mapping. Various issues related to the single instruction multiple data stream na-

ture of the CM_2 and pertinent to computational mechanics have been addressed.

Measured performance results for realistic two and three dimensional transient

problems have been reported. Three-dimensional and high order elements have

been shown to induce longer communication times. Mesh irregularities have been

shown to slow down tile computation speed in many ways. The Data Vault has

been demonstrated to be very effective at reducing the I/O time.

Now, we briefly highlight some additional implementational and theoretical

issues that we hope will materially advance the application ranges of finite element

computations on this highly parallel processor.

Virtual Processor Ratio vs. Substructuring

In this work, we have assigned when possible more than one finite element to a

single processor using the virtual processor feature of the CM_2. However, an-

other way to obtain tlle same result is to assign a substructure to an individual

processor (Farhat, Wilson and Powell, [15] and Fox et al., [16]). From a numer-

ical point of view, both approaches are equivalent. However, these two distinct

approaches differ in their implementations and may perform differently. The

substructure approach requires each processor to work with both external and

internal data structures. The set of external data structures stores information

about substructure interconnections. These are similar to the ones described in

this paper. The set of internal data structures stores the connectivity table of

the elements within a substructure. The computations within each substructure

are carried out by looping over the elements of that substructure. The advantage

of this approach is a saving in storage since the substructure internal nodes are

uniquely defined, and a faster computation of the results associated with these

nodes. Moreover, the global results at the internal nodes can be accumulated

without any explicit call to a message-passing function. The global quantities

at the boundary nodes are accumulated using the router and the external data

39

structures. However, the substructuring approach requires that the sequencer

broadcast the same instructionseveral times, once for each element of the sub-

structure, which increases the overall wall clock execution time. Moreover, this

approach does not allow the Weitek chip to pipeline the computations over the

elements of the substructure.

On the other hand, the virtualprocessor approach requires that each element

communicate explicitlywith itsneighbors, even ifthese are assigned to the same

processor. Of course, thiscommunication isvirtualsince itiswithin the proces-

sor itselfand generates minimal additional overhead. On the positive side, the

virtual processor approach utilizesonly one type of data structure and exploits

the pipelining capabilitiesof the Weitek chip. The latter feature significantly

enhances overallperformance, as demonstrated in Section III.Consequently, we

advocate the use of tilevirtual processor ratio rather than the substructuring

technique, especiallyifthe processor memory sizeisto be increased in the future.

Implicit Algorithms and the CM_2

In this report, no attempt has been made to design a novel parallel algorithm for

the solution of the differential equation of motion. We have selected the central

difference algorithm because of its inherent parallelism, which allowed us to focus

on implementational issues and to fully explore the multiprocessig capabilities

of the CM_2. Our experience suggests that a whole class of explicit and semi-

implicit dynamic and static algorithms can be implemented on the CM_2 in a

very similar way. Among others, we cite tile EBE algorithms (Hughes et al.,

[23]), the EBE preconditioners (IIughes, Ferencz and Hallquist, [24]), and the

Jacobi preconditioned conjugate gradient algorithm (Golub and Van Loan, [25]).

However, the solution of some static and transient problems may necessitate

the use of an implicit algorithm, which usually implies the solution of a set of

simultaneous banded equations. If the global symmetric stiffness matrix K is

banded, with semi-bandwidth b, then it is well known (see for example Ortega

and Voigt, [26]) that Gaussian elimination methods for solving Kd = F allow
b_

at each step on the order of -_- pairs of (+,x) to be processed concurrently, but

require significant communication because the b entries of the pivot column must

be made available to all other processors. Several parallel algorithms based on

these elimination methods were designed for finite element applications and were

implemented on ealier hypercubes (see for example, Farhat and Wilson [27] and

Utku, Salama and Melosh, [28]). Typically, a processor was assigned to a set

of matrix columns. Results from our previous experience with the early version

of Intel's iPSC suggest that direct solvers are feasible on hypercubes only when

the number of available processors, NI,, is much smaller than the bandwidth b

40

of the given finite element problem, so that communications do not dominate

computations. On the iPSC-1, a message thatwas sent from one extreme corner

of a 5-dimensional cube to the other would result in an elapsed time 475 times

longer than the time to perform a floating point multiplication (see Rudell, [29]).

However, on a 10-dimensional subcube of the CM..2 we have measured the ratio

of a broadcast to a floating point computation to be only about 2.87. This

observation suggests that for problems with b > 360, a processor could be mapped

onto a few matrix entries and a parallel direct solver could be feasible on the

CM_2. For problems with smaller bandwidth, direct solvers which operate on

more than one pivot at a time (Alaghband and Jordan, [30]; Peters, [31]) should

also be investigated for implementation on massively parallel processors.

There is an additional issue which has to be examined before attempting to

solve finite element equations on the CM-2 with a parallel direct solver. This issue

is related to the balance on massively parallel processors between the number

of available processors, Na, , and the processor memory size. Let Mr' denote a

two-dimensional regular n by n finite element mesh, where n is the number of

elements along one side. If d is the number of degrees of freedom at a given node,

the semi-bandwidth of M" is b - d(n + 3) and the total number of mathematical

unknowns is N = d(n + 1) 2. For this mesh, the storage cost of K amounts to

Nb -- d2(n+3)(n+ 1) 2 words. The total amount of storage available on the CM_2

is S = N i, •mp , where N_, is the number of available processors and rnp = 8

Kbytes is the current size of the processor memory. Let NE - n,,,,,,_2 be the

maximum number of elements for which M '_ has a banded stiffness matrix that

can be factored in-core on the CM..2. Table 7 below gives the values of NE for

different values of d and for the case of a fully configured Connection Machine

(Np = 65536). Values of NE are shown for both single precision (32 bit words)

and double precision (64 bit words) floating-point arithmetic.

41

TABLE 7. Number of Allowable Elements vs. DOF/Node

for the Two-Dimensional Case

Np= 65536

Single Precision

Double Precision

d=2

NE 102400

NE 64009

d=3

59536

37249

d=4

40401

25281

d=5

29929

18769

d=6

23409

14884

Clearly, except for the case where d = 2 and floating-point arithmetic is done

in single precision, NE is smaller than Np. Similarly, the case where M'* is an n

by n by n three-dimensional regular mesh is assessed in table 8 below for various
values of d.

TABLE 8. Number of Allowable Elements vs. DOF/Node

for the Three-Dimensional Case

Np = 65536

Single Precision

Double Precision

NE

NE

d=2

29791

19683

d=3

19683

12167

d--4

13824

9261

d =5 d =6

10648 8000

6859 4913

42

For this case, NE is much smaller than Nv, even for d = 2 and for single

precision floating-point arithmetic. For d - 6 (some shell elements), only 8000

elements (4000 elements) can be included in M '_ when computations are carried

out using single precision (doubl precision) floating-point arithmetic.

It is noted that the eventual solution of a system of equations is only

one phase of several finite element computational sequences. In linear three-

dimensional analysis, this phase dominates the computer execution time. How-

ever, in the nonlinear analysis of flexible space structures most of the computa-

tional time is usually spent in modules that perform element level computations

[32]. These include the evaluation of generalized nodal internal forces and/or
elemental stiffness matrices. Consider now a mesh M'* where the number of el-

ements NE is chosen so that the upper part of the banded stiffness matrix K

fills the Np processor memories completely. The preceding complexity analysis

demonstrates that the balance on the CM_2 between the number of processors

and the memory size of each processor is such that NE is much smaller than Np.

Hence, if a direct algorithm is used to solve a finite element system of equations,

the Np processors will be active during the solution phase, but Np - E processors

will remain idle during the rest of the phases which involve element level com-

putations. Consequently, an in-core direct solution strategy would not efficiently

utilize the computational power of the CM..2 in a highly nonlinear finite element

analysis.

ACKNOWLEDGMENTS

The authors wish to acknowledge the support by the Naval Research Laboratory

(NRL) under Grant DOD N00014-87K-2018, with Dr. Hank Dardy and Dr.

Louise Schuetz as technical monitors. The first author also acknowledges the

support by the National Science Foundation under grant ASC-8717773. Both

CM_2s at NRL and at CAPP were utilized to develop this work. The parallel I/O

experiments were done using the Data Vault System at NRL. We also thank Drs.

Carlos Felippa and Eddy Pramono for their front end fast I/O software, which was

supported under the Computational Mechanics Initiative (CSM), grant NAG-l-

756 from teh NASA Langley Research Center. Special thanks to Bolt Whaley

(Thinking Machines Corporation and NRL), Eric Hoffman (NRL) and Roldan

Pozo (CAPP).

43

REFERENCES

[1] C. Farhat and E. Wilson, "A New Finite Element Concurrent Computer Pro-

gram Architecture", International Journal for Numerical Methods in Engineering,

Vol. 24, No. 9, (1987) pp. 1771-1792.

[2] G. A. Lyzenga, A. Raefsky, and B. H. Hager, "Finite Elements and the Method

of Conjugate Gradient on Concurrent Processors", GaITech/JPL Rept. G3P-IIg,

California Institute of Technology, Pasadena CA, 1984.

[3] T. Belytschko and N. Gilbersten, "Concurrent and Vectorized Mixed Time,

Explicit Nonlinear Structural Dynamics Algorithms", Parallel Computations and

Their Impact on Mechanics, ed. by A. K. Noor, American Society of Mechanical

Engineers, New York, (1987) pp. 279-290.

[41 C. Farhat and L. Crivelli, "A General Approach to Nonlinear FE Computa-

tions on Shared Memory Multiprocessors", Computer Methods in Applied Me-

chanics and Engineering, (in press).

[5] M. Benten, C. Farhat and H. Jordan, "The Force for Efficient Multitask-

ing on the CYtAY Series of Supermultiprocessors", Proceedings of the Fourth In-

ternational Symposium on Science and Engineering on GRAY Supercomputers,

Minneapolis, Minnesota, Oct. 12-14, (1988) pp. 389-406.

[6] D. W. White and J. F. Abel, "Bibliography on Finite Elements and Supercom-

puting", Communications in Applied Numerical Methods, Vol. 4, No. 2, (1988)

pp. 279-294.

[7] A. K. Noor, "Parallel Processing in Finite Element Structural Analysis", Par-

allel Computations and Their Impact on Mechanics, ed. by A. K. Noor, American

Society of Mechanical Engineers, New York, (1987) pp. 253-277.

[8] C. Farhat, "Parallel Computational Strategies for Large Space and Aerospace
Flexible Structures: Algorithms, Implementations and Performance", Proceedings

Supercomputing in Engineering Structures, IBM Europe Institute 1988, July 11-

15, 1988, Oberlech, Austria.

[9] O. McBryan, "New Architectures: Performance Highlights and New Algo-

rithms", Parallel Computing, Vol. 7, No. 3, (1988) pp. 477-499.

[10] J. L. Gustafson, G. R. Montry, and R. E. Benner, "Development of Paral-
lel Methods for a 1024-Processor Hypercube', SIAM Journal on Scientific and

Statistical Computing, Vol. 9, No. 4, (1988) pp. 609-638.

[11] R. D. Krieg, "Unconditional Stability in Numerical Integration Methods",

Journal o[Applied Mechanics, Vol. 40, (1973) pp. 417-521.

[12] K. C. Park, "Practical Aspects of Numerical Time Integration", Computers

Structures, Vol. 7, (1977) pp. 343-353.

44

[13] W. Daniel Hillis, "The Connection Machine", MIT Press, Cambridge, Mass,
1987.

[14] Thinking Machines Corporation, "Connection Machine Model CM_2 Techni-

cal Summary", Technical Report Series, HA87-4.

[15] C. Farhat, E. Wilson and G. Powell, "Solution of Finite Element Systems on

Concurrent Processing Computers", Engineering With Computers, Vol. 2, No. 3,

(1987) pp. 157-165.

[16] Fox et. al, "Solving Problems on Concurrent Processors", Prentice Hall, N.

J., 1988.

[17] C. Farhat, "A Simple and Efficient Automatic FEM Domain Decomposer",

Computers fJ Structures, Vol. 28, No. 5, (1988) pp. 579-602.

[18] J. G. Malone, aAutomated Mesh Decomposition and Concurrent Finite Ele-

ment Analysis for Hypercube Multiprocessors Computers", Comp. Meth. Appl.

Mech. Eng., Vol. 70, No. 1, (1988) pp. 27-58.

[19] C. Farhat, "On the Mapping of Massively Parallel Processors Onto Finite

Element Graphs", Computers CJ Structures, (in press).

[20] T. Belytschko, "Overview of Semidiscretization", Computational Methods for

Transient Analysis, ed. by T. Belytschko and T. J. R. Hughes, North-Holland,

(1983)pp 1-e3.
[21] Kuck et.al, "The Effects of Program Restructuring, Algorithm Change, and

Architecture Choice on Program Performance", IEEE, (1984) pp. 129-138.

[22] "B. M. Fraejis De Veubeke Memorial Volume of Selected Papers", ed. by M.

Geradin, Sijthoff & Noordhoff, 1980.

[23] T. J. R. Hughes et al., "Element-by Element Implicit Algorithms For Heat

Conduction", J. Eng. Mech., Vol. 109, No. 2, (1983) pp. 576-585.

[24] T. J. R. Hughes, Ft. M. Ferencz and J. O. Hallquist, "Large-scale Vectorized

Implicit Calculations in Solid Mechanics on a Cray X-MP/48 Utilizing EBE Pre-

conditioned Conjugate Gradients", Computer Methods in Applied Mechanics and

Engineering, Vol. 6I, No. 2, (1987) pp. 215-248.

[25] G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins

University Press, 1983.

[26] J. M. Ortega and R. G. Voigt, "Solution of Partial Differential Equations

on Vector and Parallel Computers", SIAM Review, Vol. 27, No. 2, (1985) pp.
149-240.

[27] C. Farhat and E. Wilson, "A Parallel Active Column Equation Solver",

Computers _ Structures, Vol. 28, No. 4, (1988) pp. 289-304.

45

[28] S. Utku, M. Salama and R. Melosh, "Concurrent Factorization of Positive

Definite Banded Hermitian Matrices", Int. J. Num. Meth. Eng, Vol. 23, (1986)

pp. 2137-2152.

[29]R. Rudell, "ParallelProcessing Efficiencyon the Hypercube", CS252 Project

Report, The University of California at Berkeley, 1985.

[30]G. Alaghband and H. F. Jordan, "Multlprocessor Sparse L/U Decomposition

with Controlled Fill-in",ICASE Report No. 85-_8, NASA Langley Research

Center, Hampton, Virginia 23665, 1985.

[31]F. J. Peters, "ParallelPivoting Algorithms for Sparse Symmetric Matrices",

Parallel Computing, Vol. 1, (1984) pp. 99-110.

[32] N. F. Knight et al., "CSM Testbed Development and Large Scale Struc-

tural Applications ", Proceedings of the Jth International Symposium, Minneapo-

lis, Minnesota, (1988), pp. 359-388.

[33] B. Nour-Omid and K. C. Park, "Solving Structural Mechanics Problems on

the CALTECH Hypercube Machine", Comp. Meth. Appl. Mech. Eng., Vol. 61,

No. 2, (1987) pp. 161-176.

46

WHICH PARALLEL FINITE ELEMENT ALGORITHM FOR WHICH

ARCHITECTURE AND WHICH PROBLEM?

C. Farhat

Department of Aerospace Engineering Sciences and Center for Space Structures
and Controls

University of Colorado at Boulder

Boulder, Colorado

ABSTRACT

The various forms of parallel numerical algorithms that speed

up finite element computations are as numerous as the number

of researchers working on the problem. In tb.is paper, we re-

view some of these parallel computational strategies and assess

their adequacy for a given architecture and a given problem. We

also report on the performance of both extreme parallel hardware

technologies on real-life structural problems.

I INTRODUCTION

The realistic simulation of the nonlinear dynamics of complex

structural systems remains beyond the feasible range of tradi-

tional computers. It has been the author's experience that the

simulation of the transient response of a space station model with

100,000 degrees of freedom to various loading configurations con-

sumes over 10 CPU hours on a CRAY-2 supercomputer and that

the simulation of the deployment of a space structure is even more

comput ationally demanding, especially if the control/structure in-

teraction problem is to be included. The aeroelastic response of

a detailed wing-body configuration using a potential flow theory

requires abou_ 5 CPU hours using the same supercomputer. In

order to establish the transonic flutter boundary for a given set

of aeroelastic parameters, about 30 aeroelastic response analyses

are required, which brings the total CPU time to 6 days. [f the

full Navier-Stokes equations are to be solved, it is estimated that

the CPU time increases by two orders of magnitude. It is also

clear that large amounts of data can be generated in a large-scale

transient structural analysis or a large-scale computational fluid

dynamic solution. This raw data has to be interpreted, in real-

time if possible, in order to be understood.

Clearly, the true potential for execution improvement lies in

massively parallel and/or parallel/vector supercomputing. The

commercial supercomputer manufacturers of the last decade have

extended their products into configurations that use a few vector

processors coupled around a massive shared memory (CRAY-2,

35

CRAY X-MP, CRAY Y-MP). Supercomputers with a larger num-

ber of vector processors are also under development (C1RAY3).

Concurrent multiprocessors with much finer granularity and a

wide range of interconneetion strategies axe now appearing. Re-

cently, massively parallel computers such as the CONNECTION

MACHINE have demonstrated their potential to be the fastest su-

percomputers, a trend that may accelerate in the future t McB ryan

[1]). The advent of advanced frame buffers and high performance
workstations such as Ardent's TITAN now makes real-time visu-

alization possible.

Moving engineering applications to concurrent processors

faces significant obstacles that will have to be resolved as such

machines become more and more available. The obstacles center

on algorithms, methods, languages, and education. In this paper,

we address some of these issues in the context of finite element

computations.

The various forms of parallel numerical algorithms that speed

up finite element computations are as numerous as the number of

researchers working on the problem. Extensive lists of references

on this topic may be found in the surveys of Noor [2], White

and Abel I31, and Ortega, Voigt and Romine [4]. Throughout

this paper, we discuss the adequacy of a set of parallel finite el-

ement computational strategies (mesh preprocessing, solution al-

gorithms, I/O manipulations) for a given parallel processor and a

given structural and/or mechanical problem. This leads us to the

introduction of the notion of algorithmic portability in addition to

the problem of language portability.

The remainder of this paper is organized as follows. In Sec-

tion II, we present an overview of the present status of paral-

lel computers that is pertinent to finite element computations.

Through the examples of SIMD (Single Instruction Multiple

Data), MIMD (Multiple Instruction Multiple Data), local memory

and shared memory multiprocessors, we address the impact of

hardware architecture on the design and implementation of par-

allel algorithms and parallel data structures. Section III focuses

PRECEDING P,_.GE BLA_,IX RO"(F-"-L:'.":/':

on local memory MIMD hypercubes and Section IV on shared

memory multiprocessors. Section V summarizes the author's ex-

perience with massively parallel finite element computations on

the CONNECTION MACHINE. Performance results and con-

cluding remarks are offered in Section VI and Section VII.

Because of space limitations, algorithmic details and formulas

are avoided. The paper emphasizes major results and conclusions.

For specific details, the reader is urged to consult the references.

II WHAT ONE MUST KNOW ABOUT PARALLEL

PROCESSORS

Several parallel computers have already been marketed commer-

cially. Rather than discuss these individually, we here focus on

presenting art overview of their architecture and emphasize the im-

pact of their hardware features on the design and implementation

of parallel computational strategies for finite element simulations.

A review of some of the commercially available parallel systems

can be found in Babb [5], where programming examples are also

provided.

Multiprocessors can be generally described by three essential

elements: granularity, topology and control.

Granularity relates to the number of processors and involves

the size of these processors. A fine-grain multiprocessor features

a large number of usually very small and simple processors. The

CONNECTION MACHINE (65,536 processors) is such a mas-

sively parallel supercomputer. NCUBE's 1024-node and iPSC's

128-node models are comparatively medium-grain machines. On

the other hand, a coarse-grain multiprocessor is typically built by

interconnecting a small number of large, powerful processors, --

usually but not necessarily vector processors. ALLIANT FX/8 (8

processors), IBM 3090-VF {6 processors), CRAY X-MP (4 pro-

cessors), CRAY-2 (4 processors) and the ETA-10 (8 processors)

are examples of such multiprocessors and supermultiprocessors.

Granularity directly affects the parallel computational strategy.

On a coarse-grain multiprocessor, finite element computations can

be parallelized at the subdomain level. On a fine-grain machine,

they are best parallelized at the element and sometimes at the

degree of freedom level. When designing parallel algorithms for

finite element computations on coarse grained vector supermulti-

processors, one should preserve vectorization. This is because the

potential speed-up due to interconnecting a few vector processors

cannot compete with the speed-up due to the vector capabilities

of a single processor. This matter is addressed and emphasized

in Section IV.

Topology refers to the pattern in which the processors are

connected and reflects how data will flow. Currently available

designs include hypercube arrangement, network of busses, and

banyan networks. Usually, the interconnection topology is re-

lated to the memory organization. For example, iPSC, NCUBE

and the CONNECTION MACHINE are local memory multipro-

cessors with a hypercube topology. On these systems, a processor

is assigned its own (local) memory and can only access this mem-

ory. Independent processors communicate by sending each other

messages. Efficient solution of finite element simulations on these

machines requires minimizing the interprocessor communication

bandwidth, especially when the communication hardware/software

36

is relatively s]ow. This requires the mapping of adjacent elements

as much as possible onto directly connected processors, which may

be no trivial problem. On the other hand. the processors on a

shared memory system such as ALLIANT FX/8 are connected

through a common memory bus and can access the same (global)

large memory system. Adequate finite element parallel data struc-

tures are crucial for efficient computations on both shared and -,,

local memory multiprocessors. On a local memory machine, one

has to introduce the concept of distributed data base and data

structure. Each local memory is loaded only with the data rele-

vant to the computational task assigned to its attached processor.

For a system with thousands of processors, the total amount of

available memory can be very large. Yet, it is the storage capac-

ity of each local memory which really matters. Different finite

elements require different amounts of data to be stored. For each

finite element in the mesh, a material and geometrical nonlinear

high order shell element may require an amount of data storage

two orders of maguitude higher than a simple linear truss element.

Hence, one may be able to assign one or several finite elements **

of a certain type to one processor but may fail in the attempt to

assign one or several elements of another type to a similar pro-

cessor. Also, in the case of MIMD machines such as iPSC and

NCUBE, one has to ensure that the compiled subroutines can be "

accommodated on the local memory. Consider the case where a

processor is mapped onto a submesh containing different types of

elements. In this situation, one has to load into the processor's **

local memory all the element libraries for the types encountered

in the assigned submesh. Generally, one can overcome these prob-

lems by devising an intelligent partitioning scheme and a compact

data structure. Careful data structures must also be designed for

shared memory multiprocessors to avoid potential serializations

due to memory conflicts.

Control describes the way the work is divided up and s_-

chronized. Of particular interest are the SIMD and *IIMD ma-

chines. The CRAY-2 (4 processors} and iPSC (128 processors) are

respectively a shared memory MIMD supermultiprocessor and a

local memory MIMD hypercube. They can simultaneously ex-

ecute multiple instructions which can operate on multiple data.

The CONNECTION MACHINE is an SIMD system where a sin-

gle instruction is executed at a time, -- an instruction which can

operate on multiple data. Typically, on an SIMD machine a sin-

gle program executes on the front end and its parallel instructions

are submitted to the processors. On an MIMD parallel processor

separate program copies execute on separate processors.

q

Practically, local memory parallel processors are more diffi-

cult to program than shared memory multiprocessors. However,

this does not imply that optimal performance is easily achieved

on shared memory machines, especially when vector processors

are interconnected. It is believed that local memory systems are

easier to scale to a large number of processors. Shared mem-

ory multiprocessors are usually coarse grained because the bus to

memory saturates and/or becomes prohibitively expensive above

a few processors. However, machines such as Evans and Suther-

lands' ES-1 and MYRIAS are considered as shared memory mul-

tiprocessors and can be configured with several hundreds of pro-

cessors. Note also that on SIMD machines, one has to devise -_

special tricks to be able to process parallel finite elements of dif-

ferent types, since these do not involve the same instructions and

only one instruction can be executed at a time.

III FE COMPUTATIONS ON MIMD LOCAL MEM-

ORY MULTIP ROCESSORS

Several solution algorithms have been designed for static, modal

and transient finite element analyses on MIMD local memory

multiprocessors. Examples of these can be found in Farhat and

Wilson [6] (Intel's iPSC), Lyzenga, Raefsky and Hager [7] and

Nour-Omid, Raefsky and Lyzenga [8] (JPL/Calteeh's MARK III).

Typically, these algorithms stem from the divide and conquer

paradigm.

where /(i denotes the stiffness of the j - th subdomain and u_

is the localization of the displacement vector to the j - th sub-

domain. In this case, only neighboring subdomains need to ex-

change boundary information. Hence, an optimal decomposition

is the one which minimizes the communication bandwidth of the

problem, -- that is, the subdomain connectivity. This strategy is

discussed by Malone in [9]. When applied to the above problem,

for ,_Vp = 32, it delivers the partitioning shown in figures 2a-2b.

The average and maximum communication bandwidths are 5 and

8 respectively, and the number of interface nodes is 718.

Consider the finite element discretization of the mechanical

joint shown in figure 1. If the complete finite element system is

subdivided into N, subdomains, each group of elements within a

subdomain can be processed in parallel. The data structure for

such an approach is very simple. On local memory multiproces-

sors, only the storage for the node geometry and element prop-

erties within the substructure need be stored within the RAM

(Random Access Memory) of the processor assigned to that sub-
domain. In addition, concurrent formation and reduction of the

mass, damping and stiffness matrices for that region require no

inter-processor communication. Message passing occurs only when

transfering solutions between subdomain interconnected bound-

aries. The latter phase often determines the efficiency of the par-

allel computational approach. While load balancing is an impor-

tant criterion for automatically subdividing a mesh into as many

submeshes as there are available processors, Np = .V,, it is not

sufficient by itself to determine the partitioning algorithm.

_ , M41

-" J t" _'-i/_--_y

Fig. I Discretization of a mechanical joint

Suppose that a parallel explicit or explicit-like algorithm is

to be implemented on an MIMD local memory multiprocessor.

It could be, for example, an iterative solver for the linearized

static problem, or a time integration explicit algorithm for the

transient response analysis. Typically, these computations involve

matrix-vector products I(u and inner products uru which can be
evaluated in parallel as:

J._ N B

Ku = Z K_%

J=l

._= N,

u TU = Z UTUI

1=1

Fig. 2a Decomposition with N_ = 32

t

,i

!x

i

Fig. 2b Interprocessor communication pattern

Suppose now that parallel implicit static or dynamic com-

putations are to be invoked. In this case, a higher level of par-

allelism is obtained by treating the interface nodes as a separate

entity, and numbering the unknowns so that, for example, the

stiffness matrix has the pattern shown in figure 3b. The subma-

trices /'(_), Nil and I(_i denote respectively the subdomain and

interface stiffnesses, and the coupling term. Clearly, all subdo-

mains can be processed in parallel after the interface problem

37

(Kit -
i=Np j=N,
E -- E SK;?J,
j=tl 2 =1

(2)

has been solved. In equation (2), ut and ft are respectively

the generalized displacements and forces at the interface nodes.

The size of the interface problem determines the efficiency of this

parallel stratagem. An optimal decomposition for this approach

which minimizes the number of interface nodes is presented by

Farhat in [10]. When applied to the above mechanical joint (fig.

3a), for Np = 32, it delivers 356 interface nodes only.

Fig. 3a Decomposition: N r = 32 and interface mini-
mization

Ku 0 0 0 0 K}z]0 ".. 0 0 0 .

o o Ic j o o I iI!
0 0 0 "'. 0 I0 0 0 0 "'.

... K5 /,, J

Fig. 3b Pattern for stiffness matrix

Equation (2) can be solved using a direct method (Farhat,

Wilson and Powell [11]), or an iterative one (Farhat and Wil-

son [12], Nour-Omid, Raefsky and Lyzenga [8]). Let n} denote

the average number of interface nodes per subdomaln, and d the

number of degrees of freedom per node. If the interface prob-

lem is treated with a direct solver, the formation of Schur's com-

plement KII - l._j=lV'J="cPIf _K_1KjI requires 2Nsn}d solutions of

sparse triangular systems. On the other hand, each conjugate

gradient iteration involves Ns matrix-vector products of the form

K_K_1KjIu_ _), which require 2N, solutions of sparse triangu-

lar systems. If memory is an issue, the fill-in of (2) can be such

that an iterative solver, for example the preconditioned conju-

gate gradient method, is recommended for the solution of the

interface problem. If the coupling between subdomains is very

strong, a preconditioned conjugate gradient algorithm may re-

quire more than n}d iterations to achieve convergence, so that a

direct method becomes more advantageous.

Parallel modal and transient analyses using both approaches

have been experimented on Intel's iPSC (Farhat and Wilson [13],

Malone [9]).

The reader should note that when using implicit compu-

tations, the substructuring technique introduces a high level of

parallelism, however sometimes at the cost of additional floating

point computations. On the other hand, parallel direct solvers do

not increase the computational complexity, but on local memory.

multiprocessors, they may suffer from interprocessor communica-

tion costs. For this reason, and because the degree of parallelism

direct parallel solvers offer is limited by the mesh bandwidth,
the author does not recommend their use for the solution of the

entire finite element system on currently available local memory

multiprocessors, especially if the number of processors is large,

say Np >_ 128. However, they have been successfully combined

with the substrncturing technique to solve the interface problem

only (see Farhat, Wilson and Powell [11]).

IV FE COMPUTATIONS ON MIMD SHARED MEM-

ORY MULTIPROCESSORS

In principle, parallel algorithms which are developed for local

memory multiprocessors can be used on shared memory machines.

However. a much higher performance can be achieved if the spe-

cial features of these machines are fully exploited. In particular, if

the multiprocessor offers a vector capability, the algorithms out-
lined in Section III must be revisited.

For explicit computations on a shared memory multiproces-

sor, the substructuring approach advocated in Section III may

be also utilized. Interface data may be either duplicated in the

shared memory, or treated as a Critical Section (see Benten.

Farhat and Jordan [15]), -- that is, a portion of a code where

a processor needs to store into a memory location used concur-

rently by another processor. In the latter case, the processors

are serialized when processing the interface degrees of freedom.

For example, while in (1) the quantities K_ul and uyuj can be

evaluated in parallel for all j, the assembly of the results at the

interface nodes is recursive and requires serialization. A more

efficient approach on shared memory machines is described by

Farhat and Crivelti in [16]. Exphcit computations are parallelized

at the element level. Memory contention, and therefore Critical

Sections. are avoided by processing the elements in an order dic-

tated by a graph coloring algorithm [16]. Basically, the mesh is

partitioned into sets of internally disjoint elements, so that vec-

torization and parallelization are optimized. For example, when

38

appliedto theproblemshownin figureI, thecoloringscheme
creates8setsofinternallydisjointelements.Figure4showsthe
elementsinset3forthisexample.Withinasetofelements,ex-
plicitcomputationsareperformedasynchronously.Synchroniza-
tionpointsarerequiredonlybetweentheprocessingoftwodiffer-
entsetsof elements (8 synchronization points in this case).

computational savings due to a lower subdomain bandwidth offs,

the computational requirements of the interface problem !2). -

that the parallel algorithm based on substructuring is faster, ew

in serial mode, than a global Choleski decomposition.

Fig. 4 Internally disjointed elements in set #3

Contrary to popular belief, implicit computations are more

difficult to optimize on shared memory multiprocessors. To illus-

trate this fact, we consider the static solutions of the mechanical

joint and of the Solid Rocket Booster (SRB) (fig. 5) problems, for

a prescribed loading. Moreover, we assume that ,Vp = 4 proces-
sors are available. The subdivision of both meshes into balanced

subdomains with a minimum number of interface nodes are de-

picted in figures 6a-6b.

Fig. 6a Decomposition with .Vp = 4 and interface
minimization

Fig. 5 Solid rocket booster

The discretized mechanical joint contains 456 elements and

852 nodes. After node-renumbering, the average profile band-

width is 168. The optimized average profile bandwidth for each

subdomain is 93. Therefore, the parallel reduction of each sub-

domain benefits not only from a lesser number of equations to be

reduced, but also from a smaller bandwidth. For this problem, the

39

Fig. 6b Decomposition with N_ = 4 and interface
minimization

The discretized SRB model has 10.453 elements, 9.206 nodes

and 54,870 degrees of freedom. The number of interface nodes

corresponding to its subdivision into 4 subdomains is 165. After

node-renumbering, the average profile bandwidth is 310. The op-

timized average profile bandwidth for the 4 subdomalns is 365.

Clearly, for this problem, reducing the 4 subdomain stiffnesses

requires a little more floating point operations than reducing the

global stiffness. Consequently, all the manipulations involved in

the solution of the interface problem (2) are additional computa-

tions generated by the substructuring method. Fortunately, the

interface problem size is only about 2% of the size of the entire

problem, so that the parallel method is still feasible. However,

for this problem, and especially if vector processing is available.

a better performance is achieved with a parallel highly vector-

ized direct solver. Indeed, the effectiveness of the solution of the

interface problem (2) comes from sophisticated implementations

whose details cannot be described here. For example, the alge-

braic manipulations involved in the evaluation of the quantity

do not vectorize well if the sparse data structures and computa-

tional techniques described by George and Liu in [17], and ad-

vocated by the author for local memory multiprocessors [11] are

used, unless special tricks are invoked. On the other hand, for

the SRB problem, a parallel direct global solver such as the par-

allel active column solver presented by Farhat and Wilson in [18],

or a parallel version of the highly vectorized variable band solver

described by Poole and Overman in [19] are very effcient on a

parallel/vector supercomputer (CRAY Y-MP, 8 processors). For

the SRB problem, this is especially true because the bandwidth

to number of processors ratio is 310/8 = 38.75.

Clearly, the above examples demonstrate that the optimal

effci_ncy of a parallel algorithm depends on the underlying hard-

ware architecture and on the topological characteristics of the

problem to be solved.

With the advent of hardware gather-scatter on most recent

vector supercomputers, significant progress has been made in im-

plementing sparse linear equation solvers on these machines (see

Lewis and Simon [20]). Recently, Aschcraft, Grimes, Lewis, Pey-

ton and Simon [21] have used the new algorithmic concept of

a supernodal sparse factorization for implementing a superfast

sparse linear solver on the CRAY X-MP. The key ideas behind

the high level of veetorization come from the graph theory model

of the sparse elimination process which can be found in the book

of George and Liu [17]. In [22], Simon, Vu, and Yang describe

a parallel implementation of the supernodal sparse code which

delivers a performance rate as high as 1.682 GIGAFLOPS. How-

ever, sparse solvers require a preliminary nodal re-ordering (i.e.

minimal degree ordering) and symbolic factorization which can

consume an important amount of CPU time. Therefore, they

are most effective in nonlinear problems or problems with several

right hand sides, where the preprocessing phase is done once.

Parallel I/O developments for finite element simulations, and

performance measurements on shared memory multiprocessors
can be found in Farhat, Pramono and Felippa [14].

V FE COMPUTATIONS ON A MASSIVELY PARAL-
LEL PROCESSOR

The CONNECTION MACHINE is probably the only massively

parallel processor that is now commercially available. It consists

of two parts: a front end computer (VAX, SYMBOLICS, SUN),

and a 64K processor hypercube (65,536 single bit processors). The

front end computer provides instruction sequencing and program

development and has the ability to address any location in the

hypereube distributed memory. The hypercube system provides

number crunching power.

Recently, Farhat, Sobh and Park [23, 24] have investigated

massively parallel transient finite element explicit computations

on the CONNECTION MACHINE. Preliminary results can be

found in [23] and more detailed information in [24]. In general,
it has been found that this highly parallel processor can outper-

form vector supercomputers on explicit computations, but not on

imp!icit ones. Several features distinguish the CONNECTION

MACHINE from earlier hypercubes. On the hardware side, we

note the impressive number crunching power and the fast parallel

I/O capabilities. On the software side, we note the virtual proces-

sor concept, which is somehow the dual of the well-known virtual

memory concept. Mesh decomposition and processor-to-element

mapping are the two fundamental keys for efficient massively par-

allel finite element computations. A given finite element mesh is

partitioned into 16-element subdomains which correspond to the

16-processor chips of the CONNECTION MACHINE. This par-

titioning is carried out in a way that minimizes the number of

nodes at the interface between the subdomains. As a result, only

those processors which are mapped onto finite elements at the pe-

riphery of a subdomain communicate with processors packaged on

different chips. Moreover, this partitioning is such that the con-

nectivity bandwidth of the resulting subdomains is large enough

to allow an effcient use of the 12 interchip wires. The mapping

algorithm attempts at reducing the distance information has to

travel through the communication network. In essence, it searches

iteratively for an optimal mapping through a two-step minimiza-

tion of the communication costs associated with a candidate map-

ping (see Farhat [25]). We summarize herein the basic conclusions

reported in [23, 24]. The processor memory size of 64 Kbits pe-

nalizes high order elements. Three-dimensional and high order

elements induce longer communication times. Mesh irregularities

slow down the computation speed in many ways. The Data Vault

is very effective at reducing I/O time. The Frame Buffer is ideal

for real-time visualization. Finally, the virtual processor concept

outperforms the substructuring technique on the CONNECTION

MACHINE.

VI PERFORMANCE EXAMPLES

The speed-up and MFLOP rates reported in this section include

all phases of the finite element analyses. A pair of (+,*) is counted

as 2 flops.

To illustrate the Jurgeon approach to parallel/vector finite el-

ement computations, we report on the solution of three different

problems on three different multiprocessors. First, we consider a

modal analysis of the simplified space station model shown in fig-

ure 7. The finite element mesh comprises 384 nodes, 1264 beam

elements and 2304 degrees of freedom. Since tiffs is rather a small

problem, we consider the use of an Intel iPSC with 16 processors

and 4 Mbytes of available memory. After node-renumbering, the

average profile bandwidth for this problem is 90. We select not to

use a global parallel direct solver to carry out implicit computa-

tions, because it would allow only 6 columns of the stiffness matrix

to be assigned to one processor, which would make interprocces-

sor communications dominate local computations. Therefore, we

select an approach based on the substructuring technique outlined

in Section III. The mesh is decomposed into 16 balanced subdo-

mains, each containing approximately 79 elements. The size of

the interface problem is 672 (112 nodes). Our parallel algorithm

for eigenvalue extraction and modal superposition on a hypercube

4O

architecture is described in [13]. The number of extracted modes

is 200. The performance results for this analysis on the iPSC are

reported in table 1.

_7

Fig. 8 Detailed space station model

Fig. 7 Space station structural model

Table 1 Modal anal_'sis on a 16-processor iPSC

Space station structural model

2,304 d.o.f- 200 modes

Phase Speed-up MFLOPS

Forming K and M 15 0.6

Factoring K 12 0.5

Generating Lanczos vectors 12 0.5

Extracting 200 frequencies 14 0.4

Computing 200 mode shapes 13 0.5

Next, we consider the transient response of a more detailed

space station model to perturbations induced by shuttle docking.

The finite element model for this analysis incorporates 7596 2-

node beam elements, 572 4-node shellelements, 24 3-node rigidel-

ements, 9802 nodes and 58,812 degrees of freedom (fig.8). Given

the size of this problem, we select to run iton an 8K CONNEC-

TION MACHINE using the parallel central difference algorithm

[20].Table 2 summarizes the measured performances for compu-

tations and I/O manipulations. The lattercorrespond to dumping

at each time step the computed displacements, velocities,accel-

erations, stresses and strains onto the front-end. The reported

performances are scaled to the full64K processor configuration

(see [1] for justifications). For this problem, the Data Vault im-

proves I/O by a factor of 1307!

Table 2 Transient analysis on the Connection ,Machine

Detailed space station structural model

58,812 d.o.f- 2000 time integration steps

Phase CPU time MFLOPS

(using C °)

Mesh decomposition

Data loading in the CM2

Equation of Motion Solving

Computation time

Communication time

I/O through front end

I/O through data vault

3 secs

41 secs

4500 secs

2500 secs

2000 secs

18,300 secs

14 secs

340

665

Finally, we consider the static analysis of the SRB on a CRAY

Y-MP with 8 processors. Following the reasoning of Section IV,

we select to perform the factorization of the stiffness matrix us-

ing a global parallel direct algorithm. For this purpose, we have

developed a parallel/vector version of the highly vectorized direct

solver described in [19]. The measured performances for 1, 2 and

4 processors are tabulated below (table 3). No results are avail-

able for the case Np = 8 because the author could not arrange for
a dedicated time on the CRAY Y-MP

The SRB problem was also solved in [22] using the supernodal

sparse factorization. The corresponding results are displayed in

table 4. It is interesting to note that while the sparse factorization

is twice as fast as the variable band solver on a single CPU, both

algorithms become comparable on 4 CPUs. Note also that for

the SRB problem, it appears that the supernodal code does not

parallelize well.

41

Table 3 Static analysis on the CRAY Y-MP

SRB structural model - 54,870 d.o.f.

Number of processors CPU time Speed-up MFLOPS

1 39 sees 1 235

2 19.79 sees 1.97 464

4 10 sees 3.90 918

8 NA NA NA

ACKNOWLEDGMENTS

The author would like to thank Dr. N. Knight (NASA Langley)

for providing the SRB finite element model and Ms. A. Overman

(NASA Langley) and Dr. E. Poole (Awesome Computing and

NASA Langley) for communicating their valuable work !19 i, and

Dr. H. Simon (Boeing and NASA Ames) for his enlightening dis-

cussion on sparse linear solvers. He also wishes to acknowledge

partial support by NSF under Grant 87-17773, and partial sup-

port by NASA Langley under Grant NAG1-756.

REFERENCES

Table 4 Static analysis on the CRAY Y-MP

SRB structural model - 54,870 d.o.f.

Supernodal Sparse Factorization

Number of processors CPU time Speed-up MFLOPS

1 20.21 sees 1 231.71

2 13.12 sees 1.54 355.79

4 9.53 sees 2.12 491.45

6 8.53 sees 2.37 548.90

8 8.12 secs 2.49 578.08

CONCLUSIONS

In summary, the choice of a parallel finite element algorithm

should be dictated by the multiprocessor to be used and the prob-

lem to be solved. On local memory MIMD (Multiple Instruction

Multiple Data) parallel processors, the substructuring technique

is recommended for both implicit and explicit computations. On

shared memory multiprocessors, the decision is more difficult. If

the bandwidth of the problem is small, say only 5 times the num-

ber of available processors, the substructuring technique is still

recommended, unless the bandwidth of each subdomain is not

lower than that of the global problem. Otherwise, a global parallel

solver is advocated. In the case where vector processing is avail-

able, special data structures and computational orderings must be

used in order to fully exploit the vectorization capabilities. The

analyst must realize that the potential speed-up due to intercon-

necting a few vector processors cannot compete with the speed-up

due to the vector capabilities of a single processor. Finally, mas-

sively parallel processors are just emerging. The CONNECTION

MACHINE can outperform vector supercomputers when explicit

computations are utilized.

While most portability problems on serial machines are due

to subtleties in compilers and high-level languages, parallel com-

puters will face the additional burden of algorithmic portability.

Currently, the only portable parallel code is the one which is

driven by an analyzer which takes for input the problem to be

solved and the multiprocessor to be used, and outputs the switch

for the right parallel algorithm to be invoked.

[1] O. McBryan, "New Architectures: Performance Highlights and

New Algorithms", Parallel Computing, Vo[. 7, No. 3, (1988) pp.

477-499.

[2] A. K. Noor, "Parallel Processing in Finite Element Structural

Analysis", Parallel Computations and Their Impact on Mechan.

ics, ed. by A. K. Noor, American Society of Mechanical Engi-

neers, New York, (1987) pp. 253-277.

[3] D. W. White and 3. F. Abel, "Bibliography on Finite El-

ements and Supercomputing", Communication_ in Applied Nu.

merical Methods, Vol. 4, No. 2, (1988) pp. 279-294.

[4] J. Ortega, R. Voigt and C. Romine, "A Bibliography on Paral-

lel and Vector Numerical Algorithms", NASA Contractor Report

181764, ICASE Interim Repor_ 6, 1988.

[5] R. G. Babb II, (Ed.), "Programming Parallel Processors",

Addison-Wesley Publishing, Inc., 1988.

[6] C. Farhat and E. Wilson, "A New Finite Element Concurrent

Computer Program Architecture", InL d. Num. Met& Eng.,

Vol. 24, (1987} pp. 1771-1792.

[7] G. A. Lyzenga, A. Raefsky, and B. H. Hager, "Finite Elements

and the Method of Conjugate Gradient on Concurrent Proces-

sors", CalTech/JPL Rept. C$P- I l g, California Institute of Tech-

nology, Pasadena CA, 1984.

[8] B. Nour-Omid, A. Raefsky and G. Lyzenga, "Solving Finite

Element Equations on Concurrent Computers", Parallel Com-

putation, and Their Impact on Mechanics, ed. by A. K. Noor,

American Society of Mechanical Engineers, New York, (1987) pp.

209-228.

[9] J. G. Malone, "Automated Mesh Decomposition and Con-

current Finite Element Analysis for Hypercube Multiprocessors

Computers", Camp. Meth. Appl. Mech. Eng., Vol. 70, No. 1,

(1988) pp. 27-58.

[10] C. Farhat, "A Simple and Efficient Automatic FEM Domain

Decomposer", Computers _ Structures, Vol. 28, No. 5, (1988)

pp. 579-602.

[11] C. Farhat, E. Wilson and G. Powell, "Solution of Finite Ele-

ment Systems on Concurrent Processing Computers", Engineer-

ing With Computers, Vol. 2, No. 3, (1987) pp. 157-165.

[12] C. Farhat and E. Wilson, "Concurrent Iterative Solution of

Large Finite Element Systems", Communication, in Applied Nu-

merical Methods, Vol. 3, No. 4, (1987) pp. 319-326.

[13] C. Farhat and E. Wilson, "Modal Superposition Analysis on

Concurrent Multiprocessors", Engineering Computation, Vol. 3,

No. 4, (1986) pp. 305-311.

42

[14]C.Farhat,E.PramonoandC.Felippa,"TowardsParallel
I/O inFiniteElementSimulations",Int. J. Num. Meth. Eng.,

Vol. 28, (1989)

[15] M. Benten, C. Farhat and H. Jordan, "The Force for Efficient

Multitasking on the CRAY Series of Supermultiprocessors", Pro.

ceedings of the Fourth International Symposium on Science and

Engineering on CRAY Supercomputers, Minneapolis, Minnesota,

Oct. 12-14, (1988) pp. 389-406.

[16] C. Farhat and L. Crivelli, "A Genera/ Approach to Nonlin-

ear FE Computations on Shared Memory Multiprocessors", Com-

puter Methods in Applied Mechanics and Engineering, Vol. 72,

No. 2, (1989) pp. 153-172.

[17] A. George and J. Liu, "Computer Solution of Large Sparse

Positive Definite Systems", Prentice Hall, Inc., Englewood Cliffs,
N. J., 1981.

[181 C. Farhat and E. Wilson, "A Parallel Active Column Equa-

tion Solver", Computers _ Structures, _vbl. 28, No. 4, (1988) pp.
289-304.

[19] E. Poole and A. Overman, "The Solution of Linear Systems

of Equations with a Structural Analysis Code on the NAS CRAY-

2", NASA CR 4159, December, 1988.

[20] J.G. Lewis and H.D. Simon, "The Impact of Hardware

Gather/Scatter on Sparse Ganssian Elimination", SIAM j. Sci.

Star. Comp., Vol. 9, No. 2, (1988) pp. 304-311.

[21] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon,

" Recent Progress in Sparse Matrix Methods for large linear sys-

tems", International Journal on Supercomputer Application_, Vol.

1, No. 4, (1987) pp. 10-30.

[22] H. Simon, P. Vu and C. Yang, "Performance of a Supern-

odal General Sparse Solver on the CRAY Y-MP: 1.68 GFLOPS

with Autotasking", Applied Mathematic Technical Report SCA-

TR-117, Boeing Computer Services, March, 1989.

[23] C. Farhat, N. Sobh and K. C. Park, "Dynamic Finite Ele-

ment Simulations on the Connection Machine", Proceedings of the

Conference on Scientific Applications of the Connection Machine,

ed. by H. Simon, World Scientific, (1989) pp. 217-233.

[24] C. Farhat, N. Sobh and K. C. Park, "Transient Finite Element

Computations on 65,536 Processors: The Connection Machine",

Center for Space Structures _ Control,*, Rept. CU-CSSC-8g.06,

University of Colorado at Boulder, Boulder CO, 1989.

[25] C. Farhat, "On the Mapping of Massively Parallel Processors

Onto Finite Element Graphs", Computers _ Structures, Vol. 32,

No. 2, (1989) pp. 347-354.

43

INTERNATIONAl.Jot.rrnat._--()rNI_MERI('AI_METrlODSINENGINEERING,VOL.28,2541 2553 (1989}

TOWARDS PARALLEL I/O IN FINITE ELEMENT

SIMULATIONS

C}IARBEI. FARHAT. EDDY PRAMONO AND ('ARI.OS FI!I.IPPA

Department oJ Aero_pa('e Em/ineermy, tl_lll Center/or Spare Slrtlt'Izlr_,_, _J_ld (_'otHro]_. U_tir_,r_il | o/ C_dorada at Bcmldcr,
Boulder, ('0 8¢1309-¢M29, US, A.

SUMMARY

I/O issues in finite element analysis on parallel processors are addressed. Viable _olutions for both local and
_h:trcd memory multiprocessors are presented. The approach is simple but limited by currently available
hardware and software systems. Implementation is carried out on ;. CRAY-2 system. Performance results arc
reportcd

1. INTRODUCTION

Several parallel processor projects havc already resulted in commcrcial multiprocessors (iPSC,

AMETEK, NCUBE, Connection Machine, Encore Mullimax, Sequent, ALLIANT FX/8, CRAY

X-MP, CRAY-2, etc.). These machines cover a broad spectrum in terms of three factors: (a)

granularity, ranging from 2 to 65,536 processors, (b) peak performance, from 0.9 to 20,000 Mflops
and (c) cost, from $0'125 M to $10 M. Other projects are still under development worldwide (GF-
I1, NYU/IBM, SU'PRENUM, Myrias, etc., see Rcference I for details). Some numerical

algorithms havc been revised, and some completely redesigned, for implementation on these
multiprocessors.-"

Solid mechanics and structural analysis are important major application areas for parallel

computing. This is rcflected by the continuously increasing number of publications on this topic

over the last few years. An extcnsivc list of references on tinite clement computations and

supcrcomputing may be found in Reference 3. In thesc rcfercnces various aspccts of the subject,

such as parallel clement-by-clement procedures and lincar solvers have been invcstigated, and

implementation schemes have been proposed and assessed. However, no attempt has been made

to addrcss, invcstigatc and/or expcrimcnt on parallel I/O.

It is vcry wcll known that I/O manipulations can casily dominate the cxccution time of a finite

element code. Hence, speeding up thesc manipulations through parallel processing should be of

primary concern. This papcr attempts to achieve this goal. Section 2 summarizes thc occurrence of

I,_O in linite element computations. Section 3 reviews lhc basic features of parztllcl processors and

emphasizes their I/O capabilities and limitations. In Section 4, two simple approaches for
handling parallel IO on multiprocessors arc proposed. Scction 5 spccializcs our views to thc

CRAY-2 supcrmulticomputcr and reports on our "hands _n" experience with it. Remarks and
conclusions are offered in Section 6.

2, I/O IN FINITF. ELEMENT COMPUTATIONS

Realistic finite clement modelling of real c[lgincerittg systems involves lhc handling of very lart,'c

data spaces which can amotml to several gigabytcs _)fmemory. To cope ,,,,ilia this. many programs

0029 5981'g9 122541 135()6.50 /?,'__'ircd 7 .Vm'emtwr 19/..',s'

(' 1989 by John Wiley & Sons. Ltd. f¢_.r:._c,/23 ./mmarv 19,_"_

ORIG_I_IAL PAe_' _t'
OF POOR 'QUALI'I_

2542 (' IARIIA'I r, E. PRAM()NO AND C. FEI.IPPA

in the general area of solid me_.'hanics and structural analysis use out-of-core data base

management systems. However, I O traffic between the disk and the processor memory slows
down the computations significantly and increases even more significantly the overall cost of the
analysis.

In a typical finite element analysis, nodal and element data tire retrieved from a storage disk
before their processing, then stored back on the same storage disk after their processing has been
completed. Examples include the transfer of nodal point co-ordinates, elemental mass and stiffness

matrices in element-by-element computational procedures, and of history response arrays in time-
stepping algorithms for line_,r and non-linear dynamics. Other examples include the movement,

into core and c_ut of core, of blocks of an assembled stiffness or mass matrix in original or factored
form, and the output on disk oflhe final results of an analysis. Table I is borrowed from Reference

4. It summarizes the comparative elapsed times for CP[J and [/O on a Vax 11/780 ofan analysis of
a cylindrical tube with a viscoplastic behaviour. The frontal method, _ which is known to be I/O

bound, was used for the solution phase. Data transfers were carried out through Fortran I/O.

Clearly, the performance results reported in Table i underline the potential of I/O for

bottlenecks in finite element computations. Speeding up all the computational phases through

parallel processing is certainly an important issue. However, reducing the amount of time spent in
data transfers can become even more of an issue.

3. ARCHITECTURE AND HARDWARE

Recently, several parallel computers have arrived on the scene with a variety of different

architectures. These genervlly can be described through three essential elements, namely,
granularity, topology and control:

• Granularity relates to the number of processors and involves the size of these processors. A

fine-grain multiprocessor features a large number of usually very small and simple pro-

cessors. The Connection Machine (65,536 processors)is such a massively parallel super-

computer. N('UI3F+'s 1024-node model is a comparatively medium-grain m_,chine. On the
other hand, a coarse-grain supermultiprocessor is typically built by interconnecting a small

number of large, powerful processors-usually vector processors. CRAY X-M P (4 pro-

cessors), CRAY-2 (4 processors) and ETA-10 (8 processors) are e×amples of such st, per-

multiprocessors.

• Topology refers to the pattern in which the processors are connected and reflects how data

will flow. Currently av_,ikible designs include hypercube arrangcrnents, networks of busses

and banyan networks.

+ Finally, control describes the way the work is divided up and synchronized.

Table i. Comparison of CPU and !'O costs for an FE analysis on a Vax
II 1780

F'hase ('I'll (sccl 1,O tsec)

Integration of constitulb, e cqt,:nticms I,_28 41.00
Assembly of external fi_rcc', +).fl5 tl.O0
Asscn_bly c_f', i,_¢cH'_l,1.,litl_r_:us 13_(_ II)O.OO
gel Ult,_t_ 2 75 3600
Overall z,5I ;_ 177.00

_',,5 _:-+(-':;RI_JALITY

ParaLLeL J_,() 2543

Another important architectural distinction, and one that is most relevant to our effort in this

paper, is that which characterizes memory organization. In shared memory systems, all processors

access the same tglobal) large memory system. These multiprocessors are usually coarse-grained

because the bus to memory saturates and/or becomes prohibitively expensive above a few

proce;ssors. On the other hand, in local memory systems each processor can access only its own

(local) memory. Independent processors communicate by sending each other messages, it appears

that parallel computers in this class are easier to scale to a large number of processors.
Distinguishing only between shared and local memory systems does not give a complete picture

of the problems that one may face when programming parallel processors. Granularity and
control also have their influence. The Connection Machine (65,536 processors) and Inters

hypercube i PSC (128 processors) are both local memory systems. However, the former is an SIMD

(single instruction multiple data streams) machine where a single program executes on the front

end and its parallel instructions are submitted to the processors. The latter is an MIMD (multiple

instruction multiple data streams) parallel processor where separate program copies execute on
separate processors. The granularity of a parallel processor, which seems to affect other

architectural elcmcnts, substantially affects the computational strategy and parallel I/O, as will be
shown.

Multiprocessors with any of the above architectures have the capability to substantially speed

up operations in scientific applications. However, I/O is still their Achilles heel. Before discussing
parallel I/0 strategies and their implementations, we mention that, at the time of writing this

paper and to our best knowledge, only a few systems offer parallel I/O capabilities. These include

NCUBE at one extreme, with up to 1024 processors and their small local memories, and CRAY-2

at the other, with four vector processors and a large shared memory. Parallel disk I/O capabilities
are also available on the Connection Machine.

On N('t) BI!, c:_ch node (processor) has a direct connection to an I,/O bo_rd through one of the

systcrn I;O channels, so that parallel disk access is possible. Generally speaking, on local memory

multiproccssors a bundle of processors may be assigned a local disk through a dedicated I/O
channel.

On CRAY-2, multitasking I/O is possible on a limited basis, t' Different tasks can perform I/O

simultaneously on different files. This is primarily for the following two reasons.

I. The non-deterministic nature of task execution limits I/O on the same file by different tasks.

In other words, problems may arise not only from mapping two distinct hardware processors

on to the same file, but also from mapping two logical processes on to the same file. Our

experience has shown that the latter situation complicates even sequential I/O on most

shared memory multiprocessors (ALLI-ANT FX/8, Encore Multimax, Sequent Balance),

mainly because of the problem of maintaining consistency in the buffer sizes between distinct

processes.
2. The fact that parts of the support library are critical regions that are protected from

simultaneous access, and therefore limit the parallelism that one could otherwise exploit.

The next section presents two simple approaches for parallel disk I/O that are viable within the
limitations of the currently available hardware and system software for local memory and sharcd

memory multiprocessors.

4. TWO SIMPLE APPROACHES

Most of the computational strategies recently proposed for parallel finite element computations

are based on the principle ofdit'ide attd conquer: that is, divide the computing task into a number of

2544 C FARHAT, E PRAMONO AND C. FELIPPA

subtasks that are either independent or only loosely coupled, so that computations can be made

on distinct processors with little communication and sharing. For example, if using this strategy

the structure shown in Figure I is to be analysed using N r processors, it is first automatically

subdivided into a set of N_, (or a multiple of Np) balanced substructures. _
Depending on .the size of the problem and the granularity of the parallel processor, a

substructure would contain anywhere from a single element to several thousand of them. Then,

each processor is assigned the task of analysing one--or several--substructure(s). While this

approach is feasible on most parallel computers, it is especially interesting for local memory

multiprocessors. Each processor is attributed a simple data structure. Only the node geometry and

element properties associated with its assigned substructure are stored within its RAM. In

addition, formation and reduction of the stiffness matrix for that region require no interprocessor

communication. Finally, after the displacements have been found, the postprocessing of sub-

domain stresses can be done concurrently. 8

Local memory approach

It is very natural to extend this substructuring idea to achieve parallel I/O in the finite element

analysis. For example, on local memory multiprocessors, it is tempting to imagine that, in the

same way that a processor is assigned its own memory, it could be attributed its own set of !/O

devices (I/O controller, disk drive, etc.) and its own files. Then, each processor would read/write
the data for its subdomain from its own files and through its own data base, in parallel with the

Figure I. Dividing and conquering a mesh

PARALLEL [/0 2545

other processors. If assigning an I/O controller and/or a disk drive to each processor is impractical

and/or impossible, as is probably the case for a fine-grain system, for a cluster of processors it is

possible. For concreteness, we overview NCUBE's !/O subsystem for a configuration with 1024
processors (Figure 2).

The 1024 computational nodes can be thought of as eight groups of 128 processors each. Each
group consists of 16 clusters of eight directly connected computational nodes. (Recall that where 2d

processors are arranged in a hypercube pattern, d of them are directly connected.) Within a cluster,

each computational node has 22 direct memory access (DMA) channels. Twenty of these are
paired into 10 bi-directional communication links and are used for messages (data transfer) to and

from direct neighbours. The remaining pair of channels is bundled together with the 127 other

pairs of the same group and brought through the backplane to one of the I/O slots. This results in

what is called a system I/O channel. Clearly, an NCUBE system with 1024 computational nodes
has 8 system I/O channels. Next, an I/O board is interfaced to a backplane to serve the 128

processors organized into 16 clusters of 8 directly connected computational nodes. Another cube

with 16 nodes is connected to the other side of the 1/O board. Each of these nodes has direct access

to a disk through a private controller. Hence, each ofthese 16 nodcs can directly serve one ofthe 16

clusters of computational nodes. In other words, each computational node within a cluster of eight

directly connected processors has a direct access to a disk through a dedicated node connected to
the other side of an I/O board, in summary, the !/(9 subsystem outlined above supports 1024

processors with 8 system I/O channels, 128 controllers and 128 disks, it has the potential for a

minimum I/O speed-up of 128.

In the following, the words 'host' and 'DBM' denote respectively the collection of processors

serving an I/O board and a generic sequential data base manager. After a given finite element

Figure 2. NCUBE's lOsubsystem

2546 c FARHAT. E. PRAMONO AND C. FELIPPA

domain is decomposed, it is grouped into regions R;, i= 1..... 128, each containing eight
(preferably adjacent) subdomains DJ]',j= I 8. A host processor p.h is uniquely mapped onto

each region Ri. It is assigned the task of handling !/O manipulations associated with computations

performed primarily in the eight subdomains within Ri. Basically, since p_ is directly connected

from one side to each of the eight processors p i assigned • R,to subdomams Dj , and from the other to
its dedicated disk, it can directly transfer data from pj's RAM, j= ! 8, to the disk and vice

versa. This is implemented as follows. Each host processor ph is loaded with the same program

driver, which we will call the listener, and the same copy of DBM. The main task ofthe listener is to

listen to processor p/s requests for 1/O, j = I.... 8. These requests may be:

• receive data from p_ and store it in disk using DBM;

• retrieve data from disk through DBM and send it to p_;

• retrieve data from disk through DBM, send it to another host processor ph together with the
instruction of broadcasting it to a specified number of computational nodes that are directly

connected to ph; this particular operation implements potential exchange of data between
subdomains.

Consequently, only a small amount of RAM is required on a host processor. It corresponds to the
storage requirements of an executable listener with its buffer for data transfer and of an executable

code of a DBM system. Note that the size of a message is not limited by the amount of buffer

memory available on the host processor but by the amount of memory allocated by the operating

system for a message passing operation. Hence, a large record of data may need to be split and
transferred via more than one message.

On most local memory multiprocessors, a node sends a message to another node (or set of
nodes) by typically executing a 'send' system call with the following parameters: (a) a set of

destination nodes, (b) a process id, (c) a message type, (d) a buffered message or a pointer to the

message buffer and (e) the length of the message (usually in bytes). Similarly, a node initiates the

receipt of a message from another process by issuing a 'receive' system call with parameters

corresponding to the 'send' call. In many cases, 'send' and 'receive' cannot be coordinated. This is

the case, for example, when a host processor does not have a priori the schedule of the messages

that computational nodes will issue during the finite element analysis. In such situations, a host

processor can 'probe' for all pending messages of a specific type and act when a message of a given
type is available for reception. A computational node program transmits its instructions and data

to the listener via a message buffer denoted here by BUFFER, and formatted as indicated below:

KEY I KEY 2 KEY 3 INSTRUCTION TAGGED DATA

TAG DATA

Example:

BUFFERE1]

BUFFER{2]

BUFFER[3]

4 23 4 STORE IN FILE "STIFF"]

points to the location in BUFFER of the instruction stream to be processed
then delivered to DBM.

points to the location in BUFFER of the data stream to be processed then
delivered to DBM.

contains the number of continuing messages.

I'arat.u_ulO 2547

on most local memory multiprocessors, messages issued by a node to a same other processor

are received in the same order that they are sent. Hence, ifcomputational node p/, sends to a host

processor p_ an instruction and/or data message followed by two other messages containing the

remaining of the data, p_ receives first the instruction tailed with the first part of the data, then the

rest of the data. However, problems may occur if two different computational nodes p_ and p_ each
send a set of continued messages to the same host processor p_. In this case, the host processor
might receive the messages in disordcr. To eliminate ambiguity, the logic of the listener is
implemented as following:

• it receives a first message, identifies its type and the number of continuation messages;

• it probes for pending continuation messages of the same type, receives and processes them

Ipending messages of a different type are queued by the operating system);
• it listens to another starting message.

Next, we describe another approach, this one for multiprocessors with shared memory.

Shared memory approach

It is possible to simulate a local memory multiprocessor with a shared memory one, by

partitioning the global memory into locations each fetched always by the same processor.

Consequently, the approach presented above for parallel I/0 on local memory multiprocessors

identically applies to shared memory machines. However, we see three reasons for adopting a
different approach on shared memory parallel processors.

1, Mimicking a local memory system on a shared memory one defeats the purpose of sharing
information.

2. As described previously, the local memory approach tics a given processor indefinitely to the

I/O needs of a specific region of the finite element domain. We refer to this as a static

mapping of a processor onto a subdomain. A key issue in performance of parallel processing

is load balancing. When the amount of work tcomputations + I/O1 to be performed can be

predicted for each region of a mesh, it can be evenly distributed among the processors

through a careful partitioning of the geometrical domain and an adequate mapping of the

processors onto the resulting subdomains. When such prcdictions are not possible, a

dynamical load balancing algorithm is necessary for optimal performance on parallel

processors. Local mesh refinements in adaptive computations and local material properties
changes in elastoplastic analyses are examples of situations where the mapping of a processor

onto a subdomain needs to be re-defined at each computational step. Note that on local

memory multiprocessors re-mapping of the processors on the finite element domain implies
a substantial amount of data transfer between the processors, and what is gained with the

even redistribution of computations and I/O is lost with interprocessor communications. On

the other hand, the dynamical re-mapping of the processors of a shared memory system for

complex finite element computations can be achieved at almost zero overhead COSt. 9

3. Because of the ability of a processor to reference any location in the global memory, shared

memory multiprocessors provide the programer with a wider variety of parallel strategies

than do local memory systems. One ought to take advantage of this fact. It will be shown that

our approach for parallel I/O in finite element computations on shared memory multi-
processors embeds our approach on local memory machines as a particular case.

Unlike the previous approach, a single executable version of a sequential DBM is stored in the

global memory of the multiprocessor. Moreover, there is no need for a listener since all processors

2548 ('. I:ARtlAT, E. PRAMONO AND C. FEI.IPPA

can directly access DBM, the I/O li.brary and the disks. However, the core of the computational

routines needs to be slightly modified to distinguish between global variables, which are shared by

all the defined processes, and local variables, which have a single name to ease programming but a
distinct value for each process. Using parallel constructs such as those of The Force _° reduces the

nature and amount of modifications to one: that of preceding each Fortran declaration of a

variable by either the word SHARED or the word PRIVATE. While our approach for parallel I/O

on local memory machines is subdomain oriented, it is purely data oriented on shared memory

multiprocessors. In the following, we distinguish between four classes of parallel 1/O requests.

1..S'vmhronou._ request with private cariahh,s [SRPV]. All processes request I/O operations
simultaneously, each with a private buffer area. Typically, this happens in an SIMD programming

style, even when the multiprocessor is of the MIMD type. For example, suppose that all of the
processes have to perform the same amount of identical computations but on distinct sets of data,

and suppose that these computations are such that out-of-core temporary storage associated with

each set ofdata is needed. Here, identity in the instructions calls for synchronous parallel I/O, and
independence in the data sets calls for private temporary storage.

2. Synchronous request with shared variables [SRSV]. All processes request 1/O operations

simultaneously using a common buffer area. For example, consider the previous case with the

additional assumption that the nature of the computations requires shullling of the temporary

data between processes.

3. Asynchronous request with private variables [ARPV]. A process requests I/O operations

independently of another process and with a private buffer area. These requests are identical to
those on MIMD local memory multiprocessors. For example, the entire approach described

earlier for local memory multiprocessors fits into this class of I/O requests.

4. Asynchronous request with shared variables [ARSV]. A process requests I/O operations

independently of another process using a shared buffer area.

Clearly, the four classes of I/O request described above cover all the possibilities on a shared

memory muitiprocessor. At this point we introduce the following remarks.

1. Synchronous and asynchronous refer to the initiation of the processes and not to their

execution. Two processes can be initiated at the same time but executed at two different

times, for example, if one processor were tied up by a previous process.

2. [ARSV] requires that a pointer to the location in the buffer of the starting address for storage

and/or retrieval of data be carefully computed by its owner process, in order not to destroy

the information by overlapping the data.

3. The multiprocessor will take no responsibility for automatically generating synchronization.

It is entirely the responsibility of the user to make sure that the shared data to be created by

one process and to be read by another process are available before an [ARSV] is issued.

Typically, one invokes an explicit synchronization instruction for that purpose.

Next, we describe a simple parallel l/O manager, PIOM, which copes with our four defined I/O

requests. First, note that PIOM can handle [A R PV] and [A RSV] exactly as in the sequential case.

Hence, [SRPV] and [SRSV] are the requests which call for a modification of a basic sequential

i/O manager. Moreover, after PIOM recognizes that [SRPV] deals with private variables, it can

treat it exactly as [ARPV], with the difference that calling processes are responded to in parallel.

PARAt.LEL 1,0 2549

In other words, [SRPV] is treated as a set of simultaneous [ARPV]. Conscqucntly, the treatment
of [SRSM] is P1OM's major task.

For each file related to an [SRSV], PI()M consults an I/O table. If the request is for storing
data, PlOM's logic is as follows:

(SI) it partitions the information into a number of contiguous subsets equal to the number of

calling processes, each subset containing an equal amount of data.

($2} for each subset, it computes a pointer to the location in the shared buffer where the subset

data stream begins.

($3_ for each calling l_rocess, it creates a corresponding "S' I/O process. Each 'S" I/O process is

assigned a subset of the data with its pointer,

(S4) it reports in the 1/O table the total numbcr of created "S"I/O processes. For each "S" I'O

process, it specifies the length of its assigned data and their destination on a hardware
device.

($51 it fires thc "S' I/O processes. Each "S" I/O process rc-partitions its assigned data into at

number of records that is a multiple of the total number of available processors on the

machine, then calls DBM independently of anothcr "S" I/O process. The reason for the

internal partitioning will bccomc clearer in the remarks which follow.

On the other hand, if the requcst is for retrieving data, P1OM's logic becomes:

(R1) it retrieves the bO table corresponding to the tile. If the number of calling processes is

equal to the nt, mber of processes registered in the table (the "S" processes which originally

stored the lilt), the inverse logic to the "store" case is followed and thc data arc retricvcd in

parallel. If not:

(R2) for each registered 'S" IO process, it partitions its subset of information into a number of

contiguous blocks of data equal to the number of calling processes, each block containing

an equal amount of data.

(R3) for each block, it computes at pointer to the location in the shared bult'cr where the block

data stream begins.

(R4) for each registered "S" I;O process, it creates a number of "R" I/O processes equal to the

number of calling processes. Each "R" I/O process is assigned a block of the subset data

with its pointer.

(R5) it fires the "R" I/O processes.

{RO} it follows with the next 'S' process to be retrieved.

Clearly, step IS5) and steps (R2I to (R6t allow for a file that was written in parallel using p

processes to be read in parallel using p* processes, where p* is different from p. In this case, the
retrieval of the tile is carried out in p waves, each of a degree of parallelism equal to p*. The overall

logic is summarized in Figure 3.
In order to illustrate the llexibility of this approach, we describe tWO simple examples. Example

I illustrates the distinction between the mapping of the processors on the data during 1/O and

during computations. Example 2 illustrates the ability of the approach to handle dynamical load

balancing algorithms.

Examph' 1. A block of the stiffness matrix is to be retrieved from disk and factored using four

processors. An [-SRSV] is issued to read lhc block of the stiffness matrix. The partitioning of the
data by PIOM into contiguous subsets is shown in Figure 4(at. After the entire data are retricvcd

in parallel, the processors arc mappcd onto the stiffness matrix block in an intcrlcavcd fashion

(Figure 4(bl). Next a call for a parallel active column solver t_ is issucd.

2550 (" FARIIAT. E PRAMONO AND{' I'FI IPPA

P.i.O.M. -

.... J]
I Partitions data stream t

• I
I Crcates I/O sub-processes i

1
[Upd' tesJ/OtableI

!
I

[Fires sub-processes !

I Consults !/O table j

1
I Partitions data stream I

I
l Creates I/0 sub-processes I

I
I Fires sub-processes

Figure 3. A parallel l/O manager

Figure 4{at. Mapping for data retrieval Figure 4{b). Mapping for computations

Example 2. During coloured element-by-element computations, '_ NEB elemental stiffness
matrices have to be read from disk and processed for computation of residuals. Here again, an

[SRSV] is issued for parallel retrieval of the data. The mapping of Np processors on the elemental

stiffnesses is initially prescribed only for the first Np elements of NEB. After that, the elements are
processed as soon as a processor becomes available. Hence, the question of which element turns

out to be non-linear and which turns out to remain linear does not affect the load balancing.

Moreover, another I'SRSV] for another set of N EB elements to be read in parallel can be issued as

soon as a processor is done with its computations and while all the others are still tied up with the

last Np-I elements to be processed.

5. IMPLEMENTATION ON THE CRAY-2

The CRAY-2 supermultiprocessor is characterized by a global memory of 256 million 64-bit

words, four background processors and a clock cycle of 4-1 nanoseconds. It is the target machine

PARALLEL I/0 2551

for our first experiments with parallel I/O. The four background processors can operate

independently on separate jobs or concurrently on a single problem (CRAY Research Inc. refers to

this as multitasking). Each processor can independently coordinate the data flow between the

system common memory and all the external devices across four high-speed I/O channels.

As stated in Section 3, multitasking I/O is possible on CRAY-2 with the restriction that different

processes can simultaneously perform I/O only on separate files that are located on different disks.

The shared memory approach presented in Section 4 is slightly modified to accommodate

CRAY-2's limitations. Any file specified by the user is automatically partitioned by PIOM into a

number of 'sub-files' equal to the number of I/O processes. The partitioning and the sub-files
names are transparent to the user. They are recorded in the I/O table for further !/O processing.

Three algorithms--chunking, interleaving and interleaving with buffering--are considered for

mapping the data onto the sub-files.

The blocking algorithm is a straightforward implementation of _eps (S I) and ($2) described in

Section 4. The data to be transferred are partitioned into a number of subsets of contiguous data

equal either to the number of available disks, or to the number of calling processes, whichever is

smaller. This algorithm is very fast, but has two main drawbacks:

• it may not utilize all the available processors for some I/O read requests. For example,

consider the case where the information to be read corresponds to data that were previously

written by PIOM on the same physical disk.

• appending to an existing file may not be efficient.

The reader should note that the words 'a file' refer to what is in the user's mind. PIOM always

splits 'the' file into as many sub-files as there are available disks. Appending an existing file, and
reading from an arbitrary location in a file, are two operations which are better handled by the

interleaving algorithm. Basically, if N d denotes the number of available disks, and D denotes the

data stream to be processed, this algorithm partitions D into a set of segments S_ of arbitrary sizes,

and assigns each segment S_ to disk rood (i, N a) (Figure 5).
The interleaving algorithm above requires the 1/O manager to be invoked a number of times;

that number is equal to the ratio of the number of segments divided by the number of disks, Nd.

Each time the 1/O manager is invoked, it conveys the information segment directly from main

memory to auxiliary storage or vice versa. Another approach consists of first buffering the

segments of a given parallel I/O process in an order that reflects their layout in their assigned disk,

then invoking only once the I/O manager to execute the parallcl I/O requcst.

1112 I al* [5 [_171 a

MAIN STORAGE

I 9 I lo 111 112 I

['1 [a [7 I lo _:i!i:iii:!:3:_:ii!i!_i_i:iiiii:_:_:i:!:i:_:_:_:_:_:_:_:!;i:_ii:i_i:i_i_i:_:_:_:i:i:!:i:i_ii!_:i_DISK 1

L,, 3 [6 I 9 I _2 Illlllllllllllllllllltlllllllilllllllllllllllllllllllllil}llllllltllll![lIllll

Figure 5. Interleaving data on disks

DISK 3

2552 c. FARHAT. E. PRAMONO AND C. FELIPPA

The practical implementation of the three algorithms described above is carried out with The

Force, t° a preprocessor which provides a FORTRAN style parallel programming language
utilizing a set of parallel constructs. [ARPV] and [ARSV] are implemented with regular CALL
statements to PIOM: each pro_:ess executes independently of the other its call to a subroutine,

delivering a different data buffer. [SRPV] and [SRSV] are implemented with the FORCECALL

executable statementto PIOM: this construct causes the entire processes to jump and execute

parallel calls to PIOM. In the latter case, the processes' ids are automatically passed to PIOM.
Performance results for the three algorithms are reported in Tables II. I!I and IV. Tables II and III

are associated with a segment size equal respectively to 1 sector (1024 bytes) and 1 track (65536

bytes). They compare the performance of the three algorithms for a parallel read request consisting

of retrieving a 24 Mbytes data stream using 2 CPU's. Wall-clock, system time and user time are

reported. System time corresponds to the time elapsed in P1OM managing parallelism. User time
is associated with I/O overhead.

Table II. Performance results

Parallel read--lnformation size = 24 Mb--Segment size = ! sector
.....................................

Clock System User
{sec) {sec) (sec)

Chunking 1.222 7.777E- 5 3.482E- 2
Interleaving {buffering) 4-885 2'0565 2.922E- 2
Interleaving 6-604 0'5916 2'523

Table Iil. Performance results

Parallel read- -Information size = 24 Mb--Segment size = I track

Clock System User
(sec) (sec) (sec)

Chunking 1.222 7-777E - 5 3'482 E - 2
Interleaving {buffering) 4.120 1-965 3.917E- 2
Interleaving 1.159 9,30E- 3 7.643E- 2

Table IV. Speed-up

Chunking algorithm--Information size = 200 Mb

[Process 2 Processes 3 Processes
(sec) {sec) (sec)

.............................

Write 21'603 12.208 10.036
Speed- up 1.0 1.77 2"15

Read 1'165 0.584 0.390
Speed-up 1.0 1.99 2-99

ParaLLel. l,o 2553

For a segment size equal to 1 sector, the chunking algorithm is by far the fastest. For this

example, the number of segments to bc processed, which is given by the ratio information

sizejsegment size. is such that the interleaving algorithm has a high overhead associatcd with I/O

instructions, and tile interleaving with buffering algorithm has :t high ovcrhcad associated with
PIOM's instructions.

However. for a segment size eqtt_ll to 1 track, the interleaving algorithm performs best. This is

because for the given segment size, fewer segments need to be processcd and less time is elapsed in
I;'O instructions.

The above results provide the user with a guidance for the selection of any of the three

implemented parallel algorithms.

Table IV reports the wall-clock time and measured speed-up for parallel read/write requests

using the chunking algorithm. Only three out of the four available CRAY-2 CPU's were activated

because only three different disks were available. For each case, the size of the data stream to be

processed was fixed to 200 Mbytes.

Clearly, very high speed-ups are achieved for both read/write parallel requests. Note, however,

the pathological performance for the write case with three processors. We have not yet been able

to justify this particular result.

6. CONCLUSION

Finite clement analyses are known to bc I;O bounded. In this papcr, two approaches are presented

to spccd I_O manipulations through parallel processing. The lirst approach deals with local

memory MIMD multiprocessors and is based on a substructuring technique. The second

approach is dedicated to shared memory multiproccssors. It has been implemented and tested on

a CRAY-2 system with four CPU's. The obtained performance results confirm the potential of

parallel processing in I/O manipulations. Future work will address I/O operations on the data

vaults of the Connection Machine (65,536 processors).

ACKNOWLEDGEMENT

The first author wishes to acknowlcdgc the partial support ofa CDC PACER Fellowship Award,

with Dr R. F. Woodruffas technical monitor. The second and third authors acknowledge partial

support by NASA Langley under Grant NAG-I-756, with Drs J. Housner and J. Stroud as

technical monitors.

REFERENCES

I. O. A. McBryan, 'State of the art in highly parallel computer systems', in A. K. Noor led.), Parallel Computation._ and

Their Impact on Mechanic.s, American Society of Mechanical Engineers, New York, 1987.
2. J. M. Ortega and R. G. Voigt, 'A bibliography on parallel and vector numerical algorithms'. NASA CR.178335. 1987.
3. D. W. White and J. F. Abel, 'Bibliography on finite elements and supercomputing, Commun. Appl. Numer. Method.s, 4,

279-294 (19881.
4. J.-C. Golinval, "Calcul de la response d'unc slruclurc cn viscoplasticitc cyclique'. R_pport SI"-133, Aerospace Research

Laboratory, University of Liege, 1985.
5. B. Irons, 'A frontal solution program for finite element analysis', Int. j. numer, method._ emt., ?, 5-32(19701.
6. CRA Y-2 Multitasking Progr_tmmer's Manual--.SN-2026.
7. C. Farhat, "A simple and efficient automatic VEM domain decomposer'. Comp. Struct., 7'8, 579-602 (19881.

8. C. Farhat and E. Wilson, 'A new finite element concurrent computer program architecture', Int. j. numer, methods enf.t.,

24, 1771-1792 (1987).
9. C. Farhat and L. Crivelli, 'A general approach to nonlinear FE computations on shared memory multiprocessors',

Comp. Method._ Appl. Mech. Eno., 72, 153-171 11989).
10. H. Jordan, M. Benten and N. Arenstorf, Force User'._ Manual, Department of Electrical and Computer Engineering,

University of Colorado, Boulder, Colorado.
11. C. Farhat and E. Wilson, 'A parzdlel active column equation solver'. ('omp. Struct., :_8, 289-304 (1988).

A METHOD OF FINITE ELEMENT

TEARING AND INTERCONNECTING

AND ITS PARALLEL SOLUTION ALGORITHM

Charbel Farhat

Department of Aerospace Engineering Sciences

and Center for Space Structures and Controls

University of Colorado at Boulder

Boulder, CO 80309-0429, U. S. A.

and

Francois-Xavier Roux

O. N. E. R. A. Groupe Calcul Parallele

29 Av. de la Division Leclerc

BP72 92322 CHATILLON Cedex, FRANCE

Abstract. A novel domain decomposition approach for the parallel finite

element solution of equilibrium equations is presented. The spatial domain is

partitioned into a set of totally disconnected subdomains, each assigned to an

individual processor. Lagrange multipliers are introduced to enforce compatibil-

ity at the interface nodes. In the static case, each floating subdomain induces a

local singularity that is resolved in two phases. First, the rigid body modes are

eliminated in parallel from each local problem and a direct scheme is applied con-

currently to all subdomains in order to recover each partial local solution. Next,

the contributions of these modes are related to the Lagrange multipliers through

an orthogonality condition. A parallel conjugate projected gradient algorithm is

developed for the solution of the coupled system of local rigid modes components

and Lagrange multipliers, which completes the solution of the problem. When

implemented on local memory multiprocessors, this proposed method of tearing

and interconnecting requires less interprocessor communications than the classi-

cal method of substructuring. It is also suitable for parallel/vector computers

with shared memory. Moreover, unlike parallel direct solvers, it exhibits a degree

of parallelism that is not limited by the bandwidth of the finite element system

of equations.

1. Introduction

A number of methods based on domain decomposition procedures have been

proposed in recent years for the parallel solution of both static and dynamic

finite element equations of equilibrium. Most of these methods are derived from

the popular substructuring technique. Typically, the finite element domain is

decomposed into a set of subdomains and each of these is assigned to an individual

processor. The solution of the local problems is trivially parallelized and usually

a direct method is preferred for this purpose. Parallel implementations of both a

direct (Farhat, Wilson [1]) and an iterative (Nour-Omid, Raefsky and Lyzenga [2])

solution of the resulting interface problem have been reported in the literature.

A number of more original approaches have also been spurred by the advent of

new parallel processors. Ortiz and Nour-Omid [3] have developed a family of

unconditionally stable concurrent procedures for transient finite element analysis

and Farhat [4] has designed a multigrid-like algorithm for the massively parallel

finite element solution of static problems. Both of these developments relate to

the divide and conquer paradigm but depart from classical substructuring.

In this paper, we present a parallel finite element computational method for

the solution of static problems that is also a departure from the classical method

of substructures. The unique feature about the proposed procedure is that it

requires fewer interprocessor communication than traditional domain decompo-

sition algorithms, while it still offers the same amount of parallelism. Roux [5,

6] has presented an early version of this work that is limited to a very special

class of problems where a finite element domain can be partitioned into a set

of disconnected but non-floating subdomains. Here, we generalize the method

for arbitrary finite element problems and arbitrary mesh partitions. We denote

the resulting computational strategy by "finite element tearing and interconnect-

ing" because of its resemblance with the very early work of Kron [7] on tearing

methods for electric circuit models. In Section 2, we partition the finite element

domain into a set of totally disconnected subdomains and derive a computational

strategy from a hybrid variational principle where the inter-subdomain continuity

constraint is removed by the introduction of a Lagrange multiplier. An arbitrary

mesh partition typically contains a set of floating subdomains which induce local

singularities. The handling of these singularities is treated in Section 3. First,

the rigid body modes are eliminated in parallel from each local problem and a

direct scheme is applied concurrently to all subdomains in order to recover each

partial local solution. Next, the contributions of these modes are related to the

Lagrange multipliers through an orthogonality condition. A parallel conjugate

projected gradient algoi'itlun is developed in Section 4 for the solution of the

2

coupled system of local rigid modes components and Lagrange multipliers, which

completes the solution of the problem. Section 5 deals with the preconditioning of

the interface problem in order to speed up the recovery of the Lagrange multipli-

ers. Section 6 emphasizes the parallel characteristics of the proposed method and

Section 7 contrasts it with the method of substructures. Section 8 discusses some

important issues related to the partitioning of a given finite element mesh. Fi-

nally Section 9 illustrates the method with structural examples on the distributed

memory hypercube iPSC (32 processors) and the shared memory parallel/vector

CRAY-2 system (4 processors), and Section 10 concludes the paper.

2. Finite element tearing and interconnecting

Here we present a domain decomposition based algorithm associated with a hy-

brid formulation for the parallel finite element solution of the linear elastostatic

problem. However, the method is equally applicable to the finite element solu-

tion of any self-adjoint elliptic partial differential equation. For the sake of clarity,

we consider first the case of two subdomains, then generalize the method for an

arbitrary number of subdomains.

The variational form of the three-dimensionM boundary-_lue problem to be

solved goes as follows. Given f and h, find the (Ssplacement function u which is

a stationary point of the energy functional:

1

J(v) = _a(v,v)-(v,f)-(v,h)r

where

a(v,w) = _ v(i,j)CijklW¢k,l)

(v,f) = f_vifi d_

(v,h)r = fr vihi dI _
h

dn (1)

In the above, the indices i,j,k take the value 1 to 3, v(i.j) = (vi,j + vj,i)/2 and

vi,j denotes the partial derivative of the i - th component of v with respect to

the j - th spatial variable, cijkl are the elastic coefficients, f/ denotes the volume

of the elastostatic body, F its piecewise smooth boundary, and Ph the piece of F

where the tractions hi are prescribed.

3

If f_ is subdivided into two regions f_l and _2 (fig. 1), solving the above

elastostatic problem is equivalent to finding the two displacements functions ul

and u2 which are stationary points of the energy functionals:

21(1)1)=

22(1)2)=

where

a(1)l,wl)n_ = Ja_

.£a(1)2,w2)a, =
2

(1)l,f)n, = Ja,

(1)2,f)n, = _,

(1)l,h)r, = fr_

(v2,h)r, = frh,

_a(1)1, l)l)fll -- (1)1, f)fll -- (1)1,)F1
h

-_a(v2,1)2)f_, - (1)5, f)_, - (v2, h)r,

1)l (i,j)CijklWl (k,i) df'l

1)2(i,j)CijklW2(k,l) dfl

vlifi d_

v2ifi df_

vlihi dr'

I

v2ih i dr

(2)

and which satisfy on the interface boundary ri the continuity constraint:

Ul -" u2 on l_l (3)

4

FIG. I Decorapo_ition in tyro subdorrzair_s

Solving the two above variational problems :2) with the subsidiary continuity

condition (3) is equivalent to finding the saddh point of the Lagrangian:

where

(vl-v2,#)r, = fr /_(vl-v2) dF
it

(_)

-- that is, finding the two displacement fields ul and u2 and the Lagrange mul-

tiplier A which satisfy:

j'(u_,_,2, _) _<J'(_,_,a) _<d*(_, _2,a) (5)

for any admissible vl, v2 and/_. Clearly, the left inequality in (5) implies that

(Ul - u2,#)r, _< (ul - u2,,k)r,, which imposes that (ul - u2,/_)r, = 0 for any

admissible/z and therefore ua = u2 on r's. The right inequality in (5) imposes

that J1 (ul)+ J2(u2) <_ Ja(va)+ J2(v2) for any pair of admissible functions (vx, v2).

This implies that among all admissible pairs (vl, v2) which satisfy the continuity

condition (3), the pair (ul, u2) minimizes the sum of the energy functionals J1

and J2 defined respectively on _1 and _2. Therefore, ul and u2 are the restriction

of the solution u of the non-partitioned problem (1) to respectively _1 and _2.

Indeed, equations (4) and (5) correspond to a hybrid variational principle where

the inter-subdomain continuity constraint (3) is removed by the introduction of

a Lagrange multiplier (see, for example, Pian [8]).

If now the displacement fields ul and u2 are expressed by suitable shape

functions as:

U 1 = Nul and u2 ---- Nu2

and the continuity equation is enforced for the discrete problem, a standard

Galerkin procedure transforms the hybrid variational principle (4) in the fol-

lowing algebraic system:

Klul =fl+B_A

K2u2 = f2 - B_A (6)

Blul = B2u2

where Kj, uj, and fj, j = 1, 2, are respectively the stiffness matrix, the displace-

ment vector, and the prescribed force vector associated with the finite element

discretization of _2j. The vector of Lag-range m_dtipliers A represents the interac-

tion forces between the two subdomains f_l and _22 along their common boundary

FI. Within each subdomain f_j, we denote the :mmber of interior nodal unknowns
s x The total number ofby nj and the number of interface nodal unkl_owns by nj.

interface nodal unknowns is denoted by hi. Noze that n_r = n{ = n / in the partic-

ular case of two subdomains. If the interior deg'rees of freedom are numbered first

and the interface ones are numbered last, each of the two connectivity matrices

B1 and B2 takes the form:

Bj = [Oj Ij] j=1,2

/ x r identity matrix. Thewhere Oj is an nj × n_ null matrix and Ij is the nj × nj

vector of Lagrange multipliers A is n/long.

If both K1 and K2 are non-singular, equations (6) can be written as:

6

(BIK_'IBT-bB_K21B2T),x= B2K21f2- B_K7IfI
u, = K71(f_-bBTX)

-_ = KT'(f_- B_,X)

(7)

and the solution of (6) is obtained by solving the first of equations (7) for the

Lagrange multipliers _, then substituting these in the second of (7) and back-

solving for ul and u2.

For an arbitrary number of subdomains f/i, the method goes as follows.

First, the finite element mesh is "torn" into a set of totally disconnected meshes

(fig. 2).

[F

l

\

I
I

/z
I

t

FIG. 2 Finite Elemeni Tearing

For each mesh, the stiffness matrix K i and the vector of prescribed forces fj are
k

formed. Next, for each f/j, a set of boolean symbolic matrices B i are set up to
k

interconnect the mesh of f_i with those of its neighbors f/k. In general, Bj is

nI x (n_ "Jr n_) and has the following pattern:

7

o (j,k)
= Cj

02(j,k)

whereO1(j,k) isanrnl(j,k) 8 Ix (nj+nj) zero matrix, O2(j, k) is another m2(j, k) x
k

(n; + n/) zero matrix and Cj is an mc(j,k) x (n; + n_) connectivity matrix,

me(j, k) is the number of Lagrange multipliers that interconnect _j with its

neighbor _k, and ml(j, k) and m2(j, k) are two non-negative integers which satisfy
k

ml(j,k) + mc(j,k) + m2(j,k) = nx. The connectivity matrix Cj can be written
as:

k k
Cj = [O3(j,k) 1i O4(j,k)]

where Oa(j,k) is an rnc(j,k) x ms(j,k) zero matrix, is the rnc(j,k) x m,(j,k)

identity matrix, O4(j, k) is another m,(j,k) x m,(j,k) zero matrix, and ms(j,k)

and rn4(j,k) are two non-negative integers which verify ms(j,k) + mc(j,k) +

m4(j,k) = n_ + n I. If aj and N, denote respectively the number of subdomains

_k that are adjacent to _'/J and the total number of subdomains, the finite element

variational interpretation of the saddle-point problem (4) generates the following
algebraic system:

k= aj

Kjuj -- fj+ _ B_TA j-I,N,

k=l

B_uj = B_uk j = 1, N, and flk connected to _j

(s)

If K s is non-singular for all j = 1, No, the solution procedure (7) can be

extended to the case of an arbitrary number of subdomains. However, the finite

element tearing process described in this section may produce some "floating"

subdomains f_! which are characterized by a singular stiffness matrix Kf. When

this happens, the above solution algorithm (7) breaks down and a special com-

putational strategy is required to handle the local singularities.

We refer to the computational procedure presented herein as the method

of finite element tearing and interconnecting because of its resemblance with

Kron's tearing method [7] for electric circuit models. We also note that the

utility of Lagrange multipliers specifically for domain decomposition has also

been previously recognizedby other investigators (Dihn, Glowinsky and Periaux
[9], Dorr [10]).

3. Handling local singularities

Again, we focus on the two-subdomain tearing. The extrapolation to N_ > 2 is

straightforward. For example, suppose that f_ corresponds to a cantilever beam

and that _1 and _'/2 are the result of a vertical partitioning (fig. 3).

I|llllllll]llllli[llltlll|ll

[lllllTIIIlIIIIIIIIIIl|llllll

IIIIllllllllll|l|l II1|1

_]lllli[lll]lllll[ll]lll|llll

1111117]111ll]1t1111|1|111111

;Illlli[I]lllllllll[lllllllll

'ltllllllllllllill|llllll|lll

illllllllllllllll]llllll[lll

illlllllllllllll]ll[llllllIII

IIIIIIIIIIII1111111111111111

I111111111111111111111111111

_lllllIllllllllllll[ll[lllll I

FIG. 3 Decomposition resulting in a singular subdomain

In this case, K1 is positive definite and K2 is positive semi-definite since no

boundary condition is specified over _2. Therefore, the second of equations (6):

K2u2 = f2 - BTA (9)

requires special attention. If the singular system (9) is consistent, a pseudo-inverse

of K2 can be found, -- that is a matrix K + which verifies K2K+K2 = K2, and

the general solution of (9) is given by

u2 = K +(f2 - BTA) + R_ct (10)

where R2 is an (hi +n2/) x n[rectangular matrix whose columns form a basis of the

null space of K2, and ct is a vector of length n_. Physically, R2 represents the rigid

body modes of f/2 and c_ specifies a linear combination of these. Consequently,

we have n_ < 6 for three-dimensional problems, and n_ < 3 for two-dimensional

problems. Substituting (10) into (7) leads to:

(BIKT'B T + B2K+BT)A = -B,K_-'fl + B2(K+f2 + R2ct)

ul = K_'1(fl +BTA)

u2 = K+(f2 - BTA) + R2a

(11)

It should be noted that:

1. because B i is a boolean operator, the result of its application to a matrix or

vector quantity should be interpreted as an extraction process rather than a

matrix-matrix or matrix-vector product. For example, B2R2 is the restric-

tion of the local rigid modes R2 of gt2 to the interface unknowns. In the

sequel we adopt the notation:

R_ = B2R2

2. the pseudo-inverse K + does not need to be explicitly computed. For a given

input vector v, the output vector K+v and the rigid modes R2 can be

obtained at almost the same computational cost as the response vector K_lv,

where K1 is non-singular (see appendix A).

3. system (11) is under-determined. Both X and a need to be determined before

ul and u2 can be found, but only three equations are available so far.

Since K2 is symmetric, the singular equation (9) admits at least one solution

if and only if the right hand side (f2 - BTA) has no component in the null space

of K2. This can be expressed as:

RT(f_-- BTA) = 0 (12)

I0

The above orthogonality condition provides the missing equation for the complete

solution of (11). Combining (11) and (12) yields after some algebraic manipula-
tions:

Fx_R/T]
ui = K71(fl +BTA)

u2 = g +(f2- + (13)

where

F, = (B1K_-'B T + B2K+B T)

Clearly, F r is symmetric positive definite and R / has full column rank. Therefore,

the system of equations in (_X,ct) is symmetric and non-singular. It admits a

unique solution (_,, cx) which uniquely determines ul and us.

It is important to note that since n_ _< 6, systems (13) and (7) have almost

the same size. For an arbitrary number of subdomains Ns of which NI are

floating, the additional number of equations introduced by the handling of local

singularities is bounded by 6NI. For large-scale problems and relatively coarse

mesh partitions, this number is a very small fraction of the size of the global

system. On the other hand, if a given tearing process does not result in any

floating subdomain, Iv is zero and the systems of equations (13) and (7) are

identical.

Next, we present a numerical algorithm for the solution of (13).

4. A preconditioned conjugate projected gradient algorithm

Here we focus on the solution of the non-singular system of equations:

1
O L -R2 f2 j

where

F1 = B1K_IB T+B2K+B T

(14)

11

We seekan efficient solution algorithm that does not require the explicit assembly

of FI.

The solution to the above problem can be expressed as:

A = -H(B2K_f2 - BIKe']f1) + TR_f2

cx = TT(B1K_-lfl -- B2K2+f2)- uRTf2

where

--I I --I I T --I :
H = F71 -F_ R2U R 2 F I

T = F/'RIu -1

rt ITi_- l D I
V -- --'"2 _"I "L_'2

(15)

As written in (15), this solution procedure is not recommended because it

requires either the evaluation of the inverse of FI, or the nested solutions of two
.f:_IT._--l._I

linear systems involving F/and -_2 _-I ""_" It is noted by Fletcher [11] that if

two matrices S and Z are computed such that:

s TR / -- I

(16)
z TR / = O

an alternative representation of the solution to (14) is given by:

A = -H(B2K+G - B1g lfl) + TR+G

c_ = TT(B1K_-_f_ - B2g+f_)- uRTf2

where

H = z(zTF/z) -lz T

T = S- HFxS

U = sTFIHFIS-sTFss

(17)

which does not require the explicit assembly of Fz if a suitable iterative scheme is

chosen for solving all the temporary systems involving the quantity (zTFIz) -1.

Still, the above solution procedure is not feasible because it requires the compu-

tation of S and Z -- typically via a QR factorization of some matrix involving

12

R_ [11], and the iterative solution of too many temporary systems before A and
c_ can be obtained.

Clearly, the nature of FI makes the solution of (14) inadequate by any tech-

nique which requires this submatrix explicitly. This implies that a direct method

or an iterative method of the S0R type cannot be used. The only efficient method

of solving (14) in the general sparse case is that of conjugate gradients, because

once KI and K2 have been factorized, matrix-vector products of the form Fiv

can be performed very efficiently using only forward and backward substitutions.

Unfortunately, the Lagrangian matrix:

']_R_ T

is indefinite so that a straightforward conjugate gradient algorithm cannot be

directly applied to the solution of (14). However, the conjugate gradient iteration

with the projected gradient (see, for example, Gill and Murray [12]) can be used

to obtain the sought-after solution. In order to introduce the latter solution

algorithm, we first note that solving (14) is equivalent to solving the equality

constraint problem:

minimize

subject to

¢(X) = 1XTFIX + (B1K_-'fl - B2K+f2)TA

R_TA = RTf2

(18)

Since F1 is symmetric positive definite, a conjugate gradient algorithm is most

suitable for computing the unique solution to the unconstrained problem. There-

fore, this algorithm will converge to the solution to (18) if and only if it can be

modified so that the constraint R2_TA = RTf2 is satisfied at each iteration. This

can be achieved by projecting all the search directions onto the null space of R2¢.

13

The result is a conjugate gradient algorithm with the projected gradient. It

is of the form:

Initialize

Pick ,X(°) such that P,./Tx(°) = lctTf2

r (°) = (B_K+f2 - BiKe-if1)

Iterate k = 1,2, ... until convergence

_(k) =

s (k) =

s (k) =

r(_-l)Tr(k-1)/r(k-2)rr(k-2) (/3 (1) = 0)

r (k-l) -_]_(k)s(k--1) (S(1) = r(°))

[I -- "I_I['i_IT'I_I'_-I'I_IT]_(k)J""2 k "L_'2 "t "2 ; _ "_2 J_

7(k) -- r(k--1)Tr(k-1)/S(k)TFis(k)

A(_) = A(k-_) + 7(k)s (k)

r (k) = r (k-l) _ 7(k)Fzs (_')

(19)

(20)

A fast scheme for finding a starting ,k (°) which satisfies the constraint

R_TA (°) -- RTf2 is given in appendiz B. Clearly, R2/Ts (_') = 0 for all k > 1.

Therefore, R/TA (k) - R_TA (°) which indicates that the approximate solution

A (k) satisfies the linear equality constraint of problem (14) at each iteration k.

It is also important to note that within each iteration, orgy one projection is

performed. This projection is relatively inexpensive since the orgy implicit com-

putations that are involved are associated with the matrix I:_ITlr_I which is at

most 6 × 6. This matrix is factored once, before the first iteration begins. Except

for this small overhead, algorithm (20) above has the same computational cost as

the regular conjugate gradient method.

After X is found, the rigid body mode coefficients are computed as:

c_ = (R_TR_)-I(F,A - B2K_'lf2 + B,K_-lfl)

14

For an arbitrary number of subdomains Ns of which N I are floating, the

equality constraint is:

Only those columns of l:t T which operate on Lagrange multipliers that are

associated with F1 N f_j are non-zero. The projection matrix is P -" [I-

RI(RI TRI)- 1RI T] where I:tlTl:t I is generally banded of dimension at most equal

to 6Nf. The banded structure of P is determined by the subdomains intercormec-

tivity. If for practical reasons this banded structure is not exploited, the number

of three-dimensional floating subdomains should be kept as small as possible,

say less than thirty two, which implies that the proposed computational method

would be suitable only for coarse and medium grain multiprocessors.

5. Preconditioning the interface problem

As in the case of the conjugate gradient method, the conjugate projected gra-

client algorithm is most effective when applied to the preconditioned system of

equations. It should be noted that even in the presence of floating subdomains,

only FI needs to be preconditioned and not the global Lagrangian matrix L. In

the case of two subdomains, FI can be written in matrix form as:

where Kj -1, j = 1,2, is replaced by K + if _j is a floating subdomain. The

objective is to find an approximate inverse p_-I of FI that: (a) does not need to be

explicitly assembled (especially since FI is not explicitly assembled), and (b) that

is amenable to parallel computations. The matrix P is then the preconditioner.

Equation (21) above suggests the following choice for p71:

[K,o][BI]P71 = [B1 B2] O K2 B T
(2_o)

15

At each iteration k, the preconditioned conjugate projected grac_ent algorithm

involves the solution of an au_liary system of the form:

P1z (k) = r (k) (23)

where r (k) is the residual at the k - th iteration. The particular choice of p_-a

given in (22) offers the advantage of solving (23) explicitly without the need for

any intermediate factorization.

For computational efficiency, p/1 is implemented as:

p/1 = K1/q_K_ (24)

where Kxt and K_ are the traces of KI and K2 on rz. Clearly, with this choice

for the preconditioner, the auxiliary system (23) is "cheap", easy to solve and

perfectly parallelizable on both local and shared memory parallel architectures.

Since we do not have a strong mathematical justification for this choice of

the preconditioner, we have conducted a set of numerical experiments to assess

a priori its performance. A fixed-fixed cylindrical panel was discretized with an

N by ._ar regular mesh and was modeled with 4 node shell elements (fig. 4). All

test cases used Ns = 2 and a vertical slicing.

FIG. 4 Cylindrical panel - Ns = 2

16

Table 1 shown below reports the condition numbers of the global stiffness matrix

K, the subdomain stiffness matrices K1 and K2, and the original and precondi-

tioned interface flexibility matrices Fs and P}-IFI, for various values of N.

TABLE 1

Condilion numbers

Cylindrical panel - N by M mesh - shell elements - 2 subdomains

N M _(K) to(K1) to(K2) tc(Fx) to(P/IF/)

10 5 2.5 104 5.6 103 5.6 103 1.4 104 4.9 102

20 10 3.4 105 2.1 104 2.1 104 2.8 104 3.8 10 3

40 20 5.4 106 9.1 104 9.1 104 1.2 105 3.1 104

For this test problem, the condition number of the preconditioned interface

is two order of magnitude lower than that of the global problem.

The extrapolation of (22) and (24) to N, > 2 is straightforward. In order to

reduce furthermore the number of preconditioned conjugate projected gradient

iterations, the selective reorthogonalization procedure developed by Roux and

reported in [13] is also utilized.

6. Parallel characteristics of the proposed method

Like most domain decomposition based algorithms, the proposed method of finite

element tearing and interconnecting is perfectly suitable for parallel processing.

If every subdomain _/j is assigned to an individual processor pj, all local finite

element computations can be performed in parallel. These include forming and

assembling the stiffness matrix Kj and the forcing vector fj, factoring Kj and

eventually computing the rigid modes l_.j, as well as backsolving for uj after X and

ct have been determined. The conjugate projected gradient algorithm described

in Section 4 is also amenable to parallel processing. For example, the matrix-

vector product FIS (k) can be computed in parallel by assigning to each processor

_ (k) with the.(k) ,-,kT,-l_kT (k) and exchanging yjpj the task of evaluating yj = t_y_j t_j. sj ,

17

processors assigned to neighboring subdomains in order to assemble the global

result. Interprocessor communication isrequired only during the solution of the

interfaceproblem (14) and takes place exclusivelyamong neighboring processors

during the assembly of the subdomain results.

At this point, we stressthat the parallelsolution method developed herein

requires inherently lessinterprocessor communication than other domain decom-

position based parallel algorithms. As mentioned earlier,interprocessor com-

munication within the proposed method occurs only during the solution of the

interfaceproblem (14). The reader should trace back thiffproblem as well as the

presence of the Lagrange multipliersto the integralquantity:

(Vi -- Vj,,_)F,,j -- _p _(Vi -- V j) dr
lij

(25)

where FI_i is the interface between subdomains f_i and flj. If FI_j has a zero

measure, then (vi - vj, A)r_o = 0 and no exchange of information is needed be-

tween f/i and f/j. Therefore the subdomaJns which interconnect along one edge

in three-dimensional problems and those which interconnect along one vertex in

both two and three-dimensional problems do not require any interprocessor com-

munication. This is unlike the parallel method of substructures, whether the

interface problem is solved with a direct scheme [1] or with an iterative one [2].

For a three-dimensional regular mesh that is partitioned into subcubes, the pro-

posed method of finite element tearing and interconnecting requires that each

subdomain communicate with at most six neighboring subdomains (since a cube

has only six faces), while the parallel method of substructures necessitates that

each subdomain communicate with up to 26 neighbors (fig. 5). This communi-

cation characteristic makes the proposed parallel solution method very attractive

for a multiprocessor with a distributed memory such as a hypercube. Indeed,

the advantages of the method for this family of parallel processors are two folds:

(a) the number of message-passing is dramatically reduced, which reduces the

overhead due to communication start-up, and (b) the complexity of the commu-

nication requirements is improved so that an optimal mapping of the processors

onto the subdomains can be reached (Bokhari [14], Farhat [15]); therefore the

elapsed time for a given message is improved. Both enhancements (a) and (b)

reduce the communication overhead of the parallel solution algorithm in a syner-

gistic manner. This algorithmic feature of the proposed method is still desirable

for shared memory multiprocessors because it eases the assembly process during

18

the interface solution and makes the latter more manageable. It is not however

as critical for the performance as it is for local memory multiprocessors.

4 RATHER TI.I,AN 8 ._.

J

/

FIG. 5 Reduced interprocessor communication patterns

for two and three-dimensional regular mesh partitions

7. Tearing vs. substructuring

Another difference between the subdomaln based parallel solution method devel-

oped in this paper and the parallel method of substructures lies in the formulation

of the interface problem. For the method of substructures, the interface problem

corresponds to a stiffness formulation. For the two-subdomain decomposition it
can be written as:

(KH -- KTsKs:KII - KTIK:_K2I)UI = fii- KTK51f:: - KTIK221f22 (26)

where KH, Kll and K22 are the stiffness matrices associated respectively with

the interface nodes and the interior nodes of subdomains f_l and f_2, and Kll and

19

K2I are the coupling stiffnesses between respectively _21 and I'i and f_2 and PI

(see, for example [1] for further details). A standard conjugate gradient algorithm

may be used for solving (26). On the other hand, the resulting interface problem

for the method of finite element tearing and interconnecting corresponds to a

flezibility formulation. For the two-subdomain decomposition, it can be written

as in (14) and necessitates the use of a conjugate projected gradient algorithm

for finding the solution A.

If K1 and K2 are partitioned into internal and boundary (interface) compo-

nents and then are injected into the first of equations (7), it can be easily shown
that:

B_K_-_B T = (K(I_)- KTK;_K_I)-I

B2K_-IB_ = .- (2)(K H - K2V_K_-IK21)-I
(27)

where K(_) and K(/) denote respectively the contributions of the first and second

subdomains to KII. Equations (27) above establish the relationship between

both approaches to domain decomposition.

The computational implications of the differences between the two solution

methods are as follows:

• within each iteration, the solution process of problem (14) requires an

additional computational step which corresponds to the projection of the

search direction onto the null space of 1%2/.

* within each iteration, the solution process of problem (14) requires the

evaluation of the matrix-vector product BiK71BTs (k), while the solution

process of problem (26) requires the evaluation of the matrix-vector product

KTIK'filK.ilS (k). Given that B i is a boolean matrix and that its application

to a matrix or a vector defines a floating-point-free extraction process, each

conjugate gradient iteration applied to (14) is less computationally intensive

than its counterpart that is applied to (26).

* since a conjugate gradient algorithm captures initially the high frequency

mesh mode of a problem, it can be expected to perform better on a flexibility

matrix than on a stiffness matrix because the high frequencies of the former

are indeed the low frequencies of the stiffness matrix which are closer to the

solution of the static problem.

2O

In the light of the above remarks, it is reasonable to expect that for a given mesh

partition:

• each conjugate projected gradient iteration that is applied to the solution

of the interface problem (14) which results from the method of finite element

tearing and interconnecting will not be slower -- and may be even faster

for large-scale problems and a small number of interface nodes, than each

conjugate gradient iteration applied to the solution of the interface problem

(26) which results from the method of substructures.

• the iterative solution of the interface problem associated with the tearing

method will exhibit a faster rate of convergence than the iterative solution

of the interface problem resulting from the conventional method of substruc-

tures.

Finally, it should be noted that domain decomposition methods in general

exhibit a larger degree of parallelism than parallel direct solvers. The efficiency of

the latter is governed by the bandwidth of the given finite element system of equa-

tions. If the bandwidth is not large enough, interprocessor communication and/or

process synchronization can dominate the work done in parallel by each proces-

sor. This is true not only for multiprocessors with a message-passing system, but

also for super-vector-multiprocessors with a shared memory such as the CRAY

systems, where synchronization primitives are rather expensive. Therefore, the

computational method described in this paper should be seriously considered

for large-scale problems with a relatively small or medium bandwidth. These

problems are typically encountered in the finite element analysis of large space

structures which are often elongated and include only a few elements along one

or two directions (Farhat [16]). The method is also recommended for problems

where the storage requirements of direct solvers cannot be met.

8. Optimal mesh decomposition

The computational method described in this paper requires that the given finite

element mesh be partitioned into as many submeshes as there are available pro-

cessors. In this section, we establish some guidelines for the design of an optimal

mesh partition by analyzing the effect of its structure on the performance of the

global solution algorithm.

From the numerical point of view, the proposed solution method is hybrid in

the sense it combines a direct and an iterative schemes. The direct solver is ap-

plied to each subdomain problem, the iterative one to the interface between these

21

subdomains. If the mesh partition is such that the bandwidth of each subdomain

problem is of the same order as the bandwidth of the global unpartitioned sys-

tem of equations, the overall algorithm performs more operations than a direct

method applied to the global unpartitioned system, independently of how fast

the interface problem converges. The slicing of a parallelepiped along its largest

dimension yields such a partition (fig. 6). If on the other hand the same paral-

lelepiped is partitioned such that the bandwidth of each subdomaln problem is

much smaller than the bandwidth of the original finite element system (fig. 7),

and if the convergence of the interface problem is fast enough, the method of

finite element tearing and interconnecting may produce the solution with fewer

computations than a global direct solver.

FIG. 6 Stripwise partitioning of a parallelepiped

FIG. 7 Bozwise partitioning of a parallelepiped

Besides conditioning, there are two other factors which affect the convergence

of the interface problem (14) and which axe directly related to the mesh partition:

22

(a) the number of interface nodes, and (b) the interconnectivity of the subdomains

along their interface. It can be easily checked that within one iteration of the

conjugate projected gradient algorithm, a new information that is issued from a

subdomain I2 i reaches only those subdomains that interconnect with f2j along

an edge or a plane. Therefore, the interface problem converges faster for :=mesh

partition that is characterized by a larger effective intereonnectivity ba_, :dth.

The above observations suggest that an automatic _uite element mesh de-

composer that is suitable for the computr'ional method described herein should

meet or strike a balanced compromise bet " een the ._ven following requirements:

1. it should yield a set of subdomains where t,r_e bandwidth of each local problem

is only a fraction of the bandwidth of Che global system of equations;

2. it should keep the amount o_ "uterface nodes as small as possible in order to

reduce the ,:,ze of the interfac _roblem;

3. it should yield a set of subdomains with a relatively high intereonnectivity

bandwidth so that within each iteration a new correctioia reaches as many

subdomains as possible;

4. it should avoid producing subdomains with "bad" aspect ratio (for example,

elongated and flat subdomains) in order to keep the local problems as well-

conditioned as possible;

5. it should deliver as few as possible floating subdomains in order to keep the

cost associated with the projected gradients as low as possible;

6. it should yield a set of balanced subdomains in order to ensure that the

overall computational load will be as evenly distributed as possible among

the processors;

7. it should be able to handle irregular geometry and arbitrary discretization

in order to be general purpose.

For some mesh topologies, it becomes very difficult to meet simultaneously

requirements (1), (2) and (4). In that case, priority should be given to the

first two requirements. However, we have found that for many problems, the

above requirements can be met, using for example a slightly modified version

of the general purpose finite element decomposer presented by Farhat in [17].

Several decomposition examples are described in Section 9. The most challenging

problem that is yet to be resolved is the rational relationship between the mesh

decomposition and the interface conditioning.

23

9. Applications and performance assessment

We firstillustratethe proposed parallel computational method with the static

analysis on a 32 processor iPSC/2 hypercube of a three-dimensional mechanical

joint subjected to internalpressure loading. We report performance resultswhich

show that the parallel method of tearing exhibits a better speed-up than the

parallel method of conventional substructuring because it consumes three times

less interprocessor communication. Next, we apply our algorithm to the large-

scale finiteelement analysis on a 4 processor CRAY-2 of a three-dimensional

cantilever composite beam made of more than one hundred stiffcarbon fibers

bound by a nearly incompressible elastomer matrix. We report and discuss in

detailsthe measured performance resultsfor various mesh partitioning strategies.

For that problem, the proposed solution method outperforms the direct Choleski

factorization by a factor greater than three, even for configurations that yield

very ill-conditionedsystems. In the following, NP, NE, NDF, Tin,g, Tp and

SP denote respectively the number of processors, the number of elements, the

number of degrees of freedom, the time elapsed in message-passing, the total

paralleltime and the overallparallelspeed-up.

The finite element discretization of the mechanical joint using 8 node brick

elements is shown in figure 8. Two meshes are considered. The first one con-

tains 5002 elements, 14932 degrees of freedom and is intended for a 16 processor

cluster of the iPSC/2. The second mesh has 9912 elements, 29654 degrees of free-

dom and is constructed for a 32 processor configuration of the same hypercube.

The mesh decompositions into 16 and 32 subdomains are carefully designed to

be topologically equivalent as much as possible to a checkerboard partitioning.

24

Consequently, many of the resulting subdomains are floating.

FIG. 8 Finite element discretization of a mechanical joint

The interprocessor communication time per iteration, the total parallel exe-

cution time, and the overall parallel speed-up associated with the parallel method

of tearing and the parallel method of substructures are reported in table 2 for

both meshes. For all cases, a tolerance of 10 -3 on the global relative residuals is

selected as a convergence criterion.

TABLE 2

Performance results on iPSC/2

Mechanical joint - brick elements - 16 and 32 subdomains

NP NE NDF T,.,,/itr. Tm,di r. Tp T,, sp sP
subs. tearing subs. tearing subs. tearing

16 5002 14932 16.3 m.s. 5.2 m.s. 602 s. 546 s. 14.4 15.4

32 9912 29654 17.9 m.s. 5.4 m.s. 1103 s. 917 s. 24.0 28.8

25

For both cases,the parallel tearing and parallel substructuring algorithms achieve

excellent speed-up. This is generally true for all balanced algorithms that require

message-passing only between neighboring processors. However, for this problem,

the tearing algorithm is faster and exhibits a 20 % higher speed-up than the con-

ventional substructuring algorithm for which the time elapsed in interprocessor

communication is 3.31 times higher. Again, because it avoids interprocessor com-

munication along the edges and comers of the subdomains, the tearing algorithm

requires fewer message-passing startups which, in the case of short messages, are

known to account for the largest portion of the time elapsed in interprocessor

communication on the iPSC/2 (see, for example, the benchmarks of Boman and

Rose [18]). A performance comparison with a parallel direct solver is not provided

because of the lack of memory space to store in-core the triangular factors of K.

Now that the parallel properties of the presented algorithm have been illus-

trated, we focus next on example problems that illustrate its intrinsic properties

and performance. We consider the large-scale finite element static analysis of the

pure bending of a set of beams made of similar jointed composite "pencils" (fig.

9). Each composite pencil contains one carbon fiber with its elastomer matrix

and is discretized in 51 vertical layers containing each 25 mesh points. The cross

section of the finite element mesh corresponding to a 16 pencil beam is shown in

figure 10.

FIG. 9 A composite beam and a composite pencil

26

Y
FIG. 10 Cro_s section of the finite element mesh

for a 16 pencil composite beam

The numerical results obtained on a 4 processor CRAY-2 for a 16 pencil beam

with 48000 degrees of freedom are reported in figures (11-12). These correspond

to two extreme mesh decompostions, namely: a horizontal cross-slicing into 4

subdomains each containing 4 cantilever parallel pencils (D1), and (b) a vertical

slicing into 4 subdomains of which three are floating (D2). Poisson's ratio for the

27

elastomer is 0.49.

-2

o

• -4

*b

-6

-15

-12
0

PRECONDITIONED TEARING METHOD

Am_,lob4! Force Reul.
%

. e-_,.,., 0,..,ICx|nLer" r4¢o Resldw4 I

"-.L".__ "---

--...'>..
i ! • i . i • w , i , i , i i i_1 _

2g 4i 61 80 log 13t Ill1 lbg 180

No. of ItlP4tlo_

FIG. 11 Numerical resuli_ /or decomposition D1

o -4

i
-6

-0

-10

PRECONDITIONED TEARING METHOD

• i , i , i , l | ; , z • l • ! , ; ,

A.Giob41 Force Reml.

8-C*lob4! DII. V4rl_.

10 30)e i so 60 ? oo 90 IOO !1o

No. of Itor4tlo_

FIG. 12 Numerical result.s for decomposition D2

For each decomposition case, three curves are reported which correspond

28

to monitoring convergence with three different measures: (A) the global force

relative residual, (B) the displacement relative variation, and (C) the interface

relative residual. Clearly, decomposition D1 induces a faster convergence rate

than decomposition D2. We have predicted this result since within each itera-

tion of the iterative solution of the interface problem, information reaches all of

the subdomains in decomposition D1, while it reaches only half of these in de-

composition D2. Another important result relates to the relative positioning of

the three curves, independently from the decomposition pattern. Note first that

convergence with the global force relative residual is harder to achieve than con-

vergence with the displacement relative variation. This is because the problem

suffers from a severe ill-conditioning due to the incompressibility of the elastomer

(Poisson ratio = 0.49) and the elongated shape of the cantilever composite beam.

Note also that convergence with the interface relative residual is closer to con-

vergence with the displacement relative variation than it is to convergence with

the global force relative residual. This is because the interface problem is formu-

lated in the functional space of the stresses, so that its residuals correspond to a

displacement increment.

Finally, the tearing method is compared for performance with a direct

Cholesky factorization. The same bending problem is selected for that purpose.

Several different mesh configurations which correspond to different numbers of

pencils are considered. Performance results on a CRAY-2 single processor are re-

ported in Table 3. A tolerance of 10 -8 on the global relative residuals is selected

as a convergence criterion.

29

TABLE 3

Performance resuI_ on CEAY-_

Composite beam - brick elements - direct vs. 4-subdomain tearing

Number of pencils 4 9 16

NDF 13000 28000 48000

4-subdomaln tearing method

NDF interface 2450 7350 14700

iterations 130 210 300

CPU time 20 s. 73 s. 193 s.

Memory size 1.6 m.w. 4.5 m.w. 9.5. m.w.

Global Cholesky factorization

CPU time 15 s. 130 s. 650s.

Memory size 3.6 m.w. 16 m.w. 50 m.w.

The above results demonstrate that for sufficiently large problems, the tear-

ing method can outperform direct solvers. For the particular problem above, it

runs up to 3.3 times faster than Cholesky factorization and requires 5.2 times less

memory space.

10. Closure and overview of subsequent research

A novel domain decomposition approach for the parallel finite element solution

of equilibrium equations is presented. The spatial domain is partitioned into a

set of totally disconnected subdomains, each assigned to an individual proces-

sor. Lagrange multipliers are introduced to enforce compatibility at the interface

nodes. In the static case, each floating subdomain induces a local singularity that

is resolved in two phases. First, the rigid body modes are eliminated in parallel

from each local problem and a direct scheme is applied concurrently to all sub-

domains in order to recover each partial local solution. Next, the contributions

of these modes are related to the Lagrange multipliers through an orthogonality

condition. A parallel conjugate projected gradient algorithm is developed for the

3O

solution of the coupled system of local rigid modes components and Lagrange

multipliers, which completes the solution of the problem. When implemented

on local memory multiprocessors, this proposed method of tearing and intercon-

necting requires less interprocessor communications than the classical method of

substructuring. It is also suitable for parallel/vector computers with shared mem-

ory. Large-scale example applications are reported on the iPSC/1 and CRAY-2.

Measured performance results illustrate the advantages of the proposed method

and demonstrate its potential to outperform the classical method of substructures

and parallel direct solvers.

It is our experience that domain decomposition methods are very sensitive

to the mesh partition. In this paper, we have outlined some guidelines for the

practical decomposition of a given finite element mesh. Subsequent research will

focus on determining the relationship between a pattern of decomposition and the

resulting conditioning of each of the local problems and the interface one. V_rhile

several preconditioners for conventional domain decomposition methods (Schur

methods) are available in the litterature, further research is needed to develop a

preconditioner for hybrid domain decomposition algorithms such as the tearing

method developped herein.

Appendix A. Solving a consistent singular system gjuj = fj

For completeness, we include in this appendix a derivation of the solution of a

consistent singular system of equations. In this work, such a system arises in

every floating subdomain _j and takes the form:

Kiu i = fj (28)

where Kj is the (n; + nJ) x (n; + n_) stiffness matrix associated with _j, and uj

and fj are the corresponding displacement and forcing vectors. If _j has n_: rigid

body modes, Kj is rank n_ deficient. Provided that fj is orthogonal to the null

space of K j, the singular system (28) is consistent and admits a general solution

of the form:

uj = K+fj +Rja (29)

where K + is a pseudo-inverse of K d -- that is, K + verifies KjK+Kd = Kj, Rj

is a basis of the null space of K d -- that is, Rj stores the ny rigid body modes

of f_j, and cr is a vector of length n_ containing arbitrary real coefficients.

31

A. i Computing _he rigid body modes

Let the superscripts p and r denote respectively a principal and a redundant

quantity. The singular stiffness matrix K i is partitioned as:

rK7 KT]
Kj = [K_,. T K;"] (30)

I
where K_" has full rank equal to n_ + nj - ny. If Rj is defined as:

Kp__lKv,.]--s (31)
Ry = I._

where I,q is the ny x ny identity matrix, then Rj satisfies:

KjRj = 0

Moreover, In, has full column rank and so does Rj. Therefore, the ny columnsJ

of P,.j as defined in (29) form a basis of the null space of Kj.

A. _ Computing K+fj

The partitioning of the singular matrix Kj defined in (30) implies that:

rr pr T pp -1 pr
Kj = Kj Kj Kj (32)

Using the above identity, it can be easily checked that the matrix K + defined as:

is a pseudo-inverse of Kj.

written as:
Therefore, a solution of the form K+fj can be also

uj = K+fj = !K_l'-'f_]o

In practice, Kj cannot be explicitly re-arranged as in (30). Rather, the

following should be implemented when Kj is stored in skyline form. A zero

32

pivot that is encountered during the factorization process of Kj corresponds to a

redundant equation which needs to be labeled and removed from the system. The

zero pivot is set to one, the reduced column above it is copied into an extra fight

hand side -- this corresponds to a forward reduction with K./Prujr as right hand

side, and the coefficients in the skyline corresponding to that pivotal equation

are set to zero. At the end of the factorization process, the non-labeled equations

define the full rank matrix K_ p. The backward substitution is modified to operate
p pp--1 pr r

also on the nj r extra right hand sides in order to recover uj =-K i Kj uj.

The above procedure for solving a consistent singular system of equations

has almost the same computational complexity as the solution of a non-singular

one.

Appendix B. Starting Lagrange multiplier vector

In this appendix we present a fast scheme for generating a starting vector A (°)

for the conjugate projected gradient algorithm (19-20). V/e consider the general

case of an arbitrary mesh partition.

For each floating subdomain f_J, the corresponding component of the starting

vector has to satisfy the equality constraint:

Rj ITAj(O) = RTfj (33)

where Rj is an (n; + n/) x n; full column rank matrix which stores the rigid
I

body modes of the floating subdomain f_j, Rj is the restriction of l_j to the

intersection of _/J and the interface FI, and fj is the vector of prescribed forces

in flj. If i_ °) is written as:

A_ °) = Rj_jI" (o) (34)

then (33) becomes:

which admits as solution:

._IT_._I. (0) = RTfj[_j _j)lzj

33

(35)

_z(0) I T I -1 T
j = (Rj Rj) Rjfj (36)

Therefore, a starting vector A_°) which satisfies the constraint equation (33) is

given by:

,,_0) I I T I -1 T- Rj(Rj R j) Rj fj (37)

i T z r r is the number of rigidThe matrix product (Rj Rj) is only ny x n j, where nj
I T I

body modes of the floating subdomain f/j. Therefore, (Rj Rj) is at most 3 × 3

in two-dimensionai problems and at most 6 × 6 in three-dimensional problems,

(0) according to (37) requires little computational effort.and the evaluation of Aj

Acknowledgments

The first author would hke to thank Professor M. Geradin of the University

of Liege, Belgium, for his valuable comments. He also wishes to acknowledge

partial support by NASA Langley Research Center under Grant NAG1-756, the

National Science Foundation under Grant ASC-8717773, and the Air Force Office

of Scientific Research under Grant AFOSR-89-0422.

References

[1] C. Farhat and E. Wilson, "A New Finite Element Concurrent Computer Pro-

gram Architecture", Int. J. Num. Me_h. Eng., Vol. 24, No. 9, (1987), pp.

1771-1792.

[2] B. Nour-Omid, A. Raefsky and G. Lyzenga, "Solving Finite Element Equa-

tions on Concurrent Computers", Parallel Computations and Their Impaci on

Mechanics, ed. by A. K. Noor, ASME, New York, (1987), pp. 209-228.

[3] M. Ortiz and B. Nour-Omid, "Unconditionally Stable Concurrent Procedures

for Transient Finite Element Analysis", Comp. Me_h. App. Mech. Eng., Vol.

58, (1986), pp. 151-174.

[4] C. Farhat "A Multigrid-Like Semi-Iterative Algorithm for the Massively Par-

allel Solution of Large Scale Finite Elements Systems", Multigrid Methods: Proc.

34

Fourth Copper Mountain Conference on Multigrid Methods, SIAM, Copper Moun-

tain, Colorado, (1989), pp. 171-180.

[5] F. X. Roux, "Test on Parallel Machines of a Domain Decomposition Method

for a Composite Three Dimensional Structural Analysis Problem", Proc. Inter-

national Conference on Supercomputin#, Saint Malo, France, (1988), pp. 273-283.

[6] F. X. Roux, "A Parallel Solver for the Linear Elasticity Equations on a Com-

posite Beam", Proc. Second International Conference on Domain Decomposition

Methods, ed. by T. F. Chan, R. Glowinski, J. Periaux and O. Widlund, SIAM,

Los Angeles, California, (1989), pp..

[7] G. Kron, "A Set of Principles to Interconnect the Solutions of Physical Sys-

tems", .J. Applied Physics, Vol. 24, No. 8, (1953), pp. 965-980.

[8] T. H. H. Pian, "Finite Element Formulation by Variational Principles with

Relaxed Continuity Requirements", in The Mathematical Foundation of _he Finite

Element Method with Application8 to Partial Differential Equations, Part II, ed.

by A. K. Aziz, Academic Press, London, (1972), pp. 671-687.

[9] Q. V. Dihn, R. Glowinski and J. Periaux, "Solving Elliptic Problems by Do-

main Decomposition Methods with Applications", in Elliptic Problem Solvers II,

ed. by A. Schoenstadt, Academic Press, (1984).

[10] M. R. Dorr, "Domain Decomposition via Lagrange Multipliers", UCRL-

98532, Lawrence Livermore National Laboratory, (1988).

[11] R. Fletcher, "Practical Methods of Optimization", Vol. 2, Constrained Op-

timize_tion, J. Wiley, New York, (1981), pp. 86-87.

[12] P. E. Gill and W. Murray, "Numerical Methods for Constrained Optimiza-

tion", ed. by P. E. Gill and W. Murray, Academic Press, London, (1974), pp.

132-135.

[13] F. X. Roux, "Acceleration of the Outer Conjugate Gradient by Reorthogonal-

ization for a Domain Decomposition Method for Structural Analysis Problems",

Proc. Third International Conference on Supercomputing, Crete, Greece, (1989),

pp. 471-477.

[14] S. H. Bokhari, "On the Mapping Problem", IEEE Transactions on Comput-

er_, Vol. C-30, No. 3, (i981), pp. 207-214.

35

[15] C. Farhat, "On the Mapping of Massively Parallel Processors Onto Finite

Element Graphs", Computers _ Structures, Vol. 32, No. 2, (1989), pp. 347-354.

[16] C. Farhat, "Which Parallel Finite Element Algorithm for _rhich Architec-

ture and _rhich Problem", Proc. ASME Winter Annual Meeting, San Francisco,

California, December 14 (1989)

[17] C. Farhat, "A Simple and Efficient Automatic FEM Domain Decomposer"

Computers f_ Structures, Vol. 28, No. 5, (1988), pp. 579-602.

[18] L. Bomans and D. Roose, "Benchmarking the iPSC/2", Report TW 11_,

Katholieke Universiteit Leuven, Department of Computer Science, Belgium,

(1988).

36

USING A REDUCED NUMBER OF LAGRANGE MULTIPLIERS

FOR ASSEMBLING PARALLEL INCOMPLETE FIELD

FINITE ELEMENT APPROXIMATIONS

Charbel Farhat

Department of Aerospace Engineering Sciences

and Center for Space Structures and Controls

University of Colorado at Boulder

Boulder, CO 80309-0429, U. S. A.

and

M. Geradin

Laboratoire de Techniques Aeronautiques et Spatiales

University of Liege

Rue Ernest Solvay, 21, B-4000 Liege, Belgium

and Conseiller Scientifique, O. N. E. R. A.

29 Av. de la Division Leclerc

BP72 92322 Chatillon Cedex, France

Abstract. A domain decomposition algorithm based on a hybrid variational

principle was proposed in reference [1] for the parallel finite element solution of

self-adjoint elliptic partial differential equations. First, the spatial domain was

partitioned into a set of totally disconnected subdomains and an incomplete finite

element solution was computed in each of these subdomains. Next, a number of

Lagrange multipliers equal to the number of degrees of freedom located at the

binding interface were introduced to enforce compatibility constraints between

the independent local finite element approximations. For structural and mechan-

ical problems, the resulting algorithm was shown to outperform the conventional

method of substructures, especially on parallel processors. Here, the use of a much

lower number of Lag'range multipliers for interconnecting the incomplete field fi-

nite element solutions is investigated. When accuracy is preserved, this approach

reduces drastically the computational complexity of the Schur-complement-like

coupling system that is associated with the interface region and enhances signifi-

cantly the overall performance of the methodology. Finite element procedures for

both global and piecewise polynomial approximations of the Lagrange multipli-

ers are derived. Finally, some numerical results obtained for structural example

problems that validate the main idea and highlight its advantages are presented.

1. Introduction.

Recently, Farhat and Roux [1] have presented a parallel finite element computa-

tional method for the solution of static equilibrium problems that is a departure

from the parallel method of substructures (see, for example, Nour-Omid, A. Raef-

sky and G. Lyzenga [2], Farhat and Wilson [3]). The unique feature about the

proposed procedure is that it requires fewer jnterprocessor communication than

traditional domain decomposition algorithms, while it still offers the same amount

of parallelism. The computational strategy was denoted by "finite element tearing

and interconnecting" because of its resemblance with the very early work of Kron

[4] on tearing methods for electric circuit models. Basically, the finite element

mesh is "torn" into a set of totally disconnected submeshes and a computational

strategy is derived from a hybrid'variational principle where the inter-subdomain

continuity constraint is removed via the introduction of a Lagrange multiplier

function.

In reference [1], the authors have interconnected the subdomain incomplete

finite element solutions with a number of discrete Lagrange multipliers that is

equal to the number of degrees of freedom that are lying on the binding interface.

That allowed them to recover exactly the same finite element solution as with

non-hybrid variational principles. Here, we consider the use of a substantially

lower number of discrete Lagrange multipliers, which would further enhance the

serial and parallel performance of the proposed computational algorithm when an

adequate accuracy is preserved. The fundamental idea is not essentially different

from the one presented in the mathematical work of Dorr [5]. In order to motivate

this approach, we first re-derive in Section 2 the basic method of tearing and

interconnecting and summarize its major computational advantages. In Sections

3 and 4, we develop polynomial and piecewise low order polynomial expressions for

the finite element discretization of the interface Lagrange multiplier function and

describe their computer implementation. We consider both cases of continuum

and lattice structures. In Section 5, we present an iterative refinement procedure

for improving the accuracy of the resulting algorithm and in Section 6 we report on

some numerical results obtained for two-subdomain problems and problems where

the meshes are decomposed with one-way separators only. These preliminary

results indicate that a very high accuracy is achieved with a very low number of

discrete Lagrange multipliers. We also highlight the computational advantages

of the proposed parallel algorithm with the large-scale static analysis of the Solid

Rocket Booster (SRB) on the CRAY Y-MP; for that problem, the parallel skyline

and banded solvers are outperformed.

2

2. A method of finite element tearing and interconnecting

Here we summarize a domain decomposition based algorithm associated with a

hybrid formulation for the parallel finite element solution of the linear elastostatic

problem (Farhat and Roux [1]). The method is equally applicable to the finite

element solution of any self-adjoint elliptic partial differential equation. For the

sake of clarity, we consider only the ease of two subdomains. The generalization

for an arbitrary number of subdomains is fully developed in [1].

The variational form of the three-dimensional elastostatic b°undary-value

problem goes as follows. Given g and h, find the displacement function u which

is a stationary point of the energy functional:

1

J(v) = [a(v,v)-(v,g)-(v,h)r

where

a(v,w) = _ Y(i,j)CijklW(k,l) _'_

(v,g) ---- _vigi 6_

(v,h)r = / Vihi _F
h

(1

In the above, the indices i,j, k take the value 1 to 3, v(i,j) = (Vi,j "_- Vj,i)/2 and

vi,j denotes the partial derivative of the i - th component of v with respect to

the j - th spatial variable, Cijkt are the elastic coefficients, f_ denotes the volume

of the elastostatic body, F its piecewise smooth boundary, and Fh the piece of F

where the tractions hi are prescribed.

If _ is torn into two regions f_x and f_2 (Fig. 1), solving the above elastostatic

problem is equivalent to finding the two displacements functions ul and u2 which

are stationary points of the energy functionals:

J_(_)=

J_(_)=

where

la(vl, vl)a, - (vl, g)a, - (Vl,h)r,

a(v,,wl)a, = fn vl(i"i)cii_zw_(k't) 6f_
1

a(v2,w2)f_2 -- f_ Y2(i,jlCijkiW2(k,l) _'_
2

(Ul,g)_lx -" _ Vlifi 6a
l

(v2,g)ft, ----- /fl v2ifi 6_
2

(vl,h)r, = / Vlihi 6["
hl

(v2,h)r, = fr v2ihi _r'
h2

(2)

and which satisfy on the interface boundary rl the continuity constraint:

Ul _ U2 on FI (3)

4

_4

FIG. 1 Tearing in two subdomains

The two above variational problems (2) with the subsidiary continuity condi-

tion (3) can be casted into a single hybrid variational principle (see, for example,

Plan [6], Zienkiewicz and Taylor [7] and references cited therein) which corre-

sponds to finding the saddle point of the total potential energy:

J'(vl,v2,#) - Jl(Ul)+ J2(v2)- _ _(vl-v2) 51" (4)
I

If now the displacement fields ul and u2 are expressed by suitable shape
functions as:

ul = Nul and u2 = Nu2 (5)

and the continuity equation is enforced for the discrete problem -- that is, if a

discrete Lagrange multiplier _1 is introduced at each i - th degree of freedom of

the discrete interface boundary FI, a standard Galerkin procedure transforms the

hybrid variational principle (4) in the following algebraic system:

5

KlUl -" fl + BTA

K2u2 =f2-BTA

B1ul = B2u2

(6)

where K j, uj, and fj, j = I,2, are respectivelythe stiffnessmatrix, the displace-

ment vector, and the prescribed force vector associated with the finiteelement

discretizationof flj.The vector of Lagrange multipliersA represents the interac-

tionforcesbetween the two subdomains flland f12along theircommon boundary

rx. It introduces in the above system of equations the quantities K_'IBTA and

K21BTA which implicitlycorrect the incomplete finiteelement solutions Kllfl

and K21f2.

Within each subdomain f/J, we denote the number of interior nodal unknowns

by njS and the number of interface nodal unknowns by nj.I The total number

of interface nodal unknowns is denoted by ni. Note that nI = n I = nl2 in

the particular case of two subdomains. If the interior degrees of freedom are

numbered first and the interface ones are numbered last, each of the two boolean

connectivity matrices B1 and B2 takes the form:

Bj = [Oj Ij] j=1,2 (7)

s s _ identity matrix. Thewhere Oj is an n_ × nj null matrix and Ij is the nj × nj

vector of Lagrange multipliers A is ns long.

The stiffness matrices K1 and K2 are non singular if and only if each of

the defined subdomains has enough prescribed boundary conditions to eliminate

its rigid body modes. However a typical mesh decomposition often produces a

certain number of floating subdomains. If in the above example f_2 is a floating

subdomain, equations (6) can be re-arranged after some algebraic manipulations

(see [1]) as:

B2 2 f2 - BIK1 fl[1
ul -" K11(fl + BTA)

u2 = K+(f2 - BTA)+ R2c

(8)

where Fr = BIK_'IBT'BI-r- 2K +_T2_2,K + is apseudo-inverseofK2, R9 is an (n_+

n2/) × n_ rectangular matrix whose columns represent the nr rigid body modes of

f22 and cz specifies a linear combination of these. For three-dimensional problems

n_ _< 6, and for two-dimensional problems n_ < 3. Clearly, the Lagrangian matrix

is indefinite. However, FI is symmetric positive definite and P,.I has full column

rank. Therefore, the system of equations in (X, a) is symmetric and non-singular.

It admits a unique solution (X, ct) which uniquely determines ul and u2.

It is important to note that since n_ < 6, the Lagrangian system (8) and Fz

have almost the same size. For an arbitrary number of subdomalns Ns of which

N I are floating, the additional number of equations introduced by the handling

of local singularities is bounded by 6N I. For large-scale problems and relatively

coarse mesh partitions, this number -- which determines the size of cz, is a very

small fraction of the size of the global system. On the other hand, if a given

tearing process does not result in any floating subdomain, cz vanishes and the

corresponding Lagrangian and F_r systems become identical.

In reference [1], a set of guidelines for carrying out the practical decom-

position of an arbitrary mesh, as well as a parallel computational scheme for

solving equations (8) in the presence of an arbitrary number of subdomains were

presented. The proposed computational scheme featured a parallel precondi-

tioned conjugate projected gradient algorithm for the solution of the indefinite

Lagrangian system. It was also shown that the proposed method of finite element

tearing and interconnecting compares favorably with the conventional method of

substructures and with direct solvers on both serial and parallel computers. It

is particularly attractive for local memory multiprocessors such as hypercubes

because it intrinsically requires much less interprocessor communication than the

parallel method of substructures [2]. Tiffs is because the need for interprocessor

communication in this formulation is exclusively induced by the weak form of the

continuity constraint:

(Yi -- Vj,_)Ft, 1 _ / _(Vi-- Vj) _r

zi I

(9)

and because if Flu has a zero measure, then (vi-vj, ,k)rx;j = 0 and no exchange of
information is needed between subdomains fli and f_j. Therefore the subdomains

which interconnect along one edge in three-dimensional problems and those which

interconnect along one vertex in both two and three-dimensional problems do not

require any interprocessor communication. This is unlike the parallel method of

substructures and other conventional domain decomposition algorithms.

7

The efficiency of the tearing method outlined abovedependson how fast the
Schurcomplement or interface system representedhereby Fz can be solved. This
is often the casefor many of the subdomain basedimplicit/explicit parallel solu-

-1 T B -I- Ttion algorithms. The nature of Fi -- B1K 1 B 1 W 2K 2 B 2 makes the solution of

the interface system inadequate by any technique which requires this submatrix

explicitly. This implies that a direct method or an iterative method of the SOR

type cannot be used. The only efficient method for solving this system is that of

conjugate gradients, because once K1 and K2 have been factorized, matrix-vector

products of the form F_rv can be performed very efficiently using only forward

and backward substitutions. Therefore convergence rate becomes the key factor

for enhancing the overall efficiency of the procedure. In reference [1], the authors

have considered careful mesh partitioning schemes and a suitable preconditioner

for improving this convergence rate. Here we investigate an approach for speeding

up the solution of the interface system which consists of reducing drastically its

size. When this can be achieved (without hurting accuracy) to an extent where

Fr can be explicitly formed, assembled and stored, a direct solution method is

applied to the Schur complement equations so that the convergence race is not

any longer an issue. Otherwise, the same semi-iterative algorithm as presented

in [1] is used for solving the new interface system that is characterized by a much

smaller size than in our previous work.

In this paper, we concentrate on the two-subdomain problem which high-

lights the main idea and does not require a substantial amount of coding. The

obtained results are so encouraging (Section 6) that we have started developing

the necessary software for handling arbitrary mesh decompositions with multiple

subdomains. This effort will be reported in a forthcoming paper.

Next, we discretize the Lagrange multiplier function that binds the subdo-

main incomplete solutions using a polynomial approximation and derive the finite

element representation of the new interface system.

3. Approximating the Lagrange multipliers with polynomials

The weak form of the equations of static equilibrium associated with the hybrid

variational principle formulated in equation (4) is obtained using the standard

virtual work principle. It is expressedas:

Jr2 6ulTLTDLu16f_I-/16u1T)_F- f_ 6ulTg6f_--/ 6ulTh6F = 0

u)6r = o
l

(10)

where the vectors g and h have been defined in equations (2), the vectors ll I and

u2 in equations (5), and D and L are the matrix representations of, respectively,

a constitutive equation and a spatial derivative operator.

If the Lagrange multiplier function A is degree-of-freedom collocated along

the interface -- that is, a discrete Lagrange multiplier scalar Ai is attached at

each degree of freedom lying on the interface boundary Fz, the above equations

are transformed into the algebraic equations (6), where the vector of Lagrange

multipliers ,X is nz long. As a result, the interface system of equations (8) is nix nz

large. In order to reduce the size of this system, we consider first a polynomial

approximation for A. For this purpose, we assume that the finite element problem

of interest has d degrees of freedom per node and that the interface Fz between

Q1 and Q2 is parametrized by a curvilinear abscissa s (Fig. 2).

@
-Ilb,--

FIG. 2 Parametrization of a two-._ubdomain interface

We define d polynomials of degree p as:

k=p

k=O

k=p

2()= __
k=O

(11)

k=p

k=O

where p is much smaller than ni and {A_., A_., ..., Ad, k = 0, 1,.",p} are (p-I- 1)d un-

known discrete Lagrange multipliers. Physically, these still represent the interface

tractions that are necessary to maintain equilibrium between the two subdomains

_1 and _=. The superscript j, j = 1, 2 , d denotes the directional freedom (x, y,

or z displacement/rotation) of the corresponding traction component. However,

unlike in our previous work, these multipliers are not specified at any location

of the discrete interface FI. In particular, they are not necessarily attached to

any particular node. Substituting (11) into (10) after re-arranging the third of

equations (10) results in the algebraic system:

Klul = fl + B_T,Lp

K2u2 = f2 - BgTAp

B_Ul -- Bgu2

(12)

where Ap is now the (p + 1)d long vector:

xp = [_0_ _ _0_ _ _ Ad] T (13)

10

and B_v and Bg axe now non-boolean finite element matrices of sizes (p + 1)d ×

(n_ + nI) and (p+ 1)d x (n_ + nI) that are assembled from their element level

correspondents B v(e) and Bg (_) in the usual manner:

B_ -- EB_ (_) j--1,2 (14)

where e spans only the set of elements that are connected to the interface bound-

axy F;. For a finite element e with q nodes lying on FI, the qd x (p + 1)d element
lqv(_)

level matrices _j , j = 1, 2 are given by:

1 p(e)
Bj

2 p(_)
Bj

B v(e) = (15)

Zlqp(e)
where _j , l = 1, 2, ..., q is a d x (p+ 1)d matrix associated with the l - th node

of element e and has the following form:

I v(e)
--Rj = [[Ir_,_p(e) 1/_p(e) 1?-._p(e)0'-'j 1'-'j 2'-'j 'r_ "(e)] (16)p--j

and t _p(*)k"j , k = 0,...,p is a d x d diagonal matrix associated with the k - th

monomial s k and is expressed as:

_Rv(e) /r"-'i = (Ntsk6F) Id (17)
x(e)

where Nt is the shape function associated with the l - th node of element e and

Id is the d x d identity matrix. As an example, for elements that have two and

only two nodes lying on 1-'i (q = 2) and for the case of linear shape functions Nz,

the submatrices zrev(_)_,.,j , l=l,2, k_<p, are given by:

-- slk+2 -- 82k+2 8k+2 k+l
lr_v(e) 1 (+ -s 1 s2) Ia
k*"j 8 2 -- S 1 k + 2 k + 1

^k-l-2 __ 81k+2 81k+2 kT1

k*"j -- 82--81 k+2 + k+l

(18)

11

where sl < s2, and sl and s2 are the curvilinear abscissae of the two nodes of

element e that lie on Fz (Fig. 2).

At this point, it is worthwhile to point out that increasing the degree of the

polynomial approximation of A k, k - 1, 2, ..., d involves only adding a few columns
_Rm(e)

to the existing element level matrices --J , as it is suggested by equation (16).

For two-subdomain tearings, the constraint matrices B p have the following

pattern:

B_ = [Oj t3_-] j = 1,2 (19)

s -P
where Oj is an (pW1)dx nj null matrix and B_ is the (pW1)dx nI sparse matrix:

-p
Bj

:_)II --- _)rr

°.° .°, .°.

'Pp+l,1 ..- 'Pp+l,r

(20)

where r = niId and :DiS is a d × d diagonal matrix.

Equations (12) above can be re-arranged as:

Ul --

U 2 =

- p + P --]B2K2 f2 - B1K1 if1

]--RTf2

K_'l(fl + BTp_p)

- +

(21)

where all variables have the same physical meaning as previously. However, the

size resulting interface system

P +B_ TF_ = BlPK_'IB pT+ B2K 2 (22)

is now only (p+ 1)d x (p+ 1)d. Since _Xp does not enforce the continuity constraint

equation (3) at each of the nodes of the discrete interface FI, the finite element

field approximations ul and Us given by the solution of system (21) are in general

discontinuous along FI. In order to uniquely define the finite element solution

along the interface boundary, we average the two computed solutions to obtain:

12

1

u* = ulr, = _(Ul -[- u2)lr, (23)

We postulate that the above averaged interface solution u* is more accu-

rate than each of the restrictions of the subdomain solutions Ul[rl and u2[rl.

Therefore, we back-propagate to the interior of the subdomalns _1 and _2 the

enhancing effect of the averaging procedure (23) by imposing u = u* on F1 and

solving two independent displacement-driven subdomain problems. For this pur-

pose, we first partition the stiffness matrix of each subdomain as:

Kjss Kjs I "Kj = K T
JsI KjII.

j = 1,2 (24)

where the subscripts ss, II and sI refer respectively to interior, interface and

interior/interface coupling quantities. For any set of given boundary conditions

and any mesh decomposition pattern, the resulting Ki, s stiffness matrix is non-

singular. Next, the improved finite element subdomain solutions are computed

as:

uj = Kj_-l(fj, - Kj,xu*) j = 1,2 (25)

It should be noted that the above improvement of the subdomain solutions ul and

u2 is perfectly parallelizable and requires only one sparse matrix-vector multiply

and one pair of sparse forward/backward substitutions per subdomain. The tri-

angular factors of Kj_ s are embedded in those of Kj which have been previously

computed.

Usually, the stresses that develop in a structure are more important to the

analyst than the displacements it undergoes. However, the above improvement

procedure is such that if u* is a highly accurate approximation of the interface

solution, u j, j = 1, 2 become highly accurate approximations of the subdomaln

solutions and therefore it is not necessary to monitor the stress fields.

The solution approach presented here requires a parametrization of the inter-

face boundary 1"i. For a given finite element model and a given mesh decompo-

sition, the interface boundary F1 is alwavs well defined for continuum problems.

Therefore, its parametrization is straightforward, especially for two-subdomain

problems. However, lattice structures require a special treatment. For the lat-

ter problems, if FI is constrained to follow the path defined by the structural

13

members that connect the nodes that are shared by two lattice subdomains, Fx

will not be identical on both sides of the interface (Fig. 3a-3c). Therefore for

lattice structures we select F_r as the "geometrical path" that (a) is the simplest

to parametrize, and (b) has the same trace on the lattice subdomains it inter-

connects. In particular, only the finite element nodes of this interface need to

intersect with the structure. Figure 3d depicts F_r for the structure shown in

Figure 3a.

In general, the number of Lagrange multipliers, Nx, that is needed to achieve

a certain accuracy is problem dependent. If this number is rather small -- say

less than a hundred, then it is feasible to form explicitly F_ and solve the system

of equations (21) using a direct method. Otherwise, the semi-iterative solution

algorithm developed in reference [1] is recommended. However, beyond a certain

value of Nx, the polynomial approach developed in this Section becomes nu-

merically problematic. Indeed, approximating the Lagrange multiplier functions

with higher order polynomials of degree p = Nx/d- 1 typically results in very

ill-conditioned matrices B_g_'lBff T, which may cause the performance and/or

accuracy of the proposed computational method to deteriorate. Next in Section 4

we develop piecewise low order polynomial approximations for the finite element

discretization of the Lagrange multiplier functions (11), that are suitable for the

case of a rather large value of N,x. We remind the reader that d denotes the num-

ber of degrees of freedom per node; for simplicity, it is assumed to be constant

over the nodes. Therefore, since Nx denotes the total number of discrete Lagrange

multipliers, N,x/d represents the number of locations where surface tractions, or

discrete Lagrange multipliers, are to be introduced.

14

/

8

FIG. 3 Interface boundary definition for lattice structure

(a) tru_ _truc_ure - (b) co_tinuu._-tike t¢ interface
(c) continuum-like right interface - (d) adopted interface boundary

15

4. Piecewise low order polynomial approximations

The objective of this section is to develop an alternative procedure for the finite

element discretization of the interface tractions that results in a better conditioned

interface problem than previously when the total number of discrete Lagrange

multipliers that are introduced, N_,, is rather large.

Let F_, k = 0, ..., Nx/d - 2 denote a partition i° of the interface boundary

Fz defined as:

r_ = [sk, sk+l] k = 0,...,_/d- 2 (26)

where sk, k = 0, ..., N_,/d- 1 are the curvilinear abscissae of Nx/d specified

points on FI where the discrete surface tractions A_ are introduced. Within

each subinterval F_, we define d cubic polynomial expressions for the Lagrange

multiplier approximations as:

(27)

where cJik, i = 1, ...,4, j = 1, ...,d are determined by imposing:

xf:(,k) =,_ ; x{.(,k+,)

ds (_) = -_-(_k) ; -_-(_+,)
k = O,...,N,x/d- 2

j= l,...,d

= A]k+l

dA j .

= --27_(_,+_1 (28)

The first set of equations (28)imply that iJ(sl,+l) "J= Ak+l(sk+l), so that all AJ are

g'uaranteed to be continuously approximated on Fz. The second set of equations

(28) involve the derivatives of the Lagrange multiplier functions which are neither

available nor part of the weak form of the static equations of equilibrium (10).

Following Conte and de Boor [8], we approximate these derivatives by:

16

as (sk) = A=sk (29)

where Ask and A2sk are defined as:

ASk = Sk+l -- Sk

Z212_k = Sk+l -- Sk--1
(30)

Note that (29) requires the two additional points s-1 and SNx/d which we choose

as:

s-1 = s2 (31)
8Nx/d = 3Nx/d_ 3

Substituting (27) and (29) into (28) determines the constants c ji k as functions

of the discrete Lagrange multipliers:

•),_ " ¢3_),_.+ "c_ = ,'3,, ,,+5+ '73,,.xL1+ _,_,,.xI._,
(32)

where _2k, _3k, _4k, _2k, r]3k, _4k, ¢2k, ¢3k, _4k, D'3k, and v4k axe constants that

depend only the curvilineax abscissae s_-l, sk, sk+, and sk+2 (see Appendiz A).

As previously, equations (32) axe substituted into equations (27) and (27)

into (10) to obtain:

Klu, = fl + BI_TNP

K2u2 = f2 -- B2_Tx;o (33)

Srul = S_u_

where B_ and B_ are now non-boolean finite element matrices of sizes N_, x

(nl + nl) and N_ x (n_ + nz). The subscript/superscript 7_ emphasizes the de-

pendence of these quantities on the partition T' of the interface boundary F1 (26).

17

Both matrices are assembledfrom their element level correspondentsk*B_ (*)

k.B_ (*) in the usual manner:

and

(34)

wheree spans only the set of elements that are connected to r'i. The left subscript

k* emphasizes the dependence of _.B_ (') on the subinterval r_ = [sk, sk+l] where

one edge of element e falls. For a finite element e with q nodes lying on FI, the

qd x NA element level matrices k.B_ '('), j = 1, 2 are given by:

(35)

z :n*'(')
where k.'-'j , l = 1, 2, q is a d x N,_ matrix associated with the l - th node

of element e and has the following form:

' ,sJ'(°) sT (.) ' oh'] (36)-- " k'+lL"j k*+2"j

where O_" and O_z" are respectively left and right d x (k*- 1)d and d x (NA -

(k* + 3)d) zero matrices, and , r_'(')_._j is expressed as:

I r2_(*)
k.'-'j = /3k.Id (37)

where Ia is the dx d identity matrix and/3k.-1,/3k.,/3k.+1 and ilk*+2 are function

only of the partition 7:' of FI and are given by the following integration:

Jfr " J J,(') _,Nt*r = /3k.-1_.,__ + Zk,_, +/3k'+_k.+l + Zk'+2_k,+2 (38)

18

It should be noted that while the symbolic derivation of equations (36-38) appears

to be somehow complicated, their computer implementation is straightforward

and their processing is inexpensive.

For two-subdomain tearings, the constraint matrices By take the following
form:

s]' = By] j = 1,2 (39)

s -P
where Oj is an N_, x nj null matrix and Bj is the Nx x nr four diagonal sparse
matrix:

! \ % % 0 0

-p Dk-l,k :Dkk Dk,k+l Dk,k+2 0 ... 0
Bj = ... ",_ ",_ ",_ "_ ... 0

............ 0 D,-I,,- D_,

(40)

where r : Nx/d and DiS is a d x d diagonal matrix.

After B1p and By are set up, the system of equations (33) is solved as

described in Section 3. In particular, the averaging and correcting procedures

outlined in Section 3 are also used.

Approximating I with polynomials (Section 3) does not require the location

of the corresponding physical surface tractions to be specified. On the other hand,

using piecewise low order polynomials for that purpose (Section 4) requires the

definition of a partitioning P of Fx, which corresponds to specifying the location

of the physical surface tractions along FI. Therefore from a practical viewpoint;

the first approach seems more attractive. However, specifying where a surface

traction is to be introduced can be turned into an advantage if one looks at it as

an additional freedom. For example, if the stress field along FI can be predicted

qualitatively prior to the analysis, the partition 7_ will be refined in the areas of

oscillation or high concentration, and coarse otherwise. That would improve the

efficiency of the approximation.

19

5. An iterative refinement procedure for accuracy improvement

Here we outline an iterative refinement procedure for improving the accuracy of

the results when it is required. We discuss both cases of polynomial and piecewise

low order polynomial approximations, and assume that a reasonable initial value

N (°) is given. We select as convergence criterion:

ilul m+l)ll ilulCm)li= < llul<m)il

°°°

Ilud('_'+'l)iloo _]iud(m)[[oo < llud<m)lloo

(41)

where the superscripts d and m refer respectively to the d - th component of the

solution at each node and to the m - th iteration, and e is a specified tolerance.

As indicated by equations (41), we independently monitor the convergence of

each of the d components of the displacement field. This is in order to avoid

that potential important relative errors in a component of the solution whose

magnitude is relatively small -- for example, the x displacement of a cantilever

beam with a load parallel to the y direction, are masked by an otherwise perfect

convergence for a component of the solution whose magnitude is relatively large

-- for example, the y displacement.

5.1. Polynomial approximation

Let Ni m) and p(m) = Nim)/d_ 1 denote respectively the number of discrete

Lagrange multipliers and the degree of the polynomial approximation of A at

iteration m. Suppose that for N(_ m) the above convergence criterion (41) is not

met. A simple iterative refinement procedure consists in introducing at iteration

rn + 1 an additional discrete Lagrange multiplier by considering a polynomial

approximation A of order p(m+l) __ p(m) _ 1. This entails the generation of the
p(m+l)

constraint matrices Bj , j = 1, 2 and therefore of the element level matrices

iBp(-_+l) (e)
j , l = 1, ..., q. A careful examination of equations (15-17) reveals that

lBp(,_+t) (e) (_)
j can be computed very fast by updating tB:/")_ as following:

tBp(,.,,+t) (e)
j : [t p('n)(') t /_p(m)+l]Bj p¢._)+_,.,j (42)

2O

where

1 _p('_)+l fFpC_)+l_j = (i(.)

NtsP(m)+16F) Id (43)

Therefore, if at each iteration m + 1 an additional Lag'range multiplier is intro-

duced, the re-generation of the constraint matrices requires only the evaluation

for each interface element of the integral fr/,) NtsP(')+l 6F, and the re-generation

of the interface system Fz requires only the pre/post multiplication of the sub-

domain flexibilities with these matrices. Given that N_m)/d << ni, these mul-

tiplications are not expensive. In particular, they axe much more economical

than those corresponding to a typical conjugate gradient iteration for the case

N;_ = hi. The introduction at iteration m + 1 of more than one discrete Lagrange

multiplier is handled exactly in the same manner.

5.2. Piecewi_e low order polynomial approximation

Let F_ (m), k = 0, ..., Nim)/d - 2 denote the partition p(,n) of the interface bound-

ary FI at iteration m:

F/k(m) = [s On) , -(_)' h O, N(m)/d ') (44)"_k+lJ _ ""_ -- -

If at iteration m + 1 an additional discrete Lagrange multiplier is introduced, say

in the subinterval 1-'_" (m), the resulting partition T '(re+l) becomes:

rl [,(F" k= (45)

where

(re+l) (m) .s k = s k<_k

5(re+l) _(m) k > k*= _k--1 + 1

(46)

It can be easily shown that the regeneration at iteration rn + 1 of the constraint
J i =matrices B_ and B_ involves basically recomputing the coefficients cik,

1, ...,4, j = 1, ..., d of the polynomial expressions (32), only for those interface
--k* --1 (re+l) _k" +1 (rn+l)

elements which intersect FI inside V I , or F_" (re+l), or 1' z , or

21

F_*+2(m+1) However, a refinement procedure for this caseshould also specify
the location where an additional discrete Lagrangemultiplier is to be introduced
during the following iteration, -- that is to define s_ +1). In this work, we choose
fo that purposethe point of FI where {[u('n+l){{oo-[[u('_)[[oo/[[u(m){[oo and/or the
violation of static equilibrium prior to the averagingand improvement procedures
(23) and (25) are the largest. The introduction at iteration m + 1 of more than

one discrete Lagrange multiplier is handled exactly in the same manner.

6. Validation and Performance Evaluation

Ideally, the accuracy of the proposed hybrid method for a given value of N,x

should be assessed by comparing its generated results to the exact (analytical)

solution of the continuum or lattice problem of interest. However, the latter

solution is seldom available. Therefore, we select as reference the conventional

finite element solution of the problem -- that is, the solution that is obtained

without the introduction of a hybrid variational principle, and refer to it as the

exact solution.

In this section, we validate first the essence of this paper with simple two-

subdomain structural problems. For each example, we apply the iterative refine-

ment procedures outlined in Section 5 to generate numerical results corresponding

to various numbers of Lagrange multipliers, N.x. We report on only the computed

solutions associated with the interface boundary Fz. This is because whenever

these converge to the reference solution, the improvement procedure (25) guar-

antees that the computed subdomain displacement and stress fields also converge

to their reference solution. All examples indicate that a number of traction forces

that is only a small fraction of the size of the discrete interface boundary Ff are

required to "glue" the incomplete subdomain solutions. Next, we assess the per-

formance of the developed computational hybrid algorithm with the large-scale

finite element static analysis of the Solid Rocket Booster (SRB) on a 4 processor

CRAY Y-MP; we den/onstrate that for that problem, our algorithm outperforms

the fastest of the available parallel skyline solvers.

22

6.1 Validation

First, we consider the static analysis of an unsymmetric beam that is clamped at

both ends and subjected to both a horizontal and vertical point loadings. The

beam is discretized using 4-node plane stress elements (q = 4) with two degrees

of freedom per node (d = 2). The finite element mesh is decomposed into 2

subdomains, each with 108 interior degrees of freedom. For this problem, the size

of interface problem is n1 = 18.

W

J i_!l_i!ii!_!t!_!!i!!!!!!!!!!!!
J ii!l!iiii!!!!!!!!!!!!!!!!!!!_!

- li ii i iiiiiiiiiiiiiiiiiiiii
iiii!ilii!iiiil!ii!i

/_iiiiilii!iiiiiii!lii!iiiili!ii!
_iii!ii_li!ili_iii!!illiiiii!l!ir!_

i_iiiii--
iiiiiii

FIG. 4 Two-subdomain decomposition

of an unsymmetric clamped-clamped beam

23

The interface tractions are approximated successivelywith polynomials of order
zero, one, two, and three, --that is, Nx = 2, 4, 6, and 8. The generated hybrid

solutions are reported in Figures (5-6) for both the horizontal and vertical dis-

placement fields along the interface boundary FI. For Nx = 6, both displacement

fields are shown to be in excellent agreement with the exact solution.

234 GLOBAL D. O. F. - 18 INTERFACE D. O. F.

9.44

.7.97

8.51

5.04

3.58

2.11

6.48

-8.17

-2.28

e-4

e-4

e-4

e-4

e-4

e-4

e-5

e-5

e-4

/
/
/

S

Cs_ SS"

,/7

0 1 P- 3 4 5 6 7 8

Curvilinear abscissa

exact M_Im = 4
......... M_tm = 2 N_Im = 6

FIG. 5 Unsymmetric beam problem: predicted horizontal displacement field

24

234 GLOBAL D. O. F. - 18 INTERFACE D. O. F.

-1.94o-4

-2.580-4

-3.21o-4

-3.85e-4

-4.490-4

-5.13e-4

-5.76e-4

-6.48e-4

-7.84e-4

t
J

js

¢/

S

s

0 I 2 3 4 5 6 7 8

Curvi Iinear abscissa

exact
...... N Im = _

...... M_Im=4
Nlm=6

FIG. 6 Unsymmetric beam problem: predicted vertical displacement field

9_5

Next, we analyze an unsymmetric planar truss structure (q = 2, d = 9.)with

312 degrees of freedom. The unsymmetry is induced by the members material

properties which are differenton both sides of the axis of geometrical symmetry.

The truss structure isalso loaded in both directions as shown in Figure 7. The

lattice mesh is decomposed in two subdomains, each with 144 internal degrees of

freedom. The interface boundary Fz is depicted in Figure 7.

• S

K oooooooooo

FIG. 7' Two-subdomain decomposition of an unsymme_ric fixed-timed truss

The size of the interface problem for the above structure is rather small (hi =

24), so that polynomial approximations for the Lagrange multiplier functions

are considered again. The predicted vertical and horizontal displacements using

the tearing hybrid method are reported in Figures (8-9). Adequate accuracy is

achieved for N,x = 6, which corresponds to only 25% of the number of degrees of

freedom along rl.

26

312 GLOBAL D. O. F. - 24 INTERFACE D. O. F.

0.41

0.38

0.34

0.30

0.P.7

0.P.3

0.19

0.15

0.18

O.O8

0.04

0.01

t
t

l

\ L

\

0 1 2 3 4 5 6 7 8 g 10 11

Curvilinear abscissa

exact M_Im = 4
........ M_Im = 2 M_Im = 6

FIG. 8 Truss problem: predicted horizontal displacement field

27

312 GLOBAL D. O. F. - 24 INTERFACE D. O. F.

0.39

0.33

8.87

8.22

0.16

8.10

0.05

-6.610-3

-8.86

-0.12

-0.17

-0.23

%

\
\

11 I •

0 i 2 3 4 S 6 2 8 9 10 ii

Curvi Iinear abscissa

exact H_Im = 4
........ H_Im = 2 H_Im = 6

FIG. 9 Tru_s problem: predicted vertical displacement field

28

Finally, we select to illustrate the use of piecewise low order polynomials for

the approximation of the interface tractions with the static analysis of a cantilever

beam. A finite element mesh with 300 degrees of freedom is constructed using 4-

node plane stress elements (q = 4) with two degrees of freedom per node (d = 2).

It is partitioned in two non-floating subd0malns, each with a minimum bandwidth

(Fig. 10). The horizontal slicing adopted for this problem avoids the subdomaln

singularity but produces a larger interface than a vertical slicing. The size of the

interface problem is 60.

FIG. 10 Two-subdomain decomposition of cantilever beam

An intitial partition _(0) of FI is defined using four points (NA = S), of which

three are clustered towards the free end where the vertical force is applied. The

iterative refinement procedure of Section 5 introduces an additional point in the

subinterval that is closest to the load (Fig. 11).

%

l

:

2

2

(1)
:5

FIG. 11 Successive partitionings of FT

29

Within three iterations, the tearing hybrid algorithm is shown to converge

towards the exact solution (Fig. 12-13). Note however that it took only two

iterations for the vertical displacement to converge. This example illustrates the

need for a component-by-component convergence criterion as in (41).

388 GLOBAL D. O. F. - 6B INTERFACE D. O. F.

8.8801

-8.8881

-8.8805

-0_8809

-8.8813

-8.8816

-0.0020

-0.0084

-8.0027

-0.0831

-8.003S

_tt

\
,,_,\

\

s

s

r

c

J

I

t

r

I

_IC /

ell _J

\ j"

0 2 5 8 Ii 14 17 20 23 26 29

Curvilinear abscissa

exact S-point spline
4-polnt spline S-point spline

FIG. 12 Cantilever problem: predicted horizontal displacement field

30

300 GLOBAL D. O. F. - 60 INTERFACE D. O. F.

-1 • 84 0-3

-0.07

-0.14

-O._.l

-0.88

-0.35

-0.48

-0.49

-O.5G

-0.63

-0.70

\

\
\

\

\
\

0 2 5 8 11 14 17 20 23 26 R9

Curuilinear _bsciss_

exmci 5"point splino-

........ 4-point splino

FIG. 13 Cantilever problem: _redicted vertical displacement field

For the above problem, Figure 14 compares the condition numbers of BiB T for

various values of N,_, when the traction forces are approximated with polynomials

and piecewise low order polynomials. The advantage of the latter approximation

is clearly demonstrated.

31

300 GLOBAL D. O. F. - 60 INTERFACE D. O. F.

2 3 4 5 G 7 8 9

Number o[discrete Lagrange multipliers

9.337

__C
0

N

D
I

T

I
0

N

N

U
M

B
E

R

18

0 polgnomiel
4-ooint spline

o 5-point spline

FIG. 14 Conditioning of the constraint maivices

32

6.2 Performance evaluation

Here we report on the performance of the proposed computational algorithm

for a laxge-scale structural problem. The corresponding parallel/vector code is

implemented on a CP_.Y Y-MP multiprocessor. Even though this system accom-

modates up to 8 processors, only 4 CPUs were available to us.

We consider the solution of the system of equations arising in the linear static

analysis of the SRB when loaded by internal pressure in its Solid Rocket IVIotor

(SRM) subsystem. The discretized SRB model has '10,453 elements, 9,206 nodes

and 54,870 degrees of freedom (FIG. 15). After node-renumbering, the average

profile bandwidth is 310. The finite element mesh is decomposed in 4 subdo-

mains, each with approximately 2,613 elements. The decomposition is carried

out along the longitudinal direction of the structure, using one-way separators

only. This restriction will be removed in future developments. The optimized

average profile bandwidth for each of the 4 subdomains is 91. Each of the 4 sep-

arators include approximately 920 degrees of freedom. The size of the interface

problem is 3692. The tolerance _ for the convergence criterion (41) is set to 10 -4.

Given the size of the interface problem, a rather large number of discrete Lagrange

multipliers is anticipated. Therefore, the piecewise low order polynomial approx-

imation switch is activated and the preconditioned projected conjugate gradient

algorithm described in reference [1] is invoked for the solution of the interface

problem. The hybrid algorithm achieves convergence after 3 iterative refinement

steps with Nx -- 283. The computed results are compared with those generated

by a parallel/vector skyline solver for validation. Table 1 below reports the CPU

timings for the proposed algorithm and compares them with those of the fastest

solutions that have been published for this problem (Storaasli, Nguyen and Agax-

wal [9], Farhat [10]). Clearly, the proposed algorithm is shown to be significantly

faster in both serial and parallel environments.

33

FIG. 15 Finite element discretization of the SRB

TABLE 1. Equation solvin_t on the CRAY Y-MP

SRB structural model - 54,870 d.o.f.

Number of processors CPU time

Skyline solver

CPU time

Tearing Hybrid Algorithm

1 39 sees 20.18 sees

2 19.79 sees 10.21 sees

4 10 sees 5.19 sees

34

7. Conclusion

Recently, Farhat and Roux [1] have developed a domain decomposition algorithm

based on a hybrid variational principle, for the parallel finite element solution of

self-adjoint elliptic partial differential equations. First, the spatial domain was

partitioned into a set of totally disconnected subdomains and an incomplete fi-

nite element solution was computed in each of these subdomains. Next, a set

of Lagrange multipliers representing surface tractions were introduced at each

degree of freedom of the discretized binding interface in order to enforce compat-

ibility constraints between the independent local finite element approximations.

For structural and mechanical problems, the resulting algorithm was shown to

outperform the conventional method of substructures, especially on parallel pro-

cessors. In this work, we have investigated the use of a much lower number of

Lagrange multipliers, Nx, for interconnecting the incomplete field finite element

solutions. For that purpose, we have derived finite element procedures for both

global and piecewise low order polynomial approximations of the interface trac-

tions. Through simple structural examples, we have shown that a high accuracy

can be reached with a value of Nx that is only a small percentage of the total

number of interface degrees of freedom. With this modification, the performance

of the hybrid algorithm presented in [1] is drastically improved since it deals with

a much smaller interface or reduced system. Even though we have addressed

only the two-subdomain decomposition, the procedure is readily applicable to

many-subdomain problems where only one-way separators are used for the mesh

decomposition. We have illustrated the latter case with the large-scale static

analysis of the Solid Rocket Booster (SRB) on a 4 processor CRAY Y-MP. For

that problem, the modified hybrid algorithm is shown to outperform parallel sky-

line solvers in both serial and parallel environments. Future work will focus on

the case of arbitrary mesh decompositions and on time dependent problems.

Appendix A. Piecewise-eubie Bessel interpolation

Let F_, k = 0, ..., N)_/d- 2 denote a partition 7_ of the interface boundary I'z

defined as:

= k+l] k = 2

35

Within each subinterval F k, d cubic polynomials are defined as:

X_(_)= elk+ c_k(s- sk)+ 4k(s - sk)_+ _k(* - sk)3
() = _k + 4k(_ - _k)+ 4k(s - sk)_+ c_k(s- sk)3

The coefficients c ij k, i = 1, ..., 4, j = 1, ..., d are determined by imposing:

-_s (Sk): -_"(sk) ; "-_--s(Sk+l)- ds.(Sk+l)

A28k

k = O,...,N),-2

j = 1,...,d

where Ask and /%2sk are defined as:

Ask =

A2s k =

The solution of the above equations yield:

_k : e_k_i÷_+ _k_÷_ +¢_k_i+ _a_.__
CJk = (4k/_J+2 Jr- rl4k/_J+l "Jr- (4k/_ + /]4k__l

36

where

_2k =

_2k

_2k =

_3k =

_3k --

_3 k --

u3k =

_4k

_4k :

_4k --

W4k :

Z_S k--1

ZfXSk+lZ2k2 S k-t- 1

3 ASk-1

As_ 2AskA2Sk

-3 2

As_ Ask-lAsk

2

Ask-iA2sk

1

ASk- 1

Z_sk/k2sk

+
I Ask+i Ask-i

Ask+lA2sk+i As_A2sk+i As_A2sk

Ask-1 ASk+l ASk-1
+ 2

+ As2kZX_sk + Asi/X2sk+ i /XskZX2sk

/_$ k/_S k+ I /_2Sk+ l

-1 Ask+i Ask-1 2

+ AsiA2s + As_A2sk AsakAs ki-_sk+ iA2s k+ i k+i

1 2
--ASk+l ASk-1 -_ jr_ .__

As_.A2sk+i AsIA2sk AskAsk-iA2sk Asi

-1

AS k--l Z-._SkZ-_28 k

Acknowledgments

The first author would tike to thank C. Militello at the Center for Space Structures

and Controls, Boulder, for his valuable suggestions. He also acknowledges paxtial

support by the National Science Foundation under Grant ASC-8717773, partial

support by NASA Langley under Grant NAGI-756, and partial support by the

Air Force Office of Scientific Research under Grant AFOSR-89-0422.

37

References

[1] C. Farhat and F. X. Roux, "A Method of Finite Element Tearing and Inter-

connecting and its Parallel Solution Algorithm," (submitted for publication)

[2] B. Nour-Omid, A. Raefsky and G. Lyzenga, "Solving Finite Element Equa-

tions on Concurrent Computers," Parallel Computations and Their Impact on

Mechanic_, ed. by A. K. Noor, ASME, New York, (1987), pp. 209-228.

[3] C. Farhat and E. Wilson, "A New Finite Element Concurrent Computer Pro-

gram Architecture," Int J. Num. Meth. Eng., Vol. 24, No. 9, (1987), pp.

1771-1792.

[4] G. Kron, "A Set of Principles to Interconnect the Solutions of Physical Sys-

tems," J. Applied Physics, Vol. 24, No. 8, (1953), pp. 965-980.

[5] M. R. Dorr, "Domain Decomposition via Lagrange Multipliers," UCRL-98532,

Lawrence Livermore National Laboratory, (1988).

[6] T. H. H. Pian, "Finite Element Formulation by Variational Principles with

Relaxed Continuity Requirements," in The Mathematical Foundation of the Finite

Element Method with Applications to Partial Differential Equations, Part II, ed.

by A. K. Aziz, Academic Press, London, (1972), pp. 671-687.

[7] O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Method," Fourth

Edition, Volume 1, McGraw-Hill, (1989), pp. 373-396.

[8] S. D. Conte and C. De Boor, "Elementary Numerical Analysis, An Algorithmic

Approach," McGraw-Hill, N. Y., (1980), pp. 288-289.

[9] O. O. Storaasli, D. T. Nguyen and T. K. Agarwal, "Parallel-Vector Solution of

Large-Scale Structural Analysis Problems on Supercomputers," AIAA / ASME

/ ASCE / AHS / ASC 30th Structures, Structural Dynamics and Materials Con-

ference, Mobile, Alabama, (1989), pp. 859-867.

[10] C. Farhat, "Which Parallel Finite Element Algorithm for Which Architecture

and Which Problem," Computational Structural Mechanics and MuItidisciplinary

Optimization, ed. by R. V. Grandhi, W. J. Stroud and V. B. Venkayya, ASME,

AD-Vol. 16, (1989), pp. 35-43.

38

