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Abstract

At present time, the application of mobile robot is commonly seen in every fields of
science and engineering. The application is not only limited to industries but also in the
household, medical, defense, transportation, space and much more. They can perform all
kind of tasks which human being cannot do efficiently and accurately such as working in
hazardous and highly risk condition, space research etc. Hence, the autonomous
navigation of mobile robot is the highly discussed topic of today in an uncertain
environment. The present work concentrates on the implementation of the Artificial
Intelligence approaches for the mobile robot navigation in an uncertain environment. The
obstacle avoidance and optimal path planning is the key issue in autonomous navigation,
which is solved in the present work by using artificial intelligent approaches. The methods
use for the navigational accuracy and efficiency are Firefly Algorithm (FA), Probability-
Fuzzy Logic (PFL), Matrix based Genetic Algorithm (MGA) and Hybrid controller (FA-
PFL, FA-MGA, FA-PFL-MGA).The proposed work provides an effective navigation of
single and multiple mobile robots in both static and dynamic environment. The
simulational analysis is carried over the Matlab software and then it is implemented on a
mobile robot for real-time navigation analysis. During the analysis of the proposed
controller, it has been noticed that the Firefly Algorithm performs well as compared to
fuzzy and genetic algorithm controller. It also plays an important role in building the
successful Hybrid approaches such as FA-PFL, FA-MGA, FA-PFL-MGA. The proposed
hybrid methodology perform well over the individual controller especially for path
optimality and navigational time. The developed controller also proves to be efficient
when they are compared with other navigational controller such as Neural Network, Ant

Colony Algorithm, Particle Swarm Optimization, Neuro-Fuzzy etc.

Keywords: Firefly Algorithm, Genetic Algorithm, Fuzzy-Logic, Mobile Robot
Navigation, Hybrid Controller
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Chapter 1

Introduction

The proposed work in the field of mobile robot navigation addresses the potential of
Artificial Intelligent (AI) methods for design and development of the path planning and
control strategies for mobile robotics. The chapters included in the thesis have been
classified into four main sections. The first section of the chapter deals with the
background and inspiration behind the proposed research work, whereas the second
section discusses objective of the work and its scope in the field of engineering and
science. The originality of the work is presented in the third section. The outline of all

chapters of the thesis work is concluded in the fourth section.
1.1 Background and Inspiration

At present, in all the fields of science and engineering from industry to household, medical
to military are commonly using the robots. Its success and desirable outcome make it
suitable to accomplish the needed task, and so it is highly researched topic of today.
Industrial and technical applications of mobile robots are continuously gaining in
importance, in particular under considerations of reliability (uninterrupted and reliable
execution of monotonous tasks such as surveillance), accessibility (inspection of sites that
are inaccessible to humans, e.g. tight spaces, hazardous environments or remote sites) or
cost (transportation systems based on autonomous mobile robots can be cheaper than
standard track-bound systems). The present mobile robots can be used for surveillance,
inspection, entertainment and transportation tasks. The main application of mobile robot is
seen in the dangerous field such as mining industry, nuclear industry, space research and
landmine detection in the military operation where the human interaction may cause
accidents. To achieve safe path and a successful navigation in such dangerous field is a
challenging task for any automobile robot. So, attention on path planning strategy to make
automobile robot navigation from initial position to destination by avoiding the obstacle is

a fundamental need. Additionally, to minimize required time of navigation, energy
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consumption and communication delay, the safely organized path is required which
should be optimal regarding path length.
The autonomous mobile robot is an artificially intelligent machine which is capable of
understanding the environmental condition (position of obstacle and goal), able to do self-
path planning (by avoiding the static and dynamic obstacle) and should be capable to
quickly respond to any environmental condition without any human effort. Practical path
planning in an uncertain environment is still a major problem in mobile robot navigation.
At present Scenario, day by day real time implementation of automobile robot is
continuously growing, and therefore, the automobile robot with efficient obstacle
avoidance mechanism is need of today. The autonomous navigation of mobile robot is a
complicated process not only about the determination of its position in its frame of
reference but also about to plan towards the goal. The method of navigation consists of
four main stages (shown in Figure 1.1) and are as follows,

e Perception

e Localization / Mapping

e Cognition / Planning

e Motion control

|.—) Perception

Localization/Mapping

!

Cognition/Planning

- b

Motion Control —

Sensors
Actuators

Environment/Real World

Figure 1.1: Sequential task of navigation process

With the help of sensor, the prior information of the environment is collected and this
information is used to build the map of the surrounding (perception). The information
obtained from the sensor is used to determine the position of the robot in the robot
environment (localization). After localization, the robot must plan the path from the initial
position to target position (Cognition / local path planning) and control the motion of the

robot actuators (for motion control). By following the above basic steps of navigation, the
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desired path planning strategy for mobile robot navigation is formulated, which is capable
of finding an optimal collision-free path from the initial position of the robot to a goal
position in the uncertain environment. In mobile robot navigation, tracks, wheels and legs
are used for the locomotion purpose. From the last decades, the mobile robot equipped
with the wheel mechanism is popularly seen in industry to the household application for
operation, transportation, and inspection. The research work presented in the thesis

follows the wheeled mechanism for navigation in the uncertain environment.

The mobile robot navigation is not a big issue when the environment is without obstacle,
but when the environment is filled with various static and dynamic obstacles, then it
becomes the topic of research for optimization. Many researchers have provided the
different approaches to solve the problem of navigation when the environment is known

and unknown. The path planning approaches are broadly categorized as follows,

e (Global path planning (Offline path planning) approach.
e Local path planning (Online path planning) approach.

In global path planning approaches, the initial information about the environment i.e. the
position, shape, size of the obstacle are required for path planning whereas, in local path
planning methods, no preliminary data of environment is necessary. On comparison, the
local path planning approaches popularly used over global path planning approaches
concerning low computational cost, real time implementation and capability to handle the
uncertainty present in the environment. The traditional global path planning approaches
such as Cell decomposition, Roadmap, Subgoal network, Artificial potential field and
Voronoi diagram are not suitable for on-line implementation. Therefore, artificial
intelligence approaches (for local path planning) such as Genetic Algorithm (GA), Neural
Network (NN), Fuzzy Logic (FL), Bacteria Forging Optimization algorithm (BFOA), Ant
colony algorithm (ACO), Cuckoo search algorithm (CSA), Particle Swarm Optimization
(PSO), Bee algorithm (BA), Firefly Algorithm (FA), Simulated Annealing (SA), and
combination of the above (Hybrid algorithm) have been used for online implementation of

mobile robot navigation problem.

The work in thesis dedicates to design and development of artificial intelligent
navigational strategies for multiple wheeled mobile robots in an uncertain environment by
using the hybrid algorithm. To achieve the said goal, the Matrix based Genetic Algorithm
(MGA), Probability-Fuzzy Logic (PFL), Firefly Algorithm (FA) and Hybrid Algorithms
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(such as FA-MGA, FA-PFL, FA-PFL-MGA) are studied to build real-time navigational
path planner for single and multiple mobile robots. The work consists of the design and
development of an intelligent controller to avoid the static and dynamic obstacle in
minimum travel time. The analyzed advantage of the work can be easily implemented to
design and development of the hybrid methodologies in minimum infrastructure. The
useful hybrid controllers are designed and developed by hybridization of the intelligent
controllers. These hybrid controllers are tested for different situations and are
implemented for the computer based simulation to check feasibility over the uncertain
environment. At last, the real-time navigation is demonstrated by developed controller on
the real robot to validate the effectiveness at the proposed methodologies. The developed
hybrid controller using probability-fuzzy logic, matrix based genetic algorithm and firefly
algorithm are observed more advantageous when compared with a single controller in

terms of path length and time taken during navigation.
1.2 Aims and Objectives of Proposed Research Work

The principle goal of the current investigation is to design the artificial intelligent hybrid
controller for effective path planning in the presence of a static and dynamic obstacles in
the uncertain environment. The navigational approach is not only developed for the single
mobile robot but also for multiple mobile robots. In this proposed work, Matrix based
Genetic Algorithm (MGA), Probability-Fuzzy-Logic (PFL), Firefly Algorithm (FA) and
the hybrid algorithm (FA-MGA, FA-PFL, FA-PFL-MGA) have been analyzed and
employed to solve the mobile robot navigation problem. Specifically, the work wishes to
observe the suitability of the hybrid controllers for effective path planning for single and

multiple robots in the presence obstacles.
The principle objectives of the proposed work presented in the thesis are as follows:

e To carry out the kinematic analysis of wheeled mobile robot.

e To design and develop the matrix based genetic algorithm for developing a
effective navigational strategy for mobile robot navigation problem.

e To generate the active rule mechanism by using probability-fuzzy logic for mobile
robot navigation problem.

e To build up firefly algorithm based navigational path planning controller for

mobile robot navigation.
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To develop the hybrid navigational controller based on firefly algorithm and
matrix based genetic algorithm i.e FA-MGA.

To develop the hybrid navigational controller for robot based on firefly algorithm
and probability-fuzzy logic i.e FA-PFL.

To develop the hybrid navigational controller for robot based on firefly algorithm,
probability-fuzzy logic and matrix based genetic algorithm i.e. FA-PFL-MGA.

To perform the simulation and experimental analysis of proposed methodologies

for validation purpose.

In addition to said objectives the robot must have the following ability:

The robot must understand the data given by the sensors and able to understand the

environment.

It must be self-moving in its environment without slipping.

It should have the proper obstacles detection and obstacles avoidance mechanism.
It should not cause any damage to the environment.

It must be intelligent to update itself from the self-learning ability for efficient

searching.

Some extraordinary behaviors are given below for useful mobile robot navigation to

achieve the above goals:

1.3

Goal seeking behavior: With this behavior robot must search the target
continuously till it reaches.

Obstacle avoidance behavior: When the robots path consists of the obstacle then
this behavior helps the robot to make safe distance with the obstacles and performs
the obstacle avoidance task.

Wall following behavior: Due to this behavior the robot can come out from the
trap like situation. This mechanism helps the robot to follow the walls of the

obstacle during navigation.

Novelty of the Proposed Research Work

The proposed research work in the thesis gives the novel hybrid controller for effective

path planning in the uncertain environment in the presence of static and dynamic obstacles

for multiple wheeled mobile robots. The three popular approaches such as genetic
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algorithm, fuzzy logic, and firefly algorithm are hybridized to get the benefit over the
other approaches. As per the knowledge of the author, the newly discovered firefly
algorithm is not yet hybridized with fuzzy logic and genetic algorithm for path planning
problems of multiple wheeled mobile robots in a static and dynamic environment. The
matrix based genetic algorithm and use of probability along with the fuzzy logic is the

additional finding of the proposed research work.

1.4 Outline of the Thesis

The thesis is categorized in following sections as chapter wises:

Chapter-1 gives the brief introduction of mobile robot navigation, idea behind the
proposed research work and objective.

Chapter-2 displays the detailed literature survey on different mobile robot navigational
approaches.

Chapter-3 focuses the kinematic analysis of the wheeled mobile robot.

Chapter-4 presents the application of the matrix based genetic algorithm for the mobile
robot path planning problem by finding the fittest chromosome among the population as
the new position of the robot and maintains the diversity in population to get an optimal
solution.

Chapter-5 deals with the use of the fuzzy logic technique along with the probability for
path planning of mobile robot in the uncertain environment by generating the active rules.
Chapter-6 provides the application of firefly algorithm for mobile robot navigation. The
fitness function is derived using biological mechanism of fireflies, for safe path planning
and obstacle avoidance in a static and dynamic environment.

Chapter-7 gives the hybrid controller based on the matrix based genetic algorithm,
probability-fuzzy logic and firefly algorithm. The designed controller performs better over
the individual probability-fuzzy logic, matrix based genetic algorithm, and firefly
algorithm.

Chapter-8 discusses the comprehensive final review of all discussed approaches on the
basis of applicability.

Chapter-9 concludes the research work carried in this thesis and gives the positive

approach towards the future application and research.



Chapter 2

Literature Review

This chapter focuses the highlights on the various research methodologies developed in
the field of mobile robot navigation till now in context to the current research. The step by
step investigations of classical and reactive approaches are made here to understand the
development of path planning strategies in various environmental conditions. At the end
of the chapter the summary of the literature is provided and effort has been given to find
an appropriate gap or methodologies weakness in the existing study area to solve the

research problem.
2.1 Introduction

Autonomous mobile robot path planning is the task of getting the appropriate movement
in the uncertain environment without any human interference. The appropriate movement
initiates the robot to attain a goal and during this, it has to detect and avoid collision with
obstacles. The mobile robot and its environment must be quantified during path planning
problem. The mobile robot model has its dimensions, differential equation, kinematics,
control parameter over robot movement. Model of the environment has the position of
robot and obstacle, map representation. For any mobile robot, self-localization, path
planning, map building and obstacle avoidance are the requirements of navigation. Robot
localization denotes robot ability to establish its own position and orientation within the
frame of reference. Path planning is the extension of the localization in which it requires
the determination of the robots current position and a position of a goal location, both
within the frame of reference. Map building can be in the shape of a metric map or any
notation describing the location in the robot frame of reference. In obstacle avoidance the
robot responds to the environment by sensing obstacles. Global navigation, local
navigation and personal navigation are the three different aspects of the mobile robot
navigation. The ability to determine one's position in absolute or map-referenced terms
and to move towards desired destination point is the global navigation. Local navigation is

the ability to determine one's position relative to stationary or moving object in the
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environment and not to collide with them as one move. Being aware of the positioning of
the various parts that make up one in relation to each other and handling the objects is the

personal navigation.
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Figure 2.1: Flow diagram for mobile robot navigation (Horizontal decomposition)
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Figure 2.2: Flow diagram for mobile robot navigation (Vertical decomposition)

To solve the difficulties of the path planning problem, conventional and reactive
approaches have been considered for the study. The most of conventional approaches are

deterministic and it fails when there is the discontinuity in an objective function. However,
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reactive approaches have the ability to search space on the global platform to give up the
diverse solution and to look for the feasible solution in the local region. In navigational
problem, the collision free paths are constructed by the path planning algorithms, and
robot moves along the constructed paths to reach the target. The path planning system for
the mobile robots is decomposed into a series of functional units, as shown in Figure 2.1
by continuous vertical slices. After deciding the computational requirements for a robot,
the path planning system is decomposed into a series of horizontal functional units to
achieve the desire task behavior required for the robot (Figure 2.2). After, surveying many
research articles in the robot path planning field, many existing research works for each

technique is identified and categorized.

2.2 Kinematic Analysis of Wheeled Mobile Robot

2.2.1 Introduction

Kinematics is the most fundamental study associated with the operation of the mechanical
system. In mobile robotics, kinematics related to the mechanical behavior of the robot
while neglecting the effect of the forces acting on it. While designing a mobile robot for a
particular application one has to consider the mechanical behavior of the system. The next
step is to develop control software to attain thorough command over the hardware of the

mobile robot.
2.2.2 Wheeled Locomotion for Mobile Robot

The application of mobile robot is increasing day by day in the field of medical sciences,
the military operation of search and rescue, household work to industrial process,
entertainment to the creation, space research, mining operation and much more. To
perform this efficiently the robot requires appropriate locomotion mechanism. The
locomotion mechanism equipped with legs is having some shortfalls that they lose energy
and suffers from the high mechanical complexity and it requires a high degree of freedom.
For effective autonomous mobile robot navigation, the wheeled locomotion mechanism
[1-4] is popularly used. In most of industrial and household purposes, the mobile robots
with motorized wheels are practiced for navigation on the flat and uneven ground. The
wheeled mechanism design is simpler, easy to build, inexpensive and easy to control the
movement. The autonomous mobile robot may have many wheels, but for satisfactory

balance three wheels are sufficient [5-6]. However, the additional wheel can be used for
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balancing purpose when the ground is uneven. Apart from the balancing of the robot, the
problems like control, stability and maneuverability were the great challenges to control
velocity over the wheeled robot. To monitor the motion and according to the application
the standard wheel, castor wheel, Swedish wheel and ball or spherical wheel is used due to
having the significant effect on kinematics [7-8]. The Standard and castor wheel have
significant influence of on robot locomotion as standard wheels give smooth motion
without any effect whereas the castor wheels exert the force on the robot chassis during
steering [9]. On the other hand in [10], the Swedish wheel functions like a normal wheel
but it has some constrained in another direction. The wheels like spherical are called
omnidirectional wheel as they have no constrained for the direction of motion as it can
spin along any direction [11]. While selecting the wheel for the robot, the suspension
system plays a significant role in any kind of terrain to maintain proper contact with the
ground. So, in many robots, soft rubber is used to create an initial suspension for uneven
terrain. Like proper wheel selection, the study of the wheel geometry which consists
maneuverability, controllability and stability also key parameters while controlling
kinematics of the robot [12]. The most of the automobile works in the highly uniform
environment, however, the automobile robot has designed for numerous situations. In the
case of the automobile, the maneuverability, controllability and stability remain maximum
as they have same wheel configuration for their standard environment, but there is no
single wheel configuration for automobile robot to achieve maximum maneuverability,
controllability and stability in a variety of environment [13]. For stability point of view,
the robot requires minimum two wheels. To get static stability in two wheel drive robot,
the center of mass must act below the wheel axle. Alexander et al. [14] have correlated the
robot motion, types of wheel drive and the connection between bodies for robot stability.
They used the simple wheels for locomotion with the implementation of forward and
reverse kinematics. To control the robot from skidding on the plane ground the Tsuchiya
et al. [15] presented the new strategy whereas Mester [16] introduced the “Feed forward
compensator” for modeling and controlling robot motion for uneven terrain. The analysis
is carried out on two wheeled drive robot with independent angular velocities of the
wheels. The kinematic analysis of three-wheeled (omnidirectional) mobile robot by
geometric strategies is presented in [17]. To provide omnidirectional motion, the new
wheel mechanism is designed and developed for the holonomic mobile platform by using
three self-steered wheels. The problem of motion control along with kinematics and

singularity analysis for Swedish wheel is presented by the Giovanni [18]. Wada et al. [19]

10
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have developed improved wheel mechanism for holonomic and omnidirectional robots.
They used Synchro-caster wheel drive mechanism with self-governing decoupled gear
train. To select the proper wheel for required operation the kinematic and dynamic
analysis of wheels has been tested with consideration of skidding and sliding velocities
[20]. While testing, method of augmented generalized coordinates has been used to carry
out forward and inverse kinematic model. The same approach is also used by [21] to
match the input vector and output vector of the mobile robot. To study the kinematics of
mobile robots, the matrix coordinates transformation approach has proposed by [22]. The
proposed approach gives satisfactory result when tested on a tricycle for forward velocity
kinematics. Borenstein [23] have discovered compliant linkage mechanism for controlling
and designing of the multi-degree of freedom mobile robots. The new device helps in
minimizing the error and slipping. To improve the performance of the mobile robot, the
variable length axle is presented in [24] over the rigid axle to minimize the slip. The
artificial intelligence technique like fuzzy logic [25] and genetic algorithm [26] is used as
the control strategy for the mobile robot. Teimoori et al. [27] have presented new guidance
algorithm to drive wheeled robot toward the static and moving target based on the range
only measurement. The proposed approach generates an equiangular spiral trajectory for
locomotion. Zheng-Cai et al. [28] presented the point stabilization scheme for the wheeled
mobile robot for uneven surfaces by using the fuzzy-genetic algorithm. The fuzzy logic
used to control the speed and angular velocity where the genetic algorithm is used to
optimize the control parameters. Eghtesad et al. [29] have presented the combined
open/close loop method and feedback linearization approach for stabilizing the center of
mass of the vehicle during the curvilinear motion. Mekkonnen et al. [30] have presented
the position based visual servoing and image based visual servoing strategy which helps
for steering towards the specific goal in the environment without requiring any prior
information of the environment. Grand et al. [31] presented the analysis of the wheeled
mobile locomotion on rough terrain by using the principles of the velocities to link the
operational and joint parameter, the principle of virtual work to connect the contact forces,
gravitational force and joint torques. The results show the efficient control over the
posture of the robot in the static and dynamic environment. Chakraborty et al. [32]
presented wheeled mobile robot navigation in uneven terrain without sleep by using torus
wheel with a single point of contact. Kalinski et al. [33] introduced the optimal control
strategy for the two-wheeled mobile robot based on energy performance and it is efficient

for the problem of motion surveillance.
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2.3 Navigation Technique used for Mobile Robot

Continuous research in the field of mobile robot navigation leads to the existence of
effective navigational technique for controlling and guiding the robot for industrial and
household purposes. Various researcher and scientist, from last few decades, have
provided numerous studies on navigational approaches to find a suitable methodology for
controlling the robots. The current research work made in thesis devoted to the
development of efficient path planning for single and multiple mobile robots by using the
intelligent hybrid approaches in the static and dynamic environment. The various methods
employed for the navigation of mobile robot are broadly classified into two categories

(classical and reactive approaches) as discussed below.
2.3.1 Classical Approaches

The many classical approaches are used to solve the navigational problem of the mobile

robot. The reviews based on the classical methods are described below.
2.3.1.1 Cell Decomposition Approach

It is one of the popular approaches used for path planning in mobile robotics. Cell
decomposition approach divides the region into the non-overlapping grids (cell) and uses
the connectivity graphs for traversing from one cell to another cell in order to achieve the
goal [34-36]. During the traversing, the pure cells (cell without obstacle) are considered to
achieve the path planning from the initial position to target position. The corrupted cells
(cells with the obstacle) present in the path are further divided into two new cells to get
pure cell and this pure cell added to the sequence while getting the optimal path from the
initial position to target position. In cell decomposition approach, the initial position and
target position are represented by the starting and ending cells. The sequence of pure cells

that joins these positions shows the required path [37].
Cell decomposition approach is divided into three parts

¢ Exact cell decomposition.
e Approximate cell decomposition.

¢ Adaptive cell decomposition

In the exact cell decomposition [38-39] shown in Figure 2.3, cells do not have specific

shape and size, but it can be determined by the map of environment and shape and
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location of the obstacle within it. This method uses the regular grid in a various way. The
first step in this type of cell decomposition is to decompose the free space, which is
bounded both externally and internally by polygons, into trapezoidal and triangular cells
by simply drawing parallel line segments from each vertex of each interior polygon in the
configuration space to the exterior boundary. Then each cell is numbered and represented
as a node in the connectivity graph. Nodes that are adjacent in the configuration space are
linked in the connectivity graph. A path in this graph corresponds to a channel in free
space, which is illustrated by the sequence of striped cells. This channel is then translated
into a free path by connecting the initial configuration to the goal configuration through

the midpoints of the intersections of the adjacent cells in the channel.
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Figure 2.3: Exact cell decomposition
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Figure 2.4: Approximate cell decomposition (8-connected and 4-connected grids)

In approximate cell decomposition [40-41], a regular grid is placed over the planning
space and all the cells of the grid are predefined in shape and size so that it is easy to
apply. This method of cell decomposition is called “approximate” because the boundaries
of the physical objects do not need to coincide with the predefined cell boundaries. Any
object placed in the grid area is considered as an obstacle else it is left as free space. To

find a path, the center of each cell is taken as a node in the search graph. As shown in
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Figure 2.4, these nodes can either be 4-connected or 8-connected representing whether or

not the robot is considered to travel diagonally between them.

Adaptive cell decomposition understands the information present in free space and follows
the basic concept of avoidance of the free space in regular cell decomposition. Samet [42]
and Noborio [43] have proposed quadtree-adaptive decomposition. It started to divide the
environment by large size cell but when the grid cell is partially occupied then in such
condition it divides it into four equal subparts. These subparts are then subdivided again
until each of the cells is either entirely full or empty. The resulting map has grid cells of
varying size and concentration, but the cell boundaries coincide very closely with the
obstacle boundaries as shown in Figure 2.5. When the robot acquires new data and updates
its map based on new obstacles, then adaptive cell decomposition causes problems for
dynamic environments. Hence, it is necessary for the entire data structure of the map to be

completely restored.

Robot
Position

Figure 2.5: Adaptive cell decomposition

Goal

2.3.1.2 Roadmap Approach

Roadmap approach is also called as highway approach. Roadmap is the way to get from
one place to another and it is the connection between free spaces is represented as a set of
the one-dimensional curve [44]. After building the roadmaps, it used as a set of
homogenous paths which the planer will search through to find optimal solution. The
nodes in the graphs are usually waypoints that the robot needs to travel between for a
successful journey. Therefore, roadmap approach is used to find shortest path from robot
initial position to its target position. Voronoi and Visibility graphs are used to develop the
roadmap. The visibility graph method connects the initial and the goal position with nodes
from the map and searches for the path. Figure 2.6 represents the visibility graph where

the dark area shows obstacle and dashed line shows the respective path from the initial
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position to goal position [45]. This method is also used for the environment with
polygonal obstacles in which the vertices of the polygon is represented by the nodes and

edges as a connector between the nodes [46].

Goal

Figure 2.6: Visibility graph

Goal

Start
Figure 2.7: Voronoi diagram

The Voronoi diagram [47-49] is another roadmap algorithm used for the path planning of
the robot. This method makes region into sub-region where all edges of the Figure are
constructed using equidistant points from the adjacent two points on the obstacles
boundaries. The Figure 2.7 represents the working of the Voronoi diagram.

The application of Voronoi diagram in the field of mobile robot navigation is presented by
the [50-52] to keep robot away from the obstacle while moving in the environment. To
improve the performance and to eliminate the drawback such as sharp turns and long loops
in Voronoi diagram, some improvement is provided for effective path planning [53]. The
hybrid approach is developed by combining the visibility graph, Voronoi diagram and
potential field method [54] to get path optimality. Perhaps it has been noticed that the
approach fails to get optimal path and execution process were complicated. To develop
successful path planning by Voronoi diagram various strategies were implemented like

skeleton maps by Yang et al. [55]. On the other hand, the combined approach of visibility
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graph and Voronoi diagram is presented by the Wein et al. [56] have provided the optimal
root in planer environment. Kavraki et al. [57] presented the application of probability for
Roadmap approach to understand and generate the solution to path planning. However, the
approach is not efficient to get optimum path length. To obtain improvement in the
process of finding the shortest path, Sanchez et al. [58] made a little variation in

probabilistic roadmap approach by using the lazy-in-collision-detection method.
2.3.1.3 Artificial Potential Field Approach

Khatib [59] in 1986 presented the artificial potential field approach for mobile robot
navigation. According to him, goal and obstacles act like charged surfaces and the total
potential creates the imaginary force on the robot. This imaginary force attracts the robot
towards the goal and keeps away from the obstacle as shown in Figure 2.8. The robot
follows the negative gradient to avoid the collision caused by the obstacles and reach the
target points. This method is used by various researchers for effective path planning and
obstacle avoidance of mobile robot. The potential field method for mobile robot
navigation is presented by the Garibotto et al. [60]. The new obstacle avoidance strategy in
an unknown environment is discussed by the Kim et al. [61] by using potential field
approach. They used a harmonic function to avoid a local minimum problem. The
Borenstein et al. [62] have also presented the solution to the problem of the local minima
condition. In this, they have considered the dynamic properties of robot navigation. The
analysis of potential field method in the dynamic environment for obstacle avoidance is
performed in [63]. The new improvisation in potential field method is done by using laws
of electrostatic [64]. The implementation of the electrostatic helps to produce the potential
function and to get the collision-free path in real time. The moving obstacle avoidance in
real time is not so easy and hence Huang [65] developed the velocity controlling
mechanism to understand the location and velocity of the obstacle while achieving the
goal. To avoid local minima, the superior potential function and superior repulsive
potential function is introduced by Shi et al. [66] to achieve global optima. Sfeir et al. [67]
solve the observed problem in mobile robot navigation by potential field approaches such
as oscillation and conflicts. They have presented improved version of the potential field
algorithm to minimize the oscillation and conflicts when the goal is closer to the obstacle.
They also provided the rotational force to produce a better path in the presence of the
obstacle. Again, improved potential field approach is provided by Biswas et al. [68] to

avoid the oscillations problem. The simultaneous comparison is made between the two
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methods i.e. traditional method and Levenberg-Marquardt method and it has been
concluded that the solution obtained from the Levenberg-Marquardt is better as compared
to traditional algorithm. The proposed approach minimizes the oscillation and produces
the collision-free path. The problem of multiple mobile robot navigations is solved by
applying potential field method in [69, 63]. The application of finite element method
(FEM) along with potential field is discussed in [70]. The presented approach transforms
the navigational problem into the electrostatic problem and then solved by the FEM. To
test the applicability of the potential field approach Pradhan et al. [71] used ROBOPATH
simulational tool. The multiple mobile robots are considered for various environmental

condition and they observed better result in coordination strategy without collision.
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Figure 2.8: Mobile robot navigation by artificial potential field approach
2.3.2 Computational Intelligence Approach

Now days, a computational intelligent approach is accepted as most popular tool for
mobile robot navigation when compared with the classical approach. It has great ability to
handle the uncertainty present in the environment. There are various techniques developed
for the navigation of the mobile robot in known and unknown environment. Parhi [72-73]
have classified the navigational technique in order to carry out the systematic review of
developed approaches including the hybrid approach also. The several computational

intelligence techniques have discussed below.
2.3.2.1 Genetic Algorithm

It is an evolutionary algorithm developed initially by Bremermann [74] in 1958, but the
actual identity is given by Holland [75] in 1975 for firstly using the application of it in the

field of computer science. It is the evolutionary computational approach used for the

17



Chapter 2 Literature Review

optimization of a selected function for maximization and minimization operation. It
follows the biotic process of reproduction and natural selection mechanism to find out the
fittest solution. In the process of evolution, the randomness present in the GA is to set by
one to control the randomization. The genetic algorithm is more efficient and robust than
random search algorithm without requiring extra information about the given problem.
This key feature of GA is helping to get solution easily where all other optimization tools
cannot handle due to deficiency of continuity and linearity. Genetic algorithm (GA) is a
meta-heuristic algorithm and is used as powerful tool for optimization problem of all
kinds. The ability to get global optima and high parallelism make it efficient over the other
optimization technique. In 1975, Holland [75] has given the first introduction to GA for
optimization problem based on Darwin’s theory of survival of fittest. After that, it has
been widely adopted in the field of mobile robotics. Shibata et al. [76] have proposed the
successful GA based motion planning approach for the static environment in the presence
of a polygonal obstacle. In the same year, Shing et al. [77] demonstrate the mobile robot
for real-time path planning in planner terrain by adopting GA-based search strategy.
Optimal path length, path smoothness and obstacle avoidance are the goals of effective
path planning strategy proven by the Xiao et al. [78] by using GA in an unknown
environment. Kang et al. [79] presented the solution to dead end problem of navigation of
robot. They gave the GA to keep safe the robot from the stuck problem in the complex-
crowded environment. When the robot falls in stuck like condition, then it operates online
training to find a fit chromosome that helps the robot to come out from the situation. The
path planning strategy in the presence of moving an obstacle in the unknown environment
is presented by the Shi et al. [80]. The acceptability of GA is increased day by day and it
also used with many other approaches to get hybrid approach for path planning. Pratihar et
al. [81] have developed the fuzzy-genetic hybrid navigational approach for mobile robot
path planning. Fuzzy logic is used to avoid obstacle present in the path and GA is used for
to optimize path during the navigation. Hui et al. [82] have presented the study of GA for
mobile robot navigation in combination with the fuzzy logic, neural network and
compared with the conventional approach like potential field method. They observed that
the fuzzy genetic and fuzzy neural approaches were working efficiently in terms of time
optimality over potential field method. They also noted that the genetic algorithm with the
fuzzy and neural network is more robust and adaptive as compared to potential field
method. Wang et al. [83] applied the GA with PSO as a hybrid useful tool for robot path

planning operation in the welding process. The hybrid mechanism enhances the diversity
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of particle and global search ability which makes collision free welding path and improves
the welding efficiency as a result. The successive application of GA for the combinatorial
optimization problem is provided by Kala [84]. He developed the multi-robot path
planning over local search in limited computational infrastructure. Similarly, multiple
goals optimization problems by GA are solved by Liu et al. [85]. In this approach, the
energy consumption and idle time are minimized by implementing the new operator like
repair, deletion and cut. Kuyucu et al. [86] improved GA for MRN over large search space
to achieve the multi-objective task by using the combination of various mechanisms like
genetic transposition inspired seeding, a strongly-typed crossover and multi-objective
optimization. The path planning strategy in the presence of moving obstacle in the
unknown environment is presented by the Shi et al. [87]. On the other hand the Yang et al.
[88] showed the navigation of multiple mobile robots in the dynamic environment. Many
researchers made some modification in conventional GA due to slow convergence rate,
lack of cooperation between the population and local optimum. Hong et al. [89] presented
the improved version of GA for global path planning of mobile robot. They used the co-
evaluation mechanism for cooperation among the population of multiple mobile robots
which results in avoidance of collision between robots and to gets optimal path during
navigation. They demonstrated the present GA algorithm on multiple mobile robots in the
presence of various static obstacles and showed better result over the basic GA. Carlos et
al. [90] demonstrated the new form of GA for traveling salesman problem by considering
dynamic target with respect to time. They achieved the goal by using simple prediction
method and found the near optimal solution. Karami et al. [91] developed the adaptive
genetic algorithm to present effective motion planning in 2D environment. In this work,
they replaced the conventional selection operator by the adaptive one which continuously
checks the fitness of the individual one and prevents the process from the premature
convergence. It results in maintaining the diversity of the population in the solution and

gives the quality of the solution.
2.3.2.2 Fuzzy Logic

The concept of fuzzy logic has been firstly given by Zadeh [92] in 1965 which is used in
almost all field of research and development where to include a high degree of
uncertainty, complexity and nonlinearity. The pattern recognition, automatic control,
decision making, data classification are few of them. The theory of fuzzy logic systems is

inspired by the remarkable human capacity to reason with perception-based information.
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Rule-based fuzzy logic provides a formal methodology for linguistic rules resulting from
reasoning and decision making with uncertain and imprecise information. In fuzzy
behavior-based navigation, the problem is decomposed into simpler tasks (independent
behaviors) and each behavior is composed of a set of fuzzy logic rule statements aimed at
achieving a well-defined set of objectives.

* Fuzzy Logic used for modelling uncertain systems by enabling common sense

reasoning in decision-making in the lack of complete and accurate information.

* It enables the arrival of a definite conclusion based on input information, which is

unclear, uncertain, noisy and imprecise.

In 1965, Zadeh [92] provided the solution for real life problem and the knowledge based
decision-making process by developing the mathematical theory which is widely known
by “Fuzzy logic.” The mobile robot using fuzzy logic can accurately move in the uncertain
environment using array of sensory data and able to take its decision [93]. The collected
sensory information plays a vital role to avoid the obstacle and building environmental
map. The exact environmental map is used for the point to point navigation, robot
localization, landmark identification and path planning. For getting effective navigation, a

map building technique is used to learn the environment from the facts incrementally.

Robot behavior is implemented by using a set of fuzzy rules which combines the
numerical data from sensors and linguistic data from the human experts [94]. If-Then rules
[95-96] and inference engine is the main component of the fuzzy logic controller which
encodes the mobile robots behavior. Zavlangas et al. [97] have presented the fuzzy based
controller for obstacle avoidance. For the navigational purpose, Sugeno fuzzy based
system with triangular and trapezoidal function is utilized for the omnidirectional mobile
robot. Efficient fuzzy rules generation is the biggest problem of navigation because it
requires the expert knowledge and human interference. Castellano et al. [98] have
presented the automatic fuzzy rule generation by using human learning technique and
machine learning technique. The algorithm such as genetic [99] and neural network [100]
is used for automatic generation of the rules. Recently, fuzzy based navigation
methodology is successfully dealing with the problem of static [101] and dynamic
unstructured environment [102] by avoiding continuous making of loops and
backtracking. Motlagh et al. [103] have developed fuzzy control technique for reactive

navigation of a mobile robot to overcome the situation like dead end traps (U-shaped,
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maze, snails) and the getting trap in loop. Park et al. [104] presented the two fuzzy
controllers strategy over complex environment. The first controller follows the general
way of obstacle avoidance, target seeking and wall following while the other controller
guides the robot to escape from the trap like a situation (U shape). Problems like
navigation from the narrow passages have truly solved by Huq et al. [105]. Moustris et al.
[106] proposed the path planner for curved trajectory by using the fuzzy logic. The
designed fuzzy controller works efficiently in minimum rules. Fuzzy logic has been used
in the combination with the sensor based navigation technique [107-110] to improve the
incremental learning of the new environment. Parasuraman [111] presented the sensor
fusion technique to improve the navigational rules to achieve realistic job using a modified
fuzzy associative memory. According to him, while robot navigation in the complex-
crowded environment requires large input space to match the environmental data and it
also needed to optimize the number of rules. The proposed modified fuzzy associative
memory provides the multiple input space and reduction in rules. Flanagan et al. [112]
presented the Subsumption approach based on fuzzy rule mechanism for the wheeled
mobile robot and the early model of the environment is not required for navigation. It
follows the principle of “sense-plan-act” which allow the robot to generate behaviors. The
behavior is a sudden response of the robot, such as “if obstacle present in a path then the
motors get back the wheel”. According to them, for obstacle avoidance behavior, it needed
to detect the shadow appearing in the sensory area and details of what ahead are not so
important. Recently, Fuzzy triangulation method [113] and reinforced based navigation
[114] have been developed which helps to minimize the angular uncertainty and radial
uncertainty present in the environment. Like sensor based navigation technique, the fuzzy
logic has been successfully implemented with algorithm based navigation technique like
neural network [115], genetic algorithm [116], potential field method [117] and many
more in order to achieve an optimal perception of the environment which enables the robot
to manage dead end situation. The problem of mobile robot navigation for the dynamic
environment has been solved by Khatib et al. [118] and Lee et al. [119] by introducing
fuzzy as data-driven approach for solving motion planning problem in the presence of the
moving obstacle. Hoy et al. [120] have presented the cooperative approach for navigation
of multiple mobile robots in unknown cluttered environment. They achieved the
successful navigation task by using the fuzzy based auxiliary controller in limited sensing
and communication capabilities for static environment. To improve the capability of the

robot in moving condition Kang et al. [121] and Al-Mutib et al. [122] presented
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stereovision-based mechanism with fuzzy logic. To track the moving object, Abadi et al.
[123] have designed the Mamdani based fuzzy controller for the wheeled mobile robot.
They used particle swarm optimization algorithm with fuzzy logic as a hybrid approach to
select the best parameters. The effective functioning of fuzzy logic has been presented by
Castillo et al. [124] to maintain the diversity control in ant colony algorithm and to avoid
premature convergence. They used the fuzzy approach to monitoring the unicycle mobile
robot trajectory. Toloue et al. [125] have proposed the application of type-2 fuzzy with
neural systems as a hybrid approach for parallel robots to handle the uncertainty of higher
level. They provided highly accurate and low computational cost solution for position
control of 3-Prismatic-spherical-prismatic parallel robot as compared to conventional
approaches. The developed method omits the node pruning process and preserves the
valuable rules when they needed. Rami et al. [126] presented the path planning strategy
for multiple mobile robot systems and active motion coordination between them by using
a probabilistic fuzzy controller with the neural network. In this approach, the leader robot
position will follow by the follower robot. The first order Sugeno fuzzy system applied to
head robot in order get high-level controller whereas companion robot has the low-level
controller. The learning strategy is developed by using the neural network and efficient
fuzzy rules are tuned by ANFIS. Fu et al. [127] have used the double layer fuzzy logic
controller to minimize the complexity of the environment by actually controlling the
heading angle and robots speed. The “Virtual target” and fuzzy based path planning
strategy combined for path planning of mobile robot in the static and dynamic

environment and result are shown in the simulational environment.

2.3.2.3 Firefly Algorithm

Yang [128] introduced Firefly algorithm (FA) in 2008. It is inspired by the fireflies
flashing behavior, although it referred as meta-heuristics algorithm also. Its principle
comprises to randomness states and general identification as trial and error of fireflies
which is existing in nature stochastically. Firefly is winged beetle of family Lampyridae
and commonly called as lightning bugs due to their ability to produce light. It produces
light by a process of oxidation of Luciferin in the presence of the enzymes Luciferase,
which occurs very quickly. This process of producing light is known as bioluminescence
and firefly’s uses this light to glow without wasting of heat energy. Fireflies use this light
for the purpose of selection of the mate, communicate a particular message and sometimes

it also use for the scaring off animals who try to eat firefly. Recently the FA has been used
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as optimization tool and its application is spreading in almost all areas of science and
engineering. The ability to self-plan, self-adaptation, and self-organize of FA is used by
many researcher for various optimization problem such as fault detection in robot [129],
economic emission dispatched problem [130], reliability-redundancy optimization [131],
mixed variable structural optimization problem [132], cooperative networking problem
[133], combinatorial optimization problem [134], learning from demonstration problem
[135-136], dynamic environment problem [137-138] and many more. To improve the
effectiveness of the firefly algorithm, some researcher used the Gaussian distribution
function to increase the convergence speed [139] and some researcher modified the firefly
algorithm to avoid random moving of the firefly algorithm when there is no brighter
firefly [140]. Firefly algorithm is very efficient due to their ability to search for an optimal
solution which is required for the solving science and engineering problem [141-143].
Yang [144] presented the novel approach based on firefly algorithm for solving the multi-
objective problem by considering the nonlinear constraints. Baykasoglu et al. [145]
presented the solution for real life problem of the dynamic environment by using firefly
algorithm. The proposed work performs well when compared with genetic algorithm and
differential evolution to solve the multidimensional knapsack problems for the static and
dynamic environment. Due to the effectiveness of the firefly algorithm, it has been used
with in combination with other algorithms as a hybrid approach. The Alweshah et al.
[146] have presented the hybridized approach for solving the classification problem. They
have proposed the firefly algorithm with simulated annealing, firefly algorithm with Levy
flight and firefly algorithm with a simulated annealing-levy flight to create the improved
balance between exploration and exploitation in obtaining a near-optimal weight for the
probabilistic neural network. It results in high convergence speed for classification
problem and maximizes classification accuracy. Maheshwar et al. [147] have improved
the performance of the genetic algorithm by using firefly algorithm. The firefly algorithm
contributed in the process of generation of the population of the chromosome and this
hybrid approach results in global optimization at initial state and saved the system from
the local minima. Zouache et al. [148] presented the new version of firefly algorithm with
Particle swarm optimization algorithm as a hybrid approach to solve the continuous
optimization problem. The non-linear approach problem is solved by Beykasoglu et al.
[149]. They used the adaptive firefly algorithm for mechanical design optimization
problems. To provide the solution for a non-linear problem, chaotic map with firefly

algorithm is used. Nowadays, the work in the field of robotics by using FA started for
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mobile robot navigation. Hidalgo-Paniagua et al. [150] have presented firefly algorithm
based mobile robot navigational approach in the presence of the static obstacle. They have
achieved the three primary objectives of navigation such as path length, path smoothness
and path safety. Brand et al. [151] presented the firefly algorithm for shortest and
collision-free path for single mobile robot navigation in a simulational environment only.
Sutantyon et al. [152] showed the application of firefly algorithm for the underwater
mobile robot. They developed the scheduling strategy for swarm robots to avoid
interference and jamming in marine conditioning. Firefly algorithm is used for
programming strategy consist of phase synchronization algorithm. Sutantyo et al. [153]
have solved the real world underwater navigation problem in the partial knowledge of the
environment by using leavy flight- firefly based approach. The first firefly algorithm
based cooperative strategy for detection of dead robots in multi mobile robot system by
the active robot by synchrony is presented by Christensen et al. [154]. To solve the
problem of aerial navigation Wang et al. [155] presented the new form of firefly algorithm
for path planning of uninhabited combat air vehicle (UCAV). They developed the
modified firefly algorithm to avoid the threat areas and to minimize the fuel cost during

navigation of UCAV in the complicated battle field environment.
2.3.2.4 Neural Network

Artificial neural network is an intelligent system which consists of many simple and
highly interconnected processing elements. These elements transfer the information by
their capability of dynamic state response to external inputs. Neural network are basically
shown by well-organized layers of interconnected nodes. The nodes consists the activation
function. The input layer of neural network mechanism shown below in Figure 2.9
recognizes the patterns. These patterns then communicate to hidden layers for actual
processing via a system of weighted connections. The hidden layers connect with the

output layer to give the required answer.

The characteristics such as generalization ability, massive parallelism, distributed
representation, learning ability, fault tolerance of neural network responsible for using in
the field of mobile robot navigation. Janglova [156] presented the application of neural
network for wheeled mobile robot navigation in the partially unknown environment. He
used two neural network based mechanism for the development of collision-free path. The
first neural mechanism finds the free space using sensory data and another neural network

finds the safe trajectory by avoiding the nearer obstacle. Siemiatkowska [157] has
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presented the cellular neural network-based navigation strategy in the partially structured
environment for mobile robot navigation. The first layer of cellular network deals with the
signal sent by the map cells and neurons corresponds to the goal position and the current
position is activated to reach real neurons. The second layer of the cellular network finds

downhill search for the shortest path from robot to goal.

Hidden layers

Connections \

Input layer ,,“ Output layer

Figure 2.9: Architecture of neural network

Wang et al. [158] have presented the third generation artificial neural network i.e. spiking
neural network (SNN) for obstacle avoidance. SNN generates the most believable models
of the real biological neuron as compared to classical one. It has been applied easily to
solve the non-linear classifying problem and high dimensional cluster. In order to avoid
the human guidance in the process of the navigation, the Qiao et al. [159] presented the
automation learning strategy. The feature of their work is that according to the complexity
of the environment the neural network adjusts insertion and deletion of new hidden layers
during the training without human guidance to accomplish the navigation task. Li et al.
[160] have presented the application of neural network for Fast Simultaneous Localization
and Mapping technique (Fast SLAM) in order to eliminate the error accumulation
produced by the incorrect odometry model and inaccurate linearization of the SLAM
nonlinear function. The use of the neural network with Fast SLAM enhances the mobile
robot to navigate without collision with the obstacle in the unknown environment. To
achieve the optimality during robot navigation operation, various approaches is used along

with the neural network as a hybrid mechanism. Yong-Kyun et al. [161] have presented
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the combined effort of the neural network with potential field method to get cooperative
coordination and competitive coordination for behavior-based control. Neural network
classifies the environment based on sixteen prototypes of the topological map to describe
the local navigational environment whereas the Potential field method selects the desired
behavior. The proposed work gives a solution to the robot to escape out from the trapping
situation by U-turn mechanism as the result of the hybrid approach. Pothal et al. [162]
have presented the hybrid approach of the neural network and fuzzy to take the benefits of
the both intelligent mechanism for multiple mobile robot navigations in clutter terrain. The
proposed work is analyzed in the presence of the static obstacle. Like other Artificial
intelligence technique, the neural network has been implemented with the sensor based
method for mobile robot navigation. AbuBaker [163] has presented the novel hybrid
approach for mobile robot navigation by combining the fuzzy logic with the neural
network. The neural network effectively finds the optimum no. of activation rules to
reduce computational for real time application. Pal et al. [164] have presented the
application of neural network with sonar for mobile robot navigation. Medina—Santiago
[165] have introduced the neural control system for the mobile robot in real time by using
the ultrasonic sensors and Capi et al. [166] have presented the real-time navigation in
urban areas by using the neural network with the help of GPS and compass sensor. To
improve the performance of the neural network, the Syed et al. [167] have modified the
basic neural network to form GAPCNN to get fast convergence of parameter for mobile
robot while moving in the static and dynamic environment. The presented approach is
modified by applying directional autowave control and accelerated firing of neuron based
on the dynamic thresholding strategy. While working in the environment, it is essential
for the robot to understand the complete dynamics. Hence, the Hendzel [168] presented
the neural net motion planner which avoids the convex obstacle by using the neural
network and also combines the behavior of ‘reaching the middle of the collision-free
space’, ‘wall following’ and ‘goal seeking’. The filtered error approach is used to derive
neural network controller. The self-learning strategy for the mobile robot is presented by
Markoski et al. [169] is based on neural network. The pattern recognition is used as a tool
for mobile robot navigation in the unknown environment with neural network and is

demonstrated by Quinonez et al. [170].
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2.3.2.5 Particle Swarm Optimization

Particle swarm algorithm (PSO) is nature based metaheuristic algorithm which adopts the
social behaviour of the the animal likes fish scooling and bird flocking. It is developed by
Eberhart and Kennedy [171] in 1995 and it is rapidly growing optimization tool for
solving the various problems of the engineering and science. As the PSO mimics the
behaviour of the social animal but they don’t require any leader within group to reach the
target. When the flock of birds goes to find the food they don’t requires the leaders
ulthough they go with one of the member who is at nearest position with food. In this way,
the flock of birds gets their required solution by proper communication with the members
of population. PSO algorithm consists of a group of particles where each particle
represents a potential solution. Nowadays, PSO is widely used in the field of mobile robot
navigation. Tang X. et al. [172] addressed the mapping and localization issues of mobile
robot navigation in the unknown environment by using multi-agent particle filter. The use
of PSO helps to minimize the calculation and holds more stable convergence
characteristics. To get accurate trajectory and to save from trapping in local optima Xuan
et al [173] have used PSO algorithm with MADS algorithm (Mesh Adaptive Direct
Search). By using PSO_MADS algorithm together gives efficient result over the GA and
EKF (Extended Kalman Filter). Atyabi et al. [174] have developed the Area Extended
PSO (AEPSO) as the extension of basic PSO to address the dynamic and time-dependent
constraint problems of mobile robot navigation. The AEPSO approach is successfully
implemented in search of survivor rescuing and bomb disarming. To handle the navigation
of multi mobile robot system, the Tang et al. [175] have addressed cooperative motion
path planning in the complicated environment by using the PSO. The PSO in combination
with the multibody system dynamics consisting of the properties of robot like acceleration,
mass, force, inertia which is then considered for investigation of fault tolerance of the
proposed approach. The some modification have been made by Couceiro et al. [176] for
navigation of multiple mobile robots in the real world. They modified form of PSO and
Darwinian PSO (DPSO) system for obstacle avoidance and mutual communication issues.
They found that in the system of 12 physical robots the achieved efficiency upto 90% in a
sense of maximum communication distance and global optimum. Chen et al. [177] have
tried to develop the human expert control strategy with learning based ability for the
uncertain environment by using multi-category classifier. For this, PSO is used to get

higher accuracy within the short time. On comparison with the conventional grid search, it
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has been noticed that it has higher classification accuracy without prematurity. To develop
the efficient path planning, a hybrid approach has been given by Das et al. [178]. They
presented the application of PSO and improved gravitational search algorithm (IGSA)as a
hybrid methodology to evaluate the optimal path planning for multiple mobile robots in
the clutter environment. The hybrid approach makes balance between exploitation and
exploration by adopting the co-evolutionary technique which update IGSA accleration and
PSO velocity. The application of PSO for the underwater robot is developed by He et al.
[179]. They have proposed the PSO-UFastSLAM approach to get the improvement in
accuracy of estimation and to limit the particle to get better results. Algabri M. et al. [180]
presented the comparative study of the GA, PSO, the neural network with fuzzy logic and
they observed that the fuzzy logic paired with PSO gives the right results concerning

distance travelled.
2.3.2.6 Ant Colony Algorithm

Ant colony optimization (ACO) is a swarm intelligence algorithm developed by the Marco
Dorigo in 1992 in his Ph.D. thesis [181]. It is the population-based approach used to solve
the combinatorial optimization problem. ACO algorithm is originated from the behavior
of ants and its ability to find the shortest path from their nest to food source. ACO
algorithm is already applied to various fields of science and engineering such as job-shop
scheduling problem, vehicle routing problem, assignment problem, set problem and much
more. Nowadays, ACO is used to handle the mobile robot navigation problem for obstacle
avoidance and effective path planning due to its ability to tackle the real-time problem.
Guan-Zheng et al. [182] presented the application of ACO for real-time path planning of
mobile robots. The adoption of ACO increases the convergence speed, solution variation,
computational efficiency and dynamic convergence behavior when compared with other
algorithms like GA. The navigation for multiple mobile robots is presented by Liu et al.
[183] by using ACO. They presented collision avoidance strategy for various robot
systems in the static environment. They used the special function to improve the selective
strategy. When the ant finds dead- corner then penalty function is used for the trail
intensity updated to avoid the path deadlock of the robot. The hybrid approach for mobile
robot navigation is presented by Castillo et al. [184]. The combined effect of ACO and
fuzzy logic is taken. The fuzzy logic approach plays key roles in diversity control in the
ACO. The primary objective of the proposed approach is to avoid full convergence

through dynamic variation of a particular parameter. Purian et al. [185] have presented the
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application of ACO algorithm for mobile robot navigation in the unknown dynamic

environment. They have used the ACO for selection and optimization of the fuzzy rules.
2.3.2.7 Other Miscellaneous Algorithm

Many researchers developed the different nature inspired techniques to perform the
successful navigational task for mobile robot such as Cuckoo Search (CS) Algorithm
[186], Bacterial Forging Optimization (BFO) [187-189], Artificial Bee Colony (ABC)
algorithm [190-191], Invasive Weed Optimization (IWO) [192], Shuffled Frog Leaping
Algorithm (SFLA) [193-194], Bat Algorithm (BA) [195].

2.4 Discussion

The rigorous literature review on mobile robot navigation is carried out and classified
according to their nature. It is observed that the implementation of Al based navigational
algorithm is preferred as compare to classical approaches. The applicability and high
computational capacity prefer selection of Al based navigational approaches for path
planning of mobile robot. Nowadays, nearly 90% of the research is being done in the
development of the Al-based approaches however the 10% work is going on by using
classical approaches. The Figure 2.10 shows the year wise work carried out in the field of
mobile robot navigation by using classical approaches and Al approaches. From the bar
graph, it is clear that the application of the classical approaches for mobile robot
navigation is decreasing decade by decade and on the other hand the application of the Al-
based approaches is increasing decade by decade. The doughnut shown in Figure 2.11
clears the contribution of Al approaches such as fuzzy logic, genetic algorithm and neural
network is more as compare to other Al approaches like PSO, ACO, FA and
Miscellaneous algorithm. The application of firefly algorithm and hybrid approaches is

very limited for mobile robot navigation.

29



Chapter 2 Literature Review

I |
20012016 E—
1991-2000 M Artificial Intelligence Approaches
<
E 1981-1990 —ed H Classical Approaches
1971-1980 —
N — Np—— (i
1950-1970 =
1 L T T ] T T | |
0 50 100 150
% of Algorithm used

Figure 2.10: Development of mobile robot navigation approaches
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Figure 2.11: Percentage of paper reviewed on mobile robot navigation using Al
approaches

2.5 Summary

After the complete analysis of the literature, the following key points are emerged and are
given below:
e Mobile robot navigation in the unknown or partially unknown environment is
successfully done by various classical and Al-based approaches.
e The Al based navigational approach for mobile robot navigation is preferred as

compared to classical approaches.
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e The research on mobile robot navigation by using the nature-inspired algorithm
such as FA is very limited for path planning in complex and unknown

environments.

The proposed research work gives the new navigational approach such as PFL
(Probability-Fuzzy Logic) Controller, MGA (Matrix based Genetic Algorithm), FA
(Firefly algorithm), FA-PFL (Firefly Algorithm-Probability-Fuzzy Logic), FA-MGA
(Firefly Algorithm-Matrix based Genetic Algorithm), FA-PFL-MGA (Firefly Algorithm-
Probability-Fuzzy Logic-Matrix based genetic algorithm) hybrid approaches for carrying

out navigational path planning for single and multiple mobile robots.
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Chapter 3

Kinematics of Wheeled Mobile Robot

The chapter provides the kinematic analysis of the wheeled locomotion mechanism for the
wheeled mobile robot (WMR). Wheeled locomotion is popularly being used for mobile
robots especially for a situation like high risk and rough terrain. Such situation may result
in loss of vehicle stability, wheel traction and controllability. Therefore, it is essential to
study the kinematics of the automobile robot. It deals with the study of the mechanical
behavior of the robot without considering the effect of force and to develop control

software to attain thorough command over the hardware of the mobile robot.

3.1 Introduction

Kinematics plays an important role in the behavior of the WMR during navigation. It is
the fundamental study of the mechanical behavior of the WMR without considering the
force. The mechanical behavior of the system and the control software to handle the
hardware is the important issues while designing the robot for a particular application. In
the autonomous navigation of WMR, kinematics study is essential because the robot has
to move continuously in its environment. The control system plays an important role in
planning the trajectory which is followed by a robot in a specific direction. Therefore, for
successful navigation, the localization of its current position in its frame of reference is an
important issue of discussion. For effective navigation of WMR, the selection of the wheel
on which it kept and its geometric constraint plays a vital role. For deriving model, it is
required to decouple each part of the robot so that the parts can be analyzed separately.
Development of the model is a bottom-up method in which every single wheel contributes
to the robot movement and enforces the constraints on robot’s motion at the same time.
The connection between the robot chassis and plane surface is made by using some wheels
and hence the wheel is the rigid link between them. Therefore, the robot motion depends
on the wheel and its constraint. A reference frame is thus essential to express the forces
and constraints of each wheel. Due to mobile nature of the robot, it is important to have an

ability to map the environment between the global and the local reference frames.
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3.2 Model of the System

The following assumption has been considered throughout the analysis:
e The WMR is assumed as rigid body and navigation is considered on the plane
surface.
e The dimensionality of WMR is three, two along the horizontal plane and one along
the vertical plane.
e The effects of joints on the robot chassis and the internal degree of freedom are

neglected.

Y,

A

57 Right Wheel

Figure 3.1: Model of the WMR

In Figure 3.1, the WMR is shown along with its reference plane PXpYz and the

environment where it localizes its position with respect to plane OX,Y,. The positioning

of the robot in its environmental frame OX;Y; is presented by the equation 3.1.

E=[x y 6] (3.1)
Where x and y represents the coordinates of the point ‘P’ of the robot and 6 represents the
robot orientation and mapping between the two reference planes namely global and local
is accomplished using the orthogonal rotation matrix:

cos® sin6 O
R(©)=|—sin® cosO 0 (3.2)
0 0 1
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The equation 3.3 presents the movement of the robot from one position to another in the

environment. The matrix R(0) shown by equation 3.2 can be used to map motion in the

global reference frame {X,,Y}to motion in terms of the local reference frame {X,,Y,}.

This operation is denoted by R(0) f, because the computation of this operation depends on

the value of angle 0.

Er =R(0)& (3.3)
3.3 Mobile Robot Wheel Constraints

The effect of the wheel constrains on the performance of the mobile robot is studied in this
section. The kinematic model of various types of the wheel is presented. The assumption
is considered for the kinematic analysis as follows:

e There must be point contact between surface and wheels.

e The wheel must be rigid.

e The rolling must be friction free.

e The wheel must avoid the skidding.

e The plane surface and steering action must be orthogonal.

e The connection between the wheels and chassis of the robot must be rigid.

e At the time of the motion, the wheels plane must be vertical and wheel must rotate

along the horizontal axle.

P S N | - a
- swedish 45*

Figure 3.2: Various types of wheel mechanism for MRN
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Figure 3.3: WMR Kinematic constraints (a) Pure rolling (b) Lateral sleeping
3.4 Geometry of Wheels

The two kinematic constraints are considered for wheel analysis is shown in Figure 3.3.
By geometry of wheels, it is classified as:

e Conventional wheel (Fixed standard wheel)

e Castor wheel

e Steered standard wheel

e Spherical wheel

e Swedish wheel
3.4.1 Conventional Wheel (Fixed Standard Wheel)

In a conventional wheel, the robot can move along only forward and backward direction in
the plane. The rotation of the vertical axis is not possible due to fixed constrained. The

Figure 3.4 shows a conventional wheel (Fixed standard wheel) 4 and indicates its position
pose relative to the robot’s local reference frame {X R,YR} . The position of 4 is expressed
in polar coordinates by distance / and angle & . The angle of the wheel plane relative to the
chassis is denoted by /£, which is fixed since the fixed standard wheel is not steerable.
The wheel, which has radius 7, can spin over time, and so its rotational position around its

horizontal axle is a function of time t: (7).

The equation 3.4 shows the pure rolling condition as:

[sin(a +B) —cos(a+PB) (-I)cos B] R(©)&,-1¢=0 (3.4)
Due to the sliding constraint, the wheel’s motion becomes zero when observed normal to

the wheel plane.
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[cos(au+B) sin(a+P) lsinB]R(O)E, =0 (3.5)

Figure 3.4: Geometry of the Conventional wheel
3.4.2 Steered Standard Wheel

Standard steered wheel is improved form of the conventional wheel. It gives a surplus
degree of freedom compared to conventional wheels. The movement of the wheel around
the vertical axis is possible in this case. The angle between the wheel and robot may

change according to time in case of steered standard wheel.

The rolling and sliding constraints in standard steered wheel along the wheel plane are

given as:

[sin(a+B) —cos(+P) (—1)cosPJR(O)E,—rp=0 (3.6)

And normal the wheel plane is

[cos(cu+B) sin(a+P) lsinB]R(O)E, =0 3.7)
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:XR

Figure 3.5: Geometry of Steered standard wheel
3.4.3 Caster Wheel

The castor wheel works like the steered standard wheel. It also has the forward and
backward movement along a horizontal plane and rotating movement with the vertical
axis, but the vertical axis of rotation does not pass through the contact point of the wheel
and plain surface.Therefore, the special parameter d is linked with the wheel for analysis
of the caster wheel as shown in Figure 3.6. Thus to specify the position of the caster
wheel, one additional parameter (fixed length of rigid rod ‘d’) linked to the wheel, as

shown in Figure 3.6.

The rolling and sliding constraints of Castor wheel along the wheel plane are given as:

[sin(o+B) —cos(a+P) (~1)cosB]R(B) él -1$p=0 (3.8)

Orthogonal to the wheel plane;

[cos(c+B) sin(o+P) lsinB]R(O)E,+dp=0 (3.9)
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Robot Chassis

Figure 3.6: Geometry of Caster wheel
3.4.4 Swedish Wheel

The Swedish wheel is omnidirectional wheel as it has movement along all direction. It
does not have the vertical axis of rotation like steered standard wheel and castor wheel.
While designing the Swedish wheel minimum three rollers must require. The rollers are
arranged on the periphery of the wheel in such a way that the axis of rollers is arranged
tangent to wheel perimeter and free to rotate.

In Figure 3.7, the angle y stands for the measured angle of the main axis with roller axes

The rolling and sliding constraints in Swedish wheel along the wheel plane are given as:

[sin(oc+B+y) —cos(a+B+7) (—1)cos(B+k)]R(9)%I—r&)cosy=O (3.10)

Orthogonal to the wheel plane;

[sin(o+B+7y) cos(+B+y) Isin(B+A)|R(O)E—rdsiny—r, d=0 G.11)
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Figure 3.7: Geometry of Swedish wheel
3.4.5 Ball Wheel (Spherical Wheel)

The ball wheel or Spherical wheel is free to move in any direction as they have no
constrained along any direction. The ball wheel is omnidirectional and they have no any

kinematic constrained over robot chassis.
Figure 3.8 shows the analysis of the ball wheel at point A.

The rolling and sliding constraints in Ball wheel along the wheel plane are given as:

[sin(c+B) —cos(c+B) (~1)cosB]R(0)E,—rd=0 (3.12)

Orthogonal to the wheel plane;

[cos(au+B) sin(o+P) lsinB]R(O)E, =0 (3.13)
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Robot Chassis

Figure 3.8: Geometry of Ball Wheel

3.5 Kinematic Constraints of the WMR

For analysis of the system, consider the system of WMR say N, which consists of Castor
wheel (N¢), Spherical wheel (Nspy), Swedish wheel (Ngy), fixed standard wheel (Nr) and
steered standard wheels (Ns). The above section clears that the wheels such as N¢, Nspy
and Ngy have no kinematic constrained over the robot chassis while the wheels such as Ng
and Ny have great influence on the chassis. Therefore, while considering the Ny and Ny for

navigation, much attention requires on their kinematic constraints.

The equation 3.14 is the unique equation which allows the rolling constraints of all

wheels.

1LBRO)E~I, =0 (3.14)

Here, J; stands for matrix representation of the motion of all wheels.

J> is NxN diagonal matrix of all wheels radii.

1, (B)=[TF(B) 3. (B.) 1o (Be) T T | (3.15)

The matrix J]F, J]S, J]C, J]SWaIld JISPH are of size (NF X 3), (Ns X 3), (NC X 3), msw X 3)
and (Nspy x 3) respectively. J, is NxN diagonal matrix of all wheels radii but in the case of

the Spherical wheel, the term cosy is multiplied.
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The equation 3.16 combines the all constraints of the wheel shown as:

C,(BR(O)E, =0 (3.16)
Where,
C,(B)=[C.F(B) C\.(B.) Cpc(B.) Cruy Cigm | (3.17)

3.6 Degree of Mobility of the WMR

The wheels such as Ball Wheel, Swedish wheel and Castor wheel has no effect on the
robot chassis but the steered standard wheel and fixed standard wheel influences the
constraints on the robot chassis. Therefore, the steered standard wheel and fixed standard

wheel is considered for analysis.

Assume (Ng+ Ng) wheels, to avoid lateral slip;

C:R(6) &.1 =0 (3.18)
C,(BIR(O)E, =0 (3.19)
C,B,)=[C; C.B)] (3.20)

Mathematically, the null space of C,(B,) is the space N such that for any vector n in N,
C,(B,)n=0 (3.21)
The steerable standard wheels and fixed standard wheels are avoided for practice.
Therefore the probable range of rank values for any robot is 0 <[C, (B,)] <3.

If the rank is [C,;(B,)]= 0, it means the zero independent kinematic constraints in C,(,).

In this case, fixed standard wheel and steerable is not attached to the robot. Therefore Ng
= NS = (.
If the rank is[C, (B,)]= 3, it means the constrained in all direction, therefore, motion is not

possible.

In the following equation degree of mobility o, is formulated as:

8,, =dimN[C, (B,)]=3—rank[C  (B,)] (3.22)
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3.7 Degree of Steerability:

It is the ability of the robot to get steer freely in the environment by using various wheels.

It can be formulated as:
8, =rank[C, (B,)] (3.23)

The range of &, can be specified:0<5 <2.

3.8 Robot Maneuverability

The Maneuverability of WMR represents the capability of the robot to provide smooth
functioning during navigation. The smooth functioning of the robot is defined regarding
the mobility by considering the robot kinematic constrained and an additional degree of
freedom for steering. It is the combination of the movement of the robot chassis in its
environment with respect to time and ability to localize its position in the global frame of

reference.

The Maneuverability of the robot (5M) is presented in terms of its degree of mobility and
steerability as:
5, =5 +3, (3.24)

Robot maneuverability for three wheel configuration is given below in Table 3.1.

Table 3.1: Robot maneuverability (3y) for five basic types of three wheel robots

S1. No. Wheel Configuration S, | 6 | oy
1 Omnidirectional (Three Spherical wheels) 3 0 3
2 Differential (Two Fixed standard wheels and one Spherical wheel) 2 0 2
3 Omni-steer (Two spherical wheels and one Steered standard wheel) 2 1 3
4 Tricycle (Two Fixed standard wheel and one Steered standard wheel) | 1 1 2
5 Two steer (two steered standard wheels and one spherical wheel) 1 2 3

In Table 3.1, we can replace the Swedish wheel and caster wheel by ball wheel, these

changes will not affect the maneuverability of the wheel.

3.9 Kinematic Analysis of the Differential Drive WMR

For the analysis, the differential drive WMR is considered with its parameters as shown in

Table 3.2.
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Table 3.2: Parameters of the kinematic model of the mobile robot.

Sl. No. | Symbol | Parameter
1 r Radius.
2 / Distance between the two driving wheels along the y-axis robot.
3 v, Linear velocity of the right wheel.
4 v, Linear velocity of the left wheel.
5 v, Angular velocity of the robot.
6 v, Linear velocity of the robot along x-axis of the robot.
7 c Centre of the axis of the rear wheels.
8 R Radius of curvature for the robot trajectory.
Initial position of robot
o I .
C
ICR ) ‘
|
5 i Vi ¢ - ' =K

Final position of the robot

Figure 3.9: Instantaneous centre of rotation (ICR)

Let us consider, at any instance of time‘t’ the robot follows a path shown in Figure 3.9.

The robot turns along a curve around the instantaneous center of rotation (ICR). Angular

velocity will be given by;

9420

dt

Hence, the robots linear velocity is as:

V=V, (OR(®)
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Also

Left wheel velocity and right wheel velocity is expressed as;

V() =V, (0)(R(1) + é) (327 a)

v, (t)=Va,(r)<R(t)—§) (327b)

On solving the above equations, radius of curvature of the robot trajectory will be given

by;

_ I, 0+ V(1) (3.28)
2V, (1) =V, (®)

Now angular velocity and linear velocity of the robot can be rewritten as;

Vw(t) — VL(t) ; VR (t)

V@) + V()
2

R(7)

(3.29 a)

V() = (3.29b)

It is clear from the above equations that, by changing the velocities of the two driving
wheels of the robot, different trajectories can be formed by the robot. In differential drive
robot, small variations in the velocities of the two wheels result in significant change in
the trajectory. Therefore, errors due to slippage should take into consideration during the

trajectory planning of a mobile robot.

The kinematic equations in the world frame can be written as;

x(6) = V;(£)cos (1) (3.30 2)
¥(6) =V, (1)sin 0(t) (330 b)
0ty =V,,(t) (3.30 ¢)

On integrating the above equations, we get;

x(t)= j Vi(t)cosO(r)dr + x, (331a)
y(t) = j V.(r)sinO(r)dr + y, (3.31Db)
o(t)= ij (r)dr +6, (3.31¢)
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Where (x,,y,,0,) represents the initial position of the robot. Above equations can be used
for the robot capable of travelling towards a particular direction @(¢) with a velocity

of V(t).

3.10 Summary

The chapter presents the kinematic analysis of wheeled mobile robot which helps to
understand the important factor which is responsible for the motion of the robot when
working in its environment. The key finding of the work is as follows:

e The kinematic analysis of WMR helps to understand the kinematic constrained of
the wheel which is necessary to understand for designing the robot for a specific
task.

e It helps to localize the position of the robot in the global frame of reference during
navigation.

e It gives the study of maneuverability for smooth motion of WMR based on the
degree of mobility and steerability.

e The kinematic analysis gives the study over velocity of the individual wheel which
directly controls the motion of the robot and generates the required trajectory.

The study of the kinematics of WMR helps for successful implementation of the Al

techniques for robot navigation.
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Mobile Robot Navigation by Matrix based
Genetic Algorithm

In the current research the finite bit string matrix is proposed for Mobile Robot
Navigation. The Mobile Robot Navigation is based on matrix-binary codes representation
of Genetic Algorithm. This representation transforms the spectrum of the objective
functions of mobile robot navigation into the unique objective function up to the level of
desired best fit. The random environment is defined by the matrix, which is represented by
the coding as an array of the finite bit strings. The decision variables, objective function
and the constraints are interacted in the Matrix Algebra. The optimum decision is
transformed into the logic decision by the Matrix-Binary Codes used for navigation of

mobile robot.

4.1 Introduction

The modern engineering is influenced with the optimization and its frontiers. Robotics
control performance is bounded in the optimum interval as the heuristic environment and
path decision. The heuristic environment is clustered into an array and this optimized path
is found out using the best fit objective function. This chapter is structured by the genetic
algorithm over matrix trace representation. The main challenges of navigation are
obstacles avoidance and path planning of robot. The obstacles are represented by the
binary codes and their position are represented by the matrix in order to get collision-free

environment.
4.1.1 Genetic Algorithm Principles

Charles Darwin’s Theory of Evolution becomes a potential tool to establish an intelligent
searching algorithm. This modern application is known as Genetic Algorithm (GA). GA is
an algorithm not only used for searching but extensively used for optimizing, simulating,

selecting, eliminating, and optimization model to establish as a method of searching for
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filtering the decision up to optimization. In a biological colony, there is randomness in
evaluation, selection and elimination. The random variables such as the evaluation period,
the heredity selection and the natural elimination of biological colony represent by the
objective function of MRN. There is the global probability in these variables but to search
the best fit global probability is the desired objective. The biological analysis drafted into
the sequential algorithm and its matrix representation reforms as a genetic algorithm. The
chromosomes are considered as the elements of atoms and the genetics space as the
molecules. These are consisting of the best fit objective function. The GA plays an
important role in micro-macroscopic search and represents the global data. These data
consists hidden and unknown information which is referred as the weights and GA fits
these weights in the objective function under the best-fit conditions of MRN. Hence, GA
performs as an optimized controller for the navigation. Genes are the decision variables in
GA and its characteristics are refered as the biological restriction. This generated set
constructs the objective function for fitting the best-fit gene. This objective function is
studied over the subject to the constraint of distinct inequalities as population. Next, the
evolution of adoptability is studied under the biological restrictions. It is a searching
technique to set a best-fit population.
The GA consists of the following three biological characteristics:

e Selection

e (Crossover

e Mutation
Each characteristic is formulated according to the objective function subject to the
constraints of biological circumstances and non-negative restrictions. The Selection refers
to the regeneration, reproduction and copying the genes. Each individual is studied under
the fitness function. This calculation is proportional to select a better individual with better
fitness. This is copied and then it is transferred for generating the new population. The
elimination process runs simultaneously for those individuals, which has the low fitness
function. Hence, the selection and elimination execute in parallel with the level of the
fitness function. The new population and the new fitness function are the current surfaces
before the succeeding steps. There are several existing methods of selection such as
roulette wheel selection, cyclic selection, expected value selection, paired competition
selection, retaining high-quality individual selection. The next process after the selection
in GA is a crossover. Matching to the pool is the primary objective of crossover process.

Match pool is defined as the relation of the selected best-fit individuals. Crossover reforms
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into pairs from the individuals. More precisely, to generate the parents, crossover plays an
important role. Every individual of the environment existed randomly. By the crossover
mechanism, it converts into well-defined pairs. Next, the probability is applied on the
crossover for occurring the new pairs. To obtain the new genes for the next generation is
the key objective of this probability application. Hence, these become the new individuals
who also are represented as the stochastic variables. These are the set of information
which analyzes under the condition of crossovers. This crossover may be classified into
one point, multi-point and average-point crossover. In the process of mutation, the
substitution of the genes with the opposite genes performs as per the rate of mutation. The
position of the genes is traced and the new individual is to be fixed for the new cyclic
process of this gene-based genetic system. Finally, the selection, crossover and mutation
are being in that system. This system carries the best fit objective function over the
stochastic genes for the optimized searching. The mathematical representation of GA is

required to control the system. Its mathematical modeling is presented below:

4.2 Mathematical Modeling of GA

GA is based on Darwin’s Theory of Evolution. The challenge of the existence of all living
things was the key reason for this theory. The “survival of the fittest” is defined over the
living things, where the new breeds come by the system of reproduction, crossover and
mutation from the present organisms. GA is the transformation from natural to
computational. First, by setting the problem then obtain the multiple possible solutions of
this problem. Next, for searching the unique solution Darwin’s theory of resolution
establish this under the bound of “Survival of the fittest”. The best solution is selected and
the rest is eliminated. This process is repeated until the selection of “The Real Best.” The
advantage of this algorithm is that there is a spectrum of possibilities of the single problem
of deciding to the desired. Hence, GA is a efficient searching algorithm to achieve unique
and single solution among the infinite solutions.

Basically, GA is a coding technique by the finite bit strings. Its combination plays an
important role to establish the system. Thus, it interacts with the mathematics. The strings

of the bit represented as;

This selects as the elements of the coding with the following associate preliminaries:
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4.2.1 Definition
Let a function f:x>R>0 , then there will be an optimization problems as,

X, = arg{maxf(x)}
Where f(x) be a fitness function,

X = (X, X, X35 X e x,) be a binary vector,

x, €{0,1}
X, :variable

X, . assignments

The above definition interacts with the objective function, but this depends on the

following crossover as the constraints.
4.2.2 Definition

Let x, y be the two offsprings, z be a one-point crossover under the interval 0 <i<n such

that z, = x; for 1<1 and z, =y, for 1>1. The uniform crossover z,is choosing randomly
from {x;,,y,}.
The next definition for its probability distribution is explained as follows:

4.2.3 Definition

At the generation 7, p(x,f) supposed as probability if x in the population
pi(x;, t)= z p(x;, t) is the invariable marginal distribution.
The selection process proportionates to the followings:

4.2.4 Definition

The rate of selection of the probable reproduction is defined as follows:

p(x,t+l)=p(x,t) ];(();)) 4.1)

For the crossover or the recombination such different probability distribution is required,

which is given below:
4.2.5 Definition

Let the probability distribution is defined by 7 as,
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ﬁ(x,t):Hpi(xl.,t) (4.2)
i=1

This is called “the Robbins proportion.”

If both the above characteristics, i.e. selection and crossover, are adjoined then its

mathematical expression can be defined as follows:
p(x,t+1)=ZRx,y’z P (y)PS(Z) 4.3)

Where, R is a crossover or recombination probability distribution, R,  _is the probability

of recombination of x, y and z, P* ( y) is the probability of strings over y, P° (z) is the

probability of strings over z.

Next section presents the Mobile Robot Navigation based on the application of GA.

4.3 Proposed Matrix-Binary Codes based GA Controller

This section proposes the matrix based study of the GA for MRN controller. Here GA is
presented as optimized tool for searching the best fit path for single and multiple MRN
problems. The proposed controller uses the matrix trace based mechanism to sequence the
operation during the navigation and intelligent GA searches the goal by avoiding obstacle.
The searching process of environment is classified by two ways such as linear, nonlinear
search. The current study using GA deals with the nonlinear search which processes
iteratively. The process begins with the input as LOD, FOD and ROD from the sensors to
output as a desired heading angle (HA). The iteration process corrects the output upto the
marks of optimization. The proposed method is structured between the start points of
navigation to goal point of navigation for general and complex type environment. By the
proposed controller, the real-time mobile robots decision, navigation, generalization,

optimization and correction are presented in this chapter.

GA is the function of gene’s chromosomes and genetic operators thus the efficiency is
proportional to these variables. By the restructuring these variables the GA can be
performed better than the earlier. Basically, GA is a genetic type structure by its genetic
operators and structure. The sequencing, ordering, selecting and grouping the variables
can be redefined. These new genetic structures may become the foundation for a further
effective step towards the best-fit decision. The population of chromosomes is used as the
operand and GA as the operator. The infrared sensors measures the distances between the

robot and obstacles and give the inputs as FOD, ROD, and LOD to controller and Matrix
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trace mechanism finds the best fit heading angle (HA) as output. There are the crisp sets
which are encoded as the discrete frequency distribution. Let the crisp sets are transformed
into binary sets. It is the input data code which will be given to robot controller via the
sensors mechanism. Although each set defined and encoded but its transformation is
according to the following layers:

Layer 1: The combination set

Layer 2: The fitness function

Layer 3: The crossover

Layer 4: The mutation

Layer 5: Evaluation of fittest child

The behavior of all the layers mentioned above is presented below:

Layer 1: The Combination Set: - Let the population set be P ={B,P,............ P}
The number of chromosome in P. =5

The structure of the element = (i, )

Then, the matrix representation will be,

| Ry B, Rs R, By |
By Py Py By P
By Py Py By Py
By Py Py Py Bs

j (4.4)
P, P, P, P,P

51 752 753 754 755

L Bn Ba By Bu Bs |
Each column of the matrix P is represented the individual characteristics of the GA

structure and it is given in the following:

B B, | B, ] B, | B |
B b, b b, B
B, B, By b, By
P P P, P P,
FoD=| | LoD=| " |,ROD=| *|,HA=| * | & Signconversion(SC)=| * (4.5)
B, B, By B, B
_Pnl_ L+ n2 | _R’l3_ _R14_ _RI5_
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Workspace
ip=+tve

Obstacle - 5
, Se

Receiver

Scenario 1 Scenario 2 Scenario 3
(Case: close right obstacle)  (Case: obstacle far around)  (Case: close left obstacle)

Figure 4.1: Output of the GA regarding HA

Table 4.1: Heading angle of the robot as per the distance from the obstacle

Case No. LOD ROD FOD HA () Direction
in cm in cm in cm in degree

1 10 12 60 0 Straight
2 45 18 32 9 Negative
3 10 45 50 15 Positive
4 20 36 12 11 Positive
5 28 16 27 14 Negative
6 13 15 80 0 Straight
7 34 27 380 12 Negative

Layer 2: The Fitness Function: The evolutionary process depends on the fitness
function. The generation and justification of the fitness function are essential for the
execution of the navigational controller for optimal decision. The efficiency of the
obstacle avoidance mechanism and optimal path generation depend on the accuracy of the
fitness function. Hence, the fitness function is proportional to the obstacle avoidance and
path optimization. The controller follows the optimal function, which is proposed as

follows,
S tota =(Cl,cz,03,c4,CS)Tr(p) (4.6)

Here T (p) is the Trace, i.e. the sum of the diagonal elements of p

52



Chapter 4 Mobile Robot Navigation by Matrix based Genetic Algorithm

A
Cf
rp=. - £ - . 4.7)
fi .
i J5 ]
_(CFOD Py )2 |
Where, f = . (¢rop— Puss) . 4.8)
(CFOD ~ Peiy )2
/= (CFOD _pci,l) (4.9)
£ ={(cson = P (4.10)
fo=|(cron = Pas) (4.11)
fs =|TA— HA| (4.12)

The best optimum child be (CFOD —pci’l) , (CLOD —Dein ) and(cROD —pcm) .
Here, the Target Angle is TA and Heading Direction is HA.

Layer 3: The Crossover: The crossover is studied over the probability distribution. In
this process, the chromosomes are selected initially from the chosen parents and then it is
an applied for crossover according to probability. The two parent chromosomes used as
the generator for one-point crossover. The gene data set is also required to produce the two
offspring chromosomes for the next crossover operation. In proposed controller, the
heading angle is the decision variable for getting the new location by obtained rule. The

Matrix-Binary Code generation is processed as below:

The binary set {O,I}and its representation for the linguistic variables by the distribution,

combination and tabulation, are presented below:
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Table 4.2: Logic decision table:

S.No.

Linguistic Variable

Matrix Representation

Very Far

11111
1 1111

Far

1
—_ =
_

111
110

Close

1
(e
(e
(e

0 0
0 0

[en)
(=)
(=)

Near

Very Near

[e)
[w)
[w)
[e)
[w)

oS O
S O
S O
()

ﬂ
|

Very Fast

S G N
—_— e e

Fast

[ S S S VN
—_— e e

Medium

S O O o O
S O ©O o o

Slow

— o o o O
S © o o O

10

Very Slow

—_ o O O O
- o o o O

54



Chapter 4

Mobile Robot Navigation by Matrix based Genetic Algorithm

Crossover for F.O.D.: It is represented by the product of the Matrixes of parents I & II and

the offspring 1 & 2:

{an a, d; dy a15j|
) Qy dyy Ay Qs

And similarly for the HA:

z@‘ ﬁv S® B@‘ :G‘

L’l@‘ J:@ S® B@‘ :G‘

2@‘ ﬁb‘ S@‘ B@‘ :b‘

E‘@ ﬁw z@ B@‘ :G‘
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S5} [\S] S [\ S8}
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S o0 O
S

S
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55

(4.13)

(4.14)

(4.15)

(4.16)



Chapter 4

Mobile Robot Navigation by Matrix based Genetic Algorithm

Crossover for “F.0.D.”

Parent 1 Offspring 1
Lf1{o0f1|0[1{0f1]0]|1 1101
Crossover point ' |:>:>
Parent 2 v Offspring 2
Lf1rytrf{ojtrf1ryof1f{1jo L1110
Crossover for “L.0.D.”
Parent 1 Offspring 1
Lfojtrf1jiof1y{of1j0]|1 L{Oo| 1|1
Crossover point ' |:>:>
Parent 2 v Offspring 2
o|f1{1rfojrfoj1rf{1{1jo Ol1(1]0
Crossover for “R.0.D.”
Parent 1 Offspring 1
rf1rjof1{trf1yo0f1f{1jo 1101

- A A
Crossover point |:>:>
Parent 2 v Offspring 2 v
olof1(1j1jo0f1|1[0O]1 olof1|(1j1|1j0l1f1]O0

D

Crossover for “H.A.”
Parent 1 Offspring 1

o(fryryojojryr{ojprjojpjofryryojojo(r{rjo|1i

|:>:> Offspring 2

ryr(1rfojpt1rjojrjyryoj1yjrfryryop1|1ry1ry0r1yf0

Crossover point
Parent 2

Figure 4.2: Simple crossover mechanisms

Layer 4: Mutation: The combination of genes is responsible for every genetic operation.
The rate of change of chromosomes is measured and referred by mutation operator. The
mutation operator generates the obstacle avoidance behavior. The sequence correction
with the one to one correspondence is termed in mutation operation. The procedure of
mutation is described as a random number, population, direction and distribution.

The following is given as proposed mutation technique:

Let, the mutation vector set be 4= {/11,/12, .................... /ln} and the set of chromosomes be
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C={C, ¢y ¢,}. There will be a certain rule f; which refers as the mutation

operator. Let f(A) is a mutation operator, which is the range of the function from 4 to c.

Figure 4.3: Mutation operator

While analyzing, the domain is 4; co-domain is ¢ and the range of f'is f(A). But the

generation point of view, these should be a postulate, to execute the operation under the
natural behavior of genes. For the mutation operation, the location of the chromosomes

can be represented by the following matrix:
c, =| S (4.17)

Hence, the mutation operation is applying as,

¢, Cp ¢, Acy, Acp, Ac,,
Al FA T et AL = ] [
c, c,, c,, Ac,, Ac,, Ac,.,
e, + 4,0+ +4.c, D,
= ' = (4.18)
Ac, FAC, Fn. +Ac,. D,
Thus, the mutation operator vector is,
D={D,D,............ D,} (4.19)
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Layer 5: Evaluation of Fittest Child: It is proportional to the fitness function. There
exists an infinite set of possible solutions, but the requirement is unique. Hence, GA
applies for searching this. There are the two classes of processing this objective. The first
is by the computation and the second is probabilistic distribution. The computation
process forms a subset of the existing randomized solutions and by the probabilistic
distribution the elements of this subset forms sequentially. The key objective is “To get

the best HA”. Let it be ¢, it requires to put in the particular algorithm, to establish ¢ and

then the fixed mutation operation be executed. The proposed algorithm consist the rule f,
which is defined in the previous section. Its range, domain and co-domain remain the same
but according to the environment, the mutation operator matrix is changed. This nature

lays the biological properties of chromosomes.
4.4 Simulation Analysis

The current section provides the capability of the proposed controller for MRN in different
environments. The variety of the environment has been developed in Matlab simulation
software for MRN to checking the effectiveness of the proposed controller regarding path
length and required time of navigation. The Matlab (R2008) software helps to perform
program successfully for single or multiple mobile robots, multiple targets and multiple
goal in the prescribed boundary. The simulation analysis has been conducted on the PC
with I3 processor (3GHz), 4 GB RAM, 500 GB hard disk, Windows 7 (64 bit) OS,
NVDIA (1GB) graphics card. The simulation results have been tested in 2D space of
al00cm by a 100cm square background in the presence of a variety of static and dynamic
obstacle. While navigating in the environment robot follows the shortest path between the
goal and robot. The Euclidian distance calculates the shortest path. When an obstacle
appears in the path of the robot then the proposed Matrix based GA controller activates.
The robot starts calculating the LOD, ROD and FOD. The GA-based controller finds the
best-fit rule to get desired heading angle of navigation. The Figures (4.4-4.7) demonstrate
the efficiency of the proposed navigational controller which effectively avoids the
obstacle. The Figure shows the robot path from start point to goal point while negotiations
with obstacles. The robot shows the wall following behavior during the navigation when

the length of the walls is too long.
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Figure 4.4: Navigation using MGA controller
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Figure 4.5: Navigation using MGA controller
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Figure 4.6: Navigation of multiple mobile robots using MGA controller

The simulation analysis is also carried out in the presence of the dynamic obstacle. The
environment with three dynamic obstacles is shown in Figure 4.7 The robot one by one
avoids the obstacle by making safe distance when obstacles come in the sensory range of

the robot.
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Figure 4.7: Navigation in presence of dynamic obstacles using MGA controller
4.5 Experimental Analysis

The experimental analysis is presented in this section for demonstrating the validity of the
proposed controller for real time navigation. The environment with rectangular boundries
is developed in the laboratory. While creating the environment, the robot platform is kept
plain for smooth motion of robot. For experimental analysis, the Khepera-II robot is
considered. The robot has eight infrared sensors arranged in a circular fashion to
understand the environment. The other specification of the robot is mentioned in the
Appendix section. The setup of the environment is kept in such a way that robot unable to
see the goal due to the presence of the obstacle. The robot starts sensing the environment
and traces the location of the goal and obstacles and follows the shortest possible distance
for navigation. To avoid the obstacle present in the path, the robot is encoded with the

MGA controller by using C++. The proposed controller starts working when robot detects
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the obstacles. The robot follows the evolutionary genetic based mechanism to avoid the
obstacle and finds the best fit heading angle to achieve the goal. The Figures (4.8-4.10)
show step by step path planning of mobile robot in the presence of a static obstacle. The
presented experimental analysis of single and multiple mobile robots proves the path

optimality as it generates the appropriate path between the robot and goal; it also avoids

the random movement of the robot which leads to the lengthy path.

Figure 4.8 (b)

Figure 4.8 (c) Figure 4.8 (d)

Robot path by using GA based
controller

Figure 4.8 (e) Figure 4.8 (f)

Figure 4.8: Real-time navigation using MGA controller
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Figure 4.9 (c) Figure 4.9 (d)

Robot path b
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Figure 4.9 (e) Figure 4.9 (f)

Figure 4.9: Real-time navigation using MGA controller
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Figure 4.10 (c) Figure 4.10 (d)

Figure 4.10: Real-time navigation for multiple mobile robots using MGA controller

4.6 Comparative Study of Experimental and Simulation

Analysis of MRN over Similar Environment

In this section, the experimentally observed path length and time taken during navigation
is compared with the simulational results. The comparison between the experimental and
simulational analysis is carried over the two similar environmental setups for the single
mobile robot and multiple robot systems. To verify the performance of the robot during
the simulation and the real-time experiment, the many trials are taken to calculate the path
length and time requires for navigation. The observed path in the simulation closely
follows the walls. In Scenario -1, the Figures (4.4 and 4.8) are compared, in Scenario-2,
the Figures (4.5 and 4.9) and in Scneraio-3 the Figures (4.6 and 4.10) are compared to
understand the performance. The observed path length and required time of navigation for
20 trials are tabulated in Tables (4.3-4.6) for single mobile robot where as 10 trials are
taken for multiple mobile robots system as shown in Figure (4.7-4.8). The observed path

length is minimum in case of simulational analysis as compared to experimental analysis
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for same environmental setup. The obtained percentage of deviation for path length is

within 5.5% for single and multiple mobile robot system. The time required to accomplish

the same task of navigation in the experimental analysis is more than the time required in

simulational analysis. The observed percentage of deviation is less than 6% between the

simulational and experimental results single and multiple robot system.

Table 4.3: Path length in same simulational and experimental setup (Figure 4.4 and 4.8).

No. of runs Experimental path length Simulational path length % of
during MRN (in‘cm’) during MRN (in ‘cm’) deviation
1 338.2 321.9 4.81
2 337.07 321 4.76
3 337.61 320.77 4.98
4 342.09 324.05 5.27
5 339.19 324 4.47
6 337.89 323.31 431
7 338.09 323.33 436
8 339.4 323.68 4.63
9 338.95 321.76 5.07
10 338.59 321.5 5.04
11 339.55 320.81 5.51
12 340.54 320.42 5.90
13 339.22 323.3 4.69
14 340.93 321.11 5.81
15 341.58 321.98 5.73
16 342.94 320.8 6.45
17 343.87 321.76 6.42
18 344.85 323.8 6.10
19 345.5 323.57 6.34
20 346.21 323.05 6.68
Average path

340.31 322.25 5.30

length covered
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Table 4.4: Path length in same simulational and experimental setup (Figure 4.5 and 4.9).

No. of runs | Experimental path length during | Simulational path length % of
MRN (in‘cm’) during MRN (in ‘cm’) deviation
1 313.03 296.1 5.40
2 314.52 295.89 5.92
3 313.41 297.87 4.95
4 313.25 296.15 5.45
5 314.94 297.12 5.65
6 311.71 296.53 4.86
7 313.52 298.21 4.88
8 312.1 298.19 4.45
9 313.93 295.49 5.87
10 314.14 297.44 5.31
11 315.97 297.05 5.98
12 316.56 297.87 5.90
13 311.19 297.48 4.40
14 312.18 296.67 4.96
15 311.98 297.11 4.76
16 311.63 295.66 5.12
17 311.39 296.54 4.76
18 313.97 297.15 5.35
19 315.75 298.15 5.57
20 316.21 298.25 5.67
Average
path length 313.43 296.98 5.24
covered
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Table 4.5: Navigational time in same simulational and experimental setup (Figure 4.4 and
4.8).

No. of runs Experimental time Simulational time during % of
during MRN (in ‘sec’) MRN (in ‘sec’) deviation
1 18.6 17.65 5.10
2 18.69 17.72 5.18
3 18.82 17.7 5.95
4 19.2 17.94 6.56
5 18.5 17.69 4.37
6 19.35 18 6.97
7 18.74 17.84 4.80
8 19.77 18.2 7.94
9 19.95 18.68 6.36
10 18.94 18.22 3.80
11 18.97 18.3 3.53
12 18.41 17.48 5.05
13 19.83 18.87 4.84
14 18.98 18.3 3.58
15 18.67 17.91 4.07
16 20 18.76 6.2
17 19.85 18.75 5.54
18 18.61 18 3.27
19 20.1 18.79 6.51
20 20.1 18.7 6.96
Average time
required 19.20 18.17 5.33
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Table 4.6: Navigational time in same simulational and experimental setup (Figure 4.5 and
4.9).

No. of runs Experimental time Simulational time during % of
during MRN (in ‘sec’) MRN (in ‘sec’) deviation

1 16.9 16.1 4.73

2 16.5 15.6 5.45

3 17.15 16.46 4.02

4 16.9 15.4 8.87

5 16.6 15.3 7.83

6 17.7 16.8 5.08

7 17 16.35 3.82

8 17.33 16.75 3.34

9 16.62 15.8 4.93

10 16.5 15.37 6.84

11 16.54 15.2 8.10

12 17.6 16.31 7.32

13 18 16.88 6.22

14 18.2 17 6.59

15 16.75 15.5 7.46

16 16.75 16.1 3.88

17 17.55 17 3.13

18 17.31 16.2 6.41

19 17.95 16.9 5.84

20 18.2 17 6.59
Average time 17.20 16.20 5.82

required
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Table 4.7: Path length in same simulational and experimental setup (Figure 4.6 and 4.10).

No. of | Robot No. | Experimental path length | Simulational path % of
runs during MRN (in‘cm”) length during deviation
MRN (in ‘cm’)
Robot 1 229.84 218.03 5.13
1 Robot 2 189 179 5.29
Robot 1 229.6 217.1 5.44
? Robot 2 187.77 178.72 4.81
Robot 1 233.81 221.74 5.16
’ Robot 2 189.25 181.72 3.97
Robot 1 230.94 218.5 5.38
* Robot 2 188.94 178.82 5.35
Robot 1 232 222.85 3.94
’ Robot 2 190.1 180.7 4.94
Robot 1 232.7 221.8 4.68
° Robot 2 187.91 177.77 5.39
Robot 1 235.94 222.81 5.56
! Robot 2 190.8 179.12 6.12
Robot 1 234.22 222.45 5.02
° Robot 2 190.85 180.87 5.22
Robot 1 231.1 221.89 3.98
’ Robot 2 190.56 180.25 541
Robot 1 234.7 223 4.98
10 Robot 2 191 182.05 4.68
Average | Robot 1 232.48 221.01 4.93
path
length | Robot 2 189.61 179.90 5.12
covered
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Table 4.8: Navigational time in same simulational and experimental setup (Figure 4.6 and
4.10).

No. of Robot No. Experimental time Simulational time % of
runs during MRN (in ‘sec’) during MRN deviation
(in ‘sec’)
Robot 1 37.05 354 4.45
1 Robot 2 30.46 28.54 6.29
Robot 1 34.90 33.83 3.07
? Robot 2 31.68 29.80 5.91
Robot 1 38.01 35.59 6.37
’ Robot 2 30.25 28.62 5.39
Robot 1 37.22 35.28 5.23
! Robot 2 32.40 31.03 4.24
Robot 1 35.69 34.41 3.58
’ Robot 2 31.64 29.72 6.05
Robot 1 37.38 35.11 6.08
° Robot 2 30.02 28.65 4.54
Robot 1 34.51 32.65 5.39
! Robot 2 30.75 28.77 6.44
Robot 1 37.75 35.74 5.34
° Robot 2 29.76 28.85 3.05
Robot 1 35.25 33 6.39
’ Robot 2 30.71 29.05 5.41
Robot 1 37.83 35.94 4.98
10
Robot 2 31.78 30.34 4.53
Average Robot 1 36.56 34.69 5.09
time
required | g bot 2 30.95 29.34 5.18
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4.7 Performance Analysis of MGA Controller with Other

Navigational Controller

To prove the effectiveness of proposed controller, the comparative simulation analysis is
presented with the other artificial intelligent controller. The Figure 4.11 & Figure 4.13 are
the other navigational controller provided by Zhang [196] and Wang [197] respectively
which is then compared with the developed MGA controller in Figures 4.12-4.14. The
Zhang provided the hybrid neuro-fuzzy controller and Wang et al. presented the fuzzy
logic controller for navigation of a mobile robot in a static environment. The similar
environment is produced for comparison by using Matlab R2008. The data in Table 4.9
reflects that the proposed controller performs better than the existed navigational
controller under the context of path optimality. The Maximum path length saved by
proposed controller is up to 20%. The path is shown by proposed controller is very close
to boundaries of obstacle hence, the proposed controller can be successfully used for robot
navigation for the complex crowded environment in the presence of obstacles. The MGA

based approach saves more path length and achieves the target within less time.

Figure 4.11: Navigation using neuro-fuzzy controller by Zang et al. [196]
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Figure 4.12: Navigation using MGA controller

Figure 4.13: Navigation using fuzzy logic controller by Wang et al. [197]
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Figure 4.14: Navigation using MGA controller
Table 4.9: Comparision of simulation result regarding path length
SI. No. Simulational Path Simulational path length (in | % of path saved
length (in ‘cm’) using ‘cm’) using other Al using MGA
MGA controller controller controller
Scenario-1 8.4 (Figure4.11) 9.8 (Figure 4.12) 14.28
Scenario-2 7 (Figure 4.13) 8.8 (Figure 4.14) 20

4.8 Summary

This chapter provides the application of the Matrix based Genetic algorithm for wheeled
mobile robot navigation problem. The new MGA based approach is developed for robots
to take their decision when working in uncertain environment. The key points of the

finding are discussed as follows:

e The matrix trace based arrangement transforms GA into small sample space from
the large sample space.
e The proposed controller finds the best string representation of optimum class of

input or output and it sequences the solutions at the level of high flexibility.
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The controller distinguishes the discrete and continuous solution by the stochastic
process. Robot requires this for generating the best fitness function.

The obstacle avoidance behavior is more efficient for single and multiple mobile
robots from the observed results.

The proposed controller successfully avoids obstacles (static and dynamic) and
also achieves the goal efficiently. The results of the navigation of mobile robot in
presence of three moving obstacle is remarkable.

The percentage of error observed for same experimental and simulational setup is
less than 5.5% when compared for path length and it is observed less than 6%
when compared for the time taken during navigation.

On simultaneous comparison with other Al based controller (neuro-fuzzy and
fuzzy logic algorithm), it is observed that proposed controller saves the path

length upto 20%.

At last, it is concluded that the proposed MGA controller can be successfully

implemented for path planning problem in the uncertain environment.
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Probability-Fuzzy Logic Based Mobile
Robot Navigation

This chapter presents a Mobile Robot Navigational controller based on Probability-Fuzzy
logic function. To obtain optimal path between robot and goal in the presence of obstacles
is the objective of the proposed work. But, it is challenging in the uncertain environment.
Thus, the probability-fuzzy logic function is used for avoiding the obstacles and planning
the optimal path. The central idea of this chapter is to form a function of probability and

fuzzy logic over the distance and speed.
5.1. Introduction

The autonomous navigation of mobile robot involves various hidden challenges. The
obstacle avoidance and optimal path decision is selected as the noteworthy problem in
autonomous navigation. The probability-fuzzy logic based approach are introduced here to
solve the navigational problem. Fuzzy logic interacts with obstacle avoidance & the
optimal path decision with probability. In the current investigation fuzzy logic adjoins
with probability by the common range [0, 1]. The chapter proposes a function whose
domain is fuzzy set; co-domain is probability and distance-speed combination rule is the
range. This new feature achieves both the said goals by the distance-speed combination.
Multiple targets in known and unknown environments treating as the elements of the set
and the decision require the fuzzy logic. The heuristics knowledge generates the fuzzy
rule and its discrete distribution concerns with the probability. Robot path planning
module is organized for mobile agents to map in a dense environment. It requires a
justified strategy to execute an intelligent controller for the level of satisfaction over
sensory information and reasoning barrier. The overview of fuzzy based mobile robot

navigation is presented in accordance to the probabilistic theory.
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5.2. Overview and Pre-requisites

The probabilistic theory is initiated by [0, 1] and the same range applies for fuzzy logic
also. To establish an intelligent controller for a mobile robot, it requires the common
membership function and this is obtained by probability-fuzzy logic common range i.e. [0,
1]. The vagueness, impression, lack of information, partial truth, uncertainties and
oscillation interacts with fuzzy and probability distribution. This ordered pair is
represented as the system of discrete probability distribution and continuous fuzzy
membership function. The system generates the linguistic interpretation by the implicit
knowledge. The fuzzy rule inter-relates the robotics decision and linguistic variable. The
complex controlled task co-related with fuzzy, but it is a tedious and unreliable trial with

€Irors.

The Pre-requisites are given below:
5.2.1 Definition

Consider a robotics fuzzy space and Let X={O} be a collection of obstacles in the robots

path, then a robotics fuzzy subset 4 in X is a set of order pairs A ={(O, )7y (O)},where

10— [O,l] is called the robotics fuzzy membership function of A.

5.2.2 Definition

The goal G in X is a subset of X characterized by its membership function g (o).

5.2.3 Definition

Let C be a set of constraint in X is a subset of X defined by its membership function

U-(0). Let, an angle measured by robot with the target be € and its discrete probability

distribution be;

0 0 . . . 0
p(9) p@) |- - : p,(0)

The Discrete Fuzzy Constraint Distribution of the above is;

o o . . . o
ui) |[@u0 |- |- | | n0
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The composition of Probability-Fuzzy-Constraint Distribution is;

p(0) P (0) S A

u.0) | (p(O)p, (p(0) |- |- - | (2, (O), 1, (P, (0))

Similarly, The Discrete Fuzzy Goal Distribution of the above is;

0 0 . . . 0
Hg(0) | (0,16 (0) : : : (0, g, (0)

The composition of Probability-Fuzzy-Goal Distribution is;

p(0) p,(0) .- - p,(0)
Ug(0) | (P (O), g (P (0)) |- |- : (P, (0), pg (p,(0))
5.2.4 Definition

A robotics fuzzy decision D in X is obtained by the combination of G and C i.e
D =GN C and corresponding the membership function 1, is defined by,

115(0) = 115(0) A p1,.(0) = min(tt, (0), £ (0)) 5.1)
or,D=G,Nn..NnG NC, N..NC,

OF, Ho NN g A He Ao A e

5.2.5 Definition

Let K be a fuzzy robotics Subset of X on which p, set as maximum, if it exists. An
optimal decision is generally a robotics non-fuzzy subnormal subset D* of D defined by,

max t,(0),0€ K

4. (0) ={ (5.2)

0, elsewhere

5.2.6 Definition

Any X in the support of D*, i.e. any alternative o € X which minimizing z,(0)is called
the minimizing decision and denoted by o*, thus,

Hp(0%) =min(g; (0) Ao A i (0) A e, (O) Ao A i (0)) (5.3)
5.2.7 Definition

If f:A4— A,then fis said to be a transformation function.
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The probability-fuzzy logic function is the proposed technique of MRN in which the

domain, co-domain and range of this function are formulated as below:

5.3. Problem Formulation

Mobile robots navigation and its operation are still challenging task in the world of
artificial intelligence to decide the function from natural intelligence to artificial
intelligence. This problem can be studied dynamically as a real-time problem, predefined
goal problem, collision problem, trajectory problem, etc. The steering angle operates by
said sequence as a distance-speed matrix. The heuristic knowledge about robots, target and
obstacles fit in the ordered pair by probability-fuzzy logic rule. This is presented as an
array of ultrasonic sensors, infrared sensors and collision sensors for detecting the bearing
of the target. The controller comprises with real and virtual sensors as embedded MRN.
The proposed model co-relates the position of obstacles, the movement of wheels, the
direction of steering angle and the velocities of wheels. These are presented as the
distance-speed matrix over the metric space [0, 1]. The inter-robot collision in Gaussian
space for setting the membership function over Probabilistic-Fuzzy logic function
transformed into the turning function. It lies to the obstacle avoidance in Gaussian space,
which is represented in this model as discrete probability distributions. The inter-robot
collision is represented as a fuzzy logic controller in the common range [0, 1]. Thus,
probability-fuzzy logic controller behaves as the membership function of the mobile robot
navigation controller. The experimental performance is also presented in this chapter to
prove the proposed Probability-Fuzzy logic controller like a real and practical system. The
distance-speed function is distributed as discrete and continuous pattern in Gaussian space
over [0, 1]. It is presented as an objective function for optimizing the path under the

subject to the obstacle avoidance over probability-fuzzy constraints.
5.4. Behavior-based Study of Navigation

Robot moves through measuring angle when navigating in its environment. There can be

existed the two probable cases; this is analyzed below.

5.4.1 Case I (Without Obstacle)

Let R be a robot, G be a goal. The robot (R) identifies the angle with the goal (G) by the

sensory information i.e. ZXRG =6 as shown in Figure 5.1. Next, R allows to move
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towards G and R=G or R and G are coincidence or G =R, thus R=G . It means R

reached in G. This is the main objective.

Y
4

Robot (R)

Figure 5.1: Robot environment without obstacle

The next case concerns with the presence of Obstacle in robots path.
5.4.2 Case II (With Obstacle)

Robot measures an angle @, but there is an obstacle o in the path of robot, and if there are
several obstacles then their sets can be represented as O = {01 yeeus O, } Let, robot identifies
the single obstacle say o, as shown in Figure 5.2 and starts to execute the obstacle

avoidance process as given below:
1. Discrete probability distribution of 6.
2. Probabilistic-fuzzy logic rule Application.
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Goal (G) O
Obstacle (O)

e

Robot (R)

Figure 5.2: Robot environment with obstacle

Firstly, the angle @ is distributed discretely by the probability as per the tabulation
mentioned above. But the second, which is the rule of fuzzy logic, is represented as below:
Here, the three positions of an obstacle in respect of robot such as at left, at right and front
side of the robot are considered during mobile robot navigation. The distance is measured
from these three positions of the obstacles as Left Obstacle Distance (LOD), Front
Obstacle Distance (FOD) and Right Obstacle Distance (ROD). The fuzzy rule with
probability is presented in the following table:

Table 5.1: Probability-fuzzy logic rule

Obstacle Distance Probability of Distance Combination of the
Position Classification Classification Probability of
Distance
Classification
Dy | ... | D | pD) |.|.].| pD) | CpD),...pD,))
LOD dy | .|| d,| pd) |.|.].| rd,) G
FOD dyy | || o | PAy) ||| P(dy,) G,
ROD dy, | .. d,, | pdy) |.|. p(d;,) G,

It is generalized with the linguistic variables in the following tables:
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Table 5.2: Probability-fuzzy logic rule with linguistic variable

Obstacle Distance Classification Probability of Distance Combination of the
Position Classification Probability of
Distance
Classification
D, D, p(Dy) p(D,) G
LOD |VVN|VN |N|F|VF| VVF | pd,) p(d,,)
dll dln
FOD |VVN|VN N |F|VF| VVF d, . d,,
d31 . d3n
ROD |VVN|VN|[N|F|VF|VVF | pd,) r(d;,)

Similarly the robot’s turning fuzzy probability rule is presenting below:

Table 5.3: Probability-fuzzy logic rule for speed clasification

Obstacle’s | Speed Classification Probability of Speed Combination of the
Position Classification Probability of Speed
Classification
Sl Sn p(Sl) p(Sn) Ci

LOD VVF | VF | F | S| VS | VVS | 5, S, S - . .Sy,

FOD VVE | VE | F [S[VS [VVS | s, 5, Saoe e S
S31 S3n

ROD VVF | VF | F | S| VS | VVS | s, S,

Hence, the turning function of the robot is,

The turning function is a composite function of Distance and Speed, which helps to

generate the objective function of a controller. The distance and speed matrix are used to

generate a controller. The turning function is represented by the matrix function as

follows:

d,
T=f

S3

n
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or,
((dyssi) @y 80)) - oo (dygss0))s 44, (d)y58,)
T'=f((dy;55) by (dyys55)) - o oo (dy8,)s 1 (dyy55,)))
(s, 850), 151 (dsy585)) - - . o ((ds,,85,), 145,(ds,,85,))
or,
4, . A4,
T=fq 4y - Ay |
4, . 4,,
or,
T = f(p(4)).

The above set 4 is studied under the following path optimizing constraint sets:

1. Let, X ={p,, Doseens pn}, where p be the path of the robot. Its subset can be

generated as per the probability distribution, if the distribution is discrete, then the

subset will be

B= {pnfl,pnfm,...,pnfz} and for the continuous, the subset will be C = {p_/.}.

2. The membership functions as per the set of obstacles over the set of paths are

presented below:

Hi0)=Lp,,
ILlA (02) = 15 pn—m

4,(0,)=0;p,,

Hi(0,)=Lp, .
3. The optimum path is determined by,
#,(0,) 0 e (0,) = min{ 11, 0,), p1c 0, )} (5.7)
The execution of algorithm is given below:
1. Let, the set of obstacles be 0:{01,02,...,0”} and the corresponding set of

constraints be C = {c1 3Coeres Cp, }

~

2. The decision is D=0, Mo, N...No, "¢, Nec, N...Nc,

3. The membership function of the minimized decision is

#5(X) = min (4, (0)...4, (0, 1, (0)...41, (0)) (5.8)
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4. The membership function of a maximized decision is X,,,, = {0 1, D(X )}

The formulation mentioned above is executed as per the follows:

1. Initially, the robot is at the stationary state.
2. Robot traces the goal.

3. Robot achieves the goal when there is obstacle,

Otherwise,

3.1. Robot measures 6.
3.2. Apply T = f(p(A)),under the following optimizing function:
1,(0) = 415(0) A 1 (0) = min( 1, (0), 1 (0)), (5.9)
or,D=G Nn..NG,N"C,N..NC,,
OF sl N AN Hg A fe, Ao A e
By Minimizing,

1,(0%) = Min(15, (0) Ao fhg (0) A 1, (0) Ao A 1, (0)), (5.10)

max ¢, (0),0 € K
Or, .(0) =
#y5(0) {O, elsewhere
3.3. Robot can reach to the goal with either
U (0),
or g, (0)
or g, (0),

Corresponds to the following constraints,

He, (0),

or 4 (0).
Such that, the following transformation function is satisfied,

f:A4—>4 (5.11)
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Although, the hypothetical formulation is generated and justified by the functional
postulates but it is necessary to explain the experimental performance of the proposed
model in the domain of real-time. Hence, the analysis of real-time mechanism of the

proposed MRN is described below:
5.5 Real Time Analysis of Navigation Mechanism

5.5.1. Obstacle Avoidance and Target Seeking:

It starts with the analysis of the mechanism of the robot. The robot can move 360°. It has
three wheels, 1 in front and 2 in the back. The direction of turning is proportional to the
speed difference of back wheels. There may be randomized obstacles, in left, in right and
the front. Robot identifies these obstacles with the help of ultrasonic and infrared sensors.
Let, there is a smooth floor consisting vertical type obstacles in the environments. Hence,
the objective of navigation can be organized under as follows:

1. Robot starts.

2. Defined goals.

3. Identified the obstacles.

4. Turned and moved the robot.

5. Reached in goal.

6. Robot stops.

Apart from the above said steps, robot must follow the necessary action as given below:

1. The path should be free from any collision.

2. The robot should not be hit with any obstacle.

3. The robot should not be hit with any wall.

The performance of the robot depends on the following system

1. Input.

Crisp Set.

Fuzzifier.

Probabilistificaion.

Probability-fuzzy Logic controller.

Defuzzifier.

Deprobabilistificaion.

Crisp set.

A S AR L N A

Output.
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The membership function set contains six elements of the membership function for each.
More precisely it can be constructed as:

1. Triangular membership function.

2. Trapezoidal-triangular membership function

3. Gaussian membership function.

And its elements are the presenting below as the membership function corresponding to
each.

1. Very Very Near (VVN)

2. Very Near (VN)

3. Near (N)

4. Far (F)

5. Very Far (VF)

6. Very Very Far (VVF)

The membership function i.e triangular, Trapezodial triangular and Gaussian belongs to
the geometrical characteristics and its alements i.e Very Very Near, Very Near, Near Far,
Very Far, Very Very Far belongs to linguistic characteristics. These are not sufficient
decision variables. For more such variables, it requires obtaining information from the
sensors of the robots. Hence, these variables are formed as a function of the probability
distribution and the membership function for executing navigation. The probability
applied in fuzzy for the distribution of range and both discrete and continuous distribution
is used along with the fuzzy parameter. Basically, at the initial level, the discrete
distribution is used but for the middle and final level performances both distributions are
applied. In the environment, there is uncertainty about the path, obstacle, dimension,
decision, the function of velocity measurement but the presentation of this uncertainty is

transformed into the constrained by the probability.

In an unknown cluttered environment, a real-time navigation based on probability-fuzzy
logic is proposed in this chapter. The objective of the robotics is unique, which is to reach
the goal by the optimized trajectory without collision with the obstacles. The LV and RV
are the Left Wheel Velocity and Right Wheel Velocity respectively used for to control the
direction of trajectory. LOD for Left Obstacle Distance, ROD for Right Obstacle Distance
and FOD for Front Obstacle Distance are used as the key term in this chapter. The VVN

and VVF are eliminated due to efficiency reason.
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The fuzzy parameter and Probability-fuzzy parameter over distance and heading angle is

shown in the following table as:

Table 5.4: Fuzzy logic parameters for obstacles:

Linguistic Very Near | Near (N) | Medium (M) Far (F) Very Far
Variable (VN) (VF)
LOD 0.0 0.2 0.4 0.6 0.8
ROD 0.2 0.4 0.6 0.8 1.0
FOD 0.4 0.6 0.8 1.0 1.2
Table 5.5: Probability-fuzzy logic parameters for ostacles:
Linguistic P (VN) P (N) P (M) P (F) P (VF)
Variable
LOD 0.0/0.6 0.2/1.2 0.4/1.8 0.6/2.4 0.8/3.0
ROD 0.2/0.6 0.4/1.2 0.6/1.8 0.8/2.4 1.0/3.0
FOD 0.4/0.6 0.6/1.2 0.8/1.8 1.0/2.4 1.2/3.0
Table 5.6: Fuzzy logic parameters for heading angle:
Linguistic MN N zZ P MP
Variable
Target -180 -120 -10 10 60
Heading -120 -60 0.0 60 120
Angle -60 0 10 120 180
Table 5.7: Probability-fuzzy logic parameters for heading angle:
Linguistic
Variable P (MN) P (N) P (Z) P (P) P (MP)
Target -180/360° | -120/180° -10/20° 10/190° 60/360°
Heading -120/360° | -60/180° 0.0/20° 60/190° 120/360°
Angle -60/360° 0/180° 10/20" 120/190° 180/360°

The left and right wheel velocities have the five membership function as Very small (VS),
Small (S), Medium (M), Fast (F), Very Fast (VF) and the relative angle with the target is
considered as More Positive (MP), Positive (P), Zero (Z), Negetive (N) and More

Negetive (MN).

There may be existed a condition of “No Target Consider (NTC)”.
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If-Then Rule is tabulated in the below for controlling the MRN as follows:

FOD

ROD

LOD

HA

n
>

00 02 04 0.6

0.8

1.0 1.2

RV

——p

LV

Figure 5.3: Probability-fuzzy logic triangular membership function

FOD P(C;
N () RV
ROD g
—_—
LOD |-
—
LV
HA R |
00 02 04 06 08 1.0 1.2
Figure 5.4: Probability-fuzzy logic triangular-trapezoidal membership function
FOD .
— P(Cy) RV
—
LV
—
00 02 04 06 08 10 12

Figure 5.5: Probability-fuzzy logic Gaussian membership function

5.5.2. The Probability-Fuzzy Logic Mechanism for Navigation Control:

The rule comprises with IF-THEN is presented as follows:

Table 5.8 If-Then rule

IF THEN
Lop=Lo
FOD
Fop =£9P
ROD L Vijkl
rop =19 RV
- HA,
LOD
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l,k:l andl:l
5 5 5

Where,i=—, j =

| —

Table 5.9 The Probability-fuzzy If-Then rule is generalized as below:

IF THEN
LOD R FOD R ROD D LV
LOD,” FOD, ROD, HD, LV,
i J y
LOD, FOD, ROD, HD, RV
VAN — A\ VAN
LOD  FOD ROD HD RV,

The compact rule is presented by:

. | Hp, . Hrp, . My
W. =dis | —= |A dis.| —= | A dis LA (an
" l [Lﬂw J ! [Lﬂkp J ' {Lﬂm J ( gl)

(5.12)

Where, the measured distance are dis,, dis;, dis,, dis, and the heading direction is (ang,).

Let, the vel,, be the velocity of the left wheel and vel,, be the velocity of right wheel,

then the following are the rules for MRN.

w.
(vel)* LV}, =M vel eLV
(vel,,) My,
And
w.
(vel)"RVl.jko# ; vel € RV

(vely,) Mgy,

Hence, the final rule for all membership function is combined as follows:

u_ VVi/kl .
(vely =—————; vel ¢eRV
(vely,) Hry,,

— (velLV)luLV'llll v (velLV)IuLV'SSSS

(VeZLV)/uLV’ijkl (velLV)/uLV’ijkl

(Vel)ﬂLV

_ (velpy ) Mpyiny v (velyy ) pyssss
(velRV)luRV'i/kl (VeZRV)IuRV’ijkI

(vel )ty

Finally, the crisp transformation can be presented by the below rule as:

Z(vel)( Huy

vel ),

Z(vel),uu,

LV =

88
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Z(vel)( ad il

vel ) )

Z(vel),um,

The equation 5.18 and 5.19 is for the discrete probability distribution. For the continuous

RV = (5.19)

probability distribution, LV and RV are formulated as below:

J.(vel)(’u”d(vel)

vel ),

LV = (5.20)
j(vel),uu, d (vel)
J-(vel)ﬂ#d(vel)
RV = (vel) ity (5.21)

j(vel),uRV d(vel)
5.6 Obstacle Avoidance

The relation between the robot and goal is studied in this section over the various
obstacles, which is in the random form in the environment. The matrix space is the
resultant to analyze of robot and target. The same observation is found for robot and
obstacles. The force has existed in both the mentioned conditions. Its reaction on the robot
is specified as,

* Robot’s velocity can change.

* Robot’s direction can change.

* Robot’s efficiency can change.
Hence, there are the two main challenges of MRN as discussed above, which is to be
analyzed in this section under as followings:

* To study the obstacle avoidance and its control mechanism.

* To develop the system of target seeking and its controller.

* To study the robot’s mechanism and its algorithm for execution.

The graph for Probability-Fuzzy logic MRN controller Mechanism is shown below:
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P(C)

' 0.0 02 0. 4 0.6 12
Front Obstacle Dlstance —_—

Figure 5.6: Front obstacle distance (FOD)
P(Ci)

/-g@ V!

02 04 06 08 1.0 1.2
Left Obstacle Distance e

Figure 5.7: Left obstacle distance (LOD)
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Right Obstacle Distance >

Figure 5.8: Right obstacle distance (ROD)

(W ——

The rule for Obstacle-Avoidance, target seeking is demonstrated below:

Table 5.10: Probability-fuzzy logic obstacle avoidance (OA) rule

Probability —Fuzzy | Combination | Action | LD | FD | RD | HA | LV | RV
logic Rule No. C

1 C OA | VN|VN|VN | NTC| VS| S
2 C OA VF | VN| N | NTC | VS | VF
3 C; OA |VN|VN| M [NTC| I S
4 Cy OA |VN|VN| F |[NTC| F S
5 Cs OA |VN|VN| VF [NTC| VF | M
6 Ce OA |VN| N |VN|NTC| S S
7 C; OA |VN| N | N [NTC| S S
8 Cs OA |VN| N | M [NTC| F | M
9 Co OA |VN| N | F [NTC| F S
10 Cio OA |VN| N | VF [NTC | VF | F
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Table 5.11: Probability-fuzzy logic target seeking (TS) rule

Probability-Fuzzy C Action LD FD | RD | HA | LV | RV
logic Rule No

11 Cn TS VN F N | P/N S VS
12 Ci TS VN M VF | P/N | VF | VS
13 Cis TS N F F P/N F S
14 Cis TS N F N | N/P S M
15 Cis TS F M N | NP | M F
16 Cis TS F VF N | NP | M VF

Its steering action is required. Thus, the rule of Probability-fuzzy- logic -steering-action is

presented below:

P(C) P(C)
10 VS S M F VF 10 VS S M F VF
[ 0.6 I 0.6
=2 A A =2 ] T AT TN T
0.0 0.0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Left Wheel Velocity (m/s) ——» Right Wheel Velocity (m/s) ——»

Figure 5.9: Probability-fuzzy logic rule for first combination

.01 0.02 0.03 0.04 0.05 0.06 0.07 .01 0.02 0.03 0.04 0.05 0.06 0.07
Left Wheel Velocity (m/s) ——» Right Wheel Velocity (m/s) ——»

Figure 5.10: Probability-fuzzy logic rule for second combination

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.01 0.02 0.03 0.04 0.05 0.06 007
Left Wheel Velocity (m/s) ——» Right Wheel Velocity (m/s) ———»

Figure 5.11: Probability-fuzzy logic rule for third combination
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=02 =0.2
0.0 ~ 0.0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Right Wheel Velocity (m/s) ——

Left Wheel Velocity (m/s) ——»

Figure 5.12: Probability-fuzzy logic rule for fourth combination activated

P(C)
10 VS S M F VF

Left Wheel Velocity (m/s) ——» Right Wheel Velocity (m/s) ————

Figure 5.13: Probability-fuzzy logic rule for fifth combination activated

(W

W —>
>

0. 0.2
0 0.0

oo

.01 0.02 0.03 0.04 0.05 0.06 0.07 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Left Wheel Velocity (m/s) ——> Right Wheel Velocity (m/s) ————

Figure 5.14: Probability-fuzzy logic rule for sixth combination

.01 0.02 0.03 0.04 0.05 0.06 0.07
Left Wheel Velocity (m/s) ———

Right Wheel Velocity (m/s) ———

Figure 5.15: Probability-fuzzy logic rule for seventh combination

0.4

=
0.0
0.01 0.02 0.03 0.04 0.05 0.06 0.07

Right Wheel Velocity (m/s) ——»

.01 0.02 0.03 0.04 0.05 0.06 0.07
Left Wheel Velocity (m/s) ——»

Figure 5.16: Probability-fuzzy logic rule for eighth combination
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P(C)) P(C)
I 1.0 VS S M F VF [ 1.0 VS S M F VF
R N ==}
~02 A 4A£1A\=\\\ =02 R A =)
2 s LSRR RSN 202 AR AN
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Left Wheel Velocity (m/s) ——» Right Wheel Velocity (m/s) ———

Figure 5.17: Resultant left and right wheel velocity

Table 5.12: Combination table of wheel velocity and obstacle distance

S1. No. LOD FOD ROD Ci LV RV
1 VN N VF G VF VS
2 VN N F G F S
3 VN M VF GCs VF VS
4 VN M F Cy F M
5 N N VF Cs M VS
6 N N F Cs S VS
7 N M VF C; VF VS
8 N M F Cs F S

5.7 Simulation Analysis

To validate the proposed work, number of tests are conducted in Matlab (R2008)
simulation software using probability-fuzzy logic controller. The various environments are
created using Matlab software to verify the applicability of the proposed controller for
mobile robot navigation. The simulational environment is dealing with the various static
and dynamic environments. To check the effectiveness of the proposed controller multiple
trials are conducted by changing the position and quantity of obstacles. The single and
multiple mobile robots have been considered for the various trials. The different
combinations of robot and goal are considered for the simulation analysis such as a single
robot with a single goal and multiple robots with a single goal. The simulation results have

been tested in 2D space of a 100cm by a 100cm square background in the presence of a
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variety of static and dynamic obstacles. The Figures 5.18-5.20 demonstrates the efficiency
of the PFL navigational controller during obstacle avoidance behavior. The Figure 5.18
consist the start position and one goal position with many obstacles. Initially, robot
calculates the navigation angle 6 with the goal position and starts accelerating towards the
goal without any intelligent mechanism. The Figure shows that when the obstacle comes
in the path of the robot, it activities the PFL rules to avoid the obstacle. The process of the
obstacle avoidance begins when sensors detect the obstacle and PFL controller activates
the PFL rules to control the left and right velocities. The proper heading angle is created
by the efficient rules which are given by the probability function. The presented Figure
shows the safe path planning of mobile robot in the environment and also shows that the

robot creates the safe distance while avoiding the obstacles.

The simulation analysis is also performed in the presence of the dynamic obstacle to
present the effectiveness of proposed controller. The Figure 5.21 shows the step by step

navigation of mobile robot in the presence of two moving obstacle.

100

MOBILE ROBOT NAVIGATION USING PFL CONTROLLER |

: : | Robot initial
P S S R S | i position |
X Axis
0 i i i i i i i i i
0 10 20 30 40 50 6 70 80 90 100

Figure 5.18: Navigation of mobile robot using PFL controller
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100
Z MOBILE ROBOT NAVIGATION USING PFL CONTROLLER
« | | | | | | | |
90 *>—r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr —
G T
701 _—
IR R
50_ ............... e ‘ ............... : .
40 e |
Robots ﬁath
30— : R :
| e
T e
0 5 | | | 5 | 5 | X Axis
0 10 20 30 40 50 6 70 8 9 100
Figure 5.19: Navigation of mobile robot using PFL controller
100; T \ 1 \ 1 I 1

MOBILE ROBOT NAVIG

90
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/Obstacles ______ |

50r

] e N e S S SR 2
30 . ; 3 ; 3 T — .
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1 i 1 i 1 i 1 | X Axis
0 | L | L | L | L |
0 10 20 30 40 50 60 70 80 920 100

Figure 5.20: Navigation of multiple mobile robots using PFL controller
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5.8 Experimental Analysis

100
X-AXIS

Figure 5.21 (¢)

X-AXIS

Figure 5.21 (d)

Figure 5.21: Navigation of robot in dynamic environment using PFL controller

This section proposes the real-time validation of PFL controller for mobile robot

navigation. The real time analysis of single and multiple mobile robots in the presence of

various obstacles is presented by using the Khepera-II robot. The experiment is conducted

on a plane surface. The specification of the robot is mentioned in the Appendix A. The

robot uses the infrared sensors to detect the obstacle in short range of lcm to Scm. By

using the sensory information, robot creates the desired heading angle to achieve the goal.

The Figures 5.22-5.24 show the step by step navigation of the mobile robot from the start

point to the goal point. The robot analyzes the environment by using sensory information

and then plan towards achieving the goal. The obstacle avoidance mechanism activates

when the robot comes in the contact with the obstacle. The PFL based mechanism is
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uploaded to the robot by using C++ language to get the collision-free path. The proposed
controller is very effective as it avoids the random movement in the environment when it
detects the obstacles and completes the navigational task in short time. The path

smoothness in the below Figure 5.22-5.24 shows the capability of robot to avoid obstacles.

L

environment

Figure 5.22 (a) Figure 5.22 (b)

Jia

Robots initial
position in 2D
environment

Robots initial
position in 2D
environment.

Figure 5.22 (e) Figure 5.22 (f)

Figure 5.22: Real-time navigation using PFL controller
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Figure 5. 23 (e) Figure 5. 23 (f)

Figure 5. 23: Real-time navigation using PFL controller
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ilobot 1

Figure 5. 24(a)

(
Robot 1

Figure 5. 24(c) Figure 5. 24(d)

Figure 5.24: Real-time navigation of multiple robots using PFL controller
5.9 Comparative Study of Experimental and Simulation

Analysis of MRN over Similar Environment

The comparison between the experimental and simulational analysis is carried over the
similar environmental setup to show the workability of the proposed controller. To verify
the performance of the robot during the simulation and the real-time experiment, the
various trials are performed on the mobile robots. The 20 trials are taken to calculate the
path length and required time of navigation for single mobile robot. In Scneraio-1, the
Figures 5.18 and 5.22 are compared and in Scenario-2, Figures 5.19 and 5.23 are
compared to understand the performance of single mobile robot system. The multiple
mobile robot system is compared in Figure 5.20 and 5.24 for navigational path length and
required time. The observed path length and required time of MRN for 20 trials are
tabulated in Tables 5.11-5.14 for single mobile robot system whereas the 10 trials are
tabulated in Tables 5.15-5.16 for multiple mobile robot system. From the tabulation, it is

observed that the simulational result is better when compared to experimental results. The
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observed path length is minimum in case of simulational analysis as compared to
experimental analysis for same environmental setup. The obtained percentage of deviation
for path length is upto 5.8%. The time required to accomplish the task of navigation in the
experimental analysis is more than the simulational analysis. The observed percentage of

deviation is less than 6.4%,

Table 5.13: Path length in same simulational and experimental setup (Figure 5.18 and
5.22).

No. of runs Experimental path length Simulational path length % of
during MRN (in‘cm”) during MRN (in ‘cm”) deviation

1 152.52 144.67 5.14

2 150.12 143.52 4.39

3 150.55 144 4.35

4 154.39 146.37 5.19

5 151.85 142.42 6.21

6 152.64 141.9 7.03

7 150.17 145.64 3.01

8 153.75 143 6.99

9 152.29 146.3 3.93

10 153.9 146.51 4.80

11 154 144.84 5.94

12 153.45 144.25 5.99

13 151.68 142.87 5.80

14 149.59 141.67 5.29

15 154.38 145.2 5.94

16 154.46 145.5 5.80

17 151.98 146.74 3.44

18 153.57 143.17 6.77

19 152.92 141.83 7.25

20 152.82 144.6 5.37
Average path 152.55 144.25 5.43

length covered
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Table 5.14: Path length in same simulational and experimental setup (Figure 5.19 and
5.23).

No. of runs Experimental path length Simulational path length % of
during MRN (in‘cm’) during MRN (in ‘cm’) | deviation

1 158 150.3 4.87

2 154.34 149.21 3.32

3 156.14 148.61 4.82

4 154.87 149 3.79

5 160.94 148.12 7.96

6 161.48 147.6 8.59

7 158.5 148.94 6.03

8 159.68 150.68 5.63

9 161.39 149.28 7.50

10 155.42 147.9 4.83

11 157.28 147.4 6.28

12 162.2 150.9 6.96

13 158.9 151.24 4.82

14 160.65 152.79 4.89

15 161.15 153.5 4.74

16 162.5 151.6 6.70

17 159.75 151.7 5.03

18 158.59 150.13 533

19 155.46 147.6 5.05

20 160.14 148 7.58

Average path

length covered 158.86 149.72 5.74
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Table 5.15: Navigation time in same simulational and experimental setup (Figure 5.18 and
5.22).

No. of runs Experimental time during Simulational time during % of
MRN (in ‘sec’) MRN (in ‘sec’) deviation

1 19.83 18.93 4.53

2 19.42 18.3 5.76

3 19 18.2 4.21

4 18.5 17.4 5.94

5 19.6 18.69 4.64

6 17.95 16.84 6.18

7 17.8 16.5 7.30

8 18.61 17.65 5.15

9 18.32 17.31 5.51

10 17.98 16.62 7.56

11 19.2 17.9 6.77

12 19.8 18.46 6.76

13 18.74 17.74 533

14 17.97 17 5.39

15 17.54 16.61 5.30

16 18 16.7 7.22

17 18.35 17.22 6.15

18 18.85 17.41 7.63

19 17.58 16.2 7.84

20 17.97 16.77 6.67
Average time 18.55 17.42 6.09

required
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Table 5.16: Navigation time in same simulational and experimental setup (Figure 5.19 and
5.23).

No. of runs | Experimental time during | Simulation time during MRN % of
MRN (in ‘sec’) (in ‘sec’) deviation

1 20.3 19 6.40

2 19.12 18.03 5.70

3 19.27 18.13 5.91

4 19.68 18.24 7.31

5 20.52 19.1 6.92

6 20.41 19.38 5.04

7 20.3 19.2 541

8 20.78 19.36 6.83

9 19.95 18.57 6.91

10 19.8 18.23 7.92

11 20.8 19.41 6.68

12 20.45 18.98 7.18

13 19.7 18.17 7.76

14 19.76 18.55 6.12

15 19.75 18.91 4.25

16 19.84 18.88 4.83

17 20.14 19.13 5.01

18 20.77 19.67 5.29

19 19.98 18.42 7.80

20 21.25 19.7 7.29

Average
time 20.11 18.85 6.33
required
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Table 5.17: Path length in same simulational and experimental setup (Figure 5.20 and
5.24).

No. of Robot No. Experimental path Simulational % of Deviation
runs length during MRN path length
(in‘cm’) during MRN (in
Lcm’)
1 Robot 1 171.1 162 5.31
Robot 2 129.6 122.8 5.24
2 Robot 1 172.22 165.26 4.04
Robot 2 129.17 121.31 6.08
3 Robot 1 172.2 166.32 341
Robot 2 128.82 121.74 5.49
4 Robot 1 173.36 163.97 541
Robot 2 131 122.94 6.15
5 Robot 1 172.95 165.71 4.18
Robot 2 130.74 123.84 5.27
6 Robot 1 174.21 167.95 3.59
Robot 2 128.88 122.65 4.83
7 Robot 1 175.65 163.6 6.86
Robot 2 132 125.75 4.73
8 Robot 1 175 166.11 5.08
Robot 2 131.76 124.88 5.22
9 Robot 1 173.87 163.71 5.84
Robot 2 128.66 124.22 3.45
10 Robot 1 174 163.64 5.95
Robot 2 129 124 3.87
Average Robot 1 173.45 164.82 4.97
path
length Robot 2 129.96 123.41 5.03
covered

104



Chapter 5 Probability-Fuzzy Based Mobile Robot Navigation

Table 5.18: Navigational time in same simulational and experimental setup (Figure 5.20
and 5.24).

No. of Robot No. Experimental time | Simulational time % of
runs during MRN during MRN (in Deviation
(in‘sec’) ‘sec’)
1 Robot 1 27.15 25.99 4.27
Robot 2 22 21.02 4.43
2 Robot 1 28.08 26.77 4.67
Robot 2 21.2784 19.98 6.06
3 Robot 1 28.02 26.54 5.30
Robot 2 20.89 19.62 6.06
4 Robot 1 27.75 25.82 6.98
Robot 2 20.82 20.13 3.32
5 Robot 1 28.31 26.775 543
Robot 2 21.11 19.77 6.37
6 Robot 1 28.04 26.94 3.95
Robot 2 21.07 19.96 5.27
7 Robot 1 28.21 26.87 4.75
Robot 2 21.23 20 5.83
8 Robot 1 27.87 26.05 6.56
Robot 2 20.76 19.55 5.82
9 Robot 1 27.94 26.55 4.99
Robot 2 20.77 19.81 4.60
10 Robot 1 27.58 26.41 4.24
Robot 2 20.73 20 3.56
Average Robot 1 27.89 26.47 5.11
time Robot 2 21.07 19.98 5.13
required
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5.10 Performance Analysis of PFL Controller with other

Navigational Controller

It is essential to check the potential of the proposed navigational controller with the other
AT controllers. To justify, the effectiveness of probability-fuzzy logic controller, it is
compared with the ant colony optimization (ACO) algorithm and particle swarm
optimization (PSO) algorithm. The same environmental set up is considered for the
simulation analysis. The comparative results are provided regarding the path length. The
Table 5.17 shows the path length comparison between the other controller and proposed
controller. The observed result of the proposed controller, when compared to ACO
algorithm and PSO algorithm, are good enough and saves the path length by 15.17% and
25% respectively. So, we can say that the proposed controller is efficient for dealing the

MRN problem.

Figure 5.25: Navigation using ACO controller (Garcia et al. [198])
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Figure 5.26: Navigation using PFL controller
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Figure 5.27: Navigation using PSO controller (Algabri et al. [199])
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Figure 5.28: Navigation using PFL controller

Table 5.19: Comparision of Al controller with proposed controller regarding path length.

S1. No. Simulational path Simulational path % Path length saved
length (in ‘cm’) using | length (in ‘cm’) using | using proposed PFL
PFL controller other Al controller algorithm
Scenario-1 9.5 (Figure 5.26) 11.2 (Figure 5.25) 15.17
Scenario-2 12 (Figure 5.28) 16 (Figure 5.27) 25

5.11 Summary

This chapter presents the application of fuzzy logic via probability distribution for mobile
robot navigation. The proposed probability-fuzzy logic decision controller studies the
geometric constraints present in the environment. It classifies the decision to avoid
obstacles and to generate the efficient path. The valuable findings of the present study

from the observed results are:

e The application of Probability with fuzzy logic selects the best decision rule from
the possibilities during navigation of robot.
e The proposed controller is robust for navigation in a complex-crowded

environment in the presence of a static and dynamic obstacle.
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e The Proposed controller can be easily implemented with single and multiple robots
at the same time.

e The result shows that the controller is very effective while working in the
simulational and experimental environment. The percentage of error is not more
than 6.4% between the simulational and experimental results of mobile robot
regarding path length and navigational time.

e The Figure 5.21 shows that the proposed controller can handle the problem of
mobile robot navigation in a dynamic environment. The navigation in the presence
of two moving obstacle is the key finding of the work by using PFL controller.

e The problem of multiple mobile robot navigations using PFL controller is solved

efficiently by avoiding collision between the multiple robots and obstacles.

e The obtained results show that the performance of the proposed controller with
respect to ACO and PSO is far better regarding the path length. By using the PFL
controller the 15.17% path length is saved as compare to ACO controller and 25%

path is saved when compared to PSO controller over same environment.
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Chapter 6

Analysis of Firefly Algorithm for Mobile
Robot Navigation

Recently, Autonomous navigation is one of the most emerging areas of research by using
nature inspired metaheuristic algorithm. This chapter presents the application of nature
inspired metaheuristic algorithm particularly Firefly Algorithm (FA) for mobile robot
navigation in the uncertain environment. The newly introduced FA based approach is used
to develop a new navigational strategy for mobile robots in the presence of static and

dynamic obstacles.
6.1 Introduction

At present, nature inspired metaheuristic algorithm has a key role in design and
development of the mobile robot navigation approach. Nature inspired metaheuristic
algorithm is used for mobile robot navigation due to their ability to search space on the
global platform to give up the diverse solution and to look for the feasible solution in the
local region. Genetic Algorithm, Ant Colony Algorithm, Particle Swarm Optimization,
Artificial Bee Colony algorithm, Cuckoo Search Algorithm, Bat Algorithm, imvasive
weed optimization, Shuffled Frog Leaping Algorithm etc. have been applied to mobile
robot navigation. In the present research work, the FA is implemented for mobile robot
navigation in a known and unknown environment in the presence of static and dynamic
obstacles. The algorithm is implemented to fulfill the desired goal of navigation such as

obstacle avoidance and optimal path planning.
6.2 Overview of Firefly Algorithm

FA is very well known metaheuristic algorithm inspired by the flashing behavior of
fireflies developed by Yang in [2008]. It is stochastic in nature as it follows the
randomness and works on the principle of trial and error for finding the optimal solution in

a realistic amount of time. Firefly is winged beetle of family Lampyridae and commonly
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called as lightning bugs due to their ability to produce light. Over 2000 species of firefly
occurs in nature. It produces light by a process of oxidation of Luciferin in the presence of
the enzymes Luciferase, which occurs very quickly. This process of producing light is
known as bioluminescence and firefly’s uses this light to glow without wasting of heat
energy. Fireflies use this light for the purpose of selection of a mate, to communicate a
certain message and sometimes it also uses for the scaring off animals who try to eat
firefly. Most of the fireflies produce short and rhythmic flashes and the pattern shown in
these flashes is unique for most of the times for a particular species. The intensity of light
of fireflies and the absorption rate of light by air makes fireflies visible at a limited
distance. It can be visible up to few hundred meters at night which are sufficient for all
fireflies to communicate with each other. The female of the class responds to an
individual pattern of flashing light of the male of the same class. The attraction of both
male and female firefly totally depends on the following characteristics in the process of

selection of a mate.

» The rhythm of the flashlight.

» The rate of flashing of light.

» The amount of time for which the flash of light is observed.

The flashing light of fireflies is used as the objective function which is to be optimized
and used to formulate new optimization algorithm. The attraction of one firefly towards
the other is possible when the other is having the higher light intensity and this is the basic
concept of working on firefly algorithm. It follows the three basic rules while wondering
from each other as;

1. All fireflies are unisex and therefore one firefly will be attracted to other fireflies
regardless of their sex.

2. Attractiveness is proportional to their brightness, thus for any two flashing
fireflies, the less bright one will move towards the brighter one. Also, as the
attractiveness is proportional to the brightness, they both decrease as their distance
increases. If there is no brighter firefly than a particular firefly, then both will

move randomly.

3. The brightness of a firefly is determined according to the nature of the objective

function.
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6.3 Structure of Firefly Algorithm

Light intensity [, at x, is determined by f(xl.)

Define light absorption coefficient y

While (¢ < Max Generation)
For i=1: n all n fireflies
For j=1: n all n fireflies (inner loop)
If (I; < 1)), Move firefly I towards j;
End if
Vary attractiveness with distance r via exp [-yr]
Evaluate new solution and update light intensity
End forj
End for i
Rank the fireflies and find the current global best g,
End while

Postprocessor results and visualization

6.4 Basic Parameters of Firefly Algorithm

Attractiveness and light intensity is a key factor while designing firefly algorithm. We can
say that the attractiveness of the firefly is determined by its brightness which is the
objective function of the algorithm. Let / is the brightness of a firefly and x is its location
then we can say that /(x)a f(x). But, the attractiveness S is depends on the distance 7,
between the two firefly i and j. The intensity of the light varies as per the distance
variation from source to target () and the medium of absorption of light. So, light
intensity /() is given with respect to intensity of source /(7) by using inverse square law

1S

[(r)z > (6.1)
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and for fixed light absorption coefficient y, the light intensity / varies with the distance r
is

I=1e" (6.2)
Where I, is the original light intensity. In order to avoid singularity at » = 0 in the
expression I, /7, the combined effect of both the inverse square law and absorption can
be approximated as the following Gaussians form

I(r)=1e"" (6.3)
Attractiveness of firefly is proportional to the light intensity which is defined by S as

B=pe" (6.4)

than an

Where f, is the attractiveness at » = (. As it is often faster to calculate >

I+r
exponential function, the above function, if necessary, can conveniently be approximated

as

A (6.5)

- 1+ yr?
The equation (6.4) and (6.5) define characteristics distances I'=1/ \/; over which the
attractiveness changes significantly from g, to f,e”' for equation or S3,/2 for equation

6.5. In the practical examination, the attractiveness function £, can be any monotonically

decreasing function such as the following form

B(r)=pe”" , m=1 (6.6)
For the characteristics length becomes

F=y" 51, m— o (6.7)
Conversely, for a given length scale I" in an optimization problem, the parameter ¥ can be

used as a typical initial value. That is

1

= (6.8)

/4

The distance between the two fireflies 7 and j at x; and x; respectively are the Cartesian

distance

B,=X—X; = \/Z(xl.’k =X )2 (6.9)

d
k=1
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Where x,, is the k th component of the spatial coordinate x;, of the i th firefly. In 2-D

case, we have

r!.l.z\/(yl.—y‘].)z—k(xl.—xj)2 6.10)
The movement of a firefly i is attracted to another more attractive brighter firefly j is
determined by

X, =x,.+ﬂoe_”2"’j (xj—xl.)+a6[, (6.11)

Where the second term is due to the attraction. The third term is randomization with a
being the randomization parameter, and €;, is a vector of random number drawn from a

Gaussians distribution or uniform distribution.

6.5 Objective Function Formulation using FA

In mobile robot navigation problem, flashing behavior of firefly is used to find out the
optimal path planning when static and dynamic obstacles surround the robot. The effort
has been made here to develop effective path optimization approach for a mobile robot
using FA regarding path length and time. Path optimization for navigation is the plan of
best parameters to get required output as per the objective which includes challenges such
as obstacle detection, obstacle avoidance, to face trap like situation, to avoid the random
walk and optimal path generation. While moving in the environment, the information
about the surrounding is provided by the sensors which are attached on the robot; it helps
to localize the position of the robot in the unknown environment. This sensor provides the
information about the shape, size and position of the obstacle and by using this sensory
information, robots move towards a goal without collision to the obstacle. To produce the
optimal and safe path planning for the mobile robots using FA controller is the goal of the
present study. Initially, the navigational path optimization problem is converted into the
minimization problem and later on it is expressed as an objective function based on the
goal and obstacle position as the desired parameter with the implementation of firefly
algorithm. During the process of execution, the localization of the globally brighter firefly
in each iteration are chosen and the robot moves to this location in series. During the
execution, if there is no obstacle found in the path of a mobile robot then the robot directly
finds the goal position without using the artificial intelligent mechanism. The key

objectives of the proposed FA based navigational controller are as follows:
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11

iil.

1v.

To design and develop the effective path planning algorithm to avoid obstacle
present in the path.

To avoid random moving of the robot in its environment as per the time
optimality.

To produce the uniqueness in simulation and experimental result.

To give better performance when compared with the other navigational

controller.

Fig. 6.1 shows the complete architecture of the proposed FA based controller for mobile

robot navigation.

Robot motion towards the goal

v

Is robot reaching YES
the goal?

v NO

NO Is obstacle present in
the path?

YES

A 4

Start firefly algorithm (FA)

v

Initialization: Number of fireflies, 7,, 5,K |, K,

v

Calculate the fitness function value

v

Search the best firefly among the population

v

Best firefly is the existing position of robot

YES Is obstacle NO
avoided?

Figure 6.1: Architecture of proposed FA controller for navigation
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6.5.1 Obstacle Avoidance Behavior

Navigation is a difficult task for any mobile robot when the environment is uncertain. The
uncertainty may be about changing the condition of obstacle or goal. The obstacle present
in the environment may be of varying shape and size. To fulfill the task of efficient
navigation, the mobile robot requires obstacle avoidance mechanism to avoid collision
with the obstacles in the uncertain environment. The firefly algorithm produces the
number of random fireflies near the obstacle and the brighter firefly is selected from the
group by brightness. The brighter firefly is selected in such a way that, it must be at the
extreme safe distance from the nearby obstacle. The robot occupies the position of the
newly selected fireflies and the procedure for searching of the next brighter firefly starts
till the safe and optimum path generates. The best firefly is selected using Euclidean
distance between the best firefly and the closest obstacle which is shown by the equation
(6.12) regarding the objective function as below,

Let, D, stands for the Euclidean distance between the location of firefly with the nearby
obstacle, x, and y  are the x and y coordinates of the firefly position respectively, x, and

y,are x and y coordinate of obstacle position respectively.

Then, Euclidean distance is

D, = \/(xo — X )2 +(yo — Vs )2 (6.12)

For the complex-crowded environment, the selection of the nearby obstacle is must for the
optimum path generation and hence the distance between the neighboring obstacles is
calculated by the equation (6.13).

Let, D, is the distance between the robot to nearby obstacle, x, and y, are the x and y

coordinates of the nearby obstacle respectively, x,and y,are the x and y coordinates of

the robot position respectively.

Then the distance between the robots to nearby obstacle is;

2

Do = \/(xon —Xp )2 +<y0n —)’R) (6.13)
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Goal

Robot final position

Robots path

Robet initial position

Figure 6.2: Navigation of robot in obstacle free environment

Activation of firefly algorithm for obstacle
avoidance (Generation of fireflies)
\

Goal

Robot final position

Robots path ’ Robot sensing range

Obstacle

Robot initial position

Figure 6.3: Navigation in presence of obstacle using FA controller
6.5.2 Goal Searching Behavior

Here, the brighter firefly is selected from the group of random fireflies in such a way that
it has the maximum distance from the obstacle (mentioned in the obstacle avoidance
behavior) and a minimum distance of the same firefly from the goal. It is a continuous
searching process for brighter firefly over the period till it completely finds the goal. The
position of the current brighter firefly must always be at least distance from the goal

position. The equation (6.14) shows the Euclidean distance between the goal and firefly.

Let, D, is the minimum Euclidean distance of firefly with goal position, x,and y, are the

x and y coordinate of the goal position.

Then, the distance between fireflies with goal is
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D= \/(xg - X, )2 (v -y, )2 (6.14)

From the study, the obstacle avoidance behavior and goal searching behavior comprises to
formulation of objective function of fireflies for path planning optimization problem is

represented as follows

1
Ji=Ki mino, €o|D, +K2.HngH (6.15)

As per the objective function formulation, the environment is considered as ‘n’ obstacle
and represented as O;, O,, O3 Oy ... O, and their coordinate position are (X,;, Yos), (Xo2,
V02)s (X035 Yo3)s (Xods Yod)se---.. (Xons Yon)- The number of the obstacle (O;) is detected by the
robot when it comes in threshold range of sensor during navigation in the environment.

When the number of fireflies (f;) lies away from the obstacle, then the value of

mino, € o, HD ﬁ)” becomes huge in the objective function and when the f; lies closer to goal,
then the value of ||D ,g" becomes reduced. Therefore, the study of the objective function by

using firefly algorithm comes under the minimization optimization problem which helps
to find optimal path planning for mobile robot navigation in an uncertain environment.
Here, K is the fitting parameter which decides the path safety; K, decides the maximum
and minimum path length of the navigation. When the value of K, is maximum, then the
robot can safely avoid the obstacle without hitting the boundary, however, the chances of
collision to obstacle increases with a decrease in value of K; The parameters K; and K, are
the constants used in firefly algorithm. Hence, the proper selection of control parameter
over the local minima problem decides the success of objective function for robot path
planning. Trial and error method has been used for controlling the parameter of the

objective function.

6.5.3 Steps involved in the FA for MRN

1. Initialize the robot, goal and obstacle position.
Movement of robot towards the goal till it detects the obstacle.
If the obstacle exists in the path, then activate FA.

Generate the population of fireflies’ randomly.

A

Select the brightest firefly among the population to fit equation (6.15).
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Move robot towards the current brightest firefly position.
Repeat the step 2 to 6 till robot avoids the obtacle.

Goal achieved.

© o N o

Stop.

6.6 Simulation Analysis

To analyse the performance of present FA based controller regarding path length and time
required for navigation, the variety of environments have been tested in Matlab (R2008)
simulation software. The simulation experiment performed on the PC with I3 processor
(3GHz), 4 GB RAM, 500 GB hard disk, Windows 7 (64 bit) OS, NVDIA (1GB) graphics

card.

To develop the efficient FA controller, the proper selection of the parameter is must

according to the problem domain. Randomization parameter (&), Light absorption
coefficient () and the attractiveness (8) are the controlled parameter which decides the

functioning of FA. These parameters are considered for problem analysis between the
ranges 0 to 1. To minimize the computational efforts, the number of fireflies and

maximum generation considered for MRN problem. The series of experiment have been

conducted by varying control parameter (7/,05, ,6) with step of 0.05, where number of

fireflies with step of 5. The final control parameters are finalized after performing

optimization for 50 times and it observed at ¥ =0.5, « =0.5 and =0.2. The obtained

control parameter by FA is considered as initial position of the robot during obstacle

avoidance of navigational problem.

The simulation results have been tested in 2D space of a 100cm by a 100cm square
background in the presence of a variety of static and dynamic obstacle. Figure 6.4-6.6
demonstrate the efficiency of the FA based navigational controller while avoiding the
obstacle in the environment. The path obtained by the robot is optimal regarding path

length and smooth in the sense of making safe distance with the obstacle.

The simulation analysis in presence of dynamic obstacle is also presented to prove the
effectiveness of proposed controller. The Figure 6.7 shows the step by step navigation of
mobile robot in the presence of two moving obstacle. At the time of navigation when the
robot moves towards the goal, the pink color path shows the activation of FA for the

avoidance of dynamic obstacle.
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Figure 6.5: Navigation of mobile robot using FA controller
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Figure 6.6: Navigation of multiple mobile robot using FA controller

Table 6.1: Parameters for FA

SI. No. Parameters Values in range

1 No. of fireflies (N) 5-100

2 No. of generation 50-100

3 Light absorption coefficient (¥) 0.1-1

4 Randomization parameter () 0.1-1

5 Attractiveness () 0.1-1

6 Fitting parameter (K;) 0.1-1

7 Fitting parameter (K5) 0.01-0.0001
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Figure 6.7: Navigation in presence of dynamic obstacles using FA controller

To understand the robot behavior during obstacle avoidance, the effect of variation in

control parameter on performance of mobile robot navigation is checked by trial and error

method. The Figure 6.8 shows the variation in path length due to change in a parameter

such as N and 5. During the test, y =0.5and a =0.5 is considered.
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Figure 6.8: Navigation paths over different control parameter using FA controller

From the Table 6.2, after the many trials, it is clear that when the N is 50 and f is 0.2 then
the path length is optimal and mobile robot avoids obstacle safely. The variation in N in
range 40-60 and variation on f from 0.2 to 0.3 gives the nearby optimal solution and
avoids the obstacle.

Table 6.2: Variation in path length due to change in control parameters

SI. No. N g Navigational path | Obstacle avoidance
length in ‘cm’ (Yes/No)
1. 5 0.1 129.2 No
2. 15 0.15 105.6 No
3. 25 0.15 108.2 No
4. 50 0.2 112.7(Optimal) Yes
5. 70 0.2 113.4 Yes
6. 90 0.25 114.1 Yes
7. 100 0.30 116.2 Yes
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6.7 Experimental Analysis

Robot initial position

Figure 6.9 (a) Figure 6.9 (b)

Figure 6.9 (¢) Figure 6.9 (d)

~ Robot path by using FA based
controller

Figure 6.9 (e) Figure 6.9 (f)

Figure 6.9: Real-time navigation using FA controller
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e

Figure 6.10 (a)

Figure 6.10 (¢) Figure 6.10 (f)

Figure 6.10: Real-time navigation using FA controller
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Figure 6.11 (a) Figure 6.11 (b)

Figure 6.11 (c) Figure 6.11 (d)

Figure 6.11: Real-time navigation using FA controller for multiple mobile robot

The feasibility of the FA based decision controller is demonstrated in a real-time
environment in the presence of a variety of obstacles. For the navigational purpose, the
Khepera-II robot is used. Khepera-II robot has eight infrared sensors which are capable of
emitting and receiving the signals. These sensors are kept in a circular fashion around its
body and sensors are allowed to measure distance in a short range of 1 cm to 5 cm. The
technical specification of Khepera-II robot is given in Appendix. The C++ programming
language is used for coding the program of MRN during the experiment. During the
experiment (shown in Figure 6.2), it is clear that the robot directly reaches to goal when
there are no obstacles present in the path of the robot and there is no need of FA based
decision mechanism. The FA based decision mechanism activated when obstacles come in

the path of the robot as shown in Figure 6.3.
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6.8 Comparative Study of Experimental and Simulation

Analysis of MRN over Similar Environment

To study the change in the functioning of the proposed FA based controller regarding path
length and navigational time, the uniform environmental setup is considered for
experimental and simulational analysis. The 20 trial runs are taken for comparative
analysis for Scenario-1 ( Figures 6.4 and 6.9) and Scenario-2 ( Figures 6.5 and 6.10)
whereas the 10 trials are taken for the multiple mobile robot system for Scenario-3 (Figure
6.6 and 6.11). The Table 6.3 and 6.4 gives path length comparision for Scenario 1 and
Scenario 2 respectively whereas the Table 6.5 and 6.6 gives required navigational time for
seenario 1 and Scenario 2 respectively for 20 trials. The Table 6.7 and 6.8 gives the
comparision of path length and navigation time for Scenario 3 for 10 trials. It has been
analyzed from the tabulation in Table 6.3-6.8 that the efficiency of the robot in the
simulation is more than real time experiments. The calculated path length is less in the
simulational analysis when compared to experimental analysis and percentage of deviation
is within 5.4%. The required time of navigation while achieving the goal is more in the
case of experimental analysis when compared to simulational analysis. The observed

percentage of deviation is up to 6%.
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Table 6.3: Path length in same simulational and experimental setup (Figure 6.4 and 6.9).

No. of runs Experimental path length | Simulational path length % of
during MRN (in‘cm’) during MRN (in ‘cm’) deviation

1 191.00 180.20 5.61

2 191.32 181.00 5.39

3 191.22 181.30 5.18

4 191.89 181.15 5.59

5 191.94 181.11 5.64

6 191.88 181.80 5.25

7 191.41 181.65 5.09

8 191.33 180.45 5.68

9 191.68 180.60 5.78

10 191.79 180.25 6.10

11 192.11 182.00 5.26

12 192.00 181.85 5.28

13 191.23 180.50 5.61

14 191.42 180.10 591

15 191.15 181.90 4.83

16 191.57 182.10 4.94

17 191.76 180.47 5.36

18 191.50 180.79 5.59

19 190.87 181.40 4.96

20 190.95 181.37 5.01
Average path 191.50 181.14 5.40

length covered
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Table 6.4: Path length in same simulational and experimental setup (Figure 6.6 and 6.10).

No. of runs | Experimental path length during | Simulational path length % of
MRN (in‘cm’) during MRN (in ‘cm’) deviation

1 268.70 253.90 5.50

2 267.55 254.45 4.89

3 269.30 254.38 5.54

4 269.76 255.54 5.27

5 270.29 254.26 593

6 269.02 255.11 5.17

7 268.92 254.90 5.21

8 267.92 252.83 5.63

9 270.25 255.99 5.27

10 268.34 254.92 5.00

11 267.32 252.59 5.51

12 270.57 256.13 5.33

13 271.29 257.15 5.21

14 268.33 256.36 4.46

15 269.19 256.12 4.85

16 268.36 255.20 4.90

17 266.15 252.95 4.95

18 269.77 253.86 5.89

19 268.26 254.77 5.02

20 268.54 255.08 5.01

Average
path length 268.84 254.28 5.22
covered
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Table 6.5: Navigational time in same simulational and experimental setup (Figure 6.5 and
6.9).

No. of Experimental time during Simulational time during % of
runs MRN (in ‘sec’) MRN(in ‘sec’) deviation

1 30.40 28.90 4.93

2 30.57 28.41 7.06

3 29.49 27.51 6.71

4 31.30 29.97 4.24

5 29.00 27.38 5.58

6 29.77 28.21 5.24

7 29.87 28.36 5.05

8 29.29 27.52 6.04

9 30.19 28.41 5.89
10 30.14 28.56 5.24
11 30.10 28.60 4.98
12 30.06 28.23 6.08
13 29.56 27.93 5.51
14 29.41 27.86 5.27
15 30.38 28.80 5.20
16 31.60 30.00 5.06
17 31.97 29.83 6.69
18 30.89 30.21 5.50
19 31.68 30.05 5.14
20 29.35 27.88 5.00

Average
time 30.25 28.63 5.52
required
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Table 6.6: Navigational time in same simulational and experimental setup (Figure 6.6 and
6.10).

No. of Experimental time during Simulational time during % of
runs MRN (in ‘sec’) MRN deviation
(in ‘sec’)
1 34.1 32.5 5.24
2 34.21 32.57 5.34
3 33.31 31.49 6.02
4 35.37 333 6.38
5 33.18 31.57 542
6 34.61 32.96 5.31
7 34.16 31.87 7.24
8 33.32 31.29 6.66
9 34.21 32.19 6.45
10 34.36 32.14 7
11 344 32.1 7.22
12 34.03 32.06 6.33
13 33.73 31.56 6.98
14 33.66 31.46 7.08
15 34.66 32.38 7.4
16 36 33.6 6.66
17 35.83 33.97 5.19
18 36.21 33.89 6.4
19 35.75 33.68 5.79
20 33.88 32.25 4.81
Average
time 34.59 32.44 5.82
required
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Table 6.7: Path length in same simulational and experimental setup (Figure 6.7 and 6.11).

No. of Robot No. Experimental path Simulational path % of
runs length during MRN length during MRN deviation
(in‘cm’) (in ‘cm’)

Robot - 1 162 154.31 474

1 Robot - 2 23222 219.8 534
Robot - 3 178.2 169.74 474

Robot - 1 165.21 155.97 5.59

2 Robot - 2 230.12 221.32 3.82
Robot - 3 178 169 5.05

Robot - 1 161.74 153.87 4.86

3 Robot - 2 230 219 4.78
Robot - 3 179.54 168.45 6.17

Robot - 1 163.84 154.74 5.55

4 Robot - 2 234.71 22222 5.34
Robot - 3 177.33 170.74 3.71

Robot - 1 164.33 156.11 5.00

5 Robot - 2 232.7 221.75 47
Robot - 3 179.2 168.21 6.13

6 Robot - 1 162.48 155 4.6
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Robot - 2 235.1 222.97 5.15

Robot - 3 180.11 170.41 538

Robot - 1 162.4 152.45 6.12

7 Robot - 2 234.95 22335 493
Robot - 3 182.41 171.84 5.79

Robot - 1 163.87 155.82 491

8 Robot - 2 235.9 221.05 6.29
Robot - 3 181.9 172.9 4.94

Robot - 1 166 155.88 6.09

9 Robot - 2 234.66 220.79 5.91
Robot - 3 183.54 173.52 545

Robot - 1 161.68 155.3 3.94

10 Robot - 2 231.84 2212 4.58
Robot - 3 179.63 171.58 4.48

Robot - 1 163.35 154.94 5.14

Average
151?;?11 Robot - 2 233.22 221.34 5.08
covered

Robot - 3 179.98 170.63 5.18
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Table 6.8: Navigational time in same simulational and experimental setup (Figure 6.7 and
6.11).

No. of Robot No. Experimental time Simulational time % of
runs during MRN (in ‘sec’) during MRN deviation
(in ‘sec’)

Robot - 1 28.06 26 7.34

1 Robot - 2 38.34 36.3 5.32
Robot - 3 29.6 28 5.40

Robot - 1 26.84 25.1 6.48

2 Robot - 2 38.72 36.21 6.48
Robot - 3 29.89 28.37 5.08

Robot - 1 25.41 24.6 3.18

3 Robot - 2 39.1 37.05 5.24
Robot - 3 28.97 28 3.34

Robot - 1 27.1 25.89 4.46

4 Robot - 2 39.62 37.19 6.13
Robot - 3 30.74 29.22 4.94

Robot - 1 26.12 25.24 3.36

5 Robot - 2 37.1 35.73 3.69
Robot - 3 31.74 29.67 6.52

6 Robot - 1 28.21 26.1 7.47
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Robot - 2 40.1 38.12 4.93
Robot - 3 30.94 28.56 7.69

Robot - 1 27.47 25.4 7.53
7 Robot - 2 40.75 38.45 5.64
Robot - 3 29.99 28.83 3.86

Robot - 1 26.41 2527 431

8 Robot - 2 39.41 37.4 51
Robot - 3 30.81 28.44 7.69

Robot - 1 26.87 24.9 733

9 Robot - 2 38.74 36.27 6.37
Robot - 3 3137 2936 6.40

Robot - 1 25.62 24.62 39
10 Robot - 2 40.24 38.41 4.54
Robot - 3 3] 29.1 6.12

A Robot - 1 26.81 25.31 5.54

verage
path
Robot - 2 39.21 37.11 5.34
length

covered Robot - 3 30.50 28.75 5.70
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6.9 Performance Analysis of FA Controller with Other

Navigational Controllers

In this section, the proposed FA based controller is compared with the other navigational
controllers to check the optimality regarding path length. The graphical comparison is
presented over similar simulation set up. The performance of proposed FA based
controller is compared with the 2 stage neuro-fuzzy controller (Figure 6.12), and genetic
algorithm (Figure 6.14) is shown in Table 6.9. It is clear that by using the FA controller
we can save path length up to 6.06% when compared with the neuro-fuzzy approach
provided by Joshi and Zaveri [200]. Similarly, the 6.54% path length can be saved by FA

controller when compared to genetic algorithm by Wang et al. [201].

e e o e
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1

Figure 6.12: Navigation using neuro-fuzzy (Joshi & Zaveri [200])
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Figure 6.13: Navigation using FA controller

Figure 6.14: Navigation using genetic algorithm (Wang et al. [201])

137



Chapter 6 Analysis of Firefly Algorithm for Mobile Robot Navigation
100 T \ I T I I T T
MOBILE RQBOT NA%VIGATI;ON USING FA (;L‘ONTR(?LLER
o Robot s g : : : : :
initial |
position; ;
80 1 :
» : :
= \ : s
70 % ; i ; :
\‘___,_ERobots i)ath
50 ‘ ” i \ i
bbstaclés E I
40 | \ \
30 Y
20
10
0 | | | | |
0 10 20 30 40 50 60 70

Table 6.9: Path length analysis of FA controller with other Al controller.

Figure 6.15: Navigation using FA controller

SI. No. Simulational path (in Simulational path (in ‘cm’) | % of path saved
‘cm’) by other Al by FA controller by FA controller
controller
Scenario-1 13.2 (Figure 6.12) 12.4 (Figure 6.13) 6.06
Scenario-2 10.7 (Figure 6.14) 10 (Figure 6.15) 6.54

6.10 Summary

This chapter gives the rigorous study of the FA based controller for navigation of mobile

robot in the presence of static and dynamic obstacles. The followings are the key finding

of the proposed work from the observed results as:

e The proposed FA based controller finds the brighter firefly among the group of

fireflies in minimum time at low computational cost and considers it as a new

position of the robot in the environment. This characteristic of present work

generates effective fitness function for path planning of mobile robot navigation

problem.
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e The proposed controller successfully avoids the obstacles (static and dynamic) and
also achieves the goal efficiently.

e The observed percentage of error for same experimental and simulational setup is
less than 5.5% when compared in terms of path length and 6% when compared in
terms of time taken for navigation.

e On comparison with other AI based controller (Neuro-Fuzzy and Genetic
algorithm), it is observed that FA based controller saves the path length upto
6.54%.

At last, it is concluded that the proposed FA controller can be successfully applied to path

planning problem in the uncertain environment.
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Hybrid Techniques for Mobile Robot

Navigation

Now a day, much focus is given on the development of the hybrid algorithm for mobile
robot navigation by many researchers. The aim of the current research is to design and
develop the hybrid navigational controller by using firefly algorithm, probability-fuzzy

logic and matrix based genetic algorithm for different environmental conditions.
7.1 Introduction

The approaches such as probability-fuzzy logic, matrix based genetic algorithm and firefly
algorithm are used individually for mobile robot navigation problem. The various
simulational and real-time experiments are carried out on different environmental
conditions for the path optimisation. The obtained results show the effectiveness of the
proposed technique regarding robot path planning. But, the proposed controller may not
be optimal path planner for all configurations hence many researchers are working on the
hybrid path planning approaches. In hybrid path planning approaches, more than one
approaches are combined for hybridization to take the benefit of both. The key advantage
of the hybrid approach is that it combines the multiple features of the different approaches
into a single controller. The hybrid technique can be effectively used for optimal path
planning of single and multiple wheeled mobile robots in an uncertain environment in the
presence of static and dynamic obstacles. The chapter presents the hybrid of three different
algorithms such as firefly algorithm, matrix based genetic algorithm and probability-fuzzy
logic to validate the best combination for mobile robot navigation. The hybrid approaches
such as Firefly Algorithm-Probability Fuzzy Logic (FA-PFL), Firefly Algorithm-Matrix
based Genetic Algorithm (FA-MGA) and Firefly Algorithm- Probability-Fuzzy Logic-
Matrix based Genetic Algorithm (FA-PFL-MGA) are used for navigation. In the current
investigation, the output of the one particular algorithm is used as one of the inputs for

another technique to hybridize the different techniques. The discussion of the mentioned
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MGA, PFL and FA approaches is already presented in previous Chapter- 4, Chapter-5 and
Chapter-6 respectively.

The section below presents the novel approach of using best things of the different
algorithms to get better and effective results regarding acceptability and efficiency.
Sometimes, the single intelligent approach may fail to give the required optimal solution.
Hence, to overcome these difficulties hybridized algorithm has been developed. The
objective of the hybrid controller is to improve the performance of the system in the
presence of uncertainty, to handle the system with large data and to improve the

convergence rate.
7.2 Application of FA for Hybridization

This section presents the application of the FA as a common initial controller for the
development of the all the three hybrid controllers. While working on the fuzzy logic
based controller and genetic algorithm based controllers, it has been observed that the
training and updating of the premise and its parameter are difficult. The difficulty is not
only about the training of the parameters but also the calculation of gradient in each step.
These controllers use the gradient based algorithm for training the parameters which may
reduce the performance of the system. The gradient descent method has some limitation
such as difficulty to find the best fit parameter and poor convergence rate of the parameter.
The limitation of the gradient descent method has been minimized by using the FA. The
FA is used as the initial part of the all the three controllers to provide the best fit
parameters to the next controller. The FA along with the least square estimation (LSE) is
used to train the initial parameters of the premises and then to find the resulting optimal
parameter. The FA provides the well-tuned parameter to the next controller to achieve the
desired task by minimizing the errors. FA is nature based metaheuristic algorithm which is
developed from the biological behavior of the fireflies hence it does not requires any
training and achieves the faster conversion rate of parameters for another controller. This
ability of FA has preferred it for the solving high-level optimization problem.

In the three proposed hybrid controllers, the firefly algorithm (FA) initially trains the
premise part and LSE approach is used to train the resulting parameter of the other
controller. All three hybrid controllers are modeled by considering the robot to obstacle
distance, robot to goal distance, mutual distance between the robot and their motion. All

navigation parameters are filtered in the controller to give required steering angle for the
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robot. The Petri-Net approaches avoid the collision among the robot. The real-time
experimental analysis is done on a mobile robot which is explained in next section of the
chapter. The simultaneous comparison is made between the simulation and real-time
environmental result to validate the accountability of the proposed controller in various
environmental Scenarios. To check the feasibility of the proposed hybrid controllers, the

results are compared with the different intelligent approaches.

7.3 Analysis of FA-PFL Hybrid Controller for Navigation

The section presents FA-PFL hybrid navigational controller by combining the firefly
algorithm (FA) and probability-fuzzy logic (PFL). The PFL and FA controller are
explained previously in Chapter 4 and Chapter 6 respectively. The proposed hybrid
optimal path planner is developed based on a reference motion, direction, distances
between the robot to obstacles and distance between the robot to goal. In order to avoid a
collision against each other, a set of collision prevention rules are embedded into each

robot controller, using Petri-Net model.

Figure 7.2 presents the architecture of the FA-PFL hybrid controller to calculate the
desired heading angle for optimal path planning in the robot environment. In the first part
of the FA-PFL controller, the inputs to the FA controller are FOD, LOD and ROD
whereas the output is intermediate heading angle (IHA). The output of the first FA
controller i.e. IHA is the input for the second PFL controller. Apart from the IHA, the
FOD, ROD and LOD with respect to robot existing position are also the input for the PFL
controller. To find the FOD, ROD and LOD, the robot is equipped with eight IR sensors
around its periphery and it also detects the position of the goal. The hybrid controller
considers the input from the FA controller and the respective distances from the obstacle
for giving the output IHA. The obtained output from the FA controller is used to train the
PFL to get the final heading angle (FHA) for all environmental condition. To analyze the
robot performance in the real time environment, the program is embedded in the robot

microcontroller.
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Figure 7.1: Robot position in environment with respect to obstacle
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Figure 7.2: Hybrid FA-PFL controller for navigation

The simulation and experimental results for single and multiple robots using FA-PFL
hybrid controller are presented in section 7.6.1 and comparison with the other Al

controller is given in section 7.8.

7.4 Analysis of FA-MGA Hybrid Controller for Navigation

This section provides the new hybrid controller FA-MGA based on the firefly algorithm
(FA) and matrix based genetic algorithm (MGA) for path planning of mobile robot. The
proposed FA-MGA controller requires the initial information of the environment i.e. the
obstacle distances as input to the FA controller. The FA controller gives the output as [HA
and it becomes the input for MGA algorithm. Along with the IHA, the distance between
the robot and obstacle such as FOD, LOD, ROD are also considered as the input to the
MGA controller and this input data is to be trained in the MGA controller to get the final
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output FHA for navigation of wheeled mobile robot. The idea about the FA and MGA

controllers is already presented in Chapter 6 and Chapter 5 respectively.

FOD
LOD
Start ROD FHA
position
—>
FOD _ IHA
LOD ™ Controller
ROD —
Goal
position

Figure 7.3: Hybrid FA-MGA controller for navigation

The simulation and experimental results for single and multiple wheeled robots using FA-
MGA hybrid controller are presented in section 7.6.2 and comparison with the other Al

controller is presented in section 7.8.

7.5 Analysis of FA-PFL-MGA Hybrid Controller for

Navigation

This section presents the FA-PFL-MGA hybrid controller based on firefly algorithm,
probability-fuzzy logic and matrix based genetic algorithm. The architecture of the
proposed controller is presented in Figure 7.4. The execution of the algorithm such as
MGA, PFL and FA is already explained in detail in the previous chapter. In the proposed
hybrid controller, the initial input is given to the FA controller in the form of distances
(FOD, LOD and ROD) then it gives the output in the form of first heading angle (FHA).
The FHA, FOD, ROD and LOD are the inputs of the PFL controller in the next level
which on training gives the output as second heading angle (SHA). The output from the
PFC controller i.e. SHA along with FOD, ROD and LOD are the inputs for MGA

controller which on training gives the desired heading angle (DHA) for navigation.
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Figure 7.4: Hybrid FA-PFL-MGA controller for navigation

The simulation and experimental results for single and multiple wheeled robots using FA-
PFL-MGA hybrid controller are presented in section 7.6.3 and comparison with the other

Al controller is given section 7.8.

7.6 Simulational and Experimental Analysis of Hybrid

Controller

In this section, the three different hybrid controller such as FA-PFL, FA-MGA and FA-
PFL-MGA controllers are analyzed in the same simulational and experimental
environment using Matlab software. The analysis has been performed in the presence of a
static and dynamic obstacles. The navigation of single and multiple mobile robots is

presented for the navigational task.

7.6.1 Simulational and Experimental Analysis of the FA-PFL Hybrid

Controller

In this section, the simulational and experimental analysis of the FA-PFL hybrid controller
has been examined for different environmental condition. To show the capability of the
proposed controller, the various exercises have been conducted on single and multiple
mobile robots in the static and dynamic environments. During analysis of the FA-PFL
algorithm, the best parametric value of the firefly algorithm is considered and this is

already discussed in Chapter 6.
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Figure 7.6: Navigation of multiple mobile robot using FA-PFL hybrid controller

The simulational analysis of the FA-PFL hybrid controller in the presence of moving
obstacle is presented in Figure 7.7. The environment with one moving obstacle is
presented to show the effectiveness in a dynamic environment. The Figure shows the

capability of the robot to avoid the obstacles while reaching the goal.
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Figure 7.7: Navigation in dynamic environment using FA-PFL hybrid controller

The Figure 7.8 and 7.9 presents the real-time navigation of single and multiple WMR

navigations. The real-time environment is created similar to the simulational environment

for performance comparison.

147



Chapter 7 Hybrid Technigues for Mobile Robot Navigation
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Figure 7.8: Real-time navigation using FA-PFL hybrid controller

Figure 7.9 shows the navigation of multiple mobile robot systems in presence and many
obstacle [Dense environment]. The real time experiment is performed on the four
Khepera-II robots which are located initially at various position. The final destination is

same for all the robot.

148



Chapter 7 Hybrid Technigues for Mobile Robot Navigation

Figure 7.9 (a) Figure 7.9 (b)

Figure 7.9 (¢) Figure 7.9 (d)

Figure 7.9: Real-time navigation using FA-PFL hybrid controller

7.6.2 Simulational and Experimental Analysis of the FA-MGA Hybrid

Controller

In this section, the simulational and experimental analysis of the FA-MGA hybrid
controller has been examined for different environmental condition. To show the
capability of the proposed controller, various exercises have been conducted on the system
of single and multiple mobile robots in the static and dynamic environment. During
analysis of the FA-MGA controller, the best parametric value of the firefly algorithm is

considered and it is already discussed in Chapter 6.
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Figure 7.11: Navigation using FA-MGA hybrid controller

The simulational analysis of the FA-MGA hybrid controller in the presence of moving
obstacle is presented in Figure 7.12. The environment with one moving obstacle is
presented here to show the effectiveness in dynamic environment. The following Figures
presents the effectiveness of the robot in dynamic environment while avoiding the

obstacle.
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Figure 7.12: Navigation in dynamic environment using FA-MGA hybrid controller

The Figures 7.13 and 7.14 present the real-time navigation of single and multiple wheeled

mobile robot in various environment condition. The real-time environment is created

similar to simulational environment for performance analysis.
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Figure 7.13: Real-time navigation using FA-MGA hybrid controller

The Figure 7.14 shows the navigation of multiple mobile robot systems in the clultered
environment. The real time experiment is performed with the three Khepera-II robots
which are located initially at various position. The final destination is same for all the

mobile robot during navigation.
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Figure 7.14 (c) Figure 7.14 (d)

Figure 7.14: Real-time navigation using FA-MGA hybrid controller

7.6.3 Simulational and Experimental Analysis of the FA-PFL-MGA
Hybrid Controller

In this section, the simulational and experimental analysis of the FA-PFL-MGA hybrid
controller have been given for different environment condition. To show the strength of
the proposed controller, the various exercises have been conducted on the system of single
and multiple mobile robots in the static and dynamic environments. During analysis of the
FA-PFL-MGA controller, the best parametric value of the firefly algorithm is considered
and this is already discussed in Chapter 6.
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Figure 7.15: Navigation using FA-PFL-MGA hybrid controller
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Figure 7.16: Navigation using FA-PFL-MGA hybrid controller

The simulational analysis of the FA-PFL-MGA hybrid controller in the presence of
moving obstacle is presented in Figure 7.17. The environment with two moving obstacle is
presented to show the effectiveness in a dynamic environment. The following Figures

shows the robot is effectively avoiding the obstacle while reaching the goal.
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Figure 7.17: Navigation in dynamic environment using FA-PFL-MGA hybrid controller

The Figure 7.18 and 7.19 presents the real-time navigation of single and multiple wheeled
mobile robot in various environment. The real-time environment is created similar to

simulational environment for performance analysis.
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Figure 7.18 (a) Figure 7.18 (b)
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Figure 7.18: Real-time navigation using FA-PFL-MGA hybrid controller

The Figure 7.19 shows the navigation of multiple mobile robot systems in the cluttered
environment. The real time experiment is performed on the four Khepera-II robots which
are located initially at various position. The final destination is same for all the robot

during navigation.
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Figure 7.19: Real-time navigation using FA-PFL-MGA hybrid controller

7.7 Experimental and Simulation Performance Analysis of

MRN over Similar Environment

The comparison between the experimental and simulational analysis is carried over the
similar environmental setup for validation of the efficiency of the proposed hybrid
controller. To verify the performance regarding path length and navigational time of the
robot during the simulation and the real-time experiment, 20 trials are taken for single
robot system and ten trials for multiple robot system. The following table gives the
percentage of deviation in path length and navigational time over the same scenario for the

individual hybrid controller.
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Table 7.1: Path length in the same experimental and simulational environment using FA-
PFL hybrid controller (Figure 7.5 and 7.8).

No. of runs Experimental path length Simulational path % of
during MRN (in‘cm”) length during MRN deviation
(in ‘cm’)

1 163.73 155.32 5.13

2 161.38 155.23 3.81

3 160.15 154.57 3.48

4 163.98 154.12 6.01

5 162.5 155.63 4.22

6 163.32 155.25 4.94

7 164.1 155.69 5.12

8 165.06 156.82 4.49

9 161.2 155.28 3.67

10 162.39 155.41 4.29

11 161.65 154.37 4.50

12 161.74 155.87 3.62

13 164.77 156.34 5.11

14 161.97 153.9 4.98

15 160.12 154.24 3.67

16 160.14 153.64 4.05

17 163.85 153.25 6.46

18 163.68 155.1 5.24

19 164.12 156.05 491

20 166.41 156.91 5.70
Average path 162.81 155.41 4.71

length covered
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Table 7.2: Navigational time in the same experimental and simulational environment
using FA-PFL hybrid controller (Figure 7.5 and 7.8).

No. of runs Experimental time during Simulational time during % of
MRN (in ‘sec’) MRN (in ‘sec’) deviation

1 26.11 25.15 3.67

2 26.35 24.99 5.16

3 26.97 25.6 5.07

4 26.84 25.2 6.11

5 27.32 25.78 5.63

6 27.87 26.34 5.48

7 259 24.87 3.97

8 26.5 25.64 3.24

9 26.44 25.08 5.14

10 27.12 26 4.12

11 26.49 25.12 5.17

12 27.1 26.05 3.87

13 27.21 25.4 6.65

14 26 25.1 3.46

15 26.2 25.1 4.19

16 27.74 26.12 5.83

17 25.64 24.49 4.48

18 25.32 2432 3.94

19 25.84 24.86 3.79

20 26.55 24.87 6.32
Average time 26.57 25.30 4.77

required
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Table 7.3: Path length in the same experimental and simulational environment using FA-
PFL hybrid controller (Figure 7.6 and 7.9).

No. of Robot No. Experimental path Simulational path % of
runs length during MRN length during MRN | deviation
(in‘cm’) (in ‘cm”)

1 Robot - 1 148.5 141.5 4.71
Robot - 2 189.32 180.4 4.71

Robot - 3 170 161.11 5.22

Robot - 4 156.66 150.11 4.18

2 Robot - 1 148.15 140.68 5.04
Robot - 2 190.12 179.36 5.65

Robot - 3 171.29 163.33 4.64

Robot - 4 157.29 152 3.36

3 Robot - 1 149.2 142.35 4.59
Robot - 2 188.36 179.19 4.86

Robot - 3 171.56 162.77 5.12

Robot - 4 157.87 150.98 4.36

4 Robot - 1 148.9 143 3.96
Robot - 2 190.77 177.84 6.77

Robot - 3 169.65 162.11 4.44

Robot - 4 158.09 151 4.48

5 Robot - 1 147.25 142.74 3.06
Robot - 2 190.07 180.81 4.87

Robot - 3 170.19 162.87 4.30

Robot - 4 157.51 150.8 4.26

6 Robot - 1 148.9 140.54 5.61

160



Chapter 7 Hybrid Technigues for Mobile Robot Navigation

Robot - 2 187.89 178.2 5.15

Robot - 3 172.96 161.2 6.79

Robot - 4 159.67 151.92 485

7 Robot - 1 148.57 140.7 529

Robot - 2 188 179.57 4.43

Robot - 3 170.47 163.1 432

Robot - 4 156.83 151.66 3.29

8 Robot - 1 147.55 141.81 3.89

Robot - 2 187.42 18032 378

Robot - 3 171.22 162 538

Robot - 4 160.05 151.87 5.11

9 Robot - 1 14824 140.1 538

Robot - 2 188.98 180 475

Robot - 3 170.05 163.6 379

Robot - 4 159.42 1522 452

10 Robot - 1 148.08 14037 5.30

Robot - 2 189 180.4 455

Robot - 3 17124 16337 459

Robot - 4 158 150.63 4.66

Average | Robot- 1 14833 141.37 4.68

path Robot - 2 188.99 179.60 4.96
length

covered | Robot-3 170.86 162.54 4.86

Robot - 4 158.13 151.31 431
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Table 7.4: Navigational time in the same experimental and simulational environment
using FA-PFL hybrid controller (Figure 7.6 and 7.9).

No. of Robot No. Experimental time Simulational time % of
runs during MRN (in ‘sec’) during MRN deviation
(in ‘sec’)

Robot - 1 23.93 22.95 4.09

Robot - 2 30.46 29.18 4.20

1 Robot - 3 28.55 27 5.42
Robot - 4 28.54 27.1 5.40

Robot - 1 23.15 22.42 3.15

Robot - 2 30.85 29.09 5.70

’ Robot - 3 27.23 25.87 4.99
Robot - 4 28.23 26.87 5.49

Robot - 1 22.82 21.8 4.46

Robot - 2 30.56 29.14 4.64

’ Robot - 3 27 26.13 3.22
Robot - 4 28.37 26.5 6.59

Robot - 1 22.73 21.3 6.29

Robot - 2 31.2 29.95 4.00

! Robot - 3 28.37 26.5 6.59
Robot - 4 26.17 25.08 4.16

Robot - 1 22.44 21.1 5.97

Robot - 2 31.91 30.25 5.20

i Robot - 3 26.17 25.08 4.16
Robot - 4 26 25 3.84

6 Robot - 1 24.62 22.92 6.90
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Robot - 2 31.97 30.59 431
Robot - 3 26 25 3.84
Robot - 4 28.34 26.9 5.08
Robot - 1 2381 22.89 3.86
Robot - 2 30 28.9 3.66
k Robot - 3 28.34 26.9 5.08
Robot - 4 27.21 25.44 6.50
Robot - 1 22.54 21.43 4.92
Robot - 2 3 304 5
’ Robot - 3 2721 25.44 6.50
Robot - 4 26.47 25.07 4.53
Robot - 1 2215 21.27 3.97
Robot - 2 32.05 30.45 4.99
’ Robot - 3 26.47 25.07 4.53
Robot - 4 27 26.13 3.22
Robot - 1 23.97 22.77 5.00
Robot - 2 32.13 30 6.62
10
Robot - 3 28 26 4.12
Robot - 4 282 26.83 4.85
Robot - 1 23.21 22.08 4.86
Average | pipot -2 31.40 29.79 4.83
time
required | RODOt-3 31.40 29.79 4.83
Robot - 4 27.35 26 4.92
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Table 7.5: Path length in the same experimental and simulational environment using FA-

MGA hybrid controller (Figure 7.10 and 7.13).

No. of Experimental path length Simulational path length % of
runs during MRN (in‘cm”) during MRN (in ‘cm’) deviation

1 194.4 184.2 5.24

2 194.12 187.3 3.51

3 194.87 185.64 4.73

4 194.75 183.75 5.64

5 193 186.74 3.24

6 193.77 187.26 3.35

7 196.08 185.84 522

8 194.1 183.07 5.68

9 195.7 183.63 6.16
10 193.02 184.38 4.47
11 195.25 186.44 4.51
12 194.67 184.73 5.10
13 197.31 187.54 4.95
14 194.82 187.97 3.51
15 195.85 187.3 4.36
16 193.34 185.91 3.84
17 193.71 185.7 4.13
18 197.45 186.8 5.39
19 194.11 184.1 5.15
20 197 184.4 6.39

Average
time 194.86 185.63 4.73
required
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Table 7.6: Navigational time in the experimental and simulational environment using FA-

MGA hybrid controller (Figure 7.10 and 7.13).

No. of Experimental time during | Simulational time during MRN % of
runs MRN (in ‘sec’) deviation

1 31.33 30.34 3.15

2 31 29.87 3.64

3 31.87 30.78 3.42

4 32.78 30.48 7.01

5 31.92 30.73 3.72

6 32.12 29.88 6.97

7 33.17 32.12 3.16

8 32.84 30.87 5.99

9 32.19 30 6.80
10 31.74 31 2.33
11 32.74 31.14 4.88
12 32.94 31.05 5.73
13 31.05 29.9 3.70
14 32.85 30.65 6.69
15 32.84 31.2 4.99
16 32.84 31.81 3.13
17 31.87 30.41 4.58
18 31.93 30.9 3.22
19 32.55 30.94 4.94
20 32.19 30.7 4.62

Average
time 32.23 30.73 4.63
required
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Table 7.7: Path length in the same experimental and simulational environment using FA-
MGA hybrid controller (Figure 7.11 and 7.14).

No. of Robot No. Experimental path Simulational path % of
runs length during MRN length during MRN | deviation
(in‘cm’) (in ‘cm’)

Robot - 1 135 129 4.44

1 Robot - 2 190.02 179 5.79
Robot - 3 167.4 161 3.82

Robot - 1 136.8 129.37 543

2 Robot - 2 190.32 181.23 4.77
Robot - 3 168.55 159.32 5.47

Robot - 1 134.25 129.71 3.38

3 Robot - 2 192 184.35 3.98
Robot - 3 168.52 160.75 4.61

Robot - 1 135.04 129.07 4.42

4 Robot - 2 189.8 183.14 3.50
Robot - 3 164.95 159.32 3.41

Robot - 1 134.65 130.12 3.36

5 Robot - 2 189.7 180.97 4.60
Robot - 3 167 161.97 3.01

6 Robot - 1 138.85 129.38 6.82

166



Chapter 7 Hybrid Technigues for Mobile Robot Navigation

Robot - 2 192.7 183.74 4.64

Robot - 3 169.05 159.25 5.79

Robot - 1 137.45 129.28 5.94

7 Robot - 2 190.57 183.5 3.70
Robot - 3 168.5 159.67 5.24

Robot - 1 134.25 130.04 3.13

8 Robot - 2 189.25 181.99 3.83
Robot - 3 168.75 160.81 4.70

Robot - 1 137.19 131 451

9 Robot - 2 191.25 179.96 5.90
Robot - 3 165.34 157.1 4.98

Robot - 1 136.05 130.45 411

10 Robot - 2 193.03 180.31 6.58
Robot - 3 166 158.5 451

A Robot - 1 135.95 129.74 4.55

verage
path
Robot - 2 190.86 181.81 4.73
length

covered | pobot-3 167.40 159.76 4.58
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Table 7.8: Navigational time in the same experimental and simulational environment
using FA-MGA hybrid controller (Figure 7.11 and 7.14).

No. of | Robot No. Experimental time Simulational time during % of
runs during MRN (in ‘sec’) MRN (in ‘sec’) deviation

Robot - 1 21.87 21 3.97

1 Robot - 2 30.9 29 6.14
Robot - 3 26.54 25 5.80

Robot - 1 21.05 20.4 3.08

2 Robot - 2 31.29 29.87 4.53
Robot - 3 27.23 25.9 4.88

Robot - 1 21.85 20.87 4.48

3 Robot - 2 30.27 29.1 3.86
Robot - 3 27.84 26.8 3.73

Robot - 1 223 21.45 3.81

4 Robot - 2 31.75 30.1 5.19
Robot - 3 26.41 24.7 6.47

Robot - 1 22 20.78 5.54

5 Robot - 2 32 31 3.12
Robot - 3 26.21 25.41 3.05

6 Robot - 1 21.98 21.09 4.04
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Robot - 2 32.15 30.82 4.13

Robot - 3 26.97 26.09 3.26

Robot - 1 22.69 21.04 7.27

7 Robot - 2 31.97 30.07 5.94
Robot - 3 27.2 25.88 4.85

Robot - 1 21.41 20.36 4.90

8 Robot - 2 30.74 29.28 474
Robot - 3 28.31 26.39 6.78

Robot - 1 21.23 20.28 4.47

9 Robot - 2 32.05 31 327
Robot - 3 28.1 27.1 3.55

Robot - 1 22.8 21.61 521

10 Robot - 2 32.83 30.78 6.24
Robot - 3 27.64 26.35 4.66

Robot - 1 21.91 20.88 4.68

Average
path
Robot - 2 31.59 30.10 4.72
length

covered | pobot-3 27.24 25.96 4.70
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Table 7.9: Path length in the same experimental and simulational environment using FA-
PFL-MGA hybrid controller (Figure 7.15 and 7.18).

No. of runs Experimental path length Simulational path length % of
during MRN (in‘cm’) during MRN (in ‘cm’) deviation
1 210.11 201 4.33
2 210.85 203.3 3.58
3 210.74 202.8 3.76
4 211.05 201.74 4.41
5 210 202.87 3.39
6 212.33 204.94 3.48
7 214 202.01 5.60
8 214 202.63 5.31
9 211.87 202.56 4.39
10 214.52 204.76 4.54
11 213.82 204.6 431
12 210.97 200.7 4.86
13 210.46 203 3.54
14 214.68 204.81 4.59
15 215.01 204.05 5.09
16 214.96 203.9 5.14
17 215.87 201.18 6.80
18 213.87 204.64 431
19 213.02 204.74 3.88
20 211.4 203.98 3.50
Average
path length 212.67 203.21 4.44
covered
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Table 7.10: Navigational time in the same experimental and simulational environment
using FA-PFL-MGA hybrid controller (Figure 7.15 and 7.18).

No. of Experimental time during Simulational time during % of
runs MRN (in ‘sec’) MRN (in ‘sec’) deviation

1 33.86 32 5.49

2 30.12 29 3.71

3 30.98 29.11 6.03

4 33.79 32.4 4.11

5 31.84 30.41 4.49

6 32.17 30.94 3.82

7 30.74 29.67 3.48

8 32.98 31.86 3.39

9 33.05 31.89 3.50
10 33.32 31 6.96
11 32.51 31.12 4.27
12 31.1 30.16 3.02
13 30.45 293 3.77
14 30.85 29.22 5.28
15 33 323 2.12
16 31.55 30.33 3.86
17 32.5 30.47 6.24
18 30.47 29.34 3.70
19 32.93 31 5.86
20 31 29.63 4.41

Average
time 31.96 30.55 4.38
required
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Table 7.11: Path length in the same experimental and simulational environment using FA-
PFL-MGA hybrid controller (Figure 7.16 and 7.19).

No. of Robot No. Experimental path Simulational path % of
runs length during MRN length during MRN | deviation
(in‘cm’) (in ‘cm’)

Robot - 1 2133 204 4.36

| Robot - 2 148.5 142.9 3.77
Robot - 3 205.2 194 5.45

Robot - 4 135 128.3 4.96

Robot - 1 215.5 205.61 4.58

5 Robot - 2 148.2 142.38 3.92
Robot - 3 204 196.74 3.55

Robot - 4 135.9 129.7 4.56

Robot - 1 213 205 3.75

; Robot - 2 148.25 143 3.54
Robot - 3 205.78 197.31 4.11

Robot - 4 134.41 129.14 3.92

Robot - 1 214.74 204.97 4.54

A Robot - 2 151.51 144.85 4.39
Robot - 3 205.79 196.38 4.57

Robot - 4 136.05 128.3 5.69

Robot - 1 216.08 206.08 4.62

5 Robot - 2 151.74 142.36 6.18
Robot - 3 206.12 197.52 4.17

Robot - 4 1354 131.4 2.95

6 Robot - 1 213.64 205.44 3.83
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Robot - 2 152,61 1447 5.18

Robot - 3 204.07 197.1 341

Robo - 4 136.99 129 5.83

Robot - 1 214.05 205 4.2

; Robot - 2 149.11 144 3.42

Robot - 3 204 195.55 4.14

Robo - 4 137.23 131.1 4.46

Robot - 1 214 205.14 4.14

: Robot - 2 148.4 142.75 3.80

Robot - 3 205 197.62 3.6

Robo - 4 136 131.07 3.62

Robot - 1 213.87 206 3.67

; Robot - 2 150.04 142.77 4.34

Robot - 3 205.8 194.7 539

Robot - 4 134.55 128.74 431

Robot - 1 215.9 203.75 5.62

. Robot - 2 151.67 143.65 5.8

Robot - 3 207.9 195.6 5.91

Robot - 4 134.6 129.33 3.91

Average | ROP0-1 214.40 205.09 4.33

path Robot - 2 150.00 143.33 4.43

length | Robot-3 205.36 196.25 4.43
covered

Robot - 4 135.61 129.60 4.42
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Table 7.12: Navigational time in the same experimental and simulational environment
using FA-PFL-MGA hybrid controller (Figure 7.16 and 7.19).

No. of | Robot No. Experimental time Simulational time % of
runs during MRN (in ‘sec’) | during MRN (in ‘sec’) | deviation
Robot - 1 34.38 33 4.01
| Robot - 2 23.93 23 3.88
Robot - 3 33.08 31.3 5.38
Robot - 4 21.76 21 3.49
Robot - 1 34.34 33 3.90
) Robot - 2 243 23.4 3.70
Robot - 3 32 30.7 4.06
Robot - 4 21.01 20.4 2.90
Robot - 1 35.41 333 5.95
; Robot - 2 26.9 25.69 4.49
Robot - 3 32.21 31.12 3.38
Robot - 4 22.35 21.37 4.38
Robot - 1 36.74 35.5 3.37
A Robot - 2 24.74 235 5.01
Robot - 3 33.56 32.01 4.61
Robot - 4 22.35 21.37 4.38
Robot - 1 35 33.6 4
5 Robot - 2 24.95 24.25 2.80
Robot - 3 34.52 33.35 3.38
Robot - 4 22.54 21.98 2.48
6 Robot - 1 33.12 31.24 5.67
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Robot - 2 2524 2378 5.78
Robot - 3 33.85 31.9 5.76
Robot - 4 23.45 2.1 575
Robot - 1 34.65 33.7 2.74
i Robo - 2 2432 23.07 5.13
Robot - 3 34.18 33 3.45
Robot - 4 22.82 21.84 429
Robot - 1 35 33.87 322
. Robo - 2 2581 25 3.13
Robo - 3 34.19 31.98 6.46
Robot - 4 21.74 21 3.40
Robot - 1 36.12 33.85 6.28
; Robo - 2 25.05 242 3.39
Robo - 3 33.74 32.7 3.08
Robot - 4 2176 2041 6.20
Robot - 1 35.89 342 4.70
Robot - 2 2487 2333 6.19

10
Robo - 3 32.9 31.99 2.76
Robot - 4 21.6 2021 6.43
Robot - 1 35.06 33.52 438
Average | obot -2 25.01 23.92 4.35

time

required | Robot -3 33.42 32.00 4.23
Robot - 4 2.11 21.13 4.40
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From the Table 7.1-7.12, the average percentage of deviation between experimental and
simulational values of both path length and navigational time for single mobile robot
system using FA-PFL, FA-MGA, and FA-PFL-MGA hybrid controllers are 4.71% and
4.77%, 4.73% and 4.63%, and 4.44% and 4.38%, respectively. Similarly, the maximum
obtained values for percentage of deviation in path lengths and the navigational times for
multiple mobile robot system are 4.96% and 4.92%, 4.73% and 4.72%, and 4.43% and
4.40% respectively. By comparing the tabulated result, it is clear that the FA-PFL-MGA

controller gives the optimal path length and navigational time.

7.8 Performance Analysis of other Al Controller with the
Proposed Hybrid Controllers

In this section, the simultaneous comparison between the results of the developed hybrid
controller and other navigational controller are provided to check the optimality regarding
path length. One by one comparison of all three hybrid controllers is presented below. The
centimetre measurement is taken as the unit on the proportional basis.Initially, the FA-
PFL controller is compared with the neuro-fuzzy controller presented by Cherron et al.
[202] and then it is again compared with the fuzzy-neural controller presented by the He et
al. [203]. The Figure 7.20 and 7.21 show the comparison between the neuro-fuzzy
controller and proposed FA-PFL hybrid controller whereas the Figure 7.22 and 7.23
compares the fuzzy-neural controllers with the proposed FA-PFL hybrid controller. The

path length comparisons between these two controllers are presented in Table 7.13.
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Figure 7.20: Neuro-Fuzzy Controller by Cherron et al. [202 ]
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Figure 7.22: Fuzzy-Neural controllers by He et al. [203]
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Figure 7.23: Navigation using FA-PFL hybrid controllers

Table 7.13: Comparision of simulational result regarding path length

S1. No. Simulational path Simulational path length (in | % of path length
length (in ‘cm’) by ‘cm’) by FA-PFL hybrid saved by FA-PFL
other Al controllers controller hybrid controller

Scenario-1 10.1 (Figure 7.20) 9 (Figure 7.21) 10.89
Scenario-2 9.6 (Figure 7.22) 9 (Figure 7.23) 6.25

The comparison of the FA-MGA hybrid controller with the other Al controller such as

fuzzy-neural and fuzzy logic is presented below. The Figure 7.24 shows the fuzzy-neural

controller presented by the Shi et al. [204] and Figure 7.26 presented by MO et al. [205]

for the MRN by using fuzzy alone. The Table 7.14 shows the path length comparison

between the proposed FA-MGA hybrid controller with other Al controller such as fuzzy-

neural and fuzzy logic.
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Figure 7.24: Fuzzy-Neural controller by Shi et al. [204]
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Figure 7.27: Navigation using FA-MGA hybrid controller
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Table 7.14: Comparision of simulational result regarding path length

SI. No. Simulational path Simulational path length (in | % of path length
length (in ‘cm’) by ‘cm’) by FA-MGA hybrid saved by FA-
other Al controllers controller MGA hybrid

controller
Scenario-1 12 (Figure 7.24) 10.1 (Figure 7.25) 15.83
Scenario-2 10.3 (Figure 7.26) 9.3 (Figure 7.27) 9.70

At last, the comparison of the FA-PFL-MGA controller is compared with the neuro-fuzzy

controller presented by Joshi et al. [206] and neural network presented by Engedy et al.

[207]. The comparison of the neuro-fuzzy controller with proposed controller is shown in

Figures 7.28 and 7.29 whereas the comparison of the neural network controller with the

proposed controller is shown in Figures 7.30 and 7.31. The Table 7.15 gives the path

length comparision in their respective environment.
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Figure 7.28: Neuro-Fuzzy Controller by Joshi et al. [206]
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Figure 7.29: Navigation using FA-PFL-MGA hybrid controller

Figure 7.30: Artificial neural network controller by Engedy et al. [207]
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Table 7.15: Comparision of simulational result regarding path length

S1. No. Simulational path Simulational path length by | % of path length
length (in ‘cm’) by (in ‘cm’) FA-PFL-MGA saved by FA-PFL-
other Al controllerS hybrid controller MGA hybrid
controller
Scenario-1 21(Figure 7.28) 20.4 (Figure 7.29) 2.85
Scenario-2 9.6 (Figure 7.30) 8 (Figure 7.31) 16.66

In this section, the comparisons of the proposed hybrid controller are presented. The
graphical analysis of the proposed controller with other Al controllers are presented to
prove the authenticity regarding path planning. The section below analyzes the obtained

results of the developed hybrid controller for wheeled mobile robot navigation.

7.9 Summary

This section presents the simultaneous study of the three developed hybrid navigational
controller such as FA-PFL, FA-MGA and FA-PFL-MGA for mobile robot navigation. The
above controllers perform well in various environmental conditions for the single robot

and multiple robot systems. The proposed controllers are dynamic to handle the various
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static and dynamic environmental condition. The key features of the proposed hybrid

controller are presented below:

The proposed FA-PFL hybrid controller is successfully demonstrated for various
environmental conditions in the presence of a static and dynamic obstacle. The
average percentage of deviation between experimental and simulational values of
both path length and navigational time for single mobile robot system using FA-
PFL hybrid controller is 4.71% and 4.77%. Similarly, the maximum obtained
values for percentage of deviation in path length and the navigational time for
multiple mobile robot system is 4.96% and 4.92%. On comparisons with the other
navigational controller such as neuro-fuzzy and fuzzy-neural, it is observed that
FA-PFL saves the path length up to 10.89% and 6.25% respectively.

The proposed FA-MGA hybrid controller is efficient to handle the problem of
single and multiple mobile robot system in static and dynamic environment. From
the obtained results, it has been noticed that the average percentage of deviation
between experimental and simulational values of both path length and navigational
time for single mobile robot system using FA-MGA hybrid controller is 4.73% and
4.63%. Similarly, the maximum obtained values for percentage of deviation in
path length and the navigational time for multiple mobile robot system is 4.73%
and 4.72%. By comparing the tabulated result with FA-PFL, it is clear that the FA-
MGA controller gives the optimal path length and navigational time. On
comparison with the other Al controller such as fuzzy-neural and fuzzy logic it
saves the path length up to 15.83% and 9.70% respectively.

The proposed FA-PFL-MGA hybrid controller is developed by combining the
three different navigational approaches inorder to get optimized path length and
navigational time. The three level filter of the decision parameter make it suitable
to perform efficiently in known and unknown environment. The average
percentage of deviation between experimental and simulational values of both path
length and navigational time for single mobile robot system using FA-PFL-MGA
hybrid controller is 4.44% and 4.38%. Similarly, the maximum obtained values for
percentage of deviation in path length and the navigational time for multiple
mobile robot system is 4.43% and 4.40%. From the tabulation, it is also clear that
the percentage of deviation between simulational and experimental results for FA-

PFL-MGA controller is less compared to FA-PFL and FA-MGA. Therefore, the
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proposed controller can be used in the environment with maximum uncertainty. On
comparisons with the neuro-fuzzy controller and neural network controller it saves
path length upto 2.86% and 16.66% respectively.

e The application of the FA and LSE act as an initial filter for the all the controller,
which results in path optimality and minimizes the required time of navigation.

e The obtained results prove the applicability of FA for obtaining successful hybrid

technique for wheeled mobile robot navigation.
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Chapter 8

Results and Discussion

8.1 Introduction

In the previous chapter, the study of various navigational controllers such as Probability
Fuzzy Logic (PFL), Matrix based Genetic Algorithm (MGA), Firefly Algorithm (FA),
Firefly Algorithm-Probability Fuzzy Logic (FA-PFL), Firefly Algorithm-Matrix based
Genetic Algorithm (FA-PFL) and Firefly Algorithm-Probability Fuzzy Logic-Matrix based
Genetic Algorithm (FA-PFL-MGA) have been analyzed for mobile robot navigation. The
current chapter deals with the comparison of all discussed controller for successful mobile
robot navigation. The simulational and experimental evaluations of the each controller for

the path optimization are systematically presented over same environmental setup.

8.2 Investigation of Simulational and Experimental Results

In the previous chapter, we have studied various navigational controllers. These
controllers are individually examined for their simulational and experimental analysis.
This section presents the performance analysis of the discussed controller over same
environmental conditions. The same environmental setup has been provided in case of
single and multiple mobile robot navigations. The analysis is presented in both static and
dynamic environment. The Figure (8.1 and 8.2) presents the simulation result by the
individual controller in the static environment by using the single robot and Figure 8.3
presents simulation results for multiple wheeled mobile robot navigations. The Figure 8.4
gives the navigation of single mobile robot in the presence of the dynamic obstacle. The
simulational results for optimal path length and minimum navigational time have been
recorded by conducting many trials and the best path is selected for individual controller
over the same environmental condition. The Table (8.1 and 8.2) clears that the hybrid
controllers gives the better results regarding path optimality and navigational time over the
individual controller. The hybrid controller FA-PFL-MGA performs better when

compared to rest of the controller. Table 8.3 presents the comparison of the
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navigational controllers for the multiple mobile robot systems. The obtained result proves
that the hybrid algorithm is more applicable for multiple robot systems. The performance
of the robot in a dynamic environment is presented in Table 8.4 and again it has been
noticed that hybrid approaches perform well in the dynamic environment.

During the simulation and experimental analysis, it is observed that the FA controller
performs well when compared to the other individual controller such as PFL and MGA.
The ability to handle the uncertainty and faster convergence rate make it suitable for the
development of the hybrid controller and therefore the hybrid algorithm performs well over
the other individual controller. The FA-PFL-MGA hybrid controller has performed well in
static, dynamic and multi-robot system because of three filters of parameters being

arranged in series for path length optimality and navigational time optimality.
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Table 8.1: Path length comparison over similar environmental setup (Figure 8.1 and 8.5)

SI. No. | Name of Experimental Simulational % of
controllers path length (in ‘cm’) | path length (in ‘cm’) deviation
1 | PFL 170.1 161.09 5.29
2 | MGA 164.7 156.17 5.17
3 | FA 159.3 151.38 4.97
4 | FA-PFL 153.9 146.57 4.76
5 | FA-MGA 145.8 138.95 4.69
6 | FA-PFL-MGA 143.1 136.68 4.48
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Table 8.2: Navigational time comparison over similar environmental setup (Figure 8.1

and 8.5)
S1. No. | Name of controllers | Experimental time Simulational time | % of
(in ‘sec’) (in ‘sec’) deviation

1 PFL 2742 25.96 5.32
2 MGA 26.54 25.17 5.16
3 FA 25.67 244 4.94
4 FA-PFL 24.8 23.62 4.75
5 FA-MGA 23.5 22.39 4.72
6 FA-PFL-MGA 23.06 22.03 4.46

Table 8.3: Path length comparison over similar environmental setup (Figure 8.2 and 8.6)

S1. Ng Name of controllery Experimental path length Simulational path | % of
(in ‘cm’) length (in ‘cm’) deviation

1 PFL 294.3 279 5.19
2 MGA 286.2 271.6 5.10
3 FA 280.8 267.2 4.87
4 FA-PFL 275.4 262.5 4.68
5 FA-MGA 264.6 2523 4.64
6 FA-PFL-MGA 251.1 239.7 4.54
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Table 8.4: Navigational time comparison over similar environmental setup (Figure 8.2

and 8.6)
S1. No. | Name of controllers | Experimental Time Simulational Time| % of

(in ‘sec’) (in ‘sec’) deviation
1 PFL 47.44 44.97 5.20
2 MGA 46.13 43.78 5.09
3 FA 45.28 43.07 4.88
4 FA-PFL 44.39 42.31 4.68
5 FA-MGA 42.65 40.67 4.64
6 FA-PFL-MGA 40.47 38.63 4.54

Table 8.5: Path length comparison over similar environmental setup (Figure 8.3 and 8.7)

S1. No.| Name of controllers Experimental Simulational % of
path length (in ‘cm’)| path length (in ‘cm’)| deviation

Robot -1

| PEL 180.9 171.5 5.19
Robot-2 197.1 186.7 5.27
Robot -1 175.5 166.59 5.07

2 MGA
Robot-2 193.05 183.15 5.12
Robot -1

; FA 172.8 164.21 4.97
Robot-2 189 179.47 5.04
Robot -1

A EAPFL 167.4 159.23 4.88
Robot-2 189 179.61 4.96
Robot -1

5 FAMGA 164.7 156.82 478
Robot-2 186.3 177.13 4.92
Robot -1 162 154.47 4.64

6 FA-PFL-MGA
Robot-2 183.6 174.68 4.85
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Table 8.6: Navigational time comparison over similar environmental setup (Figure 8.3

and 8.7)
S1. No.| Name of controllers Experimental Simulational % of
time (in ‘sec’) time (in ‘sec’) | deviation

i PFL Robot -1 29.12 27.64 5.08
Robot-2 31.77 30.06 5.38
Robot -1 28.29 26.85 5.09

2 MGA
Robot-2 31.11 29.52 5.11

3 FA Robot -1 27.85 26.47 4.95
Robot-2 30.46 28.93 5.02

4 FAPFL Robot -1 26.98 25.66 4.89
Robot-2 30.46 28.95 4.95

5 FAMGA Robot -1 26.54 25.27 4.78
Robot-2 30.03 28.55 4.92
Robot -1 26.11 24.9 4.63

6 FA-PFL-MGA
Robot-2 29.59 28.15 4.86

Table 8.7: Path length comparison in dynamic environment Figure 8.4

Sl. No. | Name of controllers Simulational path length | Simulational time

(in ‘cm’) (in ‘sec’)

1 PFL 205.21 33.07

2 MGA 197.15 31.78

3 FA 194.46 31.34

4 FA-PFL 189.44 30.53

5 FA-MGA 180.9 29.12

6 FA-PFL-MGA 170.17 27.43
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8.3 Summary

The current chapter introduces the PFL, MGA, FA, FA-PFL, FA-MGA and FA-PFL-MGA
controllers for mobile robot navigation. The performance analysis of proposed controller
regarding path length and navigational time is presented here for various environmental

conditions. The important findings are given as:

e The proposed controller is good enough to avoid the obstacles in the static and
dynamic environment.

e The proposed controller successfully handles the problem of multiple wheeled
mobile robot navigations.

e The proposed controller avoids the random moving of the robot in the environment
and assures safe and near optimal path planning.

e The comparative study of the individual controllers such as PFL, MGA and FA
state that the FA controller gives the better agreement over path optimality and
minimizes the navigational time from start to goal position of the robot.

e The application of the FA for hybridization with other controller provides the better
results over the FA controller. The hybrid controller such as FA-PFL, FA-MGA
and FA-PFL-MGA are more effective compared to individual FA controller.

e The three level FA-PFL-MGA controller is found most effective among all the
controllers.

e By using the hybrid controller we can keep the percentage of deviation between

the experimental and simulation results within the 5%.

At last, from the obtained results we can say that the development of the hybrid algorithm

is much effective for mobile robot navigation than a standalone controller.
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Conclusions and Future Directions

Previous chapters give the study of navigation and the control strategies for wheeled
mobile robots by using various navigational controllers in uncertain environments. This
chapter sums up the key contributions of the proposed research work and also gives the

further investigation which is to be carried in future.

9.1 Contribution of the Proposed Work

The primary goal of the research work is a concern with the design and implementation of
the artificial intelligent controller for solving the navigational path planning problem of
multiple wheeled mobile robot systems. The artificial intelligent controller is developed to
handle the uncertainty present in the environment. The work presented in the thesis
highlights the autonomous navigation of the mobile robot without having prior knowledge
of the static and dynamic obstacles. The proposed navigational strategies for autonomous
mobile robot navigation are Firefly algorithm (FA), Probability Fuzzy Logic (PFL) and
Matrix based Genetic Algorithm (MGA). The hybrid approaches such as FA-PFL, FA-
MGA and FA-PFL-MGA are also presented to enhance the performance of the standalone
controller for navigational issues. The main contributions of the research work in the field

of wheeled mobile robot navigation are presented below:

e The study of the kinematics of the Wheeled Mobile Robot is presented to
understand the factor which influences the navigation of the robot and how the
velocity analysis of individual wheel is needed to get required heading angle for
navigation.

e The application of the probability for fuzzy logic is presented for selection of the
best decision rule for getting required steering angle of navigation.

e The application of the matrix- trace based arrangement boost the performance of
the genetic algorithm. It transforms the GA into small sample space from the large

sample space.
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e The Firefly Algorithm is introduced for optimal path planning of the wheeled
mobile robot in the static and dynamic environments.

e The FA based new hybrid controllers such as FA-PFL, FA-MGA and FA-PFL-
MGA are presented for the path planning strategies of multiple mobile robot
systems.

e The developed controller is initially tested on the Matlab software for simulation
analysis and then it is implemented for the real-time analysis over the Khepera-II
robots. The observed simulational and experimental result for proposed controller

show the good agreement regarding optimal path planning.

9.2 Conclusions

The results obtained from a series of simulation and experimental investigation; it is found
that all the proposed controllers can solve the issues regarding the navigation of mobile
robots. The proposed controllers have been tested for single and multiple wheeled robots

with same and different goal positions in various environments.

e The Tables 8.1-8.7 shows that the nature inspired metaheuristic firefly algorithm
performs better in terms of navigational path length and navigational time when
compared to standalone controllers like PFL and MGA over same environmental
setup. From the Figure 8.1 and 8.5 and Table 8.1 and 8.2, it is clear that the FA
saves the simulational path length by 3.27% and 6.34% when compared to MGA
and PFL respectively. Similarly, in experimental observation, the path length is
saved using FA is 3.16% and 6.14% when compared to MGA and PFL
respectively. The navigational time required to accomplish the task in simulational
and experimental environment by using the FA is less when compared to MGA
and PFL. The navigational time saved by FA in simulational environment is 3%
and 6% when compared to MGA and PFL respectively. Similarly, in experimental
observation, the navigational path is saved using FA is 3.2% and 6.38% when
compared to MGA and PFL. In the Figure 8.3 and 8.7, the percentage of deviation
in path length using FA is 4.97 % for robot-1 and 5.04% for robot-2 which is
comparatively less than the percentage of deviation observed in the MGA and
PFL. Similarly, the percentage of deviation in navigational time for FA is 4.95%
for robot-1 and 5.02% for robot-2 which is also comparatively less than the MGA

and PFL. The performance of the navigational controller in dynamic environment
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is shown in Figure 8.4 and from the Table 8.7 it is clear that the path length
required to accomplish the task by FA is 194.46 cm whereas the path length
required accomplishing the same task by MGA and PFL are 197.15 cm and 205.21
cm respectively. The time required for navigation in dynamic environment by FA
is 31.34 Seconds which is comparatively less than the MGA and PFL controllers
i.e. 31.78 sec and 33.07 sec. respectively.

The simulational and experimental results shown in Figure 8.1-8.7 state that the
path obtained by the hybrid controllers such as FA-PFL, FA-MGA and FA-PFL-
MGA is optimal than the individual controller (FA,PFL and MGA) for single and
multiple mobile robot system in static and dynamic environment. According to
Table 8.1-8.7, the data reflects that the hybrid controller is able to generate the
shortest path in minimum time.

From the Table 7.1-7.12, the average percentage of deviation between
experimental and simulational values of both path length and navigational time for
single mobile robot system using FA-PFL, FA-MGA, and FA-PFL-MGA hybrid
controllers are 4.71% and 4.77%, 4.73% and 4.63%, and 4.44% and 4.38%,
respectively. Similarly, the maximum obtained values for percentage of deviation
in path lengths and the navigational times for multiple mobile robot system are
4.96% and 4.92%, 4.73% and 4.72%, and 4.43% and 4.40% respectively. By
comparing the tabulated result, it is clear that the FA-PFL-MGA controller gives
the optimal path length and navigational time. The Figure 8.1-8.7 show that the
obtained path by the FA-PFL-MGA is small and data reflects in Table 8.1-8.7
confirms that the path length and navigational time is minimum compared to PFL,
MGA, FA, FA-PFL, FA-MGA controllers.

The percentage of deviations for simulational and experimental results for PFL,
MGA, FA, FA-PFL, FA-MGA and FA-PFL-MGA controllers are less than 7%.

This shows that the proposed controllers performs better.

9.3 Future Directions

The section presents the future scope of the present work as follows:

In the proposed work, the developed controllers is tested in indoor environment

however this controller can be tested in an outdoor environment.
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e The developed controllers can be implemented with other algorithm to enhance the
performance of the wheeled mobile robot.

e The proposed work can be extended to the design and develop a controller to solve
the dynamic goal problem.

e The navigation of the mobile robot is demonstrated on the plane ground, in future

it may be demonstrated in the underwater and aerial conditions.

e The multiple mobile robots navigations in a dynamic environment can be analyzed

for the autonomous driverless vehicle.
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Al: Specification of Khepera-II robot.

Khepera-II robot used in the experiment.
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A1l: Specification of the Khepera-II robot used in the experiment

S1. No. Elements Technical specification

1 Processor Motorola 68331 CPU, 25MHz

2 RAM 512KB

3 Flash 512 KB

4 Motors 2-DC brushed Servo motors with incremental encoders

5 Sensors 8 Infrared proximity and ambient light sensors with up
to 100mm range.

6 Speed Max: 0.5m/s, Min:0.02m/s

7 Power Power adapter or Rechargeable NiMH Batteries

8 Communication | Standard Serial Port, up to 115KB/S

9 Size Diameter: 70 mm , Height: 30 mm

10 Weight Approx. 80 g

11 Payload Approx. 250g
LabVIEW ® (on PC, MAC or SUN) using RS232
MATLAB ® (on PC, MAC, Linux or SUN) using

Remote control | RS232
12 Software via SysQuake ® (on PC, MAC, Linux or SUN) using

tether or radio

RS232
Freeware Any other software capable of RS232

communication
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