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NEW POSSIBILITIES IN LOW-VOLTAGE ANALOG CIRCUIT DESIGN 
USING DTMOS TRANSISTORS 

SUMMARY 

Analog circuit design has evolved significantly during the last years because of 
continuously decreasing supply voltages of integrated circuits. This situation has 
brought the necessity of designing low-voltage and low-power analog designs. 
Conventional circuit techniques have become inefficient with the booming of 
portable devices. So far, many novel low-power and low-voltage designs have been 
presented in the literature. It seems that this trend will continue in the future with 
more performance demanding circuits operating under very stringent power 
specifications. Thus the need for ultra low-voltage and ultra low power analog circuit 
designs are inevitable. 
Dynamic threshold voltage MOS (DTMOS) transistor has the capability to operate 
under reduced supply voltage with proper configuration of forward body biasing. 
Under some limitations, bulk-DTMOS technique can be applied to cheap standard 
CMOS fabrication process without additional processing steps. Therefore, this study 
focuses on new possibilities of bulk-DTMOS usage in ultra-low voltage, ultra low-
power analog circuits. The results here,  can also be applied to silicon on insulator 
(SOI) DTMOS circuits which is generally the more preferred process technology for 
DTMOS fabrication because of the reduced parasitics, however, with an increased 
fabrication cost. Additionally, twin or triple-well process technologies can also be 
used to increase the performance of the proposed circuits here. Since these process 
technologies are more expensive than the standard CMOS process, these alternatives 
are discarded from the scope of this dissertation. 
In this study, DTMOS approach to the design of ultra low-voltage and ultra low-
power analog circuits, has been successfully applied to the circuits ranging from 
EEG circuits, speech processing filters in hearing aids, multipliers, analog active 
building block designs: OTA, OP-AMP, CCII to MOS-only circuits. 
The wide range of applications presented here share the common feature of 
capability to operate under ultra low supply voltage with very low power 
consumption to meet the requirements of  today’s power-efficient systems. Proposed 
circuit solutions are simulated using analog circuit simulator SPICE and MATLAB 
program is additionally used for some data processing and graphing purposes. 
It is found that in designing ultra low-voltage, ultra low power analog circuits, 
DTMOS approach is a viable alternative due to its inherent characteristic of effective 
low threshold voltage behaviour under forward body bias. In addition to its 
conventional usage in digital applications, this approach can also be applied to 
several analog application subjects with acceptable performance under even ultra low 
supply voltages.     
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DTMOS KULLANAN DÜŞÜK GERİLİMLİ ANALOG DEVRE 
TASARIMINDA YENİ OLANAKLAR 

ÖZET 

Tümdevrelerin sürekli azalan besleme gerilimleri neticesinde analog devre tasarımı 
son yıllarda önemli ölçüde değişime uğramıştır. Bu durum düşük gerilimli, düşük 
güç tüketimli devre tasarımı ihtiyacını doğurmuştur. Taşınabilir cihazların ani artışı 
sonucu bilinen devre teknikleri günümüzde yetersiz kalmıştır. Özellikle, her geçen 
gün sayısal devrelerin aynı kırmık üzerinde daha çok sayıda transistor içermesi ve 
buna bağlı olarak tümdevre yoğunluklarının arttırılması transistor boyutlarda 
küçülmeye neden olmuştur. Küçülen boyutla birlikte üretilen transistorun düzgün 
çalışabileceği besleme gerilimleri de düşmeye zorlanmıştır. Bazı özel üretim 
teknikleri ile bu durum belli ölçüde aşılabilse bile göreceli olarak yüksek gerilim 
kullanımı, karesel orantılı bir şekilde sayısal devrelerde dinamik güç tüketimini 
arttırdığından bu yöntem özel uygulamalar haricinde sıklıkla tercih edilen bir yol 
olmamaktadır. 
Bugüne kadar çok sayıda yeni, düşük güç tüketimli, düşük gerilimli sayısal ve analog 
tasarım literatürde sunulmuştur. Elektronik devrelerdeki küçülmeye paralel olarak bu 
eğilimin ilerde daha da artarak devam edeceği düşünülebilir. Gelecekte günümüzdeki 
alternatiflerine göre hem daha fazla performanslı olarak çalışan hem de güç tüketimi 
bakımından çok daha verimli olan devrelerin yaygın olarak kullanılacağı,  bugüne 
kadar olan sayısal ve analog elektronik devrelerin izlediği süreçle kıyaslandığında 
net olarak anlaşılır. Bu yüzden çok düşük güç tüketimli ve çok düşük besleme 
gerilimli devre tasarımlarına olan ihtiyaç,  bugün de olduğu gibi gelecekte de 
kaçınılmaz olarak varlığını devam ettirecektir. 
Analog devrelerde besleme gerilimleri düştükçe transistorların çalışma şartları 
zorlanmakta hatta bazı durumlarda hiç çalışamamaktadırlar. Ayrıca, her ne kadar 
düşük besleme gerilimleri güç tüketimini düşürse de bu durum analog devrelerde 
önemli ölçüde performans kayıplarına neden olmaktadır. Bu sorunun aşılması için 
analog devre tasarımında yeni yaklaşımların bulunmasına ihtiyaç vardır. Bu nedenle 
bu konu üzerine hem sistem hem devre hem de eleman temelli yapılan çalışmalar 
günümüz analog devre tasarımı araştırmalarında çok önemli bir yer edinmiş olup 
bundan sonra da yoğunlaşarak önemini sürdürmeye devam edecektir. 
Dinamik eşik gerilimli MOS (DTMOS) transistor, ileri yönde gövde kutuplaması 
belirli şartlara bağlı olarak doğru şekilde yapıldığında,  düşük besleme gerilimlerinde 
yüksek başarımlı olarak çalışabilmektedir. DTMOS transistor MOS tekniğinde 
gövdenin geçide bağlanması sonucu elde edilen ve gövde kaynak jonksiyonunun ileri 
yönde kutuplanması durumunda düşük gerilimli olarak işlev görme prensibine göre 
çalışan bir eleman olmaktadır. Bu durum MOS teknolojisinde transistorun eşik 
gerilimi seviyesinin matematiksel ifadesinin gövde kaynak gerilimine bağlı olarak 
değişmesinden kaynaklanmaktadır. Buna göre bir DTMOS gövde kaynak gerilimi 
değişiminde, geçidi gövdesine bağlı olduğu için dinamik bir karakteristiğe sahip bir 
eleman olarak algılanılabilir. Ayrıca normal MOS transistora göre daha yüksek geçiş 
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iletkenliği göstermesinden dolayı daha düşük besleme gerilimlerinde daha yüksek 
akım akıtarak günümüzün düşük güç tüketimli, düşük gerilimli analog devreleri için 
de kullanışlı bir eleman olmaktadır. Literatürde ilk olarak sayısal devrelerde düşük 
besleme gerilimlerinde güç tasarrufu sağlarken aynı zamanda da kaçak akımının 
düşük olması nedeniyle önerilmiştir. Bir diğer taraftan da düşük besleme gerilimli 
analog devrelerde yüksek geçiş iletkenliği göstermesi sonucu devrelerin 
performansını arttırmakta ve düşük besleme gerilimli analog devre tasarımları için de 
uygun olmaktadır. 
Bu transistora ait bir diğer özellik de eşik altında çalıştırıldığında DTMOS 
transistorun ideale çok yakın bir eşik altı salınımı göstermesidir.  Normal bir MOS 
transistora göre eşik altı çalışmada sahip olduğu bu karakteristik sayesinde DTMOS 
transistor,  eşik altında çalışan çok düşük güç tüketimli devre tasarımları için de 
uygun bir eleman olarak karşımıza çıkmaktadır.  
Belirli kısıtlamalar altında, DTMOS tekniği fazladan üretim adımı gerektirmeden 
ucuz standart CMOS üretim sürecine uygulanabilmektedir. Bu yüzden, bu çalışmada 
çok düşük gerilimli, çok düşük güç tüketimli tasarımlarda standart CMOS 
proseslerde üretilebilecek DTMOS ele alınmış ve bu yaklaşıma bağlı olarak DTMOS 
kullanımında yeni olanaklar üzerine yoğunlaşılmıştır. Burada elde edilen sonuçlar 
DTMOS üretiminde daha düşük parazitikleri nedeniyle daha çok tercih edilen 
yalıtkan üzeri silikon (SOI) DTMOS devrelere de uygulanabilmekte fakat bu proses 
kullanıldığında elde edilen devrelerin üretim maliyeti artmaktadır. Ek olarak çift ya 
da üçlü kuyulu üretim teknolojileri kullanılarak burada önerilen devrelerin 
performansı arttırılabilir. Bu üretim teknolojileri, standart CMOS prosese göre daha 
pahalı olduğundan bu çalışmanın kapsamı dışında tutulmuştur. 
DTMOS transistorun çalışmasında ortaya çıkabilecek en büyük sakınca, kutuplama 
gerilimleri aşırı olduğunda ileri yönde kutuplanan kaynak gövde, savak gövde 
jonksiyonlarının diyot gerilimi seviyesini geçerek çok yüksek akımlar akıtması ve 
transistorun çalışma prensibini bozması olmaktadır. Bunun engellenebilmesi için 
önerilebilecek ilk yöntem, bu jonksiyonlar üzerine düşen gerilimi sınırlandırmak 
olmaktadır. Bu konuda yapılan çalışmalarda yaklaşık olarak 0.4V~0.5V civarındaki 
seçilen ileri yönde kutuplanmış pn jonksiyon gerilim seviyelerinin transistorun 
normal çalışma karakteristiğini etkilemediği bulunmuştur. Bu şartlar altında standart 
MOS transistor için kullanılan kompakt BSIM, EKV gibi yaygın modeller ile uzun 
kanallı DTMOS transistorlar modellenebilmekte ve devre tasarımlarında iyi bir 
yaklaşıklıkla kullanılabilmektedir. Bu nedenle bu çalışmada DTMOS transistorlar 
uzun kanallı seçilmiş olup modellemelerinde de devre tasarımlarında yaygın olarak 
kullanılan ve pek çok devre simülatörü tarafından yaygın bir şekilde desteklenen 
endüstri standardı BSIM kullanılmıştır. 
Bu çalışmada DTMOS temelli çok düşük besleme gerilimlerinde çalışan çok düşük 
güç tüketimli devreler önerilmiş ve bu önerilen devrelerin analog devre tasarımının 
çeşitli uygulama alanlarında başarıyla uygulanabileceği gösterilmiştir. Tasarlanan 
devreler arasında OTA, OP-AMP, CCII gibi yaygın olarak kullanılan analog aktif 
yapı blokları, çarpıcı devresi, yüksek frekanslı uygulamalarda etkinliği gösterilmiş 
sadece-MOS yapılar gibi devreler bulunmaktadır. 
Bu çalışmada tasarlanan devrelerin başarımı çeşitli uygulama devreleriyle 
gösterilmiştir. Yapılan uygulamalar arasında kablosuz EEG cihazlarında 
kullanılabilecek filtre yapıları,  DTMOS tekniği kullanılarak gerçekleştirilen sadece 
MOS devresine ait üçüncü dereceden Butterworth karakteristiği veren bir yüksek 
frekans filtresi ve analog duyma cihazlarında kullanılmaya müsait, ses işareti işleye- 
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bilen çok düşük güç tüketimli ve çok düşük besleme gerilimli devreler 
bulunmaktadır.   
Burada sunulan çok çeşitli uygulama alanlarının ortak olarak paylaştıkları gücü 
verimli kullanma özelliğine ek olarak, düşük besleme gerilimlerinde analog 
devrelerin karşılaştığı sorunlara yeni ve kompakt çözümler getirmektedirler. Önerilen 
devrelerin başarımlarını göstermek amacıyla SPICE analog devre tasarım programı 
ile benzetimleri yapılmış ek olarak veri işlenmesi ve grafiklerde de MATLAB 
programından faydalanılmıştır.  
İleri yönde gövde kutuplamaya bağlı olarak DTMOS transistorun yapısından 
kaynaklanan,  efektif olarak düşük eşik gerilimli çalışma özelliği nedeniyle,  çok 
düşük güç tüketimli ve çok düşük gerilimli devrelerde DTMOS yaklaşımının geçerli 
bir alternatif olduğu bu çalışmayla gösterilmiştir. Sayısal devrelerde bilinen 
uygulamalarına ek olarak DTMOS yaklaşımı geniş bir alanda çeşitlilik gösteren 
analog devre yapılarında da çok düşük besleme gerilimlerinde bile kabul edilebilir 
bir performansla kullanılabileceği bulunmuştur. 
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1.  INTRODUCTION 

The demand for portable applications has continuously increased during the last 

years. The usage of smart phones, tablet computers, netbooks and several other 

wireless devices has grown dramatically which brings about the requirement for 

more advanced power-aware design techniques.  

The trend of improving the power efficiency of CMOS circuits has first lead to 

reduced supply voltage levels of digital circuits for lower power consumption which 

is proportional to the square of the used supply voltage.  Therefore, this approach has 

also arisen the necessity to design analog circuits that are capable of operating under 

very low supply voltage levels of digital circuitry in the same chip. Sharing very low 

supply voltages with digital circuits, however, severely limits the performance of 

analog circuits. 

Until now, generally in digital circuits, decreasing supply voltage levels for 

transistors having thinner gate oxides has been utilized as a solution to lower the 

power consumption and increasing chip density by laying out more transistors on a 

smaller chip area.  However, further decreasing the channel lengths has created 

leakage current problems. Moreover, threshold voltages cannot be kept below certain 

limits to minimize the leakages in the chip.  

There is a strong need for new ideas and perspectives to analog circuit design to meet 

the requirements of modern highly power-efficient electronic devices. Conventional 

analog circuits suffer from very low supply voltages of digital circuits and relatively 

high threshold voltage levels to prevent large leakage currents in standard CMOS 

process technology [1-2].  

As a solution to the problems of conventional circuits, DTMOS, dynamic threshold 

voltage MOS,  was presented by Assederaghi et al. in [3-4] which operates as a low-

leakage as well as low-voltage, low-power device for digital circuits. 
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1.1 DTMOS Transistor  

In 1994, DTMOS transistor was proposed by Assederaghi et al, in their pioneering 

paper [4] for silicon on insulator (SOI) process technology. Although the idea goes 

back to earlier dates [5], this paper best describes the device and the underlying 

reasons of the operation.    As shown in  Figure 1.1 the idea is to connect the gate and 

body of a transistor to dynamically change its threshold voltage by utilizing the 

relation in (1.1) where 0  is the total surface band bending, γ body effect factor, VTO 

is the zero bias threshold voltage. The equation is written for a long channel n-MOS 

transistor where drain-induced barrier lowering (DIBL) effect is neglected. 

                                                                                        

Figure 1.1 : DTMOS transistor and its commonly used circuit symbol. 

 00   SBTOTH VVV                              (1.1) 

and  zero bias threshold voltage VTO is defined by  

00   FBTO VV                                         (1.2) 

VFB is the flat band voltage and γ is the body effect factor. It is given by  

ox

Asi

C

Nq


2
                                                  (1.3) 

NA is the substrate doping, εsi represents dielectric permittivity of silicon, Cox is the 

oxide capacitance for unit area. 0  in (1.1) is usually considered equal to two times 

of Fermi potential, 2 F , for simplicity. However, to obtain more accurate 

approximations, this should be calculated as in (1.4) where α is an experimental 

fitting parameter and t is the thermal voltage [6-7].  

tF   20                                                 (1.4) 

For conventional n-MOS operation VSB value is either zero or positive whereas in 

DTMOS operation this value might become negative, however, the equation in (1.1) 



is still applicable for not too large negative values provided that the junction currents 

are negligibly small [6

The DTMOS configuration does not require any additional processing steps

fabrication and it is made as shown in Figure 1.2

gate and the body of the transistor

Figure 1.2 : SOI NMOS transistor connected in DTMOS configuration

From Figure 1.2, it is seen that there is a lateral bipolar transist

source body and drain body junctions which might latch up and 

currents. This should

device. The possibility of very high forward biased source body and dr

diode currents is the main problem of such a connection. For this reason, as 

recommended in the original paper [4], DTMOS with its plain structure is not usa

for supply voltages over 0.6

extra limiter transistor, this will almost double chip area for digital circuits and 

increases parasitic effects. Additionally, the operation of all chip components 

strongly depends on those limit

performance and failure

transistor operation. For those reasons throughout this study supply voltages are 

chosen low enough 

practically shown in circuit realizations that forward biased diode currents do not 

effect much the operation of the 

in other words,  forward body biases are close to

is that the mobile carrier concentrations for supply voltages in 0.4V~0.5V range do 
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for not too large negative values provided that the junction currents 

[6-7]. 

configuration does not require any additional processing steps

made as shown in Figure 1.2 for a SOI process 

of the transistor using a metal contact.  

SOI NMOS transistor connected in DTMOS configuration

, it is seen that there is a lateral bipolar transistor consisting of two 

source body and drain body junctions which might latch up and cause

This should be strictly kept under control for correct mechanism of the 

device. The possibility of very high forward biased source body and dr

diode currents is the main problem of such a connection. For this reason, as 

recommended in the original paper [4], DTMOS with its plain structure is not usa

for supply voltages over 0.6V. Although it is possible to use it with an addition of an 

extra limiter transistor, this will almost double chip area for digital circuits and 

increases parasitic effects. Additionally, the operation of all chip components 

strongly depends on those limiter transistors which decrease robust operation 

performance and failure-safety because any high on diode currents totally disrupts 

transistor operation. For those reasons throughout this study supply voltages are 

 (0.4V~0.5V) to limit forward biased diode currents. It is 

practically shown in circuit realizations that forward biased diode currents do not 

effect much the operation of the transistor or the overall circuit if the supply voltages, 

in other words,  forward body biases are close to 0.4V~0.5V [8-9].

is that the mobile carrier concentrations for supply voltages in 0.4V~0.5V range do 

for not too large negative values provided that the junction currents 

configuration does not require any additional processing steps in 

for a SOI process by connecting the 

                                      

SOI NMOS transistor connected in DTMOS configuration [4]. 

or consisting of two 

cause very high body 

be strictly kept under control for correct mechanism of the 

device. The possibility of very high forward biased source body and drain body 

diode currents is the main problem of such a connection. For this reason, as 

recommended in the original paper [4], DTMOS with its plain structure is not usable 

V. Although it is possible to use it with an addition of an 

extra limiter transistor, this will almost double chip area for digital circuits and 

increases parasitic effects. Additionally, the operation of all chip components 

which decrease robust operation 

safety because any high on diode currents totally disrupts 

transistor operation. For those reasons throughout this study supply voltages are 

rd biased diode currents. It is 

practically shown in circuit realizations that forward biased diode currents do not 

circuit if the supply voltages, 

9]. The main reason 

is that the mobile carrier concentrations for supply voltages in 0.4V~0.5V range do 
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not reach high levels in modern highly doped substrates leading to source body, drain 

body junctions  with high turn-on voltages [6]. 

DTMOS transistor, under the same VGS voltage behaves as a high-transconductance 

MOSFET.  In  Figure 1.3, it is depicted that a p-type DTMOS conducts more current 

than a regular MOSFET when VDS kept at -0.1V constant voltage while VGS is swept 

from -0.4V to 0V. The reason behind this mechanism is the threshold voltage 

reduction due to the positive source body voltage.  Additionally, due to the forward 

biasing, vertical electric field in the channel decreases which improves carrier 

mobility and increases current drive [3].  

                    

Figure 1.3 : The current change of DTMOS and MOS transistors versus VGS. 

The phenomenon makes DTMOS transistor a promising element in low voltage 

circuits where higher currents can be obtained in comparison to conventional MOS 

transistors.  

Subthreshold mode of operation of CMOS circuit is usually the preferred method for 

power-saving circuits if the high frequency operation is not needed. This is mostly 

the chosen mode of operation throughout this study where ultra low voltage, ultra 

low power designs are generally focused.  

In this operation mode, current flow is due to the diffusion current and the current 

relation becomes no longer proportional to square root of the applied voltage but 
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exponential as described by a rough model in equation (1.5) where n and Id0 can be 

experimentally determined [10-11]. Differentiating (1.5) gives transconductance in 

weak inversion as in (1.6) which shows an important result that the transconductance 

in weak inversion is directly proportional to the current which is similar to bipolar 

transistor characteristic. The reason is the current mechanism in both is caused 

mainly by diffusion. In weak inversion, another important point that should be 

mentioned is that the transconductance to current ratio is the highest in this mode of 

operation [12]. 

nkT
qV

dd

GS

eI
L

W
I 0                                               (1.5) 

dm I
nkT

q
g                                                     (1.6) 

Weak inversion and strong inversion models can be compared graphically as in 

Figure 1.4. The slope in this figure is called as subthreshold slope which determines 

how well a transistor turns off according to the decrease in VGS for digital circuits. 

The inverse of this is the subthreshold swing (1.7) which is a very important 

parameter showing the amount of VGS that should be decreased for the weak 

inversion current to reduce one order of magnitude [6]. Subthreshold swing can be 

approximately calculated by the equation in (1.8). 
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 Figure 1.4 : Graphical comparison of weak and strong inversion models [6]. 

The subthreshold swing equation in (1.8) is just an approximation and it gives 

roughly 60mV/dec value for the ideal case when n is equal to unity. The real value 

for MOS transistors deviates from the approximation and it can be defined more 

accurately in a body referenced model as [6] 
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In (1.10), we made an assumption that  surface potential Ψs ≅ Ψsa which is the surface 

potential when there is no inversion layer and it is described by the equation in 

(1.11).  

2
2

42
)(














 FBGBGBsa VVV


                                   (1.11) 

Surface potential satisfies the following equation in (1.12) where Qc is the charge 

under the oxide of the transistor per unit area and is a function of surface potential. 

With the absence of inversion layer this charge consists of only depletion region 
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charge per unit area Qb. This charge is related with the depletion capacitance 

according to equation (1.13). 
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                                                    (1.13) 

In equation (1.8) parameter n shows the inverse of the change of surface potential 

with respect to VGB voltage. This parameter can be defined using (1.12) and (1.13) 

by the capacitances in (1.14) where the capacitance coming from interface traps are 

neglected and Cb shows the depletion region capacitance for unit area. 
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So equation (1.8), subthreshold swing for a MOS transistor,  can be rewritten as  











ox

b

C

C

q

kT
S 13.2                                            (1.15) 

For a DTMOS transistor, since gate to body is connected, the equation in (1.14) 

becomes equal to unity which means that the equation (1.8) transforms to the ideal 

case shown in (1.16), however it should be pointed out that the equation in (1.8) is an 

approximation. Nevertheless, this result is also verified experimentally for long 

channel DTMOS transistors with channel lengths greater than 0.4µm showing nearly 

60mV/dec subthreshold swing [13].  

q

kT
S 3.2                                                  (1.16) 

That means DTMOS transistors with high on-off ratio has better drivability than a 

regular MOS transistor under low voltage operation, which makes them suitable 

devices for low power, low voltage operations, where transistors are usually 

operating in weak inversion region. Figure 1.5 shows the subthreshold characteristics 

of a regular MOS and a DTMOS device fabricated in SOI process.   
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Figure 1.5 : The subthreshold swings of MOS and DTMOS transistors [3]. 

1.2 Model of DTMOS Transistor  

In the design of analog circuits, correct modeling of semiconductor devices plays a 

crucially important role for the accuracy of simulations. Therefore, a critical question 

might arise that if the conventional MOSFET models are sufficient for proper 

modelling of the operation the DTMOS transistor. Actually, mostly used MOSFET 

models such as BSIM, EKV were developed under the assumption that the channel is 

free of mobile carriers, which is the total depletion approximation. However, for a 

DTMOS transistor, this is not true because there are mobile carriers and total 

depletion approximation is not valid now. Additionally, vertical forward biased drain 

body and source body junction currents add another dimension and this might require 

two dimensional device models. However, these complicated modeling efforts are 

not necessary if the supply voltage is kept below 0.4V~0.5V voltage levels and the 

channel length of the device is not chosen very small to prevent short channel effects. 

According to both mathematical analyses and real life experiments, conventional 

models are still applicable to DTMOS transistor with good accuracy to model the 

device and the related circuits provided that the mentioned specifications exist [7, 

14]. Therefore, we have mainly used 0.4V supply voltage for DTMOS designs and 

transistors with minimum channel lengths 2µm in our designs to be in agreement 

with results and compact models experimentally proven in [15]. 
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Although there are some bulk-based DTMOS modeling efforts [16-17], silicon on 

insulator (SOI) technology is the usually preferred process technology for fabrication 

of DTMOS transistors. In SOI technology, due to the isolation of body using an 

insulating buried oxide (BOX) layer, the parasitics become reduced [18]. As shown 

in Figure 1.6, the parasitic junction capacitances of a bulk MOS device become  

MOS capacitor in SOI technology where the parasitics are smaller comparing to its 

bulk alternative [19]. Therefore, modelling efforts in the literature have focused more 

on SOI DTMOS devices. Nevertheless, results from these studies, in some degree, 

can also be applied to bulk DTMOS with taking account the increased parasitics of 

their bulk counterparts.  

                                                              

Figure 1.6 : SOI and bulk technology parasitic capacitances [18]. 

There are different approaches in the literature to model the device. In some of early 

studies, a similar idea to DTMOS approach was realized as a gate-controlled lateral 

bipolar transistor (GC-LPNP) with four electrodes that are collector, base, emitter 

and gate [20]. The transistor in this study was fabricated using BiCMOS process 

technology as a bulk lateral pnp transistor parallel with a surface p-MOSFET. Then 

the total collector current of the device becomes the total BJT and MOSFET currents 

as in (1.17). In DTMOS operation, for very low supply voltages in the range 0.4V the 

base current (body current of MOS) becomes so small that it can be neglected 

comparing to the MOS current. This approximation can be verified by measurement 
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results from [16] where Vgb=0 is considered for DTMOS operation as depicted in 

Figure 1.7.   

)()( pmosdpnplateralcc III                                          (1.17) 

                      

Figure 1.7 : Collector and base current for gated lateral bipolar transistor [16]. 

Similar idea to the work in [20] was also applied to an earlier study [5] as voltage 

controlled bipolar device in a SOI process where the performance increase was 

attributed to the bipolar transistor’s current added over the MOS current, however,  

main reason was the threshold decrease as shown later by Assederaghi et al in their 

paper [3].  In addition to past studies, DTMOS operation principal has also been 

studied in newer, advanced devices, triple-gate FinFETs [21].  

Another past study was explained in [22] which pointed out the current increase due 

to the forward biased source-substrate junction and tried to model the threshold 

decrease of bipolar induced breakdown mechanics in MOSFETs. However, this 

study lacks sufficient physical interpretations and utilized several empirical 

parameters. 

Later, the modeling ideas of gated-lateral BJTs in [20] were explicitly applied to 

DTMOS transistor in the study [23] where the authors used a modified Pao-Sah 

model. Here we skip the details of the model not to lose the integrity of the subject 

except the resulting current definition in (1.18).  
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where ni is the intrinsic carrier concentration and ξ is the shift in electron quasi-Fermi 

level. U shows electrostatic potential normalized to kT/q. Dn is the diffusion 

constant. Usurf is the value of U at x=0 , UD and US show voltage values of drain and 

source to the bulk in units of kT/q. Uf is the Fermi level in the bulk. xj is the depth of 

drain and source regions in the bulk. Uj is potential at xj. ),,( fUUF  is the function 

of normalized electric field which is found by the solution from Poisson equation. LD 

is the Debye length in and it is defined by  

isiD nqkTL 22                                               (1.19) 

The first term in equation (1.18) represents the current from conventional charge 

sheet model of MOS and second term comes from the lateral BJT current. Therefore, 

(1.18) can be rewritten as (1.20). Identical result (1.17) was proposed by [20] after 

real measurement results. The drain current of the model in (1.18) is given in Figure 

1.8 where Joarder curve represents the model in [16]. It is necessary to note that this 

model does not include short-channel effects so it is valid for long channel DTMOS 

devices.  

BJTCSd III                                                     (1.20) 

                                      

Figure 1.8 : Drain current to body-source voltage for three values of VGD [23]. 

A comprehensive study for SOI DTMOS transistors including both short channel 

effects and two dimensional Poisson equation was proposed in [24]. This model is 

the improved version of [25] which adds support for short channel DTMOS 
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transistors. Since the model equations and its derivation require much space, here we 

have preferred to give just the subthreshold current relation (1.21). This is the 

mostly-used operation region of transistors in the proposed circuits in this 

dissertation.  
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Ψs min shows minimum surface potential, F is the bulk Fermi potential.  le and lc are 

the depletion region width of the source-body and drain body junctions. sE shows the 

average surface electric field which is roughly calculated by (1.22). Others have their 

usual meaning. 
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In (1.22), Ψse and Ψsc show the surface potential at the depletion region edge of 

source-body and drain-body junctions respectively. Similarly, Ese and Esc are the 

electric fields at the source and the drain. To investigate the validity of this model, 

simulations and real measurements were done in [24]. Figure 1.9 shows the drain 

current according to gate voltage for SOI DTMOS device. Simulated data comes 

from device simulator PISCES and circles show the model which is in close 

agreement with simulations. 

                     

Figure 1.9 : Drain current to gate voltage for different device parameters [24]. 
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Figure 1.10 shows the comparison of the model with real measurements of DTMOS 

transistor fabricated in SOI process with a channel length 0.4µm.  

                        

Figure 1.10 : Drain current to drain voltage for measurements and the model [24]. 

Models presented so far are taking into account several features of DTMOS for better 

modeling and accurate simulation. However, some of those models require the 

consumption of much computer resources when large circuits are built with several 

transistors. Moreover, the models should be added to simulators such as SPICE for 

simulation of circuits. Fortunately, available compact models such as EKV, BSIM 

are still valid under some limitations which were mentioned at start of this section. 

Validity of EKV model for SOI DTMOS transistors is shown in [26]. Without 

modifying the EKV model [27] it can be used just connecting body and gate of a 

transistor if the device has long channel and supply voltage is lower than 0.5V. 

Therefore,  current relation of this model can be used which is given by (1.23).  
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with   representing body effect factor as defined by 
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ΦMS in (1.28) shows work function difference potential and setting VB equal to VS or 

VG in (1.27), the model can be used for DTMOS devices without any other 

modification [26].  

Some of the measurement results from [26] are given in the following figures 

comparing the operation of DTMOS and normal grounded body SOI (GBSOI) 

devices. Figure 1.11 shows the output characteristic from measurements of a 

DTMOS transistor having 2µm channel length. In the figures, star (*) symbols 

represent the measurements and solid lines show EKV model. As it is seen from 

Figure 1.11, under 0.5V gate bias, the model and measurements are in close 

agreement. In Figure 1.12, subthreshold swings of DTMOS and normal MOS have 

been depicted where VD is biased at 0.1V. Under 0.3V, DTMOS shows close to ideal 

60mV/dec subthreshold swing and almost under 0.4V has better swing value than 

normal MOS transistor. From this figure, it can be figured out that,  for gaining ideal 

subthreshold swing, biasing of DTMOS gate should not exceed 0.3V.  
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Figure 1.11 : Comparison of GBSOI and DTMOS output characteristics [26]. 

                   

Figure 1.12 : Subthreshold swings of GBSOI and DTMOS transistors [26]. 

Similar to the above work, the validity of BSIM and BSIMSOI models was also 

investigated. It was found that, similar to EKV model, BSIM models even with total 

depletion approximation can be used for DTMOS transistors as verified by 

experiment results  for long channel DTMOS transistors [7,14,28]. The same supply 

voltage limitation  in the range of 0.4V~0.5V applies to BSIM models too. The 
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temperature characteristics of DTMOS were also investigated experimentally in [7] 

where the same 0.4V~0.5V forward bias limit manifests itself in Figure 1.13. 

Figure 1.13 : Temperature characteristic of n-MOS 2µm DTMOS transistor [7]. 

Here, after a brief introduction of Y-parameters, we finally add a DTMOS transistor 

small signal equivalent circuit for a wide frequency band analysis from [29] to fully 

characterize the device with its Y-parameters. These parameters are often used for 

RF applications. For more information on RF characteristics of DTMOS transistor, 

references [30-32] can be read. For a general linear two-port network as shown in 

Figure 1.14, Y-parameters are defined as in (1.29). 

                 

Figure 1.14 : General linear two-port network. 
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The model proposed by Dehan et al [29] with extracted model parameters is given in 

Figure 1.15 which was confirmed experimentally for a 0.25µm SOI DTMOS device 

in a frequency range from 100kHz to 4GHz.  
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Figure 1.15 : DTMOS small signal equivalent circuit [29]. 

In the model, complex impedances ZBS and ZBD model the source body and drain 

body junctions. gd is the drain conductance, Rse , Rde and Rge are the extrinsic 

parasitic source, drain and gate resistances respectively.  In DTMOS transistors,  gate 

and body are connected by a body resistance where Rbody models this resistance. It is 

important to note that this resistance might have significantly large values for bulk-

DTMOS and results in high RC delays if it appears on the signal path [14] which, 

however trading off the cost,  can be solved by intervening standard CMOS process 

such as using the techniques in  [33-34].  

Y-parameters of the model in Figure 1.15 are given below [29]. 
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Figure 1.16 illustrates the transconductance and output conductance of  DTMOS and 

MOS transistors which shows the validity of the model for a wide frequency band. 

The degradations of  DTMOS characteristics such as dynamic modulation of body by 

gate is generally caused by the high value of Rbody resistance which can be reduced 

by using double body contacts or increasing the number of fingers of transistors [29].  

Figure 1.16 : Transconductance and conductance of DTMOS and MOS [29]. 

Consequently, it is important to summarize the modeling efforts explained in this 

section.  It is shown in the literature that compact EKV, BSIM models are still valid 

for less than 0.4V~0.5V  forward biased source body, drain body junctions even 

those models assume the total depletion approximation. Under these voltage levels, 

free carriers in the channel are so small in numbers that their effects can be safely 

neglected in the operation of long channel DTMOS devices. One last point to be 

mentioned in this section is the noise characteristics of DTMOS transistors. 

Unfortunately, there are not generally accepted, comprehensive noise analyses and 

models that are experimentally proven for DTMOS transistors. Nevertheless, 

interested readers may refer to the references [35-37] for further insights on the 

subject. 

1.3 Some DTMOS-based Circuits Available in the Literature 

DTMOS transistor was initially proposed for digital circuits which has the ability to 

work under low supply voltages with its low on-state threshold voltage and 

simultaneously,  it is capable of operating with low leakage currents because of  its 

high off-state threshold voltage value due to its dynamic operation principal as 

explained in [3-4]. Similar to DTMOS transistors, forward body biasing technique 

(FBB) uses the same idea of reducing threshold voltage by applying DC bias to the 
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body of a MOS transistor [38]. This type of operation was practiced in analog 

applications to increase current of the transistor due to reduction in the threshold 

voltage under ultra low supply voltage by connecting the bulk of transistors to fixed 

voltage levels with controlling the maximum forward body bias. In this study, FBB 

method is also expressed as in the concept of DTMOS technique.  

As a difference to DTMOS transistors, in DTMOS technique, gate and body 

connection is not necessary so the transistor can be freely used as a four terminal 

device which is favored in some analog and digital applications [39-43].  Figure 1.17 

illustrates these two types of design strategies of DTMOS approach.  Although, we 

have made a distinction here, these two terms are sometimes used interchangeably in 

the literature. Furthermore, both of these strategies can sometimes be used in a single 

design such as,  in the design of an ultra low-voltage OTA circuit where twin-well 

process technology are used to reach the bodies of both PMOS and NMOS 

transistors [44]. 

                                                                         

Figure 1.17 : DTMOS design strategy. 

DTMOS technique was used to realize a common mode feedback circuit (CMFB) for 

a folded cascode amplifier in [39-41] which is shown in Figure 1.18 with the circuit 

part  that is realizing the CMFB circuit.  

 

 

Figure 1.18 : Folded cascode amplifier using DTMOS technique [39-41]. 
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In the circuit in Figure 1.18, to compensate the voltage variations over M11, a 

feedback is applied to its body by M9 and M10 which sense the common mode 

voltage and behaves as big two resistors. Figure 1.19 shows the effectiveness of the 

CMFB circuit utilizing DTMOS technique. 

               

Figure 1.19 : The CMFB circuit effectiveness [39]. 

Another circuit with DTMOS technique was proposed in [45]. The designed  OTA 

circuit operates under 0.5V supply voltage with a 61dB dynamic range at 1% THD 

consuming 0.6mW and it was used as the active element in a fifth-order Chebyshev 

filter. However, to reach the bodies of both PMOS and NMOS transistors in the 

circuit, an expensive triple-well fabrication process was used. 

DTMOS approach, either as DTMOS transistors or DTMOS technique is utilized in 

digital circuits [46-49]. Since the scope of this study does not include digital circuits, 

we have just preferred to give them as references except the inverters in [48] as an 

example of DTMOS usage in digital circuitry. The DTMOS inverters are depicted in 

Figure 1.20 where the first one uses additional auxiliary transistors to reduce the 

input load of the inverter to increase overall performance of the inverter, second 

inverter in the figure is the classical DTMOS inverter proposed by Assederaghi et al 

[3-4]. 
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 Figure 1.20 : DTMOS inverters [48]. 

The measured delays of the inverter with auxiliary transistors and normal CMOS 

inverter are compared in Figure 1.21. It is seen that DTMOS inverter has less delay 

than its CMOS counterpart due to its higher current drive. 

                        

Figure 1.21 : Delay comparison of DTMOS and MOS inverters [48]. 

Conventional bandgap references are limited by almost 1.25V bandgap of silicon for 

low-voltage operation [50]. Therefore, low power reference designs have become an 

active research topic. Low-power bandgap reference design is another DTMOS 

application area.  Some studies about this topic can be found in [51-54] where diodes 

realized by DTMOS transistors behave virtually as low bandgap devices. Similar to 

bandgap references, by using DTMOS transistors, a precision temperature sensor 

was also proposed in [55]. 
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Figure 1.22 shows a DTMOS-based bandgap reference with 0.65V reference voltage 

from [51] where diode connected PMOS transistors are used in DTMOS 

configuration utilizing their virtually lower bandgap reference characteristic as given 

in (1.34).  The shaded area in Figure 1.22 shows a low-voltage current mirror similar 

to the design in [56].  

blgapapparentDTMOSgap VV )(,                                       (1.34) 

where bl is the barrier lowering voltage [51] and given by (1.35).  

)(

.

blbox
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CC
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                                             (1.35) 

GW shows the built-in voltage between the gate and well of DTMOS transistor and 

Cb is the depletion capacitance. For a standard 0.35µm CMOS p-type DTMOS 

device in [51] apparent bandgap voltage extrapolated to 0K is about 0.6V 

significantly less than normal bipolar transistors and silicon diodes having 1.2V 

bandgap. 

                       

Figure 1.22 : Low-voltage DTMOS bandgap reference [51]. 

1.4 Motivation for This Study 

DTMOS transistor having unique features is a very suitable device for ultra low 

power ultra low voltage circuits. However, because of its modelling difficulties and 

subtle operation dynamics, this device has not been fully appreciated in the literature. 

The need for low-voltage designs has been continuously growing where the 

requirements of the today’s and even future circuits can be met by this device 
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successfully. Especially, its ideal subthreshold swing feature leads to efficient 

subthreshold circuits capable of operating even under 0.5V supply voltage whenever 

ultra low power consumption is necessary such as biomedical operations. A few 

examples can be given as wireless EEG or hearing aid applications where operation 

frequency and speed is not the main design specification but power consumption is 

the top priority. Interestingly, there are very few studies on DTMOS-based circuits 

for aforementioned applications in the literature.  

Consequently, in this study, we have tried to connect this missing link and showed 

even using standard bulk CMOS technologies such circuits can be realized under 

ultra low supply voltage of 0.5V with consuming power ranging in nanowatt levels. 

Furthermore, in DTMOS technique, freely available bulk terminal can be used for 

original circuit solutions by adjusting biasing of the transistor. That idea can be used 

for tuning in different applications such as MOS-only filters.  
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2.  DTMOS OTA DESIGN  

This section summarizes a DTMOS-based OTA design and its application to EEG 

data processing. An OTA circuit in Figure 2.1 was designed using PMOS DTMOS 

transistors. For the validity of our MOSFET models, we have used minimum channel 

lengths as 2µm long and the supply voltage is chosen ±0.2V for safe operation that 

prevents excess currents from forward biased junctions which may violate BSIM 

model we have used.   

2.1 DTMOS OTA Circuit  

The proposed ultra low voltage low power OTA circuit is depicted in Figure 2.1 

where transistor M1-M5 are chosen as DTMOS transistors since the process is n-well 

so only PMOS transistors can be connected as DTMOS.  

Figure 2.1 : DTMOS-based ultra low voltage OTA [57]. 
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All the transistor channel lengths are chosen 2µm while maximum transistor width 

does not exceed 300µm.  The dimensions of the transistors  in Table 2.1 are obtained 

for a tail current of 2.65nA in the designed circuit.  

Table 2.1 : Transistor dimensions. 

Transistor  Channel Width (W) Channel Length (L) 

M1, M2, M3 5 µm 2 µm 

M4, M5 300 µm 2 µm 

M7, M8 50 µm 5 µm 

M6, M9 100 µm 5 µm 

In SPICE simulations, the circuit consumes only 3.18nW power. Biasing voltages 

VB1 and VB2 were chosen as reference potential. That eliminates the necessity to 

form separate biasing voltage circuits.  As it is seen from voltage transfer 

characteristic in Figure 2.2, when the circuit is supplied by a symmetric ±0.2V 

supply voltage, its input voltage swings between -120mV and 60mV.  Under this 

biasing conditions, it shows a transconductance of 54nA/V which can be defined as 

in (2.1).  
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mm

mm
m g

g

g
G                                            (2.1) 

The 3dB-bandwidth of this transconductance was found as 3.3kHz. Although this 

frequency bandwidth for the transconductance seems less for some application, it 

was quiet sufficient for the filter circuit used in real EEG data processing. For the 

proposed circuit, the performance summary was tabulated in Table 2.2. 

Table 2.2 : OTA performance summary. 

Technology TSMC 0.18µm 

Supply voltage ±0.2V 

Power consumption 3.18nW 

Transconductance 54nA/V 

Tail current 2.65nA 

Transconductance 3dB-frequency 3.3kHz 

Input resistance@1kHz 213MΩ 

Output resistance@1kHz 762MΩ 
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The voltage transfer characteristic of the proposed circuit is shown in Figure 2.2. The 

circuit operated without following error, fairly close to the negative supply rail but 

misses more than half of the positive rail. This might be improved by employing rail 

to rail input stages [58]. However, this requires both constant transconductance 

circuitry and a twin-well process for NMOS DTMOS generation. Ordinary NMOS 

usage in this circuit topology is limited by 0.4V ultra low-voltage supply rail. 

               

Figure 2.2 : DTMOS-based OTA voltage transfer characteristic [57]. 

In Figure 2.3, the transconductance of the OTA is drawn against frequency, which 

has the value of 54nA/V, when VB1 biasing voltage is connected to the reference. 

              

Figure 2.3 : DTMOS-based OTA transconductance characteristic [57]. 
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The transconductance value can be adjusted by either changing the adjusting voltage 

value or, in some degree, changing the dimension of M1 transistor for different 

applications but this value for the EEG data filtering circuit was sufficient. 

2.2 OTA-based Band-pass Filter  

The proposed OTA circuit was used in a band-pass configuration in Figure 2.4 to 

filter real EEG measurements by connecting low-pass and high-pass filter biquads 

from [59-60] to maximize pass-band flatness which is necessary when EEG signals 

are considered. In the design, BSIM3v3.2 TSMC 0.18 µm process parameters are 

used to model the transistors with passive element values C1=348pF C2=174pF 

C3=3040pF C4=1520pF and W/L ratios of Table 2.1 were used for the EEG filter 

application.   

           

Figure 2.4 : OTA-C band-pass filter [57,59-60]. 

The transfer function of the filter in Figure 2.4 is given in (2.2) and design equations 

are given in (2.3). 
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The simulated and ideal filter responses are in close agreement from 0dB to -40dB 

amplitude. Flatness can be seen at the pass band from Figure 2.5. Instead of using 

high-pass and low-pass filters to get this flat pass band response, two band-pass 

filters can be used together with proper tuning. 

    

Figure 2.5 :  The simulated and ideal responses of OTA-C band-pass filter[57].  

After 1kHz, actual filter response deviates from the ideal one which is induced by the 

limited bandwidth of the OTA used in the filter. This can be increased by adjusting 

W/L ratios of the transistors and biasing voltages but we actually do not favour high 

currents to increase the bandwidth when very low frequency EEG signals are 

processed in the circuit because this will unnecessarily increase the power 

consumption. 
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Figure 2.6 shows the total harmonic distortion against input peak to peak voltage 

signal where it can be seen that THD value becomes less than 9% for all the common 

mode range. 

                    

Figure 2.6 :  OTA-C band-pass total harmonic distortion[57]. 

2.3 EEG Application using OTA Element  

The band-pass filter circuit in Figure 2.3 was used to filter out unwanted signals from 

real EEG data measurements of the author’s brain [61]. Resulting input and output 

signals are depicted in Figure 2.7 where the bold lines represent output signal which 

is clear of high and very low frequency signal. The band-pass filter circuit is 

composed of  high-pass filter having 4Hz pole frequency and low-pass filter having 

35Hz pole frequency to process the EEG data that carries the frequency information 

of steady state visually evoked potential (SSVEP). This information is extracted from 

the EEG of the subject after s/he is stimulated visually. SSVEP is used in human-

brain interface studies which is an active research topic in biomedical engineering. 

The importance of the proposed design is that the DTMOS transistors are first used 

in EEG data processing. It was shown in the proposed circuit that DTMOS 

transistors are suitable elements for ultra low voltage and ultra low power 

applications where the signal frequencies are not high such as the EEG data signals 

in this study. 
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Figure 2.7 :  The input and output responses of the filter for EEG signal [57]. 
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3.  DTMOS VDTA DESIGN  

Voltage differencing transconductance amplifier (VDTA) is a recently proposed 

active element [62]. It has voltage inputs, an alternative to current differencing 

transconductance amplifier (CDTA) where the inputs are currents [63]. These 

voltage inputs result in new useful propositions for conventional circuits of analog 

signal processing [64].  The circuit symbol of VDTA is given in Figure 3.1 and its 

definition relations are shown in matrix form in (3.1). 

                                                             

Figure 3.1 : VDTA circuit symbol. 
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                       (3.1) 

The voltage difference of input terminals is multiplied by a transconductance of Gm1 

which then becomes the IZ current.  This current flows over the impedance at the Z 

terminal forming the voltage at Z terminal. This voltage is then multiplied by 

positive and negative ±Gm2 transconductances to form the output ±IX currents.  
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3.1 DTMOS VDTA Circuit  

The proposed DTMOS-based ultra low-voltage, ultra low-power VDTA circuit is 

illustrated in Figure 3.2. VDTA element can be generated by connecting two OTA 

circuits in a cascaded fashion. The transistors from M1 to M9 constitute the first 

OTA and the transistors from M10 to M18 constitute the second OTA where the 

transistors from M1 to M5 are DTMOS and similarly in the second part, the 

transistors from M10 to M14 are DTMOS. These DTMOS transistors having ideal 

subthreshold swing efficiently use the available voltage headroom under the ultra 

low supply voltage of ±0.2V. 

Figure 3.2 : The proposed VDTA circuit [65].  

In an n-well standard CMOS process, PMOS transistors can only be connected as 

DTMOS transistors whereas NMOS transistors share a common well in an n-well 

process and their body terminals cannot be connected to their gates to generate 

NMOS DTMOS transistors. One possibility is to use expensive triple-well processes 

with deep n-wells to produce NMOS transistors with their own wells.  The cost 

restriction limits the overall performance of the proposed circuit where most of the 

voltage headroom is consumed over the NMOS transistors. As a result, strong 

inversion operation and high frequency applications are not possible using this circuit 

where the transistors are biased in weak inversion. In this mode of operation, MOS 
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transistor’s drain current is given by (3.2), transconductance by (3.3) and the 

transconductance resulting from body effect by (3.4) as described in [66]. Active-

block transconductance Gm is given in (3.5). The parameters in (3.2), (3.3), (3.4) and 

(3.5) have their usual meanings. 
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Using TSMC 0.18µm BSIM3v3.2 process parameters, PSPICE gives VDTA 

transconductances Gm1 = Gm2 = 54nA/V for the proposed circuit. Tail bias current 

flowing over both M1 and M10 transistors is 2.65nA when the transistor dimensions 

in Table 3.1 are used in the design. In Figure 3.3, voltage transfer characteristic of 

the VDTA circuit is shown. While obtaining this characteristic, VDTA was 

connected in a feedback configuration and the Z terminal was loaded with a 1nF 

capacitor, which is a typical load value for the operating frequency. 

Table 3.1 : Transistor dimensions of the proposed VDTA circuit. 

Transistors Width Length 

M1, M2, M3, 
M10, M11, M12 

5µm 2 µm 

M4, M5, M13, M14 300 µm 2 µm 

M7, M8, M16, M17 50 µm 5 µm 

M6, M9, M15, M18 100 µm 5 µm 
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It is found from the figure that input voltage swing range is between -170mV to 

60mV under ±200mV supply voltages. 

                      

Figure 3.3 : Voltage transfer characteristic of the proposed VDTA circuit [65]. 

VDTA transconductance Gm=Gm1=Gm2 is depicted in Figure 3.4 where it is found 

approximately as 54nA/V with a 3dB bandwidth of 3.3 kHz.  

                    

Figure 3.4 : Transconductance characteristic of the proposed VDTA circuit [65]. 
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Performance summary of the proposed VDTA is tabulated in Table 3.2. 

Table 3.2 : VDTA Performance summary. 

Technology TSMC 0.18µm 

Supply Voltage ±0.2V 

Input Voltage Range -170mV -  60mV 

Power Consumption 5.96nW 

Transconductances (Gm1=Gm2) 54nA/V 

Transconductance 3dB 
Frequency 

3.3kHz 

Input Resistance @300Hz 628MΩ 

Output Resistance@300Hz 1.85GΩ 

From the Table 3.2, it can be seen that the input range of this element is larger than 

the OTA design in section 2 which can be attributed to the inherent feedback in 

VDTA element. Total power consumption of the proposed VDTA circuit is just  

5.96nW which is a very suitable value for ultra low-power operation. One last thing 

to note about this VDTA circuit is that there are four biasing voltages as seen from 

Figure 3.2. For our application, we have found that using the reference voltage level 

for them is possible. Grounding the biasing voltages as VB1=VB2=VB3=VB4=0V has 

prevented the necessity of additional circuitry. 

3.2 VDTA-based Band-pass Filter  

The VDTA-based band-pass filters in [64] are used in this study. The fourth-order 

band-pass filter employing proposed VDTAs  is shown in Figure 3.5. 

  

Figure 3.5 : VDTA-based double-tuned band-pass filter circuit [64]. 
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The double-tuned circuit is comprised of two band-pass filters which are tuned using 

two different pole frequencies. The transfer function of the filter in Figure 3.5 is 

given in (3.6). 
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where H0 is the gain factor. Natural frequencies ωp1,2 and quality factors Qp1,2 of the 

filter are determined according to the relations in (3.7) and (3.8).  
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The non-ideal effects coming from the CMOS VDTA circuit such as parasitic 

capacitances and conductances modify the natural frequency and quality factor 

definitions as described in [64]. Parasitic capacitances appear at VP, VN inputs and Z 

terminal. Additionally, parasitic conductances occur at X+, X- and Z terminals. 

The filter circuit was used in processing real EEG data measurements. For our EEG 

application, the requirement was a fourth order band-pass filter with a pass-band 

between 4Hz and 35Hz. For the double tuned filter, we have used the pole frequency 

relations in [67] where B is the bandwidth and f0 is the center frequency.  The EEG 

filter parameters, B=31Hz, fc=19.5Hz and Qp1=Qp2=1 were chosen. The pole 

frequencies are fp1=30.45Hz and fp2=8.54Hz. 
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To realize these pole frequencies, VDTA transconductances and capacitor values 

were determined according to the relations in (3.7) and (3.8) which give 

C1=C2=1.006nF, C3=C4=0.282nF when VDTA transconductances 
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Gm1=Gm2=Gm3=Gm4=54nA/V are chosen. Since relatively large capacitors are needed 

they should be connected to the filtering circuit externally. 

Double-tuned band-pass filter using the circuit in Figure 3.2 was simulated using 

PSPICE program with above calculated passive element values. Ideal and simulated 

frequency responses of the filter are shown in Figure 3.6. 

        

Figure 3.6 : Ideal and simulated frequency responses of the filter circuit [65]. 

The deviation from the ideal one, after a few kHz frequencies, is caused by the 

proposed VDTA’s bandwidth which is limited to a few kHz range because the 

transistors in the active circuit operate in weak inversion. Actually, there is a trade-

off between bandwidth and power consumption. High biasing currents bring higher 

bandwidth at the expense of high power consumption. Fortunately, for our EEG data 

filtering application, our active block’s bandwidth was sufficient and did not lead to 

any problems. 

In order to investigate the time domain response of the double-tuned VDTA-based 

band-pass filter, an input sine wave with a frequency of 20Hz and peak to peak 

amplitude of 100mV is applied and the corresponding response in Figure 3.7 is 

obtained. The decrease in the amplitude is actually the characteristic of the double-

1 0
-2

1 0
0

1 0
2

1 0
4

-1 2 0

-1 0 0

-8 0

-6 0

-4 0

-2 0

0

F re q u e n c y  (H z )

A
m

p
li
tu

d
e
 (

d
B

) s im u la te d

id e a l



40 

tuned filter design because  two different intersections of the two band-pass filters to 

obtain double-tuned response cause an expected decrease in the amplitude which  

can be increased by an additional circuitry if necessary. 

                      

Figure 3.7 : Sinusoidal response of the filter for 20Hz, 100mV (p-p) signal [65]. 

Temperature is an important factor for very low frequency filters with large time 

constants. Therefore, it is necessary to analyze the change of pole frequencies with 

respect to the change in temperature [68].We have changed the temperature from 0°C 

to 75°C. Resulting amplitude characteristic is depicted in Figure 3.8. 

          

Figure 3.8 : Filter pole frequency change with temperature [65]. 
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From Figure 3.8, it can be seen that the temperature drift of the center frequency is 

quite significant. This decreases signal amplitudes because of the drifted stop-band 

of the filter. Nevertheless, the filter can be used under conditions or in environments 

requiring high temperature change, if a compensation method is utilized to keep the 

center frequency in limits.  

One solution to resolve this problem is explained in [68]. Another solution might be 

off-chip tuning of pole frequencies of the filter. In Figure 3.9, the response of the 

filter to a 20Hz sinusoidal input signal has been given for the temperature range from 

27°C to 40°C. This limited range is chosen in the figure to prevent amplitude losses 

due to pass-band drift. 

                          

Figure 3.9 : Filter  response to input signal for the change in temperature [65]. 

THD of the proposed filter was calculated with PSPICE and the related results was 

depicted in Figure 3.10 where the total harmonic distortion of the filter is less than 

%2 for inputs not exceeding 100mV peak to peak voltage. 
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Figure 3.10 : Output THD of the filter with respect to input voltage [65]. 

Monte-Carlo simulations are performed with the help of PSPICE program to show 

the effects of process variations (W, L, tox, VTO) on the filter amplitude characteristic. 

From  Figure 3.11, it is seen that most of the cases the variations are in specific 

limits, however, there are some cases where deviations are significant. This is caused 

by the susceptibility of the circuit to process deviations which mainly affect the 

biasing under ultra low supply voltage with ultra low biasing currents. These biasing 

currents can be increased but this trades off power consumption performance of the 

filter. 

                      

Figure 3.11 : Monte-Carlo simulations for the amplitude of the filter [65]. 
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The noise is an another important parameter in EEG signal processing where the 

signal voltage levels are so weak that the desired signal components might be lost in 

the measuring process if noisy equipment is used. To investigate the noise 

performance of the VDTA filter, PSPICE simulations are performed in the frequency 

range of interest. Over a 500Hz bandwidth rms noise voltage was found as 22.9µV 

which is a significantly high value for EEG signal processing applications. This can 

be resolved by using, in the preceding stages, an instrumentation amplifier which has 

characteristically low noise level. 

3.3 EEG Application using VDTA Element 

In order to further investigate the characteristics of the proposed band-pass filter, real 

measurements from an SSVEP (Steady State Visual Evoked Potential)-based BCI 

(brain computer interface) EEG experiment were used with the help of MATLAB 

program.   

SSVEP dominantly appears in the visual cortex of the brain and it is the result of a 

person’s attention on flickering lights [61]. It is measured by using EEG methods. 

Constant frequency signals visually stimulate a person and this affects the person’s 

EEG signal at the same frequency which can be used as a mean to brain computer 

interaction which is currently an active research topic.  

EEG measurement setup and the data in [61] were used for applying input signal data 

to our filter.  The experiment setup is shown in Figure 3.12. EEG signal is sensed via 

electrodes connected to the scalp. These signals are then fed into an amplifier system 

specialized on EEG data recordings. Amplified signal data are then transferred to 

computer for further processing.  

The part of the experiment we used for filtering is comprised of computer recordings 

of the EEG signals of the subjects while they are looking at four red circles at the 

four the corners of the computer monitor flickering at four different constant 

frequencies (4.60Hz, 6.43Hz, 8.03Hz, and 10.70Hz). Applied input data is taken 

from the OZ channel of the connected 16 electrodes. This channel is more sensitive 

to the visual stimulations. 

The EEG data was taken for 30s with a sampling frequency of 500Hz generating 

15000 data points [61]. For simplicity, in our filter application, we have just used the 
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recordings for two seconds with 1001 data points from OZ channel recordings of the 

subject’s visual attention on the left red circle that is flickering on the monitor with a 

constant frequency of 10.70Hz. 

                                               

Figure 3.12 : EEG measurements setup    [61,65]. 

Filter input and output signals are illustrated in Figure 3.13. For figure clarity, only 

the data of first 0.4s is shown in the figure and the output signal is multiplied by a 

factor of filter gain loss to compensate the decrease in amplitude. Input data signal 

amplitudes are also multiplied by a factor to manage to use them properly as inputs 

to the filter. 

 

Figure 3.13 : Time response of the filter output to EEG data for 0.4s [65]. 
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In Figure 3.14 and Figure 3.15, pre-filter and post-filter frequency spectrums of our 

EEG signal are depicted respectively.  

                                    
Figure 3.14 : Pre-filter frequency spectrum of the EEG data [65]. 

As shown in the figures, unwanted frequency harmonics are successfully filtered out 

from the signal by the VDTA filter and the main frequency component of 10.74Hz is 

become clearer at the filter output. That is almost the same frequency of the applied 

visual stimulation signal to the subject. 

                                                 

Figure 3.15 : Post-filter frequency spectrum of the EEG data [65]. 
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Pre-filter and post-filter frequency spectrums show the validity of SSVEP study 

where the subject’s brain reacts to the applied flickering light by producing EEG 

signal at the same frequency of the flickering. That phenomenon is used in brain 

computer interface applications.   

3.4 Comparison of the Filter with Available Literature 

Performance summary of the filter circuit in this work and comparison of other 

published low power filter circuits with a Figure of Merit (FoM) [71], which is 

described in (3.11), are given in Table 3.3. From the results, it is seen that, DTMOS-

based VDTA filter in this work, with a FoM better than [69], [70] and worse than 

[71] achieves a moderate performance among the filters in Table 3.3. However, it is 

important to note that the proposed DTMOS-based filter circuit is capable of 

working under significantly lower supply voltage of ±0.2V than its alternatives and 

consumes the least power. 

DRfn

VDDP
FoM

c 


                                             (3.11) 

Table 3.3 : Performance summary and comparison of the VDTA filter [65]. 

Filter [69] [70] [71] 
This 
work 

Supply (V) 0.9 2.8 1 ±0.2 

Power (nW) 262k  230 14.4 12.7 

DR (dB) 52 67.5 55 63.7 

fc. (Hz) 1.12k 141 732 19.5 

Order, (n) 6 4 4 4 

THD (%) 1 5 1 2 

FoM (10-13) 6632 169 0.89 10.2 

To summarize the work in this section, it can be concluded that a DTMOS-based 

VDTA circuit was proposed. The circuit is capable of working under an ultra low 

supply voltage ±0.2V and only consuming 5.96nW. DTMOS transistors are used to 

efficiently exploit shrank voltage headroom. For very low power consumption, the 

transistors were used in weak inversion where DTMOS transistors are very suitable 

to this mode of operation due to their well subthreshold slope characteristic. 
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Using the proposed VDTA circuit, a band-pass filter was designed for EEG data 

processing. The circuit was used in a fourth order double-tuned pass-band filter. The 

filter consists of two VDTA cells and two externally connected capacitors. 

According to PSPICE simulations, both VDTA and the double-tuned filter have 

performed well. The filter was successfully used to filter out unwanted frequency 

components of an SSVEP based BCI system’s amplifier outputs. Although, in 

measurements, there was amplifying and filtering integrated in the measurement 

hardware, there was still a need for additional filtering which is usually done by 

digital filtering via software. Instead of digital filtering approach, the proposed filter 

was utilized to investigate its performance in a practical application. It is found that 

both PSPICE and MATLAB results are in close agreement with theory. The 

proposed DTMOS-based VDTA circuit is suitable for ultra low-power, ultra low-

voltage analog signal processing applications.  
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4.  DTMOS OP-AMP AND MULTIPLIER DESIGNS 

In this section, an ultra low voltage ultra low power DTMOS OP-AMP and DTMOS 

multiplier circuit is described. Those elements are operating in subthreshold region 

and they are designed for a possible memristor application. Ultra low voltage 

operation was the main design specification. Therefore, similar to previous designs, 

only 0.4V supply voltage was used in the designs. These designs here, after some 

modification in their biasing, were used in the generation of an ultra low voltage 

memristor element.  

4.1 OTA-based DTMOS OP-AMP Design 

The designed subthreshold DTMOS OP-AMP is composed of the DTMOS-based 

OTA [57] and a simple inverter output stage. The topology is very compact and 

having only 11 MOS transistors. The OP-AMP circuit is shown in Figure 4.1. 

                                    

Figure 4.1 : DTMOS-based  OP-AMP. 
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In the circuit in Figure 4.1, M1-M5 and M10  transistors are DTMOS transistors. M1 

transistor supplies the biasing current of M4 and M5. M6-M7 and M8-M9 are the 

current mirror pairs. VB1 is the biasing voltage which can be changed to adjust the 

biasing current of the first OTA stage which mainly determines the performance of 

the OP-AMP. 

Transistor dimensions of the proposed OP-AMP circuit are given in Table 4.1. 

Table 4.1 : Transistor dimensions of the proposed OP-AMP. 

Transistor Width Length  

M1, M2, 

M3 
5µm 2µm 

M4, M5 300µm 2µm 

M7, M8 50µm 5µm 

M6, M9 100µm 5µm 

M10, M11 400µm 2µm 

In the circuit, drain of the M9 transistor is the output of the initial DTMOS OTA 

stage which has high output impedance where the voltage signal is weak if low 

resistive loads are connected to the output. However,  this node sees the gates of M10 

and M11 which are very high impedance inputs. Thus, voltage signal is transferred to 

the output where M10 and M11 increase load driving capability but the output stage 

is still incapable of driving low resistive loads and overall circuit behaves a kind of 

high output impedance circuit. This problem can be solved by applying additional 

negative feedback, however, this would require more circuitry which increases 

power consumption. In our application, using the available ultra low-voltage ultra 

low-power DTMOS OTA stage in [57] for the circuit in Figure 4.1, it was sufficient 

in our memristor emulating circuit when there is high resistive load connection at the 

output.  C1 is the Miller compensation capacitor. Choosing 8pF was sufficient for the 

stability and this value has given 63° phase margin and close to 20kHz unity gain 

bandwidth when VB1 biasing voltage was set to -0.1V. Transistors were operated in 

the subthreshold region of operation since, in this mode of operation, DTMOS 

transistors operate with an ideal subthreshold swing of 60mV/dec. 



51 

Figure 4.2 shows the voltage transfer characteristic of the operational amplifier when 

the OP-AMP is loaded with a 100kΩ resistor in an open loop configuration. 

                     

Figure 4.2 : Voltage transfer characteristic of the open-looped OP-AMP. 

Input voltage range is depicted in Figure 4.3 when the output is unloaded and the 

OP-AMP is connected in a unity gain feedback configuration.  

                      

Figure 4.3 : Voltage transfer characteristic of the closed-looped OP-AMP. 
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AC response of the proposed OP-AMP is illustrated in Figure 4.4 where the OP-

AMP is loaded with a 100kΩ resistor in open loop configuration and having 20kHz 

Unity gain bandwidth (UGBW). 

                 

Figure 4.4 : AC characteristic of the OP-AMP. 

Sinusoidal response in Figure 4.5 is obtained when the OP-AMP is connected in 

unloaded unity gain feedback configuration. The input signal is 200mV peak to peak, 

1kHz sinus signal.  

                      

Figure 4.5 : The response of the OP-AMP to sinusoidal input signal. 
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Figure 4.6 shows the step response of the OP-AMP for a 100mV step input at 1kHz 

when it is connected as unloaded in a unity gain feedback configuration. Slew Rate 

(SR) was found as 7V/ms. 

                 

Figure 4.6 : Step response of the OP-AMP. 

To further investigate the OP-AMP characteristics, it is used in a Sallen and Key 

topology. Figure 4.7 is obtained where a zero is effective on the transfer function 

however, this did not cause any problems in the memristor application. 

                     

Figure 4.7 : Ideal and simulated responses of a Sallen and Key filter. 
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Some of the performance metrics of the proposed DTMOS-based OP-AMP are 

tabulated in Table 4.2.    

Table 4.2 : Performance summary of the proposed OP-AMP. 

Technology TSMC 0.18µm 

Supply Voltage ±0.2V 

Input Voltage Range -140mV -  80mV 

Power Consumption 160nW 

Slew Rate (SR) 7V/ms 

Unity Gain Bandwidth 
(UGBW) 

20kHz 

Phase Margin 67° 

Compensation Capacitor 8pF 

 

4.2 DTMOS Multiplier Design 

A DTMOS-based four-quadrant multiplier circuit was proposed based on the 

subthreshold multiplier idea in [72]. Ultra low voltage ultra low power DTMOS 

multiplier circuit is shown in Figure 4.8. The circuit was supplied by ±0.2V 

symmetrical power supply. All transistors are operating in the subthreshold region. 

For ultra low voltage operation, M5-M7 DTMOS transistor were used. To pick up 

the output current, M8-M9 and M10-M11 current mirror transistors were employed. 

The overall circuit is consist of only 11 transistors as depicted in the figure. VB1 is 

chosen as the ground reference potential. It is seen from the simulation results, as 

expected, circuit operates a four-quadrant multiplier circuit. There is slight 

nonlinearity at X terminal which limits input voltage range.  

The circuit consumes just 1.7nW under 0.4V supply voltage and capable of operating 

in the range of 4kHz which was sufficient for the low frequency memristor 

application circuit. 
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Figure 4.8 : DTMOS-based four-quadrant subthreshold multiplier. 

Body terminals of M1-M4 are used for applying the input signal so the circuit can be 

also thought as a bulk-driven multiplier with additional DTMOS transistors. In fact, 

the structure is based on classical Gilbert multiplier and gives Gilbert-like 

multiplication coefficient. Output current can be approximated as  

yx

t
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4

)1(



 
                                                (4.1) 

where κ is subthreshold gate-coupling coefficient, t is the thermal voltage and Ib is 

the biasing current flowing over M7 transistor. 
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Transistor dimensions of the circuit is given in Table 4.3. 

Table 4.3 : Transistor dimensions of the proposed multiplier. 

Transistor Width Length  

M1, M2, M3, M4 50µm 2µm 

M5, M6 30µm 5µm 

M7 4µm 2µm 

M8, M9, M10, M11 50µm 5µm 

 

The performance of the proposed DTMOS-based multiplier is investigated by SPICE 

program and resulting simulations including input voltage ranges, frequency 

behavior and a modulator application are illustrated in the figures from Figure 4.9 to 

Figure 4.13, where in Figure 4.13, the frequency of one input has been chosen forty 

times larger than the other input.   

 

Figure 4.9 : DC characteristics (X terminal) of the proposed multiplier circuit. 
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Figure 4.10 : DC characteristics (Y terminal) of the proposed multiplier circuit. 

   

Figure 4.11 : AC characteristic (X terminal) of the proposed multiplier circuit. 
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Figure 4.12 : AC characteristic (Y terminal) of the proposed multiplier circuit. 

Figure 4.13 : Multiplier response to sinusoidal input for two different frequencies. 
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4.3 Memristor Application using Op-Amp and Multiplier 

The proposed OP-AMP and multiplier circuits here were successfully applied to an 

ultra low-voltage ultra low power memristor circuit. Since memristor circuit operates 

in low frequencies, the limited bandwidth of the design did not cause problems. In 

order to stay in the scope of this study, we do not give the details of the memristor 

design here. 
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5.  DTMOS CCII DESIGN 

In this section, a DTMOS-based ultra low voltage, ultra low power second 

generation current conveyor has been proposed. The circuit is used in a second order 

band-pass filter topology which is then applied to an analog hearing aid scheme,  as  

the part of the filter bank within the overall system.  

5.1 DTMOS CCII Circuit 

Current conveyor circuit is one of most important active blocks of current-mode 

approach. It is possible to find three different generations of this basic block where 

the second generation current conveyor (CCII) is the mostly used one. They have 

attracted much attention with the increasing importance of low power and low 

voltage circuits [73].  

A DTMOS-based CCII circuit is proposed in this study. The transistors are all 

operating in the subthreshold region. The input stage has been formed by a pseudo-

differential low voltage amplifier consisting of M1-M4.  The output stage is the class 

AB stage from [73] with the modification of DTMOS transistor usage for ultra-low 

voltage operation. M1-M2 and M5,M7 are the PMOS DTMOS transistors. There is 

feedback in the topology including M6 transistor which helps to decrease the 

resistance at the X input terminal which should be zero ideally. However, this is very 

difficult to achieve under subthreshold mode of operation where transistor 

transconductances are significantly low which severely affects the resistance seen at 

the X terminal.  

The overall circuit is shown in Figure 5.1 where it can be seen that it consists of just 

eight transistors, thus, the topology is very compact which is a good thing for 

minimizing the parasitics and low power consumption. The circuit consumes just 

214nW while enabling close to MHz range operation.  
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Figure 5.1 : The proposed DTMOS-based subthreshold CCII circuit. 

The dimensions of the transistor in the Figure 5.1 are tabulated in Table 5.1. The 

minimum channel lengths used for DTMOS transistors are 2µm for the support of 

the model as explained at the introduction section.  

Table 5.1 : Transistor dimensions of the proposed CCII. 

Transistor Width Length  

M1, M2 300µm 2µm 

M3, M4 50µm 2µm 

M5  300µm 2µm 

M6 320µm 0.4µm 

M7 300µm 2µm 

M8 320µm 0.4µm 

From  Table 5.1, it can be concluded that relatively large transistors are used in the 

design. They were chosen for correct operation of the circuit under ultra low supply 

voltage and this is generally the expected case for any MOS circuits operating in the 

subthreshold region where transistor dimensions have been chosen large to enable 

targeted current flow under low voltage operation. The circuit was simulated by 

SPICE.  Figure 5.2 shows the input range where the VX voltage follows VY voltage. 
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Figure 5.2 : The change of VX voltage versus VY voltage. 

In Figure 5.3, the following error of VX voltage to VY voltage is shown where it can 

be said that  input voltage  range is ±60mV with small error. 

                  

Figure 5.3 : The change of error versus VY voltage. 
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Figure 5.4 depicts the sinusoidal responses obtained by 100mV peak to peak input 

VX and VY input voltages. 

                 

Figure 5.4 : The sinusoidal response of VX and VY voltage. 

Figure 5.5 illustrates the voltage change of both VZ and VX versus VY voltage when 

both Z and X terminals are loaded with 100kΩ resistances. 

                     

Figure 5.5 : The change of VZ and VX versus VY voltage. 
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In Figure 5.6, sinusoidal response of both VZ and VX are shown where they are very 

close in value and AC response of VX and VZ has been given in Figure 5.7. 

         

Figure 5.6 : The sinusoidal response of VX and VZ voltage. 

                

Figure 5.7 : AC response of VX and VZ versus frequency. 
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Some of the simulations results and the performance summary of the proposed CCII 

are tabulated in Table 5.2. 

Table 5.2 : Performance summary of the proposed CCII. 

Technology TSMC 0.18µm 

Supply Voltage ±0.2V 

Input Voltage Range (VX-VY) -60mV -  +60mV 

3dB Bandwidth (VX,VZ) 600kHz 

Power Consumption 210nW 

VY resistance@1kHz 11.8MΩ 

VX resistance@1kHz 964Ω 

VZ resistance@1kHz 2MΩ 

 5.2 CCII-based Band-pass Filter for Speech Processing 

The proposed DTMOS-based subthreshold current conveyor was used in a band-pass 

filter which was proposed by the reference [74]. That filter configuration is  shown in 

Figure 5.8.  The reason for choosing a band-pass filter type is that in analog hearing 

aid systems, there are analog filter banks that consist of band-pass filters [75]. Those 

filters should be capable of operating at sound frequencies with very little power 

consumption to save the life of battery as long as possible. The filter circuit 

employing the proposed CCII was simulated by SPICE program and the Figure 5.9 

was obtained when the passive element values of C1=628pF C2=628pF, R1=100kΩ 

R2=100kΩ are used. 

  

Figure 5.8 : CCII based band-pass filter [74]. 
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The pole frequency and quality factor of the filter was given in (5.1) which was 

adjusted to show that the circuit behaves close to the ideal response throughout all 

the sound frequency range and give an example that the filter might be employed in 

hearing aid filter banks. 
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Figure 5.9 : CCII based band-pass filter frequency response. 

To further investigate the characteristic of the filter, real human speech signal is 

applied to SPICE, then ideal and simulated filter responses are compared. Figure 

5.10 shows author’s speech signal while saying the word “DTMOS”. 

1 0
1

1 0
2

1 0
3

1 0
4

1 0
5

1 0
6

-9 0

-8 0

-7 0

-6 0

-5 0

-4 0

-3 0

-2 0

-1 0

0

F re q u e n c y  (H z )

A
m

p
li

tu
d

e
 (

d
B

)

id e a l

s im u la te d



68 

 

Figure 5.10 : Input speech signal.  

For clarity, only some portions of the filter output for ideal and simulated cases have 

been shown in Figure 5.11 where simulated response is very close to ideal one. 

 

Figure 5.11 : Output ideal and simulated speech signals.  
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6.  MOS-ONLY CIRCUIT WITH DTMOS TUNING 

In the literature, there has been an increasing amount of interest on MOS-only circuit 

design because of its advantageous features [76-80].  MOS-only circuits both 

eliminate the necessity of connection of additional passive elements and complex 

circuits requiring high number of transistors. Therefore, high frequency operation is 

an inherent feature of this design methodology. 

6.1 MOS-Only Method 

MOS-only method is a very promising approach for analog signal processing 

applications. Recently, a third-order current-mode high frequency Butterworth low-

pass filter has been proposed with using OTAs in gm-C configuration.  The filter cut-

off frequency was 200MHz with a power consumption of 16.77mW. However, this 

topology requires relatively high number of transistors to realize the OTA elements 

and additional passive capacitances [81].   

Instead of conventional gm-C technique as exemplified in the study [81], it is possible 

to get similar results with employing less number of transistors, without using 

additional passive elements and significantly lower power consumption when MOS-

only technique is used in the design of third-order current-mode high frequency 

Butterworth low-pass filters.  

In this study, a third order Butterworth current-mode filter is presented using three 

MOS transistors. Our approach of utilizing the parasitic capacitances of MOS 

transistors regards gate-to-source capacitances (Cgs) as useful, whereas other parasitic 

capacitances such as drain-to-gate capacitances (Cgd) are considered as parasitic. 

Therefore, the proposed circuits make use of the gate-to-source capacitances and the 

effect of the other parasitic capacitances is desired to be minimized. The fact that the 

gate-to-source capacitance of a MOS transistor is usually higher than the other 

parasitic capacitances is the reason behind this methodology.  
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We have analyzed the effect of additional transistors to overall transfer function for 

picking up the output current. Therefore, we have also proposed an enhanced version 

of MOS-only third order Butterworth filter with an available output current for usage 

in succeeding stages. A straightforward technique has been utilized to pick up the 

currents flowing over the MOS transistors by adding additional MOS transistors for 

this purpose. Their effects on the Butterworth transfer function are also analyzed and 

an improved version of MOS-only circuit including the effects of these additional 

transistors is investigated. Moreover, suppressing the effects of non-idealities caused 

by biasing or other parasitic capacitances, a tuning methodology based on external 

tuning and Dynamic Threshold MOS (DTMOS) transistor technique is developed. In 

this tuning technique, bulk terminals of MOS transistors are used to adjust the 

biasing point of the circuit by changing the threshold voltages of the MOS 

transistors. This gives the designers more flexibility than conventional tuning 

methods and allows low voltage operation when several transistors are stacked over 

each other.  

6.2 MOS-Only Third Order Low-pass Butterworth Filter 

The proposed MOS-only filter circuit is shown in Figure 6.1.  M2 and M3 are NMOS 

transistors and M1 is chosen as PMOS. Input current signal is applied to the source 

terminal of M1 transistor while the output signal is flowing over the drain of M2. 

AC model of the proposed MOS-only circuit is depicted in Figure 6.2 where only 

gate to source capacitances and transconductances of MOS transistors are added to 

the model for simplicity. When the gate-to-source parasitic capacitances are taken 

into consideration, but the gate-to-drain capacitances not, then the transfer function 

of this circuit is given as 
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Figure 6.1 : The proposed MOS-only circuit. 

The equation  (6.1)  can be rewritten as 
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The equation in (6.2) becomes a third order low-pass Butterworth filter transfer 

function when following equalities are satisfied. Thus, under the conditions in (6.3), 

it is possible to get a third order Butterworth filter only using three MOS transistors 

when the biasing transistors are neglected. 
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In this technique, gate to drain capacitances of MOS transistors become undesired 

parasitic capacitances which deteriorate the ideal transfer function in (6.2). When 

their affects are added to the transfer function, it becomes 
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where  
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When gate to drain capacitances are neglected, the equation reduces to its definition 

in (6.2) as expected. The numerator of the non-ideal transfer function in (6.4) shows 

that there is a right hand plane zero at 
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This right hand plane zero adds more phase shift to the Bode plot of the circuit and 

might be a problem for the stability of the circuit unless it is moved to very high 

frequencies. This is the chosen method in our design to alleviate its effect by 

properly adjusting the biasing and transistor aspect ratios which affect the value of 

parasitic gate to drain capacitances. Additional elements might be added to the circuit 

to move the zero to the left half plane or even to cancel the poles.  However, this is 

not a robust solution and does not guarantee the pole zero cancelation whenever any 

variation occurs in the circuit such as process variations, temperature, etc. Moreover, 

the realization of these elements leads to additional parasitics. 
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Figure 6.2 : The AC model of the proposed MOS-only circuit. 

The equality of ideal 3dB pole frequency in (6.7) shows that cut-off frequency is 

proportional to the transconductances and gate to source capacitances of transistors. 

High frequency operation is possible when Cgs capacitances and transconductances 

are adjusted accordingly since the topology requires very small number of transistors 

contrary to a realization based on active analog building blocks such as op-amps, 

OTAs, etc.  It is useful to note that the transconductance of  a MOS transistor, as 

given in (6.8), is proportional to its width length ratio which also affects gate to 

source capacitance (6.9), so the designer should be careful while adjusting their 

values to determine the circuits both biasing and operation frequency for proper 

operation. In (6.9), gate source capacitance is given when the transistor is in 

saturation mode of operation where Cov is the overlap capacitance and Cox is the 

oxide capacitance. 
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6.3 Improved MOS-Only Circuit 

One thing should be resolved for the circuit in Figure 6.1 is that the output current is 

flowing over the transistor M2. This current should be picked by a mechanism which 

does not affect the overall Butterworth transfer function. This method additionally 

should consider proper biasing of overall circuit and it should not deteriorate the 

frequency behavior of the circuit when high frequency operation is required. 

Furthermore, parasitics from the additional circuitry should be kept to a minimum. 

Considering aforementioned specifications, the improved circuit is shown as in 

Figure 6.3. 

 

     Figure 6.3 : The proposed overall MOS-only circuit.  

The transfer function of the improved MOS-only circuit can be given as in (6.10) 

when its AC model in Figure 6.4 is analyzed. The circuit in Figure 6.3 satisfies third 

order Butterworth transfer function with new design equalities given in (6.14).  
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Figure 6.4 : The AC model of the improved MOS-only circuit.  
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In equation (6.10), CT shows the total equivalent gate to source capacitance between 

the gate and source of M2 and M4 transistors which is equal to Cgs2//Cgs4. The 

coefficient a, is defined by the ratio of the transconductances of M2 transistor to M4 

transistor. Under the same biasing conditions and same transistor dimensions, these 

two capacitances become approximately same. Additionally, when M2 and M4 

transconductances are chosen equal, these two variables, CT and a become 

 

1,2 422  aggCC mmgsT                            (6.11) 

 
After substituting these values into (6.10), transfer function becomes  
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which can be rewritten as 
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To get a third order Butterworth response, new design equalities should be chosen as 

in (6.14) 
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when parasitic Cgd capacitances are taken into consideration, non-ideal transfer 

function becomes  
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where Z is the load impedance and Φ is given as 
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6.4 Overall MOS-Only Filter Circuit with DTMOS Tuning 

As it is seen from the non-ideal transfer function in (6.15), there is an additional pole 

coming from the gate to drain capacitance of M4 transistor and the Z load 

impedance. Usually the gate to drain capacitances significantly is lower than gate to 

source capacitances. When their effects are neglected, that is Cgd<< Cgs, the transfer 

function in (6.15) reduces to the ideal function. However, another important point to 

be pointed out that the current sources in circuits are not ideal. Thus, their gate to 

source capacitances will also affect the circuit. Similarly, the effects coming from 

transistors forming biasing voltages should also be considered but adding all the 

secondary effects in hand calculations become tediously complicated. Therefore 

following complete circuit in Figure 6.5 is formed for further investigations in 

simulations with real current sources and biasing voltages.  
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Figure 6.5 : The complete MOS-only circuit with DTMOS tuning technique.  

In Figure 6.5, M5 and M6 transistors are diode connected transistors to generate 

desired biasing voltage at the gate of M2 transistor. M7 and M8 are current sources 

supplying biasing current over the core MOS-only circuit part. Vtune1 and Vtune2 are 

off-chip tuning voltages. These are used to compensate the change of the circuit’s 

center frequency due to non-idealities. However, in the topology, four MOS 

transistors are stacked over which limits the biasing options of designer because of 

the supply voltage limits of modern low power analog circuits. For proper tuning in 

the circuit, DTMOS technique based on additional off-chip tuning voltage is utilized.  

In simulations, TSMC 0.18µm n-well process technology parameters are used in 

SPICE program to model the transistors. Vtune1 voltage is set to 0.6V while the 

maximum forward body bias of PMOS transistors M1, M7, M8 is 0.4V to employ 

DTMOS technique in off-chip tuning methodology.  

The power consumption of the circuit is 0.69mW when Ib biasing currents are set to 

186.5µA after DTMOS tuning. The ideal cut-off frequency of the filter is found as 

228MHz.   

The ideal and simulated responses of proposed third order Butterworth MOS-only 

filter are given in Figure 6.6 when the output is loaded with a 10pF capacitor which 
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is a typical load for the operating frequency. Figure 6.7 shows the sinusoidal 

response of the ideal and the simulated responses at 100MHz. Ideal and simulated 

responses are opposite in phase but direction of the output current is taken inside in 

order to compare the ideal and simulated characteristics more closely. There is small 

magnitude loss at the simulated characteristic which is a result of the biasing 

conditions. These conditions are closely related with the filter results especially when 

high frequency operation is an aimed specification.  

To investigate the effects of process variations (W, L, VTO, tox) on the proposed 

circuit, Monte Carlo simulations are additionally performed by using SPICE program 

and resulting magnitude and sinusoidal response figures are shown in Figure 6.8 and 

Figure 6.9 respectively.  

Figure 6.6 :  Ideal and simulated filter magnitude response. 
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Figure 6.7 : Ideal and simulated filter sinusoidal responses at 100MHz. 

 

Figure 6.8 :  Monte Carlo simulation for the magnitude response. 
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Figure 6.9 : Monte Carlo simulation for the sinusoidal response. 

From Monte Carlo simulations, it is seen that there are some situations where 

variations are relatively high but usually the variations are in acceptable limits.  

 

Figure 6.10 : Total harmonic distortion of the proposed filter. 

Total harmonic distortion of the circuit is illustrated in Figure 6.10 which shows the 

THD for a peak to peak input current signal at 100MHz.  
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The dimensions of the transistors in Figure 6.5 are tabulated in Table 6.1. 

Table 6.1 : Transistor dimensions. 

Transistors Width (µm) Length (µm) 
M1 30 1.5 

M2, M4 168 2 
M3 238 1.4 
M5 4 4 

M6, M7, M8 20 2 
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7.  CONCLUSION  

In conclusion, DTMOS-based active building blocks have been designed in this 

study. The designs are mainly focused on ultra low power consumption due to the 

usage of ultra low supply voltage of even less than 0.5V, which leads the transistors 

to operate in subthreshold region where DTMOS transistors having ideal 

subthreshold swings. 

DTMOS-based OTA, VDTA, OP-AMP, multiplier, CCII are some of the active 

blocks that are designed in this study for ultra low power  applications. The channel 

lengths of all DTMOS transistors were chosen 2µm to be in agreement of the models 

used here and to prevent short channel effects.  

Additionally, a third order low-pass Butterworth filter for high frequency 

applications are proposed in this study. MOS-only technique has been used to get a 

filter circuit with small number of transistors, low power consumption and requiring 

no additional passive elements. To alleviate the deviation from ideal case caused by 

parasitics, A DTMOS technique-based tuning methodology has been developed. 

Results show that the proposed circuit is capable of operation at high frequencies 

with consuming low power.  

 The performance of all proposed circuits are confirmed with SPICE program with 

detailed simulations. Theoretical calculations are found in good agreement with 

simulation results.  

7.1 Results and Importance of the Study 

This study, as far as the author’s knowledge, first applies the DTMOS approach to 

EEG processing successfully where the operation frequency is low so limited 

bandwidths due to subthreshold operation, no longer become a problems. Such 

circuits proposed here are required designs, especially, for wireless EEG devices. 

Additionally, the performance of the proposed designs here have been investigated 

by real life measurements practically by various signal processing ways. 
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DTMOS transistor with its unique qualifications becomes a very suitable device for 

low-power, especially subthreshold designs. In addition to its several interesting 

features, bulk terminal plays the role of a second gate and increases the control over 

the channel. Bulk terminal can also be used as the fourth terminal of the transistor 

which leads to interesting applications as in the proposed MOS-only filter circuit 

where it increases the tuning range. Actually, the DTMOS tuning in third order 

Butterworth filter,  not only increases the tuning range but also it enables the circuit 

to flow high currents by decreasing the threshold voltage of PMOS transistors and 

leads to a unique biasing scheme for the cascode stage. 

Another important result, to be finally mentioned here for the presented dissertation 

study is that all of the proposed active building blocks lead to both compact and ultra 

low power consuming circuits which can be applied to numerous application subjects 

in low power analog circuits.  
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