16 research outputs found

    Low-Voltage Ultra-Low-Power Current Conveyor Based on Quasi-Floating Gate Transistors

    Get PDF
    The field of low-voltage low-power CMOS technology has grown rapidly in recent years; it is an essential prerequisite particularly for portable electronic equipment and implantable medical devices due to its influence on battery lifetime. Recently, significant improvements in implementing circuits working in the low-voltage low-power area have been achieved, but circuit designers face severe challenges when trying to improve or even maintain the circuit performance with reduced supply voltage. In this paper, a low-voltage ultra-low-power current conveyor second generation CCII based on quasi-floating gate transistors is presented. The proposed circuit operates at a very low supply voltage of only ±0.4 V with rail-to-rail voltage swing capability and a total quiescent power consumption of mere 9.5 ”W. Further, the proposed circuit is not only able to process the AC signal as it's usual at quasi-floating gate transistors but also the DC which extends the applicability of the proposed circuit. In conclusion, an application example of the current-mode quadrature oscillator is presented. PSpice simulation results using the 0.18 ”m TSMC CMOS technology are included to confirm the attractive properties of the proposed circuit

    Circuits for Analog Signal Processing Employing Unconventional Active Elements

    Get PDF
    DisertačnĂ­ prĂĄce se zabĂœvĂĄ zavĂĄděnĂ­m novĂœch struktur modernĂ­ch aktivnĂ­ch prvkĆŻ pracujĂ­cĂ­ch v napěƄovĂ©m, proudovĂ©m a smĂ­ĆĄenĂ©m reĆŸimu. Funkčnost a chovĂĄnĂ­ těchto prvkĆŻ byly ověƙeny prostƙednictvĂ­m SPICE simulacĂ­. V tĂ©to prĂĄci je zahrnuta ƙada simulacĂ­, kterĂ© dokazujĂ­ pƙesnost a dobrĂ© vlastnosti těchto prvkĆŻ, pƙičemĆŸ velkĂœ dĆŻraz byl kladen na to, aby tyto prvky byly schopny pracovat pƙi nĂ­zkĂ©m napĂĄjecĂ­m napětĂ­, jelikoĆŸ poptĂĄvka po pƙenosnĂœch elektronickĂœch zaƙízenĂ­ch a implantabilnĂ­ch zdravotnickĂœch pƙístrojĂ­ch stĂĄle roste. Tyto pƙístroje jsou napĂĄjeny bateriemi a k tomu, aby byla prodlouĆŸena jejich ĆŸivotnost, trend navrhovĂĄnĂ­ analogovĂœch obvodĆŻ směƙuje k stĂĄle větĆĄĂ­mu sniĆŸovĂĄnĂ­ spotƙeby a napĂĄjecĂ­ho napětĂ­. HlavnĂ­m pƙínosem tĂ©to prĂĄce je nĂĄvrh novĂœch CMOS struktur: CCII (Current Conveyor Second Generation) na zĂĄkladě BD (Bulk Driven), FG (Floating Gate) a QFG (Quasi Floating Gate); DVCC (Differential Voltage Current Conveyor) na zĂĄkladě FG, transkonduktor na zĂĄkladě novĂ© techniky BD_QFG (Bulk Driven_Quasi Floating Gate), CCCDBA (Current Controlled Current Differencing Buffered Amplifier) na zĂĄkladě GD (Gate Driven), VDBA (Voltage Differencing Buffered Amplifier) na zĂĄkladě GD a DBeTA (Differential_Input Buffered and External Transconductance Amplifier) na zĂĄkladě BD. DĂĄle je uvedeno několik zajĂ­mavĂœch aplikacĂ­ uĆŸĂ­vajĂ­cĂ­ch vĂœĆĄe jmenovanĂ© prvky. ZĂ­skanĂ© vĂœsledky simulacĂ­ odpovĂ­dajĂ­ teoretickĂœm pƙedpokladĆŻm.The dissertation thesis deals with implementing new structures of modern active elements working in voltage_, current_, and mixed mode. The functionality and behavior of these elements have been verified by SPICE simulation. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of those elements. However, a big attention to implement active elements by utilizing LV LP (Low Voltage Low Power) techniques is given in this thesis. This attention came from the fact that growing demand of portable electronic equipments and implantable medical devices are pushing the development towards LV LP integrated circuits because of their influence on batteries lifetime. More specifically, the main contribution of this thesis is to implement new CMOS structures of: CCII (Current Conveyor Second Generation) based on BD (Bulk Driven), FG (Floating Gate) and QFG (Quasi Floating Gate); DVCC (Differential Voltage Current Conveyor) based on FG; Transconductor based on new technique of BD_QFG (Bulk Driven_Quasi Floating Gate); CCCDBA (Current Controlled Current Differencing Buffered Amplifier) based on conventional GD (Gate Driven); VDBA (Voltage Differencing Buffered Amplifier) based on GD. Moreover, defining new active element i.e. DBeTA (Differential_Input Buffered and External Transconductance Amplifier) based on BD is also one of the main contributions of this thesis. To confirm the workability and attractive properties of the proposed circuits many applications were exhibited. The given results agree well with the theoretical anticipation.

    Low Voltage Low Power Analogue Circuits Design

    Get PDF
    DisertačnĂ­ prĂĄce je zaměƙena na vĂœzkum nejbÄ›ĆŸnějĆĄĂ­ch metod, kterĂ© se vyuĆŸĂ­vajĂ­ pƙi nĂĄvrhu analogovĂœch obvodĆŻ s vyuĆŸitĂ­ nĂ­zkonapěƄovĂœch (LV) a nĂ­zkopƙíkonovĂœch (LP) struktur. Tyto LV LP obvody mohou bĂœt vytvoƙeny dĂ­ky vyspělĂœm technologiĂ­m nebo takĂ© vyuĆŸitĂ­m pokročilĂœch technik nĂĄvrhu. DisertačnĂ­ prĂĄce se zabĂœvĂĄ prĂĄvě pokročilĂœmi technikami nĂĄvrhu, pƙedevĆĄĂ­m pak nekonvenčnĂ­mi. Mezi tyto techniky patƙí vyuĆŸitĂ­ prvkĆŻ s ƙízenĂœm substrĂĄtem (bulk-driven - BD), s plovoucĂ­m hradlem (floating-gate - FG), s kvazi plovoucĂ­m hradlem (quasi-floating-gate - QFG), s ƙízenĂœm substrĂĄtem s plovoucĂ­m hradlem (bulk-driven floating-gate - BD-FG) a s ƙízenĂœm substrĂĄtem s kvazi plovoucĂ­m hradlem (quasi-floating-gate - BD-QFG). PrĂĄce je takĂ© orientovĂĄna na moĆŸnĂ© zpĆŻsoby implementace znĂĄmĂœch a modernĂ­ch aktivnĂ­ch prvkĆŻ pracujĂ­cĂ­ch v napěƄovĂ©m, proudovĂ©m nebo mix-mĂłdu. Mezi tyto prvky lze začlenit zesilovače typu OTA (operational transconductance amplifier), CCII (second generation current conveyor), FB-CCII (fully-differential second generation current conveyor), FB-DDA (fully-balanced differential difference amplifier), VDTA (voltage differencing transconductance amplifier), CC-CDBA (current-controlled current differencing buffered amplifier) a CFOA (current feedback operational amplifier). Za Ășčelem potvrzenĂ­ funkčnosti a chovĂĄnĂ­ vĂœĆĄe zmĂ­něnĂœch struktur a prvkĆŻ byly vytvoƙeny pƙíklady aplikacĂ­, kterĂ© simulujĂ­ usměrƈovacĂ­ a induktančnĂ­ vlastnosti diody, dĂĄle pak filtry dolnĂ­ propusti, pĂĄsmovĂ© propusti a takĂ© univerzĂĄlnĂ­ filtry. VĆĄechny aktivnĂ­ prvky a pƙíklady aplikacĂ­ byly ověƙeny pomocĂ­ PSpice simulacĂ­ s vyuĆŸitĂ­m parametrĆŻ technologie 0,18 m TSMC CMOS. Pro ilustraci pƙesnĂ©ho a ĂșčinnĂ©ho chovĂĄnĂ­ struktur je v disertačnĂ­ prĂĄci zahrnuto velkĂ© mnoĆŸstvĂ­ simulačnĂ­ch vĂœsledkĆŻ.The dissertation thesis is aiming at examining the most common methods adopted by analog circuits' designers in order to achieve low voltage (LV) low power (LP) configurations. The capability of LV LP operation could be achieved either by developed technologies or by design techniques. The thesis is concentrating upon design techniques, especially the non–conventional ones which are bulk–driven (BD), floating–gate (FG), quasi–floating–gate (QFG), bulk–driven floating–gate (BD–FG) and bulk–driven quasi–floating–gate (BD–QFG) techniques. The thesis also looks at ways of implementing structures of well–known and modern active elements operating in voltage–, current–, and mixed–mode such as operational transconductance amplifier (OTA), second generation current conveyor (CCII), fully–differential second generation current conveyor (FB–CCII), fully–balanced differential difference amplifier (FB–DDA), voltage differencing transconductance amplifier (VDTA), current–controlled current differencing buffered amplifier (CC–CDBA) and current feedback operational amplifier (CFOA). In order to confirm the functionality and behavior of these configurations and elements, they have been utilized in application examples such as diode–less rectifier and inductance simulations, as well as low–pass, band–pass and universal filters. All active elements and application examples have been verified by PSpice simulator using the 0.18 m TSMC CMOS parameters. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of structures.

    A Survey of Non-conventional Techniques for Low-voltage Low-power Analog Circuit Design

    Get PDF
    Designing integrated circuits able to work under low-voltage (LV) low-power (LP) condition is currently undergoing a very considerable boom. Reducing voltage supply and power consumption of integrated circuits is crucial factor since in general it ensures the device reliability, prevents overheating of the circuits and in particular prolongs the operation period for battery powered devices. Recently, non-conventional techniques i.e. bulk-driven (BD), floating-gate (FG) and quasi-floating-gate (QFG) techniques have been proposed as powerful ways to reduce the design complexity and push the voltage supply towards threshold voltage of the MOS transistors (MOST). Therefore, this paper presents the operation principle, the advantages and disadvantages of each of these techniques, enabling circuit designers to choose the proper design technique based on application requirements. As an example of application three operational transconductance amplifiers (OTA) base on these non-conventional techniques are presented, the voltage supply is only ±0.4 V and the power consumption is 23.5 ”W. PSpice simulation results using the 0.18 ”m CMOS technology from TSMC are included to verify the design functionality and correspondence with theory

    CMOS current amplifiers : speed versus nonlinearity

    Get PDF
    This work deals with analogue integrated circuit design using various types of current-mode amplifiers. These circuits are analysed and realised using modern CMOS integration technologies. The dynamic nonlinearities of these circuits are discussed in detail as in the literature only linear nonidealities and static nonlinearities are conventionally considered. For the most important open-loop current-mode amplifier, the second-generation current-conveyor (CCII), a macromodel is derived that, unlike other reported macromodels, can accurately predict the common-mode behaviour in differential applications. Similarly, this model is used to describe the nonidealities of several other current-mode amplifiers because similar circuit structures are common in such amplifiers. With modern low-voltage CMOS-technologies, the current-mode operational amplifier and the high-gain current-conveyor (CCII∞) perform better than open-loop current-amplifiers. Similarly, unlike with conventional voltage-mode operational amplifiers, the large-signal settling behaviour of these two amplifier types does not degrade as CMOS-processes are scaled down. In this work, two 1 MHz 3rd -order low-pass continuous-time filters are realised with a 1.2 ÎŒm CMOS-process. These filters use a differential CCII∞ with linearised, dynamically biased output stages resulting in performance superior to most OTA-C filter realisations reported. Similarly, two logarithmic amplifier chips are designed and fabricated. The first circuit, implemented with a 1.2 ÎŒm BiCMOS-process, uses again a CCII∞. This circuit uses a pn-junction as a logarithmic feedback element. With a CCII∞ the constant gain-bandwidth product, typical of voltage-mode operational amplifiers, is avoided resulting in a constant 1 MHz bandwidth with a 60 dB signal amplitude range. The second current-mode logarithmic amplifier, based on piece-wise linear approximation of the logarithmic function by a cascade of limiting current amplifier stages, is realised in a standard 1.2 ÎŒm CMOS-process. The limiting level in these current amplifiers is less sensitive to process variation than in limiting voltage amplifiers resulting in exceptionally low temperature dependency of the logarithmic output signal. Additionally, along with this logarithmic amplifier a new current peak detectoris developed.reviewe

    Energy-Efficient Amplifiers Based on Quasi-Floating Gate Techniques

    Get PDF
    Energy efficiency is a key requirement in the design of amplifiers for modern wireless applications. The use of quasi-floating gate (QFG) transistors is a very convenient approach to achieve such energy efficiency. We illustrate different QFG circuit design techniques aimed to implement low-voltage, energy-efficient class AB amplifiers. A new super class AB QFG amplifier is presented as a design example, including some of the techniques described. The amplifier has been fabricated in a 130 nm CMOS test chip prototype. Measurement results confirm that low-voltage, ultra-low-power amplifiers can be designed, preserving, at the same time, excellent small-signal and large-signal performance.Agencia Estatal de InvestigaciĂłn PID2019-107258RB-C32UniĂłn Europea PID2019-107258RB-C3

    Energy-efficient amplifiers based on quasi-floating gate techniques

    Get PDF
    Energy efficiency is a key requirement in the design of amplifiers for modern wireless applications. The use of quasi-floating gate (QFG) transistors is a very convenient approach to achieve such energy efficiency. We illustrate different QFG circuit design techniques aimed to implement low-voltage energy-efficient class AB amplifiers. A new super class AB QFG amplifier is presented as a design example including some of the techniques described. The amplifier has been fabricated in a 130 nm CMOS test chip prototype. Measurement results confirm that low-voltage ultra low power amplifiers can be designed preserving at the same time excellent small-signal and large-signal performance.This research was funded by AEI/FEDER, grant number PID2019-107258RB-C32

    New Possibilities In Low-voltage Analog Circuit Design Using Dtmos Transistors

    Get PDF
    (Doktora) -- Ä°stanbul Teknik Üniversitesi, Fen Bilimleri EnstitĂŒsĂŒ, 2013(PhD) -- Ä°stanbul Technical University, Institute of Science and Technology, 2013Bu çalÄ±ĆŸmada DTMOS yaklaĆŸÄ±mı çok dĂŒĆŸĂŒk besleme gerilimlerinde çalÄ±ĆŸan çok dĂŒĆŸĂŒk gĂŒĂ§ tĂŒketimli devrelere baƟarıyla uygulanmÄ±ĆŸtır. Tasarlanan devreler arasında OTA, OP-AMP, CCII gibi analog aktif yapı blokları, çarpma devresi, sadece-MOS yapılar gibi devreler bulunmaktadır. Tasarlanan devreler SPICE benzetimleri ile doğrulanmÄ±ĆŸtır. Ä°leri yönde gövde kutuplamaya bağlı olarak DTMOS transistorun yapısından kaynaklanan, efektif olarak dĂŒĆŸĂŒk eƟik gerilimli çalÄ±ĆŸma özelliği nedeniyle, çok dĂŒĆŸĂŒk gĂŒĂ§ tĂŒketimli ve çok dĂŒĆŸĂŒk gerilimli devrelerde DTMOS yaklaĆŸÄ±mının geçerli bir alternatif olduğu bu çalÄ±ĆŸmayla gösterilmiƟtir. DTMOS yaklaĆŸÄ±mının geniƟ bir alanda çeƟitlilik gösteren analog devre yapılarında çok dĂŒĆŸĂŒk besleme gerilimlerinde bile kabul edilebilir bir performansla kullanılabileceği bulunmuƟtur.In this study, DTMOS approach to the design of ultra low-voltage and ultra low-power analog circuits, has been successfully applied to the circuits ranging from EEG filtering circuits, speech processing filters in hearing aids, multipliers, analog active building blocks: OTA, OP-AMP, CCII to MOS-only circuits. The proposed circuits are verified with SPICE simulations. It is found that in designing ultra low-voltage, ultra low-power analog circuits, DTMOS approach is a viable alternative due to its inherent characteristic of effective low threshold voltage behaviour under forward body bias. This approach can be applied to several analog application subjects with acceptable performance under even ultra low supply voltages.DoktoraPh

    Exploiting the bulk-driven approach in CMOS analogue amplifier design

    Get PDF
    This thesis presents a collection of new novel techniques using the bulk-driven approach, which can lead to performance enhancement in the field of CMOS analogue amplifier design under the very low-supply voltage constraints. In this thesis, three application areas of the bulk-driven approach are focused – at the input-stage of differential pairs, at the source followers, and at the cascode devices. For the input stage of differential pairs, this thesis proposes two new novel circuit design techniques. One of them utilises the concept of the replica-biased scheme in order to solve the non-linearity and latch-up issues, which are the potential problems that come along with the bulk-driven approach. The other proposed circuit design technique utilises the flipped voltage scheme and the Quasi-Floating Gate technique in order to achieve low-power high-speed performances, and furthermore the reversed-biased diode concept to overcome the issue of degraded input impedance characteristics that come along with the bulk-driven approach. Applying the bulk-driven approach in source followers is a new type of circuit blocks in CMOS analogue field, in which to the author’s best knowledge has not been proposed at any literatures in the past. This thesis presents the bulk-driven version of the flipped voltage followers and super source followers, which can lead to eliminating the DC level shift. Furthermore, a technique for programming the DC level shift less than the threshold voltage of a MOSFET, which cannot be achieved by conventional types of source followers, is presented. The effectiveness of the cascode device using the bulk-driven approach is validated by implementing it in a complete schematics design of a fully differential bulk-driven operational transcoductance amplifier (OTA). This proposal leads to solving the lowtranconductance problem of a bulk-driven differential pair, and in effect the open loop gain of the OTA exceeds 60dB using a 0.35ÎŒm CMOS technology. The final part of this thesis provides the study result of the input capacitance of a bulk-driven buffer. To verify the use of the BSIM3 MOSFET model in the simulation for predicting the input capacitance, the measurement data of the fabricated device are compared with the postlayout simulation results

    Exploiting the bulk-driven approach in CMOS analogue amplifier design

    Get PDF
    This thesis presents a collection of new novel techniques using the bulk-driven approach, which can lead to performance enhancement in the field of CMOS analogue amplifier design under the very low-supply voltage constraints. In this thesis, three application areas of the bulk-driven approach are focused – at the input-stage of differential pairs, at the source followers, and at the cascode devices. For the input stage of differential pairs, this thesis proposes two new novel circuit design techniques. One of them utilises the concept of the replica-biased scheme in order to solve the non-linearity and latch-up issues, which are the potential problems that come along with the bulk-driven approach. The other proposed circuit design technique utilises the flipped voltage scheme and the Quasi-Floating Gate technique in order to achieve low-power high-speed performances, and furthermore the reversed-biased diode concept to overcome the issue of degraded input impedance characteristics that come along with the bulk-driven approach. Applying the bulk-driven approach in source followers is a new type of circuit blocks in CMOS analogue field, in which to the author’s best knowledge has not been proposed at any literatures in the past. This thesis presents the bulk-driven version of the flipped voltage followers and super source followers, which can lead to eliminating the DC level shift. Furthermore, a technique for programming the DC level shift less than the threshold voltage of a MOSFET, which cannot be achieved by conventional types of source followers, is presented. The effectiveness of the cascode device using the bulk-driven approach is validated by implementing it in a complete schematics design of a fully differential bulk-driven operational transcoductance amplifier (OTA). This proposal leads to solving the lowtranconductance problem of a bulk-driven differential pair, and in effect the open loop gain of the OTA exceeds 60dB using a 0.35ÎŒm CMOS technology. The final part of this thesis provides the study result of the input capacitance of a bulk-driven buffer. To verify the use of the BSIM3 MOSFET model in the simulation for predicting the input capacitance, the measurement data of the fabricated device are compared with the postlayout simulation results
    corecore